WO2020116370A1 - Gear manufacturing method and reduction gear - Google Patents
Gear manufacturing method and reduction gear Download PDFInfo
- Publication number
- WO2020116370A1 WO2020116370A1 PCT/JP2019/046944 JP2019046944W WO2020116370A1 WO 2020116370 A1 WO2020116370 A1 WO 2020116370A1 JP 2019046944 W JP2019046944 W JP 2019046944W WO 2020116370 A1 WO2020116370 A1 WO 2020116370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- planetary
- central axis
- manufacturing
- temperature
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/02—Thermal after-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/46—Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
Definitions
- the present invention relates to a gear manufacturing method and a speed reducer.
- a speed reducer using a planetary gear mechanism has been known (for example, see Patent Document 1).
- the planetary gear is manufactured by a metal injection molding (MIM) method, and the output gear and the fixed gear are manufactured by using a resin composition containing an additive.
- MIM metal injection molding
- the gear is manufactured by the MIM method, the dimensional accuracy of the obtained gear is low, and it is difficult to increase the yield.
- in the case of manufacturing a gear using a resin composition if glass fibers or carbon fibers are mixed as an additive, depending on the size of the gear, manufacturing conditions, etc., insufficient filling of the resin composition or deterioration of gate disconnection may occur. May occur.
- the present invention has been made in view of the above problems, and an object thereof is to manufacture a gear that is excellent in mechanical strength and shape stability at a high yield, and a method for manufacturing such a gear. It is to provide a speed reducer including a gear.
- An exemplary invention of the present application is a method for producing a gear using a resin composition containing a crystalline resin and a filler, the step of melting the resin composition, and the resin composition in the molten state.
- a molding die set at a temperature lower by 5 to 25° C. than the glass transition temperature of the crystalline resin to obtain a molded body having a shape corresponding to the gear, and A heat treatment at a temperature higher than the crystallization temperature of the resin to obtain the gear. ..
- Another exemplary invention of the present application is a casing having a central axis, a first internal gear and a second internal gear that are arranged in the casing and are separated from each other in a direction along the central axis, and the casing.
- An input gear that is disposed inside and rotates about the central axis, a first rotation assembly that transmits a rotation force to and from the input gear, and a rotation force is reduced between the first rotation assembly and the first rotation assembly.
- a second reduction gear assembly for transmitting wherein the first rotation assembly is arranged in a circumferential direction of the input gear between the first internal gear and the input gear, and has outer teeth.
- a plurality of first planetary gears meshing with the inner peripheral teeth of the first internal gear and the outer peripheral teeth of the input gear; and a first planetary shaft facing each of the plurality of first planetary gears in a direction along the central axis.
- a first planetary carrier that is rotatably supported about the center, a first rotating shaft part that is connected to the first planetary carrier, and has the central axis at the center, and the first rotating shaft part about the central axis.
- a rotating sun gear wherein the first planet carrier, the first rotating shaft portion and the sun gear are a single gear member, and the second rotating assembly comprises the second internal gear and the sun.
- a plurality of second planetary gears which are arranged in the circumferential direction of the sun gear between the gears and have outer peripheral teeth meshing with inner peripheral teeth of the second internal gear and outer peripheral teeth of the sun gear;
- a second planet carrier that rotatably supports each of the planetary gears around a second planet shaft that is oriented along the central axis, and a second planet carrier that is connected to the second planet carrier and that has the central shaft at the center.
- FIG. 1 is a vertical cross-sectional view of a small reducer according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along the line AA and the line BB in FIG. 1 (reference numerals are shown in parentheses).
- 2 is an electron microscope (SEM) photograph showing appearances of molded articles of Example 1 and Comparative Example 2.
- FIG. 1 is a vertical cross-sectional view of a small reducer according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along the line AA and the line BB in FIG. 1 (reference numerals are shown in parentheses).
- FIG. 1 shows a cross section of a plane including the central axis J1 of the small reduction gear 1 (hereinafter also simply referred to as a reduction gear).
- the upper side in FIG. 1 is referred to as “upper” or “upper”, and the lower side is referred to as “lower” or “lower”.
- the up-down direction which is the direction in which the central axis J1 faces, is also referred to as the “axial direction”.
- the circumferential direction centering on the central axis J1 is simply referred to as “circumferential direction”
- the radial direction centering on the central axis J1 is simply referred to as “radial direction”. ..
- the speed reducer 1 includes a casing 2, an input unit 3, a first rotation assembly 4, a second rotation assembly 6, a first internal gear 5, and a second internal gear 7. , An input shaft 8, an output shaft 9, and a motor 15 directly connected to the input shaft 8.
- the speed reducer 1 has a planetary gear mechanism having a two-stage structure including a first rotation assembly 4 and a second rotation assembly 6, and is formed to have an outer dimension of, for example, a width of 5 mm, a depth of 5 mm, and a height of 20 mm or less. ing. ..
- the motor 15 serves as a drive source of a structure (not shown) on which the speed reducer 1 is mounted, that is, a power source.
- a structure not particularly limited, and a small camera can be given as an example.
- various motors are appropriately selected according to the usage of the structure.
- the input shaft 8 is also a motor shaft of a motor 15 that is rotationally driven about the central axis J1. ..
- the casing 2 is arranged and fixed on the upper side of the motor 15.
- the casing 2 has a substantially cylindrical shape centered on the central axis J1.
- the input unit 3, the first rotation assembly 4, a part of the second rotation assembly 6, the first internal gear 5, and the second internal gear 7 are housed.
- the second rotation assembly 6 side is the upper side and the first rotation assembly 4 side is the lower side along the central axis J1, but it is not necessary to make the direction of the central axis J1 coincide with the gravity direction. Absent.
- the gear ratio between the first rotary assembly 4 and the second rotary assembly 6 is appropriately set depending on the usage of the structure. Thereby, the power from the motor 15 can be decelerated and output from the output shaft 9. ..
- the input unit 3 includes a second input shaft 31 and an input gear 33.
- the second input shaft 31 is connected to the upper portion of the input shaft 8 and can rotate together with the input shaft 8 about the central axis J1.
- the second input shaft 31 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is smaller than the outer diameter of the input shaft 8.
- An input gear 33 is concentrically fixed to the outer peripheral portion of the second input shaft 31. Thereby, the input gear 33 can rotate around the central axis J1 together with the second input shaft 31.
- the method of fixing the input gear 33 to the second input shaft 31 is not particularly limited, and for example, a fixing method using a key and a key groove can be used.
- the second input shaft 31 and the input gear 33 are configured separately from each other in the illustrated configuration, the configuration is not limited to this, and may be configured by one gear member integrally molded, for example. .. As shown in FIG. 2, the input gear 33 is a spur gear having a plurality of teeth (hereinafter referred to as “outer peripheral teeth”) 331 protruding on the outer peripheral portion thereof. ..
- the first rotation assembly 4 includes a first rotation shaft member 41, a first planet carrier 42, a plurality of first planet shaft members 43, a plurality of first planet gears 44, and a sun. And a gear 45.
- the first rotating shaft member 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43 are supports that support the respective first planetary gears 44 and the sun gears 45.
- this support may further include another member.
- the first rotating shaft member 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43 are configured as one gear member by integral molding in the present embodiment, but the present invention is not limited to this and, for example, is It may be configured as a separate body, and may be configured as a connected body in which these separate bodies are connected. ..
- the first rotation shaft member 41 has a substantially cylindrical shape or a substantially columnar shape, and its central axis coincides with the central axis J1.
- the first rotation shaft member 41 is arranged above the second input shaft 31 of the input unit 3.
- a disk-shaped first planetary carrier 42 is arranged concentrically with the first rotating shaft member 41 below the first rotating shaft member 41. That is, the first rotation shaft member 41 is arranged so as to project upward at the center of the disk-shaped first planet carrier 42. ..
- first planetary shaft members 43 are arranged on the outer peripheral side of the first planetary carrier 42, that is, at positions eccentric from the central axis J1 (first rotating shaft member 41). ..
- the plurality of first planetary shaft members 43 have the same substantially cylindrical shape, and are arranged with their longitudinal directions oriented along the central axis J1 (hereinafter, also referred to as “along the central axis J1”). There is. Note that the number of first planetary shaft members 43 arranged is three in the configuration shown in FIG. 2, but is not limited to this, and may be two or four or more.
- the first planetary shaft members 43 are arranged at equal angular intervals around the central axis J1. For example, as shown in FIG.
- first planetary shaft J2 when the number of arranged first planetary shaft members 43 is three, these first planetary shaft members 43 are arranged at 120° intervals around the central axis J1.
- the central axis of each first planetary shaft member 43 is referred to as "first planetary shaft J2". ..
- a first planetary gear 44 is rotatably (rotatably) supported by each first planetary shaft member 43. As a result, each first planetary gear 44 can rotate about the first planetary axis J2, that is, can rotate on its axis. Further, each of the first planetary gears 44 can rotate, that is, revolve around the central axis J1. As described above, each of the first planetary gears 44 is a planetary gear (also referred to as “P gear”) that rotates about the first planetary axis J2 and revolves around the central axis J1. Each first planetary gear 44 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 441 protruding on the outer peripheral portion thereof. The first planetary gears 44 are arranged radially outside the input gear 33 along the circumferential direction thereof, and the outer peripheral teeth 441 mesh with the outer peripheral teeth 331 of the input gear 33. ..
- the sun gear 45 is concentrically fixed to the outer peripheral portion of the first rotating shaft member 41. Accordingly, the sun gear 45 can rotate around the central axis J1 together with the first rotation shaft member 41.
- the method of fixing the sun gear 45 to the first rotating shaft member 41 is not particularly limited, and for example, a fixing method using a key and a key groove can be used.
- the sun gear 45 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 451 protruding on the outer peripheral portion thereof.
- the first rotary shaft member 41 and the sun gear 45 are configured separately from each other in the illustrated configuration, the invention is not limited to this, and for example, they may be configured by one gear member integrally molded. Good. Therefore, the first rotating shaft member 41, the first planetary carrier 42, the plurality of first planetary shaft members 43, and the sun gear 45 may be configured as a single gear member formed by integral molding. Also called "gear".
- the first internal gear 5 has an annular shape with the central axis J1 as the central axis.
- the first internal gear 5 is arranged and fixed inside the casing 2 concentrically with the casing 2.
- This fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferred.
- the first internal gear 5 is an internal gear having a plurality of teeth (hereinafter referred to as “inner peripheral teeth”) 51 protruding on the inner peripheral portion thereof.
- the inner peripheral teeth 51 mesh with the outer peripheral teeth 441 of each first planetary gear 44 at different positions in the circumferential direction. ..
- the second rotation assembly 6 is arranged above the first rotation assembly.
- the second rotation assembly 6 includes a second rotation shaft member 61, a second planet carrier 62, a plurality of second planet shaft members 63, and a plurality of second planet gears 64.
- the second rotation shaft member 61, the second planet carrier 62, and the plurality of second planet shaft members 63 are supports that support the respective second planet shaft members 63.
- this support may further include another member.
- the second rotating shaft member 61, the second planetary carrier 62, and the plurality of second planetary shaft members 63 are configured as one gear member by integral molding in the present embodiment, but the present invention is not limited to this, and, for example, one another It may be configured as a separate body, and may be configured as a connected body in which these separate bodies are connected to each other.
- the second rotating shaft member 61 has a substantially cylindrical shape or a substantially columnar shape, and its central axis coincides with the central axis J1 like the first rotating shaft member 41.
- the second rotating shaft member 61 projects upward from the upper surface of the casing 2 to the outside of the casing 2.
- a disk-shaped second planet carrier 62 is arranged concentrically with the second rotating shaft member 61 below the second rotating shaft member 61. That is, the second rotation shaft member 61 is arranged so as to project upward at the center of the disk-shaped second planet carrier 62. ..
- a plurality of second planetary shaft members 63 are arranged below the second planetary carrier 62 at the outer peripheral side of the second planetary carrier 62, that is, at a position eccentric from the central axis J1 (second rotary shaft member 61). ..
- the plurality of second planetary shaft members 63 have the same substantially cylindrical shape, and are arranged with their longitudinal directions oriented along the central axis J1 (along the central axis J1).
- the number of the second planetary shaft members 63 arranged is three in the configuration shown in FIG. 2, but is not limited to this and may be two or four or more, and particularly the first planetary shaft member 43. It is preferable that the number is the same as the number of arrangements.
- the second planetary shaft members 63 are arranged at equal angular intervals around the central axis J1. For example, as shown in FIG. 2, when the number of the second planetary shaft members 63 arranged is three, these second planetary shaft members 63 are arranged at 120° intervals around the central axis J1. In the following description, the central axis of each second planetary shaft member 63 is referred to as "second planetary shaft J3". ..
- a second planetary gear 64 is rotatably (rotatably) supported on each second planetary shaft member 63.
- each second planetary gear 64 can rotate about the second planetary axis J3, that is, can rotate on its axis.
- each second planetary gear 64 can rotate about the central axis J1, that is, can revolve.
- each second planetary gear 64 is a planetary gear (also referred to as “P gear”) that rotates about the second planetary axis J3 and revolves around the central axis J1.
- Each second planetary gear 64 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 641 protruding on the outer peripheral portion thereof.
- the second planetary gears 64 are arranged radially outward of the sun gear 45 along the circumferential direction thereof, and the outer peripheral teeth 641 mesh with the outer peripheral teeth 451 of the sun gear 45. ..
- the second internal gear 7 has an annular shape with the central axis J1 as the central axis.
- the second internal gear 7 is arranged inside the casing 2, above the first internal gear 5, and apart from the first internal gear 5 in the axial direction. Further, the second internal gear 7 is arranged and fixed concentrically with the casing 2.
- This fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferred.
- the second internal gear 7 is an internal gear having a plurality of teeth (hereinafter referred to as “inner peripheral teeth”) 71 protruding on the inner peripheral portion thereof.
- the inner peripheral teeth 71 mesh with the outer peripheral teeth 641 of each second planetary gear 64 at different positions in the circumferential direction. ..
- the output shaft 9 is connected to the upper part of the second rotary shaft member 61 outside the casing 2 and can rotate around the central axis J1 together with the second rotary shaft member 61.
- the output shaft 9 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is the same as the outer diameter of the second rotating shaft member 61. ..
- the gear ratio between the first rotation assembly 4 and the second rotation assembly 6 is set within a predetermined range.
- the motor 15 operates, the power thereof is transmitted to the input gear 33 via the input shaft 8 and the second input shaft 31 in order.
- the input gear 33 rotates about the central axis J1 in the arrow ⁇ 1 direction.
- the rotational force of the input gear 33 is transmitted to each first planetary gear 44 that meshes with the input gear 33.
- each first planetary gear 44 can rotate in the direction of the arrow ⁇ 2 around the first planetary axis J2, that is, can rotate on its axis. ..
- each first planetary gear 44 also meshes with the first internal gear 5 fixed to the casing 2.
- each first planetary gear 44 can transmit its rotational force to the first internal gear 5 when the first planetary gear 44 rotates in the direction of the arrow ⁇ 2, and thus the arrow about the central axis J1. It can also rotate in the ⁇ 3 direction, that is, can revolve. By this revolution, the sun gear 45 can be rotated around the central axis J1 in the arrow ⁇ 1 direction. ..
- each second planetary gear 64 meshes with the sun gear 45.
- the sun gear 45 rotates in the direction of arrow ⁇ 1
- the rotational force is transmitted to each second planetary gear 64.
- each of the two planetary gears 64 can rotate in the direction of the arrow ⁇ 2 around the second planetary axis J3, that is, rotate on its axis. ..
- Each second planetary gear 64 also meshes with the second internal gear 7 fixed to the casing 2. As a result, as shown in FIG. 2, each second planetary gear 64 can transmit its rotational force to the second internal gear 7 when the second planetary gear 64 rotates in the direction of arrow ⁇ 2. It can rotate in the ⁇ 3 direction, that is, can revolve. By this revolution, the output shaft 9 can be rotated around the central axis J1 in the same direction as the arrow ⁇ 1 direction. ..
- the direction along the central axis J1 means a direction substantially parallel to the central axis J1 (axial direction), and does not need to be strictly parallel to the axial direction. That is, the first planetary axis J2 and the second planetary axis J3 may be parallel to the central axis J1 or may be inclined by a small angle with respect to the central axis J1. ..
- a gear that rotates (rotates and/or revolves) is manufactured by the gear manufacturing method of the present invention.
- the method for producing a gear of the present invention is a method for producing a gear using a resin composition containing a crystalline resin and a filler.
- the gear manufacturing method of the present embodiment comprises: [1] a first step of preparing a resin composition containing a crystalline resin and a filler; [2] a second step of melting the resin composition; [3] The molten resin composition is supplied to a mold set to a temperature lower by about 5 to 25° C.
- a resin composition containing a crystalline resin and a filler is prepared.
- the crystalline resin refers to a thermoplastic resin having a melting peak when performing a differential scanning calorimetry (DSC) according to JIS K 7121:2012 (Plastic transition temperature measuring method).
- the crystalline resin include polyamide, polyolefin, polyester, polyether, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyacetal (POM), polyimide, and fluoropolymer. Incidentally. These resins may be used alone or in combination of two or more. Of these, polyamide is preferable as the crystalline resin. The use of polyamide can improve the mechanical strength, rigidity and wear resistance of the gear. ..
- Polyamides are generally classified into aliphatic polyamides (non-aromatic polyamides), semi-aromatic polyamides and wholly aromatic polyamides, but semi-aromatic polyamides are preferred.
- Semi-aromatic polyamides are preferable because they are easily melted and easily crystallized.
- the semi-aromatic polyamide is a copolymer of dicarboxylic acid and diamine, one of which has an aromatic group and the other has an aliphatic group. ..
- aliphatic dicarboxylic acid examples include HOOC-(CH 2 ) n- COOH (n is 0 to 12), dimethylmalonic acid, 3,3-diethylsuccinic acid, 2,2-dimethylglutaric acid, 2-methyladipine Acids, chain-like aliphatic dicarboxylic acids such as trimethyladipic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid And alicyclic dicarboxylic acids such as cyclodecane dicarboxylic acid.
- examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenic acid and 4,4′-biphenyl.
- examples thereof include dicarboxylic acid, diphenylmethane-4,4'-dicarboxylic acid and diphenylsulfone-4,4'-dicarboxylic acid.
- aliphatic diamine examples include linear aliphatic diamines such as NH 2 —(CH 2 ) m —NH 2 (m is 0 to 12), 1-butyl-1,2-ethanediamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 2-methyl-1,5-pentanediamine, 3- Methyl-1,5-pentanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4-dimethyl-1,6-hexanediamine, 2,2-dimethyl-1,6-hexanediamine, 1, Branching such as 3-dimethyl-1,8-octanediamine, 2,4-dimethyl-1,8-octanediamine, 2,2-dimethyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine
- alicyclic diamine such as aliphatic diamine
- aromatic diamine for example, p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4 , 4'-diaminodiphenyl ether and the like.
- semi-aromatic polyamide examples include polyamide MXD6 (PAMXD6), polyamide 9T (PA9T), polyamide 4T (PA4T), polyamide 6T (PA6T), polyamide 10T (PA10T), and the like.
- examples of other polyamides include polyamide 6 (PA6), polyamide 11 (PA11), polyamide 12 (PA12) polyamide 66 (PA66), polyamide 610 (PA610), polyamide 612 (PA612), polyamide 410 (PA410). Etc. ..
- polystyrene resin examples include polyethylene (PE) and polypropylene (PP).
- polyesters include polyethylene terephthalate (PET), polybutadiene terephthalate (PBT), polylactic acid (PLA), and the like.
- polyether examples include polyetheretherketone (PEEK), polyetherketone (PEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), and the like.
- the melting point of the crystalline resin depends on its type, but is preferably about 165 to 390°C, more preferably about 175 to 375°C, and even more preferably about 185 to 360°C. ..
- the filler is mixed with the crystalline resin for the purpose of improving the moldability and releasability of the resin composition, or the durability (mechanical strength, rigidity, wear resistance) of the obtained gear. It is a component. Therefore, the filler is appropriately selected depending on the purpose and is not particularly limited.
- the filler includes an inorganic filler and an organic filler, but for the above purpose, it is preferable to use the inorganic filler.
- the inorganic fillers include fibrous inorganic fillers, particle (powder) inorganic fillers, non-fibrous inorganic fillers such as flaky inorganic fillers, and the like. ..
- fibrous inorganic filler examples include glass fiber, carbon fiber, asbestos fiber, inorganic whiskers (potassium titanate fiber, zinc oxide fiber, magnesium oxide fiber, aluminum oxide fiber, calcium sulfate fiber, silicon carbide fiber, silicon nitride fiber). , Silicon nitride fibers, mullite fibers, magnesium borate fibers, titanium boride fibers, etc.) and the like.
- the particulate inorganic filler include silica powder, quartz powder, glass beads, kaolin, clay, diatomaceous earth, wollastonite and the like.
- the plate-like inorganic filler examples include mica, talc, various metal pieces, and the like.
- inorganic fillers are appropriately selected and used according to the size of the gear.
- preferably inorganic whiskers are used, and more preferably potassium titanate fibers are used.
- the inorganic whisker has an aspect ratio of 10 or more, but its average fiber length is almost equal to the diameter of glass fiber, carbon fiber, etc., and has an extremely fine shape. For this reason, when manufacturing a micro gear having a module of 0.2 mm or less, it is possible to improve characteristics such as mechanical strength of the gear, and when the resin composition is molded, protrusions are formed on the gate portion of the molded body.
- the amount of the filler contained in the resin composition is not particularly limited, but is preferably about 10 to 40% by mass, more preferably about 20 to 30% by mass.
- a resin composition is obtained by mixing these crystalline resins and a filler.
- Various mixers such as a blender, a kneader, a roll, and an extruder can be used for this mixing.
- the obtained resin composition is melted by heating it to a temperature higher than the melting point of the crystalline resin.
- the heating temperature is preferably about 5 to 20° C. higher than the melting point of the binder resin, and more preferably about 5 to 15° C. higher. ..
- the resin composition in a molten state is supplied to a molding die by, for example, an injection molding method to obtain a molded body having a shape corresponding to the gear to be manufactured.
- the present invention is characterized in that the temperature of the molding die is set to a predetermined temperature. Specifically, the temperature of the mold is set to a temperature lower by about 5 to 25° C. than the glass transition temperature (Tg) of the crystalline resin.
- Tg glass transition temperature
- the temperature of the mold is slightly lower than the melting point of the binder resin (much higher than the Tg of the crystalline resin. High temperature).
- the resin composition is likely to be stretched, resulting in defective gate disconnection, resulting in a phenomenon in which unnecessary protrusions are formed on the molded body, and the edge of the molded body. It was also found that the shape of the part (particularly, the shape of the edge of the tooth tip) becomes unstable. Further, since the temperature is relatively high (about 130 to 150° C.), it takes time (about 30 to 40 seconds) until the resin composition is solidified, including the crystallization time of the crystallization resin. It took a long time to mold the molded body. ..
- the temperature of the mold is set to a temperature lower by about 5 to 25° C. than the glass transition temperature (Tg) of the crystalline resin. Since the preset temperature is sufficiently lower than the preset temperature of the conventional mold, when the resin composition is supplied to the mold, the resin composition is rapidly solidified into a molded body. For this reason, the resin composition is less likely to expand, the gate breakage is good, and the shape (contour shape) of the edge portion of the molded body is also stabilized. Further, the releasability of the molded body from the molding die is also enhanced. From the above, according to the present invention, the time required for forming the molded body can be sufficiently shortened (about 10 to 15 seconds) as compared with the conventional case.
- the mold temperature to be set may be a temperature about 5 to 25° C. lower than the Tg of the crystalline resin, but a temperature about 10 to 20° C. is more preferable. By setting the molding die at such a temperature, the above effect can be further improved. At this point, the crystallization of the crystallized resin has not substantially progressed. ..
- the molded body is taken out of the molding die and heat-treated (annealed) at a temperature higher than the crystallization temperature of the crystalline resin to obtain a gear.
- the crystallization temperature refers to an exothermic peak temperature that accompanies crystallization acceleration of the crystallized resin when the differential scanning calorimetry is performed on the crystalline resin under a temperature rising condition of 10° C./min.
- the temperature of the heat treatment may be higher than the crystallization temperature of the crystalline resin, but is 5 to 25° C.
- the temperature is preferably, and more preferably about 10 to 20° C. higher than the actual use temperature.
- the actual operating temperature is preferably about 110 to 140°C, more preferably about 120 to 130°C. ..
- Examples of the method of this heat treatment include a method of heating with a heater in a heating furnace, a method of irradiating infrared rays, a method of blowing hot air, and the like.
- the heating furnace may be a batch furnace or a continuous furnace.
- the pressure of the atmosphere of the heat treatment may be any of reduced pressure, normal pressure and increased pressure.
- the heat treatment time is not particularly limited, but is preferably about 30 to 120 seconds, more preferably about 45 to 100 seconds.
- the gear is manufactured through the above steps. ..
- the gear module to be manufactured is not particularly limited, but is preferably 0.2 mm or less, and more preferably about 0.1 to 0.2 mm. According to the gear manufacturing method of the present invention, even such a minute gear can be manufactured accurately and in a short time (high yield). In addition, since the obtained resin has the crystalline resin sufficiently crystallized therein, the gear has excellent properties such as mechanical strength, rigidity, and abrasion resistance, and high shape stability. Further, it is preferable that the micro gear has a reference circle pitch diameter of about 1.2 to 1.7 mm, a number of teeth of about 8 to 18 and a tooth thickness of about 0.15 to 0.32 mm.
- the gear manufactured by the gear manufacturing method of the present invention is preferably used as a gear that rotates (rotates and/or revolves). Therefore, in the speed reducer 1 shown in FIG. 1 and the like, at least one of the input gear 33, the C gear (gear member), and the plurality of P gears (the first planetary gear 44 and the second planetary gear 64) is replaced by the main gear. It is preferable that the gear is manufactured by the gear manufacturing method of the invention.
- the input gear 33 arranged close to the motor 15 is easily affected by the heat generation of the motor 15, it may be made of a gear manufactured using a resin composition containing a semi-aromatic polyimide. preferable. ..
- the gear manufacturing method and the speed reducer of the present invention have been described above based on the preferred embodiments, the present invention is not limited thereto.
- the gears obtained by the gear manufacturing method of the present invention include, for example, parts for industrial machines such as small cameras and robot hands, as well as parts for automobiles, parts for bicycles, parts for railway vehicles, parts for ships, and aircraft.
- parts for transportation equipment such as parts for space transportation equipment, parts for personal computers, parts for electronic equipment such as parts for mobile terminals, parts for electric equipment such as refrigerators, washing machines, air conditioners, parts for plants Used for parts for watches, etc.
- the obtained molded body was heat-treated in a heating furnace at 150° C. for 60 seconds to obtain a gear.
- the target gear had a reference circle pitch diameter of 1.3 mm, a module of 0.2 mm, 14 teeth, and a tooth thickness of 0.4 mm. ..
- Example 1 Using the gears obtained in Example 1 and Comparative Example 1 as the input gear, the speed reducer shown in FIG. 1 and the like was manufactured. Then, the operation of fixing the other end of the string having a 200 g weight attached to one end to the output shaft of the reduction gear and winding the string around the output shaft was repeated. As a result, the speed reducer using the gear of Example 1 could perform the winding operation 300,000 times without any problem. On the other hand, in the speed reducer using the gear of Comparative Example 1, the input gear started to idle after the winding operation of 150,000 times. When the speed reducer was disassembled and the shape of the input gear was confirmed, the teeth were bent and deformed.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Gears, Cams (AREA)
Abstract
Provided are a gear manufacturing method with which a gear having superior mechanical strength and shape stability can be manufactured with high yield, and a reduction gear comprising a gear manufactured by said gear manufacturing method. In this gear manufacturing method, a gear is manufactured using a resin composition containing a crystalline resin and a filler. The gear manufacturing method comprises: a step for melting the resin composition; a step for supplying the resin composition in a molten state to a molding die set to a temperature 5-25°C lower than the glass transition temperature of the crystalline resin so as to obtain a molded body having a shape corresponding to the gear; and a step for heat treating the molded body at a temperature higher than the crystallization temperature of the crystalline resin so as to obtain the gear.
Description
本発明は、ギアの製造方法および減速機に関する。
The present invention relates to a gear manufacturing method and a speed reducer.
従来より、遊星歯車機構を用いた減速装置が知られている(例えば、特許文献1参照)。この減速装置では、遊星ギアを金属射出成形(MIM)法で製造し、出力ギアおよび固定ギアを、添加剤が含有される樹脂組成物を用いて製造している。しかしながら、MIM法でギアを製造する場合、得られるギアの寸法精度が低く、歩留まりを高めることが困難である。一方、樹脂組成物を用いてギアを製造する場合、添加剤としてガラス繊維や炭素繊維を混合すると、ギアのサイズや製造条件等によっては、樹脂組成物の充填不足や、ゲート切れの悪化という問題が生じることがある。
BACKGROUND ART Conventionally, a speed reducer using a planetary gear mechanism has been known (for example, see Patent Document 1). In this speed reducer, the planetary gear is manufactured by a metal injection molding (MIM) method, and the output gear and the fixed gear are manufactured by using a resin composition containing an additive. However, when the gear is manufactured by the MIM method, the dimensional accuracy of the obtained gear is low, and it is difficult to increase the yield. On the other hand, in the case of manufacturing a gear using a resin composition, if glass fibers or carbon fibers are mixed as an additive, depending on the size of the gear, manufacturing conditions, etc., insufficient filling of the resin composition or deterioration of gate disconnection may occur. May occur.
本発明は、上記課題に鑑みなされたものであり、その目的は、機械的強度および形状安定性に優れるギアを高い歩留まりで製造し得るギアの製造方法、およびかかるギアの製造方法により製造されたギアを備える減速機を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to manufacture a gear that is excellent in mechanical strength and shape stability at a high yield, and a method for manufacturing such a gear. It is to provide a speed reducer including a gear.
本願の例示的な発明は、結晶性樹脂と充填剤とを含有する樹脂組成物を用いてギアを製造する方法であって、前記樹脂組成物を溶融する工程と、前記溶融状態の樹脂組成物を、前記結晶性樹脂のガラス転移温度より5~25℃低い温度に設定した成形型に供給して、前記ギアに対応する形状を有する成形体を得る工程と、前記成形体を、前記結晶性樹脂の結晶化温度より高い温度で熱処理して、前記ギアを得る工程とを有することを特徴とするギアの製造方法である。
An exemplary invention of the present application is a method for producing a gear using a resin composition containing a crystalline resin and a filler, the step of melting the resin composition, and the resin composition in the molten state. To a molding die set at a temperature lower by 5 to 25° C. than the glass transition temperature of the crystalline resin to obtain a molded body having a shape corresponding to the gear, and A heat treatment at a temperature higher than the crystallization temperature of the resin to obtain the gear. ‥
また、本願の他の例示的な発明は、中心軸を有するケーシングと、前記ケーシング内に、互いに前記中心軸に沿う方向に離れて配置された第1インターナルギアおよび第2インターナルギアと、前記ケーシング内に配置され、前記中心軸を中心として回転する入力ギア、前記入力ギアとの間で回転力を伝達する第1回転組立体、および第1回転組立体との間で回転力を減速して伝達する第2回転組立体とを有する減速機であって、前記第1回転組立体は、前記第1インターナルギアと前記入力ギアとの間で前記入力ギアの周方向に配置され、外周歯が前記第1インターナルギアの内周歯と前記入力ギアの外周歯とに噛み合う複数の第1遊星ギアと、前記複数の第1遊星ギアのそれぞれを前記中心軸に沿う方向を向く第1遊星軸を中心として回転可能に支持する第1遊星キャリアと、前記第1遊星キャリアに接続され、前記中心軸が中心に位置する第1回転軸部と、前記中心軸を中心として前記第1回転軸部と共に回転する太陽ギアとを備え、前記第1遊星キャリアと前記第1回転軸部と前記太陽ギアとが単一のギア部材であり、前記第2回転組立体は、前記第2インターナルギアと前記太陽ギアとの間で前記太陽ギアの周方向に配置され、外周歯が前記第2インターナルギアの内周歯と前記太陽ギアの外周歯とに噛み合う複数の第2遊星ギアと、前記複数の第2遊星ギアのそれぞれを前記中心軸に沿う方向を向く第2遊星軸を中心として回転可能に支持する第2遊星キャリアと、前記第2遊星キャリアに接続され、前記中心軸が中心に位置する第2回転軸部とを備え、前記ギア部材、前記複数の第1遊星ギア、前記複数の第2遊星ギアおよび前記入力ギアのうちの少なくとも1つを請求項1~7のいずれか1項に記載のギアの製造方法により得られたギアで構成することを特徴とする減速機である。
Another exemplary invention of the present application is a casing having a central axis, a first internal gear and a second internal gear that are arranged in the casing and are separated from each other in a direction along the central axis, and the casing. An input gear that is disposed inside and rotates about the central axis, a first rotation assembly that transmits a rotation force to and from the input gear, and a rotation force is reduced between the first rotation assembly and the first rotation assembly. A second reduction gear assembly for transmitting, wherein the first rotation assembly is arranged in a circumferential direction of the input gear between the first internal gear and the input gear, and has outer teeth. A plurality of first planetary gears meshing with the inner peripheral teeth of the first internal gear and the outer peripheral teeth of the input gear; and a first planetary shaft facing each of the plurality of first planetary gears in a direction along the central axis. A first planetary carrier that is rotatably supported about the center, a first rotating shaft part that is connected to the first planetary carrier, and has the central axis at the center, and the first rotating shaft part about the central axis. A rotating sun gear, wherein the first planet carrier, the first rotating shaft portion and the sun gear are a single gear member, and the second rotating assembly comprises the second internal gear and the sun. A plurality of second planetary gears, which are arranged in the circumferential direction of the sun gear between the gears and have outer peripheral teeth meshing with inner peripheral teeth of the second internal gear and outer peripheral teeth of the sun gear; A second planet carrier that rotatably supports each of the planetary gears around a second planet shaft that is oriented along the central axis, and a second planet carrier that is connected to the second planet carrier and that has the central shaft at the center. The rotating shaft portion, and at least one of the gear member, the plurality of first planetary gears, the plurality of second planetary gears, and the input gear, according to any one of claims 1 to 7. It is a speed reducer comprising a gear obtained by a gear manufacturing method.
本願の例示的な発明によれば、機械的強度および形状安定性に優れるギアを製造することができる。
According to the exemplary invention of the present application, it is possible to manufacture a gear having excellent mechanical strength and shape stability.
以下、本発明に係る実施形態について添付図面を参照して詳細に説明する。図1は、本発明の一実施形態に係る小型減速機の縦断面図である。図2は、図1中のA-A線断面図およびB-B線断面図(符号についてはかっこ書きで記載)である。なお、図1では、小型減速機1(以降において単に減速機ともいう)の中心軸J1を含む面による断面を示す。また、以下では、説明の都合上、図1中の上側を「上」または「上方」と言い、下側を「下」または「下方」と言う。また、以下の説明では、中心軸J1が向く方向である上下方向を「軸方向」とも呼ぶ。また、以下の説明では、中心軸J1を中心とする周方向を単に「周方向」といい、中心軸J1を中心とする径方向を単に「径方向」という。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a vertical cross-sectional view of a small reducer according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA and the line BB in FIG. 1 (reference numerals are shown in parentheses). It should be noted that FIG. 1 shows a cross section of a plane including the central axis J1 of the small reduction gear 1 (hereinafter also simply referred to as a reduction gear). Further, hereinafter, for convenience of description, the upper side in FIG. 1 is referred to as “upper” or “upper”, and the lower side is referred to as “lower” or “lower”. Further, in the following description, the up-down direction, which is the direction in which the central axis J1 faces, is also referred to as the “axial direction”. Further, in the following description, the circumferential direction centering on the central axis J1 is simply referred to as “circumferential direction”, and the radial direction centering on the central axis J1 is simply referred to as “radial direction”. ‥
図1に示すように、減速機1は、ケーシング2と、入力部3と、第1回転組立体4と、第2回転組立体6と、第1インターナルギア5と、第2インターナルギア7と、入力軸8と、出力軸9と、入力軸8に直結されたモータ15とを含む。減速機1は、第1回転組立体4と第2回転組立体6との2段構成の遊星ギア機構を有し、例えば外形寸法が幅5mm、奥行き5mm、高さ20mmの容積以下に形成されている。
As shown in FIG. 1, the speed reducer 1 includes a casing 2, an input unit 3, a first rotation assembly 4, a second rotation assembly 6, a first internal gear 5, and a second internal gear 7. , An input shaft 8, an output shaft 9, and a motor 15 directly connected to the input shaft 8. The speed reducer 1 has a planetary gear mechanism having a two-stage structure including a first rotation assembly 4 and a second rotation assembly 6, and is formed to have an outer dimension of, for example, a width of 5 mm, a depth of 5 mm, and a height of 20 mm or less. ing. ‥
<モータ> モータ15は、減速機1が搭載される構造体(図示せず)の駆動源、すなわち、動力源となる。なお、構造体は、特に限定されず、例えば小型カメラが挙げられる。また、モータ15は、例えば、構造体の使用用途に応じて、各種のモータが適宜選択される。また、入力軸8は、中心軸J1を回転中心として回転駆動するモータ15のモータ軸でもある。
<Motor> The motor 15 serves as a drive source of a structure (not shown) on which the speed reducer 1 is mounted, that is, a power source. Note that the structure is not particularly limited, and a small camera can be given as an example. Further, as the motor 15, for example, various motors are appropriately selected according to the usage of the structure. The input shaft 8 is also a motor shaft of a motor 15 that is rotationally driven about the central axis J1. ‥
<ケーシング> モータ15の上側には、ケーシング2が配置、固定されている。ケーシング2は、中心軸J1を中心とする略円筒状をなす。ケーシング2の内部には、入力部3、第1回転組立体4、第2回転組立体6の一部、第1インターナルギア5、および第2インターナルギア7が収容される。なお、図1中では、中心軸J1に沿って第2回転組立体6側を上側、第1回転組立体4側を下側としているが、中心軸J1の向きを重力方向と一致させる必要はない。また、第1回転組立体4と第2回転組立体6とのギア比は、構造体の使用用途により適宜設定される。これにより、モータ15からの動力を減速して、出力軸9から出力することができる。
<Casing> The casing 2 is arranged and fixed on the upper side of the motor 15. The casing 2 has a substantially cylindrical shape centered on the central axis J1. Inside the casing 2, the input unit 3, the first rotation assembly 4, a part of the second rotation assembly 6, the first internal gear 5, and the second internal gear 7 are housed. In FIG. 1, the second rotation assembly 6 side is the upper side and the first rotation assembly 4 side is the lower side along the central axis J1, but it is not necessary to make the direction of the central axis J1 coincide with the gravity direction. Absent. Further, the gear ratio between the first rotary assembly 4 and the second rotary assembly 6 is appropriately set depending on the usage of the structure. Thereby, the power from the motor 15 can be decelerated and output from the output shaft 9. ‥
<入力部> 入力部3は、第2入力軸31と、入力ギア33とを含む。第2入力軸31は、入力軸8の上部に連結され、入力軸8とともに中心軸J1回りに回転することができる。第2入力軸31は、略円筒状または略円柱状をなし、その外径が入力軸8の外径よりも小さい。第2入力軸31の外周部には、入力ギア33が同心的に固定されている。これにより、入力ギア33は、第2入力軸31とともに中心軸J1回りに回転することができる。第2入力軸31に対する入力ギア33の固定方法は、特に限定されず、例えば、キーとキー溝とを用いた固定方法を用いることができる。また、第2入力軸31と入力ギア33とは、図示の構成では互いに別体で構成されているが、これに限定されず、例えば、一体成形による1つのギア部材で構成されていてもよい。図2に示すように、入力ギア33は、その外周部に突出した複数の歯(以下、「外周歯」という)331を有する平歯車である。
<Input Unit> The input unit 3 includes a second input shaft 31 and an input gear 33. The second input shaft 31 is connected to the upper portion of the input shaft 8 and can rotate together with the input shaft 8 about the central axis J1. The second input shaft 31 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is smaller than the outer diameter of the input shaft 8. An input gear 33 is concentrically fixed to the outer peripheral portion of the second input shaft 31. Thereby, the input gear 33 can rotate around the central axis J1 together with the second input shaft 31. The method of fixing the input gear 33 to the second input shaft 31 is not particularly limited, and for example, a fixing method using a key and a key groove can be used. Further, although the second input shaft 31 and the input gear 33 are configured separately from each other in the illustrated configuration, the configuration is not limited to this, and may be configured by one gear member integrally molded, for example. .. As shown in FIG. 2, the input gear 33 is a spur gear having a plurality of teeth (hereinafter referred to as “outer peripheral teeth”) 331 protruding on the outer peripheral portion thereof. ‥
<第1回転組立体> 第1回転組立体4は、第1回転軸部材41と、第1遊星キャリア42と、複数の第1遊星軸部材43と、複数の第1遊星ギア44と、太陽ギア45とを含む。第1回転組立体4では、第1回転軸部材41、第1遊星キャリア42および複数の第1遊星軸部材43は、各第1遊星ギア44および太陽ギア45を支持する支持体である。この支持体は、第1回転軸部材41、第1遊星キャリア42および複数の第1遊星軸部材43の他に、さらに別の部材を含んでもよい。第1回転軸部材41、第1遊星キャリア42および複数の第1遊星軸部材43は、本実施形態では一体成形により1つのギア部材で構成されているが、これに限定されず、例えば、互いに別体で構成し、これら別体同士が連結された連結体で構成されていてもよい。
<First Rotation Assembly> The first rotation assembly 4 includes a first rotation shaft member 41, a first planet carrier 42, a plurality of first planet shaft members 43, a plurality of first planet gears 44, and a sun. And a gear 45. In the first rotating assembly 4, the first rotating shaft member 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43 are supports that support the respective first planetary gears 44 and the sun gears 45. In addition to the first rotating shaft member 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43, this support may further include another member. The first rotating shaft member 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43 are configured as one gear member by integral molding in the present embodiment, but the present invention is not limited to this and, for example, is It may be configured as a separate body, and may be configured as a connected body in which these separate bodies are connected. ‥
第1回転軸部材41は、略円筒状または略円柱状をなし、その中心軸が中心軸J1に一致している。また、第1回転軸部材41は、入力部3の第2入力軸31よりも上側に配置されている。第1回転軸部材41の下部には、円盤状をなす第1遊星キャリア42が第1回転軸部材41と同心的に配置されている。すなわち、円盤状をなす第1遊星キャリア42の中心部には、第1回転軸部材41が上方に向かって突出して配置されている。
The first rotation shaft member 41 has a substantially cylindrical shape or a substantially columnar shape, and its central axis coincides with the central axis J1. The first rotation shaft member 41 is arranged above the second input shaft 31 of the input unit 3. A disk-shaped first planetary carrier 42 is arranged concentrically with the first rotating shaft member 41 below the first rotating shaft member 41. That is, the first rotation shaft member 41 is arranged so as to project upward at the center of the disk-shaped first planet carrier 42. ‥
第1遊星キャリア42の下部には、第1遊星キャリア42の外周側、すなわち、中心軸J1(第1回転軸部材41)から偏心した位置に複数の第1遊星軸部材43が配置されている。複数の第1遊星軸部材43は、同様の略円柱状をなし、その長手方向が中心軸J1に沿う方向を向いて(以下、「中心軸J1に沿って」とも記載する。)配置されている。なお、第1遊星軸部材43の配置数は、図2に示す構成では3つであるが、これに限定されず、2つまたは4つ以上であってもよい。また、これらの第1遊星軸部材43は、中心軸J1周りに等角度間隔に配置されている。例えば、図2に示すように、第1遊星軸部材43の配置数が3つの場合、これらの第1遊星軸部材43は、中心軸J1周りに120°間隔に配置されている。以下の説明では、各第1遊星軸部材43の中心軸を「第1遊星軸J2」と呼ぶ。
Below the first planetary carrier 42, a plurality of first planetary shaft members 43 are arranged on the outer peripheral side of the first planetary carrier 42, that is, at positions eccentric from the central axis J1 (first rotating shaft member 41). .. The plurality of first planetary shaft members 43 have the same substantially cylindrical shape, and are arranged with their longitudinal directions oriented along the central axis J1 (hereinafter, also referred to as “along the central axis J1”). There is. Note that the number of first planetary shaft members 43 arranged is three in the configuration shown in FIG. 2, but is not limited to this, and may be two or four or more. The first planetary shaft members 43 are arranged at equal angular intervals around the central axis J1. For example, as shown in FIG. 2, when the number of arranged first planetary shaft members 43 is three, these first planetary shaft members 43 are arranged at 120° intervals around the central axis J1. In the following description, the central axis of each first planetary shaft member 43 is referred to as "first planetary shaft J2". ‥
各第1遊星軸部材43には、第1遊星ギア44が回転可能(回転自在)に支持されている。これにより、各第1遊星ギア44は、第1遊星軸J2を回転中心として回転すること、すなわち、自転することができる。また、各第1遊星ギア44は、中心軸J1を回転中心として回転すること、すなわち、公転することができる。このように、各第1遊星ギア44は、第1遊星軸J2回りに自転し、中心軸J1回りに公転する遊星ギア(「Pギア」とも呼ぶ。)となっている。各第1遊星ギア44は、その外周部に突出した複数の歯(以下、「外周歯」という)441を有する平歯車である。そして、各第1遊星ギア44は、入力ギア33の径方向外側に、その周方向に沿って配置され、外周歯441が入力ギア33の外周歯331に噛み合っている。
A first planetary gear 44 is rotatably (rotatably) supported by each first planetary shaft member 43. As a result, each first planetary gear 44 can rotate about the first planetary axis J2, that is, can rotate on its axis. Further, each of the first planetary gears 44 can rotate, that is, revolve around the central axis J1. As described above, each of the first planetary gears 44 is a planetary gear (also referred to as “P gear”) that rotates about the first planetary axis J2 and revolves around the central axis J1. Each first planetary gear 44 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 441 protruding on the outer peripheral portion thereof. The first planetary gears 44 are arranged radially outside the input gear 33 along the circumferential direction thereof, and the outer peripheral teeth 441 mesh with the outer peripheral teeth 331 of the input gear 33. ‥
第1回転軸部材41の外周部には、太陽ギア45が同心的に固定されている。これにより、太陽ギア45は、第1回転軸部材41とともに中心軸J1回りに回転することができる。なお、第1回転軸部材41に対する太陽ギア45の固定方法は、特に限定されず、例えば、キーとキー溝とを用いた固定方法を用いることができる。太陽ギア45は、その外周部に突出した複数の歯(以下、「外周歯」という)451を有する平歯車である。また、第1回転軸部材41と太陽ギア45とは、図示の構成では互いに別体で構成されているが、これに限定されず、例えば、一体成形による1つのギア部材で構成されていてもよい。したがって、第1回転軸部材41、第1遊星キャリア42、複数の第1遊星軸部材43および太陽ギア45は、一体成形による1つのギア部材で構成されていてもよく、かかるギア部材を「Cギア」とも呼ぶ。
The sun gear 45 is concentrically fixed to the outer peripheral portion of the first rotating shaft member 41. Accordingly, the sun gear 45 can rotate around the central axis J1 together with the first rotation shaft member 41. The method of fixing the sun gear 45 to the first rotating shaft member 41 is not particularly limited, and for example, a fixing method using a key and a key groove can be used. The sun gear 45 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 451 protruding on the outer peripheral portion thereof. Further, although the first rotary shaft member 41 and the sun gear 45 are configured separately from each other in the illustrated configuration, the invention is not limited to this, and for example, they may be configured by one gear member integrally molded. Good. Therefore, the first rotating shaft member 41, the first planetary carrier 42, the plurality of first planetary shaft members 43, and the sun gear 45 may be configured as a single gear member formed by integral molding. Also called "gear".
<第1インターナルギア> 第1インターナルギア5は、中心軸J1を中心軸とする環状をなす。第1インターナルギア5は、ケーシング2の内側にケーシング2と同心的に配置、固定されている。この固定方法は、特に限定されず、例えば、嵌め合いによる固定方法を用いることができる。この場合、中間嵌めが好ましい。図2に示すように、第1インターナルギア5は、その内周部に突出した複数の歯(以下、「内周歯」という)51を有する内歯車である。内周歯51は、その周方向の異なる位置で、各第1遊星ギア44の外周歯441と噛み合っている。
<First Internal Gear> The first internal gear 5 has an annular shape with the central axis J1 as the central axis. The first internal gear 5 is arranged and fixed inside the casing 2 concentrically with the casing 2. This fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferred. As shown in FIG. 2, the first internal gear 5 is an internal gear having a plurality of teeth (hereinafter referred to as “inner peripheral teeth”) 51 protruding on the inner peripheral portion thereof. The inner peripheral teeth 51 mesh with the outer peripheral teeth 441 of each first planetary gear 44 at different positions in the circumferential direction. ‥
<第2回転組立体> 第2回転組立体6は、第1回転組立体の上側に配置されている。第2回転組立体6は、第2回転軸部材61と、第2遊星キャリア62と、複数の第2遊星軸部材63と、複数の第2遊星ギア64とを含む。第2回転組立体6では、第2回転軸部材61と、第2遊星キャリア62および複数の第2遊星軸部材63は、各第2遊星軸部材63を支持する支持体である。この支持体は、第2回転軸部材61と、第2遊星キャリア62および複数の第2遊星軸部材63の他に、さらに別の部材を含んでもよい。第2回転軸部材61、第2遊星キャリア62および複数の第2遊星軸部材63は、本実施形態では一体成形により1つのギア部材で構成されているが、これに限定されず、例えば、互いに別体で構成し、これら別体同士が連結された連結体で構成されていてもよい。
<Second Rotation Assembly> The second rotation assembly 6 is arranged above the first rotation assembly. The second rotation assembly 6 includes a second rotation shaft member 61, a second planet carrier 62, a plurality of second planet shaft members 63, and a plurality of second planet gears 64. In the second rotation assembly 6, the second rotation shaft member 61, the second planet carrier 62, and the plurality of second planet shaft members 63 are supports that support the respective second planet shaft members 63. In addition to the second rotation shaft member 61, the second planet carrier 62 and the plurality of second planet shaft members 63, this support may further include another member. The second rotating shaft member 61, the second planetary carrier 62, and the plurality of second planetary shaft members 63 are configured as one gear member by integral molding in the present embodiment, but the present invention is not limited to this, and, for example, one another It may be configured as a separate body, and may be configured as a connected body in which these separate bodies are connected to each other.
第2回転軸部材61は、略円筒状または略円柱状をなし、第1回転軸部材41と同様にその中心軸が中心軸J1に一致している。また、第2回転軸部材61は、ケーシング2の上面から上方に向かってケーシング2の外側へと突出する。第2回転軸部材61の下部には、円盤状をなす第2遊星キャリア62が第2回転軸部材61と同心的に配置されている。すなわち、円盤状をなす第2遊星キャリア62の中心部には、第2回転軸部材61が上方に向かって突出して配置されている。
The second rotating shaft member 61 has a substantially cylindrical shape or a substantially columnar shape, and its central axis coincides with the central axis J1 like the first rotating shaft member 41. The second rotating shaft member 61 projects upward from the upper surface of the casing 2 to the outside of the casing 2. A disk-shaped second planet carrier 62 is arranged concentrically with the second rotating shaft member 61 below the second rotating shaft member 61. That is, the second rotation shaft member 61 is arranged so as to project upward at the center of the disk-shaped second planet carrier 62. ‥
第2遊星キャリア62の下部には、第2遊星キャリア62の外周側、すなわち、中心軸J1(第2回転軸部材61)から偏心した位置に複数の第2遊星軸部材63が配置されている。複数の第2遊星軸部材63は、同様の略円柱状をなし、その長手方向が中心軸J1に沿う方向を向いて(中心軸J1に沿って)配置されている。なお、第2遊星軸部材63の配置数は、図2に示す構成では3つであるが、これに限定されず、2つまたは4つ以上であってもよく、特に第1遊星軸部材43の配置数と同数であるのが好ましい。また、これらの第2遊星軸部材63は、中心軸J1周りに等角度間隔で配置されている。例えば、図2に示すように、第2遊星軸部材63の配置数が3つの場合、これらの第2遊星軸部材63は、中心軸J1周りに120°間隔で配置される。以下の説明では、各第2遊星軸部材63の中心軸を「第2遊星軸J3」と呼ぶ。
A plurality of second planetary shaft members 63 are arranged below the second planetary carrier 62 at the outer peripheral side of the second planetary carrier 62, that is, at a position eccentric from the central axis J1 (second rotary shaft member 61). .. The plurality of second planetary shaft members 63 have the same substantially cylindrical shape, and are arranged with their longitudinal directions oriented along the central axis J1 (along the central axis J1). The number of the second planetary shaft members 63 arranged is three in the configuration shown in FIG. 2, but is not limited to this and may be two or four or more, and particularly the first planetary shaft member 43. It is preferable that the number is the same as the number of arrangements. The second planetary shaft members 63 are arranged at equal angular intervals around the central axis J1. For example, as shown in FIG. 2, when the number of the second planetary shaft members 63 arranged is three, these second planetary shaft members 63 are arranged at 120° intervals around the central axis J1. In the following description, the central axis of each second planetary shaft member 63 is referred to as "second planetary shaft J3". ‥
各第2遊星軸部材63には、第2遊星ギア64が回転可能(回転自在)に支持されている。これにより、各第2遊星ギア64は、第2遊星軸J3を回転中心として回転すること、すなわち、自転することができる。また、各第2遊星ギア64は、中心軸J1を回転中心として回転すること、すなわち、公転することができる。このように、各第2遊星ギア64は、第2遊星軸J3回りに自転し、中心軸J1回りに公転する遊星ギア(「Pギア」とも呼ぶ。)となっている。各第2遊星ギア64は、その外周部に突出した複数の歯(以下、「外周歯」という)641を有する平歯車である。そして、各第2遊星ギア64は、太陽ギア45の径方向外側に、その周方向に沿って配置され、外周歯641が太陽ギア45の外周歯451に噛み合っている。
A second planetary gear 64 is rotatably (rotatably) supported on each second planetary shaft member 63. As a result, each second planetary gear 64 can rotate about the second planetary axis J3, that is, can rotate on its axis. In addition, each second planetary gear 64 can rotate about the central axis J1, that is, can revolve. As described above, each second planetary gear 64 is a planetary gear (also referred to as “P gear”) that rotates about the second planetary axis J3 and revolves around the central axis J1. Each second planetary gear 64 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 641 protruding on the outer peripheral portion thereof. The second planetary gears 64 are arranged radially outward of the sun gear 45 along the circumferential direction thereof, and the outer peripheral teeth 641 mesh with the outer peripheral teeth 451 of the sun gear 45. ‥
<第2インターナルギア> 第2インターナルギア7は、中心軸J1を中心軸とする環状をなす。第2インターナルギア7は、ケーシング2の内側に、第1インターナルギア5よりも上側であって、軸方向に第1インターナルギア5と離れて配置されている。また、第2インターナルギア7は、ケーシング2と同心的に配置、固定されている。この固定方法は、特に限定されず、例えば、嵌め合いによる固定方法を用いることができる。この場合、中間嵌めが好ましい。第2インターナルギア7は、その内周部に突出した複数の歯(以下「内周歯」という)71を有する内歯車である。内周歯71は、その周方向の異なる位置で、各第2遊星ギア64の外周歯641と噛み合っている。
<Second Internal Gear> The second internal gear 7 has an annular shape with the central axis J1 as the central axis. The second internal gear 7 is arranged inside the casing 2, above the first internal gear 5, and apart from the first internal gear 5 in the axial direction. Further, the second internal gear 7 is arranged and fixed concentrically with the casing 2. This fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferred. The second internal gear 7 is an internal gear having a plurality of teeth (hereinafter referred to as “inner peripheral teeth”) 71 protruding on the inner peripheral portion thereof. The inner peripheral teeth 71 mesh with the outer peripheral teeth 641 of each second planetary gear 64 at different positions in the circumferential direction. ‥
<出力軸> 出力軸9は、ケーシング2の外側で第2回転軸部材61の上部に連結され、第2回転軸部材61とともに中心軸J1回りに回転することができる。出力軸9は、略円筒状または略円柱状をなし、その外径が第2回転軸部材61の外径と同じである。
<Output Shaft> The output shaft 9 is connected to the upper part of the second rotary shaft member 61 outside the casing 2 and can rotate around the central axis J1 together with the second rotary shaft member 61. The output shaft 9 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is the same as the outer diameter of the second rotating shaft member 61. ‥
<減速機の動作> 前述したように、減速機1は、第1回転組立体4と第2回転組立体6とのギア比が所定の範囲に設定されている。まず、モータ15が作動することにより、その動力が入力軸8および第2入力軸31を順に介して、入力ギア33に伝達される。これにより、図2に示すように、入力ギア33は、中心軸J1回りに矢印α1方向に回転する。そして、入力ギア33に噛み合う各第1遊星ギア44には、入力ギア33の回転力が伝達される。これにより、図2に示すように、各第1遊星ギア44は、第1遊星軸J2回りに矢印α2方向に回転すること、すなわち、自転することができる。
<Operation of Reduction Gear> As described above, in the reduction gear 1, the gear ratio between the first rotation assembly 4 and the second rotation assembly 6 is set within a predetermined range. First, when the motor 15 operates, the power thereof is transmitted to the input gear 33 via the input shaft 8 and the second input shaft 31 in order. As a result, as shown in FIG. 2, the input gear 33 rotates about the central axis J1 in the arrow α1 direction. Then, the rotational force of the input gear 33 is transmitted to each first planetary gear 44 that meshes with the input gear 33. As a result, as shown in FIG. 2, each first planetary gear 44 can rotate in the direction of the arrow α2 around the first planetary axis J2, that is, can rotate on its axis. ‥
また、各第1遊星ギア44は、ケーシング2に固定された第1インターナルギア5にも噛み合っている。これにより、図2に示すように、各第1遊星ギア44は、矢印α2方向に自転した際、その回転力を第1インターナルギア5に伝達することができ、よって、中心軸J1回りに矢印α3方向にも回転すること、すなわち、公転することができる。この公転により、太陽ギア45を中心軸J1回りに矢印β1方向に回転させることができる。
Further, each first planetary gear 44 also meshes with the first internal gear 5 fixed to the casing 2. As a result, as shown in FIG. 2, each first planetary gear 44 can transmit its rotational force to the first internal gear 5 when the first planetary gear 44 rotates in the direction of the arrow α2, and thus the arrow about the central axis J1. It can also rotate in the α3 direction, that is, can revolve. By this revolution, the sun gear 45 can be rotated around the central axis J1 in the arrow β1 direction. ‥
また、太陽ギア45には、各第2遊星ギア64が噛み合っている。これにより、太陽ギア45が矢印β1方向に回転した際、その回転力が各第2遊星ギア64に伝達される。そして、この伝達により、図2に示すように、各2遊星ギア64は、第2遊星軸J3回りに矢印β2方向に回転すること、すなわち、自転することができる。
Further, each second planetary gear 64 meshes with the sun gear 45. As a result, when the sun gear 45 rotates in the direction of arrow β1, the rotational force is transmitted to each second planetary gear 64. Then, by this transmission, as shown in FIG. 2, each of the two planetary gears 64 can rotate in the direction of the arrow β2 around the second planetary axis J3, that is, rotate on its axis. ‥
また、各第2遊星ギア64は、ケーシング2に固定された第2インターナルギア7にも噛み合っている。これにより、図2に示すように、各第2遊星ギア64は、矢印β2方向に自転した際、その回転力を第2インターナルギア7に伝達することができ、よって、中心軸J1回りに矢印β3方向に回転する、すなわち、公転することができる。そして、この公転により、出力軸9を中心軸J1回りに矢印β1方向と同方向に回転させることができる。
Each second planetary gear 64 also meshes with the second internal gear 7 fixed to the casing 2. As a result, as shown in FIG. 2, each second planetary gear 64 can transmit its rotational force to the second internal gear 7 when the second planetary gear 64 rotates in the direction of arrow β2. It can rotate in the β3 direction, that is, can revolve. By this revolution, the output shaft 9 can be rotated around the central axis J1 in the same direction as the arrow β1 direction. ‥
以上のような力伝達により、出力軸9からは、減速された動力が出力されることとなる。以上説明した構成において、中心軸J1に沿う方向とは、中心軸J1(軸方向)にほぼ平行な方向を意味しており、軸方向に厳密に平行である必要はない。すなわち、第1遊星軸J2および第2遊星軸J3は、中心軸J1に平行であってもよく、中心軸J1に対して小さい角度だけ傾斜してもよい。
Due to the force transmission as described above, the decelerated power is output from the output shaft 9. In the configuration described above, the direction along the central axis J1 means a direction substantially parallel to the central axis J1 (axial direction), and does not need to be strictly parallel to the axial direction. That is, the first planetary axis J2 and the second planetary axis J3 may be parallel to the central axis J1 or may be inclined by a small angle with respect to the central axis J1. ‥
<ギアの製造方法> 以上のような構成の減速機1において、好ましくは自身が回転(自転および/または公転)するギアが本発明のギアの製造方法により製造される。本発明のギアの製造方法は、結晶性樹脂と充填剤とを含有する樹脂組成物を用いてギアを製造する方法である。本実施形態のギアの製造方法は、[1]結晶性樹脂と充填剤とを含有する樹脂組成物を用意する第1の工程と、[2]樹脂組成物を溶融する第2の工程と、[3]溶融状態の樹脂組成物を、結晶性樹脂のガラス転移温度より5~25℃程度低い温度に設定した成形型に供給して、製造すべきギアに対応する形状を有する成形体を得る工程と、[4]成形体を、結晶性樹脂の結晶化温度より高い温度で熱処理して、ギアを得る工程とを有する。
<Gear Manufacturing Method> In the speed reducer 1 configured as described above, preferably, a gear that rotates (rotates and/or revolves) is manufactured by the gear manufacturing method of the present invention. The method for producing a gear of the present invention is a method for producing a gear using a resin composition containing a crystalline resin and a filler. The gear manufacturing method of the present embodiment comprises: [1] a first step of preparing a resin composition containing a crystalline resin and a filler; [2] a second step of melting the resin composition; [3] The molten resin composition is supplied to a mold set to a temperature lower by about 5 to 25° C. than the glass transition temperature of the crystalline resin to obtain a molded product having a shape corresponding to the gear to be manufactured. And [4] a step of heat-treating the molded body at a temperature higher than the crystallization temperature of the crystalline resin to obtain a gear. ‥
[1] 第1の工程 まず、結晶性樹脂と充填剤とを含有する樹脂組成物を用意する。ここで、結晶性樹脂とは、JIS K 7121:2012(プラスチック転移温度測定方法)に準拠した示差走査熱量分析(DSC)を行った場合に、融解ピークを有する熱可塑性樹脂のことを言う。結晶性樹脂としては、例えば、ポリアミド、ポリオレフィン、ポリエステル、ポリエーテル、ポリフェニレンスルフィド(PPS)、液晶ポリマー(LCP)、ポリアセタール(POM)、ポリイミド、フッ素ポリマー等が挙げられる。なお。これらの樹脂は、1種を単独で使用しても、2種以上を併用してもよい。中でも、結晶性樹脂としては、ポリアミドが好ましい。ポリアミドを使用すれば、ギアの機械的強度、剛性や耐摩耗性を向上させることができる。
[1] First step First, a resin composition containing a crystalline resin and a filler is prepared. Here, the crystalline resin refers to a thermoplastic resin having a melting peak when performing a differential scanning calorimetry (DSC) according to JIS K 7121:2012 (Plastic transition temperature measuring method). Examples of the crystalline resin include polyamide, polyolefin, polyester, polyether, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyacetal (POM), polyimide, and fluoropolymer. Incidentally. These resins may be used alone or in combination of two or more. Of these, polyamide is preferable as the crystalline resin. The use of polyamide can improve the mechanical strength, rigidity and wear resistance of the gear. ‥
ポリアミドは、一般に、脂肪族ポリアミド(非芳香族ポリアミド)、半芳香族ポリアミド、全芳香族ポリアミドに分類されるが、半芳香族ポリアミドであることが好ましい。半芳香族ポリアミドは、溶融させ易く、かつ結晶化させ易いことから好ましい。半芳香族ポリアミドとは、ジカルボン酸とジアミンとの共重合体であって、いずれか一方が芳香族基を有し、他方が脂肪族基を有する共重合体のことを言う。
Polyamides are generally classified into aliphatic polyamides (non-aromatic polyamides), semi-aromatic polyamides and wholly aromatic polyamides, but semi-aromatic polyamides are preferred. Semi-aromatic polyamides are preferable because they are easily melted and easily crystallized. The semi-aromatic polyamide is a copolymer of dicarboxylic acid and diamine, one of which has an aromatic group and the other has an aliphatic group. ‥
脂肪族ジカルボン酸としては、例えば、HOOC-(CH2)n-COOH(nは0~12)、ジメチルマロン酸、3,3-ジエチルコハク酸、2,2-ジメチルグルタル酸、2-メチルアジピン酸、トリメチルアジピン酸のような鎖状の脂肪族ジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸、シクロオクタンジカルボン酸、シクロデカンジカルボン酸のような脂環式ジカルボン酸等が挙げられる。一方、芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェン酸、4,4’-ビフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸等が挙げられる。
Examples of the aliphatic dicarboxylic acid include HOOC-(CH 2 ) n- COOH (n is 0 to 12), dimethylmalonic acid, 3,3-diethylsuccinic acid, 2,2-dimethylglutaric acid, 2-methyladipine Acids, chain-like aliphatic dicarboxylic acids such as trimethyladipic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid And alicyclic dicarboxylic acids such as cyclodecane dicarboxylic acid. On the other hand, examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenic acid and 4,4′-biphenyl. Examples thereof include dicarboxylic acid, diphenylmethane-4,4'-dicarboxylic acid and diphenylsulfone-4,4'-dicarboxylic acid.
また、脂肪族ジアミンとしては、例えば、NH2-(CH2)m-NH2(mは0~12)のような直鎖状の脂肪族ジアミン、1-ブチル-1,2-エタンジアミン、1,1-ジメチル-1,4-ブタンジアミン、1-エチル-1,4-ブタンジアミン、1,2-ジメチル-1,4-ブタンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,5-ジメチル-1,6-ヘキサンジアミン、2,4-ジメチル-1,6-ヘキサンジアミン、2,2-ジメチル-1,6-ヘキサンジアミン、1,3-ジメチル-1,8-オクタンジアミン、2,4-ジメチル-1,8-オクタンジアミン、2,2-ジメチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミンのような分岐状の脂肪族ジアミン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ノルボルネンジメチルアミン、トリシクロデカンジメチルジアミンの脂環式ジアミン等が挙げられる。一方、芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等が挙げられる。
Examples of the aliphatic diamine include linear aliphatic diamines such as NH 2 —(CH 2 ) m —NH 2 (m is 0 to 12), 1-butyl-1,2-ethanediamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 2-methyl-1,5-pentanediamine, 3- Methyl-1,5-pentanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4-dimethyl-1,6-hexanediamine, 2,2-dimethyl-1,6-hexanediamine, 1, Branching such as 3-dimethyl-1,8-octanediamine, 2,4-dimethyl-1,8-octanediamine, 2,2-dimethyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine Examples thereof include alicyclic diamine such as aliphatic diamine, cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, norbornenedimethylamine, and tricyclodecanedimethyldiamine. On the other hand, as the aromatic diamine, for example, p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4 , 4'-diaminodiphenyl ether and the like.
半芳香族ポリアミドとしては、例えば、ポリアミドMXD6(PAMXD6)、ポリアミド9T(PA9T)、ポリアミド4T(PA4T)、ポリアミド6T(PA6T)、ポリアミド10T(PA10T)等が挙げられる。また、他のポリアミドとしては、例えば、ポリアミド6(PA6)、ポリアミド11(PA11)、ポリアミド12(PA12)ポリアミド66(PA66)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド410(PA410)等が挙げられる。
Examples of the semi-aromatic polyamide include polyamide MXD6 (PAMXD6), polyamide 9T (PA9T), polyamide 4T (PA4T), polyamide 6T (PA6T), polyamide 10T (PA10T), and the like. Examples of other polyamides include polyamide 6 (PA6), polyamide 11 (PA11), polyamide 12 (PA12) polyamide 66 (PA66), polyamide 610 (PA610), polyamide 612 (PA612), polyamide 410 (PA410). Etc. ‥
なお、ポリオレフィンとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブタジエンテレフタレート(PBT)、ポリ乳酸(PLA)等が挙げられる。ポリエーテルとしては、例えば、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)、ポリアリールエーテルケトン(PAEK)等が挙げられる。なお、結晶性樹脂の融点は、その種類にもよるが、165~390℃程度であることが好ましく、175~375℃程度であることがより好ましく、185~360℃程度であることがさらに好ましい。
Examples of the polyolefin include polyethylene (PE) and polypropylene (PP). Examples of polyesters include polyethylene terephthalate (PET), polybutadiene terephthalate (PBT), polylactic acid (PLA), and the like. Examples of the polyether include polyetheretherketone (PEEK), polyetherketone (PEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), and the like. The melting point of the crystalline resin depends on its type, but is preferably about 165 to 390°C, more preferably about 175 to 375°C, and even more preferably about 185 to 360°C. ..
充填剤は、樹脂組成物の成形性、離型性等、あるいは得られたギアの耐久性(機械的強度、剛性、耐摩耗性)等を向上させることを目的として、結晶性樹脂に混合される成分である。したがって、充填剤は、目的に応じて適宜選択されるため、特に限定されない。充填剤には、無機系充填剤および有機系充填剤があるが、上記の目的の場合、無機系填剤を使用することが好ましい。無機系填剤としては、例えば、繊維状無機充填剤や、粒子(粉末)状無機充填剤、鱗片状無機充填剤のような非繊維状無機充填剤等が挙げられる。
The filler is mixed with the crystalline resin for the purpose of improving the moldability and releasability of the resin composition, or the durability (mechanical strength, rigidity, wear resistance) of the obtained gear. It is a component. Therefore, the filler is appropriately selected depending on the purpose and is not particularly limited. The filler includes an inorganic filler and an organic filler, but for the above purpose, it is preferable to use the inorganic filler. Examples of the inorganic fillers include fibrous inorganic fillers, particle (powder) inorganic fillers, non-fibrous inorganic fillers such as flaky inorganic fillers, and the like. ‥
繊維状無機充填剤としては、例えば、ガラス繊維、炭素
繊維、アスベスト繊維、無機ウィスカ(チタン酸カリウム繊維、酸化亜鉛繊維、酸化マグネシウム繊維、酸化アルミニウム繊維、硫酸カルシウム繊維、炭化ケイ素繊維、窒化ケイ素繊維、窒化ケイ素繊維、ムライト繊維、ホウ酸マグネシウム繊維、ホウ化チタン繊維等)等が挙げられる。粒子状無機充填剤としては、例えば、シリカ粉末、石英粉末、ガラスビーズ、カオリン、クレー、珪藻土、ウォラストナイト等が挙げられる。また、板状無機充填剤としては、例えば、マイカ、タルク、各種金属片等が挙げられる。 Examples of the fibrous inorganic filler include glass fiber, carbon fiber, asbestos fiber, inorganic whiskers (potassium titanate fiber, zinc oxide fiber, magnesium oxide fiber, aluminum oxide fiber, calcium sulfate fiber, silicon carbide fiber, silicon nitride fiber). , Silicon nitride fibers, mullite fibers, magnesium borate fibers, titanium boride fibers, etc.) and the like. Examples of the particulate inorganic filler include silica powder, quartz powder, glass beads, kaolin, clay, diatomaceous earth, wollastonite and the like. Examples of the plate-like inorganic filler include mica, talc, various metal pieces, and the like.
繊維、アスベスト繊維、無機ウィスカ(チタン酸カリウム繊維、酸化亜鉛繊維、酸化マグネシウム繊維、酸化アルミニウム繊維、硫酸カルシウム繊維、炭化ケイ素繊維、窒化ケイ素繊維、窒化ケイ素繊維、ムライト繊維、ホウ酸マグネシウム繊維、ホウ化チタン繊維等)等が挙げられる。粒子状無機充填剤としては、例えば、シリカ粉末、石英粉末、ガラスビーズ、カオリン、クレー、珪藻土、ウォラストナイト等が挙げられる。また、板状無機充填剤としては、例えば、マイカ、タルク、各種金属片等が挙げられる。 Examples of the fibrous inorganic filler include glass fiber, carbon fiber, asbestos fiber, inorganic whiskers (potassium titanate fiber, zinc oxide fiber, magnesium oxide fiber, aluminum oxide fiber, calcium sulfate fiber, silicon carbide fiber, silicon nitride fiber). , Silicon nitride fibers, mullite fibers, magnesium borate fibers, titanium boride fibers, etc.) and the like. Examples of the particulate inorganic filler include silica powder, quartz powder, glass beads, kaolin, clay, diatomaceous earth, wollastonite and the like. Examples of the plate-like inorganic filler include mica, talc, various metal pieces, and the like.
これらの無機充填剤は、ギアのサイズに応じて適宜選択して使用される。例えば、モジュール0.2mm以下の微小ギアを製造する場合には、好ましくは無機ウィスカが、より好ましくはチタン酸カリウム繊維が使用される。無機ウィスカは、10以上のアスペクト比を有するが、その平均繊維長がガラス繊維、炭素繊維等の直径とほぼ等しく、極めて微細な形状を有する。このため、モジュール0.2mm以下の微小ギアを製造する場合には、ギアの機械的強度等の特性を向上させることができる他、樹脂組成物を成形した際に、成形体のゲート部に突起が形成され難い(すなわち、ゲート切れ等の不良の発生を防止して、ギアの成形性が高まる)。したがって、モジュール0.2mm以下の微小ギアを製造する場合には、ポリアミドとチタン酸カリウム繊維とを含有する樹脂組成物を使用することが好ましい。
These inorganic fillers are appropriately selected and used according to the size of the gear. For example, when manufacturing a micro gear having a module of 0.2 mm or less, preferably inorganic whiskers are used, and more preferably potassium titanate fibers are used. The inorganic whisker has an aspect ratio of 10 or more, but its average fiber length is almost equal to the diameter of glass fiber, carbon fiber, etc., and has an extremely fine shape. For this reason, when manufacturing a micro gear having a module of 0.2 mm or less, it is possible to improve characteristics such as mechanical strength of the gear, and when the resin composition is molded, protrusions are formed on the gate portion of the molded body. Are difficult to form (that is, the occurrence of defects such as gate breakage is prevented and the moldability of the gear is improved). Therefore, when manufacturing a micro gear having a module of 0.2 mm or less, it is preferable to use a resin composition containing polyamide and potassium titanate fiber. ‥
樹脂組成物中に含まれる充填剤の量は、特に限定されないが、10~40質量%程度であることが好ましく、20~30質量%程度であることがより好ましい。かかる量で充填剤を含む樹脂組成物を使用すれば、得られるギアの特性を向上させる効果と、樹脂組成物の成形性を向上させる効果とがバランスよく発揮される。これらの結晶性樹脂および充填剤を混合することにより、樹脂組成物が得られる。この混合には、例えば、ブレンダー、ニーダー、ロール、押出機のような各種混合機を使用することができる。[2] 第2の工程 次に、得られた樹脂組成物を、結晶性樹脂の融点より高い温度となるように加熱することにより、溶融させる。加熱温度は、結着性樹脂の融点より5~20℃程度高い温度が好ましく、5~15℃程度高い温度がより好ましい。
The amount of the filler contained in the resin composition is not particularly limited, but is preferably about 10 to 40% by mass, more preferably about 20 to 30% by mass. When the resin composition containing the filler in such an amount is used, the effect of improving the characteristics of the obtained gear and the effect of improving the moldability of the resin composition are exhibited in a well-balanced manner. A resin composition is obtained by mixing these crystalline resins and a filler. Various mixers such as a blender, a kneader, a roll, and an extruder can be used for this mixing. [2] Second step Next, the obtained resin composition is melted by heating it to a temperature higher than the melting point of the crystalline resin. The heating temperature is preferably about 5 to 20° C. higher than the melting point of the binder resin, and more preferably about 5 to 15° C. higher. ‥
[3] 第3の工程 次に、例えば、射出成形法により、溶融状態の樹脂組成物を成形型に供給して、製造すべきギアに対応する形状を有する成形体を得る。本発明では、成形型の温度を所定の温度に設定することに特徴を有する。具体的には、成形型の温度を、結晶性樹脂のガラス転移温度(Tg)より5~25℃程度低い温度に設定する。従来、結晶性樹脂を含有する成形体を形成する場合、結晶性樹脂の結晶化を促すために、成形型の温度を結着性樹脂の融点より若干低い温度(結晶性樹脂のTgより遥かに高い温度)に設定する。この場合、本発明者らの検討によれば、樹脂組成物が伸び易くなるためゲート切れが不良であり、結果として成形体に不要な突起が形成される現象が生じること、また成形体のエッジ部の形状(特に、歯先のエッジ部の形状)も不安定になることが判明した。また、かかる温度は、比較的高温(130~150℃程度)であるため、結晶化樹脂の結晶化時間を含め、樹脂組成物を固化させるまでに時間(30~40秒程度)を要し、成形体の成形に長時間を要していた。
[3] Third step Next, the resin composition in a molten state is supplied to a molding die by, for example, an injection molding method to obtain a molded body having a shape corresponding to the gear to be manufactured. The present invention is characterized in that the temperature of the molding die is set to a predetermined temperature. Specifically, the temperature of the mold is set to a temperature lower by about 5 to 25° C. than the glass transition temperature (Tg) of the crystalline resin. Conventionally, when forming a molded product containing a crystalline resin, in order to promote crystallization of the crystalline resin, the temperature of the mold is slightly lower than the melting point of the binder resin (much higher than the Tg of the crystalline resin. High temperature). In this case, according to the studies by the present inventors, the resin composition is likely to be stretched, resulting in defective gate disconnection, resulting in a phenomenon in which unnecessary protrusions are formed on the molded body, and the edge of the molded body. It was also found that the shape of the part (particularly, the shape of the edge of the tooth tip) becomes unstable. Further, since the temperature is relatively high (about 130 to 150° C.), it takes time (about 30 to 40 seconds) until the resin composition is solidified, including the crystallization time of the crystallization resin. It took a long time to mold the molded body. ‥
そこで、本発明では、成形型の温度を、結晶性樹脂のガラス転移温度(Tg)より5~25℃程度低い温度に設定することとした。かかる設定温度は、従来の成形型の設定温度より十分に低い温度であるので、樹脂組成物を成形型に供給すると、樹脂組成物は急速に固化して成形体となる。このため、樹脂組成物が伸び難くなるため、ゲート切れが良好であり、また成形体のエッジ部の形状(輪郭形状)も安定化する。さらに、成形体の成形型からの離型性も高まる。このようなことから、本発明によれば、成形体の形成に要する時間を、従来より十分に短縮(10~15秒程度)することができる。よって、成形体の製造における歩留まりが向上するとともに、成形体の製造設備の設置台数を大幅に削減することができる。設定する成形型の温度は、結晶性樹脂のTgより5~25℃程度低い温度であればよいが、10~20℃程度低い温度であることがより好ましい。かかる温度に成形型を設定することにより、前記効果をより向上させることができる。なお、この時点で、結晶化樹脂の結晶化は、実質的に進行していない。
Therefore, in the present invention, the temperature of the mold is set to a temperature lower by about 5 to 25° C. than the glass transition temperature (Tg) of the crystalline resin. Since the preset temperature is sufficiently lower than the preset temperature of the conventional mold, when the resin composition is supplied to the mold, the resin composition is rapidly solidified into a molded body. For this reason, the resin composition is less likely to expand, the gate breakage is good, and the shape (contour shape) of the edge portion of the molded body is also stabilized. Further, the releasability of the molded body from the molding die is also enhanced. From the above, according to the present invention, the time required for forming the molded body can be sufficiently shortened (about 10 to 15 seconds) as compared with the conventional case. Therefore, the yield in the production of the molded body can be improved, and the number of installed facilities for manufacturing the molded body can be significantly reduced. The mold temperature to be set may be a temperature about 5 to 25° C. lower than the Tg of the crystalline resin, but a temperature about 10 to 20° C. is more preferable. By setting the molding die at such a temperature, the above effect can be further improved. At this point, the crystallization of the crystallized resin has not substantially progressed. ‥
[4] 第4の工程 次に、成形体を成形型から取り出し、結晶性樹脂の結晶化温度より高い温度で熱処理(アニール)して、ギアを得る。このとき、成形体内では、結晶性樹脂の結晶化が進行する結果、成形体の結晶化度が高まる。ここで、結晶化温度とは、結晶性樹脂を10℃/分の昇温条件で示差走査熱量測定を行った際に、結晶化樹脂の結晶化促進にともなう発熱ピーク温度のことを言う。熱処理の温度は、結晶性樹脂の結晶化温度より高い温度であればよいが、キアを実際に使用する際の最高温度(以下、「実使用温度」とも記載する。)より5~25℃高い温度であることが好ましく、実使用温度より10~20℃程度高い温度であることがより好ましい。かかる温度で熱処理を行うことにより、ギアの使用時の寸法安定性を確保することができる。上記減速機1に使用されるギアの場合、その実使用温度は、好ましくは110~140℃程度であり、より好ましくは120~130℃程度である。
[4] Fourth Step Next, the molded body is taken out of the molding die and heat-treated (annealed) at a temperature higher than the crystallization temperature of the crystalline resin to obtain a gear. At this time, as a result of crystallization of the crystalline resin in the molded body, the crystallinity of the molded body increases. Here, the crystallization temperature refers to an exothermic peak temperature that accompanies crystallization acceleration of the crystallized resin when the differential scanning calorimetry is performed on the crystalline resin under a temperature rising condition of 10° C./min. The temperature of the heat treatment may be higher than the crystallization temperature of the crystalline resin, but is 5 to 25° C. higher than the maximum temperature (hereinafter, also referred to as “actual use temperature”) when the Kia is actually used. The temperature is preferably, and more preferably about 10 to 20° C. higher than the actual use temperature. By performing the heat treatment at such a temperature, it is possible to ensure dimensional stability when the gear is used. In the case of the gear used in the speed reducer 1, the actual operating temperature thereof is preferably about 110 to 140°C, more preferably about 120 to 130°C. ‥
この熱処理の方法としては、加熱炉内で、例えば、ヒータで加熱する方法、赤外線を照射する方法、熱風をブローする方法等が挙げられる。なお、加熱炉は、バッチ炉、連続炉のいずれであってもよい。熱処理の雰囲気の圧力は、減圧、常圧または加圧のいずれであってもよい。また、熱処理の時間は、特に限定されないが、30~120秒程度であることが好ましく、45~100秒程度であることがより好ましい。以上の工程を経て、ギアが製造される。
Examples of the method of this heat treatment include a method of heating with a heater in a heating furnace, a method of irradiating infrared rays, a method of blowing hot air, and the like. The heating furnace may be a batch furnace or a continuous furnace. The pressure of the atmosphere of the heat treatment may be any of reduced pressure, normal pressure and increased pressure. The heat treatment time is not particularly limited, but is preferably about 30 to 120 seconds, more preferably about 45 to 100 seconds. The gear is manufactured through the above steps. ‥
製造すべきギアのモジュールは、特に限定されないが、0.2mm以下であることが好ましく、0.1~0.2mm程度であることがより好ましい。このような微小ギアであっても、本発明のギアの製造方法によれば、正確かつ短時間(高い歩留まり)で製造することができる。また、得られたギアは、その内部において結晶性樹脂の結晶化が十分に進行しているため、機械的強度、剛性、耐摩耗性等の特性に優れるとともに、高い形状安定性を有する。また、微小ギアは、その基準円ピッチ直径が1.2~1.7mm程度、歯数が8~18枚程度、歯厚が0.15~0.32mm程度であることが好ましい。前述したように、本発明のギアの製造方法で製造されたギアは、好ましくは自身が回転(自転および/または公転)するギアに使用される。したがって、図1等に示す減速機1においては、入力ギア33、Cギア(ギア部材)および複数のPギア(第1遊星ギア44および第2遊星ギア64)のうちの少なくとも1つを、本発明のギアの製造方法で製造されたギアで構成することが好ましい。特に、モータ15に近接して配置される入力ギア33は、モータ15の発熱による影響を受け易いため、半芳香族ポリイミドを含有する樹脂組成物を使用して製造されたギアで構成することが好ましい。
The gear module to be manufactured is not particularly limited, but is preferably 0.2 mm or less, and more preferably about 0.1 to 0.2 mm. According to the gear manufacturing method of the present invention, even such a minute gear can be manufactured accurately and in a short time (high yield). In addition, since the obtained resin has the crystalline resin sufficiently crystallized therein, the gear has excellent properties such as mechanical strength, rigidity, and abrasion resistance, and high shape stability. Further, it is preferable that the micro gear has a reference circle pitch diameter of about 1.2 to 1.7 mm, a number of teeth of about 8 to 18 and a tooth thickness of about 0.15 to 0.32 mm. As described above, the gear manufactured by the gear manufacturing method of the present invention is preferably used as a gear that rotates (rotates and/or revolves). Therefore, in the speed reducer 1 shown in FIG. 1 and the like, at least one of the input gear 33, the C gear (gear member), and the plurality of P gears (the first planetary gear 44 and the second planetary gear 64) is replaced by the main gear. It is preferable that the gear is manufactured by the gear manufacturing method of the invention. In particular, since the input gear 33 arranged close to the motor 15 is easily affected by the heat generation of the motor 15, it may be made of a gear manufactured using a resin composition containing a semi-aromatic polyimide. preferable. ‥
以上、本発明のギアの製造方法および減速機について、好適な実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。また、本発明のギアの製造方法により得られるギアは、小型カメラ、ロボットハンドのような産業機械用部品の他、例えば、自動車用部品、自転車用部品、鉄道車両用部品、船舶用部品、航空機用部品、宇宙輸送機用部品のような輸送機器用部品、パソコン用部品、携帯端末用部品のような電子機器用部品、冷蔵庫、洗濯機、冷暖房機のような電気機器用部品、プラント用部品、時計用部品等に用いられる。
Although the gear manufacturing method and the speed reducer of the present invention have been described above based on the preferred embodiments, the present invention is not limited thereto. Further, the gears obtained by the gear manufacturing method of the present invention include, for example, parts for industrial machines such as small cameras and robot hands, as well as parts for automobiles, parts for bicycles, parts for railway vehicles, parts for ships, and aircraft. Parts, parts for transportation equipment such as parts for space transportation equipment, parts for personal computers, parts for electronic equipment such as parts for mobile terminals, parts for electric equipment such as refrigerators, washing machines, air conditioners, parts for plants Used for parts for watches, etc.
次に、本発明の実施例について説明する。1.ギアの製造(実施例1)[A]まず、結晶性樹脂として半芳香族ポリアミド(PAMXD6)と、無機ウィスカとしてチタン酸カリウム繊維とを、ブレンダーで混合して樹脂組成物を得た。なお、芳香族ポリアミドのTgは約100℃であり、樹脂組成物中のチタン酸カリウム繊維の量は、30質量%とした。[B]次に、この樹脂組成物を約80℃に設定した成形型に供給して、製造すべきギアに対応する形状を有する成形体を得た。成形体が固化したことを確認して、樹脂組成物を成形型に供給した11秒後に、成形体を成型型から取り出した。この成形体の電子顕微鏡(SEM)写真を図3(a)に示す。
Next, examples of the present invention will be described. 1. Production of Gear (Example 1) [A] First, a semi-aromatic polyamide (PAMXD6) as a crystalline resin and potassium titanate fiber as an inorganic whisker were mixed with a blender to obtain a resin composition. The Tg of the aromatic polyamide was about 100° C., and the amount of potassium titanate fiber in the resin composition was 30% by mass. [B] Next, this resin composition was supplied to a mold set to about 80° C. to obtain a molded body having a shape corresponding to the gear to be manufactured. After confirming that the molded body was solidified, 11 minutes after the resin composition was supplied to the molding die, the molded body was taken out from the molding die. An electron microscope (SEM) photograph of this molded body is shown in FIG. ‥
[C]次に、得られた成形体を加熱炉内で、150℃で60秒間、熱処理することにより、ギアを得た。なお、目的とするギアの形状は、基準円ピッチ直径1.3mm、モジュール0.2mm、歯数14枚、歯厚0.4mmとした。
[C] Next, the obtained molded body was heat-treated in a heating furnace at 150° C. for 60 seconds to obtain a gear. The target gear had a reference circle pitch diameter of 1.3 mm, a module of 0.2 mm, 14 teeth, and a tooth thickness of 0.4 mm. ‥
(比較例1)上記工程[C](熱処理)を省略した以外は、実施例1と同様にしてギアを得た。すなわち、比較例1のギアは、熱処理前の成形体であり、半芳香族ポリアミドは結晶化していない。
(Comparative Example 1) A gear was obtained in the same manner as in Example 1 except that the step [C] (heat treatment) was omitted. That is, the gear of Comparative Example 1 was a molded product before heat treatment, and the semi-aromatic polyamide was not crystallized. ‥
(比較例2)[A’]まず、実施例1と同様にして、樹脂組成物を得た。 [B’]次に、この樹脂組成物を約130℃に設定した成形型に供給して、成形体を得た。成形体が固化したことを確認して、樹脂組成物を成形型に供給した35秒後に、成形体を成型型から取り出した。この成形体の電子顕微鏡(SEM)写真を図3(b)に示す。そして、この成形体をギアとした。なお、目的とする焼結ギアの形状は、実施例1と同様である。
Comparative Example 2 [A′] First, in the same manner as in Example 1, a resin composition was obtained. [B'] Next, this resin composition was supplied to a mold set to about 130°C to obtain a molded body. After confirming that the molded body was solidified, 35 seconds after supplying the resin composition to the molding die, the molded body was taken out of the molding die. An electron microscope (SEM) photograph of this molded body is shown in FIG. Then, this molded body was used as a gear. The target shape of the sintered gear is the same as in Example 1. ‥
2.評価図3(a)に示すように、実施例1の成形体では、樹脂組成物のゲート切れが良好であり、成形体に不要な突起が形成されず、成形体のエッジ部の形状も安定していた。比較例1の成形体も、実施例1と同条件で形成されているため同様であった。これに対して、図3(b)に示すように、比較例2の成形体では、樹脂組成物のゲート切れが不良であり、成形体に不要な突起が形成され、成形体のエッジ部の形状も不安定であり、ギアとしての使用が不可であった。このため、以下では、実施例1および比較例1で得られたギアを使用して、耐久性についての評価を行った。
2. Evaluation As shown in FIG. 3(a), in the molded product of Example 1, the resin composition had good gate breakage, unnecessary protrusions were not formed in the molded product, and the shape of the edge portion of the molded product was stable. Was. The molded product of Comparative Example 1 was also formed because it was formed under the same conditions as in Example 1. On the other hand, as shown in FIG. 3(b), in the molded body of Comparative Example 2, the resin composition was defective in gate disconnection, unnecessary protrusions were formed on the molded body, and the edge portion of the molded body was formed. The shape was also unstable and it could not be used as a gear. Therefore, in the following, the durability obtained by using the gears obtained in Example 1 and Comparative Example 1 was evaluated. ‥
実施例1および比較例1で得られたギアを入力ギアとして使用して、図1等に示す減速機を作製した。そして、減速機の出力軸に、一端に200gの錘を取付けた紐の他端を固定し、出力軸に紐を巻き取る操作を繰り返し行った。その結果、実施例1のギアを使用した減速機では、30万回の巻き取り操作を問題なく行うことができた。これに対して、比較例1のギアを使用した減速機では、15万回の巻き取り操作後には、入力ギアが空転するようになった。減速機を分解して、入力ギアの形状を確認したところ、歯が屈曲変形していた。
Using the gears obtained in Example 1 and Comparative Example 1 as the input gear, the speed reducer shown in FIG. 1 and the like was manufactured. Then, the operation of fixing the other end of the string having a 200 g weight attached to one end to the output shaft of the reduction gear and winding the string around the output shaft was repeated. As a result, the speed reducer using the gear of Example 1 could perform the winding operation 300,000 times without any problem. On the other hand, in the speed reducer using the gear of Comparative Example 1, the input gear started to idle after the winding operation of 150,000 times. When the speed reducer was disassembled and the shape of the input gear was confirmed, the teeth were bent and deformed.
1…減速機、2…ケーシング、3…入力部、4…第1回転組立体、5…第1インターナルギア、51…歯、6…第2回転組立体、7…第2インターナルギア、71…歯、8…入力軸、9…出力軸、15…モータ、31…第2入力軸、33…入力ギア、331…歯、41…第1回転軸部材、42…第1遊星キャリア、43…第1遊星軸部材、44…第1遊星ギア、441…歯、45…太陽ギア、451…歯、61…第2回転部材、62…第2遊星キャリア、63…第2遊星軸部材、64…第2遊星ギア、641…歯、J1…中心軸、J2…第1遊星軸、J3…第2遊星軸。
1... Reduction gear, 2... Casing, 3... Input part, 4... 1st rotation assembly, 5... 1st internal gear, 51... Teeth, 6... 2nd rotation assembly, 7... 2nd internal gear, 71... Tooth, 8... Input shaft, 9... Output shaft, 15... Motor, 31... Second input shaft, 33... Input gear, 331... Tooth, 41... First rotating shaft member, 42... First planet carrier, 43... 1 planetary shaft member, 44... 1st planetary gear, 441... Tooth, 45... Sun gear, 451... Tooth, 61... 2nd rotation member, 62... 2nd planet carrier, 63... 2nd planetary shaft member, 64... 2 planetary gears, 641... Tooth, J1... Central axis, J2... 1st planetary axis, J3... 2nd planetary axis.
Claims (10)
- 結晶性樹脂と充填剤とを含有する樹脂組成物を用いてギアを製造する方法であって、前記樹脂組成物を溶融する工程と、前記溶融状態の樹脂組成物を、前記結晶性樹脂のガラス転移温度より5~25℃低い温度に設定した成形型に供給して、前記ギアに対応する形状を有する成形体を得る工程と、前記成形体を、前記結晶性樹脂の結晶化温度より高い温度で熱処理して、前記ギアを得る工程とを有することを特徴とするギアの製造方法。 A method of manufacturing a gear using a resin composition containing a crystalline resin and a filler, the step of melting the resin composition, and the resin composition in the molten state, the glass of the crystalline resin Supplying to a mold set at a temperature 5 to 25° C. lower than the transition temperature to obtain a molded body having a shape corresponding to the gear; and the molded body having a temperature higher than the crystallization temperature of the crystalline resin. And a step of heat-treating to obtain the gear.
- 前記熱処理の温度は、前記ギアを実際に使用する際の最高温度より5~25℃以上高い温度である請求項1に記載のギアの製造方法。 The method for manufacturing a gear according to claim 1, wherein the temperature of the heat treatment is a temperature higher by 5 to 25° C. or more than the maximum temperature when the gear is actually used.
- 前記樹脂組成物中に含まれる前記充填剤の量は、10~40質量%である請求項1または2に記載のギアの製造方法。 The method for manufacturing a gear according to claim 1 or 2, wherein the amount of the filler contained in the resin composition is 10 to 40% by mass.
- 前記ギアのモジュールは、0.2mm以下である請求項1~3のいずれか1項に記載のギアの製造方法。 The gear manufacturing method according to any one of claims 1 to 3, wherein the gear module has a size of 0.2 mm or less.
- 前記充填剤は、無機ウィスカである請求項4に記載のギアの製造方法。 The gear manufacturing method according to claim 4, wherein the filler is an inorganic whisker.
- 前記無機ウィスカは、チタン酸カリウム繊維である請求項5に記載のギアの製造方法。 The method of manufacturing a gear according to claim 5, wherein the inorganic whiskers are potassium titanate fibers.
- 前記結晶性樹脂は、ポリアミドである請求項1~6のいずれか1項に記載のギアの製造方法。 7. The gear manufacturing method according to claim 1, wherein the crystalline resin is polyamide.
- 前記ポリアミドは、半芳香族ポリアミドである請求項7に記載のギアの製造方法。 The gear manufacturing method according to claim 7, wherein the polyamide is a semi-aromatic polyamide.
- 中心軸を有するケーシングと、前記ケーシング内に、互いに前記中心軸に沿う方向に離れて配置された第1インターナルギアおよび第2インターナルギアと、前記ケーシング内に配置され、前記中心軸を中心として回転する入力ギア、前記入力ギアとの間で回転力を伝達する第1回転組立体、および第1回転組立体との間で回転力を減速して伝達する第2回転組立体とを有する減速機であって、前記第1回転組立体は、前記第1インターナルギアと前記入力ギアとの間で前記入力ギアの周方向に配置され、外周歯が前記第1インターナルギアの内周歯と前記入力ギアの外周歯とに噛み合う複数の第1遊星ギアと、前記複数の第1遊星ギアのそれぞれを前記中心軸に沿う方向を向く第1遊星軸を中心として回転可能に支持する第1遊星キャリアと、前記第1遊星キャリアに接続され、前記中心軸が中心に位置する第1回転軸部と、前記中心軸を中心として前記第1回転軸部と共に回転する太陽ギアとを備え、前記第1遊星キャリアと前記第1回転軸部と前記太陽ギアとが単一のギア部材であり、前記第2回転組立体は、前記第2インターナルギアと前記太陽ギアとの間で前記太陽ギアの周方向に配置され、外周歯が前記第2インターナルギアの内周歯と前記太陽ギアの外周歯とに噛み合う複数の第2遊星ギアと、前記複数の第2遊星ギアのそれぞれを前記中心軸に沿う方向を向く第2遊星軸を中心として回転可能に支持する第2遊星キャリアと、前記第2遊星キャリアに接続され、前記中心軸が中心に位置する第2回転軸部とを備え、前記ギア部材、前記複数の第1遊星ギア、前記複数の第2遊星ギアおよび前記入力ギアのうちの少なくとも1つを請求項1~7のいずれか1項に記載のギアの製造方法により得られたギアで構成することを特徴とする減速機。 A casing having a central axis, a first internal gear and a second internal gear that are arranged in the casing and are spaced apart from each other in a direction along the central axis, and are arranged in the casing and rotate about the central axis. And a second rotating assembly for decelerating and transmitting the rotational force with the first rotating assembly, and a first rotating assembly for transmitting the rotating force with the input gear. The first rotation assembly is disposed in the circumferential direction of the input gear between the first internal gear and the input gear, and the outer peripheral teeth of the first rotary gear are the same as the inner peripheral teeth of the first internal gear. A plurality of first planetary gears that mesh with the outer peripheral teeth of the gears, and a first planetary carrier that rotatably supports each of the plurality of first planetary gears around a first planetary axis that is oriented along the central axis. A first planetary carrier connected to the first planetary carrier and having a central axis centered on the central axis; and a sun gear that rotates together with the first rotational axis about the central axis. The carrier, the first rotating shaft portion, and the sun gear are a single gear member, and the second rotating assembly is disposed between the second internal gear and the sun gear in the circumferential direction of the sun gear. A plurality of second planetary gears that are arranged and have outer peripheral teeth meshing with the inner peripheral teeth of the second internal gear and the outer peripheral teeth of the sun gear, and the plurality of second planetary gears in the direction along the central axis. A second planetary carrier rotatably supported around a second planetary axis facing the second planetary carrier; and a second rotary shaft portion connected to the second planetary carrier and having the central shaft at the center thereof, the gear member, the At least one of the plurality of first planetary gears, the plurality of second planetary gears, and the input gear is composed of a gear obtained by the gear manufacturing method according to any one of claims 1 to 7. A speed reducer characterized by that.
- 前記入力ギアを、請求項8に記載のギアの製造方法により得られたギアで構成する請求項9に記載の減速機。 The speed reducer according to claim 9, wherein the input gear is a gear obtained by the method for manufacturing a gear according to claim 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018227950 | 2018-12-05 | ||
JP2018-227950 | 2018-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020116370A1 true WO2020116370A1 (en) | 2020-06-11 |
Family
ID=70973788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/046944 WO2020116370A1 (en) | 2018-12-05 | 2019-12-02 | Gear manufacturing method and reduction gear |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020116370A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002213332A (en) * | 2001-01-19 | 2002-07-31 | Mitsubishi Electric Corp | Planetary gear for starter motor |
JP2003253115A (en) * | 2002-03-01 | 2003-09-10 | Asahi Kasei Corp | Polyamide composition |
JP2007246561A (en) * | 2006-03-13 | 2007-09-27 | Asahi Kasei Chemicals Corp | Polyamide resin molded article |
JP2013010847A (en) * | 2011-06-29 | 2013-01-17 | Toray Ind Inc | Carbon fiber-reinforced resin composition, and molded article thereof |
JP2017214520A (en) * | 2016-06-02 | 2017-12-07 | 旭化成株式会社 | Wear reduction method and high surface pressure slide member |
-
2019
- 2019-12-02 WO PCT/JP2019/046944 patent/WO2020116370A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002213332A (en) * | 2001-01-19 | 2002-07-31 | Mitsubishi Electric Corp | Planetary gear for starter motor |
JP2003253115A (en) * | 2002-03-01 | 2003-09-10 | Asahi Kasei Corp | Polyamide composition |
JP2007246561A (en) * | 2006-03-13 | 2007-09-27 | Asahi Kasei Chemicals Corp | Polyamide resin molded article |
JP2013010847A (en) * | 2011-06-29 | 2013-01-17 | Toray Ind Inc | Carbon fiber-reinforced resin composition, and molded article thereof |
JP2017214520A (en) * | 2016-06-02 | 2017-12-07 | 旭化成株式会社 | Wear reduction method and high surface pressure slide member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5666682B2 (en) | Servo steering device | |
TWI665258B (en) | Polyamide composition and molded product | |
JP2006508818A (en) | Extruder for producing molten plastic material | |
CN107078200A (en) | Led lamp heat sink | |
TW201741380A (en) | Molded article and method for production thereof | |
CN1974666A (en) | Reinforced polyamide moulding materials | |
CN106051116B (en) | Sliding member, method of manufacturing sliding member, and gear | |
CN1190637A (en) | Conveying roller and making method thereof | |
WO2020116370A1 (en) | Gear manufacturing method and reduction gear | |
JP2014516114A (en) | Polyamide composition characterized by improved thermal stability | |
WO2017203895A1 (en) | Gear, gear transmission mechanism, and method for manufacturing gear | |
WO2020202835A1 (en) | Small-sized component | |
JP2015105359A (en) | Glassfiber reinforced thermoplastic composition and molding thereof | |
CN1266225C (en) | Slide part and precision part, and timepiece and electronic device using them | |
JP2018083872A (en) | Production method of fiber reinforced plastic product | |
JP2018177867A (en) | Polyamide resin composition for metal conjugation, metal resin composite, and manufacturing method of metal resin composite | |
JP2007176227A (en) | Reduction gear for electric power steering device | |
WO2020202833A1 (en) | Small gear and gear unit | |
WO2020202837A1 (en) | Sliding member | |
WO2020202836A1 (en) | Small-size component | |
WO2020202834A1 (en) | Small gear and gear unit | |
WO2020116371A1 (en) | Geared shaft production method, and drive device | |
JP2021120577A (en) | Compact gear | |
JP6076202B2 (en) | Synthetic resin injection molded products | |
JP2021120578A (en) | Compact gear and gear unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19893069 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19893069 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |