WO2020116386A1 - Bis(alkylamino)disilazane compound, bis(alkylamino)disilazane compound-containing composition for forming silicon-containing film - Google Patents

Bis(alkylamino)disilazane compound, bis(alkylamino)disilazane compound-containing composition for forming silicon-containing film Download PDF

Info

Publication number
WO2020116386A1
WO2020116386A1 PCT/JP2019/047012 JP2019047012W WO2020116386A1 WO 2020116386 A1 WO2020116386 A1 WO 2020116386A1 JP 2019047012 W JP2019047012 W JP 2019047012W WO 2020116386 A1 WO2020116386 A1 WO 2020116386A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
bisalkylaminodisilazane
silicon
represented
formula
Prior art date
Application number
PCT/JP2019/047012
Other languages
French (fr)
Japanese (ja)
Inventor
晃徳 小林
有輝 稲荷森
達徳 山根
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019177539A external-priority patent/JP2020096172A/en
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2020116386A1 publication Critical patent/WO2020116386A1/en

Links

Images

Definitions

  • Patent Document 1 discloses a method of forming a uniform silicon oxide film at a low temperature of less than 400° C. by using bisdiethylaminosilane (BDEAS) which is an aminosilane compound as a silicon source in the atomic layer deposition method. Is proposed.
  • BDEAS bisdiethylaminosilane
  • an aminodisilazane compound having a disilazane structure (—Si—N—Si—) can lower the decomposition temperature due to the effect of an amino group and improve the adsorbability during film formation. It has been found that the film formation rate can be improved by the above method, and the number of Si atoms adsorbed on the substrate surface is increased by the effect of the disilazane structure, so that the film formation rate can be improved. Above all, they have found that by using a specific bisalkylaminodisilazane compound as a silicon precursor, it is possible to form a film with a lower film forming temperature and an improved film forming rate, and have completed the present invention.
  • Item 1 Formula (1) [In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ] A bisalkylaminodisilazane compound represented by.
  • Item 8 A precursor of a silicon-containing film, comprising the bisalkylaminodisilazane compound according to any one of Items 1 to 7.
  • Item 9 The precursor according to Item 8, wherein the silicon-containing film is formed by chemical vapor deposition.
  • Item 13 The composition according to Item 12, wherein the chemical vapor deposition is atomic layer deposition.
  • Item 16 The following formula (1): [In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
  • Item 8 A method for producing a silicon-containing film, which comprises using the bisalkylaminodisilazane compound according to any one of items 1 to 7.
  • Item 17 The method for producing a silicon-containing film according to Item 16, wherein the silicon-containing film is a silicon oxide film.
  • each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms.
  • the following provides a 1,3-bisdialkylamino-2-alkyldisilazane compound (hereinafter, also simply referred to as a bisalkylaminodisilazane compound).
  • each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms.
  • the method for producing a bisalkylaminodisilazane compound represented by H 2 NR 3 [In the formula (2), R 3 is as defined above. ]
  • reaction Since the reaction is exothermic and it is preferable to carry out the reaction at a low temperature in order to suppress the formation of polysilazane generated as a by-product, a good yield can be obtained. Therefore, for example, -50°C to 200°C, The reaction is preferably carried out in the range of -10 to 80°C. The reaction time is usually in the range of 0.5 to 24 hours.
  • step (d) the bisalkylaminodisilazane compound is isolated by performing distillation, for example, vacuum distillation.
  • distillation for example, vacuum distillation.
  • the amine and the organic solvent are easily removed, and the bisalkylaminodisilazane compound can be purified with a sufficiently high purity.
  • the method for producing a bisalkylaminodisilazane compound according to the second aspect of the present invention comprises a synthetic step of adding (a′) dichlorosilane and a secondary alkylamine to a solvent to synthesize a chlorodialkylaminosilane compound, (b′) ) A filtration step of removing by-product salts by filtration, a synthesis step of adding a primary alkylamine to the filtrate (c′) to synthesize a bisalkylaminodisilazane compound, and (d′) a bisalkylamino by distillation. A distillation step is included to isolate the disilazane compound.
  • the secondary alkylamine is first dissolved in an organic solvent and dichlorosilane is added thereto, or the dichlorosilane is dissolved in the organic solvent and then the secondary alkylamine is added thereto. Can be applied to this reaction.
  • the amount of the secondary alkylamine used is usually 0.05 to 20 times mol (for example, 0.05 to 10 times mol) relative to the starting material dichlorosilane, and preferably 0.5 to 20 times from the viewpoint of improving yield. It is 4.0 times mol (for example, 0.5 to 3 times mol).
  • reaction is an exothermic reaction and the formation of bisalkylaminosilane produced as a by-product is suppressed, it is preferable to carry out the reaction at a low temperature. However, since a good yield can be obtained, for example, -50°C to 200°C.
  • the reaction is carried out at a temperature of -30°C, preferably -30 to 100°C (eg -10 to 80°C).
  • the reaction time is usually in the range of 0.5 to 24 hours.
  • step (b') by-product salts are removed from the crude product in the reactor. It is desirable to carry out under a dry inert gas, for example under nitrogen or argon, in order to suppress the decomposition of aminochlorosilane.
  • the filtration temperature is not uniquely determined, but is applicable from 10° C. to the boiling point of the solvent used. It is desirable to carry out the heating in the range of 20°C to 65°C.
  • step (c') synthesis is performed by adding a primary alkylamine to the filtrate obtained in step (b').
  • the amount of the primary alkylamine used is usually 0.05 to 7.0 times mol, preferably 0.2 to 2.0 times from the viewpoint of improving the yield, with respect to 1 mol of the total amount of the intermediate (5). It is a mole.
  • the reaction is an exothermic reaction, it is preferable to carry out the reaction at a low temperature. However, in order to obtain a good yield, the reaction is carried out in the range of, for example, ⁇ 50° C. to 200° C., preferably ⁇ 10 to 80° C. Is done.
  • the reaction time is usually in the range of 0.5 to 24 hours.
  • step (d') the bisalkylaminodisilazane compound is isolated by performing distillation, for example, vacuum distillation.
  • distillation for example, vacuum distillation.
  • the amine and the organic solvent are easily removed, and the bisalkylaminodisilazane compound can be purified with a sufficiently high purity.
  • reaction system In order to avoid hydrolysis of dichlorosilane, chloroaminosilane, dichlorodisilazane, aminodisilazane, etc., it is desirable that the reaction system is all performed under anhydrous conditions, and the water content in all the starting materials used is based on the total mass of the starting materials.
  • the reaction is carried out in the range of 0 to 5000 mass ppm, preferably 0 to 400 mass ppm.
  • the bisalkylaminodisilazane composition may contain, for example, an inert gas or a low active gas as a carrier gas in addition to the bisalkylaminodisilazane compound.
  • the temperature of the substrate is, for example, 100 to 600°C, preferably 100 to 550°C.
  • one or more gases selected from nitrogen, ammonia, dinitrogen monoxide, nitric oxide, and nitrogen dioxide are used as a reaction gas when forming a silicon nitride film having a Si—N bond. be able to.
  • one or more gases selected from oxygen, ozone, and nitric oxide can be used.
  • Example 3 Synthesis of 1,3-bisdiethylamino-2-normalpropyldisilazane
  • 64 g (0.64 mol) of dichlorosilane and 707 g of hexane were added to a 2000 mL flask in which a thermometer, a cooling tube, and a motor stirrer were set, and acetone was used as a refrigerant, and the mixture was cooled to 0° C. by a cooler.
  • 63 g (1.06 mol) of normal propylamine was slowly added dropwise into the liquid over 2 hours with keeping the temperature at 0° C.
  • This 1,3-bisdiethylamino-2-normalpropyldisilazane solution was distilled under reduced pressure at an internal temperature of 40° C. to remove hexane from the 1,3-bisdiethylamino-2-normalpropyldisilazane solution to give crude 1,3 -Bisdiethylamino-2-normalpropyldisilazane solution was obtained, and further distilled under reduced pressure at an internal temperature of 120° C. and 2 Torr using a distillation column to give 1,3-bisdiethylamino-2-normalpropyldiyl as a final product. Silazane was obtained in high purity.
  • Example 4 Formation of silicon-containing film using 1,3-bisdiethylamino-2-ethyldisilazane
  • a silicon substrate was placed in a vacuum device and heated to 100 to 600°C.
  • the aminosilazane composition containing 1,3-bisdiethylamino-2-ethyldisilazane obtained in Example 1 and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed on a heated silicon substrate.
  • the unadsorbed aminosilazane composition and by-products were then purged into the device.
  • the thickness of the formed layer was measured with an ellipsometer, and it was confirmed by infrared spectroscopy that it was a silicon oxide film.
  • Table 1 below shows specific vapor deposition methods, and Table 2 shows the amount of 1,3-bisdiethylamino-2-normalpropyldisilazane deposited.

Abstract

According to the present invention, a silicon-containing film can be formed without deteriorating film quality and increasing decomposition temperature by using a specific bis(alkylamino)disilazane compound as a silicon precursor, and low-temperature film-formation and improved film-forming speed can be achieved without deteriorating film quality in the formation of the silicon-containing film by increasing film-forming speed.

Description

ビスアルキルアミノジシラザン化合物、前記ビスアルキルアミノジシラザン化合物を含むシリコン含有膜形成用の組成物Bisalkylaminodisilazane compound, composition for forming silicon-containing film containing the bisalkylaminodisilazane compound
 本発明の技術分野は、新規ビスアルキルアミノジシラザン化合物、および当該化合物を含むシリコン含有膜形成用の組成物に関する。 The technical field of the present invention relates to a novel bisalkylaminodisilazane compound and a composition for forming a silicon-containing film containing the compound.
 半導体デバイスの製作において、シリコン含有薄膜は、様々な蒸着工程によりシリコン膜、シリコン酸化膜、シリコン炭窒化膜、およびシリコンオキシ窒化膜等の種々の形態の薄膜に製造されており、様々な分野で応用されている。中でもシリコン酸化膜およびシリコン窒化膜は、非常に優れた遮断特性および耐酸化性を有するため、装置の製作において絶縁膜、金属間誘電物質、シード層、スペーサー、ハードマスク、トレンチアイソレーション、拡散防止膜、エッチング停止層、および保護膜層として機能する。 In the manufacture of semiconductor devices, silicon-containing thin films are manufactured into various thin films such as silicon films, silicon oxide films, silicon carbonitride films, and silicon oxynitride films by various vapor deposition processes, and are used in various fields. It is applied. Among them, silicon oxide film and silicon nitride film have excellent blocking characteristics and oxidation resistance, so that they are used in the fabrication of devices such as insulating film, intermetal dielectric material, seed layer, spacer, hard mask, trench isolation, and diffusion prevention. It functions as a film, an etch stop layer, and a protective film layer.
 近年は素子の微細化、アスペクト比の増加、および素子材料の多様化に伴い、電気特性に優れた超微細薄膜を低温かつ高速で成膜する技術が要求されている。しかしながら、従来のシリコン前駆体を用いた成膜方法では成膜温度を600℃以上にする必要があり、また、成膜速度が小さいため、膜質および生産性の低下が問題となっている。 In recent years, with the miniaturization of devices, the increase of aspect ratio, and the diversification of device materials, there is a demand for a technology for forming ultrafine thin films with excellent electrical characteristics at low temperature and high speed. However, in the film forming method using the conventional silicon precursor, it is necessary to set the film forming temperature to 600° C. or more, and the film forming rate is low, so that the film quality and the productivity are deteriorated.
 この問題を解決すべく、特許文献1では原子層堆積法で、シリコン源としてアミノシラン化合物であるビスジエチルアミノシラン(BDEAS)を用いることにより、400℃未満の低温で均一なシリコン酸化膜を形成する方法が提案されている。 In order to solve this problem, Patent Document 1 discloses a method of forming a uniform silicon oxide film at a low temperature of less than 400° C. by using bisdiethylaminosilane (BDEAS) which is an aminosilane compound as a silicon source in the atomic layer deposition method. Is proposed.
特許第5329218号Patent No. 5329218
 しかしながら、特許文献1に記載のビスジエチルアミノシランは400℃未満の低温でシリコン酸化膜を形成可能であるが、成膜速度は小さく、生産性については不十分である。 However, the bisdiethylaminosilane described in Patent Document 1 can form a silicon oxide film at a low temperature of less than 400° C., but the film formation rate is low and the productivity is insufficient.
 本発明は、このような事情の下で考え出されたものであって、シリコン含有膜の形成において、膜質の低下を招くことなく成膜温度の低温化と成膜速度向上を可能とするシリコン前駆体を提供することを主たる課題とする。 The present invention was devised under such circumstances, and in the formation of a silicon-containing film, it is possible to reduce the film forming temperature and improve the film forming speed without lowering the film quality. The main issue is to provide a precursor.
 本発明者らは、鋭意検討の結果、ジシラザン構造(-Si-N-Si-)を有するアミノジシラザン化合物はアミノ基の効果により、分解温度を低温化でき、成膜時の吸着性の向上による成膜速度の向上を可能とし、またジシラザン構造の効果により、基板表面に吸着するSi原子数が増加し、成膜速度の向上が可能であることを見出した。中でも特定のビスアルキルアミノジシラザン化合物をシリコン前駆体として用いることで、成膜温度の低温化と成膜速度向上させた成膜ができることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have found that an aminodisilazane compound having a disilazane structure (—Si—N—Si—) can lower the decomposition temperature due to the effect of an amino group and improve the adsorbability during film formation. It has been found that the film formation rate can be improved by the above method, and the number of Si atoms adsorbed on the substrate surface is increased by the effect of the disilazane structure, so that the film formation rate can be improved. Above all, they have found that by using a specific bisalkylaminodisilazane compound as a silicon precursor, it is possible to form a film with a lower film forming temperature and an improved film forming rate, and have completed the present invention.
 すなわち、本発明は、以下に掲げる態様の発明を提供する。
項1 下式(1):
Figure JPOXMLDOC01-appb-C000007
[式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
で表される、ビスアルキルアミノジシラザン化合物。
That is, the present invention provides the inventions of the following modes.
Item 1 Formula (1):
Figure JPOXMLDOC01-appb-C000007
[In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
A bisalkylaminodisilazane compound represented by.
項2 R、R、R、RおよびRが互いに同一である、項1に記載のビスアルキルアミノジシラザン化合物。 Item 2 The bisalkylaminodisilazane compound according to Item 1, wherein R 1 , R 2 , R 3 , R 4 and R 5 are the same.
項3 R、R、RおよびRが互いに同一であり、R、R、RおよびRとRとが異なる、項1に記載のビスアルキルアミノジシラザン化合物。 Item 3 The bisalkylaminodisilazane compound according to Item 1 , wherein R 1 , R 2 , R 4 and R 5 are the same as each other, and R 1 , R 2 , R 4 and R 5 are different from R 3 .
項4 R、R、R、RおよびRの合計の炭素数は5~20である、項1~3のいずれか一項に記載のビスアルキルアミノジシラザン化合物。 Item 4 The bisalkylaminodisilazane compound according to any one of Items 1 to 3, wherein the total carbon number of R 1 , R 2 , R 3 , R 4 and R 5 is 5 to 20.
項5 下式:
Figure JPOXMLDOC01-appb-C000008
で表される1,3-ビスジエチルアミノ-2-エチルジシラザンである、ビスアルキルアミノジシラザン化合物。
Item 5 below:
Figure JPOXMLDOC01-appb-C000008
A bisalkylaminodisilazane compound which is 1,3-bisdiethylamino-2-ethyldisilazane represented by:
項6 下式:
Figure JPOXMLDOC01-appb-C000009
で表される1,3-ビスジメチルアミノ-2-メチルジシラザンである、ビスアルキルアミノジシラザン化合物。
Item 6 below:
Figure JPOXMLDOC01-appb-C000009
A bisalkylaminodisilazane compound which is 1,3-bisdimethylamino-2-methyldisilazane represented by:
項7 下式:
Figure JPOXMLDOC01-appb-C000010
で表される1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンである、ビスアルキルアミノジシラザン化合物。
Item 7 below:
Figure JPOXMLDOC01-appb-C000010
A bisalkylaminodisilazane compound which is 1,3-bisdiethylamino-2-normalpropyldisilazane represented by:
項8 項1~7のいずれか一項に記載のビスアルキルアミノジシラザン化合物からなる、シリコン含有膜の前駆体。 Item 8 A precursor of a silicon-containing film, comprising the bisalkylaminodisilazane compound according to any one of Items 1 to 7.
項9 前記シリコン含有膜が化学気相成長により形成される、項8に記載の前駆体。 Item 9 The precursor according to Item 8, wherein the silicon-containing film is formed by chemical vapor deposition.
項10 前記化学気相成長は原子層堆積である、項8または9に記載の前駆体。 Item 10 The precursor according to Item 8 or 9, wherein the chemical vapor deposition is atomic layer deposition.
項11 項1~7のいずれか一項に記載のビスアルキルアミノジシラザン化合物を含む、シリコン含有膜形成用の組成物。 Item 11: A composition for forming a silicon-containing film, comprising the bisalkylaminodisilazane compound according to any one of Items 1 to 7.
項12 前記シリコン含有膜が化学気相成長により形成される、項11に記載の組成物。 Item 12: The composition according to Item 11, wherein the silicon-containing film is formed by chemical vapor deposition.
項13 前記化学気相成長は、原子層堆積である項12に記載の組成物。 Item 13: The composition according to Item 12, wherein the chemical vapor deposition is atomic layer deposition.
項14 1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物の製造方法であって、
 (a)ジクロロシランおよび第一級アルキルアミンを、溶媒に添加して1,3-ジクロロ-2-アルキルジシラザン化合物を合成する合成工程;
 (b)副生塩を濾過により除去する濾過工程;
 (c)ろ液に第二級アルキルアミンを添加して1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物を合成する合成工程;および
 (d)蒸留により1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物を単離する蒸留工程
を含む、または
 (a’)ジクロロシランおよび第二級アルキルアミンを、溶媒に添加してクロロジアルキルアミノシラン化合物を合成する合成工程;
 (b’)副生塩を濾過により除去する濾過工程;
 (c’)ろ液に第一級アルキルアミンを添加して1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物を合成する合成工程;および
 (d’)蒸留により1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物を単離する蒸留工程
を含む、製造方法。
Item 14 A method for producing a 1,3-bisdialkylamino-2-alkyldisilazane compound, comprising:
(A) a synthetic step of adding dichlorosilane and a primary alkylamine to a solvent to synthesize a 1,3-dichloro-2-alkyldisilazane compound;
(B) a filtration step of removing by-product salts by filtration;
(C) a synthetic step of adding a secondary alkylamine to the filtrate to synthesize a 1,3-bisdialkylamino-2-alkyldisilazane compound; and (d) 1,3-bisdialkylamino-2 by distillation. A synthetic step comprising a distillation step to isolate the alkyldisilazane compound, or (a') dichlorosilane and a secondary alkylamine are added to the solvent to synthesize a chlorodialkylaminosilane compound;
(B') a filtration step of removing by-product salts by filtration;
(C') a synthetic step of adding a primary alkylamine to the filtrate to synthesize a 1,3-bisdialkylamino-2-alkyldisilazane compound; and (d') 1,3-bisdialkylamino by distillation. -A production method comprising a distillation step for isolating a 2-alkyldisilazane compound.
項15 前記1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物が下式(1):
Figure JPOXMLDOC01-appb-C000011
[式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
で表され、
 前記第一級アルキルアミンが下式(2):
  HNR
[式(2)中、Rは炭素数1~5のアルキル基である。]
で表され、
 前記第二級アルキルアミンが下式(3)
  NHR’
[式(3)中、NHR’はNHRまたはNHRであり、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
で表される、項14に記載の製造方法。
Item 15 The 1,3-bisdialkylamino-2-alkyldisilazane compound has the following formula (1):
Figure JPOXMLDOC01-appb-C000011
[In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
Is represented by
The primary alkylamine has the following formula (2):
H 2 NR 3
[In the formula (2), R 3 is an alkyl group having 1 to 5 carbon atoms. ]
Is represented by
The secondary alkylamine is represented by the following formula (3)
NHR' 2
[In the formula (3), NHR′ 2 is NHR 1 R 2 or NHR 4 R 5 , and each of R 1 , R 2 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. .. ]
Item 15. The method according to Item 14, which is represented by
項16 下式(1):
Figure JPOXMLDOC01-appb-C000012
[式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
で表される項1~7のいずれか一項に記載のビスアルキルアミノジシラザン化合物を用いる、シリコン含有膜の製造方法。
Item 16 The following formula (1):
Figure JPOXMLDOC01-appb-C000012
[In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
Item 8. A method for producing a silicon-containing film, which comprises using the bisalkylaminodisilazane compound according to any one of items 1 to 7.
項17 シリコン含有膜は酸化シリコン膜である、項16に記載のシリコン含有膜の製造方法。 Item 17 The method for producing a silicon-containing film according to Item 16, wherein the silicon-containing film is a silicon oxide film.
 本発明によれば、アミノ基を有する特定のビスアルキルアミノジシラザン化合物をシリコン前駆体として用いることで、シリコン含有膜の形成において成膜温度が低下させることができる。さらに、1分子中に2つのSi原子を有するジシラザン構造の効果により、成膜速度が向上する。従って、本発明の方法によれば、より低温で高速成膜が可能となるため、安価かつ高生産性で半導体デバイスを作製することができる。 According to the present invention, by using a specific bisalkylaminodisilazane compound having an amino group as a silicon precursor, the film formation temperature can be lowered in the formation of a silicon-containing film. Further, the film formation rate is improved by the effect of the disilazane structure having two Si atoms in one molecule. Therefore, according to the method of the present invention, since high-speed film formation can be performed at a lower temperature, a semiconductor device can be manufactured at low cost and with high productivity.
本発明の製造方法により得られた1,3-ビスジエチルアミノ-2-エチルジシラザンのH-NMRチャート。 1 H-NMR chart of 1,3-bisdiethylamino-2-ethyldisilazane obtained by the production method of the present invention. 本発明の製造方法により得られた1,3-ビスジメチルアミノ-2-メチルジシラザンのH-NMRチャート。 1 H-NMR chart of 1,3-bisdimethylamino-2-methyldisilazane obtained by the production method of the present invention. 本発明の製造方法により得られた1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンのH-NMRチャート。 1 H-NMR chart of 1,3-bisdiethylamino-2-normalpropyldisilazane obtained by the production method of the present invention.
 本発明は、下式(1): The present invention uses the following formula (1):
Figure JPOXMLDOC01-appb-C000013
[式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
で表される、1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物(以下、単にビスアルキルアミノジシラザン化合物とも記載する)を提供する。
Figure JPOXMLDOC01-appb-C000013
[In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
The following provides a 1,3-bisdialkylamino-2-alkyldisilazane compound (hereinafter, also simply referred to as a bisalkylaminodisilazane compound).
 R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基であり、例えば炭素数1~4のアルキル基(メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチルまたはt-ブチル)、好ましくは炭素数1~3のアルキル基(メチル、エチル、プロピルまたはイソプロピル)、より好ましくは炭素数1~2(メチルまたはエチル)である。R、R、R、RおよびRのそれぞれは独立して分岐鎖状または直鎖状であってよく、好ましくは直鎖状である。 Each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms, for example, an alkyl group having 1 to 4 carbon atoms (methyl, ethyl, propyl, isopropyl, n -Butyl, sec-butyl, isobutyl or t-butyl), preferably an alkyl group having 1 to 3 carbon atoms (methyl, ethyl, propyl or isopropyl), more preferably 1 to 2 carbon atoms (methyl or ethyl). Each of R 1 , R 2 , R 3 , R 4 and R 5 may independently be branched or linear, and is preferably linear.
 成膜性の観点から、R、R、RおよびRは互いに同一であることが好ましい。R、R、RおよびRは互いに同一であるがRとは異なっていてよく、R、R、R、RおよびRが互いに同一であってもよい。R、R、R、RおよびRの合計の炭素数は、5~20であってよく、好ましくは5~15、より好ましくは5~12(特に5~10)である。 From the viewpoint of film formability, R 1 , R 2 , R 4 and R 5 are preferably the same as each other. R 1 , R 2 , R 4 and R 5 may be the same as each other but different from R 3, and R 1 , R 2 , R 3 , R 4 and R 5 may be the same. The total carbon number of R 1 , R 2 , R 3 , R 4 and R 5 may be 5 to 20, preferably 5 to 15, more preferably 5 to 12 (particularly 5 to 10).
 以下に、本発明におけるビスアルキルアミノジシラザン化合物の製造方法、特に下式(1):
Figure JPOXMLDOC01-appb-C000014
[式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
で表されるビスアルキルアミノジシラザン化合物の製造方法を説明する。
Hereinafter, a method for producing a bisalkylaminodisilazane compound in the present invention, particularly the following formula (1):
Figure JPOXMLDOC01-appb-C000014
[In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
A method for producing the bisalkylaminodisilazane compound represented by will be described.
 本発明の第一の態様におけるビスアルキルアミノジシラザン化合物の製造方法は、(a)ジクロロシランおよび第一級アルキルアミンを溶媒に添加して1,3-ジクロロ-2-アルキルジシラザン化合物(以下、単にジクロロジシラザン化合物とも記載する)を合成する合成工程、(b)副生塩を濾過により除去する濾過工程、(c)ろ液に第二級アルキルアミンを添加してビスアルキルアミノジシラザン化合物を合成する合成工程、および(d)蒸留によりビスアルキルアミノジシラザン化合物を単離する蒸留工程を含む。 The method for producing a bisalkylaminodisilazane compound according to the first aspect of the present invention comprises: (a) adding a dichlorosilane and a primary alkylamine to a solvent to prepare a 1,3-dichloro-2-alkyldisilazane compound (hereinafter , Also referred to simply as a dichlorodisilazane compound), (b) a filtration step for removing by-product salts by filtration, and (c) a bisalkylaminodisilazane obtained by adding a secondary alkylamine to the filtrate. It includes a synthetic step for synthesizing the compound, and (d) a distillation step for isolating the bisalkylaminodisilazane compound by distillation.
 本発明の第一の態様における下式(1):
Figure JPOXMLDOC01-appb-C000015
[式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
で表される、ビスアルキルアミノジシラザン化合物の製造方法は、まず、ジクロロシランに式(2):
  HNR
[式(2)中、Rは上記で定義したとおりである。]
で表される第一級アルキルアミンを反応させることによって、
下式(4):
  SiHCl-NR-SiHCl
[式(4)中、Rは上記で定義したとおりである。]
で表される、ジクロロジシラザン化合物である中間体(4)を製造し、次いで、中間体(4)に式(3)
  NHR’
[式(3)中、NHR’はNHRまたはNHRであり、R、R、RおよびRのそれぞれは上記で定義したとおりである。]
で表される第二級アルキルアミンを反応させることを含む製造方法であってよい。
The following formula (1) in the first aspect of the present invention:
Figure JPOXMLDOC01-appb-C000015
[In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
The method for producing a bisalkylaminodisilazane compound represented by
H 2 NR 3
[In the formula (2), R 3 is as defined above. ]
By reacting a primary alkylamine represented by
Formula (4):
SiH 2 Cl-NR 3 -SiH 2 Cl
[In the formula (4), R 3 is as defined above. ]
The intermediate (4), which is a dichlorodisilazane compound represented by
NHR' 2
[In the formula (3), NHR′ 2 is NHR 1 R 2 or NHR 4 R 5 , and each of R 1 , R 2 , R 4 and R 5 is as defined above. ]
The production method may include reacting a secondary alkylamine represented by
 ジクロロシランと第一級アルキルアミンの反応式の例を以下に示す。
   2SiHCl+3NH
  →SiHCl-NR-SiHCl+2NH・HCl
An example of the reaction formula of dichlorosilane and primary alkylamine is shown below.
2SiH 2 Cl 2 +3NH 2 R 3
→SiH 2 Cl-NR 3 -SiH 2 Cl+2NH 2 R 3 ·HCl
中間体(4)と第二級アルキルアミンの反応式の例を以下に示す。
   SiHCl-NR-SiHCl+4NHR’
  →SiHNR’-NR-SiHNR’+2NHR’・HCl
An example of the reaction formula of the intermediate (4) and the secondary alkylamine is shown below.
SiH 2 Cl—NR 3 —SiH 2 Cl+4NHR′ 2
→SiH 2 NR' 2 -NR 3 -SiH 2 NR' 2 +2NHR' 2 ·HCl
 工程(a)では、最初に第一級アルキルアミンを有機溶媒に溶解させて、そこにジクロロシランを加えていく方法、あるいは、ジクロロシランを有機溶媒に溶かしておきそこに第一級アルキルアミンを加えていく方法のいずれでも本反応には適用可能である。 In the step (a), the primary alkylamine is first dissolved in an organic solvent and dichlorosilane is added thereto, or the dichlorosilane is dissolved in the organic solvent and the primary alkylamine is added thereto. Any of the adding methods can be applied to this reaction.
 第一級アルキルアミンの使用量は、原料であるジクロロシランに対して、通常0.05~7.0倍モル(例えば0.05~3.5倍モル)、収率向上の観点から好ましくは0.2~2.0倍モル(例えば0.4~1.8倍モル)である。 The amount of the primary alkylamine used is usually 0.05 to 7.0 times mol (for example, 0.05 to 3.5 times mol) relative to the starting material dichlorosilane, and preferably from the viewpoint of improving the yield. The amount is 0.2 to 2.0 times mol (for example, 0.4 to 1.8 times mol).
 反応は発熱反応であることと副生成物として生じるポリシラザンの生成抑制ため、反応温度は低温で行われることが好まれるが、良好な収率が得られることから、例えば-50℃~200℃、好ましくは-10~80℃の範囲で反応が行われる。反応時間は通常0.5~24時間の範囲である。 Since the reaction is exothermic and it is preferable to carry out the reaction at a low temperature in order to suppress the formation of polysilazane generated as a by-product, a good yield can be obtained. Therefore, for example, -50°C to 200°C, The reaction is preferably carried out in the range of -10 to 80°C. The reaction time is usually in the range of 0.5 to 24 hours.
 工程(b)では、反応器内の粗生成物から副生塩を除去する。ジクロロジシラザンの安定性を良好に保つために乾燥した不活性ガス下で、例えば窒素またはアルゴン下で行うことが望ましい。濾過温度は一意的に決まるものではないが、-10℃以上であってよく、例えば10℃から使用溶媒の沸点まで適用可能である。好ましくは20℃から65℃の範囲で行うのが望ましい。 In step (b), by-product salts are removed from the crude product in the reactor. In order to keep good stability of dichlorodisilazane, it is desirable to carry out under a dry inert gas, for example under nitrogen or argon. The filtration temperature is not uniquely determined, but may be −10° C. or higher and is applicable, for example, from 10° C. to the boiling point of the solvent used. It is desirable to carry out the heating in the range of 20°C to 65°C.
 工程(c)では、工程(b)で得られたろ液に対して第二級アルキルアミンを添加することによってビスアルキルアミノジシラザン化合物を合成する。 In step (c), a bisalkylaminodisilazane compound is synthesized by adding a secondary alkylamine to the filtrate obtained in step (b).
 第二級アルキルアミンの使用量は、中間体であるジクロロジシラザンの総量1モルに対して、通常0.1~40倍モル、収率向上の観点から好ましくは1.5~6倍モルである。 The amount of the secondary alkylamine used is usually 0.1 to 40 times by mole, and preferably 1.5 to 6 times by mole from the viewpoint of improving the yield, with respect to 1 mol of the total amount of the intermediate dichlorodisilazane. is there.
 反応は発熱反応であるため、反応温度は低温で行われることが好まれるが、良好な収率が得られることから、例えば-50℃~200℃、好ましくは-10~80℃の範囲で反応が行われる。反応時間は通常0.5~24時間の範囲である。 Since the reaction is an exothermic reaction, it is preferable to carry out the reaction at a low temperature. However, in order to obtain a good yield, the reaction is carried out in the range of, for example, −50° C. to 200° C., preferably −10 to 80° C. Is done. The reaction time is usually in the range of 0.5 to 24 hours.
 工程(d)では、蒸留、例えば減圧蒸留を行うことによってビスアルキルアミノジシラザン化合物が単離される。アミン、有機溶媒は容易に除去され、ビスアルキルアミノジシラザン化合物を十分に高い純度で精製することができる。 In step (d), the bisalkylaminodisilazane compound is isolated by performing distillation, for example, vacuum distillation. The amine and the organic solvent are easily removed, and the bisalkylaminodisilazane compound can be purified with a sufficiently high purity.
 本発明の第二の態様のビスアルキルアミノジシラザン化合物の製造方法は、(a’)ジクロロシランおよび第二級アルキルアミンを溶媒に添加してクロロジアルキルアミノシラン化合物を合成する合成工程、(b’)副生塩を濾過により除去する濾過工程、(c’)ろ液に第一級アルキルアミンを添加してビスアルキルアミノジシラザン化合物を合成する合成工程、および(d’)蒸留によりビスアルキルアミノジシラザン化合物を単離する蒸留工程を含む。 The method for producing a bisalkylaminodisilazane compound according to the second aspect of the present invention comprises a synthetic step of adding (a′) dichlorosilane and a secondary alkylamine to a solvent to synthesize a chlorodialkylaminosilane compound, (b′) ) A filtration step of removing by-product salts by filtration, a synthesis step of adding a primary alkylamine to the filtrate (c′) to synthesize a bisalkylaminodisilazane compound, and (d′) a bisalkylamino by distillation. A distillation step is included to isolate the disilazane compound.
 本発明の第二の態様における下式(1):
Figure JPOXMLDOC01-appb-C000016
[式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
で表されるビスアルキルアミノジシラザン化合物の製造方法は、まず、ジクロロシランに式(3):
  NHR’
[式(3)中、NHR’はNHRまたはNHRであり、R、R、RおよびRのそれぞれは上記で定義したとおりである。]
で表される第二級アルキルアミンを反応させることによって、下式(5):
  Cl-SiH-NR’
[式(5)中、NR’はNRまたはNRであり、R、R、RおよびRのそれぞれは上記で定義したとおりである。]
で表される、クロロジアルキルアミノシラン化合物である中間体(5)を製造し、次いで、中間体(5)に式(2)
  HNR
[式(2)中、Rは上記で定義したとおりである。]
で表される第一級アルキルアミンを反応させることを含む製造方法であってよい。
The following formula (1) in the second aspect of the present invention:
Figure JPOXMLDOC01-appb-C000016
[In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
The method for producing the bisalkylaminodisilazane compound represented by
NHR' 2
[In the formula (3), NHR′ 2 is NHR 1 R 2 or NHR 4 R 5 , and each of R 1 , R 2 , R 4 and R 5 is as defined above. ]
By reacting a secondary alkylamine represented by the following formula (5):
Cl-SiH 2 -NR' 2
[In the formula (5), NR′ 2 is NR 1 R 2 or NR 4 R 5 , and each of R 1 , R 2 , R 4 and R 5 is as defined above. ]
An intermediate (5), which is a chlorodialkylaminosilane compound represented by the formula:
H 2 NR 3
[In the formula (2), R 3 is as defined above. ]
The production method may include reacting a primary alkylamine represented by
 ジクロロシランと第二級アルキルアミンの反応式の例を以下に示す。 An example of the reaction formula of dichlorosilane and secondary alkylamine is shown below.
   SiHCl+2NHR’
  →SiHCl-NR’+NHR’・HCl
SiH 2 Cl 2 +2NHR′ 2
→SiH 2 Cl-NR' 2 +NHR' 2 ·HCl
 中間体(5)と第一級アルキルアミンの反応式の例を以下に示す。 An example of the reaction formula of intermediate (5) and primary alkylamine is shown below.
   2SiHCl-NR’+3NH
  →SiHNR’-NR-SiHNR’+2NH・HCl
2SiH 2 Cl-NR′ 2 +3NH 2 R 3
→SiH 2 NR' 2 -NR 3 -SiH 2 NR' 2 +2NH 2 R 3 ·HCl
 工程(a’)では、最初に第二級アルキルアミンを有機溶媒に溶解させて、そこにジクロロシランを加えていく方法、あるいは、ジクロロシランを有機溶媒に溶かしておきそこに第二級アルキルアミンを加えていく方法のいずれでも本反応には適用可能である。 In the step (a′), the secondary alkylamine is first dissolved in an organic solvent and dichlorosilane is added thereto, or the dichlorosilane is dissolved in the organic solvent and then the secondary alkylamine is added thereto. Can be applied to this reaction.
 第二級アルキルアミンの使用量は、原料であるジクロロシランに対して、通常0.05~20倍モル(例えば0.05~10倍モル)、収率向上の観点から好ましくは0.5~4.0倍モル(例えば0.5~3倍モル)である。 The amount of the secondary alkylamine used is usually 0.05 to 20 times mol (for example, 0.05 to 10 times mol) relative to the starting material dichlorosilane, and preferably 0.5 to 20 times from the viewpoint of improving yield. It is 4.0 times mol (for example, 0.5 to 3 times mol).
 反応は発熱反応であることと副生成物として生じるビスアルキルアミノシランの生成抑制ため、反応温度は低温で行われることが好まれるが、良好な収率が得られることから、例えば-50℃~200℃、好ましくは-30~100℃(例えば-10~80℃)の範囲で反応が行われる。反応時間は通常0.5~24時間の範囲である。 Since the reaction is an exothermic reaction and the formation of bisalkylaminosilane produced as a by-product is suppressed, it is preferable to carry out the reaction at a low temperature. However, since a good yield can be obtained, for example, -50°C to 200°C. The reaction is carried out at a temperature of -30°C, preferably -30 to 100°C (eg -10 to 80°C). The reaction time is usually in the range of 0.5 to 24 hours.
 工程(b’)では、反応器内の粗生成物から副生塩を除去する。アミノクロロシランの分解を抑えるために乾燥した不活性ガス下で、例えば窒素またはアルゴン下で行うことが望ましい。濾過温度は一意的に決まるものではないが、10℃から使用溶媒の沸点まで適用可能である。好ましくは20℃から65℃の範囲で行うのが望ましい。 In step (b'), by-product salts are removed from the crude product in the reactor. It is desirable to carry out under a dry inert gas, for example under nitrogen or argon, in order to suppress the decomposition of aminochlorosilane. The filtration temperature is not uniquely determined, but is applicable from 10° C. to the boiling point of the solvent used. It is desirable to carry out the heating in the range of 20°C to 65°C.
 工程(c’)では、工程(b’)で得られたろ液に対して第一級アルキルアミンを添加することによって合成する。 In step (c'), synthesis is performed by adding a primary alkylamine to the filtrate obtained in step (b').
 第一級アルキルアミンの使用量は、中間体(5)の総量1モルに対して、通常0.05~7.0倍モル、収率向上の観点から好ましくは0.2~2.0倍モルである。 The amount of the primary alkylamine used is usually 0.05 to 7.0 times mol, preferably 0.2 to 2.0 times from the viewpoint of improving the yield, with respect to 1 mol of the total amount of the intermediate (5). It is a mole.
 反応は発熱反応であるため、反応温度は低温で行われることが好まれるが、良好な収率が得られることから、例えば-50℃~200℃、好ましくは-10~80℃の範囲で反応が行われる。反応時間は通常0.5~24時間の範囲である。 Since the reaction is an exothermic reaction, it is preferable to carry out the reaction at a low temperature. However, in order to obtain a good yield, the reaction is carried out in the range of, for example, −50° C. to 200° C., preferably −10 to 80° C. Is done. The reaction time is usually in the range of 0.5 to 24 hours.
 工程(d’)では、蒸留、例えば減圧蒸留を行うことによってビスアルキルアミノジシラザン化合物が単離される。アミン、有機溶媒は容易に除去され、ビスアルキルアミノジシラザン化合物を十分に高い純度で精製することができる。 In step (d'), the bisalkylaminodisilazane compound is isolated by performing distillation, for example, vacuum distillation. The amine and the organic solvent are easily removed, and the bisalkylaminodisilazane compound can be purified with a sufficiently high purity.
 本発明に用いることができる溶媒は、例えばヘキサン、シクロヘキサン、ヘプタン、ノナン、デカンなどの炭化水素類;ジクロロエタン、ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン、クロロベンゼン、トリクロロベンゼン等の芳香族炭化水素類;およびこれらの混合物を用いることができる。これらの中でもヘキサン、シクロヘキサン、ヘプタン、ノナン、デカン等の炭化水素類が好ましく、とりわけヘキサンが好ましく用いられる。溶媒の使用量はジクロロシランに対して、通常0.1~50倍質量である。 Examples of the solvent that can be used in the present invention include hydrocarbons such as hexane, cyclohexane, heptane, nonane, and decane; halogenated hydrocarbons such as dichloroethane, dichloromethane, and chloroform; benzene, toluene, xylene, chlorobenzene, trichlorobenzene, and the like. Aromatic hydrocarbons; and mixtures thereof. Among these, hydrocarbons such as hexane, cyclohexane, heptane, nonane and decane are preferable, and hexane is particularly preferable. The amount of the solvent used is usually 0.1 to 50 times the mass of dichlorosilane.
 ジクロロシラン、クロロアミノシラン、ジクロロジシラザン、アミノジシラザンなどの加水分解を回避するため、反応系は全て無水条件で行うことが望ましく、使用する全ての原料中の水分を全ての原料質量に対して0~5000質量ppm、好ましくは0~400質量ppmの範囲にして反応を行う。また、反応装置は加熱乾燥および減圧、窒素やアルゴンなどの不活性ガス置換を行うことで乾燥されたものを用いることが望ましい。 In order to avoid hydrolysis of dichlorosilane, chloroaminosilane, dichlorodisilazane, aminodisilazane, etc., it is desirable that the reaction system is all performed under anhydrous conditions, and the water content in all the starting materials used is based on the total mass of the starting materials. The reaction is carried out in the range of 0 to 5000 mass ppm, preferably 0 to 400 mass ppm. In addition, it is desirable to use a reactor that has been dried by heating and drying, depressurizing, and substituting an inert gas such as nitrogen or argon.
 本発明におけるビスアルキルアミノジシラザン化合物をシリコン含有膜の中間体として用いて、基板上にシリコン含有膜を形成することができる。より詳しくは、本発明によるシリコン含有膜の形成方法は、
  (e)基板に、本発明におけるビスアルキルアミノジシラザン化合物を含むビスアルキルアミノジシラザン組成物を接触させて、基板に前記ビスアルキルアミノジシラザン組成物を吸着させる工程;
  (f)未吸着のビスアルキルアミノジシラザン組成物および副生物をパージする工程;
  (g)前記ビスアルキルアミノジシラザン組成物が吸着した基板に反応ガスを注入することで、ビスアルキルアミノジシラザンが分解され原子層を形成する工程;および
  (h)未反応の反応ガスと副生物をパージする工程
を含む、原子層堆積法である。
The bisalkylaminodisilazane compound in the present invention can be used as an intermediate for a silicon-containing film to form a silicon-containing film on a substrate. More specifically, the method for forming a silicon-containing film according to the present invention comprises
(E) a step of bringing the bisalkylaminodisilazane composition containing the bisalkylaminodisilazane compound of the present invention into contact with the substrate to adsorb the bisalkylaminodisilazane composition onto the substrate;
(F) purging unadsorbed bisalkylaminodisilazane composition and by-products;
(G) injecting a reaction gas into the substrate on which the bisalkylaminodisilazane composition is adsorbed to decompose the bisalkylaminodisilazane to form an atomic layer; and (h) an unreacted reaction gas and by-products It is an atomic layer deposition method that includes the step of purging organisms.
 ビスアルキルアミノジシラザン組成物は、ビスアルキルアミノジシラザン化合物以外に、例えば、キャリアガスとして不活性ガスあるいは低活性ガスを含んでもよい。 The bisalkylaminodisilazane composition may contain, for example, an inert gas or a low active gas as a carrier gas in addition to the bisalkylaminodisilazane compound.
 基板の温度は例えば100~600℃であり、好ましくは100~550℃である。 The temperature of the substrate is, for example, 100 to 600°C, preferably 100 to 550°C.
 工程(e)および工程(g)でガス注入時の圧力は例えば0.05~100Torrであり、好ましくは0.05~50Torrである。 The pressure at the time of gas injection in step (e) and step (g) is, for example, 0.05 to 100 Torr, preferably 0.05 to 50 Torr.
 工程(g)では、反応ガスとして、Si-N結合を有する窒化シリコン膜を形成する際は窒素、アンモニア、一酸化二窒素、一酸化窒素、二酸化窒素から選択される一つ以上のガスを用いることができる。Si-O結合を有する酸化シリコン膜を形成する際は酸素、オゾン、一酸化窒素から選択される一つ以上のガスを用いることができる。 In the step (g), one or more gases selected from nitrogen, ammonia, dinitrogen monoxide, nitric oxide, and nitrogen dioxide are used as a reaction gas when forming a silicon nitride film having a Si—N bond. be able to. When forming a silicon oxide film having a Si—O bond, one or more gases selected from oxygen, ozone, and nitric oxide can be used.
 シリコン含有膜の形成は窒素やアルゴンなどの不活性ガス置換を行った後に行うことが望ましい。すなわち、反応系内部を不活性ガス置換した後に、上記工程(e)を行うことが好ましい。 -It is desirable that the silicon-containing film be formed after replacement with an inert gas such as nitrogen or argon. That is, it is preferable to carry out the step (e) after replacing the inside of the reaction system with an inert gas.
 以下に本発明を実施例により詳細に説明する。 The present invention will be described in detail below with reference to examples.
[実施例1:1,3-ビスジエチルアミノ-2-エチルジシラザンの合成]
 窒素置換後、温度計、冷却管、モーター攪拌機をセットした2000mLのフラスコにジクロロシラン64g(0.64モル)とヘキサン725gを添加し冷媒にアセトンを用いて投げ込みクーラーで-30℃に冷却した。-30℃で保温、攪拌しながらモノエチルアミンのテトラヒドロフラン(10w%)溶液430g(0.96モル)を液中に滴下漏斗を用いて2時間かけてゆっくり滴下し、導入したところ白煙が生じると共に白色の塩が生じた。モノエチルアミンのテトラヒドロフラン(10w%)溶液の滴下後、16時間攪拌しながら保温した。その後、乾燥窒素雰囲気としたグローブボックス内で減圧濾過により副生物であるアミン塩酸塩が主である固形物を取り除き1,3-ジクロロ-2-エチルジシラザンを含むヘキサン溶液を得た。
[Example 1: Synthesis of 1,3-bisdiethylamino-2-ethyldisilazane]
After substituting with nitrogen, 64 g (0.64 mol) of dichlorosilane and 725 g of hexane were added to a 2000 mL flask equipped with a thermometer, a cooling tube, and a motor stirrer, and acetone was used as a refrigerant, and the mixture was cooled to −30° C. with a cooler. While keeping the temperature at -30°C and stirring, 430 g (0.96 mol) of a tetrahydrofuran (10 w%) solution of monoethylamine was slowly dropped into the liquid over 2 hours using a dropping funnel, and when introduced, white smoke was generated. A white salt formed. After dropwise addition of a tetrahydrofuran (10 w%) solution of monoethylamine, the mixture was kept warm for 16 hours while stirring. After that, a solid product mainly containing amine hydrochloride as a by-product was removed by vacuum filtration in a glove box in a dry nitrogen atmosphere to obtain a hexane solution containing 1,3-dichloro-2-ethyldisilazane.
 この1,3-ジクロロ-2-エチルジシラザン溶液を温度計、冷却管、モーター攪拌機がセットされ、乾燥窒素置換された2000mLフラスコに添加し、冷媒にアセトンを用いて投げ込みクーラーで0℃に冷却した。0℃で保温、攪拌しながらジエチルアミン93g(1.3モル)を2時間かけてゆっくり滴下した。その後、撹拌しながら室温まで昇温し、そのまま16時間保温した。乾燥窒素雰囲気としたグローブボックス内で減圧濾過により副生するアミン塩酸塩が主である固形物を取り除き、1,3-ビスジエチルアミノ-2-エチルジシラザンを含むヘキサン溶液を得た。 This 1,3-dichloro-2-ethyldisilazane solution was added to a 2000 mL flask in which a thermometer, a cooling tube, and a motor stirrer were set, and the atmosphere was replaced with dry nitrogen. Acetone was used as a refrigerant to cool the solution to 0°C with a cooler. did. With keeping the temperature at 0° C. and stirring, 93 g (1.3 mol) of diethylamine was slowly added dropwise over 2 hours. Then, the temperature was raised to room temperature with stirring, and the temperature was kept as it was for 16 hours. By filtration under reduced pressure in a glove box in a dry nitrogen atmosphere, a solid product mainly containing amine hydrochloride was removed to obtain a hexane solution containing 1,3-bisdiethylamino-2-ethyldisilazane.
 この1,3-ビスジエチルアミノ-2-エチルジシラザン溶液を内温40℃で減圧蒸留することで1,3-ビスジエチルアミノ-2-エチルジシラザン溶液からヘキサンを除去し、粗1,3-ビスジエチルアミノ-2-エチルジシラザン溶液を得て、さらに蒸留塔を用いて内温100℃、5Torrで減圧蒸留することで最終生成物である1,3-ビスジエチルアミノ-2-エチルジシラザンを高純度で得た。 The 1,3-bisdiethylamino-2-ethyldisilazane solution was distilled under reduced pressure at an internal temperature of 40° C. to remove hexane from the 1,3-bisdiethylamino-2-ethyldisilazane solution to obtain crude 1,3-bis A diethylamino-2-ethyldisilazane solution was obtained and further distilled under reduced pressure at an internal temperature of 100° C. and 5 Torr using a distillation column to obtain 1,3-bisdiethylamino-2-ethyldisilazane as a final product with high purity. Got with.
 蒸留後のGC分析により、95.9面積%の純度で27g(収率28%)のビスアルキルアミノジシラザン化合物が得られたことが確認された。得られたビスアルキルアミノジシラザン化合物は1H-NMRおよびGC-MSによって同定した。1H-NMRの帰属は以下の通りである。1H-NMRチャートは図1に示すとおりである。 By GC analysis after distillation, it was confirmed that 27 g (yield 28%) of a bisalkylaminodisilazane compound was obtained with a purity of 95.9 area %. The obtained bisalkylaminodisilazane compound was identified by 1 H-NMR and GC-MS. Assignment of 1 H-NMR is as follows. The 1 H-NMR chart is as shown in FIG. 1.
σ (ppm)=1.02 ([CH 3-CH2]2-N-, 12H, t, J=7.0Hz), 1.09 (CH 3-CH2-N-, 3H, t, J=7.1Hz), 
2.88 ([CH3-CH 2]2-N-, 8H, q, J=7.0Hz), 2.94 (CH3-CH 2-N- 2H, q, J=7.1Hz), 4.52(-SiH 2 , 4H, s)
σ (ppm)=1.02 ([ CH 3 -CH 2 ] 2 -N-, 12H, t, J=7.0Hz), 1.09 ( CH 3 -CH 2 -N-, 3H, t, J=7.1Hz),
2.88 ([CH 3 - CH 2 ] 2 -N-, 8H, q, J=7.0Hz), 2.94 (CH 3 - CH 2 -N- 2H, q, J=7.1Hz), 4.52(- SiH 2 , 4H, s)
 上記1H-NMRおよびGC-MSの結果により、得られたビスアルキルアミノジシラザン化合物は、下式: From the results of 1 H-NMR and GC-MS, the obtained bisalkylaminodisilazane compound has the following formula:
Figure JPOXMLDOC01-appb-C000017
で表される1,3-ビスジエチルアミノ-2-エチルジシラザンと同定した。
[実施例2:1,3-ビスジメチルアミノ-2-メチルジシラザンの合成]
 窒素置換後、温度計、冷却管、モーター攪拌機をセットした2000mLのフラスコにジクロロシラン60g(0.60モル)とヘキサン660gを添加し冷媒にアセトンを用いて投げ込みクーラーで-20℃に冷却した。-20℃で保温、攪拌しながらモノメチルアミン27g(0.86モル)を液中に滴下漏斗を用いて4時間かけてゆっくり滴下し、導入したところ白煙が生じると共に白色の塩が生じた。モノメチルアミン添加後、19時間攪拌しながら保温した。その後、乾燥窒素雰囲気としたグローブボックス内で減圧濾過により副生物であるアミン塩酸塩が主である固形物を取り除き1,3-ジクロロ-2-メチルジシラザンを含むヘキサン溶液を得た。
Figure JPOXMLDOC01-appb-C000017
Was identified as 1,3-bisdiethylamino-2-ethyldisilazane.
[Example 2: Synthesis of 1,3-bisdimethylamino-2-methyldisilazane]
After substituting with nitrogen, 60 g (0.60 mol) of dichlorosilane and 660 g of hexane were added to a 2000 mL flask equipped with a thermometer, a cooling tube, and a motor stirrer, and acetone was used as a refrigerant, and the mixture was cooled to −20° C. with a cooler. 27 g (0.86 mol) of monomethylamine was slowly added dropwise to the liquid using a dropping funnel over 4 hours while keeping the temperature at -20° C. and stirring, and white smoke and white salt were produced when introduced. After the addition of monomethylamine, the mixture was kept warm with stirring for 19 hours. Then, the solid product mainly containing amine hydrochloride as a by-product was removed by vacuum filtration in a glove box in a dry nitrogen atmosphere to obtain a hexane solution containing 1,3-dichloro-2-methyldisilazane.
 この1,3-ジクロロ-2-メチルジシラザン溶液を温度計、冷却管、モーター攪拌機がセットされ、乾燥窒素置換された2000mLフラスコに添加し、冷媒にアセトンを用いて投げ込みクーラーで-20℃に冷却した。-20℃で保温、攪拌しながらジメチルアミン53g(1.2モル)を6時間かけてゆっくり添加した。その後、撹拌しながら室温まで昇温し、そのまま18時間保温した。乾燥窒素雰囲気としたグローブボックス内で減圧濾過により副生するアミン塩酸塩が主である固形物を取り除き、1,3-ビスジメチルアミノ-2-メチルジシラザンを含むヘキサン溶液を得た。 This 1,3-dichloro-2-methyldisilazane solution was added to a 2000 mL flask in which a thermometer, a cooling tube, and a motor stirrer were set, and which had been replaced with dry nitrogen. Acetone was used as a refrigerant and the temperature was lowered to -20°C with a cooler. Cooled. While keeping the temperature at -20°C and stirring, 53 g (1.2 mol) of dimethylamine was slowly added over 6 hours. Then, the temperature was raised to room temperature with stirring, and the temperature was kept as it was for 18 hours. By filtration under reduced pressure in a glove box in a dry nitrogen atmosphere, the by-produced solid product mainly containing amine hydrochloride was removed to obtain a hexane solution containing 1,3-bisdimethylamino-2-methyldisilazane.
 この1,3-ビスジメチルアミノ-2-メチルジシラザン溶液を内温50℃で減圧蒸留することで1,3-ビスジメチルアミノ-2-メチルジシラザン溶液からヘキサンを除去し、粗1,3-ビスジメチルアミノ-2-メチルジシラザン溶液を得て、さらに蒸留塔を用いて内温70℃、10Torrで減圧蒸留することで最終生成物である1,3-ビスジメチルアミノ-2-メチルジシラザンを高純度で得た。 The 1,3-bisdimethylamino-2-methyldisilazane solution was distilled under reduced pressure at an internal temperature of 50° C. to remove hexane from the 1,3-bisdimethylamino-2-methyldisilazane solution to obtain crude 1,3 -Bisdimethylamino-2-methyldisilazane solution was obtained and further distilled under reduced pressure at an internal temperature of 70°C and 10 Torr using a distillation column to obtain 1,3-bisdimethylamino-2-methyldimethyl as a final product. Silazane was obtained in high purity.
 蒸留後のGC分析により、97面積%の純度で9g(収率17%)のビスアルキルアミノジシラザン化合物が得られたことが確認された。得られたビスアルキルアミノジシラザン化合物は1H-NMRおよびGC-MSによって同定した。1H-NMRの帰属は以下の通りである。1H-NMRチャートは図2に示すとおりである。 By GC analysis after distillation, it was confirmed that 9 g (yield 17%) of a bisalkylaminodisilazane compound was obtained with a purity of 97% by area. The obtained bisalkylaminodisilazane compound was identified by 1 H-NMR and GC-MS. Assignment of 1 H-NMR is as follows. The 1 H-NMR chart is as shown in FIG.
σ(ppm)=2.53 (Si-[CH 3 ]N-Si, 3H, s), 2.55(CH 3 -N-Si 12H, s), 4.45(-SiH 2 , 4H, s) σ(ppm)=2.53 (Si-[ CH 3 ]N-Si, 3H, s), 2.55( CH 3 -N-Si 12H, s), 4.45(- SiH 2 , 4H, s)
 上記1H-NMRおよびGC-MSの結果により、得られたビスアルキルアミノジシラザン化合物は、下式: From the results of 1 H-NMR and GC-MS, the obtained bisalkylaminodisilazane compound has the following formula:
Figure JPOXMLDOC01-appb-C000018
で表される1,3-ビスジメチルアミノ-2-メチルジシラザンと同定した。
[実施例3:1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンの合成]
 窒素置換後、温度計、冷却管、モーター攪拌機をセットした2000mLのフラスコにジクロロシラン64g(0.64モル)とヘキサン707gを添加し冷媒にアセトンを用いて投げ込みクーラーで0℃に冷却した。0℃で保温、攪拌しながらノルマルプロピルアミン63g(1.06モル)を液中に滴下漏斗を用いて2時間かけてゆっくり滴下し、導入したところ白煙が生じると共に白色の塩が生じた。ノルマルプロピルアミンの滴下後、15時間攪拌しながら保温した。その後、乾燥窒素雰囲気としたグローブボックス内で減圧濾過により副生物であるアミン塩酸塩が主である固形物を取り除き1,3-ジクロロ-2-ノルマルプロピルジシラザンを含むヘキサン溶液を得た。
Figure JPOXMLDOC01-appb-C000018
Was identified as 1,3-bisdimethylamino-2-methyldisilazane.
[Example 3: Synthesis of 1,3-bisdiethylamino-2-normalpropyldisilazane]
After purging with nitrogen, 64 g (0.64 mol) of dichlorosilane and 707 g of hexane were added to a 2000 mL flask in which a thermometer, a cooling tube, and a motor stirrer were set, and acetone was used as a refrigerant, and the mixture was cooled to 0° C. by a cooler. 63 g (1.06 mol) of normal propylamine was slowly added dropwise into the liquid over 2 hours with keeping the temperature at 0° C. and stirring, and when introduced, white smoke and white salt were formed. After the normal propylamine was added dropwise, the mixture was kept warm with stirring for 15 hours. Then, a solid product mainly containing by-product amine hydrochloride was removed by vacuum filtration in a glove box in a dry nitrogen atmosphere to obtain a hexane solution containing 1,3-dichloro-2-normalpropyldisilazane.
 この1,3-ジクロロ-2-ノルマルプロピルジシラザン溶液を温度計、冷却管、モーター攪拌機がセットされ、乾燥窒素置換された2000mLフラスコに添加し、冷媒にアセトンを用いて投げ込みクーラーで0℃に冷却した。0℃で保温、攪拌しながらジエチルアミン92g(1.3モル)を2時間かけてゆっくり滴下した。その後、撹拌しながら室温まで昇温し、そのまま16時間保温した。乾燥窒素雰囲気としたグローブボックス内で減圧濾過により副生するアミン塩酸塩が主である固形物を取り除き、1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンを含むヘキサン溶液を得た。 This 1,3-dichloro-2-normalpropyldisilazane solution was added to a 2000 mL flask in which a thermometer, a cooling tube, and a motor stirrer were set, and the atmosphere was replaced with dry nitrogen. Acetone was used as a refrigerant and the temperature was lowered to 0° C. with a cooler. Cooled. With keeping the temperature at 0° C. and stirring, 92 g (1.3 mol) of diethylamine was slowly added dropwise over 2 hours. Then, the temperature was raised to room temperature with stirring, and the temperature was kept as it was for 16 hours. By filtration under reduced pressure in a glove box in a dry nitrogen atmosphere, the by-produced solid product mainly containing amine hydrochloride was removed to obtain a hexane solution containing 1,3-bisdiethylamino-2-normalpropyldisilazane.
 この1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザン溶液を内温40℃で減圧蒸留することで1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザン溶液からヘキサンを除去し、粗1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザン溶液を得て、さらに蒸留塔を用いて内温120℃、2Torrで減圧蒸留することで最終生成物である1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンを高純度で得た。 This 1,3-bisdiethylamino-2-normalpropyldisilazane solution was distilled under reduced pressure at an internal temperature of 40° C. to remove hexane from the 1,3-bisdiethylamino-2-normalpropyldisilazane solution to give crude 1,3 -Bisdiethylamino-2-normalpropyldisilazane solution was obtained, and further distilled under reduced pressure at an internal temperature of 120° C. and 2 Torr using a distillation column to give 1,3-bisdiethylamino-2-normalpropyldiyl as a final product. Silazane was obtained in high purity.
 蒸留後のGC分析により、95.0面積%の純度で16g(収率19%)のビスアルキルアミノジシラザン化合物が得られたことが確認された。得られたビスアルキルアミノジシラザン化合物は1H-NMRおよびGC-MSによって同定した。1H-NMRの帰属は以下の通りである。1H-NMRチャートは図3に示すとおりである。 By GC analysis after distillation, it was confirmed that 16 g (yield 19%) of a bisalkylaminodisilazane compound with a purity of 95.0 area% was obtained. The obtained bisalkylaminodisilazane compound was identified by 1 H-NMR and GC-MS. Assignment of 1 H-NMR is as follows. The 1 H-NMR chart is as shown in FIG.
σ (ppm)= 0.84(CH 3-CH2-CH2-N-, 3H, t, J=7.6Hz), 1.02 ([CH 3-CH2]2-N-, 12H, t, 
J=7.2Hz), 1.48 (CH3-CH 2 -CH2-N-, 2H, sext, J=7.6Hz), 2.81 (CH3-CH2-CH 2 -N-, 2H, t, 
J=7.6Hz), 2.87 ([CH3-CH 2]2-N-, 8H, q, J=7.2Hz), 4.51(-SiH 2 , 4H, s)
σ (ppm) = 0.84 ( CH 3 -CH 2 -CH 2 -N-, 3H, t, J=7.6Hz), 1.02 ([ CH 3 -CH 2 ] 2 -N-, 12H, t,
J=7.2Hz), 1.48 (CH 3 - CH 2 -CH 2 -N-, 2H, sext, J=7.6Hz), 2.81 (CH 3 -CH 2 - CH 2 -N-, 2H, t,
J=7.6Hz), 2.87 ([CH 3 - CH 2 ] 2 -N-, 8H, q, J=7.2Hz), 4.51(- SiH 2 ,4H, s)
 上記1H-NMRおよびGC-MSの結果により、得られたビスアルキルアミノジシラザン化合物は、下式: From the results of 1 H-NMR and GC-MS, the obtained bisalkylaminodisilazane compound has the following formula:
Figure JPOXMLDOC01-appb-C000019
で表される1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンと同定した。
Figure JPOXMLDOC01-appb-C000019
Was identified as 1,3-bisdiethylamino-2-normalpropyldisilazane.
[実施例4:1,3-ビスジエチルアミノ-2-エチルジシラザンを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~600℃に加熱した。実施例1で得られた1,3-ビスジエチルアミノ-2-エチルジシラザンおよびキャリアガスを含むアミノシラザン組成物を0.05~100Torrの圧力にて注入し、加熱したシリコン基板に吸着させた。次いで、装置内に未吸着のアミノシラザン組成物および副生物をパージした。
 その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積した1,3-ビスジエチルアミノ-2-エチルジシラザン由来の酸化シリコンの原子層を形成した。次いで、未反応のオゾンガスと副生物をパージした。
 上記のサイクルを300回繰り返して、所望の膜厚の酸化シリコン膜を得た。
[Example 4: Formation of silicon-containing film using 1,3-bisdiethylamino-2-ethyldisilazane]
A silicon substrate was placed in a vacuum device and heated to 100 to 600°C. The aminosilazane composition containing 1,3-bisdiethylamino-2-ethyldisilazane obtained in Example 1 and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed on a heated silicon substrate. The unadsorbed aminosilazane composition and by-products were then purged into the device.
Then, ozone was injected at a pressure of 0.05 to 100 Torr as a reaction gas to form an atomic layer of silicon oxide derived from 1,3-bisdiethylamino-2-ethyldisilazane deposited on the substrate. Then, unreacted ozone gas and by-products were purged.
The above cycle was repeated 300 times to obtain a silicon oxide film having a desired film thickness.
 形成した層の厚さはエリプソメータで測定し、赤外分光分析を用いて酸化シリコン膜であることを確認した。以下表1に具体的な蒸着方法を示し、表2に1,3-ビスジエチルアミノ-2-エチルジシラザンの堆積量を示した。 The thickness of the formed layer was measured with an ellipsometer, and it was confirmed by infrared spectroscopy that it was a silicon oxide film. Table 1 below shows specific vapor deposition methods, and Table 2 shows the amount of 1,3-bisdiethylamino-2-ethyldisilazane deposited.
[実施例5:1,3-ビスジメチルアミノ-2-メチルジシラザンを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~600℃に加熱した。実施例2で得られた1,3-ビスジメチルアミノ-2-メチルジシラザンおよびキャリアガスを含むアミノシラザン組成物を0.05~100Torrの圧力にて注入し、加熱したシリコン基板に吸着させた。次いで、装置内に未吸着のアミノシラザン組成物および副生物をパージした。
 その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積した1,3-ビスジメチルアミノ-2-メチルジシラザン由来の酸化シリコンの原子層を形成した。次いで、未反応のオゾンガスと副生物をパージした。
 上記のサイクルを300回繰り返して、所望の膜厚の酸化シリコン膜を得た。
[Example 5: Formation of silicon-containing film using 1,3-bisdimethylamino-2-methyldisilazane]
A silicon substrate was placed in a vacuum device and heated to 100 to 600°C. The aminosilazane composition containing 1,3-bisdimethylamino-2-methyldisilazane obtained in Example 2 and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed on a heated silicon substrate. .. The unadsorbed aminosilazane composition and by-products were then purged into the device.
Then, ozone was injected at a pressure of 0.05 to 100 Torr as a reaction gas to form an atomic layer of silicon oxide derived from 1,3-bisdimethylamino-2-methyldisilazane deposited on the substrate. Then, unreacted ozone gas and by-products were purged.
The above cycle was repeated 300 times to obtain a silicon oxide film having a desired film thickness.
 形成した層の厚さはエリプソメータで測定し、赤外分光分析を用いて酸化シリコン膜であることを確認した。以下表1に具体的な蒸着方法を示し、表2に1,3-ビスジメチルアミノ-2-メチルジシラザンの堆積量を示した。 The thickness of the formed layer was measured with an ellipsometer, and it was confirmed by infrared spectroscopy that it was a silicon oxide film. Table 1 below shows specific vapor deposition methods, and Table 2 shows the amount of 1,3-bisdimethylamino-2-methyldisilazane deposited.
[実施例6:1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~600℃に加熱した。実施例3で得られた1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンおよびキャリアガスを含むアミノシラザン組成物を0.05~100Torrの圧力にて注入し、加熱したシリコン基板に吸着させた。次いで、装置内に未吸着のアミノシラザン組成物および副生物をパージした。
 その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積した1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザン由来の酸化シリコンの原子層を形成した。次いで、未反応のオゾンガスと副生物をパージした。
 上記のサイクルを300回繰り返して、所望の膜厚の酸化シリコン膜を得た。
[Example 6: Formation of silicon-containing film using 1,3-bisdiethylamino-2-normalpropyldisilazane]
A silicon substrate was placed in a vacuum device and heated to 100 to 600°C. The aminosilazane composition containing 1,3-bisdiethylamino-2-normalpropyldisilazane obtained in Example 3 and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed on a heated silicon substrate. .. The unadsorbed aminosilazane composition and by-products were then purged into the device.
Thereafter, ozone was injected as a reaction gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from 1,3-bisdiethylamino-2-normalpropyldisilazane deposited on the substrate. Then, unreacted ozone gas and by-products were purged.
The above cycle was repeated 300 times to obtain a silicon oxide film having a desired film thickness.
 形成した層の厚さはエリプソメータで測定し、赤外分光分析を用いて酸化シリコン膜であることを確認した。以下表1に具体的な蒸着方法を示し、表2に1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンの堆積量を示した。 The thickness of the formed layer was measured with an ellipsometer, and it was confirmed by infrared spectroscopy that it was a silicon oxide film. Table 1 below shows specific vapor deposition methods, and Table 2 shows the amount of 1,3-bisdiethylamino-2-normalpropyldisilazane deposited.
[比較例1:ビスジエチルアミノシランを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~600℃に加熱した。ビスジエチルアミノシランおよびキャリアガスを含むアミノシラン組成物を0.05~100Torrの圧力にて注入し、加熱したシリコン基板に吸着させた。次いで、装置内に未吸着のアミノシラン組成物および副生物をパージした。
 その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積したビスジエチルアミノシラン由来の酸化シリコンの原子層を形成した。次いで、未反応のオゾンガスと副生物をパージした。
 上記のサイクルを300回繰り返して、所望の膜厚の酸化シリコン膜を得た。
[Comparative Example 1: Formation of silicon-containing film using bisdiethylaminosilane]
A silicon substrate was placed in a vacuum device and heated to 100 to 600°C. An aminosilane composition containing bisdiethylaminosilane and a carrier gas was injected at a pressure of 0.05 to 100 Torr and adsorbed on a heated silicon substrate. The unadsorbed aminosilane composition and byproducts were then purged into the device.
After that, ozone was injected at a pressure of 0.05 to 100 Torr as a reaction gas to form an atomic layer of bisdiethylaminosilane-derived silicon oxide deposited on the substrate. Then, unreacted ozone gas and by-products were purged.
The above cycle was repeated 300 times to obtain a silicon oxide film having a desired film thickness.
 形成した層の厚さはエリプソメータで測定し、赤外分光分析を用いて酸化シリコン膜であることを確認した。以下表1に具体的な蒸着方法を示し、表2にビスジエチルアミノシランの堆積量を示した。 The thickness of the formed layer was measured with an ellipsometer, and it was confirmed by infrared spectroscopy that it was a silicon oxide film. Table 1 below shows specific vapor deposition methods, and Table 2 shows the amount of bisdiethylaminosilane deposited.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 原子堆積法を用いれば、アスペクト比が高い構造が形成された半導体基板やナノワイヤーなどにも、極薄かつ原子欠陥がなく酸化シリコン膜などを形成することができる。本発明によるビスアルキルアミノジシラザン化合物は、低温かつ高速で成膜する原子堆積法に有用である。 By using the atomic deposition method, it is possible to form a silicon oxide film on a semiconductor substrate or nanowire on which a structure with a high aspect ratio is formed, which is extremely thin and has no atomic defects. The bisalkylaminodisilazane compound according to the present invention is useful in an atomic deposition method for forming a film at low temperature and high speed.
[関連出願]
 本出願は、2018年12月5日に日本国でされた特願2018-228305及び2019年9月27日に日本国でされた特願2019-177539を基礎出願とするパリ条約第4条に基づく優先権を主張する。この基礎出願の内容は、参照することによって、本明細書に組み込まれる。
[Related application]
This application is based on Article 4 of the Paris Convention based on Japanese Patent Application No. 2018-228305 filed on December 5, 2018 and Japanese Patent Application No. 2019-177539 filed on September 27, 2019 in Japan. Claim priority based on. The contents of this basic application are incorporated herein by reference.

Claims (17)

  1. 下式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
    で表される、ビスアルキルアミノジシラザン化合物。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
    A bisalkylaminodisilazane compound represented by.
  2. 、R、R、RおよびRが互いに同一である、請求項1に記載のビスアルキルアミノジシラザン化合物。 The bisalkylaminodisilazane compound according to claim 1 , wherein R 1 , R 2 , R 3 , R 4 and R 5 are the same as each other.
  3. 、R、RおよびRが互いに同一であり、R、R、RおよびRとRとが異なる、請求項1に記載のビスアルキルアミノジシラザン化合物。 The bisalkylaminodisilazane compound according to claim 1 , wherein R 1 , R 2 , R 4 and R 5 are the same as each other, and R 1 , R 2 , R 4 and R 5 are different from R 3 .
  4. 、R、R、RおよびRの合計の炭素数は5~20である、請求項1~3のいずれか一項に記載のビスアルキルアミノジシラザン化合物。 The bisalkylaminodisilazane compound according to any one of claims 1 to 3, wherein the total carbon number of R 1 , R 2 , R 3 , R 4 and R 5 is 5 to 20.
  5. 下式:
    Figure JPOXMLDOC01-appb-C000002
    で表される1,3-ビスジエチルアミノ-2-エチルジシラザンである、ビスアルキルアミノジシラザン化合物。
    The following formula:
    Figure JPOXMLDOC01-appb-C000002
    A bisalkylaminodisilazane compound which is 1,3-bisdiethylamino-2-ethyldisilazane represented by:
  6. 下式:
    Figure JPOXMLDOC01-appb-C000003
    で表される1,3-ビスジメチルアミノ-2-メチルジシラザンである、ビスアルキルアミノジシラザン化合物。
    The following formula:
    Figure JPOXMLDOC01-appb-C000003
    A bisalkylaminodisilazane compound which is 1,3-bisdimethylamino-2-methyldisilazane represented by:
  7. 下式:
    Figure JPOXMLDOC01-appb-C000004
    で表される1,3-ビスジエチルアミノ-2-ノルマルプロピルジシラザンである、ビスアルキルアミノジシラザン化合物。
    The following formula:
    Figure JPOXMLDOC01-appb-C000004
    A bisalkylaminodisilazane compound which is 1,3-bisdiethylamino-2-normalpropyldisilazane represented by:
  8. 請求項1~7のいずれか一項に記載のビスアルキルアミノジシラザン化合物からなる、シリコン含有膜の前駆体。 A precursor of a silicon-containing film, comprising the bisalkylaminodisilazane compound according to any one of claims 1 to 7.
  9. 前記シリコン含有膜が化学気相成長により形成される、請求項8に記載の前駆体。 The precursor according to claim 8, wherein the silicon-containing film is formed by chemical vapor deposition.
  10. 前記化学気相成長は原子層堆積である、請求項9に記載の前駆体。 The precursor according to claim 9, wherein the chemical vapor deposition is atomic layer deposition.
  11. 項1~7のいずれか一項に記載のビスアルキルアミノジシラザン化合物を含む、シリコン含有膜形成用の組成物。 Item 8. A composition for forming a silicon-containing film, which comprises the bisalkylaminodisilazane compound according to any one of items 1 to 7.
  12. 前記シリコン含有膜が化学気相成長により形成される、請求項11の組成物。 The composition of claim 11, wherein the silicon-containing film is formed by chemical vapor deposition.
  13. 前記化学気相成長は、原子層堆積である請求項12の組成物。 13. The composition of claim 12, wherein the chemical vapor deposition is atomic layer deposition.
  14. 1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物の製造方法であって、
     (a)ジクロロシランおよび第一級アルキルアミンを、溶媒に添加して1,3-ジクロロ-2-アルキルジシラザン化合物を合成する合成工程;
     (b)副生塩を濾過により除去する濾過工程;
     (c)ろ液に第二級アルキルアミンを添加して1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物を合成する合成工程;および
     (d)蒸留により1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物を単離する蒸留工程
    を含む、または
     (a’)ジクロロシランおよび第二級アルキルアミンを、溶媒に添加してクロロジアルキルアミノシラン化合物を合成する合成工程;
     (b’)副生塩を濾過により除去する濾過工程;
     (c’)ろ液に第一級アルキルアミンを添加して1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物を合成する合成工程;および
     (d’)蒸留により1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物を単離する蒸留工程
    を含む、製造方法。
    A method for producing a 1,3-bisdialkylamino-2-alkyldisilazane compound, comprising:
    (A) a synthetic step of adding dichlorosilane and a primary alkylamine to a solvent to synthesize a 1,3-dichloro-2-alkyldisilazane compound;
    (B) a filtration step of removing by-product salts by filtration;
    (C) a synthetic step of adding a secondary alkylamine to the filtrate to synthesize a 1,3-bisdialkylamino-2-alkyldisilazane compound; and (d) 1,3-bisdialkylamino-2 by distillation. A synthetic step comprising a distillation step to isolate the alkyldisilazane compound, or (a') dichlorosilane and a secondary alkylamine are added to the solvent to synthesize a chlorodialkylaminosilane compound;
    (B') a filtration step of removing by-product salts by filtration;
    (C') a synthetic step of adding a primary alkylamine to the filtrate to synthesize a 1,3-bisdialkylamino-2-alkyldisilazane compound; and (d') 1,3-bisdialkylamino by distillation. -A production method comprising a distillation step for isolating a 2-alkyldisilazane compound.
  15. 前記1,3-ビスジアルキルアミノ-2-アルキルジシラザン化合物が下式(1):
    Figure JPOXMLDOC01-appb-C000005
    [式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
    で表され、
     前記第一級アルキルアミンが下式(2):
      HNR
    [式(2)中、Rは炭素数1~5のアルキル基である。]
    で表され、
     前記第二級アルキルアミンが下式(3)
      NHR’
    [式(3)中、NHR’はNHRまたはNHRであり、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
    で表される、請求項14記載の製造方法。
    The 1,3-bisdialkylamino-2-alkyldisilazane compound has the following formula (1):
    Figure JPOXMLDOC01-appb-C000005
    [In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
    Is represented by
    The primary alkylamine has the following formula (2):
    H 2 NR 3
    [In the formula (2), R 3 is an alkyl group having 1 to 5 carbon atoms. ]
    Is represented by
    The secondary alkylamine is represented by the following formula (3)
    NHR' 2
    [In the formula (3), NHR′ 2 is NHR 1 R 2 or NHR 4 R 5 , and each of R 1 , R 2 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. .. ]
    The manufacturing method according to claim 14, which is represented by:
  16. Figure JPOXMLDOC01-appb-C000006
    [式(1)中、R、R、R、RおよびRのそれぞれは独立して炭素数1~5のアルキル基である。]
    で表されるビスアルキルアミノジシラザン化合物を用いる、シリコン含有膜の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    [In the formula (1), each of R 1 , R 2 , R 3 , R 4 and R 5 is independently an alkyl group having 1 to 5 carbon atoms. ]
    A method for producing a silicon-containing film, which comprises using the bisalkylaminodisilazane compound represented by
  17. シリコン含有膜は酸化シリコン膜である、請求項16記載のシリコン含有膜の製造方法。 The method for producing a silicon-containing film according to claim 16, wherein the silicon-containing film is a silicon oxide film.
PCT/JP2019/047012 2018-12-05 2019-12-02 Bis(alkylamino)disilazane compound, bis(alkylamino)disilazane compound-containing composition for forming silicon-containing film WO2020116386A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018228305 2018-12-05
JP2018-228305 2018-12-05
JP2019-177539 2019-09-27
JP2019177539A JP2020096172A (en) 2018-12-05 2019-09-27 Bisalkylaminodisilazane compound, and composition for silicon-containing film formation, including the same

Publications (1)

Publication Number Publication Date
WO2020116386A1 true WO2020116386A1 (en) 2020-06-11

Family

ID=70975160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047012 WO2020116386A1 (en) 2018-12-05 2019-12-02 Bis(alkylamino)disilazane compound, bis(alkylamino)disilazane compound-containing composition for forming silicon-containing film

Country Status (1)

Country Link
WO (1) WO2020116386A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211027A1 (en) * 2022-04-25 2023-11-02 엠케미칼 주식회사 Silicon precursor compound and preparation method therefor, and silicon-containing thin film preparation method using silicon precursor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182309A1 (en) * 2017-03-29 2018-10-04 Dnf Co., Ltd. Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182309A1 (en) * 2017-03-29 2018-10-04 Dnf Co., Ltd. Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211027A1 (en) * 2022-04-25 2023-11-02 엠케미칼 주식회사 Silicon precursor compound and preparation method therefor, and silicon-containing thin film preparation method using silicon precursor

Similar Documents

Publication Publication Date Title
US20210206786A1 (en) N-alkyl substituted cyclic and oligomeric perhydridosilazanes, methods of preparation thereof, and silicon nitride films formed therefrom
TWI386414B (en) Composition and method for low temperature chemical vapor deposition of silicon-containing films including silicon carbonitride and silicon oxycarbonitride films
US20150004317A1 (en) Organosilane precursors for ald/cvd silicon-containing film applications
JP6415665B2 (en) Novel trisilylamine derivative, method for producing the same, and silicon-containing thin film using the same
JP6876145B2 (en) A composition for vapor deposition of a silicon-containing thin film containing a bis (aminosilyl) alkylamine compound, and a method for producing a silicon-containing thin film using the composition.
JP7246929B2 (en) METAL TRIAMINE COMPOUND, METHOD FOR PRODUCING THE SAME AND COMPOSITION FOR METAL CONTAINING THIN FILM VAPOR CONTAINING THE SAME
JP6651663B1 (en) Aminosilane compound, composition for forming a silicon-containing film containing the aminosilane compound
WO2020116386A1 (en) Bis(alkylamino)disilazane compound, bis(alkylamino)disilazane compound-containing composition for forming silicon-containing film
JP6900503B2 (en) A silylamine compound, a composition for vapor deposition of a silicon-containing thin film containing the compound, and a method for producing a silicon-containing thin film using the same.
JP7265446B2 (en) Aminosilane compound, composition for forming a silicon-containing film containing said aminosilane compound
JP2020096172A (en) Bisalkylaminodisilazane compound, and composition for silicon-containing film formation, including the same
WO2023190386A1 (en) Sulfur-containing siloxane, composition for forming silicon-containing film comprising said sulfur-containing siloxane, sulfur-containing siloxane production method, silicon-containing film, and silicon-containing film production method
WO2024080237A1 (en) Silicon-containing film precursor, composition for forming silicon-containing film, method for manufacturing sulfur-containing siloxane, and method for manufacturing silicon-containing film
KR101770152B1 (en) composition comprising boron-containing compound, boron-containing thin film and method for manufacturing boron-containing thin film
KR101380317B1 (en) Cyclic aminosilane compounds having excellent affinity towards silicon and metal atoms, preparing method thereof, and its application
US20230088079A1 (en) Silicon precursors
TWI781566B (en) Silicon hydrazido precursor compounds
KR101306812B1 (en) Novel tungsten silylamide compounds, preparation method thereof and process for the formation of thin films using the same
JP7337257B2 (en) Novel silylcyclodisilazane compound and method for producing silicon-containing thin film using the same
KR101919755B1 (en) A new organic amino silicon composition and thin film comprising silicon by using the same
KR20230089234A (en) Molybdenum compound, manufacturing method thereof, and composition for thin film containing the same
JP6144161B2 (en) Silicon nitride film raw material and silicon nitride film obtained from the raw material
TW202306959A (en) Organometallic compound, method for synthesizing the same, precursor for vapor deposition containing the same, and method for producing thin film
KR20160007187A (en) boron-containing precursors, boron-containing compositions containing them and boron-containing thin film using the same
KR20230089245A (en) Molybdenum compound, manufacturing method thereof, and manufacturing method of thin film containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893298

Country of ref document: EP

Kind code of ref document: A1