JP4711233B2 - Exhaust gas purification system for hydrogen engine - Google Patents

Exhaust gas purification system for hydrogen engine Download PDF

Info

Publication number
JP4711233B2
JP4711233B2 JP2006131097A JP2006131097A JP4711233B2 JP 4711233 B2 JP4711233 B2 JP 4711233B2 JP 2006131097 A JP2006131097 A JP 2006131097A JP 2006131097 A JP2006131097 A JP 2006131097A JP 4711233 B2 JP4711233 B2 JP 4711233B2
Authority
JP
Japan
Prior art keywords
hydrogen
exhaust
exhaust gas
gas
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006131097A
Other languages
Japanese (ja)
Other versions
JP2007303321A (en
Inventor
啓次 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2006131097A priority Critical patent/JP4711233B2/en
Priority to US11/738,104 priority patent/US20080041034A1/en
Priority to DE102007021827A priority patent/DE102007021827B4/en
Publication of JP2007303321A publication Critical patent/JP2007303321A/en
Application granted granted Critical
Publication of JP4711233B2 publication Critical patent/JP4711233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/029Determining density, viscosity, concentration or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/024Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting hydrogen H2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/147Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a hydrogen content or concentration of the exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

この発明は水素エンジンの排気ガス浄化システムに係り、特に水素エンジンで燃焼した後の排気ガスの特定成分を、水素ガスを用いて浄化する水素エンジンの排気ガス浄化システムに関するものである。   The present invention relates to an exhaust gas purification system for a hydrogen engine, and more particularly to an exhaust gas purification system for a hydrogen engine that uses hydrogen gas to purify specific components of the exhaust gas after combustion in the hydrogen engine.

現状において、自動車の動力源としては、燃料電池による電気自動車が有力とされているが、燃料となる水素を直接エンジンで燃焼させて動力を得る水素エンジンも有力視されている。
水素エンジンは、車両に水素を高圧状態で貯蔵する水素貯蔵タンクを搭載し、この水素貯蔵タンクから供給する水素を燃焼させて車両の駆動力を得るものである。
このとき、前記水素エンジンは、水素を高圧状態で水素貯蔵タンクに貯留した際の圧力を利用し、水素エンジンの燃焼室に直接噴射することで燃料供給を行っている。
At present, as an automobile power source, an electric vehicle using a fuel cell is considered to be promising, but a hydrogen engine that obtains power by directly burning hydrogen as a fuel in the engine is also considered promising.
The hydrogen engine is equipped with a hydrogen storage tank that stores hydrogen in a high pressure state in a vehicle, and burns hydrogen supplied from the hydrogen storage tank to obtain a driving force of the vehicle.
At this time, the hydrogen engine supplies fuel by directly injecting the hydrogen into the combustion chamber of the hydrogen engine using the pressure when hydrogen is stored in the hydrogen storage tank in a high pressure state.

特許第3661555号公報Japanese Patent No. 3661555 特開平2−86915号公報JP-A-2-86915 特開平2−149714号公報JP-A-2-149714 特開2002−13412号公報JP 2002-13412 A 特開2005−240656号公報Japanese Patent Laid-Open No. 2005-240656 実公平5−13937号公報No. 5-13937 実公平6−10129号公報No. 6-10129

ところで、従来の水素エンジンの排気ガス浄化システムにおいて、水素エンジンの運転時に、混合気の空気過剰率(「空燃比」とも換言できる。)λが「λ<1」の場合には、水素ガスの燃焼時に空気中の窒素が水素過剰(「リッチ」ともいう。)下で還元され、有害なアンモニア(「NH3」とも記載する。)が発生してしまうという不都合がある。
つまり、簡単な化学式を記載すると、
H2+O2+N2 → H2O+NH3
となる。
By the way, in the conventional exhaust gas purification system of a hydrogen engine, when the excess air ratio of the air-fuel mixture (also referred to as “air-fuel ratio”) λ is “λ <1” during the operation of the hydrogen engine, During combustion, nitrogen in the air is reduced under an excess of hydrogen (also referred to as “rich”), and harmful ammonia (also referred to as “NH3”) is generated.
In other words, if you write a simple chemical formula,
H2 + O2 + N2 → H2O + NH3
It becomes.

また、混合気の空燃比λが「λ≧1」の場合には、排気ガス中に有害な排気ガス成分として窒素酸化物(「NOx」とも記載する。)が大量に排気されるという不都合がある。
つまり、簡単な化学式を記載すると、
H2+O2+N2 → H2O+NOx
となる。
なお、上述した排気ガス浄化システムのλ制御において、空気と燃料との混合気の空燃比λが理論空燃比の時には、「λ=1」となる。また、水素ガスを燃料とする場合、「λ=1」の時の理論空燃比(A/F)は、「A/F=34.3」となります。
Further, when the air-fuel ratio λ of the air-fuel mixture is “λ ≧ 1,” there is a disadvantage that a large amount of nitrogen oxide (also referred to as “NOx”) is exhausted as a harmful exhaust gas component in the exhaust gas. is there.
In other words, if you write a simple chemical formula,
H2 + O2 + N2 → H2O + NOx
It becomes.
In the above-described λ control of the exhaust gas purification system, when the air-fuel ratio λ of the air-fuel mixture is the stoichiometric air-fuel ratio, “λ = 1”. When hydrogen gas is used as fuel, the theoretical air-fuel ratio (A / F) when “λ = 1” is “A / F = 34.3”.

更に、還元剤としての一酸化炭素(「CO」とも記載する。)や炭化水素(「HC」とも記載する。)を排気ガス中に含まない燃焼ガスの場合、自動車に広く用いられる触媒を後処理装置としている用いることができないという不都合がある。
また、このような場合のNOx浄化システムとしては、リーンNOx触媒等が実用化されているが、その浄化性能と耐熱性とに不都合がある。
更に、大型ディーゼル車で用いられる尿素充填式NOx還元システムにおいても、排気系への尿素の供給というデバイスの追加が必要となるという不都合がある。
Further, in the case of a combustion gas that does not contain carbon monoxide (also referred to as “CO”) or hydrocarbon (also referred to as “HC”) as a reducing agent in the exhaust gas, a catalyst that is widely used in automobiles is used. There is an inconvenience that the processing apparatus cannot be used.
Moreover, as a NOx purification system in such a case, a lean NOx catalyst or the like has been put into practical use, but there are disadvantages in its purification performance and heat resistance.
Furthermore, the urea-filled NOx reduction system used in large diesel vehicles also has the disadvantage that it is necessary to add a device for supplying urea to the exhaust system.

この発明の目的は、貯蔵する水素ガスを、燃料として水素エンジンで燃焼させるとともに、燃焼後の排気ガスにも供給して、排気ガス成分の浄化を向上する水素エンジンの排気ガス浄化システムを実現することにある。
追記すれば、水素ガスを、水素エンジンに一次供給し燃焼させる際に、アンモニアの排出を抑制する燃焼とする。
また、排気ガス中に二次供給して、その抑制制御に伴い増加する排気ガスの特定成分(「窒素酸化物」または「NOx」とも記載する。)の浄化性を向上する。
更に、その浄化性能を維持するための水素ガスの消費量を低減する。
以上を通じて、燃費を向上させる、ことを目的とする。
An object of the present invention is to realize an exhaust gas purification system of a hydrogen engine that improves the purification of exhaust gas components by burning stored hydrogen gas in a hydrogen engine as fuel and also supplying it to exhaust gas after combustion. There is.
If it adds, it will be set as the combustion which suppresses discharge | emission of ammonia when hydrogen gas is primarily supplied to a hydrogen engine and burned.
Further, the purification of a specific component (also referred to as “nitrogen oxide” or “NOx”) of the exhaust gas that is secondarily supplied into the exhaust gas and increases with the suppression control is improved.
Furthermore, the consumption of hydrogen gas for maintaining the purification performance is reduced.
Through the above, the object is to improve fuel efficiency.

そこで、この発明は、上述不都合を除去するために、水素を高圧状態で貯蔵する水素貯蔵タンクと、この水素貯蔵タンクから供給する水素を燃焼する水素エンジンと、水素エンジンの排気管に設けた触媒とを備え、水素エンジンの運転中に排気管内に水素ガスを供給可能に設けた水素エンジンの排気ガス浄化システムにおいて、触媒の上流側の排気管に、排気ガス成分を検知する上流側排気ガスセンサを設けるとともに、排気管内部に水素ガスを噴射する排気側水素ガス噴射装置をその上流側排気ガスセンサの上流側に設け、触媒の下流側の排気管に排気ガス成分を検知する下流側排気ガスセンサを設け、この上流側排気ガスセンサの検出に基づいて排気ガスがリーン側の所定の空燃比となるように水素エンジンに供給する水素ガスの供給量をフィードバック制御しつつ、排気側水素ガス噴射装置から水素エンジンに供給する水素ガスよりも少量な水素ガスを供給するように制御する制御手段を設け、この制御手段は、この下流側排気ガスセンサの検出に基づいて排気側水素ガス噴射装置から供給する水素ガスによる触媒通過後の排気ガスへの還元率を監視しつつ、供給する水素ガスを増量補正または減量補正するようにフィードバック補正制御することを特徴とする。 Therefore, in order to eliminate the above disadvantages, the present invention provides a hydrogen storage tank for storing hydrogen in a high pressure state, a hydrogen engine for burning hydrogen supplied from the hydrogen storage tank, and a catalyst provided in an exhaust pipe of the hydrogen engine. In an exhaust gas purification system for a hydrogen engine provided so that hydrogen gas can be supplied into the exhaust pipe during operation of the hydrogen engine, an upstream exhaust gas sensor for detecting an exhaust gas component is provided in the exhaust pipe upstream of the catalyst. An exhaust side hydrogen gas injection device for injecting hydrogen gas into the exhaust pipe is provided upstream of the upstream exhaust gas sensor, and a downstream side exhaust gas sensor for detecting exhaust gas components is provided in the exhaust pipe downstream of the catalyst. , the supply amount of hydrogen gas supplied to the hydrogen engine so that the exhaust gas based on the detection of the upstream exhaust gas sensor becomes a predetermined air-fuel ratio leaner While the feedback control, a control means for supplying a small amount of hydrogen gas than a hydrogen gas supplied to the hydrogen engine from the exhaust side hydrogen gas injection device is provided, the control means, the detection of the downstream exhaust gas sensor Based on the feedback correction control so as to correct the increase or decrease of the supplied hydrogen gas while monitoring the reduction rate of the hydrogen gas supplied from the exhaust-side hydrogen gas injection device to the exhaust gas after passing through the catalyst based on To do.

以上詳細に説明した如くこの本発明によれば、燃焼状態を平均してリーン側に維持することで、排気ガス成分のうち、NH3の排出を非常に低く抑えることができる。
また、増加してしまうNOxは、二次供給する水素ガスにより、触媒上でNOxを選択的に還元することができることから、トータル的に触媒による浄化効率を高く維持できる。
更に、二次供給する水素ガスの消費量を、少なく抑えることができる。
As described in detail above, according to the present invention, the combustion state is averaged and maintained on the lean side, so that the emission of NH3 among the exhaust gas components can be suppressed to a very low level.
Further, the increased NOx can be selectively reduced on the catalyst by the secondary supply of hydrogen gas, so that the purification efficiency by the catalyst can be maintained high in total.
Furthermore, the consumption of hydrogen gas to be secondarily supplied can be reduced.

上述の如く発明したことにより、制御手段によって、上流側排気ガスセンサの検出に基づいて排気ガスがリーン側の所定の空燃比となるように水素エンジンに供給する水素ガスの供給量をフィードバック制御する。
また、制御手段によって、排気側水素ガス噴射装置から水素エンジンに供給する水素ガスよりも少量な水素ガスを供給するように制御する。
As a result of the invention as described above, the control means feedback-controls the amount of hydrogen gas supplied to the hydrogen engine based on the detection of the upstream side exhaust gas sensor so that the exhaust gas has a predetermined lean air-fuel ratio.
Further, the control means controls to supply a smaller amount of hydrogen gas than the hydrogen gas supplied from the exhaust-side hydrogen gas injection device to the hydrogen engine.

以下図面に基づいてこの発明の実施例を詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1〜図6はこの発明の実施例を示すものである。
図2において、1は水素エンジンの排気ガス浄化システムである。
この排気ガス浄化システム1は、水素を高圧状態(数10MPa程度。例えば、35〜70MPa程度。)で貯蔵する水素貯蔵タンク2と、この水素貯蔵タンク2から供給する水素を燃焼する水素エンジン3と、水素エンジン3の排気管4に設けた触媒、例えば触媒5とを備え、水素エンジン3の運転中に排気管4内部に微量の水素ガスを供給可能に設けたものである。
このとき、水素エンジン3は、筒内直接噴射式燃料供給を採用するものであり、後述する過給機(「ターボチャージャ」ともいう。)23付の4サイクルエンジンである。
1 to 6 show an embodiment of the present invention.
In FIG. 2, reference numeral 1 denotes an exhaust gas purification system for a hydrogen engine.
The exhaust gas purification system 1 includes a hydrogen storage tank 2 that stores hydrogen in a high-pressure state (about several tens of MPa, for example, about 35 to 70 MPa), and a hydrogen engine 3 that combusts hydrogen supplied from the hydrogen storage tank 2. A catalyst provided in the exhaust pipe 4 of the hydrogen engine 3, such as a catalyst 5, is provided so that a trace amount of hydrogen gas can be supplied into the exhaust pipe 4 during operation of the hydrogen engine 3.
At this time, the hydrogen engine 3 employs in-cylinder direct injection fuel supply and is a four-cycle engine with a supercharger (also referred to as “turbocharger”) 23 described later.

前記排気ガス浄化システム1の水素エンジン3は、図2及び図3に示す如く、シリンダブロック6とシリンダヘッド7とシリンダヘッドカバー8とが一体的になって構成されている。
そして、前記シリンダブロック6には、ピストン9が摺動可能に設けられる。
また、前記シリンダヘッド7と共働した燃焼室10が形成される。
更に、シリンダヘッド7には、吸気系で、吸気カム軸11が設置されているとともに、この吸気カム軸11で駆動される吸気弁12が設けられる。
また、シリンダヘッド7には、排気系で、排気カム軸13が設置されているとともに、この排気カム軸13で駆動される排気弁14が設けられている。
As shown in FIGS. 2 and 3, the hydrogen engine 3 of the exhaust gas purification system 1 includes a cylinder block 6, a cylinder head 7, and a cylinder head cover 8 that are integrally formed.
A piston 9 is slidably provided on the cylinder block 6.
A combustion chamber 10 that cooperates with the cylinder head 7 is formed.
Further, the cylinder head 7 is provided with an intake camshaft 11 and an intake valve 12 driven by the intake camshaft 11 in an intake system.
Further, the cylinder head 7 is provided with an exhaust cam shaft 13 and an exhaust valve 14 driven by the exhaust cam shaft 13 in an exhaust system.

前記水素エンジン3の吸気系においては、エアクリーナ15と、このエアクリーナ15から水素エンジン3側に吸入空気を導く吸気管16と、スロットルバルブ17を備えたスロットルボディ18と、サージタンク19が一体でシリンダヘッド7に取り付けられる吸気マニホルド20とが、順次に接続されている。
一方、前記水素エンジン3の排気系においては、水素エンジン3からの排気を導くようにシリンダヘッド7に取り付けられる排気マニホルド21と、この排気マニホルド21に上流側が接続し、途中部位に前記触媒5を収容する触媒コンバータ22を配設する前記排気管4とが、順次に接続されている。
In the intake system of the hydrogen engine 3, an air cleaner 15, an intake pipe 16 that guides intake air from the air cleaner 15 to the hydrogen engine 3, a throttle body 18 having a throttle valve 17, and a surge tank 19 are integrated into a cylinder. An intake manifold 20 attached to the head 7 is sequentially connected.
On the other hand, in the exhaust system of the hydrogen engine 3, an exhaust manifold 21 attached to the cylinder head 7 so as to guide the exhaust from the hydrogen engine 3 is connected to the upstream side of the exhaust manifold 21. The exhaust pipe 4 in which the catalytic converter 22 to be accommodated is disposed is sequentially connected.

また、前記水素エンジン3には、過給機(「ターボチャージャ」ともいう。)23が設けられる。
この過給機23は、エアクリーナ15側からの吸入空気を過給し、この過給された空気を水素エンジン3側に供給するものである。
この過給機23は、過給機ケース24内で、吸気管16の途中に配設されるコンプレッサ25と、排気マニホルド21と触媒コンバータ22間の前記排気管4部位に配設されて排気流で回転するタービン26とを備えている。
そして、このタービン26への排気流は、ウェストゲートバルブ(「ウェストゲートコントロールVSV」ともいう。)27を備えたウェストゲート機構28によって調整される。
前記コンプレッサ25とスロットルボディ18との間の吸気管16には、過給機23で過給された吸入空気を冷却するインタクーラ29が設けられている。
The hydrogen engine 3 is provided with a supercharger (also referred to as “turbocharger”) 23.
The supercharger 23 supercharges intake air from the air cleaner 15 side and supplies the supercharged air to the hydrogen engine 3 side.
The supercharger 23 is disposed in the supercharger case 24 in the exhaust pipe 4 between the compressor 25 disposed in the middle of the intake pipe 16 and the exhaust manifold 21 and the catalytic converter 22. And a turbine 26 rotating at the same time.
The exhaust flow to the turbine 26 is adjusted by a wastegate mechanism 28 having a wastegate valve (also referred to as “waistgate control VSV”) 27.
The intake pipe 16 between the compressor 25 and the throttle body 18 is provided with an intercooler 29 for cooling the intake air supercharged by the supercharger 23.

そして、前記水素エンジン3には、水素ガスを噴射する水素ガス噴射システム30が設けられる。
この水素ガス噴射システム30は、吸気側水素ガス噴射装置31と排気側水素ガス噴射装置32とからなる。
このとき、吸気側水素ガス噴射装置31は、水素エンジン3の吸気系において燃焼室10内部に水素ガスを直接噴射する筒内直接噴射式燃料供給を採用している。
また、排気側水素ガス噴射装置32は、前記排気管4内部に水素ガスを噴射するものである。
The hydrogen engine 3 is provided with a hydrogen gas injection system 30 that injects hydrogen gas.
The hydrogen gas injection system 30 includes an intake side hydrogen gas injection device 31 and an exhaust side hydrogen gas injection device 32.
At this time, the intake-side hydrogen gas injection device 31 employs in-cylinder direct injection fuel supply that directly injects hydrogen gas into the combustion chamber 10 in the intake system of the hydrogen engine 3.
The exhaust-side hydrogen gas injection device 32 injects hydrogen gas into the exhaust pipe 4.

前記水素ガス噴射システム30は、前記水素貯蔵タンク2と、この水素貯蔵タンク2に一端側が接続する水素ガス供給通路33と、この水素ガス供給通路33の他端側が接続するプレッシャレギュレータ34とを有する。
このとき、プレッシャレギュレータ34は、2系統の切換機能を有しているとともに、水素貯蔵タンク2内に高圧状態(数10MPa程度。例えば、35〜70MPa程度。)で貯蔵される水素ガスを数100kPa(例えば、数気圧程度。)に減圧する機能を有している。
そして、前記吸気側水素ガス噴射装置31は、プレッシャレギュレータ34に一端側が接続する一次供給側通路35と、この一次供給側通路35の他端側が接続する前記シリンダヘッド7に取り付けたデリバリパイプ36と、デリバリパイプ36に接続する一次供給側インジェクタ(「筒内インジェクタ」ともいう。)37とからなる。
また、前記排気側水素ガス噴射装置32は、前記プレッシャレギュレータ34に一端側が接続する二次供給側通路38と、この二次供給側通路38の他端側が接続し、前記排気管4内部に水素ガスを噴射する二次供給側インジェクタ39とからなる。
The hydrogen gas injection system 30 includes the hydrogen storage tank 2, a hydrogen gas supply passage 33 connected to one end side of the hydrogen storage tank 2, and a pressure regulator 34 connected to the other end side of the hydrogen gas supply passage 33. .
At this time, the pressure regulator 34 has a switching function of two systems, and several hundred kPa of hydrogen gas stored in the hydrogen storage tank 2 in a high pressure state (about several tens of MPa, for example, about 35 to 70 MPa). It has a function of depressurizing (for example, about several atmospheres).
The intake side hydrogen gas injection device 31 includes a primary supply side passage 35 connected to the pressure regulator 34 at one end side, and a delivery pipe 36 attached to the cylinder head 7 connected to the other end side of the primary supply side passage 35. The primary supply side injector (also referred to as “in-cylinder injector”) 37 connected to the delivery pipe 36.
The exhaust-side hydrogen gas injection device 32 has a secondary supply side passage 38 connected at one end side to the pressure regulator 34 and the other end side of the secondary supply side passage 38 connected thereto. It comprises a secondary supply side injector 39 for injecting gas.

また、前記水素エンジン3には、アイドル回転数制御装置40が設けられる。
このアイドル回転数制御装置40においては、スロットルバルブ17を迂回してスロットルボディ18内とサージタンク19内とを連通するようにバイパス通路41が設けられ、このバイパス通路41の途中に水素エンジン3へのアイドル空気量を調整するISCバルブ(「アイドル空気量制御バルブ」ともいう。)42が設けられている。
The hydrogen engine 3 is provided with an idle speed control device 40.
In this idle speed control device 40, a bypass passage 41 is provided so as to bypass the throttle valve 17 and communicate the inside of the throttle body 18 and the surge tank 19, and to the hydrogen engine 3 in the middle of the bypass passage 41. An ISC valve (also referred to as an “idle air amount control valve”) 42 for adjusting the amount of idle air is provided.

更に、前記水素エンジン3のシリンダヘッドカバー8には、イグニションコイル43とPCVバルブ44とが取り付けられている。
このPCVバルブ44には、サージタンク19内に連通するタンク側ブローバイガス通路45が接続している。
また、前記シリンダヘッドカバー8には、エアクリーナ15内に連通するクリーナ側ブローバイガス通路46が接続している。
Further, an ignition coil 43 and a PCV valve 44 are attached to the cylinder head cover 8 of the hydrogen engine 3.
A tank side blowby gas passage 45 communicating with the inside of the surge tank 19 is connected to the PCV valve 44.
The cylinder head cover 8 is connected to a cleaner-side blow-by gas passage 46 communicating with the air cleaner 15.

前記水素エンジン3には、燃料圧力センサ47とエンジン水温センサ49とが取り付けられている。
この燃料圧力センサ47は、デリバリパイプ36に取り付けられて一次供給側インジェクタ37への燃料の圧力を検出するものである。
また、エンジン水温センサ49は、水素エンジン3の一部に形成した冷却水通路48内の冷却水温度を検出するものである。
A fuel pressure sensor 47 and an engine water temperature sensor 49 are attached to the hydrogen engine 3.
The fuel pressure sensor 47 is attached to the delivery pipe 36 and detects the fuel pressure to the primary supply side injector 37.
The engine water temperature sensor 49 detects the cooling water temperature in the cooling water passage 48 formed in a part of the hydrogen engine 3.

前記スロットルボディ18には、スロットルバルブ17のスロットル開度を検出するスロットルセンサ50が設けられるとともに、スロットルバルブ17よりも下流側に導圧通路51の一端側が接続している。
この導圧通路51の他端側には、スロットルバルブ17の下流側の吸気管圧力を検出する吸気圧センサ52が設けられている。
前記サージタンク19には、吸入空気の温度を検出する吸気温度センサ53が取り付けられている。
前記触媒コンバータ22の上流側、つまり、前記触媒5よりも上流側の排気管4に、排気ガス成分を検知する上流側排気ガスセンサ(「空燃比センサ」または「λセンサ」ともいう。)54を設けるとともに、排気管4内部に水素ガスを噴射する前記排気側水素ガス噴射装置32をその上流側排気ガスセンサ54の上流側に設ける。
また、前記触媒5の下流側の排気管4に排気ガス成分を検知する下流側排気ガスセンサ(「水素(H2)センサ」または「NOxセンサ」ともいう。)55を設ける。
このとき、前記水素エンジン3の排気側には、図2に示す如く、上流側から順次に、排気マニホルド21と過給機23のタービン26と上流側排気ガスセンサ54と触媒コンバータ22と下流側排気ガスセンサ55とが配設されており、前記排気側水素ガス噴射装置32によって排気管4内部に水素ガスを噴射するために、排気側水素ガス噴射装置32の二次供給側インジェクタ39を過給機23のタービン26よりも上流側の排気マニホルド21の下流側端部に配設する。
The throttle body 18 is provided with a throttle sensor 50 for detecting the throttle opening of the throttle valve 17, and one end side of the pressure guiding passage 51 is connected to the downstream side of the throttle valve 17.
An intake pressure sensor 52 that detects an intake pipe pressure on the downstream side of the throttle valve 17 is provided on the other end side of the pressure guide passage 51.
An intake temperature sensor 53 for detecting the temperature of intake air is attached to the surge tank 19.
An upstream exhaust gas sensor (also referred to as “air-fuel ratio sensor” or “λ sensor”) 54 that detects an exhaust gas component is disposed upstream of the catalytic converter 22, that is, on the exhaust pipe 4 upstream of the catalyst 5. The exhaust side hydrogen gas injection device 32 that injects hydrogen gas into the exhaust pipe 4 is provided upstream of the upstream side exhaust gas sensor 54.
Further, a downstream exhaust gas sensor (also referred to as “hydrogen (H2) sensor” or “NOx sensor”) 55 for detecting an exhaust gas component is provided in the exhaust pipe 4 on the downstream side of the catalyst 5.
At this time, on the exhaust side of the hydrogen engine 3, as shown in FIG. 2, the exhaust manifold 21, the turbine 26 of the supercharger 23, the upstream exhaust gas sensor 54, the catalytic converter 22, and the downstream exhaust sequentially from the upstream side. A gas sensor 55 is provided, and in order to inject hydrogen gas into the exhaust pipe 4 by the exhaust side hydrogen gas injection device 32, the secondary supply side injector 39 of the exhaust side hydrogen gas injection device 32 is supercharged. 23 at the downstream end of the exhaust manifold 21 upstream of the turbine 26.

そして、前記ウェストゲートバルブ27とプレッシャレギュレータ34と吸気側水素ガス噴射装置31の一次供給側インジェクタ37と排気側水素ガス噴射装置32の二次供給側インジェクタ39とISCバルブ42とイグニションコイル43と燃料圧力センサ47とエンジン水温センサ49とスロットルセンサ50と吸気圧センサ52と吸気温度センサ53と上流側排気ガスセンサ54と下流側排気ガスセンサ55とは、制御手段(「ECM」ともいう。)56に連絡している。
また、この制御手段56には、クランク角センサ57と、メインスイッチ58及びフューズ59を介したバッテリ60とが連絡している。
このとき、クランク角センサ57は、クランク角を検出し、制御手段56において、燃料噴射開始時期を決定させる。
The wastegate valve 27, the pressure regulator 34, the primary supply side injector 37 of the intake side hydrogen gas injection device 31, the secondary supply side injector 39 of the exhaust side hydrogen gas injection device 32, the ISC valve 42, the ignition coil 43, and the fuel. The pressure sensor 47, engine water temperature sensor 49, throttle sensor 50, intake pressure sensor 52, intake temperature sensor 53, upstream side exhaust gas sensor 54, and downstream side exhaust gas sensor 55 communicate with control means (also referred to as “ECM”) 56. is doing.
The control means 56 is in communication with a crank angle sensor 57 and a battery 60 via a main switch 58 and a fuse 59.
At this time, the crank angle sensor 57 detects the crank angle, and the control means 56 determines the fuel injection start timing.

ここで、筒内直接噴射式燃料供給を採用した前記水素エンジン3について追記する。
筒内直接噴射式は、気体燃料(水素ガス等)の場合、停止時の大気放出やインジェクタのアイシングを防止する上で好ましい方策である。
そして、この筒内直接噴射式は、高圧の燃料、つまり水素ガスを燃焼室10内に直接噴射することで、高出力及び低燃費、低排出ガスを実現している。
また、図3に示す如く、前記水素エンジン3の吸気ポート61のストレート化とピストン9頂部の形状とによりタンブル流を発生させるとともに、燃料噴射時期を緻密に制御することで、点火プラグ62近傍に濃い混合気層を形成させ、冷暖機を問わず安定した燃焼を可能とした弱成層燃焼方式としている。
この弱成層燃焼方式は、図3に示す如く、吸気ポート61の形状に吸気弁12まで直立したストレートポートを採用し、吸入空気の流速を速めるとともに、ピストン9頂部にオフセット配置された楕円の凹部63によりタンブル流(縦方向の旋回流)を発生させる。
この際の燃料噴射は、高圧による貫徹力と適切な噴射角を持ち、直接燃焼室10内に吸気行程中に行われる。
吸気行程中に燃焼室10内に噴射した燃料は、タンブル流に導かれ、図4に示す如く、点火プラグ62周辺が濃い空燃比、外周部位が薄い空燃比となる混合気分布を形成し、燃焼室10全体では理論空燃比に制御されており、安定した燃焼を可能としている。
Here, the hydrogen engine 3 adopting in-cylinder direct injection fuel supply will be additionally described.
The in-cylinder direct injection method is a preferable measure in the case of gaseous fuel (hydrogen gas or the like) in order to prevent atmospheric release at the time of stoppage or icing of the injector.
The direct injection type in-cylinder achieves high output, low fuel consumption, and low exhaust gas by directly injecting high-pressure fuel, that is, hydrogen gas, into the combustion chamber 10.
Further, as shown in FIG. 3, a tumble flow is generated by straightening the intake port 61 of the hydrogen engine 3 and the shape of the top of the piston 9, and the fuel injection timing is precisely controlled, so that the vicinity of the spark plug 62 is obtained. It is a weak stratified combustion system that forms a dense air-fuel mixture layer and enables stable combustion regardless of cooling and warming up.
As shown in FIG. 3, this weakly stratified combustion system employs a straight port upright up to the intake valve 12 in the shape of the intake port 61 to increase the flow rate of the intake air and to form an elliptical concave portion offset at the top of the piston 9. 63 generates a tumble flow (vertical swirl flow).
The fuel injection at this time has a penetrating force due to high pressure and an appropriate injection angle, and is performed directly in the combustion chamber 10 during the intake stroke.
The fuel injected into the combustion chamber 10 during the intake stroke is guided to a tumble flow, and as shown in FIG. 4, forms a mixture distribution in which the periphery of the spark plug 62 is a rich air-fuel ratio and the outer peripheral portion is a thin air-fuel ratio. The combustion chamber 10 as a whole is controlled to the stoichiometric air-fuel ratio, enabling stable combustion.

また、筒内直接噴射式燃料供給を採用した前記水素エンジン3の燃料噴射制御においては、一次供給側インジェクタ37から噴射される燃料の噴射時期及び噴射時間(「量」とも換言できる。)を制御して、最適な時期に最適な量の燃料を噴射する。
そして、燃料噴射時期及び燃料噴射時間は、エンジン始動時に実行される始動時噴射制御と、通常運転時に実行される始動後噴射制御とにより決定される。
また、エンジン保護や燃費向上のために、運転状態に応じて燃料カット制御が行われる。
Further, in the fuel injection control of the hydrogen engine 3 adopting in-cylinder direct injection fuel supply, the injection timing and the injection time (in other words, “amount”) of the fuel injected from the primary supply side injector 37 are controlled. Then, an optimal amount of fuel is injected at an optimal time.
The fuel injection timing and the fuel injection time are determined by start-up injection control that is executed when the engine is started and post-start-up injection control that is executed during normal operation.
In addition, fuel cut control is performed according to the driving state in order to protect the engine and improve fuel efficiency.

前記始動時噴射制御について説明する。
この始動時噴射制御における燃料噴射時期は、エンジン回転速度が所定回転速度以下の時、図5に示す如く、クランク角センサ信号を基に噴射タイミング(図5の網線A部分参照)でシーケンシャル噴射を行う。
ただし、極低温時にはクランク角センサ信号立ち上がり入力後、一定間隔で数回、分割噴射を行う。
また、始動時噴射制御における燃料噴射時間は、冷却水温により決定される始動時基本噴射時間にエンジン回転速度補正、電圧補正の各種補正を加えて決定される。
なお、始動時基本噴射時間は、冷却水温が低いほど噴射時間を長くして始動性を向上させる。
The start-up injection control will be described.
The fuel injection timing in the start-up injection control is sequential injection at the injection timing (see the part A in FIG. 5) based on the crank angle sensor signal as shown in FIG. 5 when the engine speed is below a predetermined rotation speed. I do.
However, when the crank angle sensor signal rises at an extremely low temperature, divided injection is performed several times at regular intervals.
The fuel injection time in the start-up injection control is determined by adding various corrections such as engine speed correction and voltage correction to the start-up basic injection time determined by the coolant temperature.
Note that the basic injection time at start-up improves the startability by extending the injection time as the cooling water temperature is lower.

前記始動後噴射制御について説明する。
この始動後噴射制御における燃料噴射時期は、同期噴射と非同期噴射とがある。
そして、同期噴射は、図6に示す如く、通常時に、クランク角センサ信号を基に噴射タイミング(図6の網線A部分参照)でシーケンシャル噴射を行う。
また、非同期噴射は、減速時燃料カット復帰時や急加速時等にクランク角センサ信号に同期せず、図6の太い網線B部分に示す如く、一時的に全気筒同時噴射を行う。
更に、始動後噴射制御における燃料噴射時間は、吸気管圧力とエンジン回転速度とにより基本噴射時間を決定し、この基本噴射時間に各センサからの信号による補正を加え、運転状態に応じた最適な燃料噴射時間を決定する。
補正としては、以下のものがある。
(1)電圧補正
バッテリ電圧の低下による噴射時期の遅れを補正するため、バッテリ電圧の降下具合に応じて、インジェクタヘの通電時間を長くする。
(2)エンジン回転速度補正
エンジン回転速度に応じて燃料噴射時間を補正する。
(3)吸気温補正
吸気温度の変化による空気密度の差を補正する。
(4)A/F補正
各運転域における目標空燃比からのずれを補正する。
(5)フィードバック補正
排気ガス中の酸素浪度から空燃比を理論空燃比付近に保つよう補正する。
(6)学習補正
経年変化等でずれるベース空燃比を理論空燃比付近に保つよう補正する。
(7)暖機補正
冷機時の冷却水温に応じて燃料噴射量を増量し、暖機が進むにつれ補正量を漸減する。
(8)大気圧補正
大気圧の変化によって生じる空燃比のずれを補正する。なお、大気圧は吸気管圧力及ぴエンジン回転速度から算出した推定値となる。
(9)スロットル開度補正
スロットル開度の変化に応じて燃料噴射時間を補正する。
(10)パージ濃度補正
燃料蒸発ガス導入時又はカット時の空燃比の変化を補正する。
(11)加速増量減速減量補正
加遠、減速状態を検出して、加速時は補正量を増加させ加速性能の向上を図り、減速時は補正量を減少させることにより排気ガス抑制及ぴ燃費向上を図る。
(12)始動直後増量補正
始動直後に増量し、その後補正量を漸減することで、運転性を円滑にする。
The post-startup injection control will be described.
The fuel injection timing in the post-startup injection control includes synchronous injection and asynchronous injection.
As shown in FIG. 6, in the synchronous injection, the sequential injection is performed at the injection timing (refer to the part A in FIG. 6) based on the crank angle sensor signal.
In addition, the asynchronous injection is not synchronized with the crank angle sensor signal at the time of deceleration fuel cut recovery or sudden acceleration, but temporarily performs simultaneous injection of all cylinders as shown by the thick shaded line B in FIG.
Further, the fuel injection time in the post-start injection control is determined by the intake pipe pressure and the engine speed, and the basic injection time is corrected by a signal from each sensor to obtain an optimum value according to the operating state. Determine the fuel injection time.
There are the following corrections.
(1) Voltage correction
In order to correct the delay in the injection timing due to the decrease in the battery voltage, the energization time to the injector is lengthened in accordance with the decrease in the battery voltage.
(2) Engine speed correction
The fuel injection time is corrected according to the engine speed.
(3) Intake air temperature correction
Correct the difference in air density due to changes in intake air temperature.
(4) A / F correction
The deviation from the target air-fuel ratio in each operating range is corrected.
(5) Feedback correction
Correction is made so as to keep the air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio from the oxygen level in the exhaust gas.
(6) Learning correction
Correction is made so that the base air-fuel ratio that shifts due to secular change or the like is maintained near the theoretical air-fuel ratio.
(7) Warm-up correction
The fuel injection amount is increased according to the cooling water temperature at the time of cooling, and the correction amount is gradually decreased as the warming-up proceeds.
(8) Atmospheric pressure correction
The deviation of the air-fuel ratio caused by the change in atmospheric pressure is corrected. The atmospheric pressure is an estimated value calculated from the intake pipe pressure and the engine speed.
(9) Throttle opening correction
The fuel injection time is corrected according to the change in the throttle opening.
(10) Purge concentration correction
The change in the air-fuel ratio when the fuel evaporative gas is introduced or cut is corrected.
(11) Acceleration increase / decrease decrease correction
The acceleration / deceleration state is detected, the correction amount is increased during acceleration to improve the acceleration performance, and the deceleration amount is decreased during deceleration to suppress exhaust gas and improve fuel efficiency.
(12) Increase correction immediately after starting
By increasing the amount immediately after starting and then gradually decreasing the correction amount, the drivability becomes smooth.

この実施例における前記制御手段56は、上流側排気ガスセンサ54の検出に基づいて排気ガスがリーン側の所定の空燃比となるように水素エンジン3に供給する水素ガスの供給量をフィードバック制御しつつ、排気側水素ガス噴射装置32から水素エンジン3に供給する水素ガスよりも少量な水素ガスを供給するように制御する構成とする。
つまり、前記制御手段56は、前記吸気側水素ガス噴射装置31の一次供給側インジェクタ37から水素エンジン3への水素ガスの供給量を、排気ガスがリーン側の所定の空燃比(例えば、λ≒1.05)となるように、上流側排気ガスセンサ54からの検出信号に基づいてフィードバック制御する。
そして、前記制御手段56は、排気側水素ガス噴射装置32の二次供給側インジェクタ39から排気管4内部に供給する水素ガスを、前記吸気側水素ガス噴射装置31の一次供給側インジェクタ37から水素エンジン3に供給する水素ガスよりも少量とするものである。
基本的な水素ガスの供給制御では、一次供給量≫二次供給量の関係にあり、二次供給量は一次供給量と比べて微量である。しかし、一次側のフィードバックによるλ制御の目標がリーンである場合、そのリーンの度合いに因り二次供給量が増加するため、相対的に、二次供給量は一次供給量と比べて少量となることがある。
The control means 56 in this embodiment feedback-controls the supply amount of hydrogen gas supplied to the hydrogen engine 3 based on the detection of the upstream side exhaust gas sensor 54 so that the exhaust gas has a predetermined lean air-fuel ratio. The configuration is such that a smaller amount of hydrogen gas is supplied than the hydrogen gas supplied from the exhaust-side hydrogen gas injection device 32 to the hydrogen engine 3.
That is, the control means 56 determines the supply amount of hydrogen gas from the primary supply side injector 37 of the intake side hydrogen gas injector 31 to the hydrogen engine 3 and a predetermined air / fuel ratio on the lean side of the exhaust gas (for example, λ≈ 1.05), feedback control is performed based on the detection signal from the upstream side exhaust gas sensor 54.
The control means 56 supplies hydrogen gas supplied from the secondary supply side injector 39 of the exhaust side hydrogen gas injector 32 into the exhaust pipe 4 from the primary supply side injector 37 of the intake side hydrogen gas injector 31. The amount is smaller than the hydrogen gas supplied to the engine 3.
In basic hydrogen gas supply control, there is a relationship of primary supply amount >> secondary supply amount, and the secondary supply amount is very small compared to the primary supply amount. However, when the target of λ control by the feedback on the primary side is lean, the secondary supply amount increases depending on the degree of lean, so the secondary supply amount is relatively small compared to the primary supply amount. Sometimes.

また、前記制御手段56は、下流側排気ガスセンサ55の検出に基づいて排気側水素ガス噴射装置32から供給する水素ガスによる触媒通過後の排気ガスへの還元率を監視しつつ、供給する水素ガスを増量補正または減量補正するようにフィードバック補正制御するものである。   Further, the control means 56 monitors the reduction rate of the hydrogen gas supplied from the exhaust-side hydrogen gas injection device 32 to the exhaust gas after passing through the catalyst based on the detection of the downstream-side exhaust gas sensor 55, and supplies the supplied hydrogen gas. Feedback correction control is performed so as to correct the increase or decrease.

詳述すれば、前記水素エンジン3は筒内直接噴射式の燃料供給である。
従って、燃料である水素ガスの一次供給側インジェクタ37からの供給圧力(噴射圧)は、圧縮行程に跨って燃料を噴射する場合、燃焼室(筒)内圧に打ち勝つ必要がある。
このため、プレッシャレギュレータ34で減圧する際に、例えば、大気圧や過給圧と比べてある程度高い状態とする必要がある。
なお、圧縮行程に誇らずに燃料を噴射する場合に、リーン燃焼時では、出力が比較的小さくて済み、供給圧力(噴射圧)も小さくて良い。
このとき、水素ガスを排気管4内部に二次供給する二次供給側インジェクタ39からの供給圧力(噴射圧)も、過給機付エンジンの排気ガスの圧力を考慮してある程度高い状態とする必要がある。
そして、供給圧力が高ければ、排気管4内部に拡散させるにも貫徹させるにも好ましく、もともと一次供給側インジェクタ37より短い二次供給側インジェクタ39の駆動時間をさらに短くすることができる。
また、過剰の酸素(O2)ガスが、触媒5において水素(H2)ガスによって、一部が水蒸気になるため、触媒温度の過度な上昇がないように低く抑えることができる。
これにより、触媒5が活性状態となる温度範囲に収めるように管理できる。
更に、前記水素エンジン3が多気筒エンジンであっても、二次供給する水素ガスの供給頻度は、クランク回転当りの気筒数より少なくて良く、特定気筒に合わせた噴射タイミング程度で良い。
前記排気管4内部を流下する間に拡散混合が進み、触媒5の排気ガス成分の保持カと協働して、触媒通過後の排気ガス成分がより浄化されたものになれば良い。
更にまた、前記上流側排気ガスセンサ54により高い精度のフィードバック制御を行うことにより、下流側排気ガスセンサ55によるきめ細かな補正が有効となる。
More specifically, the hydrogen engine 3 is an in-cylinder direct injection fuel supply.
Accordingly, the supply pressure (injection pressure) from the primary supply side injector 37 of the hydrogen gas that is the fuel must overcome the internal pressure of the combustion chamber (cylinder) when the fuel is injected over the compression stroke.
For this reason, when pressure is reduced by the pressure regulator 34, for example, it is necessary to make the pressure higher to some extent as compared to atmospheric pressure or supercharging pressure.
When fuel is injected without being proud of the compression stroke, the output may be relatively small and the supply pressure (injection pressure) may be small during lean combustion.
At this time, the supply pressure (injection pressure) from the secondary supply side injector 39 for secondary supply of hydrogen gas into the exhaust pipe 4 is also set to a certain level in consideration of the pressure of the exhaust gas of the supercharged engine. There is a need.
If the supply pressure is high, it is preferable to diffuse or penetrate the exhaust pipe 4, and the driving time of the secondary supply side injector 39 that is originally shorter than the primary supply side injector 37 can be further shortened.
In addition, since excess oxygen (O2) gas is partially converted to water vapor by hydrogen (H2) gas in the catalyst 5, it can be kept low so that the catalyst temperature does not increase excessively.
Thereby, it can manage so that the catalyst 5 may be stored in the temperature range which becomes an active state.
Further, even if the hydrogen engine 3 is a multi-cylinder engine, the supply frequency of the hydrogen gas to be supplied secondarily may be less than the number of cylinders per crank rotation, and may be about the injection timing matched to a specific cylinder.
It is sufficient that diffusion mixing proceeds while flowing down the exhaust pipe 4 and the exhaust gas component after passing through the catalyst is further purified in cooperation with the exhaust gas component holding capacity of the catalyst 5.
Furthermore, fine correction by the downstream exhaust gas sensor 55 becomes effective by performing highly accurate feedback control by the upstream exhaust gas sensor 54.

上述した前記排気ガス浄化システム1においては、燃料である水素ガスを水素貯蔵タンク2内に高圧状態(数10MPa程度。例えば、35〜70MPa程度。)で貯蔵する。
そして、この水素貯蔵タンク2内の高圧状態の水素ガスは、図2に矢印で示す如く、前記水素ガス噴射システム30の水素ガス供給通路33を経て、プレッシャレギュレータ34に至り、このプレッシャレギュレータ34によって、水素ガスを高圧状態(数10MPa程度。例えば、35〜70MPa程度。)から数100kPa(例えば、数気圧程度。)に減圧する。
減圧された水素ガスは、図2に矢印で示す如く、前記吸気側水素ガス噴射装置31の一次供給側通路35によって、前記シリンダヘッド7に取り付けたデリバリパイプ36に送られ、このデリバリパイプ36に接続する一次供給側インジェクタ37を介して燃焼室10に直接噴射され、燃焼されることによって前記水素エンジン3を駆動する。
In the exhaust gas purification system 1 described above, hydrogen gas as fuel is stored in the hydrogen storage tank 2 in a high pressure state (about several tens of MPa, for example, about 35 to 70 MPa).
The high-pressure hydrogen gas in the hydrogen storage tank 2 reaches the pressure regulator 34 through the hydrogen gas supply passage 33 of the hydrogen gas injection system 30 as indicated by an arrow in FIG. The hydrogen gas is depressurized from a high pressure state (about several tens of MPa, for example, about 35 to 70 MPa) to several hundred kPa (for example, about several atmospheric pressures).
The decompressed hydrogen gas is sent to a delivery pipe 36 attached to the cylinder head 7 by a primary supply side passage 35 of the intake side hydrogen gas injection device 31 as indicated by an arrow in FIG. The hydrogen engine 3 is driven by being directly injected into the combustion chamber 10 through the connected primary supply side injector 37 and burned.

このとき、リーン燃焼のコントロールは、触媒5より上流に配置した上流側排気ガスセンサ54により酸素比率を測定し、目標の弱リーンの空燃比(例えば、λ≒1.05)で運転できるように、燃料噴射量をフィードバック制御する。
なお、単に、空燃比をλ≧1で燃焼した場合には、以下の式により、混合気中の窒素が酸化され、NOxを生成してしまう。
H2+O2+N2 → H2O+NOx+O2+N2
At this time, lean combustion is controlled by measuring the oxygen ratio with the upstream side exhaust gas sensor 54 arranged upstream of the catalyst 5 so that it can be operated at a target lean lean air-fuel ratio (for example, λ≈1.05). Feedback control of the fuel injection amount.
Note that when combustion is simply performed with an air-fuel ratio of λ ≧ 1, nitrogen in the air-fuel mixture is oxidized by the following formula to generate NOx.
H2 + O2 + N2 → H2O + NOx + O2 + N2

従って、前記吸気側水素ガス噴射装置31の一次供給側インジェクタ37による水素ガスの一次供給のみでなく、前記排気側水素ガス噴射装置32の二次供給側インジェクタ39による水素ガスの二次供給を行うものである。
つまり、触媒5より上流の排気管4に二次供給側インジェクタ39を装備し、前記プレッシャレギュレータ34によって、前記一次供給側インジェクタ37への燃焼用圧力とは異なった圧力(数100kPa程度。)に水素ガスを減圧する。
そして、この減圧した水素ガスの一部は、図2に矢印で示す如く、前記排気側水素ガス噴射装置32の二次供給側通路38によって二次供給側インジェクタ39に送られ、この二次供給側インジェクタ39によって前記排気管4内部に噴射し、この水素ガスを還元剤として排気ガス中で生成されたNOxを触媒5上で還元し、有害なNOxの大気への排出を抑止する。
同時に、過剰のO2も触媒5上で水素ガスにより酸化され、一部は水蒸気となる。
上述した状況を以下の式により開示する。
Pt、Rh
NOx+H2 → N2+H2O
Pt、Rh
O2+H2 → H2O
Pt:プラチナ
Rh:ロジウム
このとき、前記二次供給側インジェクタ39の噴射タイミングは、例えば、前記一次供給側インジェクタ37のひとつと同期した動作を行うような駆動状態とすれば良い。
Therefore, not only the primary supply of hydrogen gas by the primary supply side injector 37 of the intake side hydrogen gas injection device 31 but also the secondary supply of hydrogen gas by the secondary supply side injector 39 of the exhaust side hydrogen gas injection device 32 is performed. Is.
In other words, the secondary supply side injector 39 is provided in the exhaust pipe 4 upstream from the catalyst 5, and the pressure regulator 34 makes the pressure different from the combustion pressure to the primary supply side injector 37 (about several hundred kPa). Depressurize the hydrogen gas.
A part of the decompressed hydrogen gas is sent to the secondary supply side injector 39 by the secondary supply side passage 38 of the exhaust side hydrogen gas injection device 32 as shown by the arrow in FIG. It is injected into the exhaust pipe 4 by the side injector 39, and NOx produced in the exhaust gas using this hydrogen gas as a reducing agent is reduced on the catalyst 5 to prevent harmful NOx from being released into the atmosphere.
At the same time, excess O 2 is also oxidized on the catalyst 5 by hydrogen gas, and part of it becomes water vapor.
The above situation is disclosed by the following equation.
Pt, Rh
NOx + H2 → N2 + H2O
Pt, Rh
O2 + H2 → H2O
Pt: Platinum
Rh: Rhodium
At this time, the injection timing of the secondary supply side injector 39 may be set to a driving state in which an operation synchronized with one of the primary supply side injectors 37 is performed, for example.

また、前記排気側水素ガス噴射装置32の二次供給側インジェクタ39による排気管4内部への水素ガスの噴射量は、上流側排気ガスセンサ54でλ値をモニタするとともに、触媒5より下流の下流側排気ガスセンサ55により還元に供しなかった過剰水素ガスをコントロールし、二次供給側インジェクタ39から水素ガスを過剰に噴射しないように、二次供給側インジェクタ39からの噴射量をフィードバック制御する。   The amount of hydrogen gas injected into the exhaust pipe 4 by the secondary supply side injector 39 of the exhaust side hydrogen gas injection device 32 is monitored by the upstream side exhaust gas sensor 54 and the downstream side downstream from the catalyst 5. The excess hydrogen gas that has not been subjected to reduction is controlled by the side exhaust gas sensor 55, and the injection amount from the secondary supply side injector 39 is feedback controlled so that the hydrogen gas is not excessively injected from the secondary supply side injector 39.

なお、図2の白抜き矢印は吸入空気の流れを示している。
つまり、前記エアクリーナ15を通過した吸入空気は、吸気管16を介して過給機23のコンプレッサ25に至り、このコンプレッサ25によって過給された後にインタクーラ29に至る。
このインタクーラ29において冷却された吸入空気は、スロットルバルブ17を備えたスロットルボディ18やサージタンク19、吸気マニホルド20を順次経た後に、前記水素エンジン3の燃焼室10に至る。
そして、前記スロットルボディ18において、アイドル回転数制御装置40のISCバルブ42が開放している場合には、吸入空気がバイパス通路41によってスロットルバルブ17を迂回するようにサージタンク19内に流れることとなる。
In addition, the white arrow of FIG. 2 has shown the flow of the intake air.
That is, the intake air that has passed through the air cleaner 15 reaches the compressor 25 of the supercharger 23 through the intake pipe 16, and is supercharged by the compressor 25 and then reaches the intercooler 29.
The intake air cooled by the intercooler 29 passes through the throttle body 18, the surge tank 19, and the intake manifold 20 provided with the throttle valve 17 and then reaches the combustion chamber 10 of the hydrogen engine 3.
In the throttle body 18, when the ISC valve 42 of the idle speed control device 40 is open, the intake air flows into the surge tank 19 so as to bypass the throttle valve 17 by the bypass passage 41. Become.

また、図2のハッチ付き矢印は排気ガスの流れを示している。
つまり、前記水素エンジン3の燃焼室10から排出された排気ガスは、排気マニホルド21を経て、排気管4に至り、この排気管4の途中部位に配設した触媒コンバータ22の触媒5に到達する。
そして、この触媒5にて排気ガス中の有害成分であるHC(主にブローバイガスに起因する分)、CO、そしてNOxを同時に低減して排気ガスの浄化を行った後に、外気に排出されることとなる。
Further, hatched arrows in FIG. 2 indicate the flow of exhaust gas.
That is, the exhaust gas discharged from the combustion chamber 10 of the hydrogen engine 3 reaches the exhaust pipe 4 through the exhaust manifold 21 and reaches the catalyst 5 of the catalytic converter 22 disposed in the middle of the exhaust pipe 4. .
The catalyst 5 purifies exhaust gas by simultaneously reducing HC (mainly due to blow-by gas), CO, and NOx, which are harmful components in the exhaust gas, and then exhausting it to the outside air. It will be.

次に、図1の水素エンジン3の排気ガス浄化システム1の制御用フローチャートに沿って作用を説明する。   Next, the operation will be described along the control flowchart of the exhaust gas purification system 1 of the hydrogen engine 3 in FIG.

前記排気ガス浄化システム1の制御用プログラムがスタート(102)すると、エンジン暖機後などのλフィードバック(「F/B」とも記載する。)条件がONであるか否かの判断(104)に移行する。
この判断(104)がNOの場合には、λフィードバック条件がONとなるまで判断(104)を繰り返し行う。
また、判断(104)がYESの場合には、λフィードバック運転を開始する処理(106)に移行する。
このλフィードバック運転を開始する処理(106)は、前記一次供給側インジェクタ37とλセンサである上流側排気ガスセンサ54とで通常のPI制御を行うものである。
更に、PI制御は、比例(Proportion)動作、積分(Intecgral)動作の総称をいい、比例動作に積分動作を加えた制御を指している。
When the control program of the exhaust gas purification system 1 is started (102), it is judged (104) whether or not the λ feedback (also referred to as “F / B”) condition such as after engine warm-up is ON. Transition.
If this determination (104) is NO, the determination (104) is repeated until the λ feedback condition is turned ON.
If the determination (104) is YES, the process proceeds to the process (106) for starting the λ feedback operation.
In the process (106) for starting the λ feedback operation, normal PI control is performed by the primary supply side injector 37 and the upstream side exhaust gas sensor 54 which is a λ sensor.
Furthermore, PI control is a general term for proportional operation and integral operation, and indicates control in which integral operation is added to proportional operation.

そして、λフィードバック運転を開始する処理(106)の後には、クローズドループ(サブループ)による処理(108)に移行する。
このクローズドループ(サブループ)による処理(108)においては、H2センサである前記下流側排気ガスセンサ55からの検出信号を取り込み、H2濃度が目標H2濃度の常数CH2以上であるか、つまり
H2濃度≧CH2
であるか否かの判断(110)を行う。
そして、この判断(110)がYES、つまり
H2濃度≧CH2
の場合には、前記二次供給側インジェクタ39の開弁時間用の信号をインジェクタ駆動時間の増減値(「目標濃度フィードバック制御の常数」ともいう。)TH2だけ減量すべく制御する処理(112)に移行する。
また、判断(110)がNO、つまり
H2濃度<CH2
の場合には、前記二次供給側インジェクタ39の開弁時間用の信号をインジェクタ駆動時間の増減値TH2だけ増量すべく制御する処理(114)に移行する。
これらの処理(112)及び(114)の後には、上述したH2濃度が目標H2濃度の常数CH2以上であるか、つまり
H2濃度≧CH2
であるか否かの判断(110)に戻る。
And after the process (106) which starts (lambda) feedback driving | operation, it transfers to the process (108) by a closed loop (subloop).
In the processing (108) by this closed loop (sub-loop), a detection signal from the downstream exhaust gas sensor 55, which is an H2 sensor, is taken in, and whether the H2 concentration is equal to or higher than a constant CH2 of the target H2 concentration, that is,
H2 concentration ≧ CH2
It is determined whether or not (110).
And this judgment (110) is YES, that is,
H2 concentration ≧ CH2
In this case, the process for controlling the valve opening time signal of the secondary supply side injector 39 so as to decrease it by the increase / decrease value of the injector driving time (also referred to as “the constant of the target concentration feedback control”) TH2 (112). Migrate to
In addition, the judgment (110) is NO, that is,
H2 concentration <CH2
In this case, the routine proceeds to a process (114) for controlling to increase the valve opening time signal of the secondary supply side injector 39 by the increase / decrease value TH2 of the injector driving time.
After these processes (112) and (114), whether the above-described H2 concentration is equal to or greater than the constant CH2 of the target H2 concentration, that is,
H2 concentration ≧ CH2
It returns to judgment (110) of whether it is.

また、上述のクローズドループ(サブループ)による処理(108)の後には、λフィードバック条件がOFFであるか否かの判断(116)を行う。
この判断(116)がNOの場合には、上述したλフィードバック条件がONであるか否かの判断(104)に戻る。
判断(116)がYESの場合には、エンド(118)に移行する。
Further, after the processing (108) by the above closed loop (sub-loop), it is determined (116) whether or not the λ feedback condition is OFF.
If this determination (116) is NO, the process returns to the determination (104) as to whether or not the above-mentioned λ feedback condition is ON.
If the determination (116) is YES, the process proceeds to the end (118).

これにより、水素を高圧状態で貯蔵する水素貯蔵タンク2と、水素貯蔵タンク2から供給する水素を燃焼する水素エンジン3と、水素エンジン3の排気管4に設けた触媒5とを備え、水素エンジン3の運転中に排気管4内に水素ガスを供給可能に設けた水素エンジン3の排気ガス浄化システム1において、触媒5の上流側の排気管4に、排気ガス成分を検知する上流側排気ガスセンサ54を設けるとともに、排気管4内部に水素ガスを噴射する排気側水素ガス噴射装置32を上流側排気ガスセンサ54の上流側に設け、上流側排気ガスセンサ54の検出に基づいて排気ガスがリーン側の所定の空燃比となるように水素エンジン3に供給する水素ガスの供給量をフィードバック制御しつつ、排気側水素ガス噴射装置54から水素エンジン3に供給する水素ガスよりも少量な水素ガスを供給するように制御する制御手段56を設けている。
従って、燃焼状態を平均してリーン側に維持することで、排気ガス成分のうち、NH3の排出を非常に低く抑えることができる。
また、増加してしまうNOxは、二次供給する水素ガスにより、NOxを選択的に還元することができることから、トータル的に触媒5による浄化効率を高く維持できる。
更に、二次供給する水素ガスの消費量を、少なく抑えることができる。
Thus, a hydrogen storage tank 2 for storing hydrogen in a high pressure state, a hydrogen engine 3 for burning hydrogen supplied from the hydrogen storage tank 2, and a catalyst 5 provided in an exhaust pipe 4 of the hydrogen engine 3 are provided. In the exhaust gas purification system 1 of the hydrogen engine 3 provided so as to be able to supply hydrogen gas into the exhaust pipe 4 during the operation of 3, an upstream side exhaust gas sensor for detecting an exhaust gas component in the exhaust pipe 4 upstream of the catalyst 5 54 and an exhaust-side hydrogen gas injection device 32 that injects hydrogen gas into the exhaust pipe 4 is provided upstream of the upstream exhaust gas sensor 54, and the exhaust gas is on the lean side based on the detection of the upstream exhaust gas sensor 54. The exhaust gas is supplied from the exhaust-side hydrogen gas injection device 54 to the hydrogen engine 3 while feedback controlling the supply amount of the hydrogen gas supplied to the hydrogen engine 3 so that the predetermined air-fuel ratio is obtained. The control means 56 for controlling to supply a small amount of hydrogen gas than a hydrogen gas is provided to.
Therefore, by averaging the combustion state and maintaining it on the lean side, it is possible to keep NH3 emissions out of the exhaust gas components very low.
Further, the increased NOx can be selectively reduced by the hydrogen gas supplied secondarily, so that the purification efficiency by the catalyst 5 can be maintained high in total.
Furthermore, the consumption of hydrogen gas to be secondarily supplied can be reduced.

また、前記触媒5の下流側の排気管4に排気ガス成分を検知する下流側排気ガスセンサ55を設け、前記制御手段56は、この下流側排気ガスセンサ55の検出に基づいて排気側水素ガス噴射装置32から供給する水素ガスによる触媒通過後の排気ガスへの還元率を監視しつつ、供給する水素ガスを増量補正または減量補正するようにフィードバック補正制御する。
これにより、二次供給する水素ガスの消費量を、ひときわ少なく抑えることができ、排気ガスの浄化性能の向上と燃費の向上とをともに図ることができる。
Further, a downstream side exhaust gas sensor 55 for detecting an exhaust gas component is provided in the exhaust pipe 4 on the downstream side of the catalyst 5, and the control means 56 is configured to detect the exhaust side hydrogen gas injection device based on the detection of the downstream side exhaust gas sensor 55. While monitoring the reduction rate of the hydrogen gas supplied from 32 to the exhaust gas after passing through the catalyst, feedback correction control is performed so that the supplied hydrogen gas is corrected to increase or decrease.
As a result, the amount of hydrogen gas supplied to the secondary supply can be remarkably reduced, and both the exhaust gas purification performance and the fuel consumption can be improved.

なお、この発明は上述実施例に限定されるものではなく、種々の応用改変が可能である。   The present invention is not limited to the above-described embodiments, and various application modifications are possible.

例えば、この発明の実施例においては、下流側排気ガスセンサを水素(H2)センサとし、この下流側排気ガスセンサにより還元に供しなかった過剰水素ガスをコントロールし、二次供給側インジェクタから水素ガスを過剰に噴射しないように、二次供給側インジェクタからの噴射量をフィードバック制御する構成としたが、水素(H2)センサの代わりに、下流側排気ガスセンサを酸素(O2)センサとし、排気ガス内のO2量をモニタすることで排気管への二次供給側インジェクタからの水素ガスの噴射量をフィードバック制御する構成とすることも可能であり、NOxセンサの利用も可能である。
なお、水素(H2)センサの代わりに、酸素(O2)センサを用いる場合に、触媒における水素ガスによる還元率を経験的に考慮して使用すれば、同等に扱うことができる。
For example, in the embodiment of the present invention, the downstream exhaust gas sensor is a hydrogen (H2) sensor, the excess exhaust gas not supplied for reduction is controlled by this downstream exhaust gas sensor, and the hydrogen gas is excessively supplied from the secondary supply side injector. However, instead of the hydrogen (H2) sensor, the downstream exhaust gas sensor is replaced with an oxygen (O2) sensor, and O2 in the exhaust gas is used. It is possible to adopt a configuration in which the amount of hydrogen gas injected from the secondary supply side injector to the exhaust pipe is feedback-controlled by monitoring the amount, and a NOx sensor can also be used.
In addition, when using an oxygen (O2) sensor instead of a hydrogen (H2) sensor, if the reduction rate by the hydrogen gas in a catalyst is used empirically, it can handle equally.

また、一般的なリーンバーンガソリンエンジンやディーゼルエンジンにおいても、還元用の水素貯蔵タンクを装備し、この水素貯蔵タンク内の水素ガスを排気ガス中に噴射する構成とすれば、NOxの還元を行うことが可能である。   Further, even in a general lean burn gasoline engine or diesel engine, if a hydrogen storage tank for reduction is provided and the hydrogen gas in the hydrogen storage tank is injected into the exhaust gas, NOx is reduced. It is possible.

更に、例えば、エンジン負荷に基づく所定のエンジンの運転領域では、二次供給する二次供給側インジェクタからの水素ガスの供給量を、一次供給である一次供給側インジェクタからの供給量に基づいて、トータルの噴射量がストイキからリーン側に収まるようにガードをかけても良い。   Further, for example, in a predetermined engine operating region based on the engine load, the supply amount of hydrogen gas from the secondary supply side injector that is secondary supplied is based on the supply amount from the primary supply side injector that is the primary supply, A guard may be applied so that the total injection amount falls on the lean side from the stoichiometry.

更にまた、この発明の実施例においては、プレッシャレギュレータによって、水素貯蔵タンク内の高圧状態(数10MPa程度。例えば、35〜70MPa程度。)の水素ガスを数100kPa(例えば、数気圧程度。)に減圧する際に、プレッシャレギュレータによって1度に減圧する構成としたが、2段階以上に分けて一次減圧、二次減圧…と減圧する複数段減圧方式とすることも可能である。
さすれば、複数段減圧方式を採用することにより、水素ガスの減圧を漸次、かつ確実に行うことができる。
Furthermore, in the embodiment of the present invention, the pressure regulator regulates the hydrogen gas in the high pressure state (about several tens of MPa, for example, about 35 to 70 MPa) in the hydrogen storage tank to several hundred kPa (for example, about several atmospheric pressures). When the pressure is reduced, the pressure regulator is used to reduce the pressure at a time. However, it is also possible to adopt a multi-stage pressure reducing system in which pressure is reduced in two or more stages, such as primary pressure reduction, secondary pressure reduction, and so on.
In this case, by adopting the multistage depressurization method, it is possible to gradually and reliably depressurize the hydrogen gas.

さらには、浄化触媒として、気体燃料−ガソリンといったバイフューエル用の浄化触媒をはじめ、FFV(フレキシブル・フューエル・ヴィークル)用の浄化触媒を利用することも可能である。   Furthermore, as a purification catalyst, a purification catalyst for FFV (flexible fuel vehicle) can be used as well as a purification catalyst for bi-fuel such as gaseous fuel-gasoline.

この発明の実施例を示す水素エンジンの排気ガス浄化システムの制御用フローチャートである。It is a flowchart for control of the exhaust-gas purification system of the hydrogen engine which shows the Example of this invention. 水素エンジンの排気ガス浄化システムのシステム構成図である。1 is a system configuration diagram of an exhaust gas purification system of a hydrogen engine. 弱成層燃焼を示す水素エンジンの概略拡大断面図である。It is a general | schematic expanded sectional view of the hydrogen engine which shows weak stratified combustion. 燃焼室内をピストン側から視た際の混合気分布を示す図である。It is a figure which shows the air-fuel | gaseous mixture distribution at the time of seeing a combustion chamber from the piston side. 水素エンジンの排気ガス浄化システムの始動時噴射制御の燃料噴射時期を示す図である。It is a figure which shows the fuel injection timing of the injection control at the time of start-up of the exhaust gas purification system of a hydrogen engine. 水素エンジンの排気ガス浄化システムの始動後噴射制御の燃料噴射時期を示す図である。It is a figure which shows the fuel-injection time of the after-startup injection control of the exhaust gas purification system of a hydrogen engine.

符号の説明Explanation of symbols

1 排気ガス浄化システム
2 水素貯蔵タンク
3 水素エンジン
4 排気管
5 触媒
10 燃焼室
16 吸気管
20 吸気マニホルド
21 排気マニホルド
22 触媒コンバータ
23 過給機(「ターボチャージャ」ともいう。)
29 インタクーラ
30 水素ガス噴射システム
31 吸気側水素ガス噴射装置
32 排気側水素ガス噴射装置
33 水素ガス供給通路
34 プレッシャレギュレータ
35 一次供給側通路
37 一次供給側インジェクタ(「筒内インジェクタ」ともいう。)
38 二次供給側通路
39 二次供給側インジェクタ
40 アイドル回転数制御装置
42 ISCバルブ(「アイドル空気量制御バルブ」ともいう。)
47 燃料圧力センサ
49 エンジン水温センサ
50 スロットルセンサ
52 吸気圧センサ
53 吸気温度センサ
54 上流側排気ガスセンサ(「空燃比センサ」または「λセンサ」ともいう。)
55 下流側排気ガスセンサ(「水素(H2)センサともいう。」)
56 制御手段(「ECM」ともいう。)
57 クランク角センサ
1 Exhaust gas purification system
2 Hydrogen storage tank
3 Hydrogen engine
4 Exhaust pipe
5 Catalyst
10 Combustion chamber
16 Intake pipe
20 Intake manifold
21 Exhaust manifold
22 Catalytic converter
23 Turbocharger (also called “turbocharger”)
29 Intercooler
30 Hydrogen gas injection system
31 Intake side hydrogen gas injection device
32 Exhaust-side hydrogen gas injection device
33 Hydrogen gas supply passage
34 Pressure regulator
35 Primary supply side passage
37 Primary supply side injector (also referred to as “in-cylinder injector”)
38 Secondary supply side passage
39 Secondary supply side injector
40 Idle rotation speed control device
42 ISC valve (also referred to as “idle air amount control valve”)
47 Fuel pressure sensor
49 Engine water temperature sensor
50 Throttle sensor
52 Intake pressure sensor
53 Intake air temperature sensor
54 Upstream exhaust gas sensor (also referred to as “air-fuel ratio sensor” or “λ sensor”)
55 Downstream exhaust gas sensor (also referred to as “hydrogen (H2) sensor”)
56 Control means (also referred to as “ECM”)
57 Crank angle sensor

Claims (1)

水素を高圧状態で貯蔵する水素貯蔵タンクと、この水素貯蔵タンクから供給する水素を燃焼する水素エンジンと、水素エンジンの排気管に設けた触媒とを備え、水素エンジンの運転中に排気管内に水素ガスを供給可能に設けた水素エンジンの排気ガス浄化システムにおいて、触媒の上流側の排気管に、排気ガス成分を検知する上流側排気ガスセンサを設けるとともに、排気管内部に水素ガスを噴射する排気側水素ガス噴射装置をその上流側排気ガスセンサの上流側に設け、触媒の下流側の排気管に排気ガス成分を検知する下流側排気ガスセンサを設け、この上流側排気ガスセンサの検出に基づいて排気ガスがリーン側の所定の空燃比となるように水素エンジンに供給する水素ガスの供給量をフィードバック制御しつつ、排気側水素ガス噴射装置から水素エンジンに供給する水素ガスよりも少量な水素ガスを供給するように制御する制御手段を設け、この制御手段は、この下流側排気ガスセンサの検出に基づいて排気側水素ガス噴射装置から供給する水素ガスによる触媒通過後の排気ガスへの還元率を監視しつつ、供給する水素ガスを増量補正または減量補正するようにフィードバック補正制御することを特徴とする水素エンジンの排気ガス浄化システム。 A hydrogen storage tank for storing hydrogen in a high-pressure state, a hydrogen engine for burning hydrogen supplied from the hydrogen storage tank, and a catalyst provided in an exhaust pipe of the hydrogen engine, and hydrogen in the exhaust pipe during operation of the hydrogen engine. In an exhaust gas purification system of a hydrogen engine provided so as to be able to supply gas, an exhaust gas sensor for detecting an exhaust gas component is provided in an exhaust pipe upstream of the catalyst, and an exhaust side for injecting hydrogen gas into the exhaust pipe A hydrogen gas injection device is provided upstream of the upstream exhaust gas sensor, a downstream exhaust gas sensor for detecting an exhaust gas component is provided in the exhaust pipe downstream of the catalyst, and the exhaust gas is detected based on the detection of the upstream exhaust gas sensor. While controlling the amount of hydrogen gas supplied to the hydrogen engine to achieve a predetermined lean air-fuel ratio, the exhaust-side hydrogen gas injector Control means for controlling so as to supply a small amount of hydrogen gas than a hydrogen gas supplied to the hydrogen engine from provided, the control means supplies the exhaust side hydrogen gas injection device based on the detection of the downstream exhaust gas sensor An exhaust gas purification system for a hydrogen engine, wherein feedback correction control is performed so as to correct the increase or decrease of the supplied hydrogen gas while monitoring the reduction rate of the hydrogen gas to the exhaust gas after passing through the catalyst .
JP2006131097A 2006-05-10 2006-05-10 Exhaust gas purification system for hydrogen engine Active JP4711233B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006131097A JP4711233B2 (en) 2006-05-10 2006-05-10 Exhaust gas purification system for hydrogen engine
US11/738,104 US20080041034A1 (en) 2006-05-10 2007-04-20 Exhaust gas purification for a hydrogen engine
DE102007021827A DE102007021827B4 (en) 2006-05-10 2007-05-07 Emission control system for a hydrogen engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131097A JP4711233B2 (en) 2006-05-10 2006-05-10 Exhaust gas purification system for hydrogen engine

Publications (2)

Publication Number Publication Date
JP2007303321A JP2007303321A (en) 2007-11-22
JP4711233B2 true JP4711233B2 (en) 2011-06-29

Family

ID=38580305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131097A Active JP4711233B2 (en) 2006-05-10 2006-05-10 Exhaust gas purification system for hydrogen engine

Country Status (3)

Country Link
US (1) US20080041034A1 (en)
JP (1) JP4711233B2 (en)
DE (1) DE102007021827B4 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4371114B2 (en) * 2006-02-28 2009-11-25 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4483901B2 (en) * 2007-06-29 2010-06-16 株式会社日立製作所 Engine system
JP4936067B2 (en) * 2007-09-21 2012-05-23 スズキ株式会社 Exhaust gas purification device for hydrogen engine
EP2440756B1 (en) * 2009-05-15 2017-12-13 PeroxyChem LLC COMBUSTION FLUE GAS NOx TREATMENT
JP5709451B2 (en) * 2009-12-28 2015-04-30 三菱重工業株式会社 Diesel engine exhaust purification system
DE102010003382B4 (en) * 2010-03-29 2014-07-17 Faktorplus Green Technology Gmbh Method for emission reduction of internal combustion engines and internal combustion engine
US20150275781A1 (en) * 2012-08-20 2015-10-01 Hems System Pty Ltd. Engine fuel enhancement management system
US9752486B2 (en) * 2013-05-07 2017-09-05 Tenneco Automotive Operating Company Inc. Reductant sensor system
US9784152B2 (en) * 2013-06-27 2017-10-10 Serge V. Monros Multi-fuel system for internal combustion engines
US9074541B2 (en) * 2013-10-25 2015-07-07 Ford Global Technologies, Llc Method and system for control of an EGR valve during lean operation in a boosted engine system
DE102014207641A1 (en) 2014-04-23 2015-10-29 Siemens Aktiengesellschaft Process for exhaust aftertreatment and combustion system
JP6213523B2 (en) * 2015-06-09 2017-10-18 トヨタ自動車株式会社 Control device for internal combustion engine
CN110709591A (en) * 2017-04-04 2020-01-17 巴斯夫公司 Hydrogen reducing agent for catalytic pollution treatment
DE102017116648A1 (en) * 2017-07-24 2019-01-24 Keyou GmbH Internal combustion engine, in particular for a motor vehicle, and method for operating such an internal combustion engine
KR102095573B1 (en) * 2019-06-27 2020-05-18 주식회사 엔알티 explosion prevention system using catalytic hydrogen removal system
JP2021139321A (en) * 2020-03-04 2021-09-16 株式会社デンソー Internal combustion engine system using hydrogen as fuel, and reduction method for catalyst device in internal combustion engine using hydrogen as fuel
AT524011B1 (en) 2020-07-03 2022-04-15 Avl List Gmbh Motor vehicle with an internal combustion engine powered by carbon-free fuel with an exhaust system connected thereto
DE102020209152A1 (en) 2020-07-21 2022-01-27 Vitesco Technologies GmbH Method for controlling an exhaust system of a hydrogen internal combustion engine and exhaust system for a hydrogen internal combustion engine
DE102020209154A1 (en) 2020-07-21 2022-01-27 Vitesco Technologies GmbH Exhaust system for a hydrogen internal combustion engine and method for operating an exhaust system of a hydrogen internal combustion engine
DE102020209159B4 (en) 2020-07-21 2022-05-25 Vitesco Technologies GmbH Method for determining a fault in an exhaust system of a hydrogen internal combustion engine and exhaust system for a hydrogen internal combustion engine
DE102020209156A1 (en) 2020-07-21 2022-01-27 Vitesco Technologies GmbH Exhaust system for a hydrogen internal combustion engine and method for operating an exhaust system of a hydrogen internal combustion engine
DE102020006451A1 (en) 2020-10-20 2021-03-18 FEV Group GmbH Control device for controlling a hydrogen content of an exhaust gas from an internal combustion engine
CN114109627B (en) * 2021-11-08 2024-06-04 北京工业大学 In-cylinder direct-injection hydrogen internal combustion engine based on diesel engine and combustion control method
DE102021005649A1 (en) 2021-11-15 2023-05-17 Daimler Truck AG Hydrogen engine and motor vehicle with such a hydrogen engine
WO2023158548A1 (en) * 2022-02-18 2023-08-24 Nikola Corporation Fuel cell exhaust system for fuel cell electric vehicle
JP2023142840A (en) * 2022-03-25 2023-10-05 日野自動車株式会社 Treatment device
WO2024161111A1 (en) 2023-01-30 2024-08-08 Johnson Matthey Public Limited Company System comprising h2-internal combustion engine and exhaust system therefor
CN118208310B (en) * 2024-05-22 2024-07-16 江苏普瑞亚动力科技有限公司 Exhaust device of ammonia-hydrogen energy engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286915A (en) * 1988-09-22 1990-03-27 Toyota Autom Loom Works Ltd Exhaust gas purification device for hydrogen fueled engine
JPH06241077A (en) * 1993-02-12 1994-08-30 Mazda Motor Corp Gas fuel engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616779A (en) * 1970-06-22 1971-11-02 American Environmental Researc Gas fueled internal combustion engine
DE4344715A1 (en) * 1992-12-28 1994-06-30 Mazda Motor Gas fuel engine and air / fuel ratio control system for the engine
DE19526319A1 (en) * 1995-07-19 1997-01-23 Man Nutzfahrzeuge Ag Process for reducing nitrogen oxides in hydrogen engines
JPH1071325A (en) * 1996-06-21 1998-03-17 Ngk Insulators Ltd Method for controlling engine exhaust gas system and method for detecting deterioration in catalyst/ adsorption means
US6122909A (en) * 1998-09-29 2000-09-26 Lynntech, Inc. Catalytic reduction of emissions from internal combustion engines
AU7823300A (en) * 1999-06-08 2001-01-31 Bechtel Bwxt Idaho, Llc Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas
JP3642273B2 (en) * 1999-10-21 2005-04-27 日産自動車株式会社 Exhaust gas purification system
US6655130B1 (en) * 2000-10-30 2003-12-02 Delphi Technologies, Inc. System and controls for near zero cold start tailpipe emissions in internal combustion engines
DE10135643A1 (en) * 2001-07-21 2003-02-13 Ballard Power Systems Fuel supply device for IC engines of motor vehicles has raw fuel tank and hydrogen generator for endothermic conversion of fuel into hydrogen-rich fuel gas
US6779337B2 (en) * 2002-09-20 2004-08-24 Ford Global Technologies, Llc Hydrogen fueled spark ignition engine
JP4321306B2 (en) * 2004-02-26 2009-08-26 マツダ株式会社 Control device for hydrogen engine
US20050274104A1 (en) * 2004-06-15 2005-12-15 Leslie Bromberg Optimum regeneration of diesel particulate filters and NOx traps using fuel reformers
US7273044B2 (en) * 2004-09-27 2007-09-25 Flessner Stephen M Hydrogen fuel system for an internal combustion engine
US20060248876A1 (en) * 2005-05-04 2006-11-09 Taxon Morse N Selective catalytic reduction exhaust after-treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286915A (en) * 1988-09-22 1990-03-27 Toyota Autom Loom Works Ltd Exhaust gas purification device for hydrogen fueled engine
JPH06241077A (en) * 1993-02-12 1994-08-30 Mazda Motor Corp Gas fuel engine

Also Published As

Publication number Publication date
DE102007021827B4 (en) 2010-10-28
JP2007303321A (en) 2007-11-22
DE102007021827A1 (en) 2007-11-15
US20080041034A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4711233B2 (en) Exhaust gas purification system for hydrogen engine
US7275516B1 (en) System and method for boosted direct injection engine
US20100024399A1 (en) Exhaust gas control apparatus for internal combustion engine
US20110072794A1 (en) System and method for regenerating a particulate filter for a direct injection engine
JP5110205B2 (en) Control device for internal combustion engine
US7716915B2 (en) Exhaust purification catalyst warm-up system of an internal combustion engine and method of the same
US6561166B2 (en) Purge fuel canister measurement method and system
US8887491B2 (en) Control apparatus for an internal combustion engine
JP4470838B2 (en) Control device for hydrogen engine
JP2009144612A (en) Fuel reforming device of internal combustion engine
JP2007278241A (en) Internal combustion engine
US11028757B2 (en) Exhaust purification system of internal combustion engine
US10883439B2 (en) Internal combustion engine
JP2017186997A (en) Control device of internal combustion engine
JP4936067B2 (en) Exhaust gas purification device for hydrogen engine
JP2006125267A (en) Hydrogen-added internal combustion engine
US11828243B2 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
JP7360261B2 (en) engine system
US11920532B2 (en) Exhaust gas control apparatus for internal combustion engine and exhaust gas control method for the same
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP4978322B2 (en) Fuel supply device
JP2023023439A (en) Exhaust emission control device for internal combustion engine
JP2001152832A (en) Internal combustion engine
JP4715605B2 (en) Internal combustion engine
JP4232373B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110228

R151 Written notification of patent or utility model registration

Ref document number: 4711233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3