WO2020116288A1 - Composite sheet for protective film formation and method for producing semiconductor chip - Google Patents
Composite sheet for protective film formation and method for producing semiconductor chip Download PDFInfo
- Publication number
- WO2020116288A1 WO2020116288A1 PCT/JP2019/046430 JP2019046430W WO2020116288A1 WO 2020116288 A1 WO2020116288 A1 WO 2020116288A1 JP 2019046430 W JP2019046430 W JP 2019046430W WO 2020116288 A1 WO2020116288 A1 WO 2020116288A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protective film
- forming
- film
- composite sheet
- meth
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/025—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L21/6836—Wafer tapes, e.g. grinding or dicing support tapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68327—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68377—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
Definitions
- the present invention relates to a protective film forming composite sheet and a method for manufacturing a semiconductor chip.
- the present application claims priority based on Japanese Patent Application No. 2018-228529 filed in Japan on December 5, 2018, the contents of which are incorporated herein by reference.
- semiconductor devices have been manufactured using a mounting method called a so-called face down method.
- a semiconductor chip having electrodes such as bumps on the circuit formation surface is used, and the electrodes are bonded to the substrate. Therefore, the surface (back surface) of the semiconductor chip opposite to the circuit formation surface may be exposed.
- a resin film containing an organic material is formed as a protective film on the exposed back surface of the semiconductor chip, and it may be incorporated into a semiconductor device as a semiconductor chip with a protective film.
- the protective film is used to prevent cracks from being generated in the semiconductor chip after the dicing process or packaging.
- Such a protective film is formed, for example, by curing a curable protective film forming film.
- a non-curable protective film-forming film whose physical properties are adjusted may be used as it is as a protective film.
- the protective film forming film is used by being attached to the back surface of the semiconductor wafer.
- the protective film-forming film may be attached to the back surface of the semiconductor wafer in the state of, for example, a protective film-forming composite sheet that is integrated with a supporting sheet used when processing a semiconductor wafer. It may be attached to the back surface of the semiconductor wafer in a state of not being integrated.
- the protective film forming composite sheet is attached to the back surface of the semiconductor chip by the protective film forming film therein, the protective film is formed by curing the protective film forming film at a suitable timing. Cutting of the forming film or protective film, dividing (dicing) of the semiconductor wafer into semiconductor chips, and a semiconductor chip having a protective film forming film or protective film after cutting (semiconductor chip with protective film forming film or protection Picking up of the film-attached semiconductor chip) from the support sheet is appropriately performed. When a semiconductor chip with a film for forming a protective film is picked up, this is a semiconductor chip with a protective film by curing of the film for forming a protective film, and finally using the semiconductor chip with a protective film, a semiconductor device is obtained.
- the support sheet in the protective film-forming composite sheet can be used as a dicing sheet.
- the protective film forming film is treated as it is as a protective film in each of these steps.
- the protective film-forming film is attached to the back surface of the semiconductor wafer in a state where it is not integrated with the supporting sheet, the protective film-forming film is exposed on the side opposite to the semiconductor wafer-attaching surface.
- a support sheet is attached to the surface.
- a semiconductor chip with a protective film or a semiconductor chip with a film for forming a protective film is obtained and a semiconductor device is manufactured by the same method as in the case of using the above-mentioned composite sheet for forming a protective film.
- the protective film-forming film is attached to the back surface of the semiconductor wafer in a state where it is not integrated with the support sheet, but by integration with the support sheet after attachment, the protective film-forming composite sheet is formed. Make up.
- the protective film-forming composite sheet has an uneven surface on the exposed surface of the base material (uneven surface) in order to prevent the contact surfaces of the rolls from sticking to each other and blocking when wound into a roll. have.
- the contact surface is the exposed surface of the base material, which is the lowermost layer of the composite sheet for forming a protective film, and the exposed surface of the uppermost layer, such as a release film.
- the protective film-forming composite sheet wrinkles occur in this sheet, or the uppermost layer (usually a release film) peels from this sheet when the sheet is unrolled from a roll.
- one of the contact surfaces of the roll is an uneven surface, the contact area of the roll becomes small, and thus blocking is suppressed.
- the surface of the protective film attached to the semiconductor wafer or the semiconductor chip on the support sheet side is printed by irradiation with laser light (in this specification, it may be referred to as “laser printing”). It At this time, if the exposed surface of the support sheet (base material) has an uneven surface, the laser printing visibility of the protective film via the base material is deteriorated.
- a composite sheet for forming a protective film capable of preventing the visibility of laser printing for example, a base material having only one side having an uneven surface is used, and the uneven surface is not an exposed surface, and a film for forming a protective film is used. What is arranged toward the side (a dicing tape-integrated film for semiconductor back surface protection) is disclosed (see Patent Document 1).
- a dicing tape-integrated film for semiconductor back surface protection is disclosed (see Patent Document 1).
- the haze of the laminated sheet (dicing tape) obtained by laminating the base material and the pressure-sensitive adhesive layer is 45% or less.
- the composite sheet for forming a protective film disclosed in Patent Document 1 has a problem that the above blocking cannot be suppressed when wound into a roll because the exposed surface of the base material is a smooth surface.
- the protective film-forming composite sheet becomes charged when the release film is removed from the protective film-forming film in the protective film-forming composite sheet. It may end up. Since the protective film-forming composite sheet that is electrically charged is likely to adsorb small foreign matters on the protective film-forming film before being attached to the semiconductor wafer, the charged composite film for forming a protective film-forming film is not easily separated from the semiconductor wafer. In addition, foreign matter is easily mixed in.
- a supporting sheet, a protective film after cutting or a protective film-forming film, and a semiconductor chip And are laminated in this order to produce a laminated body. Then, when handling this laminated body, the operation is performed such that the laminated body is fixed on the table and then separated from the fixing surface on the table, but when the laminated body is separated from the table, Easy to be charged. If the laminate is charged, the circuit may be destroyed.
- peeling charging a phenomenon in which the protective film-forming composite sheet is charged when the release film is removed from the protective film-forming film in the protective film-forming composite sheet, and a laminate when the laminate is separated from the table
- peeling charging a phenomenon in which these layers are charged by the peeling of the layers that are in contact with each other, including the phenomenon that the body is charged.
- a dicing tape (corresponding to the support sheet) in which a pressure-sensitive adhesive layer is laminated on a base material, and an adhesive sheet formed on the pressure-sensitive adhesive layer
- a dicing tape-integrated adhesive sheet having the peeling speed of 10 m/min, a peeling angle of 150°, and an absolute value of a peeling electrification voltage when the adhesive layer and the adhesive sheet are peeled off is 0.5 kV or less.
- An adhesive sheet integrated with a dicing tape is disclosed (see Patent Document 2).
- Patent Document 2 by using this dicing tape-integrated adhesive sheet, peeling charging between the adhesive sheet and the dicing tape is performed when the semiconductor element to which the adhesive sheet is attached is peeled from the dicing tape in the pickup process. It is said that it is possible to suppress the occurrence of static electricity and suppress the generation of static electricity to prevent the circuit on the semiconductor element from being destroyed by the static electricity.
- the present invention is a protective film-forming composite sheet comprising a support sheet and a protective film-forming film, wherein the protective film suppresses peeling electrification and is excellent in laser printing visibility of the protective film via a substrate.
- An object of the present invention is to provide a forming composite sheet and a method for manufacturing a semiconductor chip using the protective film forming composite sheet.
- 1st aspect of this invention is a composite sheet for protective film formation provided with the support sheet and the film for protective film formation formed on one surface of the said support sheet,
- the said support sheet is A base material and an antistatic layer formed on one or both sides of the base material, and the total light transmittance of the support sheet is 85% or more
- the composite sheet for forming a protective film Provided is a composite film for forming a protective film, which has a surface resistivity of 1.0 ⁇ 10 11 ⁇ / ⁇ or less.
- the haze of the support sheet may be preferably 43% or less, more preferably 41% or less, and further preferably 40% or less.
- a second aspect of the present invention is a composite sheet for forming a protective film, comprising a supporting sheet and a film for forming a protective film formed on one surface of the supporting sheet, the supporting sheet comprising:
- the sheet comprises a base material and an antistatic layer formed on one or both sides of the base material, the haze of the support sheet is 43% or less, and the surface of the composite sheet for forming a protective film.
- a composite sheet for forming a protective film which has a resistivity of 1.0 ⁇ 10 11 ⁇ / ⁇ or less.
- the thickness of the antistatic layer may be 200 nm or less.
- a third aspect of the present invention is the step of attaching the protective film forming film in the protective film forming composite sheet to a semiconductor wafer, and the protective film forming film after being attached to the semiconductor wafer.
- a step of obtaining a semiconductor chip, and a step of separating the semiconductor film provided with the protective film after protection or a film for forming a protective film from the support sheet and picking it up, further, the step of sticking, Provided is a method for manufacturing a semiconductor chip, comprising a step of irradiating the protective film forming film or the protective film with a laser beam to perform printing between the step of picking up.
- a composite sheet for forming a protective film comprising a support sheet and a film for forming a protective film, wherein peeling charge is suppressed, and laser printing visibility of the protective film via a substrate is excellent.
- a composite film for forming a protective film and a method for manufacturing a semiconductor chip using the composite sheet for forming a protective film.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- FIG. 6 is a cross-sectional view for schematically explaining the method for manufacturing a semiconductor chip according to the embodiment of the present invention.
- a composite sheet for forming a protective film according to an embodiment of the present invention includes a support sheet, and a film for forming a protective film formed on one surface of the support sheet, A composite sheet for forming a protective film, wherein the support sheet comprises a base material and an antistatic layer formed on one or both sides of the base material, and the total light transmittance of the support sheet is It is 85% or more, and the surface resistivity of the composite sheet for forming a protective film is 1.0 ⁇ 10 11 ⁇ / ⁇ or less.
- the composite sheet for forming a protective film has the surface resistivity of 1.0 ⁇ 10 11 ⁇ / ⁇ or less, and is charged normally (in this specification, referred to as “normally charged”). Is suppressed).
- the composite sheet for forming a protective film of the present embodiment has a layer containing an antistatic agent (in this specification, may be generically referred to as “antistatic layer”), so that Has an effect of suppressing charging.
- antistatic layer an antistatic agent
- the degree of the effect of suppressing the normal charge is, in other words, the high surface resistivity, for example, by adjusting the content of the antistatic agent in the antistatic layer, Can be adjusted.
- laser printing is performed by irradiating a laser beam on the surface of the protective film or the film for forming a protective film, which is attached to a semiconductor wafer or semiconductor chip, on the side of the supporting sheet.
- the protective film forming film on which laser printing has been performed becomes a printed protective film by curing.
- the protective film-forming composite sheet when the total light transmittance of the support sheet is 85% or more, the visibility of laser printing on the protective film is improved.
- the total light transmittance of the support sheet in the protective film-forming composite sheet is 85% or more, and preferably 90% or more.
- the total light transmittance of the support sheet is not less than the lower limit value, the laser printing visibility of the protective film is improved.
- the upper limit of the total light transmittance of the support sheet in the protective film-forming composite sheet is not particularly limited, and the higher the better. Considering the ease of manufacturing the support sheet and the high degree of freedom in the configuration of the support sheet, the total light transmittance of the support sheet is preferably 99% or less.
- the total light transmittance of the supporting sheet can be measured by using a white LED (5V, 3W) as a light source in accordance with JIS K 7361:1997, as will be described later in Examples.
- a white LED (5V, 3W) as a light source in accordance with JIS K 7361:1997, as will be described later in Examples.
- the haze of the support sheet in the protective film-forming composite sheet is not particularly limited, but is preferably 43% or less, more preferably 41% or less, and particularly preferably 40% or less.
- the total light transmittance of the support sheet is not less than the lower limit value, and in addition, the haze of the support sheet is not more than the upper limit value, thereby further improving the laser printing visibility through the support sheet of the protective film. improves.
- the lower limit of haze of the support sheet in the protective film-forming composite sheet is not particularly limited, and the lower the better. Considering the ease of manufacturing the support sheet and the high degree of freedom in the configuration of the support sheet, the haze of the support sheet may be 30% or more.
- the haze of the support sheet can be measured using a white LED (5V, 3W) as a light source according to JIS K 7136:2000.
- a protective film-forming composite sheet includes a support sheet and a protective film-forming composite film formed on one surface of the supporting sheet.
- the surface resistivity of the protective film-forming composite sheet is 1.0 ⁇ 10 11 ⁇ / ⁇ or less.
- the haze of the protective film-forming composite sheet is 43% or less, preferably 41% or less, more preferably 40% or less, the laser printing visibility of the protective film is improved.
- the surface resistivity of the protective film-forming composite sheet is 1.0 ⁇ 10 11 ⁇ / ⁇ or less, preferably 9.5 ⁇ 10 10 ⁇ / ⁇ or less, and for example, 5.0 ⁇ 10 10 It may be either ⁇ / ⁇ or less, 6.0 ⁇ 10 9 ⁇ / ⁇ or less, and 1.0 ⁇ 10 9 ⁇ / ⁇ or less.
- the surface resistivity is equal to or lower than the upper limit value, normal charging of the protective film-forming composite sheet is suppressed.
- the lower limit of the surface resistivity of the protective film-forming composite sheet is preferably as small as possible, and is not particularly limited.
- the protective film-forming composite sheet having the surface resistivity of 1.0 ⁇ 10 5 ⁇ / ⁇ or more can be more easily manufactured.
- the surface resistivity of the composite sheet for forming a protective film can be appropriately adjusted within a range set by arbitrarily combining the preferable lower limit value and the preferable upper limit value described above.
- the surface resistivity is preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 11 ⁇ / ⁇ , and 1.0 ⁇ 10 5 to 9.5 ⁇ 10 10 ⁇ / ⁇ .
- ⁇ is more preferable, and for example, 1.0 ⁇ 10 5 to 5.0 ⁇ 10 10 ⁇ / ⁇ , 1.0 ⁇ 10 5 to 6.0 ⁇ 10 9 ⁇ / ⁇ , and 1.0 ⁇ 10 It may be any of 5 to 1.0 ⁇ 10 9 ⁇ / ⁇ . However, these are examples of the surface resistivity.
- the protective film forming film in the protective film forming composite sheet has curability, regardless of whether it is thermosetting or energy ray curable described later, the protective film forming film described above is formed.
- the surface resistivity of the composite sheet for use may be the surface resistivity before the protective film forming film is cured, or the surface resistivity after the protective film forming film is cured.
- the surface resistivity of the protective film forming composite sheet is measured, using a surface resistivity meter, It can be measured with an applied voltage of 100V.
- thermosetting As described below, the surface resistance of the protective film-forming composite sheet after the protective film-forming film in the protective film-forming composite sheet is thermally cured. It is preferable that the ratio satisfies the above-described surface resistivity condition (for example, an upper limit value or a lower limit value of 1.0 ⁇ 10 11 ⁇ / ⁇ or less). In this case, the protective film-forming composite sheet is It is preferable that the protective film forming film is heat-cured at 130° C. for 2 hours.
- the surface resistivity after the film for forming a protective film in the composite sheet for forming a protective film is thermoset at 130° C. for 2 hours, Those having a resistance of 1.0 ⁇ 10 11 ⁇ / ⁇ or less are included.
- this is an example of the composite sheet for forming a protective film, which satisfies the above-described surface resistivity condition.
- thermosetting The surface resistivity before the thermosetting protective film-forming film is thermoset>
- the surface resistance of the protective film forming composite sheet before the protective film forming film in the protective film forming composite sheet is thermally cured.
- the rate may satisfy the above-described surface resistivity condition (for example, an upper limit value or a lower limit value of 1.0 ⁇ 10 11 ⁇ / ⁇ or less).
- the surface resistivity of the protective film-forming composite sheet before the protective film-forming film in the protective film-forming composite sheet is thermoset is 5.0 ⁇ 10 10 ⁇ / ⁇ . It is preferably not more than 6.0 ⁇ 10 9 ⁇ / ⁇ , not more than 5.0 ⁇ 10 8 ⁇ / ⁇ , and not more than 3.0 ⁇ 10 8 ⁇ / ⁇ . ..
- the surface resistivity before thermosetting is equal to or lower than the upper limit value, normal charging of the protective film-forming composite sheet after the protective film forming film is thermoset is further suppressed.
- the lower limit of the surface resistivity of the protective film-forming composite sheet before the protective film-forming film is heat-cured is preferably as small as possible, and is not particularly limited.
- a composite sheet for forming a protective film, in which the surface resistivity before heat curing is 1.0 ⁇ 10 5 ⁇ / ⁇ or more, can be more easily manufactured.
- the surface resistivity of the protective film-forming composite sheet before the protective film-forming film is heat-cured can be appropriately adjusted within the range set by arbitrarily combining the preferable lower limit value and the preferable upper limit value described above.
- the surface resistivity before heat curing is preferably 1.0 ⁇ 10 5 to 5.0 ⁇ 10 10 ⁇ / ⁇ , for example, 1.0 ⁇ 10 5 to 6. It may be any of 0 ⁇ 10 9 ⁇ / ⁇ , 1.0 ⁇ 10 5 to 5.0 ⁇ 10 8 ⁇ / ⁇ , and 1.0 ⁇ 10 5 to 3.0 ⁇ 10 8 ⁇ / ⁇ . .. However, these are examples of the surface resistivity before heat curing.
- the protective film-forming composite sheet of the present embodiment has the above-mentioned surface resistivity of the thermosetting protective film-forming film after thermosetting. It is preferable that both the condition and the condition for the surface resistivity before the thermosetting protective film forming film is thermoset are satisfied.
- the support sheet may be composed of one layer (single layer) or may be composed of two or more layers.
- the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
- the support sheet may be transparent or opaque, and may be colored depending on the purpose.
- the support sheet preferably transmits energy rays.
- the supporting sheet is preferably transparent.
- the “energy ray” means an electromagnetic wave or a charged particle beam having an energy quantum.
- energy rays include ultraviolet rays, radiation, and electron rays.
- Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light or an LED lamp as an ultraviolet ray source.
- the electron beam can be emitted by an electron beam accelerator or the like.
- “energy ray-curable” means a property of being cured by irradiation with energy rays
- non-energy ray-curable is a property of not being cured by irradiation of energy rays.
- the support sheet includes, for example, one including a base material and an adhesive layer formed on the base material; one including only the base material; and the like.
- the preferable supporting sheet includes a base material, and in the protective film-forming composite sheet, on the surface of the base material located on the side opposite to the protective film forming film side.
- the composite sheet for forming a protective film which includes a base material and an antistatic layer (may be abbreviated as "back surface antistatic layer” in the present specification) formed on the substrate.
- a support sheet provided with an antistatic layer may be abbreviated as “surface antistatic layer” in the present specification
- the antistatic layer contains an antistatic agent.
- the supporting sheet includes a composite sheet for forming a protective film, which includes a base material and an antistatic layer formed on one surface or both surfaces of the base material. And a composite sheet for forming a protective film.
- the “antistatic layer formed on one surface of the substrate” means the “backside antistatic layer or surface antistatic layer”.
- the "antistatic layer formed on both sides of the substrate” means "a combination of the backside antistatic layer and the surface antistatic layer”.
- the protective sheet-forming composite sheet in which the support sheet includes the substrate and the backside antistatic layer is more preferable.
- the composite sheet for forming a protective film also include a sheet having, as an antistatic layer, a layer that does not correspond to any of the back surface antistatic layer and the surface antistatic layer.
- the antistatic layer may be provided on the surface of the protective film forming film opposite to the support sheet side, or the protective film forming film may have antistatic properties.
- the antistatic layer that is, the antistatic layer opposite to the supporting sheet side of the protective film forming film
- the antistatic layer is incorporated into the semiconductor device.
- the antistatic layer may adversely affect the stability of the structure of the semiconductor device or the performance of the semiconductor device.
- the antistatic layer may be provided on the surface of the protective film-forming film on the support sheet side.
- the protective film-forming film or the semiconductor chip to which the protective film is attached is separated from the antistatic layer on the support sheet and picked up. At this time, the process abnormality may occur due to the interposition of the antistatic layer.
- the composite sheet for forming a protective film preferably includes the back surface antistatic layer or the surface antistatic layer as an antistatic layer.
- FIG. 1 is a sectional view schematically showing a protective film-forming composite sheet according to an embodiment of the present invention.
- the protective film-forming composite sheet 101 shown here is a protective film formed on the support sheet 10 and one surface (sometimes referred to as “first surface” in the present specification) 10 a of the support sheet 10.
- the forming film 13 is provided.
- the support sheet 10 includes a base material 11, an adhesive layer 12 formed on one surface (sometimes referred to as “first surface” in this specification) 11 a of the base material 11, and the base material 11. And the back surface antistatic layer 17 formed on the other surface (which may be referred to as a "second surface” in the present specification) 11b. That is, the support sheet 10 is configured by laminating the back surface antistatic layer 17, the base material 11, and the adhesive layer 12 in this order in the thickness direction thereof.
- the first surface 10a of the support sheet 10 is a surface (which may be referred to as "first surface” in the present specification) of the pressure-sensitive adhesive layer 12 opposite to the base material 11 side.
- the protective film forming composite sheet 101 is configured by laminating the back surface antistatic layer 17, the base material 11, the adhesive layer 12, and the protective film forming film 13 in this order in the thickness direction thereof. ..
- the protective film forming composite sheet 101 further includes a release film 15 on the protective film forming film 13.
- the protective film forming film 13 is laminated on the entire surface or almost the entire first surface 12a of the adhesive layer 12, and the adhesive layer 12 side of the protective film forming film 13 is
- the adhesive layer 16 for a jig is laminated on a part of the opposite surface (which may be referred to as a “first surface” in the present specification) 13a, that is, a region in the vicinity of the peripheral edge to form a protective film.
- first surface 13a of the film 13 for jigs the surface on which the jig adhesive layer 16 is not laminated, and the surface of the jig adhesive layer 16 opposite to the pressure-sensitive adhesive layer 12 side (in the present specification, Is sometimes referred to as the “first surface”) 16a, and the release film 15 is laminated thereon.
- a gap may be partially formed between the release film 15 and the layer in direct contact with the release film 15.
- the state where the release film 15 is in contact (lamination) with the side surface 16c of the jig adhesive layer 16 is shown, but the release film 15 is not in contact with the side surface 16c.
- a state is shown in which the release film 15 is in contact (laminated) with a region near the jig adhesive layer 16 on the first surface 13a of the protective film forming film 13, The release film 15 may not be in contact with the area.
- the boundary between the first surface 16a and the side surface 16c of the jig adhesive layer 16 cannot be clearly distinguished.
- the protective film-forming composite sheet of the other embodiment which is provided with the jig adhesive layer.
- one or both surfaces of the base material are usually uneven surfaces having an uneven shape. This is because if the substrate does not have such a concavo-convex surface, when the substrate is wound into a roll, the contact surfaces of the substrates stick to each other and block, making it difficult to use. .. If at least one of the contact surfaces of the base materials is a concave-convex surface, the area of the contact surface is small, and thus blocking is suppressed. Therefore, in the composite sheet 101 for forming a protective film, one or both of the first surface 11a and the second surface 11b of the base material 11 may be an uneven surface.
- first surface 11a and the second surface 11b of the base material 11 When only one of the first surface 11a and the second surface 11b of the base material 11 is an uneven surface, either one may be the uneven surface. In this case, the other becomes a smooth surface with a low degree of unevenness.
- the conditions for such an uneven surface and a smooth surface are the same for other composite films for forming a protective film including the base material 11.
- the jig adhesive layer 16 is used for fixing the protective film forming composite sheet 101 to a jig such as a ring frame.
- the jig adhesive layer 16 may have, for example, a single-layer structure containing an adhesive component, or a plurality of layers in which a layer containing an adhesive component is laminated on both surfaces of a core sheet. It may have a structure.
- the back antistatic layer 17 contains an antistatic agent. Thereby, the surface resistivity of the back surface antistatic layer 17, which is the outermost layer on the support sheet 10 side, in the protective film-forming composite sheet 101 becomes 1.0 ⁇ 10 11 ⁇ / ⁇ or less. Then, the normal charging of the protective film forming composite sheet 101 is suppressed.
- the back surface of the semiconductor wafer (not shown) is attached to the first surface 13a of the protective film forming film 13 in a state where the release film 15 is removed.
- the first surface 16a of the layer 16 is used by being attached to a jig such as a ring frame.
- FIG. 2 is a sectional view schematically showing a protective film-forming composite sheet according to another embodiment of the present invention. 2 and subsequent figures, the same components as those shown in the already-described figures are designated by the same reference numerals as those in the already-illustrated figures, and detailed description thereof will be omitted.
- the shape and size of the protective film forming film are different, and the jig adhesive layer is not the first surface of the protective film forming film but the first adhesive layer. It is the same as the composite sheet 101 for forming a protective film shown in FIG. 1 except that it is laminated on the surface.
- the protective film forming film 23 has a partial area of the first surface 12a of the adhesive layer 12, that is, the width direction of the adhesive layer 12 (see FIG. 2). In the left-right direction) in the central region.
- the jig adhesive layer 16 is laminated on the surface of the first surface 12a of the pressure-sensitive adhesive layer 12 on which the protective film forming film 23 is not laminated, that is, on the region near the peripheral portion.
- the surface of the protective film forming film 23 opposite to the pressure-sensitive adhesive layer 12 side may be referred to as “first surface” in the present specification) 23 a and the jig adhesive layer 16 first surface.
- the release film 15 is laminated on the one surface 16a.
- the first surface 23a of the protective film-forming film 23 is the first surface 12a of the adhesive layer 12 (that is, the protective film-forming film 23 is laminated).
- the surface area is smaller than that of the combined area and the non-laminated area), and has, for example, a planar shape such as a circular shape.
- a gap may be partially formed between the release film 15 and the layer that is in direct contact with the release film 15.
- the state where the release film 15 is in contact (lamination) with the side surface 23c of the protective film forming film 23 is shown, but the release film 15 may not be in contact with the side surface 23c. is there.
- a state in which the release film 15 is in contact (laminated) with a region of the surface 12a of the adhesive layer 12 where the protective film forming film 23 and the jig adhesive layer 16 are not laminated Although shown, the release film 15 may not be in contact with the region. In some cases, the boundary between the first surface 23a and the side surface 23c of the protective film forming film 23 cannot be clearly distinguished.
- the protective film-forming composite sheet of the other embodiment which includes the protective film-forming film having the same shape and size.
- the surface resistivity of the back surface antistatic layer 17, which is the outermost layer on the supporting sheet 10 side, is 1.0 ⁇ 10 11 ⁇ / ⁇ or less, and the protective film-forming composite sheet 102. The normal charging of is suppressed.
- the back surface of the semiconductor wafer (not shown) is attached to the first surface 23a of the protective film forming film 23 in a state where the release film 15 is removed, and further, the jig adhesive.
- the first surface 16a of the layer 16 is used by being attached to a jig such as a ring frame.
- FIG. 3 is a cross-sectional view schematically showing a protective film-forming composite sheet according to still another embodiment of the present invention.
- the protective film forming composite sheet 103 shown here is the same as the protective film forming composite sheet 102 shown in FIG. 2 except that the jig adhesive layer 16 is not provided.
- the surface resistivity of the back surface antistatic layer 17 which is the outermost layer on the support sheet 10 side in the protective film-forming composite sheet 103 is 1.0 ⁇ 10 11 ⁇ / ⁇ or less, and the protective film forming composite sheet 103. The normal charging of is suppressed.
- the back surface of the semiconductor wafer (not shown) is attached to the first surface 23a of the protective film forming film 23 in a state where the release film 15 is removed.
- An area of the first surface 12a where the protective film forming film 23 is not laminated is attached to a jig such as a ring frame and used.
- FIG. 4 is a sectional view schematically showing a protective film-forming composite sheet according to still another embodiment of the present invention.
- the protective film forming composite sheet 104 shown here is for forming a protective film shown in FIG. 3 except that an intermediate layer 18 is further provided between the pressure-sensitive adhesive layer 12 and the protective film forming film 23. It is the same as the composite sheet 103.
- the protective film forming composite sheet 104 includes the intermediate layer 18 on the first surface 12 a of the pressure-sensitive adhesive layer 12.
- a surface of the intermediate layer 18 opposite to the pressure-sensitive adhesive layer 12 side (may be referred to as “first surface” in this specification) 18 a is a laminated surface of the protective film forming film 23.
- the protective film forming composite sheet 104 the back surface antistatic layer 17, the base material 11, the adhesive layer 12, the intermediate layer 18, and the protective film forming film 23 are laminated in this order in the thickness direction thereof, It is configured. Further, the protective film forming composite sheet 104 further includes a release film 15 on the protective film forming film 23.
- the intermediate layer 18 is arranged between the protective film forming film 23 and the pressure-sensitive adhesive layer 12, and is arranged at an intermediate position which does not become the outermost layer.
- the intermediate layer 18 is not particularly limited as long as it exhibits its function at such an arrangement position. More specifically, examples of the intermediate layer 18 include a peelability improving layer having one surface subjected to a peeling treatment.
- the releasability improving layer improves the releasability of the semiconductor chip from the supporting sheet when the semiconductor chip having the protective film forming film or the protective film is picked up by separating (peeling) from the supporting sheet. It has the function of
- the first surface 18a of the intermediate layer 18 is in contact with the surface of the protective film forming film 23 on the pressure-sensitive adhesive layer 12 side (which may be referred to as "second surface” in this specification) 23b.
- the shape (that is, the planar shape) and size of the intermediate layer 18 are not particularly limited as long as the intermediate layer 18 can exhibit its function.
- it is preferable that the first surface 18a of the intermediate layer 18 is in contact with the entire second surface 23b of the protective film forming film 23.
- the first surface 18a of the intermediate layer 18 preferably has an area equal to or larger than that of the second surface 23b of the protective film forming film 23.
- the surface of the intermediate layer 18 on the pressure-sensitive adhesive layer 12 side (may be referred to as “second surface” in this specification) 18 b is in contact with the entire first surface 12 a of the pressure-sensitive adhesive layer 12. Alternatively, it may be in contact with only a part of the first surface 12a of the pressure-sensitive adhesive layer 12. However, in order to fully exert the function of the intermediate layer 18, it is preferable that the first surface 12a of the adhesive layer 12 is in contact with the entire second surface 18b of the intermediate layer 18.
- the preferable intermediate layer 18 include those in which the area and shape of the first surface 18a thereof are the same as the area and shape of the second surface 23b of the protective film forming film 23.
- a gap may be partially formed between the release film 15 and the layer in direct contact with the release film 15.
- the release film 15 may not be in contact with the side surface 18c.
- the release film 15 in the first surface 12a of the pressure-sensitive adhesive layer 12, the release film 15 is in contact (laminated) with the region where the intermediate layer 18 is not laminated, including the region in the vicinity of the intermediate layer 18.
- the release film 15 may not be in contact with the region of the first surface 12a in the vicinity of the intermediate layer 18. In some cases, the boundary between the first surface 18a and the side surface 18c of the intermediate layer 18 cannot be clearly distinguished.
- the surface resistivity of the back surface antistatic layer 17 which is the outermost layer on the support sheet 10 side in the protective film-forming composite sheet 104 is 1.0 ⁇ 10 11 ⁇ / ⁇ or less, and the protective film-forming composite sheet 104. The normal charging of is suppressed.
- the back surface of the semiconductor wafer (not shown) is attached to the first surface 23a of the protective film forming film 23 in a state where the release film 15 is removed, and the adhesive layer 12 is further formed.
- a region of the first surface 12a where the intermediate layer 18 is not stacked is used by being attached to a jig such as a ring frame.
- FIG. 5 is sectional drawing which shows typically the composite sheet for protective film formation which concerns on other embodiment of this invention.
- the protective film-forming composite sheet 105 shown here is the same as the protective film-forming composite sheet 101 shown in FIG. 1 except that the pressure-sensitive adhesive layer 12 is not provided.
- the protective film-forming composite sheet 105 is the same as the protective film-forming composite sheet 101 except that the support sheet 10 is replaced by the support sheet 20 that does not include the pressure-sensitive adhesive layer 12.
- the first surface 11a of the base material 11 is the surface of the support sheet 20 on the protective film forming film 13 side (may be referred to as “first surface” in the present specification) 20a.
- the surface resistivity of the back surface antistatic layer 17, which is the outermost layer on the support sheet 20 side, is 1.0 ⁇ 10 11 ⁇ / ⁇ or less, and the protective film-forming composite sheet 105. The normal charging of is suppressed.
- the back surface of the semiconductor wafer (not shown) is attached to the first surface 13a of the protective film forming film 13 in a state where the release film 15 is removed.
- the first surface 16a of the layer 16 is used by being attached to a jig such as a ring frame.
- the composite sheet for forming a protective film having the backside antistatic layer as an antistatic layer is not limited to those shown in FIGS. 1 to 5.
- a part of the structure of the composite sheet for forming a protective film shown in FIGS. 1 to 5 is changed or deleted within a range that does not impair the effects of the present invention.
- the protective sheet-forming composite sheet shown in FIGS. 1 to 5 may be added with another configuration.
- the composite sheet for forming a protective film shown in FIG. 5 does not have an adhesive layer.
- the composite sheet for forming a protective film of the present embodiment having no adhesive layer, for example, the composite sheet for forming a protective film shown in FIGS. 2 to 4 in which the adhesive layer is omitted Is mentioned.
- the composite sheet for forming a protective film shown in FIGS. 1, 2 and 5 includes a jig adhesive layer.
- the protective film-forming composite sheet of the present embodiment including the jig adhesive layer other than these, for example, in the protective film-forming composite sheet shown in FIG.
- the thing which the adhesive layer for tools was newly provided is mentioned.
- the arrangement position of the jig adhesive layer on the first surface may be the same as in the case of the protective film forming composite sheet shown in FIGS.
- the composite sheet for forming a protective film shown in FIGS. 3 to 4 does not include a jig adhesive layer.
- the protective film-forming composite sheet of the present embodiment that does not include the jig adhesive layer for example, in the protective film-forming composite sheet shown in FIG. 1 and FIG. The layer is omitted.
- the composite sheet for forming a protective film shown in FIG. 4 includes an intermediate layer.
- the protective film-forming composite sheet of the present embodiment including an intermediate layer other than this, for example, in the protective film-forming composite sheet shown in FIGS. 1, 2 and 5, the protective film-forming composite sheet An example in which an intermediate layer is newly provided on the second surface side is mentioned.
- the arrangement form of the intermediate layer on the second surface may be the same as that described with reference to FIG.
- the composite sheet for forming a protective film shown in FIGS. 1 to 5 has nothing except a back surface antistatic layer, a substrate, a protective film forming film and a release film, or has only an adhesive layer. Or, it has only the adhesive layer and the intermediate layer.
- the protective film-forming composite sheet of the present embodiment may be, for example, the protective film-forming composite sheet shown in FIGS. 1 to 5, in which a back surface antistatic layer, a base material, an adhesive layer, an intermediate layer, Examples thereof include those provided with other layers that do not correspond to either the protective film forming film or the release film.
- the size and shape of each layer can be arbitrarily adjusted according to the purpose.
- a gap may be partially formed between the release film and the layer that is in direct contact with the release film.
- the size and shape of each layer can be arbitrarily adjusted according to the purpose.
- FIG. 6 is a sectional view schematically showing a protective film-forming composite sheet according to an embodiment of the present invention.
- the protective film-forming composite sheet 301 shown here is a protective film formed on the support sheet 50 and one surface (sometimes referred to as “first surface” in this specification) 50a of the support sheet 50.
- the forming film 13 is provided.
- the support sheet 50 includes the base material 11, the surface antistatic layer 19 formed on the first surface 11 a of the base material 11, and the surface of the surface antistatic layer 19 opposite to the base material 11 side (in the present specification.
- the pressure-sensitive adhesive layer 12 is formed on the surface 19a). That is, the support sheet 50 is configured by laminating the base material 11, the surface antistatic layer 19, and the pressure-sensitive adhesive layer 12 in this order in the thickness direction thereof.
- the first surface 50a of the support sheet 50 is the first surface 12a of the pressure-sensitive adhesive layer 12.
- Reference numeral 19b indicates the surface of the surface antistatic layer 19 on the side of the base material 11 (which may be referred to as "second surface” in the present specification).
- the protective film forming composite sheet 301 is configured by laminating the base material 11, the surface antistatic layer 19, the pressure-sensitive adhesive layer 12, and the protective film forming film 13 in this order in the thickness direction thereof. .. Further, the protective film forming composite sheet 301 further includes a release film 15 on the protective film forming film 13.
- the protective film forming film 13 is laminated on the entire surface or substantially the entire first surface 12a of the pressure-sensitive adhesive layer 12, and a part of the first surface 13a of the protective film forming film 13 is laminated. That is, the jig adhesive layer 16 is laminated in a region near the peripheral portion, and a surface of the first surface 13a of the protective film forming film 13 on which the jig adhesive layer 16 is not laminated, The release film 15 is laminated on the first surface 16 a of the jig adhesive layer 16.
- the protective film-forming composite sheet 301 does not include the back surface antistatic layer 17 on the second surface 11b of the base material 11, and adheres to the first surface 11a of the base material 11, more specifically, the base material 11 and the adhesive. It is the same as the composite sheet 101 for forming a protective film shown in FIG. 1 except that a surface antistatic layer 19 is provided between the agent layer 12 and the agent layer 12.
- the surface antistatic layer 19 is the same as the back antistatic layer 17 described above. That is, in the protective film-forming composite sheet 301, in the protective film forming composite sheet 101, the arrangement position of the antistatic layer is from the second surface 11b of the base material 11 between the base material 11 and the adhesive layer 12. It can be said that it has been changed to.
- the surface antistatic layer 19 contains an antistatic agent. As a result, the surface resistivity of the substrate 11, which is the outermost layer on the support sheet 50 side, in the protective film-forming composite sheet 301 becomes 1.0 ⁇ 10 11 ⁇ / ⁇ or less. Then, the normal charging of the protective film forming composite sheet 301 is suppressed.
- the back surface of the semiconductor wafer (not shown) is attached to the first surface 13a of the protective film forming film 13 in a state where the release film 15 is removed.
- the first surface 16a of the layer 16 is used by being attached to a jig such as a ring frame.
- the composite sheet for forming a protective film having the surface antistatic layer as an antistatic layer is not limited to that shown in FIG.
- the protective film-forming composite sheet of the present embodiment is the same as the protective film-forming composite sheet shown in FIGS. 2 to 5, except that the back surface antistatic layer is not provided and the first surface of the base material has a surface antistatic property.
- Examples thereof include those configured to include a layer (in other words, the arrangement position of the antistatic layer is changed from the second surface of the base material to the first surface of the base material).
- the protective film-forming composite sheet having the surface antistatic layer as the antistatic layer is not limited to the above, and in the above-described protective film-forming composite sheet having the back surface antistatic layer.
- the arrangement position of the antistatic layer is changed from the second surface of the base material to the first surface of the base material.
- the size and shape of each layer can be arbitrarily adjusted according to the purpose.
- the composite sheet for forming a protective film according to one embodiment of the present invention may include both a back surface antistatic layer and a surface antistatic layer as an antistatic layer.
- Examples of the protective film-forming composite sheet having both the back surface antistatic layer and the surface antistatic layer include, for example, a support sheet and a protection film formed on one surface (that is, the first surface) of the support sheet.
- the support sheet comprises a back surface antistatic layer, a base material, a surface antistatic layer, and an adhesive layer, which are laminated in this order in the thickness direction thereof.
- a composite sheet for forming a protective film which is disposed toward the film for forming a protective film.
- a surface antistatic layer for example, between the base material 11 and the pressure-sensitive adhesive layer 12
- the protective film-forming composite sheet provided with both the back surface antistatic layer and the front surface antistatic layer is, for example, a support sheet and a protective film formed on one surface (that is, the first surface) of the support sheet.
- a film for film formation wherein the support sheet comprises a back surface antistatic layer, a substrate and a surface antistatic layer, which are laminated in this order in the thickness direction thereof, and the surface antistatic layer comprises A composite sheet for forming a protective film, which is arranged toward the protective film forming film side, may be mentioned.
- a protective film forming composite sheet more specifically, in the protective film forming composite sheet 101 shown in FIG. 1, instead of the pressure-sensitive adhesive layer 12, a surface antistatic layer (for example, the surface charging shown in FIG. Examples thereof include those provided with the prevention layer 19).
- composite sheets for forming a protective film which are provided with a back surface antistatic layer, an antistatic substrate and a surface antistatic layer.
- the substrate is in the form of a sheet or a film, and examples of its constituent material include various resins.
- the resin include polyethylene such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE); other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene and norbornene resin.
- Polyolefin Ethylene-vinyl acetate copolymer, ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, ethylene-norbornene copolymer and other ethylene-based copolymers (ethylene as a monomer); Polyvinyl chloride, vinyl chloride resin such as vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer); polystyrene; polycycloolefin; polyethylene terephthalate, polyethylene Polyesters such as naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalene dicarboxylate, wholly aromatic polyesters in which all constituent units have aromatic cyclic groups; Polymers; poly(meth)acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; polyacetal; modified poly
- the resin also include polymer alloys such as a mixture of the polyester and other resins.
- the polymer alloy of the polyester and the resin other than the polyester is preferably one in which the amount of the resin other than the polyester is relatively small.
- the resin for example, a crosslinked resin obtained by crosslinking one or two or more of the above-exemplified resins; a modified ionomer using one or more of the above-exemplified resins. Resins are also included.
- the resin constituting the base material may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
- the base material may be composed of one layer (single layer) or may be composed of two or more layers, and when composed of a plurality of layers, the plurality of layers may be the same or different from each other.
- the combination of these plural layers is not particularly limited.
- the thickness of the substrate is preferably 30 to 300 ⁇ m, more preferably 50 to 140 ⁇ m.
- the thickness of the base material is in such a range, the flexibility of the composite sheet for forming a protective film and the adhesiveness to a semiconductor wafer or a semiconductor chip are further improved.
- the “base material thickness” means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all layers constituting the base material. means.
- the base material is preferably one with high thickness accuracy, that is, one with suppressed thickness variation regardless of the part.
- materials that can be used to form such a base material having high thickness accuracy include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer, and the like. Is mentioned.
- the base material may contain various known additives such as a filler, a colorant, an antioxidant, an organic lubricant, a catalyst, a softening agent (plasticizer), in addition to the main constituent materials such as the resin.
- the base material may be transparent or opaque, may be colored depending on the purpose, and may have another layer deposited thereon.
- the base material is preferably one that transmits energy rays.
- the substrate is preferably transparent.
- the substrate is roughened by sandblasting, solvent treatment, or the like in order to improve adhesion with a layer provided thereon (eg, adhesive layer, intermediate layer or protective film forming film); corona discharge treatment , Electron beam irradiation treatment, plasma treatment, ozone/ultraviolet ray irradiation treatment, flame treatment, chromic acid treatment, hot air treatment and other oxidation treatments;
- a layer provided thereon eg, adhesive layer, intermediate layer or protective film forming film
- corona discharge treatment Electron beam irradiation treatment, plasma treatment, ozone/ultraviolet ray irradiation treatment, flame treatment, chromic acid treatment, hot air treatment and other oxidation treatments
- the surface of the base material may be treated with a primer.
- the base material can be manufactured by a known method.
- a base material containing a resin can be manufactured by molding a resin composition containing the resin.
- the adhesive layer is in the form of a sheet or a film and contains an adhesive.
- the pressure-sensitive adhesive include pressure-sensitive adhesive resins such as acrylic resins, urethane-based resins, rubber-based resins, silicone-based resins, epoxy-based resins, polyvinyl ethers, polycarbonates, ester-based resins, etc., and acrylic-based resins are preferred. ..
- adhesive resin includes both a resin having an adhesive property and a resin having an adhesive property.
- the adhesive resin is not only a resin having adhesiveness itself, but also a resin that exhibits adhesiveness when used in combination with other components such as additives, and adhesiveness due to the presence of a trigger such as heat or water. Resins and the like are also included.
- the pressure-sensitive adhesive layer may be composed of one layer (single layer) or may be composed of two or more layers. When composed of a plurality of layers, these layers may be the same or different from each other. The combination of these plural layers is not particularly limited.
- the thickness of the pressure-sensitive adhesive layer is preferably 1 to 100 ⁇ m, more preferably 1 to 60 ⁇ m, and particularly preferably 1 to 30 ⁇ m.
- the "thickness of the pressure-sensitive adhesive layer” means the total thickness of the pressure-sensitive adhesive layer, for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the total of all layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
- the pressure-sensitive adhesive layer may be transparent or opaque, and may be colored depending on the purpose.
- the adhesive layer is preferably one that transmits energy rays.
- the adhesive layer is preferably transparent.
- the adhesive layer may be formed using an energy ray curable adhesive or may be formed using a non-energy ray curable adhesive. That is, the pressure-sensitive adhesive layer may be either energy ray curable or non-energy ray curable.
- the energy ray-curable pressure-sensitive adhesive layer can easily adjust physical properties before and after curing.
- the pressure-sensitive adhesive layer can be formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive.
- the pressure-sensitive adhesive composition can be formed on a target site by applying the pressure-sensitive adhesive composition to the surface on which the pressure-sensitive adhesive layer is to be formed, and drying it as necessary.
- the ratio of the contents of the components that do not vaporize at room temperature in the pressure-sensitive adhesive composition is usually the same as the ratio of the contents of the components in the pressure-sensitive adhesive layer.
- the “normal temperature” means a temperature at which it is not cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25° C.
- the coating of the pressure-sensitive adhesive composition may be performed by a known method, for example, air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen coater.
- a known method for example, air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen coater.
- Examples include a method using various coaters such as a Meyer bar coater and a kiss coater.
- the pressure-sensitive adhesive composition may be applied on the base material and dried as necessary to laminate the pressure-sensitive adhesive layer on the base material.
- the pressure-sensitive adhesive layer is provided on the base material, for example, the pressure-sensitive adhesive composition is applied onto the release film and dried if necessary to form the pressure-sensitive adhesive layer on the release film.
- the exposed surface of the pressure-sensitive adhesive layer may be attached to one surface of the base material to laminate the pressure-sensitive adhesive layer on the base material.
- the release film may be removed at any timing during the manufacturing process or the use process of the protective film-forming composite sheet.
- the drying conditions of the pressure-sensitive adhesive composition are not particularly limited, but when the pressure-sensitive adhesive composition contains the solvent described below, it is preferable to heat-dry it.
- the pressure-sensitive adhesive composition containing a solvent is preferably dried, for example, at 70 to 130° C. for 10 seconds to 5 minutes.
- the pressure-sensitive adhesive composition containing the energy ray-curable pressure-sensitive adhesive that is, the energy ray-curable pressure-sensitive adhesive composition
- the energy ray-curable pressure-sensitive adhesive composition for example, non-energy ray-curable pressure-sensitive adhesive Adhesive composition (I-1) containing resin (I-1a) (hereinafter sometimes abbreviated as “adhesive resin (I-1a)”) and an energy ray-curable compound; non-energy Energy ray curable adhesive resin (I-2a) in which an unsaturated group is introduced into the side chain of the ray curable adhesive resin (I-1a) (hereinafter referred to as “adhesive resin (I-2a)”
- a pressure-sensitive adhesive composition (I-2) containing may be abbreviated); a pressure-sensitive adhesive composition (I-3) containing the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable compound, etc. Is mentioned.
- the pressure-sensitive adhesive composition (I-1) contains the non-energy ray-curable pressure-sensitive adhesive resin (I-1a) and the energy ray-curable compound.
- the adhesive resin (I-1a) is preferably an acrylic resin.
- the acrylic resin include acrylic polymers having at least a structural unit derived from an alkyl (meth)acrylate ester.
- the acrylic resin may have only one type of structural unit, or may have two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
- Examples of the (meth)acrylic acid alkyl ester include those in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferred.
- the (meth)acrylic acid alkyl ester more specifically, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, (meth)acrylic acid n-butyl, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-Ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate,
- the acrylic polymer preferably has a structural unit derived from a (meth)acrylic acid alkyl ester in which the alkyl group has 4 or more carbon atoms.
- the alkyl group preferably has 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms.
- the (meth)acrylic acid alkyl ester in which the alkyl group has 4 or more carbon atoms is preferably an acrylic acid alkyl ester.
- the acrylic polymer preferably further has a structural unit derived from a functional group-containing monomer, in addition to the structural unit derived from the (meth)acrylic acid alkyl ester.
- a functional group-containing monomer for example, the functional group becomes a starting point of crosslinking by reacting with a crosslinking agent described later, or the functional group reacts with an unsaturated group in an unsaturated group-containing compound described later.
- the acrylic polymer include those capable of introducing an unsaturated group into the side chain.
- Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group, and an epoxy group. That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
- hydroxyl group-containing monomer examples include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, (meth) Hydroxyalkyl (meth)acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate; non-(meth)acrylic non-adhesives such as vinyl alcohol and allyl alcohol. Examples thereof include saturated alcohols (unsaturated alcohols having no (meth)acryloyl skeleton).
- Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth)acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above-mentioned ethylenically unsaturated dicarboxylic acids; and (meth)acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate. Be done.
- monocarboxylic acids having an ethylenically unsaturated bond such as (meth)acrylic acid and crotonic acid
- fumaric acid, itaconic acid maleic acid, citracone
- the functional group-containing monomer is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, more preferably a hydroxyl group-containing monomer.
- the functional group-containing monomer constituting the acrylic polymer may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
- the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, more preferably 2 to 32% by mass, based on the total amount of the structural unit. It is particularly preferably 3 to 30% by mass.
- the acrylic polymer may further have a constitutional unit derived from another monomer in addition to the constitutional unit derived from the (meth)acrylic acid alkyl ester and the constitutional unit derived from the functional group-containing monomer.
- the other monomer is not particularly limited as long as it can be copolymerized with (meth)acrylic acid alkyl ester and the like. Examples of the other monomer include styrene, ⁇ -methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, and acrylamide.
- the other monomer constituting the acrylic polymer may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
- the acrylic polymer can be used as the non-energy ray curable adhesive resin (I-1a).
- the functional group in the acrylic polymer is reacted with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group (energy ray-polymerizable group) to obtain the above-mentioned energy ray-curable tackiness. It can be used as a resin (I-2a).
- the adhesive resin (I-1a) contained in the adhesive composition (I-1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
- the ratio of the content of the pressure-sensitive adhesive resin (I-1a) to the total mass of the pressure-sensitive adhesive composition (I-1) is preferably 5 to 99% by mass. It is more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
- Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) include monomers or oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays.
- examples of the monomer include trimethylolpropane tri(meth)acrylate, pentaerythritol(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4 -Poly(meth)acrylate such as butylene glycol di(meth)acrylate and 1,6-hexanediol (meth)acrylate; urethane (meth)acrylate; polyester (meth)acrylate; polyether (meth)acrylate; epoxy ( Examples thereof include (meth)acrylate.
- examples of the oligomer include oligomers obtained by polymerizing the above-exemplified monomers.
- the energy ray-curable compound is preferably a urethane (meth)acrylate or a urethane (meth)acrylate oligomer in that it has a relatively large molecular weight and is unlikely to reduce the storage elastic modulus of the pressure-sensitive adhesive layer.
- the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof may be arbitrarily selected. ..
- the ratio of the content of the energy ray-curable compound with respect to the total mass of the pressure-sensitive adhesive composition (I-1) is preferably 1 to 95% by mass, It is more preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
- a pressure-sensitive adhesive composition ( I-1) preferably further contains a crosslinking agent.
- the cross-linking agent reacts with the functional group to cross-link the adhesive resins (I-1a).
- the cross-linking agent include isocyanate-based cross-linking agents (cross-linking agents having an isocyanate group) such as tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and adducts of these diisocyanates; epoxy-based cross-linking agents such as ethylene glycol glycidyl ether ( Glycidyl group-containing cross-linking agent); Hexa[1-(2-methyl)-aziridinyl]triphosphatriazine and other aziridine-based cross-linking agents (aziridinyl group-containing cross-linking agents); Aluminum chelate and other metal chelate-based cross-linking agents (metals) A cross-linking agent having a chelate structure); an isocyanurate-based cross-linking agent (cross-linking agent having an iso
- the pressure-sensitive adhesive composition (I-1) may contain only one type of crosslinking agent, or two or more types of crosslinking agents, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
- the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-1a), It is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
- the pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator.
- the pressure-sensitive adhesive composition (I-1) containing the photopolymerization initiator is sufficiently cured even when irradiated with a relatively low energy ray such as ultraviolet rays.
- photopolymerization initiator examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, and other benzoin compounds; acetophenone, 2-hydroxy Acetophenone compounds such as 2-methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethan-1-one; bis(2,4,6-trimethylbenzoyl)phenylphosphine Acylphosphine oxide compounds such as oxides and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfide compounds such as benzylphenyl sulfide and tetramethylthiuram monosulfide; ⁇ -ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo Azo compounds
- the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
- the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the energy ray-curable compound, and 0 It is more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
- the pressure-sensitive adhesive composition (I-1) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
- the other additives include antistatic agents, antioxidants, softening agents (plasticizers), fillers (fillers), rust inhibitors, colorants (pigments, dyes), sensitizers, tackifiers.
- known additives such as a reaction retarder, a crosslinking accelerator (catalyst), and an inter-layer migration inhibitor.
- the reaction retarder means, for example, an undesired crosslinking reaction in the adhesive composition (I-1) during storage due to the action of the catalyst mixed in the adhesive composition (I-1). It is a component for suppressing the progress.
- the inter-layer migration inhibitor is, for example, a component for suppressing the migration of components contained in a layer adjacent to the pressure-sensitive adhesive layer, such as a protective film forming film, to the pressure-sensitive adhesive layer.
- the inter-layer migration inhibitor include the same components as those targeted for migration inhibition. For example, when the migration inhibition target is the epoxy resin in the protective film forming film, the same type of epoxy resin can be used.
- the other additives contained in the pressure-sensitive adhesive composition (I-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
- the content of other additives in the pressure-sensitive adhesive composition (I-1) is not particularly limited and may be appropriately selected depending on the type.
- the pressure-sensitive adhesive composition (I-1) may contain a solvent. Since the pressure-sensitive adhesive composition (I-1) contains a solvent, the suitability for coating on the surface to be coated is improved.
- the solvent is preferably an organic solvent
- examples of the organic solvent include ketones such as methyl ethyl ketone and acetone; esters (carboxylic acid esters) such as ethyl acetate; ethers such as tetrahydrofuran and dioxane; cyclohexane, n-hexane and the like. And aliphatic hydrocarbons; aromatic hydrocarbons such as toluene and xylene; alcohols such as 1-propanol and 2-propanol.
- the solvent used in the production of the adhesive resin (I-1a) may be directly used in the adhesive composition (I-1) without being removed from the adhesive resin (I-1a).
- the same or different kind of solvent as that used in the production of the adhesive resin (I-1a) may be added separately during the production of the adhesive composition (I-1).
- the solvent contained in the pressure-sensitive adhesive composition (I-1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
- the content of the solvent in the pressure-sensitive adhesive composition (I-1) is not particularly limited and may be adjusted as appropriate.
- the pressure-sensitive adhesive composition (I-2) is an energy-ray-curable pressure-sensitive adhesive resin in which an unsaturated group is introduced into the side chain of the non-energy-ray-curable pressure-sensitive adhesive resin (I-1a). It contains (I-2a).
- the adhesive resin (I-2a) can be obtained, for example, by reacting the functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group.
- the unsaturated group-containing compound can bond with the adhesive resin (I-1a) by reacting with a functional group in the adhesive resin (I-1a) in addition to the energy ray-polymerizable unsaturated group.
- a functional group in the adhesive resin (I-1a) in addition to the energy ray-polymerizable unsaturated group.
- It is a compound having a group.
- the energy ray-polymerizable unsaturated group include a (meth)acryloyl group, a vinyl group (ethenyl group), an allyl group (2-propenyl group), and the like, and a (meth)acryloyl group is preferable.
- Examples of the group capable of binding to the functional group in the adhesive resin (I-1a) include an isocyanate group and a glycidyl group capable of binding to a hydroxyl group or an amino group, and a hydroxyl group and an amino group capable of binding to a carboxy group or an epoxy group. Etc.
- Examples of the unsaturated group-containing compound include (meth)acryloyloxyethyl isocyanate, (meth)acryloyl isocyanate, and glycidyl (meth)acrylate.
- the adhesive resin (I-2a) contained in the adhesive composition (I-2) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
- the ratio of the content of the pressure-sensitive adhesive resin (I-2a) to the total mass of the pressure-sensitive adhesive composition (I-2) is preferably 5 to 99% by mass. It is more preferably 10 to 95% by mass, and particularly preferably 10 to 90% by mass.
- the adhesive resin (I-2a) for example, when the same acrylic polymer having a constitutional unit derived from a functional group-containing monomer as in the adhesive resin (I-1a) is used, the adhesive composition ( I-2) may further contain a crosslinking agent.
- Examples of the cross-linking agent in the pressure-sensitive adhesive composition (I-2) include the same cross-linking agents in the pressure-sensitive adhesive composition (I-1).
- the crosslinking agent contained in the pressure-sensitive adhesive composition (I-2) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
- the content of the crosslinking agent is preferably 0.01 to 50 parts by mass relative to 100 parts by mass of the content of the adhesive resin (I-2a), It is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
- the pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator.
- the pressure-sensitive adhesive composition (I-2) containing the photopolymerization initiator is sufficiently cured even when irradiated with a relatively low energy ray such as ultraviolet rays.
- Examples of the photopolymerization initiator in the pressure-sensitive adhesive composition (I-2) include the same as the photopolymerization initiator in the pressure-sensitive adhesive composition (I-1).
- the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or may be two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
- the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-2a). It is more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
- the pressure-sensitive adhesive composition (I-2) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired. Further, the pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1). Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-2) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1). The other additive and solvent contained in the pressure-sensitive adhesive composition (I-2) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to. The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-2) are not particularly limited, and may be appropriately selected depending on the type.
- the pressure-sensitive adhesive composition (I-3) contains the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable compound.
- the ratio of the content of the pressure-sensitive adhesive resin (I-2a) to the total mass of the pressure-sensitive adhesive composition (I-3) is preferably 5 to 99% by mass. It is more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
- Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) include monomers and oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays. Examples thereof include the same energy ray-curable compounds contained in the product (I-1).
- the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof may be arbitrarily selected. ..
- the content of the energy ray-curable compound is 0.01 to 300 parts by mass based on 100 parts by mass of the adhesive resin (I-2a). It is preferably 0.03 to 200 parts by mass, more preferably 0.05 to 100 parts by mass.
- the pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator.
- the curing reaction of the pressure-sensitive adhesive composition (I-3) containing a photopolymerization initiator sufficiently proceeds even when irradiated with a relatively low energy ray such as ultraviolet rays.
- Examples of the photopolymerization initiator in the pressure-sensitive adhesive composition (I-3) include the same photopolymerization initiators in the pressure-sensitive adhesive composition (I-1).
- the photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
- the content of the photopolymerization initiator is 0.01 to 100 parts by mass based on the total content of the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable compound.
- the amount is preferably 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
- the pressure-sensitive adhesive composition (I-3) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired. Further, the pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1). Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-3) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1). The other additives and solvent contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to. The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-3) are not particularly limited, and may be appropriately selected depending on the type.
- Examples of the pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) include non-energy-ray-curable pressure-sensitive adhesive compositions, in addition to the energy-ray-curable pressure-sensitive adhesive composition.
- Examples of the non-energy ray curable pressure sensitive adhesive composition include non-energy ray curable materials such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates and ester resins.
- the pressure-sensitive adhesive composition (I-4) containing an adhesive resin (I-1a) is preferable, and the one containing an acrylic resin is preferable.
- the pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contain one or more cross-linking agents, and the content thereof is the above-mentioned pressure-sensitive adhesive composition. This can be the same as the case of (I-1) or the like.
- Adhesive resin (I-1a) examples of the adhesive resin (I-1a) in the adhesive composition (I-4) include the same adhesive resin (I-1a) in the adhesive composition (I-1).
- the adhesive resin (I-1a) contained in the adhesive composition (I-4) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
- the ratio of the content of the pressure-sensitive adhesive resin (I-1a) to the total mass of the pressure-sensitive adhesive composition (I-4) is preferably 5 to 99% by mass. It is more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
- the pressure-sensitive adhesive composition ( I-4) preferably further contains a crosslinking agent.
- Examples of the crosslinking agent in the pressure-sensitive adhesive composition (I-4) include the same as the crosslinking agent in the pressure-sensitive adhesive composition (I-1).
- the crosslinking agent contained in the pressure-sensitive adhesive composition (I-4) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
- the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-1a), It is more preferably 0.1 to 47 parts by mass, and particularly preferably 0.3 to 44 parts by mass.
- the pressure-sensitive adhesive composition (I-4) may contain other additives which do not correspond to any of the above components, as long as the effects of the present invention are not impaired. Further, the pressure-sensitive adhesive composition (I-4) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1). Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-4) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1). The other additive and solvent contained in the pressure-sensitive adhesive composition (I-4) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to. The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-4) are not particularly limited, and may be appropriately selected depending on the type.
- the adhesive layer is preferably non-energy ray curable. This is because if the pressure-sensitive adhesive layer is energy ray-curable, it may not be possible to prevent the pressure-sensitive adhesive layer from being simultaneously cured when the protective film-forming film is cured by irradiation with energy rays. If the pressure-sensitive adhesive layer is cured at the same time as the protective film-forming film, the cured product of the protective film-forming film and the pressure-sensitive adhesive layer may stick to the interface between them so that they cannot be peeled off.
- the semiconductor chip with the protective film cannot be normally picked up. If the pressure-sensitive adhesive layer is non-energy ray curable, such a problem can be reliably avoided, and the semiconductor chip with a protective film can be more easily picked up.
- the pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) and the pressure-sensitive adhesive compositions (I-1) to (I-3) such as the pressure-sensitive adhesive composition (I-4) It is obtained by blending the above-mentioned pressure-sensitive adhesive and, if necessary, each component for constituting the pressure-sensitive adhesive composition, such as components other than the above-mentioned pressure-sensitive adhesive.
- the order of adding each component is not particularly limited, and two or more components may be added simultaneously.
- a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by diluting any compounding component other than the solvent in advance.
- the solvent may be used as a mixture with these ingredients.
- the method of mixing each component at the time of compounding is not particularly limited, and a known method such as a method of mixing by rotating a stirring bar or a stirring blade; a method of mixing using a mixer; a method of mixing by adding ultrasonic waves It may be selected appropriately.
- the temperature and time during addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30°C.
- the backside antistatic layer is in the form of a sheet or film and contains an antistatic agent.
- the backside antistatic layer may contain a resin in addition to the antistatic agent.
- the backside antistatic layer may be composed of one layer (single layer) or may be composed of two or more layers. When composed of a plurality of layers, these layers may be the same as each other. They may be different, and the combination of these plural layers is not particularly limited.
- the thickness of the back surface antistatic layer is preferably 200 nm or less, more preferably 180 nm or less, and may be 100 nm or less, for example.
- the backside antistatic layer having a thickness of 200 nm or less since the amount of the antistatic agent used can be reduced while maintaining sufficient antistatic ability, a composite film for forming a protective film including such a backside antistatic layer can be obtained. The cost of the seat can be reduced.
- the thickness of the backside antistatic layer is 100 nm or less, in addition to the above-described effects, the provision of the backside antistatic layer suppresses the fluctuation of the characteristics of the protective film-forming composite sheet to the minimum The effect that it can be obtained is also obtained.
- the “thickness of the backside antistatic layer” means the total thickness of the backside antistatic layer, and for example, the thickness of the backside antistatic layer composed of a plurality of layers means all the backside antistatic layers. Means the total thickness of the layers.
- the thickness of the back surface antistatic layer is preferably 10 nm or more, and may be any of 20 nm or more, 30 nm or more, 40 nm or more, and 65 nm or more.
- the backside antistatic layer having a thickness of not less than the above lower limit is easier to form and has a more stable structure.
- the thickness of the backside antistatic layer can be appropriately adjusted within the range set by arbitrarily combining the above-mentioned preferred lower limit value and upper limit value.
- the backside antistatic layer preferably has a thickness of 10 to 200 nm, for example, 20 to 200 nm, 30 to 200 nm, 40 to 180 nm, and 65 to 100 nm. Good. However, these are examples of the thickness of the back surface antistatic layer.
- the back surface antistatic layer is preferably transparent in order to visually recognize the laser printing of the protective film through the support sheet. Further, when the protective film-forming film has energy ray curability, the backside antistatic layer preferably transmits energy rays.
- the backside antistatic layer can be formed using the antistatic composition (VI-1) containing the antistatic agent. For example, by applying the antistatic composition (VI-1) to the surface on which the backside antistatic layer is to be formed and drying it as necessary, the backside antistatic layer can be formed at the target site.
- the content ratio of the components that do not vaporize at room temperature is usually the same as the content ratio of the components in the backside antistatic layer.
- the antistatic composition (VI-1) may be applied by a known method, for example, the same method as in the case of the pressure-sensitive adhesive composition described above.
- the antistatic composition (VI-1) is applied onto the base material and dried if necessary to prevent the back surface antistatic layer on the base material.
- the layers may be stacked.
- the antistatic composition (VI-1) is applied onto the release film, and dried if necessary to form a back surface on the release film.
- You may laminate
- the release film may be removed at any timing during the production process or the use process of the composite film for forming a protective film.
- the surface of the base material on which the back surface antistatic layer is formed may be a rough surface or a smooth surface.
- the backside antistatic layer is the backside antistatic layer. It is preferable to select a surface having a rougher surface roughness than the surface of the base material on the side where no is formed. Further, from the viewpoint of maintaining the smoothness of the surface of the antistatic layer with a thin film thickness, the base material surface on the side where the backside antistatic layer is formed is more than that on the side where the backside antistatic layer is not formed. It is preferable to select a surface having a smoother surface roughness.
- the drying conditions of the antistatic composition (VI-1) are not particularly limited, but when the antistatic composition (VI-1) contains the solvent described below, it is preferable to heat dry.
- the antistatic composition (VI-1) containing a solvent is preferably dried, for example, at 40 to 130° C. for 10 seconds to 5 minutes.
- the antistatic composition (VI-1) may contain the resin in addition to the antistatic agent.
- the antistatic agent may be a known one such as a conductive compound and is not particularly limited, but an uncolored one is preferable.
- the antistatic agent may be, for example, a low molecular weight compound or a high molecular weight compound (in other words, an oligomer or a polymer).
- examples of the low molecular weight compound include various ionic liquids.
- the ionic liquid include known ones such as pyrimidinium salt, pyridinium salt, piperidinium salt, pyrrolidinium salt, imidazolium salt, morpholinium salt, sulfonium salt, phosphonium salt and ammonium salt.
- examples of the polymer compound include poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (sometimes referred to as “PEDOT/PSS” in the present specification) and carbon nanotubes. Etc.
- the antistatic agent contained in the antistatic composition (VI-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
- the ratio of the content of the antistatic agent to the total content of all components other than the solvent may be, for example, 0.1 to 30% by mass or 0.5 to 15% by mass.
- the ratio is equal to or more than the lower limit value, the effect of suppressing peeling charge of the protective film-forming composite sheet becomes high, and as a result, the effect of suppressing foreign matter mixing between the protective film forming film and the semiconductor wafer is high.
- the ratio is not more than the upper limit value, the strength of the back surface antistatic layer becomes higher.
- the resin contained in the antistatic composition (VI-1) and the backside antistatic layer may be either curable or non-curable. It may be either.
- Examples of the preferable resin include those that function as a binder resin.
- examples of the resin include acrylic resins, and energy ray curable acrylic resins are preferable.
- examples of the acrylic resin in the antistatic composition (VI-1) and the back antistatic layer include the same acrylic resin as in the pressure-sensitive adhesive layer.
- examples of the energy ray curable acrylic resin in the antistatic composition (VI-1) and the back antistatic layer include the same as the adhesive resin (I-2a) in the adhesive layer.
- the resin contained in the antistatic composition (VI-1) and the backside antistatic layer may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof are arbitrarily selected. it can.
- the ratio of the content of the resin to the total content of all components other than the solvent may be, for example, any of 30 to 99.9% by mass, 35 to 98% by mass, 60 to 98% by mass, and 85 to 98% by mass.
- the ratio is not less than the lower limit value, the strength of the back surface antistatic layer becomes higher.
- the ratio is not more than the upper limit value, the content of the antistatic agent in the antistatic layer can be increased.
- the antistatic composition (VI-1) contains the energy ray-curable resin, it may contain an energy ray-curable compound. Further, when the antistatic composition (VI-1) contains the energy ray-curable resin, it may contain a photopolymerization initiator in order to efficiently proceed the polymerization reaction of the resin.
- the energy ray-curable compound and photopolymerization initiator contained in the antistatic composition (VI-1) include, for example, the energy ray-curable compound and the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1), respectively. The same as the photopolymerization initiator can be used.
- Each of the energy ray-curable compound and the photopolymerization initiator contained in the antistatic composition (VI-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
- the content of the energy ray-curable compound and the photopolymerization initiator in the antistatic composition (VI-1) is not particularly limited, and depends on the type of the resin, the energy ray-curable compound or the photopolymerization initiator. It may be selected as appropriate.
- the antistatic composition (VI-1) may contain other additives which do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
- the antistatic composition (VI-1) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
- other additives provided that the antistatic agent is contained in the above-mentioned pressure-sensitive adhesive composition (I-1) are included. And the same as the solvent.
- examples of the other additives contained in the antistatic composition (VI-1) include emulsifiers other than the above.
- the solvent contained in the antistatic composition (VI-1) other than the above, other alcohols such as ethanol; 2-methoxyethanol (ethylene glycol monomethyl ether), 2-ethoxyethanol (ethylene glycol) Examples also include alkoxy alcohols such as monoethyl ether) and 1-methoxy-2-propanol (propylene glycol monomethyl ether).
- the other additives and solvent contained in the antistatic composition (VI-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
- the contents of the other additives and the solvent of the antistatic composition (VI-1) are not particularly limited, and may be appropriately selected according to their types.
- the antistatic composition (VI-1) contains the above-mentioned antistatic agent and, if necessary, each component such as a component other than the above antistatic agent for constituting the antistatic composition (VI-1). It can be obtained.
- the antistatic composition (VI-1) can be produced by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the compounding components are different.
- the surface antistatic layer is different from the back surface antistatic layer in the arrangement position in the protective film forming composite sheet, but the configuration itself is the same as the back surface antistatic layer.
- the surface antistatic layer can be formed using the antistatic composition (VI-1) by the same method as the method for forming the backside antistatic layer described above. Therefore, detailed description of the surface antistatic layer is omitted.
- the composite sheet for forming a protective film includes both the surface antistatic layer and the backside antistatic layer, the surface antistatic layer and the backside antistatic layer may be the same or different from each other.
- the surface of the base material on which the surface antistatic layer is formed may be a rough surface or a smooth surface.
- the surface of the base material on which the surface antistatic layer is formed is the surface antistatic layer. It is preferable to select a surface having a rougher surface roughness than the surface of the base material on the side where no is formed. Further, from the viewpoint of maintaining the smoothness of the surface of the antistatic layer with a thin film thickness, the base material surface on the side on which the surface antistatic layer is formed is smaller than that on the side on which the surface antistatic layer is not formed. It is preferable to select a surface having a smoother surface roughness.
- the intermediate layer has a sheet shape or a film shape.
- a preferable intermediate layer includes a peelability improving layer having one surface subjected to a peeling treatment.
- the peelability improving layer include a plurality of layers including a resin layer and a peeling treatment layer formed on the resin layer.
- the peelability improving layer is arranged with the release treatment layer facing the protective film forming film side.
- the resin layer can be produced by molding a resin composition containing a resin. Then, the peelability improving layer can be manufactured by subjecting one surface of the resin layer to a peeling treatment.
- the peeling treatment of the resin layer can be performed with various known peeling agents such as alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based or wax-based release agents.
- the release agent is preferably an alkyd-based, silicone-based or fluorine-based release agent.
- the resin that is a constituent material of the resin layer may be appropriately selected according to the purpose and is not particularly limited.
- Preferred examples of the resin include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyethylene (PE), polypropylene (PP) and the like.
- the intermediate layer may be composed of one layer (single layer) or may be composed of two or more layers, regardless of whether or not it is a peelability improving layer.
- these layers may be the same or different from each other, and the combination of these layers is not particularly limited.
- both the resin layer and the peeling treatment layer may be composed of one layer (single layer) or two or more layers. It may be composed of a plurality of layers.
- the thickness of the intermediate layer may be appropriately adjusted according to its type and is not particularly limited.
- the thickness of the peelability improving layer (the total thickness of the resin layer and the peeling treatment layer) is preferably 10 to 2000 nm, more preferably 25 to 1500 nm, and further preferably 50 to 1200 nm. Particularly preferred.
- the thickness of the peelability improving layer is equal to or more than the lower limit value, the action of the peelability improving layer becomes more remarkable, and the effect of suppressing breakage such as cutting of the peelability improving layer becomes higher.
- the thickness of the peelability improving layer is less than or equal to the upper limit value, when picking up a semiconductor chip with a protective film or a semiconductor chip with a film for forming a protective film, which will be described later, the force for pushing up these chips is easily transmitted to these chips. Therefore, the pickup can be performed more easily.
- the intermediate layer may be transparent or opaque, and may be colored depending on the purpose.
- the intermediate layer preferably transmits energy rays.
- the intermediate layer is preferably transparent.
- the protective film forming film becomes a protective film by curing.
- This protective film is for protecting the back surface of the semiconductor wafer or the semiconductor chip (in other words, the surface opposite to the electrode formation surface).
- the protective film-forming film is soft and can be easily attached to an object to be attached.
- the "film for forming a protective film” means a film before being cured
- the "protective film” means a film obtained by curing the film for forming a protective film.
- the laminated structure of the cured product of the support sheet and the protective film forming film is maintained even after the protective film forming film is cured. As long as this laminated structure is referred to as a "composite sheet for forming a protective film”.
- the protective film forming film may be, for example, either thermosetting or energy ray curable, or may have both thermosetting and energy ray curable properties, and It does not need to have both properties of curability and energy ray curability.
- the protective film-forming film does not have curability, the protective film-forming film is formed at the stage when the protective film-forming film is attached to the semiconductor wafer by the protective film-forming film as described below. It is considered that the formation of the protective film from is completed.
- the protective film-forming film is composed of one layer (single layer) regardless of whether it is curable or not, and when it is curable, whether it is thermosetting or energy ray curable. It may be present or may be composed of two or more layers. When the protective film-forming film is composed of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
- the thickness of the protective film forming film is the presence or absence of curability of the protective film forming film, and, if it is curable, whether the protective film forming film is thermosetting or energy ray curable. Regardless of the above, it is preferably 1 to 100 ⁇ m, more preferably 3 to 80 ⁇ m, and particularly preferably 5 to 60 ⁇ m. When the thickness of the protective film forming film is not less than the lower limit value, a protective film having a higher protective ability can be formed. Further, when the thickness of the protective film forming film is equal to or less than the upper limit value, it is possible to avoid an excessive thickness.
- the "thickness of the protective film forming film” means the total thickness of the protective film forming film, for example, the thickness of the protective film forming film composed of a plurality of layers, the protective film forming film. Means the total thickness of all the layers that make up.
- the protective film-forming film can be formed by using the protective film-forming composition containing the constituent material.
- the film for forming a protective film can be formed by applying the composition for forming a protective film to the surface on which the film is to be formed and then drying it as necessary.
- the content ratio of the components that do not vaporize at room temperature in the protective film-forming composition is usually the same as the content ratio of the components in the protective film-forming film.
- the thermosetting protective film-forming film can be formed using the thermosetting protective film-forming composition, and the energy ray-curable protective film forming film can be formed using the energy-ray-curable protective film forming composition. it can.
- the thermal curing of the protective film-forming film contributes to the formation of the protective film. If the contribution of energy ray curing is larger than the above, the protective film-forming film is treated as a thermosetting film. On the contrary, when the contribution of the energy ray curing of the protective film forming film to the formation of the protective film is larger than the thermal curing contribution, the protective film forming film is treated as the energy ray curing film.
- the coating of the composition for forming a protective film can be performed, for example, by the same method as in the case of coating the above-mentioned pressure-sensitive adhesive composition.
- the protective film-forming composition is dried under the presence or absence of curability of the protective film-forming film, and when it is curable, the protective film-forming film is either thermosetting or energy ray curable. It is not particularly limited, regardless of the above. However, when the composition for forming a protective film contains the solvent described below, it is preferable to heat-dry. Then, the composition for forming a protective film containing a solvent is preferably dried by heating, for example, at 70 to 130° C. for 10 seconds to 5 minutes. However, the composition for forming a thermosetting protective film is preferably dried by heating so that the composition itself and the film for forming a thermosetting protective film formed from this composition are not thermally cured.
- thermosetting protective film forming film and the energy ray curable protective film forming film will be sequentially described below.
- thermosetting protective film forming film is attached to the back surface of a semiconductor wafer and heat-cured to form a protective film.
- the heating temperature during thermosetting of the thermosetting protective film-forming film is preferably 100 to 200° C., more preferably 110 to 180° C., and particularly preferably 120 to 170° C. ..
- the heating time during the heat curing is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and particularly preferably 1 to 2 hours.
- thermosetting protective film forming film examples include those containing a polymer component (A) and a thermosetting component (B).
- the polymer component (A) is a component that can be regarded as formed by a polymerization reaction of a polymerizable compound.
- the thermosetting component (B) is a component that can undergo a curing (polymerization) reaction by using heat as a trigger for the reaction.
- the polymerization reaction also includes a polycondensation reaction.
- thermosetting protective film forming composition (III-1) A preferable thermosetting protective film-forming composition is, for example, a thermosetting protective film-forming composition (III-1) containing the polymer component (A) and the thermosetting component (B) (the present specification). In the text, it may be simply abbreviated as “composition (III-1)”) and the like.
- the polymer component (A) is a component for imparting film-forming properties and flexibility to the thermosetting protective film-forming film.
- the polymer component (A) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
- polymer component (A) examples include acrylic resin, polyester, urethane resin, acrylic urethane resin, silicone resin, rubber resin, phenoxy resin, and thermosetting polyimide, and acrylic resin is preferable. ..
- the acrylic resin in the polymer component (A) examples include known acrylic polymers.
- the weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 15,000,000.
- the shape stability (temporal stability during storage) of the thermosetting protective film-forming film is improved.
- the weight average molecular weight of the acrylic resin is not more than the upper limit value, the thermosetting protective film forming film easily follows the uneven surface of the adherend, and the adherend and the thermosetting protective film are formed. Generation of voids and the like between the film and the film for use is further suppressed.
- a "weight average molecular weight” is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method, unless otherwise specified.
- the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 60 to 70° C., more preferably ⁇ 30 to 50° C.
- Tg of the acrylic resin is at least the above lower limit, for example, the adhesive force between the cured product of the protective film forming film and the support sheet is suppressed, and the releasability of the support sheet is appropriately improved. Further, when the Tg of the acrylic resin is not more than the upper limit value, the adhesive force between the thermosetting protective film forming film and the adherend of the cured product thereof is improved.
- the Tg of the resin in the present specification is not limited to an acrylic resin, and is, for example, from ⁇ 70° C. using a differential scanning calorimeter (DSC) at a temperature raising rate or a temperature lowering rate of 10° C./min. It can be obtained by changing the temperature of the object to be measured between 150°C and confirming the inflection point.
- DSC differential scanning calorimeter
- the acrylic resin is selected from, for example, one or more polymers of (meth)acrylic acid ester; (meth)acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene and N-methylolacrylamide. Examples thereof include copolymers of two or more kinds of monomers.
- (meth)acrylic acid is a concept that includes both “acrylic acid” and “methacrylic acid”.
- (meth)acryloyl group is a concept that includes both “acryloyl group” and “methacryloyl group”
- (meth)acrylate” "" is a concept including both “acrylate” and "methacrylate”.
- Examples of the (meth)acrylic acid ester that constitutes the acrylic resin include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and (meth)acrylate.
- N-Butyl acrylate isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, (meth)acrylic Heptyl acid, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate Undecyl (meth)acrylate, dodecyl (meth)acrylate (lauryl (meth)acrylate), tridecyl (meth)acrylate, tetradecyl (meth)acrylate myristyl (meth)acrylate, (meth)acrylic acid
- alkyl groups constituting the alkyl este
- the acrylic resin is, for example, one or more monomers selected from (meth)acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, etc., in addition to the (meth)acrylic acid ester. May be obtained by copolymerization.
- the monomer that constitutes the acrylic resin may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
- the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth)acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
- the functional group of the acrylic resin may be bonded to another compound via a crosslinking agent (F) described below, or may be directly bonded to another compound without the crosslinking agent (F). ..
- F crosslinking agent
- thermoplastic resin other than an acrylic resin
- thermoplastic resin is used alone without using an acrylic resin.
- thermosetting protective film-forming film easily follows the uneven surface of the adherend, and the adherend and thermosetting Occurrence of voids and the like between the film and the film for forming a protective film may be further suppressed.
- the weight average molecular weight of the thermoplastic resin is preferably 1,000 to 100,000, more preferably 3,000 to 80,000.
- the glass transition temperature (Tg) of the thermoplastic resin is preferably ⁇ 30 to 150° C., more preferably ⁇ 20 to 120° C.
- thermoplastic resin examples include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, polystyrene and the like.
- thermoplastic resin contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof. Can be arbitrarily selected.
- the ratio of the content of the polymer component (A) to the total content of all components other than the solvent ie, the thermosetting protective film forming film in the thermosetting protective film forming film.
- the ratio of the content of the polymer component (A) to the total mass of the film for use is preferably 5 to 85% by mass, regardless of the type of the polymer component (A), and 5 to 80% by mass. More preferably, it may be any of 5 to 65% by mass, 5 to 50% by mass, and 5 to 35% by mass.
- the polymer component (A) may also correspond to the thermosetting component (B).
- the composition (III-1) contains components corresponding to both the polymer component (A) and the thermosetting component (B)
- the composition (III-1) is , The polymer component (A) and the thermosetting component (B).
- thermosetting component (B) is a component for curing the thermosetting protective film forming film.
- the thermosetting component (B) contained in the composition (III-1) and the film for forming a thermosetting protective film may be only one kind, or two or more kinds. The combination and the ratio can be arbitrarily selected.
- thermosetting component (B) examples include epoxy thermosetting resins, thermosetting polyimides, polyurethanes, unsaturated polyesters, silicone resins and the like, with epoxy thermosetting resins being preferred.
- the epoxy thermosetting resin includes an epoxy resin (B1) and a thermosetting agent (B2).
- the epoxy thermosetting resin contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
- ⁇ Epoxy resin (B1) examples include known ones, for example, polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and hydrogenated product thereof, orthocresol novolac epoxy resin, dicyclopentadiene type epoxy resin, Bifunctional or higher functional epoxy compounds such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin and phenylene skeleton type epoxy resin can be mentioned.
- An epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (B1).
- An epoxy resin having an unsaturated hydrocarbon group has higher compatibility with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, by using the epoxy resin having an unsaturated hydrocarbon group, the reliability of the semiconductor chip with a resin film obtained by using the composite sheet for forming a protective film is improved.
- Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy groups of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction with (meth)acrylic acid or a derivative thereof.
- Examples of the epoxy resin having an unsaturated hydrocarbon group include, for example, compounds in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
- the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth)acryloyl group, (meth) Examples thereof include an acrylamide group, and an acryloyl group is preferable.
- the number average molecular weight of the epoxy resin (B1) is not particularly limited, but from the viewpoint of the curability of the thermosetting protective film forming film and the strength and heat resistance of the resin film after curing, it is preferably 300 to 30,000.
- the range of 300 to 10,000 is more preferable, and the range of 300 to 3000 is particularly preferable.
- the number average molecular weight is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method, unless otherwise specified.
- the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g/eq, and more preferably 150 to 950 g/eq.
- epoxy equivalent means the number of grams (g/eq) of an epoxy compound containing 1 gram equivalent of an epoxy group, and can be measured according to the method of JIS K 7236:2001.
- the epoxy resin (B1) may be used alone or in combination of two or more, and when two or more are used in combination, the combination and ratio thereof can be arbitrarily selected.
- thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
- thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with an epoxy group in one molecule.
- the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is dehydrated, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is dehydrated. It is preferably a group, and more preferably a phenolic hydroxyl group or an amino group.
- thermosetting agents (B2) examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac type phenol resins, dicyclopentadiene type phenol resins, aralkyl type phenol resins, and the like. ..
- examples of the amine curing agent having an amino group include dicyandiamide.
- the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
- the thermosetting agent (B2) having an unsaturated hydrocarbon group for example, a compound obtained by substituting a part of a hydroxyl group of a phenol resin with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
- the unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having an unsaturated hydrocarbon group described above.
- thermosetting agent (B2) When a phenolic curing agent is used as the thermosetting agent (B2), the thermosetting agent (B2) having a high softening point or glass transition temperature is preferable because the peelability of the protective film from the support sheet is improved. preferable.
- the number average molecular weight of the resin component such as a polyfunctional phenol resin, a novolac type phenol resin, a dicyclopentadiene type phenol resin, an aralkyl type phenol resin is preferably 300 to 30,000. , 400 to 10000 is more preferable, and 500 to 3000 is particularly preferable.
- the molecular weight of the non-resin component such as biphenol or dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
- thermosetting agent (B2) one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, their combination and ratio can be arbitrarily selected.
- the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the epoxy resin (B1). It is preferably 1 part to 200 parts by mass, more preferably 1 to 200 parts by mass, 1 to 50 parts by mass, 1 to 25 parts by mass, and 1 to 10 parts by mass. May be.
- the content of the thermosetting agent (B2) is at least the lower limit value, the curing of the thermosetting protective film-forming film will proceed more easily.
- the content of the thermosetting agent (B2) is equal to or less than the upper limit value, the moisture absorption rate of the thermosetting protective film-forming film is reduced, and the package obtained using the protective film-forming composite sheet is reduced. Reliability is improved.
- the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is
- the content of the polymer component (A) is preferably 20 to 500 parts by mass, more preferably 25 to 300 parts by mass, further preferably 30 to 150 parts by mass, relative to 100 parts by mass. For example, it may be any one of 35 to 100 parts by mass and 40 to 80 parts by mass.
- the content of the thermosetting component (B) is in such a range, for example, the adhesive force between the cured product of the protective film forming film and the support sheet is suppressed, and the peelability of the support sheet is improved. To do.
- the composition (III-1) and the thermosetting protective film-forming film may contain a curing accelerator (C).
- the curing accelerator (C) is a component for adjusting the curing rate of the composition (III-1).
- Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; 2-methylimidazole, 2-phenylimidazole. , 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, etc.
- Imidazole substituted with a group organic phosphines such as tributylphosphine, diphenylphosphine, and triphenylphosphine (phosphines in which one or more hydrogen atoms are substituted with organic groups); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylboron salts such as tetraphenylborate.
- the curing accelerator (C) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
- the content of the curing accelerator (C) in the composition (III-1) and the thermosetting protective film-forming film is 100% by weight of the thermosetting component (B). It is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 7 parts by mass, relative to parts by mass.
- the content of the curing accelerator (C) is at least the lower limit value, the effect of using the curing accelerator (C) can be obtained more significantly.
- the content of the curing accelerator (C) is less than or equal to the upper limit value, for example, the highly polar curing accelerator (C) may be contained in the thermosetting protective film-forming film under high temperature and high humidity conditions. The effect of suppressing the segregation by moving to the adhesion interface side with the adherent is enhanced. As a result, the reliability of the semiconductor chip with a protective film obtained by using the composite sheet for forming a protective film is further improved.
- the composition (III-1) and the thermosetting protective film-forming film may contain a filler (D).
- the thermosetting protective film-forming film contains the filler (D)
- the thermal expansion coefficient of the protective film obtained by curing the thermosetting protective film-forming film is easily adjusted.
- the reliability of the semiconductor chip with the protective film obtained by using the composite sheet for forming the protective film is further improved.
- the thermosetting protective film forming film contains the filler (D)
- the hygroscopic rate of the protective film can be reduced and the heat dissipation can be improved.
- the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
- Preferable inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride, etc.; spheres of these inorganic fillers; surface modification of these inorganic fillers. Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
- the inorganic filler is preferably silica or alumina, and more preferably silica.
- the filler (D) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof and The ratio can be arbitrarily selected.
- the ratio of the content of the filler (D) to the total content of all components other than the solvent that is, the thermosetting protective film forming film in the thermosetting protective film forming film.
- the ratio of the content of the filler (D) to the total mass of the film for use is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and for example, 20 to 65% by mass. , 30 to 65% by mass, and 40 to 65% by mass. When the ratio is within such a range, it becomes easier to adjust the thermal expansion coefficient of the protective film.
- the composition (III-1) and the thermosetting protective film-forming film may contain a coupling agent (E).
- a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound it is possible to improve the adhesiveness and adhesion of the thermosetting protective film-forming film to an adherend. it can. Further, by using the coupling agent (E), the cured product of the thermosetting protective film-forming film has improved water resistance without impairing heat resistance.
- the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (A), thermosetting component (B), etc., and is preferably a silane coupling agent. More preferable.
- Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, and 2-glycidyloxymethyldiethoxysilane.
- the coupling agent (E) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
- the content of the coupling agent (E) in the composition (III-1) and the thermosetting protective film-forming film is the polymer component (A) and the thermosetting component. It is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and 0.1 to 5 parts by mass based on 100 parts by mass of the total content of (B). Is particularly preferable.
- the content of the coupling agent (E) is at least the lower limit value, the dispersibility of the filler (D) in the resin is improved, and the thermosetting protective film forming film is adhered to the adherend.
- the effect of using the coupling agent (E), such as improved properties, can be more remarkably obtained.
- the content of the coupling agent (E) is not more than the upper limit value, the generation of outgas is further suppressed.
- Cross-linking agent (F) As the polymer component (A), those having a functional group such as a vinyl group, a (meth)acryloyl group, an amino group, a hydroxyl group, a carboxy group or an isocyanate group, which can be bonded to other compounds, such as the above-mentioned acrylic resin.
- the composition (III-1) and the thermosetting protective film-forming film may contain a crosslinking agent (F).
- the cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) to another compound for cross-linking. By thus cross-linking, the thermosetting protective film-forming film is formed. The initial adhesive strength and cohesive strength of can be adjusted.
- cross-linking agent (F) for example, an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (cross-linking agent having a metal chelate structure), an aziridine-based cross-linking agent (cross-linking agent having an aziridinyl group), etc. Is mentioned.
- organic polyvalent isocyanate compound for example, an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as "aromatic polyvalent isocyanate compound etc.” Abbreviated); trimers such as the aromatic polyvalent isocyanate compounds, isocyanurates and adducts; terminal isocyanate urethane prepolymers obtained by reacting the aromatic polyvalent isocyanate compounds and the like with polyol compounds Etc.
- the "adduct” is an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound or an alicyclic polyvalent isocyanate compound, and ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil or the like. It means a reaction product of a compound containing a molecular active hydrogen. Examples of the adduct include a trimethylolpropane xylylene diisocyanate adduct as described below.
- the term “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
- organic polyvalent isocyanate compound examples include, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4.
- organic polyvalent imine compound examples include N,N′-diphenylmethane-4,4′-bis(1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, and tetramethylolmethane.
- -Tri- ⁇ -aziridinyl propionate, N,N′-toluene-2,4-bis(1-aziridinecarboxamide)triethylenemelamine and the like can be mentioned.
- crosslinking agent (F) When an organic polyisocyanate compound is used as the crosslinking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
- a reaction between the cross-linking agent (F) and the polymer component (A) gives a thermosetting protective film-forming film. A crosslinked structure can be easily introduced.
- the cross-linking agent (F) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination thereof and The ratio can be arbitrarily selected.
- the content of the crosslinking agent (F) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
- the amount is preferably 0.1 part by mass, more preferably 0.1-10 parts by mass, particularly preferably 0.5-5 parts by mass.
- the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) can be more remarkably obtained. Further, when the content of the crosslinking agent (F) is not more than the upper limit value, excessive use of the crosslinking agent (F) is suppressed.
- thermosetting protective film-forming film may contain an energy ray-curable resin (G). Since the thermosetting protective film-forming film contains the energy ray-curable resin (G), its characteristics can be changed by irradiation with energy rays.
- the energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound.
- the energy ray-curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferable.
- acrylate-based compound examples include trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta( (Meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate and the like (meth)acrylate containing a chain aliphatic skeleton; Cycloaliphatic skeleton-containing (meth)acrylate such as cyclopentanyl di(meth)acrylate; polyalkylene glycol (meth)acrylate such as polyethylene glycol di(meth)acrylate; oligoester (meth)acrylate; urethane
- the weight average molecular weight of the energy ray-curable compound is preferably 100 to 30,000, and more preferably 300 to 10,000.
- the energy ray-curable compound used for the polymerization may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
- the energy ray-curable resin (G) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, two or more kinds, or two or more kinds. The combination and ratio of can be arbitrarily selected.
- the ratio of the content of the energy ray-curable resin (G) to the total mass of the composition (III-1) is 1 to. It is preferably 95% by mass, more preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
- Examples of the photopolymerization initiator (H) in the composition (III-1) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal.
- Benzoin compounds such as; acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethan-1-one; bis(2, Acylphosphine oxide compounds such as 4,6-trimethylbenzoyl)phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfide compounds such as benzylphenyl sulfide and tetramethylthiuram monosulfide; 1-hydroxycyclohexyl ⁇ -ketol compounds such as phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; benzyl; dibenzyl; benzophenone; 4-dieth
- the photopolymerization initiator (H) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and when two or more kinds are contained, The combination and the ratio can be arbitrarily selected.
- the content of the photopolymerization initiator (H) in the composition (III-1) is 100 parts by mass of the content of the energy ray-curable resin (G).
- the amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
- the composition (III-1) and the thermosetting protective film-forming film may contain a colorant (I).
- a colorant (I) include known pigments such as inorganic pigments, organic pigments and organic dyes.
- organic pigments and organic dyes examples include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squarylium dyes, azulenium dyes, polymethine dyes, naphthoquinone dyes, pyrylium dyes, phthalocyanines.
- Dye naphthalocyanine dye, naphtholactam dye, azo dye, condensed azo dye, indigo dye, perinone dye, perylene dye, dioxazine dye, quinacridone dye, isoindolinone dye, quinophthalone dye , Pyrrole dyes, thioindigo dyes, metal complex dyes (metal complex salt dyes), dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, anthraquinone dyes, naphthol dyes, azomethine dyes, benzimidazo Examples thereof include Rhone-based dyes, pyranthrone-based dyes and slene-based dyes.
- inorganic pigments examples include carbon black, cobalt pigments, iron pigments, chromium pigments, titanium pigments, vanadium pigments, zirconium pigments, molybdenum pigments, ruthenium pigments, platinum pigments, ITO ( Examples thereof include indium tin oxide) type dyes and ATO (antimony tin oxide) type dyes.
- the colorant (I) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof and The ratio can be arbitrarily selected.
- the content of the colorant (I) in the thermosetting protective film forming film may be appropriately adjusted according to the purpose. For example, when the content of the colorant (I) in the thermosetting protective film forming film is adjusted and the light transmittance of the protective film is adjusted, the print visibility when laser printing is performed on the protective film. Can be adjusted. Further, by adjusting the content of the colorant (I) in the thermosetting protective film forming film, it is possible to improve the designability of the protective film and make it difficult to see the grinding marks on the back surface of the semiconductor wafer.
- the ratio of the content of the colorant (I) to the total mass of the thermosetting protective film forming film is preferably 0.1 to 10% by mass, and 0.1 to 7.5% by mass. It is more preferable that the amount is 0.1 to 5% by mass, and particularly preferably 0.1 to 5% by mass.
- the ratio is equal to or more than the lower limit value, the effect of using the colorant (I) can be more remarkably obtained.
- the said ratio is below the said upper limit, the excessive fall of the light transmittance of the film for thermosetting protective film formation is suppressed.
- the composition (III-1) and the thermosetting protective film-forming film may contain a general-purpose additive (J) as long as the effects of the present invention are not impaired.
- the general-purpose additive (J) may be a known one and can be arbitrarily selected according to the purpose and is not particularly limited, but preferable examples include, for example, a plasticizer, an antistatic agent, an antioxidant, a gettering agent and the like. Is mentioned.
- the general-purpose additive (J) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
- the content of the general-purpose additive (J) in the composition (III-1) and the thermosetting protective film-forming film is not particularly limited and may be appropriately selected depending on the purpose.
- the composition (III-1) preferably further contains a solvent.
- the composition (III-1) containing a solvent has good handleability.
- the solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
- the solvent contained in the composition (III-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
- the solvent contained in the composition (III-1) is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the composition (III-1) can be mixed more uniformly.
- the content of the solvent of the composition (III-1) is not particularly limited, and may be appropriately selected depending on the type of components other than the solvent.
- thermosetting protective film-forming composition ⁇ Method for producing thermosetting protective film-forming composition>>
- the composition for forming a thermosetting protective film such as the composition (III-1) can be obtained by blending the respective components constituting the composition.
- the thermosetting protective film-forming composition can be produced, for example, by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the types of compounding components are different.
- An energy-ray-curable protective film forming film is attached to the back surface of a semiconductor wafer and cured by energy rays to form a protective film.
- the degree of curing is such that the function is exhibited, and it may be appropriately selected depending on the type of the energy ray-curable protective film forming film.
- the illuminance of energy rays during energy ray curing of the energy ray-curable protective film forming film is preferably 120 to 280 mW/cm 2 .
- the light amount of energy rays during the curing is preferably 100 to 1000 mJ/cm 2 .
- the film for forming an energy ray-curable protective film examples include those containing the energy ray-curable component (a), and those containing the energy ray-curable component (a) and a filler are preferable.
- the energy ray-curable component (a) is preferably uncured, preferably has tackiness, and more preferably is uncured and has tackiness.
- composition (IV-1) ⁇ Energy ray curable protective film forming composition (IV-1)>
- a preferable composition for forming an energy ray-curable protective film for example, the composition for forming an energy ray-curable protective film (IV-1) containing the energy ray-curable component (a) (in the present specification, It may be abbreviated as "composition (IV-1)") and the like.
- the energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and imparts film-forming properties, flexibility, and the like to the energy-ray-curable protective film-forming film, and is a hard resin after curing. It is also a component for forming a film.
- the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80,000 to 2,000,000, and an energy ray-curable group having a molecular weight of 100 to 80,000.
- the compound (a2) may be mentioned. At least a part of the polymer (a1) may be crosslinked with a crosslinking agent, or may not be crosslinked.
- Polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80,000 to 2,000,000 examples include an acrylic polymer (a11) having a functional group capable of reacting with a group of another compound, and An acrylic resin (a1-1) obtained by reacting an energy ray-curable compound (a12) having a group that reacts with a functional group and an energy ray-curable group such as an energy ray-curable double bond is included. ..
- Examples of the functional group capable of reacting with the group of another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (wherein one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom). And a epoxy group.
- the functional group is preferably a group other than a carboxy group in terms of preventing corrosion of circuits such as a semiconductor wafer and a semiconductor chip.
- the functional group is preferably a hydroxyl group.
- .Acrylic polymer having functional group (a11) examples include those obtained by copolymerizing the functional group-containing acrylic monomer and the functional group-free acrylic monomer. In addition to the monomer, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized.
- the acrylic polymer (a11) may be a random copolymer or a block copolymer, and a known method can be adopted as a polymerization method.
- acrylic monomer having a functional group examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
- hydroxyl group-containing monomer examples include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, (meth) Hydroxyalkyl (meth)acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate; non-(meth)acrylic non-adhesives such as vinyl alcohol and allyl alcohol. Examples thereof include saturated alcohols (unsaturated alcohols having no (meth)acryloyl skeleton).
- Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth)acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above-mentioned ethylenically unsaturated dicarboxylic acids; and (meth)acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate. Be done.
- monocarboxylic acids having an ethylenically unsaturated bond such as (meth)acrylic acid and crotonic acid
- fumaric acid, itaconic acid maleic acid, citracone
- the hydroxyl group-containing monomer is preferable as the acrylic monomer having the functional group.
- the functional group-containing acrylic monomer constituting the acrylic polymer (a11) may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof are arbitrary. You can choose.
- acrylic monomer having no functional group examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate.
- acrylic monomer having no functional group examples include alkoxy such as methoxymethyl (meth)acrylate, methoxyethyl (meth)acrylate, ethoxymethyl (meth)acrylate, and ethoxyethyl (meth)acrylate.
- the acrylic monomer having no functional group, which constitutes the acrylic polymer (a11) may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof are arbitrary. You can choose to.
- non-acrylic monomers examples include olefins such as ethylene and norbornene; vinyl acetate; styrene.
- the non-acrylic monomer constituting the acrylic polymer (a11) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
- the ratio (content) of the amount of the structural unit derived from the acrylic monomer having the functional group to the total amount of the structural units constituting the acrylic polymer (a11) is 0.1 to 50 mass. %, more preferably 1 to 40% by mass, particularly preferably 3 to 30% by mass.
- the energy of the acrylic resin (a1-1) obtained by copolymerization of the acrylic polymer (a11) and the energy ray-curable compound (a12) is increased.
- the content of the linear curable group makes it possible to easily adjust the degree of curing of the protective film within a preferable range.
- the acrylic polymer (a11) constituting the acrylic resin (a1-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof are arbitrary. You can choose.
- the ratio of the content of the acrylic resin (a1-1) to the total content of the components other than the solvent is preferably 1 to 70% by mass, more preferably 5 to 60% by mass, and 10 to 50% by mass. Is particularly preferable.
- the energy ray-curable compound (a12) is one or two kinds selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). Those having the above are preferable, and those having an isocyanate group as the above group are more preferable.
- the energy ray-curable compound (a12) has, for example, an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
- the number of the energy ray-curable groups contained in the molecule of the energy ray-curable compound (a12) is not particularly limited. Can be selected as appropriate.
- the energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in a molecule, and more preferably 1 to 3 energy ray-curable groups.
- Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-(bisacryloyloxymethyl).
- Ethyl isocyanate An acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with hydroxyethyl (meth)acrylate; Examples thereof include an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound, a polyol compound, and hydroxyethyl (meth)acrylate.
- the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
- the energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be of one type, or of two or more types, and in the case of two or more types, their combination and ratio are arbitrary. You can choose to.
- the ratio is preferably 20 to 120 mol %, more preferably 35 to 100 mol %, and particularly preferably 50 to 100 mol %. When the ratio of the content is within such a range, the adhesive force of the protective film is increased.
- the energy ray-curable compound (a12) is a monofunctional compound (having one group in one molecule), the upper limit of the content ratio is 100 mol%.
- the energy ray-curable compound (a12) is a polyfunctional compound (having two or more groups in one molecule), the upper limit of the content ratio may exceed 100 mol %.
- the weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, and more preferably 300,000 to 15,000,000.
- the “weight average molecular weight” is as described above.
- the polymer (a1) When at least a part of the polymer (a1) is cross-linked with a cross-linking agent, the polymer (a1) has been described as constituting the acrylic polymer (a11).
- a monomer that does not correspond to any of the monomers and has a group that reacts with a crosslinking agent may be polymerized to be crosslinked at a group that reacts with the crosslinking agent, or the energy ray-curable compound ( The group derived from a12) which reacts with the functional group may be crosslinked.
- the polymer (a1) contained in the composition (IV-1) and the energy ray-curable protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, The combination and the ratio can be arbitrarily selected.
- Compound (a2) having an energy ray-curable group and a molecular weight of 100 to 80,000 examples include groups containing an energy ray-curable double bond, and preferred examples include (meta ) Examples thereof include an acryloyl group and a vinyl group.
- the compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group. Examples thereof include phenolic resins.
- examples of the low molecular weight compound having an energy ray-curable group include a polyfunctional monomer or oligomer, and an acrylate compound having a (meth)acryloyl group is preferable.
- examples of the acrylate compound include 2-hydroxy-3-(meth)acryloyloxypropyl methacrylate, polyethylene glycol di(meth)acrylate, propoxylated ethoxylated bisphenol A di(meth)acrylate, 2,2-bis[4 -((Meth)acryloxypolyethoxy)phenyl]propane, ethoxylated bisphenol A di(meth)acrylate, 2,2-bis[4-((meth)acryloxydiethoxy)phenyl]propane, 9,9-bis [4-(2-(meth)acryloyloxyethoxy)phenyl]fluorene, 2,2-bis[4-((meth)acryloxypolypropoxy)phenyl]propane, tricyclodecan
- the epoxy resin having an energy ray-curable group and the phenol resin having an energy ray-curable group are described, for example, in paragraph 0043 of JP-A-2013-194102. Any thing can be used.
- Such a resin corresponds to a resin constituting a thermosetting component described later, but is treated as the compound (a2) in the present invention.
- the weight average molecular weight of the compound (a2) is preferably 100 to 30,000, and more preferably 300 to 10,000.
- the compound (a2) contained in the composition (IV-1) and the film for forming an energy ray-curable protective film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
- composition (IV-1) and the energy ray-curable protective film-forming film contain the compound (a2) as the energy ray-curable component (a), the polymer further has no energy ray-curable group. It is preferable to also contain (b). At least a part of the polymer (b) may be crosslinked with a crosslinking agent, or may not be crosslinked.
- polymer (b) having no energy ray-curable group examples include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, acrylic urethane resins and the like.
- the polymer (b) is preferably an acrylic polymer (hereinafter sometimes abbreviated as “acrylic polymer (b-1)”).
- the acrylic polymer (b-1) may be a known one and may be, for example, a homopolymer of one type of acrylic monomer or a copolymer of two or more types of acrylic monomer. Alternatively, it may be a copolymer of one or more acrylic monomers and one or more monomers other than acrylic monomers (non-acrylic monomers).
- acrylic monomer constituting the acrylic polymer (b-1) examples include (meth)acrylic acid alkyl ester, (meth)acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth)acrylic acid ester, Examples thereof include a hydroxyl group-containing (meth)acrylic acid ester and a substituted amino group-containing (meth)acrylic acid ester.
- substituted amino group is as described above.
- the (meth)acrylic acid alkyl ester for example, the above-described functional group-free acrylic monomer constituting the acrylic polymer (a11) (wherein the alkyl group constituting the alkyl ester has a carbon number of Is a (meth)acrylic acid alkyl ester and the like) having a chain structure of 1 to 18).
- Examples of the (meth)acrylic acid ester having a cyclic skeleton include (meth)acrylic acid cycloalkyl esters such as (meth)acrylic acid isobornyl and (meth)acrylic acid dicyclopentanyl; Aralkyl esters of (meth)acrylic acid such as benzyl (meth)acrylate; (Meth)acrylic acid cycloalkenyl ester such as dicyclopentenyl ester; Examples thereof include (meth)acrylic acid cycloalkenyloxyalkyl esters such as (meth)acrylic acid dicyclopentenyloxyethyl ester.
- Examples of the glycidyl group-containing (meth)acrylic acid ester include glycidyl (meth)acrylate.
- Examples of the hydroxyl group-containing (meth)acrylic acid ester include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 3-hydroxy (meth)acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
- Examples of the substituted amino group-containing (meth)acrylic acid ester include N-methylaminoethyl (meth)acrylate.
- non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; styrene.
- Examples of the polymer (b) having no energy ray-curable group, at least a part of which is crosslinked with a crosslinking agent include those in which the reactive functional group in the polymer (b) has reacted with the crosslinking agent. Can be mentioned.
- the reactive functional group may be appropriately selected according to the type of the cross-linking agent and is not particularly limited.
- examples of the reactive functional group include a hydroxyl group, a carboxy group and an amino group, and among these, a hydroxyl group having a high reactivity with an isocyanate group is preferable.
- the reactive functional group include a carboxy group, an amino group, an amide group, and among these, a carboxy group having high reactivity with an epoxy group is preferable. ..
- the reactive functional group is preferably a group other than a carboxy group from the viewpoint of preventing the corrosion of the circuit of the semiconductor wafer or the semiconductor chip.
- Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group.
- the acrylic polymer (b-1) one or both of the above-mentioned acrylic monomer and non-acrylic monomer, which are mentioned as the monomer constituting the acrylic polymer (b-1), have the above-mentioned reactive functional group. You can use it.
- Examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth)acrylic acid ester, and in addition to this, the above-mentioned acryl Examples thereof include those obtained by polymerizing a monomer in which one or two or more hydrogen atoms are substituted with the above-mentioned reactive functional group in the system monomer or the non-acrylic monomer.
- the ratio (content) of the amount of the structural unit derived from the monomer having a reactive functional group to the total amount of the structural unit constituting the polymer (b) is 1 to 20. It is preferably mass%, and more preferably 2 to 10 mass%. When the ratio is within such a range, the degree of crosslinking in the polymer (b) becomes a more preferable range.
- the weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is preferably 10,000 to 2,000,000 from the viewpoint that the film-forming property of the composition (IV-1) is better. It is more preferably 100,000 to 15,000,000.
- the "weight average molecular weight" is as described above.
- the polymer (b) having no energy ray-curable group contained in the composition (IV-1) and the energy ray-curable protective film-forming film may be only one type, or may be two or more types. When there are more than one species, their combination and ratio can be arbitrarily selected.
- compositions (IV-1) include those containing one or both of the polymer (a1) and the compound (a2). And, when the composition (IV-1) contains the compound (a2), it is preferable that the composition (IV-1) further contains a polymer (b) having no energy ray-curable group. It is also preferable to contain.
- the composition (IV-1) may contain neither the compound (a2) but the polymer (a1) and the polymer (b) having no energy ray-curable group. ..
- the composition (IV-1) contains the polymer (a1), the compound (a2) and the polymer (b) having no energy ray-curable group
- the composition (IV-1) is
- the content of the compound (a2) is preferably 10 to 400 parts by mass based on 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group. More preferably 30 to 350 parts by mass.
- the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of components other than the solvent that is, The ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total mass of the film in the film for forming an energy ray-curable protective film is It is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass.
- the energy ray-curable property of the energy ray-curable protective film forming film becomes better.
- the composition (IV-1) comprises a thermosetting component, a filler, a coupling agent, a cross-linking agent, a photopolymerization initiator, a colorant, and a general-purpose additive, depending on the purpose, in addition to the energy ray-curable component. You may contain 1 type(s) or 2 or more types selected from the group consisting of.
- thermosetting component, the filler, the coupling agent, the crosslinking agent, the photopolymerization initiator, the colorant, and the general-purpose additive in the composition (IV-1) are each the thermosetting in the composition (III-1).
- the energy ray-curable protective film-forming film formed by using the composition (IV-1) containing the energy ray-curable component and the thermosetting component has an adhesive force to an adherend by heating. And the strength of the resin film formed from this energy ray-curable protective film-forming film is also improved. Further, the energy ray-curable protective film-forming film formed by using the composition (IV-1) containing the energy ray-curable component and the colorant is the thermosetting protective film-forming film described above. The same effect as when the film for use contains the colorant (I) is exhibited.
- thermosetting component the filler, the coupling agent, the cross-linking agent, the photopolymerization initiator, the colorant, and the general-purpose additive may be used each alone. Two or more kinds may be used in combination, and when two or more kinds are used in combination, their combination and ratio can be arbitrarily selected.
- thermosetting component the filler, the coupling agent, the cross-linking agent, the photopolymerization initiator, the colorant and the general-purpose additive in the composition (IV-1) may be appropriately adjusted according to the purpose, It is not particularly limited.
- the composition (IV-1) further contains a solvent since the handling property thereof is improved by dilution.
- the solvent contained in the composition (IV-1) include the same solvents as those in the composition (III-1).
- the solvent contained in the composition (IV-1) may be only one kind or two or more kinds.
- the content of the solvent in the composition (IV-1) is not particularly limited, and may be appropriately selected depending on, for example, the type of components other than the solvent.
- the energy ray-curable protective film forming composition such as the composition (IV-1) can be obtained by blending the respective components for constituting the same.
- the energy ray-curable protective film-forming composition can be produced, for example, by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the types of compounding components are different.
- the release film is an optional component which the protective film-forming composite sheet may be provided as an outermost layer on the protective film forming film side.
- a protective film-forming composite sheet is provided with a release film on the protective film-forming film, when the release film is removed from the protective film-forming film, the protective film-forming composite sheet suppresses peeling electrification. To be done.
- the release film may be a known release film, and examples thereof include those in which one side of a resin film such as a polyethylene terephthalate film is subjected to a release treatment such as silicone treatment.
- the release film may have the same structure as the above-mentioned release property improving layer as the intermediate layer.
- the thickness of the release film is not particularly limited and may be, for example, 10 to 1000 ⁇ m.
- a protective film-forming composite sheet including a support sheet and a protective film-forming film formed on one surface of the support sheet
- the support sheet includes a base material and an antistatic layer formed on one surface or both surfaces of the base material, and the total light transmittance of the support sheet is 85% or more
- the composite sheet for forming a protective film has a surface resistivity of 1.0 ⁇ 10 11 ⁇ / ⁇ or less
- the antistatic layer has a pyrimidinium salt, a pyridinium salt, a piperidinium salt, a pyrrolidinium salt, an imidazolium salt, a morpholinium salt, or a sulfonium salt.
- Examples thereof include those containing one or more selected from the group consisting of salts, phosphonium salts, ammonium salts, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate, and carbon nanotubes.
- a composite sheet for forming a protective film which includes a support sheet and a film for forming a protective film formed on one surface of the support sheet
- the support sheet includes a base material and an antistatic layer formed on one surface or both surfaces of the base material, and the total light transmittance of the support sheet is 85% or more
- the composite sheet for forming a protective film has a surface resistivity of 1.0 ⁇ 10 11 ⁇ / ⁇ or less
- the antistatic layer has a pyrimidinium salt, a pyridinium salt, a piperidinium salt, a pyrrolidinium salt, an imidazolium salt, a morpholinium salt, or a sulfonium salt.
- the total thickness of the antistatic layer formed in the above is 10 to 200 nm.
- a protective film-forming composite sheet including a support sheet and a protective film-forming film formed on one surface of the support sheet
- the support sheet includes a base material and an antistatic layer formed on one or both sides of the base material
- the surface resistivity of the protective film-forming composite sheet is 1.0 ⁇ . 10 11 ⁇ / ⁇ or less
- the haze of the support sheet is 43% or less
- the antistatic layer has a pyrimidinium salt, a pyridinium salt, a piperidinium salt, a pyrrolidinium salt, an imidazolium salt, a morpholinium salt, a sulfonium salt, or a phosphonium.
- Examples thereof include salts, ammonium salts, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate, and those containing one or more selected from the group consisting of carbon nanotubes.
- a composite sheet for forming a protective film which includes a support sheet and a film for forming a protective film formed on one surface of the support sheet,
- the support sheet includes a base material and an antistatic layer formed on one or both sides of the base material, and the surface resistivity of the protective film-forming composite sheet is 1.0 ⁇ .
- the antistatic layer has a pyrimidinium salt, a pyridinium salt, a piperidinium salt, a pyrrolidinium salt, an imidazolium salt, a morpholinium salt, a sulfonium salt, or a phosphonium. Containing one or more selected from the group consisting of salts, ammonium salts, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate and carbon nanotubes, and formed on one side or both sides of the substrate. Also, the total thickness of the antistatic layer is 10 to 200 nm.
- a composite sheet for forming a protective film which includes a support sheet and a film for forming a protective film formed on one surface of the support sheet,
- the support sheet includes a base material and an antistatic layer formed on one surface or both surfaces of the base material, and the total light transmittance of the support sheet is 85% or more
- the composite sheet for forming a protective film has a surface resistivity of 1.0 ⁇ 10 11 ⁇ / ⁇ or less, a haze of the support sheet of 43% or less, and the antistatic layer has a pyrimidinium salt, a pyridinium salt, or a piperidinium salt.
- a composite sheet for forming a protective film which includes a support sheet and a film for forming a protective film formed on one surface of the support sheet
- the support sheet includes a base material and an antistatic layer formed on one surface or both surfaces of the base material, and the total light transmittance of the support sheet is 85% or more
- the surface resistivity of the protective film-forming composite sheet is 1.0 ⁇ 10 11 ⁇ / ⁇ or less
- the haze of the support sheet is 43% or less
- the antistatic layer is composed of a pyrimidinium salt, a pyridinium salt, or a piperidinium salt.
- the antistatic layer formed on one side or both sides of the substrate has a total thickness of 10 to 200 nm.
- the composite sheet for forming a protective film can be produced by laminating the above-mentioned layers in a corresponding positional relationship.
- the method of forming each layer is as described above.
- the above-mentioned pressure-sensitive adhesive composition may be applied onto the base material and dried as necessary.
- This method can be applied to both the case of laminating the pressure-sensitive adhesive layer on the uneven surface of the substrate and the case of laminating the pressure-sensitive adhesive layer on the smooth surface of the substrate.
- This method is particularly suitable for laminating the pressure-sensitive adhesive layer on the uneven surface. The reason is that when this method is applied, a high effect of suppressing the generation of voids between the uneven surface of the base material and the pressure-sensitive adhesive layer can be obtained.
- the back surface antistatic layer is formed on the substrate in the same manner as the above-mentioned method for laminating the pressure-sensitive adhesive layer, except that the antistatic composition (VI-1) is used instead of the pressure-sensitive adhesive composition.
- a surface antistatic layer can be laminated.
- the following method can be applied instead of the method of coating the pressure-sensitive adhesive composition on the substrate as described above. That is, a pressure-sensitive adhesive composition is applied onto a release film and dried as necessary to form a pressure-sensitive adhesive layer on the release film, and the exposed surface of this pressure-sensitive adhesive layer is used as the surface of the substrate.
- the pressure-sensitive adhesive layer can also be laminated on the substrate by a method of laminating with. This method is particularly suitable for laminating the pressure-sensitive adhesive layer on the smooth surface. The reason is that when this method is applied, a high effect of suppressing the generation of voids can be obtained between the smooth surface of the base material and the pressure-sensitive adhesive layer.
- the same method as the method for laminating the pressure-sensitive adhesive layer using the release film described above is used except that the antistatic composition (VI-1) is used instead of the pressure-sensitive adhesive composition.
- a back surface antistatic layer or a surface antistatic layer can be laminated.
- the case where the pressure-sensitive adhesive layer, the back surface antistatic layer, or the surface antistatic layer is laminated on the base material has been taken as an example, but the above-described method is, for example, a case where the intermediate layer is laminated on the base material. It is also applicable to stacking other layers.
- a protective film forming composition is applied onto the pressure-sensitive adhesive layer to form a protective film. It is possible to directly form the forming film. For layers other than the film for forming a protective film, this layer can be laminated on the pressure-sensitive adhesive layer in the same manner by using the composition for forming this layer.
- a new layer (hereinafter abbreviated as “second layer”) is formed on any layer (hereinafter abbreviated as “first layer”) already laminated on the substrate,
- first layer a layer already laminated on the substrate
- a composition for forming the second layer is applied onto the first layer. Then, a method of drying can be applied if necessary.
- the second layer is formed on the release film in advance by using the composition for forming the second layer, and the second layer is formed on the side opposite to the side in contact with the release film. It is preferable to form a continuous two-layer laminated structure by laminating the exposed surface of (1) with the exposed surface of the first layer.
- the composition is preferably applied to the release-treated surface of the release film.
- the release film may be removed as needed after the laminated structure is formed.
- the case where the protective film-forming film is laminated on the pressure-sensitive adhesive layer has been described as an example, but for example, when the intermediate layer is laminated on the adhesive layer, the protective film-forming film is laminated on the intermediate layer.
- the target laminated structure can be arbitrarily selected, for example, when the pressure-sensitive adhesive layer is laminated on the surface antistatic layer.
- all layers other than the base material constituting the protective film-forming composite sheet can be formed on the release film in advance and laminated on the surface of the target layer by a method of laminating.
- the layer adopting such a step may be appropriately selected to manufacture the protective film-forming composite sheet.
- the protective film-forming composite sheet is usually stored with a release film attached to the surface of the outermost layer (eg, protective film forming film) on the side opposite to the support sheet. Therefore, a composition for forming a layer forming the outermost layer, such as a composition for forming a protective film, should be applied onto this release film (preferably the release-treated surface), and dried if necessary. Then, a layer constituting the outermost layer is formed on the release film, and the remaining layers are laminated on any of the above-described methods on the exposed surface of the layer opposite to the side in contact with the release film. Then, by leaving the release film in a bonded state without removing it, a protective film-forming composite sheet with a release film is obtained.
- a release film attached to the surface of the outermost layer (eg, protective film forming film) on the side opposite to the support sheet. Therefore, a composition for forming a layer, such as a composition for forming a protective film, should be applied onto this release film (preferably the release-
- the composite sheet for forming a protective film can be used for manufacturing a semiconductor chip.
- a step of attaching the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (hereinafter, may be abbreviated as “attaching step”)
- a step of curing the protective film forming film after being attached to the semiconductor wafer to form a protective film (hereinafter, may be abbreviated as “protective film forming step”), and dividing the semiconductor wafer.
- a step of cutting the protective film or the protective film forming film to obtain a plurality of semiconductor chips having the protective film or the protective film forming film after cutting (hereinafter, may be abbreviated as “dividing step”) ), and a step of separating the semiconductor chip provided with the protective film after cutting or a film for forming a protective film from the supporting sheet to pick up (hereinafter, may be abbreviated as “pickup step”).
- pickup step a step of irradiating the protective film forming film or the protective film with laser light to perform printing.
- the manufacturing method after the attaching step, the protective film forming step, the laser printing step, the dividing step, and the pickup step are performed. Then, the pickup process is performed after the dividing process and the laser printing process. Except this point, the order of performing the protective film forming process, the dividing process, the laser printing process, and the pickup process can be arbitrarily set according to the purpose.
- the thickness of the semiconductor wafer to be used for the protective film-forming composite sheet is not particularly limited, but is preferably 30 to 1000 ⁇ m, and 100 to 100 ⁇ m, from the viewpoint of easier division into semiconductor chips described later. More preferably, it is 400 ⁇ m.
- FIG. 7 is a cross-sectional view for schematically explaining the method of manufacturing a semiconductor chip according to the embodiment of the present invention.
- the manufacturing method in the case where the protective film forming composite sheet is the one shown in FIG. 1 will be described as an example.
- the manufacturing method of the present embodiment (sometimes referred to as “manufacturing method (1)” in the present specification) is a step of attaching the protective film-forming film in the protective film-forming composite sheet to a semiconductor wafer. (A sticking step), a step of curing the protective film forming film after sticking to the semiconductor wafer to form a protective film (protective film forming step), dividing the semiconductor wafer, and removing the protective film.
- a step of cutting and obtaining a plurality of semiconductor chips having a protective film after cutting (dividing step), and a step of separating the semiconductor chip having the protective film after cutting from the support sheet and picking it up (pickup And a laser printing step (a step of performing printing by irradiating the protective film forming film or the protective film with a laser beam) between the attaching step and the pickup step.
- the release film 15 is removed from the protective film forming film 101 as shown in FIG. 7A prior to the attaching step.
- a process hereinafter sometimes abbreviated as “peeling process”.
- the composite sheet for forming a protective film after removing the release film 15 is also denoted by reference numeral 101.
- peeling charge is suppressed as described above.
- the protective film in the protective film-forming composite sheet 101 after removing the peeling film 15 from the back surface 9b of the semiconductor wafer 9 is shown.
- the forming film 13 is attached.
- the protective film forming film 13 may be softened by heating and attached to the semiconductor wafer 9.
- bumps and the like on the circuit surface are not shown.
- the peeling charge of the protective film forming composite sheet 101 is suppressed after the peeling step. Therefore, after the attaching step, foreign matter is prevented from entering between the protective film forming film 13 and the semiconductor wafer 9. More specifically, no foreign matter is recognized between the first surface 13a of the protective film forming film 13 and the back surface 9b of the semiconductor wafer 9, or the number of recognized foreign matter is extremely small.
- the protective film forming film 13 attached to the semiconductor wafer 9 is cured to form a protective film 13′ as shown in FIG. 7C.
- the protective film forming film 13 is thermosetting, the protective film forming film 13 is heated to form the protective film 13′.
- the protective film forming film 13 is energy ray curable, the protective film 13′ is formed by irradiating the protective film forming film 13 with energy rays through the support sheet 10.
- the protective film forming composite sheet after the protective film forming film 13 has become the protective film 13′ is indicated by reference numeral 101′. This also applies to subsequent figures.
- the curing conditions of the protective film forming film 13, that is, the heating temperature and the heating time at the time of thermosetting, and the illuminance and the light amount of the energy beam at the time of energy beam curing are as described above. ..
- the semiconductor wafer 9 is divided, the protective film 13′ is cut, and the cut protective film 130′ is provided as shown in FIG. 7D.
- a plurality of semiconductor chips 9' are obtained.
- the protective film 13' is cut (divided) at a position along the peripheral edge of the semiconductor chip 9'.
- the method of dividing the semiconductor wafer 9 and cutting the protective film 13′ in the dividing step may be a known method.
- a modified layer is formed inside the semiconductor wafer 9, and then, the semiconductor wafer 9 on which the modified layer is formed and which has the protective film 13′ adhered on the back surface 9b is provided together with the protective film 13′.
- the method of expanding the protective film 13' in the surface direction to cut the protective film 13' and dividing the semiconductor wafer 9 at the modified layer portion may be used.
- the semiconductor chip 9′ provided with the protective film 130′ after cutting is separated from the support sheet 10 and picked up.
- the direction of the pickup is indicated by the arrow I, but this is the same in the subsequent figures.
- a vacuum collet or the like can be used as the separating means 8 for separating the semiconductor chip 9′ together with the protective film 130′ from the support sheet 10.
- the target semiconductor chip 9' is obtained as a semiconductor chip with a protective film.
- the semiconductor chip with a protective film obtained by the manufacturing method (1) has excellent characteristics because foreign matter is prevented from entering between the protective film 130′ and the semiconductor chip 9′.
- the protective film forming film or protective film is irradiated with laser light to perform laser printing on the protective film forming film or protective film. I do.
- laser printing is performed on the protective film, it may be performed on either the protective film 13' before cutting or the protective film 130' after cutting.
- the protective film forming film or the protective film is irradiated with laser light through the support sheet.
- laser printing can be performed, for example, under the conditions of wavelength: 532 nm, frequency: 20 kHz, printing speed: 100 mm/sec, output: 0.24 W.
- the dividing step is performed after the protective film forming step.
- the dividing step is performed without the protective film forming step, and the protective film is formed after the dividing step.
- You may perform a formation process this embodiment may be called "manufacturing method (2)"). That is, the manufacturing method (manufacturing method (2)) of the present embodiment includes a step of sticking the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (sticking step), and dividing the semiconductor wafer. Then, the step of dividing the protective film forming film to obtain a plurality of semiconductor chips having the cut protective film forming film (dividing step), and the protective film forming after being attached to the semiconductor wafer.
- the step of curing a protective film (a film for forming a protective film after cutting) to form a protective film (protective film forming process) and the semiconductor chip provided with the protective film after cutting (cut) are supported by the support. And a step of picking up by separating from the sheet (pickup step). Further, between the attaching step and the pickup step, the laser printing step (irradiating the protective film forming film or the protective film with laser light) is performed. And then printing).
- FIG. 8 is a cross-sectional view for schematically explaining one embodiment of such a semiconductor chip manufacturing method.
- the peeling step and the sticking step of the manufacturing method (2) are the same as the peeling step and the sticking step of the manufacturing method (1) as shown in FIGS. 8A to 8B (shown in FIGS. 7A to 7B). Can be done). Similar to the case of the manufacturing method (1), also in the manufacturing method (2), foreign matter is suppressed between the protective film forming film 13 and the semiconductor wafer 9 after the attaching step.
- the semiconductor wafer 9 is divided, the protective film forming film 13 is cut, and as shown in FIG. 8C, a plurality of cut protective film forming films 130 are provided. Individual semiconductor chips 9'are obtained. At this time, the protective film forming film 13 is cut (divided) at a position along the peripheral edge of the semiconductor chip 9'.
- the protective film forming film 13 after the cutting is indicated by reference numeral 130.
- the protective film forming film 130 is cured to form the protective film 130′ on the semiconductor chip 9′ as shown in FIG. 8D.
- the protective film forming step in the manufacturing method (2) can be performed by the same method as the protective film forming step in the manufacturing method (1). By performing this step, a semiconductor chip with a protective film can be obtained after the dividing step of the manufacturing method (1), that is, in the same state as in FIG.
- the semiconductor chip 9′ having the cut protective film 130′ is separated from the support sheet 10 and picked up.
- the pickup step in the manufacturing method (2) can be performed by the same method as the pickup step in the manufacturing method (1) (as shown in FIG. 8E).
- the target semiconductor chip 9' is obtained as a semiconductor chip with a protective film.
- the semiconductor chip with a protective film obtained by the manufacturing method (2) has excellent properties because foreign matter is prevented from entering between the protective film 130′ and the semiconductor chip 9′.
- the protective film forming film or the protective film is irradiated with laser light to perform laser printing on the protective film forming film or the protective film. I do.
- laser printing is performed on the protective film forming film, it may be performed on either the protective film forming film 13 before cutting or the protective film forming film 130 after cutting.
- the protective film forming film or the protective film is irradiated with laser light through the support sheet.
- laser printing can be performed under the same printing conditions as in the manufacturing method (1), for example.
- the pickup step is performed after the protective film forming step.
- the pickup step is performed without performing the protective film forming step.
- You may perform a protective film formation process after a pick-up process this embodiment may be called "manufacturing method (3)"). That is, the manufacturing method (manufacturing method (3)) of the present embodiment includes a step of sticking the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (sticking step), and dividing the semiconductor wafer.
- the step of dividing the protective film forming film to obtain a plurality of semiconductor chips having the cut protective film forming film (dividing step), and the cutting protective film forming film A step of picking up the semiconductor chip by separating it from the support sheet (pickup step), and curing the protective film forming film (the protective film forming film after cutting and picking up) after being attached to the semiconductor wafer, A step of forming a protective film (a protective film forming step), and further, between the attaching step and the pickup step, the laser printing step (irradiating the protective film forming film with a laser beam). , A step of performing printing).
- FIG. 9 is a cross-sectional view for schematically explaining an embodiment of such a semiconductor chip manufacturing method.
- the peeling step, the attaching step and the dividing step of the manufacturing method (3) are the same as the peeling step, the attaching step and the dividing step of the manufacturing method (2) as shown in FIGS. 9A to 9C, respectively (see FIG. 8A-8C).
- the manufacturing method (1) in the manufacturing method (3) as well, after the attaching step, the contamination of foreign matter is suppressed between the protective film forming film 13 and the semiconductor wafer 9.
- the semiconductor chip 9′ including the cut protective film forming film 130 is separated from the support sheet 10 and picked up.
- the pickup step in the manufacturing method (3) can be performed by the same method as the pickup step in the manufacturing methods (1) and (2) (as shown in FIGS. 7E and 8E).
- the protective film forming film is irradiated with laser light to perform laser printing on the protective film forming film. In this case, it may be performed on either the protective film forming film 13 before cutting or the protective film forming film 130 after cutting.
- the protective film forming film is irradiated with laser light through the support sheet.
- laser printing can be performed under the same printing conditions as in the manufacturing method (1), for example.
- the protective film forming step of the manufacturing method (3) the protective film forming film 130 after picking up is cured to form a protective film 130′ on the semiconductor chip 9′ as shown in FIG. 9E.
- the protective film forming step in the manufacturing method (3) may be performed by the same method as the protective film forming step in the manufacturing methods (1) and (2). it can.
- the protective film forming step in the manufacturing method (3) irradiates the protective film forming film 130 with energy rays through the support sheet 10. Except that it is not necessary, it can be carried out by the same method as the protective film forming step in the manufacturing methods (1) and (2).
- the target semiconductor chip 9' is obtained as a semiconductor chip with a protective film.
- the semiconductor chip with a protective film obtained by the manufacturing method (3) has excellent characteristics because foreign matter is prevented from entering between the protective film 130′ and the semiconductor chip 9′.
- the modified layer is formed inside the semiconductor wafer 9 without using a dicing blade. Can be applied and the semiconductor wafer 9 can be divided at the portion of the modified layer.
- the step of forming the modified layer inside the semiconductor wafer 9 may be performed at any step before the step of dividing the semiconductor wafer 9 at the modified layer portion. Alternatively, for example, it can be performed at any stage before the attaching step, between the attaching step and the protective film forming step, or the like.
- the method of manufacturing a semiconductor chip using the composite film 101 for forming a protective film shown in FIG. 1 has been described, but the method of manufacturing a semiconductor chip of the present invention is not limited to this.
- the method for manufacturing a semiconductor chip according to the present invention can be applied to the protective film forming composite sheets 102 to 105 shown in FIGS. 2 to 5, the protective film forming composite sheet 301 shown in FIG.
- a semiconductor chip can be similarly manufactured by using a material other than the composite sheet 101.
- the composite film for forming a protective film of another embodiment based on the difference in the structure of these sheets, in the above-described manufacturing method, the addition, change, deletion, etc. of steps are appropriately performed.
- the semiconductor chip may be manufactured.
- the semiconductor chip with the protective film is obtained by the above-mentioned manufacturing method, the semiconductor chip is flip-chip connected to the circuit surface of the substrate by a known method to form a semiconductor package.
- a target semiconductor device can be manufactured by using the package (not shown).
- Antistatic composition (VI-1)-1 A polypyrrole solution obtained by emulsifying polypyrrole with a reactive emulsifier and dissolving it in an organic solvent.
- Antistatic composition (VI-1)-2 "UVH515" manufactured by Idemitsu Kosan Co., Ltd.
- thermosetting Protective Film Forming Composition (III-1) Polymer component (A)-1 (150 parts by mass), epoxy resin (B1)-1 (10 parts by mass), epoxy resin (B1)-2 (60 parts by mass), epoxy resin (B1)-3 (30 parts by mass) Parts), thermosetting agent (B2)-1 (2.4 parts by mass), curing accelerator (C)-1 (2.4 parts by mass), filler (D)-1 (320 parts by mass), and coloring.
- the agent (I)-1 (1.16 parts by mass) is mixed, and further diluted with methyl ethyl ketone so that the total concentration thereof is 55% by mass, and the thermosetting protective film-forming composition (III- 1) was prepared.
- thermosetting protective film forming film A release film (“SP-PET381031” manufactured by Lintec Co., thickness 38 ⁇ m) in which one side of a polyethylene terephthalate film was subjected to release treatment by silicone treatment was used, and the thermosetting protective film obtained above was applied to the release treated surface.
- the composition (III-1) for forming was applied and dried at 100° C. for 2 minutes to produce a thermosetting protective film-forming film having a thickness of 40 ⁇ m.
- the surface roughness Ra of one surface is 0.2 ⁇ m
- the surface roughness Ra of the other surface is smaller than this value, and thus one surface is an uneven surface and the other surface is
- a polypropylene base material (thickness 80 ⁇ m) having a smooth surface was prepared.
- the antistatic composition (VI-1)-2 was applied to the uneven surface of the polypropylene base material using a bar coater, and dried at 50° C. for 1 minute to form a thick film on the base material.
- a backside antistatic layer having a thickness of 170 nm was formed.
- the acrylic polymer is a copolymer of 2-ethylhexyl acrylate (60 parts by mass), methyl methacrylate (30 parts by mass), and 2-hydroxyethyl acrylate (10 parts by mass), which is a weight average molecular weight. Is 600,000.
- the exposed surface of the pressure-sensitive adhesive layer in other words, the surface opposite to the release film side of the pressure-sensitive adhesive layer
- the substrate and the back surface obtained above Of the laminate of the antistatic layer the exposed surface of the base material (in other words, the surface opposite to the back surface antistatic layer side of the base material) was bonded.
- a support sheet with a release film was produced, in which the back surface antistatic layer, the substrate, the pressure-sensitive adhesive layer, and the release film were laminated in this order in the thickness direction.
- the back surface antistatic layer (thickness 170 nm), substrate (thickness 80 ⁇ m), adhesive layer (thickness 5 ⁇ m), protective film forming film (thickness 40 ⁇ m) and release film (thickness 38 ⁇ m)
- a protective film-forming composite sheet constituted by laminating these in the thickness direction was obtained.
- the laminate of the back surface antistatic layer, the base material and the pressure-sensitive adhesive layer (in other words, the support sheet) has a planar shape of a circle having a diameter of 270 mm, and the protective film-forming film and peeling film are formed.
- the planar shape of the film laminate was a circle with a diameter of 210 mm, and these two circles were concentric.
- the release film is removed, and the exposed surface of the protective film-forming film (in other words, the surface opposite to the pressure-sensitive adhesive layer side of the protective film-forming film, or the first surface) is the protective film-forming film.
- An adhesive layer for a jig was provided in a region near the peripheral edge. Then, on the first surface of the protective film-forming film and the first surface of the jig adhesive layer, the same release film as previously removed (“SP-PET381031” manufactured by Lintec Co., Ltd., thickness: 38 ⁇ m) was used.
- a protective film-forming composite sheet with a release film which has the configuration shown in FIG. 2 and in which the size of the protective film-forming film is slightly smaller than the size of the support sheet, was produced.
- Table 1 shows each layer constituting the composite sheet for forming a protective film. The description of "-" in the layer column means that the composite film for forming a protective film does not have the layer.
- the protective film-forming composite sheet with the release film obtained above was visually observed from the back surface antistatic layer side, which is the outermost layer on the base material side, and was further observed with a digital microscope ("VE-8000" manufactured by KEYENCE CORPORATION). ]) was used for observation. Then, it was confirmed that there was no foreign matter having a maximum length of 0.5 mm or more between the protective film forming film and the release film in all areas of the protective film forming film and the release film.
- the release film is peeled (removed) from the protective film-forming composite sheet with the release film, and immediately the protective film-forming composite sheet
- the exposed surface of the protective film forming film (in other words, the first surface) was attached to the polishing surface of an 8-inch silicon wafer (thickness: 350 ⁇ m), and the exposed surface of the jig adhesive layer (in other words, the first surface).
- the surface of the ring frame was attached to obtain a laminate of the protective film-forming composite sheet and the silicon wafer.
- the "maximum length of a foreign substance” is the length of a line segment connecting two different points on the surface of the foreign substance selected in the observation image with a digital microscope. Means the length of the longest line segment in the foreign substance when the measurement is made.
- a laser beam is passed through the support sheet onto the pressure-sensitive adhesive layer side surface (in other words, the second surface) of the protective film forming film through the supporting sheet:
- Printing was performed by irradiating under conditions of 532 nm and frequency: 20 kHz. At this time, a character having a size of 0.3 mm ⁇ 0.2 mm was printed at a printing speed of 100 mm/sec.
- the laser printing visibility of the protective film-forming film evaluated here can be regarded as being equal to the laser printing visibility of the protective film.
- Example 2 Protection was carried out in the same manner as in Example 1 except that the coating amount of the antistatic composition (VI-1)-2 was changed and the thickness of the backside antistatic layer was changed from 170 nm to 50 nm.
- a composite sheet for film formation was produced.
- the composite sheet for forming a protective film produced in this example includes a back surface antistatic layer (thickness: 50 nm), a base material (thickness: 80 ⁇ m), an adhesive layer (thickness: 5 ⁇ m), a protective film forming film (thickness: 40 ⁇ m).
- the antistatic composition (VI-1)-1 was used in place of the antistatic composition (VI-1)-2, and the coating amount of the antistatic composition (VI-1)-1 was changed.
- a composite sheet for forming a protective film was produced by the same method as in Example 1 except that the thickness of the backside antistatic layer was changed to 170 nm and changed to 75 nm, and the backside antistatic layer was dried at 100° C. for 2 minutes. And evaluated.
- the protective film-forming composite sheet produced in this comparative example has a back surface antistatic layer (thickness: 75 nm), a base material (thickness: 80 ⁇ m), an adhesive layer (thickness: 5 ⁇ m), a protective film-forming film (thickness: 40 ⁇ m).
- Example 2 A composite sheet for forming a protective film was produced and evaluated in the same manner as in Example 1 except that the backside antistatic layer was not formed.
- the protective film-forming composite sheet produced in this comparative example had a substrate (thickness 80 ⁇ m), an adhesive layer (thickness 5 ⁇ m), a protective film-forming film (thickness 40 ⁇ m) and a release film (thickness 38 ⁇ m).
- a composite sheet for protective film formation which is formed by stacking these layers in this order in the thickness direction and further includes an adhesive layer for jigs, and does not have a back surface antistatic layer in FIG.
- the back surface antistatic layer had a surface resistivity of 2.8 ⁇ 10 8 before the protective film-forming film was thermally cured. Is 4.1 ⁇ 10 8 ⁇ / ⁇ , and is 1.7 ⁇ 10 9 to 5.3 ⁇ 10 9 ⁇ / ⁇ after thermosetting the protective film forming film.
- the composite sheet was excellent in antistatic properties in normal times. When these protective film forming composite sheets are used, foreign matter is suppressed from entering between the protective film forming film and the semiconductor wafer.
- the total light transmittance of the support sheet in the composite film for forming a protective film of Examples 1 and 2 is 85% or more (91%), and the haze is 43% or less (36 to 37%).
- the sheet was excellent in laser marking visibility of the protective film through the support sheet.
- the total light transmittance of the support sheet in the composite film for protective film formation of Comparative Example 1 was less than 85% (80%), and the haze was more than 43% (47%), Compared with the composite sheet for forming a protective film of Examples 1 and 2, the laser printing visibility of the protective film via the support sheet was inferior.
- the surface resistivity of the back surface antistatic layer was 5.0 ⁇ 10 15 ⁇ / ⁇ before the protective film-forming film was heat-cured. After heat curing of the film, it was 5.6 ⁇ 10 15 ⁇ / ⁇ , and these protective film-forming composite sheets were inferior in antistatic property in normal times. Further, when these protective film forming composite sheets were used, foreign matter mixing between the protective film forming film and the semiconductor wafer was not suppressed. In addition, the haze of the support sheet in the composite sheet for forming a protective film of Comparative Example 2 is more than 43% (47%), which is higher than that of the composite sheet for forming a protective film of Examples 1 and 2. The visibility of laser printing on the protective film through the film was poor.
- the present invention can be used for manufacturing semiconductor devices.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Dicing (AREA)
- Laser Beam Processing (AREA)
- Adhesive Tapes (AREA)
Abstract
A composite sheet (101) for protective film formation, which is provided with: a supporting sheet (10); and a film (13) for protective film formation, which is formed on one surface of the supporting sheet. This composite sheet (101) for protective film formation is configured such that: the supporting sheet (10) is provided with a base material (11) and an antistatic layer (17) which is formed on one surface or both surfaces of the base material; the supporting sheet (10) of the composite sheet (101) for protective film formation has a total light transmittance of 85% or more or a haze of 43% or less; and the surface resistivity of the composite sheet (101) for protective film formation is 1.0 × 1011 Ω/□ or less.
Description
本発明は、保護膜形成用複合シート、及び半導体チップの製造方法に関する。
本願は、2018年12月5日に、日本に出願された特願2018-228529号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a protective film forming composite sheet and a method for manufacturing a semiconductor chip.
The present application claims priority based on Japanese Patent Application No. 2018-228529 filed in Japan on December 5, 2018, the contents of which are incorporated herein by reference.
本願は、2018年12月5日に、日本に出願された特願2018-228529号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a protective film forming composite sheet and a method for manufacturing a semiconductor chip.
The present application claims priority based on Japanese Patent Application No. 2018-228529 filed in Japan on December 5, 2018, the contents of which are incorporated herein by reference.
近年、いわゆるフェースダウン(face down)方式と呼ばれる実装法を適用した半導体装置の製造が行われている。フェースダウン方式においては、回路形成面上にバンプ等の電極を有する半導体チップが用いられ、前記電極が基板と接合される。このため、半導体チップの回路形成面とは反対側の面(裏面)は剥き出しとなることがある。
In recent years, semiconductor devices have been manufactured using a mounting method called a so-called face down method. In the face-down method, a semiconductor chip having electrodes such as bumps on the circuit formation surface is used, and the electrodes are bonded to the substrate. Therefore, the surface (back surface) of the semiconductor chip opposite to the circuit formation surface may be exposed.
この剥き出しとなった半導体チップの裏面には、保護膜として、有機材料を含有する樹脂膜が形成され、保護膜付き半導体チップとして半導体装置に取り込まれることがある。
保護膜は、ダイシング工程やパッケージングの後に、半導体チップにおいてクラックが発生するのを防止するために利用される。 A resin film containing an organic material is formed as a protective film on the exposed back surface of the semiconductor chip, and it may be incorporated into a semiconductor device as a semiconductor chip with a protective film.
The protective film is used to prevent cracks from being generated in the semiconductor chip after the dicing process or packaging.
保護膜は、ダイシング工程やパッケージングの後に、半導体チップにおいてクラックが発生するのを防止するために利用される。 A resin film containing an organic material is formed as a protective film on the exposed back surface of the semiconductor chip, and it may be incorporated into a semiconductor device as a semiconductor chip with a protective film.
The protective film is used to prevent cracks from being generated in the semiconductor chip after the dicing process or packaging.
このような保護膜は、例えば、硬化性を有する保護膜形成用フィルムを硬化させることで、形成される。また、物性が調節された非硬化性の保護膜形成用フィルムが、そのまま保護膜として利用されることもある。そして、保護膜形成用フィルムは、半導体ウエハの裏面に貼付されて、使用される。保護膜形成用フィルムは、例えば、半導体ウエハの加工時に用いる支持シートと一体化された、保護膜形成用複合シートの状態で、半導体ウエハの裏面に貼付されることもあるし、支持シートとは一体化されていない状態で、半導体ウエハの裏面に貼付されることもある。
Such a protective film is formed, for example, by curing a curable protective film forming film. In addition, a non-curable protective film-forming film whose physical properties are adjusted may be used as it is as a protective film. Then, the protective film forming film is used by being attached to the back surface of the semiconductor wafer. The protective film-forming film may be attached to the back surface of the semiconductor wafer in the state of, for example, a protective film-forming composite sheet that is integrated with a supporting sheet used when processing a semiconductor wafer. It may be attached to the back surface of the semiconductor wafer in a state of not being integrated.
保護膜形成用複合シートが、その中の保護膜形成用フィルムによって、半導体チップの裏面に貼付された後は、それぞれ適したタイミングで、保護膜形成用フィルムの硬化による保護膜の形成、保護膜形成用フィルム又は保護膜の切断、半導体ウエハの半導体チップへの分割(ダイシング)、切断後の保護膜形成用フィルム又は保護膜を裏面に備えた半導体チップ(保護膜形成用フィルム付き半導体チップ又は保護膜付き半導体チップ)の、支持シートからのピックアップ等が適宜行われる。そして、保護膜形成用フィルム付き半導体チップをピックアップした場合には、これは保護膜形成用フィルムの硬化によって、保護膜付き半導体チップとされ、最終的に保護膜付き半導体チップを用いて、半導体装置が製造される。このように、保護膜形成用複合シート中の支持シートは、ダイシングシートとして利用可能である。なお、保護膜形成用フィルムが非硬化性である場合には、これらの各工程において、保護膜形成用フィルムはそのまま保護膜として取り扱われる。
After the protective film forming composite sheet is attached to the back surface of the semiconductor chip by the protective film forming film therein, the protective film is formed by curing the protective film forming film at a suitable timing. Cutting of the forming film or protective film, dividing (dicing) of the semiconductor wafer into semiconductor chips, and a semiconductor chip having a protective film forming film or protective film after cutting (semiconductor chip with protective film forming film or protection Picking up of the film-attached semiconductor chip) from the support sheet is appropriately performed. When a semiconductor chip with a film for forming a protective film is picked up, this is a semiconductor chip with a protective film by curing of the film for forming a protective film, and finally using the semiconductor chip with a protective film, a semiconductor device is obtained. Is manufactured. As described above, the support sheet in the protective film-forming composite sheet can be used as a dicing sheet. When the protective film forming film is non-curable, the protective film forming film is treated as it is as a protective film in each of these steps.
一方、保護膜形成用フィルムが、支持シートとは一体化されていない状態で、半導体ウエハの裏面に貼付された後は、この保護膜形成用フィルムの半導体ウエハの貼付面とは反対側の露出面に、支持シートが貼付される。以降は、上述の保護膜形成用複合シートを用いた場合と同じ方法で、保護膜付き半導体チップ又は保護膜形成用フィルム付き半導体チップが得られ、半導体装置が製造される。この場合、保護膜形成用フィルムは、支持シートとは一体化されていない状態で、半導体ウエハの裏面に貼付されるが、貼付後での支持シートとの一体化によって、保護膜形成用複合シートを構成する。
On the other hand, after the protective film-forming film is attached to the back surface of the semiconductor wafer in a state where it is not integrated with the supporting sheet, the protective film-forming film is exposed on the side opposite to the semiconductor wafer-attaching surface. A support sheet is attached to the surface. After that, a semiconductor chip with a protective film or a semiconductor chip with a film for forming a protective film is obtained and a semiconductor device is manufactured by the same method as in the case of using the above-mentioned composite sheet for forming a protective film. In this case, the protective film-forming film is attached to the back surface of the semiconductor wafer in a state where it is not integrated with the support sheet, but by integration with the support sheet after attachment, the protective film-forming composite sheet is formed. Make up.
保護膜形成用複合シートは、これらを巻き取ってロールとしたときに、ロールの接触面同士が貼り付いてブロッキングするのを防止するため、基材の露出面が凹凸形状の面(凹凸面)を有している。ここで接触面とは、保護膜形成用複合シートの最下層である基材の露出面と剥離フィルム等の最上層の露出面である。特に、保護膜形成用複合シートでブロッキングが生じると、このシートにシワが生じたり、このシートをロールから繰り出すときに、最上層(通常は剥離フィルム)がこのシートから剥離したりしてしまう。
これに対して、ロールの接触面の一方が凹凸面となっていれば、ロールの接触面積が小さくなるために、ブロッキングが抑制される。 The protective film-forming composite sheet has an uneven surface on the exposed surface of the base material (uneven surface) in order to prevent the contact surfaces of the rolls from sticking to each other and blocking when wound into a roll. have. Here, the contact surface is the exposed surface of the base material, which is the lowermost layer of the composite sheet for forming a protective film, and the exposed surface of the uppermost layer, such as a release film. In particular, if blocking occurs in the protective film-forming composite sheet, wrinkles occur in this sheet, or the uppermost layer (usually a release film) peels from this sheet when the sheet is unrolled from a roll.
On the other hand, if one of the contact surfaces of the roll is an uneven surface, the contact area of the roll becomes small, and thus blocking is suppressed.
これに対して、ロールの接触面の一方が凹凸面となっていれば、ロールの接触面積が小さくなるために、ブロッキングが抑制される。 The protective film-forming composite sheet has an uneven surface on the exposed surface of the base material (uneven surface) in order to prevent the contact surfaces of the rolls from sticking to each other and blocking when wound into a roll. have. Here, the contact surface is the exposed surface of the base material, which is the lowermost layer of the composite sheet for forming a protective film, and the exposed surface of the uppermost layer, such as a release film. In particular, if blocking occurs in the protective film-forming composite sheet, wrinkles occur in this sheet, or the uppermost layer (usually a release film) peels from this sheet when the sheet is unrolled from a roll.
On the other hand, if one of the contact surfaces of the roll is an uneven surface, the contact area of the roll becomes small, and thus blocking is suppressed.
一方で、半導体ウエハ又は半導体チップに貼付されている保護膜の支持シート側の面には、レーザー光の照射によって印字(本明細書においては、「レーザー印字」と称することがある)が施される。このとき、この支持シート(基材)の露出面に凹凸面があると、基材を介した保護膜のレーザー印字視認性が低下する。
On the other hand, the surface of the protective film attached to the semiconductor wafer or the semiconductor chip on the support sheet side is printed by irradiation with laser light (in this specification, it may be referred to as “laser printing”). It At this time, if the exposed surface of the support sheet (base material) has an uneven surface, the laser printing visibility of the protective film via the base material is deteriorated.
このようなレーザー印字視認性を防止できる保護膜形成用複合シートとしては、例えば、片面のみが凹凸面である基材を用い、その凹凸面を露出面とはせずに、保護膜形成用フィルム側に向けて配置したもの(ダイシングテープ一体型半導体裏面保護用フィルム)が開示されている(特許文献1参照)。この保護膜形成用複合シートでは、基材及び粘着剤層が積層されてなる積層シート(ダイシングテープ)のヘーズが45%以下となっている。
As such a composite sheet for forming a protective film capable of preventing the visibility of laser printing, for example, a base material having only one side having an uneven surface is used, and the uneven surface is not an exposed surface, and a film for forming a protective film is used. What is arranged toward the side (a dicing tape-integrated film for semiconductor back surface protection) is disclosed (see Patent Document 1). In this composite film for forming a protective film, the haze of the laminated sheet (dicing tape) obtained by laminating the base material and the pressure-sensitive adhesive layer is 45% or less.
しかし、特許文献1で開示されている保護膜形成用複合シートは、基材の露出面が平滑面であるため、巻き取ってロールとしたときには、上述のブロッキングを抑制できないという問題点がある。
However, the composite sheet for forming a protective film disclosed in Patent Document 1 has a problem that the above blocking cannot be suppressed when wound into a roll because the exposed surface of the base material is a smooth surface.
一方、保護膜形成用複合シートを半導体ウエハの裏面に貼付する前に、保護膜形成用複合シート中の保護膜形成用フィルムから剥離フィルムを取り除いたときに保護膜形成用複合シートが帯電してしまうことがある。帯電している保護膜形成用複合シートは、その半導体ウエハへの貼付前の段階で、その保護膜形成用フィルム上に小さい異物を吸着し易いため、保護膜形成用フィルムと半導体ウエハとの間に、異物が混入し易くなってしまう。
On the other hand, before sticking the protective film-forming composite sheet to the back surface of the semiconductor wafer, the protective film-forming composite sheet becomes charged when the release film is removed from the protective film-forming film in the protective film-forming composite sheet. It may end up. Since the protective film-forming composite sheet that is electrically charged is likely to adsorb small foreign matters on the protective film-forming film before being attached to the semiconductor wafer, the charged composite film for forming a protective film-forming film is not easily separated from the semiconductor wafer. In addition, foreign matter is easily mixed in.
また、半導体ウエハと前記保護膜形成用複合シートを用いて、裏面に保護膜を備えた半導体チップを製造する過程では、支持シートと、切断後の保護膜又は保護膜形成用フィルムと、半導体チップと、がこの順に積層されて構成された積層体を作製する。そして、この積層体の取り扱い時には、この積層体を、テーブル上で固定した状態とし、次いで、テーブル上の固定面から引き離す、という操作を行うが、前記積層体をテーブルから引き離すときに積層体が帯電しやすい。積層体が帯電すると回路が破壊される恐れがある。本明細書においては、前記保護膜形成用複合シート中の保護膜形成用フィルムから剥離フィルムを取り除いたときに保護膜形成用複合シートが帯電する現象や、前記積層体をテーブルから引き離すときに積層体が帯電する現象を含め、互いに接触している層同士の剥離によって、これらの層が帯電する現象を、「剥離帯電」と総称する。
In the process of manufacturing a semiconductor chip having a protective film on the back surface using a semiconductor wafer and the protective film-forming composite sheet, a supporting sheet, a protective film after cutting or a protective film-forming film, and a semiconductor chip And are laminated in this order to produce a laminated body. Then, when handling this laminated body, the operation is performed such that the laminated body is fixed on the table and then separated from the fixing surface on the table, but when the laminated body is separated from the table, Easy to be charged. If the laminate is charged, the circuit may be destroyed. In the present specification, a phenomenon in which the protective film-forming composite sheet is charged when the release film is removed from the protective film-forming film in the protective film-forming composite sheet, and a laminate when the laminate is separated from the table The phenomenon in which these layers are charged by the peeling of the layers that are in contact with each other, including the phenomenon that the body is charged, is collectively referred to as “peeling charging”.
一方、剥離帯電を抑制する半導体加工用シートとしては、基材上に粘着剤層が積層されたダイシングテープ(前記支持シートに相当)と、前記粘着剤層上に形成された接着シートと、を有するダイシングテープ一体型接着シートであって、剥離速度10m/分、剥離角度150°で、前記粘着剤層と前記接着シートとを剥離した際の剥離帯電圧の絶対値が0.5kV以下である、ダイシングテープ一体型接着シートが開示されている(特許文献2参照)。特許文献2によれば、このダイシングテープ一体型接着シートを用いることにより、ピックアップ工程において、接着シートが付着した半導体素子をダイシングテープから剥離するときに、接着シートとダイシングテープとの間における剥離帯電を抑制し、静電気の発生を抑制して、この静電気による半導体素子上の回路の破壊を抑制可能である、とされている。
On the other hand, as a semiconductor processing sheet that suppresses peeling electrification, a dicing tape (corresponding to the support sheet) in which a pressure-sensitive adhesive layer is laminated on a base material, and an adhesive sheet formed on the pressure-sensitive adhesive layer, A dicing tape-integrated adhesive sheet having the peeling speed of 10 m/min, a peeling angle of 150°, and an absolute value of a peeling electrification voltage when the adhesive layer and the adhesive sheet are peeled off is 0.5 kV or less. An adhesive sheet integrated with a dicing tape is disclosed (see Patent Document 2). According to Patent Document 2, by using this dicing tape-integrated adhesive sheet, peeling charging between the adhesive sheet and the dicing tape is performed when the semiconductor element to which the adhesive sheet is attached is peeled from the dicing tape in the pickup process. It is said that it is possible to suppress the occurrence of static electricity and suppress the generation of static electricity to prevent the circuit on the semiconductor element from being destroyed by the static electricity.
しかし、特許文献2で開示されているダイシングテープ一体型接着シートでは、剥離帯電は抑制できたとしても、基材の露出面が凹凸面であることに起因する、基材を介した保護膜のレーザー印字の視認性の低下を抑制できるか、定かではない。
However, in the dicing tape-integrated adhesive sheet disclosed in Patent Document 2, even if peeling electrification can be suppressed, the exposed surface of the base material is an uneven surface, and thus the protective film of the base material is not formed. It is not clear whether or not the reduction in the visibility of laser marking can be suppressed.
本発明は、支持シートと保護膜形成用フィルムを備えた保護膜形成用複合シートであって、剥離帯電が抑制され、且つ、基材を介した保護膜のレーザー印字視認性に優れた保護膜形成用複合シート、及び、前記保護膜形成用複合シートを用いた半導体チップの製造方法、を提供することを目的とする。
The present invention is a protective film-forming composite sheet comprising a support sheet and a protective film-forming film, wherein the protective film suppresses peeling electrification and is excellent in laser printing visibility of the protective film via a substrate. An object of the present invention is to provide a forming composite sheet and a method for manufacturing a semiconductor chip using the protective film forming composite sheet.
本発明の第1の態様は、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面又は両面上に形成された帯電防止層と、を備えており、前記支持シートの全光線透過率が85%以上であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下である、保護膜形成用複合シートを提供する。
1st aspect of this invention is a composite sheet for protective film formation provided with the support sheet and the film for protective film formation formed on one surface of the said support sheet, Comprising: The said support sheet is A base material and an antistatic layer formed on one or both sides of the base material, and the total light transmittance of the support sheet is 85% or more, and the composite sheet for forming a protective film Provided is a composite film for forming a protective film, which has a surface resistivity of 1.0×10 11 Ω/□ or less.
本発明の第1の態様の保護膜形成用複合シートにおいては、支持シートのヘーズが好ましくは、43%以下、より好ましくは、41%以下、さらに好ましくは、40%以下であってもよい。
In the protective film-forming composite sheet of the first aspect of the present invention, the haze of the support sheet may be preferably 43% or less, more preferably 41% or less, and further preferably 40% or less.
また、本発明の第2の態様は、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面又は両面上に形成された帯電防止層と、を備えており、前記支持シートのヘーズが43%以下であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下である、保護膜形成用複合シートを提供する。
A second aspect of the present invention is a composite sheet for forming a protective film, comprising a supporting sheet and a film for forming a protective film formed on one surface of the supporting sheet, the supporting sheet comprising: The sheet comprises a base material and an antistatic layer formed on one or both sides of the base material, the haze of the support sheet is 43% or less, and the surface of the composite sheet for forming a protective film. Provided is a composite sheet for forming a protective film, which has a resistivity of 1.0×10 11 Ω/□ or less.
本発明の第1の態様及び第2の態様の保護膜形成用複合シートにおいては、前記帯電防止層の厚さが、200nm以下であってもよい。
In the protective film-forming composite sheet of the first and second aspects of the present invention, the thickness of the antistatic layer may be 200 nm or less.
また、本発明の第3の態様は、前記保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程と、前記半導体ウエハに貼付した後の前記保護膜形成用フィルムを硬化させて、保護膜を形成する工程と、前記半導体ウエハを分割し、前記保護膜又は保護膜形成用フィルムを切断して、切断後の保護膜又は保護膜形成用フィルムを備えた複数個の半導体チップを得る工程と、前記切断後の保護膜又は保護膜形成用フィルムを備えた半導体チップを、前記支持シートから引き離してピックアップする工程と、を有し、さらに、前記貼付する工程と、前記ピックアップする工程と、の間に、前記保護膜形成用フィルム又は保護膜にレーザー光を照射して、印字を行う工程を有する、半導体チップの製造方法を提供する。
Further, a third aspect of the present invention is the step of attaching the protective film forming film in the protective film forming composite sheet to a semiconductor wafer, and the protective film forming film after being attached to the semiconductor wafer. A step of curing to form a protective film, dividing the semiconductor wafer, cutting the protective film or the protective film forming film, and cutting the protective film or a plurality of protective film forming films. A step of obtaining a semiconductor chip, and a step of separating the semiconductor film provided with the protective film after protection or a film for forming a protective film from the support sheet and picking it up, further, the step of sticking, Provided is a method for manufacturing a semiconductor chip, comprising a step of irradiating the protective film forming film or the protective film with a laser beam to perform printing between the step of picking up.
本発明によれば、支持シートと保護膜形成用フィルムを備えた保護膜形成用複合シートであって、剥離帯電が抑制され、且つ、基材を介した保護膜のレーザー印字視認性に優れた保護膜形成用複合シート、及び、前記保護膜形成用複合シートを用いた半導体チップの製造方法、が提供される。
According to the present invention, a composite sheet for forming a protective film comprising a support sheet and a film for forming a protective film, wherein peeling charge is suppressed, and laser printing visibility of the protective film via a substrate is excellent. Provided are a composite film for forming a protective film, and a method for manufacturing a semiconductor chip using the composite sheet for forming a protective film.
◇保護膜形成用複合シート
本発明の一実施形態に係る保護膜形成用複合シートは、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面又は両面上に形成された帯電防止層と、を備えており、前記支持シートの全光線透過率が85%以上であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下である。 ◇Composite sheet for forming a protective film A composite sheet for forming a protective film according to an embodiment of the present invention includes a support sheet, and a film for forming a protective film formed on one surface of the support sheet, A composite sheet for forming a protective film, wherein the support sheet comprises a base material and an antistatic layer formed on one or both sides of the base material, and the total light transmittance of the support sheet is It is 85% or more, and the surface resistivity of the composite sheet for forming a protective film is 1.0×10 11 Ω/□ or less.
本発明の一実施形態に係る保護膜形成用複合シートは、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面又は両面上に形成された帯電防止層と、を備えており、前記支持シートの全光線透過率が85%以上であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下である。 ◇Composite sheet for forming a protective film A composite sheet for forming a protective film according to an embodiment of the present invention includes a support sheet, and a film for forming a protective film formed on one surface of the support sheet, A composite sheet for forming a protective film, wherein the support sheet comprises a base material and an antistatic layer formed on one or both sides of the base material, and the total light transmittance of the support sheet is It is 85% or more, and the surface resistivity of the composite sheet for forming a protective film is 1.0×10 11 Ω/□ or less.
前記保護膜形成用複合シートは、このように、前記表面抵抗率が1.0×1011Ω/□以下であり、平常時の帯電(本明細書においては、「平常時帯電」と称することがある)が抑制される。
As described above, the composite sheet for forming a protective film has the surface resistivity of 1.0×10 11 Ω/□ or less, and is charged normally (in this specification, referred to as “normally charged”). Is suppressed).
本実施形態の保護膜形成用複合シートは、帯電防止剤を含有する層(本明細書においては、包括的に「帯電防止層」と称することがある)を有していることにより、平常時帯電の抑制効果を有する。
前記保護膜形成用複合シートにおいて、その平常時帯電の抑制効果の程度は、換言すると、前記表面抵抗率の高さは、例えば、帯電防止層の帯電防止剤の含有量を調節することにより、調節できる。 The composite sheet for forming a protective film of the present embodiment has a layer containing an antistatic agent (in this specification, may be generically referred to as “antistatic layer”), so that Has an effect of suppressing charging.
In the protective film-forming composite sheet, the degree of the effect of suppressing the normal charge is, in other words, the high surface resistivity, for example, by adjusting the content of the antistatic agent in the antistatic layer, Can be adjusted.
前記保護膜形成用複合シートにおいて、その平常時帯電の抑制効果の程度は、換言すると、前記表面抵抗率の高さは、例えば、帯電防止層の帯電防止剤の含有量を調節することにより、調節できる。 The composite sheet for forming a protective film of the present embodiment has a layer containing an antistatic agent (in this specification, may be generically referred to as “antistatic layer”), so that Has an effect of suppressing charging.
In the protective film-forming composite sheet, the degree of the effect of suppressing the normal charge is, in other words, the high surface resistivity, for example, by adjusting the content of the antistatic agent in the antistatic layer, Can be adjusted.
一方、半導体装置の製造過程では、半導体ウエハ又は半導体チップに貼付されている保護膜又は保護膜形成用フィルムの支持シート側の面に、レーザー光の照射によって、レーザー印字が行われる。レーザー印字が行われた保護膜形成用フィルムは、その硬化により、印字が施された保護膜となる。前記保護膜形成用複合シートにおいて、前記支持シートの全光線透過率が85%以上であることにより、保護膜のレーザー印字視認性が向上する。
On the other hand, in the process of manufacturing a semiconductor device, laser printing is performed by irradiating a laser beam on the surface of the protective film or the film for forming a protective film, which is attached to a semiconductor wafer or semiconductor chip, on the side of the supporting sheet. The protective film forming film on which laser printing has been performed becomes a printed protective film by curing. In the protective film-forming composite sheet, when the total light transmittance of the support sheet is 85% or more, the visibility of laser printing on the protective film is improved.
<支持シートの全光線透過率>
前記保護膜形成用複合シート中の支持シートの全光線透過率は、85%以上であり、90%以上であることが好ましい。前記支持シートの全光線透過率が前記下限値以上であることで、保護膜のレーザー印字視認性が向上する。 <Total light transmittance of support sheet>
The total light transmittance of the support sheet in the protective film-forming composite sheet is 85% or more, and preferably 90% or more. When the total light transmittance of the support sheet is not less than the lower limit value, the laser printing visibility of the protective film is improved.
前記保護膜形成用複合シート中の支持シートの全光線透過率は、85%以上であり、90%以上であることが好ましい。前記支持シートの全光線透過率が前記下限値以上であることで、保護膜のレーザー印字視認性が向上する。 <Total light transmittance of support sheet>
The total light transmittance of the support sheet in the protective film-forming composite sheet is 85% or more, and preferably 90% or more. When the total light transmittance of the support sheet is not less than the lower limit value, the laser printing visibility of the protective film is improved.
前記保護膜形成用複合シート中の支持シートの全光線透過率の上限値は、特に限定されず、高いほど好ましい。支持シートの製造の容易さ、及び、支持シートの構成の自由度の高さ等を考慮すると、支持シートの全光線透過率は、99%以下であることが好ましい。
The upper limit of the total light transmittance of the support sheet in the protective film-forming composite sheet is not particularly limited, and the higher the better. Considering the ease of manufacturing the support sheet and the high degree of freedom in the configuration of the support sheet, the total light transmittance of the support sheet is preferably 99% or less.
支持シートの全光線透過率は、実施例においても後述するように、JIS K 7361:1997に準拠して、光源として白色LED(5V、3W)を用いて測定できる。
The total light transmittance of the supporting sheet can be measured by using a white LED (5V, 3W) as a light source in accordance with JIS K 7361:1997, as will be described later in Examples.
<支持シートのヘーズ>
前記保護膜形成用複合シート中の支持シートのヘーズは、特に限定されないが、43%以下であることが好ましく、41%以下であることがより好ましく、40%以下であることが特に好ましい。前記支持シートの全光線透過率が、前記下限値以上であることに加えて、前記支持シートのヘーズが前記上限値以下であることで、保護膜の支持シートを介したレーザー印字視認性がさらに向上する。 <Haze of support sheet>
The haze of the support sheet in the protective film-forming composite sheet is not particularly limited, but is preferably 43% or less, more preferably 41% or less, and particularly preferably 40% or less. The total light transmittance of the support sheet is not less than the lower limit value, and in addition, the haze of the support sheet is not more than the upper limit value, thereby further improving the laser printing visibility through the support sheet of the protective film. improves.
前記保護膜形成用複合シート中の支持シートのヘーズは、特に限定されないが、43%以下であることが好ましく、41%以下であることがより好ましく、40%以下であることが特に好ましい。前記支持シートの全光線透過率が、前記下限値以上であることに加えて、前記支持シートのヘーズが前記上限値以下であることで、保護膜の支持シートを介したレーザー印字視認性がさらに向上する。 <Haze of support sheet>
The haze of the support sheet in the protective film-forming composite sheet is not particularly limited, but is preferably 43% or less, more preferably 41% or less, and particularly preferably 40% or less. The total light transmittance of the support sheet is not less than the lower limit value, and in addition, the haze of the support sheet is not more than the upper limit value, thereby further improving the laser printing visibility through the support sheet of the protective film. improves.
前記保護膜形成用複合シート中の支持シートのヘーズの下限値は、特に限定されず、低いほど好ましい。支持シートの製造の容易さ、及び、支持シートの構成の自由度の高さ等を考慮すると、支持シートのヘーズは、30%以上であってもよい。
The lower limit of haze of the support sheet in the protective film-forming composite sheet is not particularly limited, and the lower the better. Considering the ease of manufacturing the support sheet and the high degree of freedom in the configuration of the support sheet, the haze of the support sheet may be 30% or more.
支持シートのヘーズは、JIS K 7136:2000に準拠して、光源として白色LED(5V、3W)を用いて測定できる。
The haze of the support sheet can be measured using a white LED (5V, 3W) as a light source according to JIS K 7136:2000.
また、本発明の一実施形態に係る保護膜形成用複合シートは、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の前記片面又は両上に形成された帯電防止層と、を備えており、前記支持シートのヘーズが43%以下であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下である。
A protective film-forming composite sheet according to an embodiment of the present invention includes a support sheet and a protective film-forming composite film formed on one surface of the supporting sheet. A sheet, wherein the support sheet comprises a base material and an antistatic layer formed on one or both sides of the base material, and the haze of the support sheet is 43% or less, and The surface resistivity of the protective film-forming composite sheet is 1.0×10 11 Ω/□ or less.
前記保護膜形成用複合シートのヘーズが、43%以下、好ましくは41%以下、より好ましくは40%以下であることにより、保護膜のレーザー印字視認性が向上する。
When the haze of the protective film-forming composite sheet is 43% or less, preferably 41% or less, more preferably 40% or less, the laser printing visibility of the protective film is improved.
<保護膜形成用複合シート中の、支持シート側の最表層の表面抵抗率>
保護膜形成用複合シートの前記表面抵抗率は、1.0×1011Ω/□以下であり、9.5×1010Ω/□以下であることが好ましく、例えば、5.0×1010Ω/□以下、6.0×109Ω/□以下、及び1.0×109Ω/□以下のいずれかであってもよい。前記表面抵抗率が前記上限値以下であることで、保護膜形成用複合シートの平常時帯電が抑制される。 <Surface resistivity of the outermost layer on the support sheet side in the protective film forming composite sheet>
The surface resistivity of the protective film-forming composite sheet is 1.0×10 11 Ω/□ or less, preferably 9.5×10 10 Ω/□ or less, and for example, 5.0×10 10 It may be either Ω/□ or less, 6.0×10 9 Ω/□ or less, and 1.0×10 9 Ω/□ or less. When the surface resistivity is equal to or lower than the upper limit value, normal charging of the protective film-forming composite sheet is suppressed.
保護膜形成用複合シートの前記表面抵抗率は、1.0×1011Ω/□以下であり、9.5×1010Ω/□以下であることが好ましく、例えば、5.0×1010Ω/□以下、6.0×109Ω/□以下、及び1.0×109Ω/□以下のいずれかであってもよい。前記表面抵抗率が前記上限値以下であることで、保護膜形成用複合シートの平常時帯電が抑制される。 <Surface resistivity of the outermost layer on the support sheet side in the protective film forming composite sheet>
The surface resistivity of the protective film-forming composite sheet is 1.0×10 11 Ω/□ or less, preferably 9.5×10 10 Ω/□ or less, and for example, 5.0×10 10 It may be either Ω/□ or less, 6.0×10 9 Ω/□ or less, and 1.0×10 9 Ω/□ or less. When the surface resistivity is equal to or lower than the upper limit value, normal charging of the protective film-forming composite sheet is suppressed.
保護膜形成用複合シートの前記表面抵抗率の下限値は、小さいほど好ましく、特に限定されない。例えば、前記表面抵抗率が1.0×105Ω/□以上である保護膜形成用複合シートは、より容易に製造できる。
The lower limit of the surface resistivity of the protective film-forming composite sheet is preferably as small as possible, and is not particularly limited. For example, the protective film-forming composite sheet having the surface resistivity of 1.0×10 5 Ω/□ or more can be more easily manufactured.
前記保護膜形成用複合シートの前記表面抵抗率は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、一実施形態において、前記表面抵抗率は、1.0×105~1.0×1011Ω/□であることが好ましく、1.0×105~9.5×1010Ω/□であることがより好ましく、例えば、1.0×105~5.0×1010Ω/□、1.0×105~6.0×109Ω/□、及び1.0×105~1.0×109Ω/□のいずれかであってもよい。ただし、これらは、前記表面抵抗率の一例である。
The surface resistivity of the composite sheet for forming a protective film can be appropriately adjusted within a range set by arbitrarily combining the preferable lower limit value and the preferable upper limit value described above. For example, in one embodiment, the surface resistivity is preferably 1.0×10 5 to 1.0×10 11 Ω/□, and 1.0×10 5 to 9.5×10 10 Ω/□. □ is more preferable, and for example, 1.0×10 5 to 5.0×10 10 Ω/□, 1.0×10 5 to 6.0×10 9 Ω/□, and 1.0×10 It may be any of 5 to 1.0×10 9 Ω/□. However, these are examples of the surface resistivity.
保護膜形成用複合シート中の保護膜形成用フィルムが硬化性を有する場合には、後述する熱硬化性及びエネルギー線硬化性のいずれであるかによらず、ここまでで説明した、保護膜形成用複合シートの前記表面抵抗率は、保護膜形成用フィルムが硬化する前の表面抵抗率であってもよいし、保護膜形成用フィルムが硬化した後の表面抵抗率であってもよい。
When the protective film forming film in the protective film forming composite sheet has curability, regardless of whether it is thermosetting or energy ray curable described later, the protective film forming film described above is formed. The surface resistivity of the composite sheet for use may be the surface resistivity before the protective film forming film is cured, or the surface resistivity after the protective film forming film is cured.
前記保護膜形成用複合シートの前記表面抵抗率は、実施例においても後述するように、保護膜形成用複合シート中の支持シート側の最表層を測定対象とし、表面抵抗率計を用いて、印加電圧を100Vとして、測定できる。
The surface resistivity of the protective film forming composite sheet, as will be described later in Examples, the outermost layer on the side of the supporting sheet in the protective film forming composite sheet is measured, using a surface resistivity meter, It can be measured with an applied voltage of 100V.
<熱硬化性の保護膜形成用フィルムが熱硬化した後の前記表面抵抗率>
保護膜形成用フィルムが、後述するように熱硬化性である場合には、保護膜形成用複合シート中の保護膜形成用フィルムが熱硬化した後の、保護膜形成用複合シートの前記表面抵抗率が、上述の表面抵抗率の条件(例えば、1.0×1011Ω/□以下等の上限値や下限値)を満たすことが好ましく、この場合の保護膜形成用複合シートは、その中の保護膜形成用フィルムが130℃で2時間熱硬化したものであることが好ましい。すなわち、このような保護膜形成用複合シートの一実施形態としては、保護膜形成用複合シート中の保護膜形成用フィルムが、130℃で2時間熱硬化した後の、前記表面抵抗率が、1.0×1011Ω/□以下であるものが挙げられる。ただし、これは、上述の表面抵抗率の条件を満たす保護膜形成用複合シートの一例である。 <The surface resistivity after the thermosetting protective film-forming film is thermoset>
When the protective film-forming film is thermosetting as described below, the surface resistance of the protective film-forming composite sheet after the protective film-forming film in the protective film-forming composite sheet is thermally cured. It is preferable that the ratio satisfies the above-described surface resistivity condition (for example, an upper limit value or a lower limit value of 1.0×10 11 Ω/□ or less). In this case, the protective film-forming composite sheet is It is preferable that the protective film forming film is heat-cured at 130° C. for 2 hours. That is, as one embodiment of such a composite sheet for forming a protective film, the surface resistivity after the film for forming a protective film in the composite sheet for forming a protective film is thermoset at 130° C. for 2 hours, Those having a resistance of 1.0×10 11 Ω/□ or less are included. However, this is an example of the composite sheet for forming a protective film, which satisfies the above-described surface resistivity condition.
保護膜形成用フィルムが、後述するように熱硬化性である場合には、保護膜形成用複合シート中の保護膜形成用フィルムが熱硬化した後の、保護膜形成用複合シートの前記表面抵抗率が、上述の表面抵抗率の条件(例えば、1.0×1011Ω/□以下等の上限値や下限値)を満たすことが好ましく、この場合の保護膜形成用複合シートは、その中の保護膜形成用フィルムが130℃で2時間熱硬化したものであることが好ましい。すなわち、このような保護膜形成用複合シートの一実施形態としては、保護膜形成用複合シート中の保護膜形成用フィルムが、130℃で2時間熱硬化した後の、前記表面抵抗率が、1.0×1011Ω/□以下であるものが挙げられる。ただし、これは、上述の表面抵抗率の条件を満たす保護膜形成用複合シートの一例である。 <The surface resistivity after the thermosetting protective film-forming film is thermoset>
When the protective film-forming film is thermosetting as described below, the surface resistance of the protective film-forming composite sheet after the protective film-forming film in the protective film-forming composite sheet is thermally cured. It is preferable that the ratio satisfies the above-described surface resistivity condition (for example, an upper limit value or a lower limit value of 1.0×10 11 Ω/□ or less). In this case, the protective film-forming composite sheet is It is preferable that the protective film forming film is heat-cured at 130° C. for 2 hours. That is, as one embodiment of such a composite sheet for forming a protective film, the surface resistivity after the film for forming a protective film in the composite sheet for forming a protective film is thermoset at 130° C. for 2 hours, Those having a resistance of 1.0×10 11 Ω/□ or less are included. However, this is an example of the composite sheet for forming a protective film, which satisfies the above-described surface resistivity condition.
<熱硬化性の保護膜形成用フィルムが熱硬化する前の前記表面抵抗率>
保護膜形成用フィルムが、後述するように熱硬化性である場合には、保護膜形成用複合シート中の保護膜形成用フィルムが熱硬化する前の、保護膜形成用複合シートの前記表面抵抗率が、上述の表面抵抗率の条件(例えば、1.0×1011Ω/□以下等の上限値や下限値)を満たしてもよい。 <The surface resistivity before the thermosetting protective film-forming film is thermoset>
When the protective film forming film is thermosetting as described below, the surface resistance of the protective film forming composite sheet before the protective film forming film in the protective film forming composite sheet is thermally cured. The rate may satisfy the above-described surface resistivity condition (for example, an upper limit value or a lower limit value of 1.0×10 11 Ω/□ or less).
保護膜形成用フィルムが、後述するように熱硬化性である場合には、保護膜形成用複合シート中の保護膜形成用フィルムが熱硬化する前の、保護膜形成用複合シートの前記表面抵抗率が、上述の表面抵抗率の条件(例えば、1.0×1011Ω/□以下等の上限値や下限値)を満たしてもよい。 <The surface resistivity before the thermosetting protective film-forming film is thermoset>
When the protective film forming film is thermosetting as described below, the surface resistance of the protective film forming composite sheet before the protective film forming film in the protective film forming composite sheet is thermally cured. The rate may satisfy the above-described surface resistivity condition (for example, an upper limit value or a lower limit value of 1.0×10 11 Ω/□ or less).
ただし、本実施形態においては、保護膜形成用複合シート中の保護膜形成用フィルムが熱硬化する前の、保護膜形成用複合シートの前記表面抵抗率は、5.0×1010Ω/□以下であることが好ましく、例えば、6.0×109Ω/□以下、5.0×108Ω/□以下、及び3.0×108Ω/□以下のいずれかであってもよい。熱硬化前の表面抵抗率が前記上限値以下であることで、保護膜形成用フィルムが熱硬化した後の保護膜形成用複合シートの平常時帯電が、より抑制される。
However, in the present embodiment, the surface resistivity of the protective film-forming composite sheet before the protective film-forming film in the protective film-forming composite sheet is thermoset is 5.0×10 10 Ω/□. It is preferably not more than 6.0×10 9 Ω/□, not more than 5.0×10 8 Ω/□, and not more than 3.0×10 8 Ω/□. .. When the surface resistivity before thermosetting is equal to or lower than the upper limit value, normal charging of the protective film-forming composite sheet after the protective film forming film is thermoset is further suppressed.
保護膜形成用フィルムが熱硬化する前の、保護膜形成用複合シートの前記表面抵抗率の下限値は、小さいほど好ましく、特に限定されない。例えば、熱硬化前の前記表面抵抗率が1.0×105Ω/□以上である保護膜形成用複合シートは、より容易に製造できる。
The lower limit of the surface resistivity of the protective film-forming composite sheet before the protective film-forming film is heat-cured is preferably as small as possible, and is not particularly limited. For example, a composite sheet for forming a protective film, in which the surface resistivity before heat curing is 1.0×10 5 Ω/□ or more, can be more easily manufactured.
保護膜形成用フィルムが熱硬化する前の、保護膜形成用複合シートの前記表面抵抗率は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、一実施形態において、熱硬化前の前記表面抵抗率は、1.0×105~5.0×1010Ω/□であることが好ましく、例えば、1.0×105~6.0×109Ω/□、1.0×105~5.0×108Ω/□、及び1.0×105~3.0×108Ω/□のいずれかであってもよい。ただし、これらは、熱硬化前の前記表面抵抗率の一例である。
The surface resistivity of the protective film-forming composite sheet before the protective film-forming film is heat-cured can be appropriately adjusted within the range set by arbitrarily combining the preferable lower limit value and the preferable upper limit value described above. For example, in one embodiment, the surface resistivity before heat curing is preferably 1.0×10 5 to 5.0×10 10 Ω/□, for example, 1.0×10 5 to 6. It may be any of 0×10 9 Ω/□, 1.0×10 5 to 5.0×10 8 Ω/□, and 1.0×10 5 to 3.0×10 8 Ω/□. .. However, these are examples of the surface resistivity before heat curing.
保護膜形成用フィルムが熱硬化性である場合には、本実施形態の保護膜形成用複合シートは、上述の、熱硬化性の保護膜形成用フィルムが熱硬化した後の前記表面抵抗率の条件と、熱硬化性の保護膜形成用フィルムが熱硬化する前の前記表面抵抗率の条件と、をともに満たすことが好ましい。
When the protective film-forming film is thermosetting, the protective film-forming composite sheet of the present embodiment has the above-mentioned surface resistivity of the thermosetting protective film-forming film after thermosetting. It is preferable that both the condition and the condition for the surface resistivity before the thermosetting protective film forming film is thermoset are satisfied.
以下、前記保護膜形成用複合シートを構成する各層について、詳細に説明する。
Hereinafter, each layer constituting the composite sheet for forming a protective film will be described in detail.
◎支持シート
前記支持シートは、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。支持シートが複数層からなる場合、これら複数層の構成材料及び厚さは、互いに同一でも異なっていてもよく、これら複数層の組み合わせは、本発明の効果を損なわない限り、特に限定されない。 ◎Support Sheet The support sheet may be composed of one layer (single layer) or may be composed of two or more layers. When the support sheet is composed of a plurality of layers, the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
前記支持シートは、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。支持シートが複数層からなる場合、これら複数層の構成材料及び厚さは、互いに同一でも異なっていてもよく、これら複数層の組み合わせは、本発明の効果を損なわない限り、特に限定されない。 ◎Support Sheet The support sheet may be composed of one layer (single layer) or may be composed of two or more layers. When the support sheet is composed of a plurality of layers, the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
なお、本明細書においては、支持シートの場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。
In addition, in the present specification, not only in the case of the support sheet, but “a plurality of layers may be the same or different from each other” means “all the layers may be the same or all the layers may be different”. May be present, only some of the layers may be the same", and "a plurality of layers are different from each other" means that "at least one of the constituent materials and the thickness of each layer is different from each other". Means
支持シートは、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよい。
例えば、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、支持シートはエネルギー線を透過させるものが好ましい。
例えば、保護膜形成用複合シート中の保護膜形成用フィルムを、支持シートを介して光学的に検査するためには、支持シートは透明であることが好ましい。 The support sheet may be transparent or opaque, and may be colored depending on the purpose.
For example, when the protective film-forming film has energy ray curability, the support sheet preferably transmits energy rays.
For example, in order to optically inspect the protective film forming film in the protective film forming composite sheet through the supporting sheet, the supporting sheet is preferably transparent.
例えば、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、支持シートはエネルギー線を透過させるものが好ましい。
例えば、保護膜形成用複合シート中の保護膜形成用フィルムを、支持シートを介して光学的に検査するためには、支持シートは透明であることが好ましい。 The support sheet may be transparent or opaque, and may be colored depending on the purpose.
For example, when the protective film-forming film has energy ray curability, the support sheet preferably transmits energy rays.
For example, in order to optically inspect the protective film forming film in the protective film forming composite sheet through the supporting sheet, the supporting sheet is preferably transparent.
本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味する。エネルギー線の例としては、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
また、本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。 In the present specification, the “energy ray” means an electromagnetic wave or a charged particle beam having an energy quantum. Examples of energy rays include ultraviolet rays, radiation, and electron rays. Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light or an LED lamp as an ultraviolet ray source. The electron beam can be emitted by an electron beam accelerator or the like.
In addition, in the present specification, “energy ray-curable” means a property of being cured by irradiation with energy rays, and “non-energy ray-curable” is a property of not being cured by irradiation of energy rays. Means
また、本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。 In the present specification, the “energy ray” means an electromagnetic wave or a charged particle beam having an energy quantum. Examples of energy rays include ultraviolet rays, radiation, and electron rays. Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light or an LED lamp as an ultraviolet ray source. The electron beam can be emitted by an electron beam accelerator or the like.
In addition, in the present specification, “energy ray-curable” means a property of being cured by irradiation with energy rays, and “non-energy ray-curable” is a property of not being cured by irradiation of energy rays. Means
支持シートとしては、例えば、基材と、前記基材上に形成された粘着剤層と、を備えたもの;基材のみからなるもの;等が挙げられる。
The support sheet includes, for example, one including a base material and an adhesive layer formed on the base material; one including only the base material; and the like.
一方、上述のとおり、前記保護膜形成用複合シートにおいては、その中のいずれかの層を、帯電防止層とすることができる。
このような場合、好ましい前記支持シートとしては、基材を備え、かつ、保護膜形成用複合シート中においては、前記基材の、前記保護膜形成用フィルム側とは反対側に位置する面上に形成された帯電防止層(本明細書においては、「背面帯電防止層」と略記することがある)を備えた支持シート;基材を備え、かつ、保護膜形成用複合シート中においては、前記基材の、前記保護膜形成用フィルム側に位置する面上に形成された帯電防止層(本明細書においては、「表面帯電防止層」と略記することがある)を備えた支持シートが挙げられる。前記帯電防止層(背面帯電防止層及び表面帯電防止層)は、帯電防止剤を含有する。 On the other hand, as described above, in the protective film-forming composite sheet, any of the layers can be used as the antistatic layer.
In such a case, the preferable supporting sheet includes a base material, and in the protective film-forming composite sheet, on the surface of the base material located on the side opposite to the protective film forming film side. In the composite sheet for forming a protective film, which includes a base material and an antistatic layer (may be abbreviated as "back surface antistatic layer" in the present specification) formed on the substrate. A support sheet provided with an antistatic layer (may be abbreviated as “surface antistatic layer” in the present specification) formed on the surface of the substrate, which is located on the protective film forming film side. Can be mentioned. The antistatic layer (backside antistatic layer and surface antistatic layer) contains an antistatic agent.
このような場合、好ましい前記支持シートとしては、基材を備え、かつ、保護膜形成用複合シート中においては、前記基材の、前記保護膜形成用フィルム側とは反対側に位置する面上に形成された帯電防止層(本明細書においては、「背面帯電防止層」と略記することがある)を備えた支持シート;基材を備え、かつ、保護膜形成用複合シート中においては、前記基材の、前記保護膜形成用フィルム側に位置する面上に形成された帯電防止層(本明細書においては、「表面帯電防止層」と略記することがある)を備えた支持シートが挙げられる。前記帯電防止層(背面帯電防止層及び表面帯電防止層)は、帯電防止剤を含有する。 On the other hand, as described above, in the protective film-forming composite sheet, any of the layers can be used as the antistatic layer.
In such a case, the preferable supporting sheet includes a base material, and in the protective film-forming composite sheet, on the surface of the base material located on the side opposite to the protective film forming film side. In the composite sheet for forming a protective film, which includes a base material and an antistatic layer (may be abbreviated as "back surface antistatic layer" in the present specification) formed on the substrate. A support sheet provided with an antistatic layer (may be abbreviated as “surface antistatic layer” in the present specification) formed on the surface of the substrate, which is located on the protective film forming film side. Can be mentioned. The antistatic layer (backside antistatic layer and surface antistatic layer) contains an antistatic agent.
すなわち、好ましい前記保護膜形成用複合シートとしては、前記支持シートが、基材と、前記基材の片面又は両面上に形成された帯電防止層と、を備えた保護膜形成用複合シートを備えた保護膜形成用複合シートが挙げられる。
本明細書において、「基材の片面上に形成された帯電防止層」とは、「前記背面帯電防止層又は表面帯電防止層」を意味する。そして、「基材の両面上に形成された帯電防止層」とは、「前記背面帯電防止層及び表面帯電防止層の組み合わせ」を意味する。
これらの中でも、前記支持シートが前記基材及び背面帯電防止層を備えた保護膜形成用複合シートがより好ましい。 That is, as the preferable composite film for forming a protective film, the supporting sheet includes a composite sheet for forming a protective film, which includes a base material and an antistatic layer formed on one surface or both surfaces of the base material. And a composite sheet for forming a protective film.
In the present specification, the “antistatic layer formed on one surface of the substrate” means the “backside antistatic layer or surface antistatic layer”. The "antistatic layer formed on both sides of the substrate" means "a combination of the backside antistatic layer and the surface antistatic layer".
Among these, the protective sheet-forming composite sheet in which the support sheet includes the substrate and the backside antistatic layer is more preferable.
本明細書において、「基材の片面上に形成された帯電防止層」とは、「前記背面帯電防止層又は表面帯電防止層」を意味する。そして、「基材の両面上に形成された帯電防止層」とは、「前記背面帯電防止層及び表面帯電防止層の組み合わせ」を意味する。
これらの中でも、前記支持シートが前記基材及び背面帯電防止層を備えた保護膜形成用複合シートがより好ましい。 That is, as the preferable composite film for forming a protective film, the supporting sheet includes a composite sheet for forming a protective film, which includes a base material and an antistatic layer formed on one surface or both surfaces of the base material. And a composite sheet for forming a protective film.
In the present specification, the “antistatic layer formed on one surface of the substrate” means the “backside antistatic layer or surface antistatic layer”. The "antistatic layer formed on both sides of the substrate" means "a combination of the backside antistatic layer and the surface antistatic layer".
Among these, the protective sheet-forming composite sheet in which the support sheet includes the substrate and the backside antistatic layer is more preferable.
前記保護膜形成用複合シートとしては、帯電防止層として、前記背面帯電防止層と、前記表面帯電防止層と、のいずれにも該当しない層を備えたシートも挙げられる。
例えば、帯電防止層は、保護膜形成用フィルムの支持シート側とは反対側の面上に設けられていてもよいし、保護膜形成用フィルムが帯電防止性を有していてもよい。しかし、このような保護膜形成用複合シートを用いて、十分に帯電を抑制しつつ、半導体装置を製造する場合には、帯電防止層(すなわち、保護膜形成用フィルムの支持シート側とは反対側の面上に設けられた帯電防止層)が半導体チップに貼付された状態を経て、帯電防止層が半導体装置に組み込まれることになる。このような場合、半導体装置を製造する過程で、帯電防止層を介して保護膜形成用フィルム又は保護膜を、半導体ウエハ又は半導体チップに貼付した状態を、安定に維持できない可能性がある。また、半導体装置中で帯電防止層が、半導体装置の構造の安定性、又は半導体装置の性能に、悪影響を与える可能性がある。
また、例えば、帯電防止層は、保護膜形成用フィルムの支持シート側の面上に設けられていてもよい。しかし、このような保護膜形成用複合シートを用いて半導体装置を製造する場合には、保護膜形成用フィルム又は保護膜が貼付された半導体チップを、支持シート上の帯電防止層から引き離してピックアップするときに、帯電防止層が介在することが原因となって、工程異常が発生する可能性がある。
一方、帯電防止層として、前記背面帯電防止層又は前記表面帯電防止層を用いることにより、前記積層体の引き離し時帯電だけでなく、保護膜形成用複合シートの製造過程や保存過程でのより多くの場面において、帯電に起因する不具合の発生を抑制できる。
以上のような観点から、前記保護膜形成用複合シートは、帯電防止層として、前記背面帯電防止層又は前記表面帯電防止層を備えていることが好ましい。 Examples of the composite sheet for forming a protective film also include a sheet having, as an antistatic layer, a layer that does not correspond to any of the back surface antistatic layer and the surface antistatic layer.
For example, the antistatic layer may be provided on the surface of the protective film forming film opposite to the support sheet side, or the protective film forming film may have antistatic properties. However, when a semiconductor device is manufactured using such a protective film-forming composite sheet while sufficiently suppressing charging, the antistatic layer (that is, the antistatic layer opposite to the supporting sheet side of the protective film forming film) is used. After the antistatic layer provided on the side surface is attached to the semiconductor chip, the antistatic layer is incorporated into the semiconductor device. In such a case, in the process of manufacturing the semiconductor device, it may not be possible to stably maintain the state in which the protective film forming film or the protective film is attached to the semiconductor wafer or the semiconductor chip via the antistatic layer. Further, in the semiconductor device, the antistatic layer may adversely affect the stability of the structure of the semiconductor device or the performance of the semiconductor device.
Further, for example, the antistatic layer may be provided on the surface of the protective film-forming film on the support sheet side. However, when manufacturing a semiconductor device using such a protective film-forming composite sheet, the protective film-forming film or the semiconductor chip to which the protective film is attached is separated from the antistatic layer on the support sheet and picked up. At this time, the process abnormality may occur due to the interposition of the antistatic layer.
On the other hand, by using the back surface antistatic layer or the surface antistatic layer as the antistatic layer, not only the charging at the time of separating the laminate, but also more in the manufacturing process and the storage process of the protective film forming composite sheet. In this situation, it is possible to suppress the occurrence of defects due to charging.
From the viewpoints described above, the composite sheet for forming a protective film preferably includes the back surface antistatic layer or the surface antistatic layer as an antistatic layer.
例えば、帯電防止層は、保護膜形成用フィルムの支持シート側とは反対側の面上に設けられていてもよいし、保護膜形成用フィルムが帯電防止性を有していてもよい。しかし、このような保護膜形成用複合シートを用いて、十分に帯電を抑制しつつ、半導体装置を製造する場合には、帯電防止層(すなわち、保護膜形成用フィルムの支持シート側とは反対側の面上に設けられた帯電防止層)が半導体チップに貼付された状態を経て、帯電防止層が半導体装置に組み込まれることになる。このような場合、半導体装置を製造する過程で、帯電防止層を介して保護膜形成用フィルム又は保護膜を、半導体ウエハ又は半導体チップに貼付した状態を、安定に維持できない可能性がある。また、半導体装置中で帯電防止層が、半導体装置の構造の安定性、又は半導体装置の性能に、悪影響を与える可能性がある。
また、例えば、帯電防止層は、保護膜形成用フィルムの支持シート側の面上に設けられていてもよい。しかし、このような保護膜形成用複合シートを用いて半導体装置を製造する場合には、保護膜形成用フィルム又は保護膜が貼付された半導体チップを、支持シート上の帯電防止層から引き離してピックアップするときに、帯電防止層が介在することが原因となって、工程異常が発生する可能性がある。
一方、帯電防止層として、前記背面帯電防止層又は前記表面帯電防止層を用いることにより、前記積層体の引き離し時帯電だけでなく、保護膜形成用複合シートの製造過程や保存過程でのより多くの場面において、帯電に起因する不具合の発生を抑制できる。
以上のような観点から、前記保護膜形成用複合シートは、帯電防止層として、前記背面帯電防止層又は前記表面帯電防止層を備えていることが好ましい。 Examples of the composite sheet for forming a protective film also include a sheet having, as an antistatic layer, a layer that does not correspond to any of the back surface antistatic layer and the surface antistatic layer.
For example, the antistatic layer may be provided on the surface of the protective film forming film opposite to the support sheet side, or the protective film forming film may have antistatic properties. However, when a semiconductor device is manufactured using such a protective film-forming composite sheet while sufficiently suppressing charging, the antistatic layer (that is, the antistatic layer opposite to the supporting sheet side of the protective film forming film) is used. After the antistatic layer provided on the side surface is attached to the semiconductor chip, the antistatic layer is incorporated into the semiconductor device. In such a case, in the process of manufacturing the semiconductor device, it may not be possible to stably maintain the state in which the protective film forming film or the protective film is attached to the semiconductor wafer or the semiconductor chip via the antistatic layer. Further, in the semiconductor device, the antistatic layer may adversely affect the stability of the structure of the semiconductor device or the performance of the semiconductor device.
Further, for example, the antistatic layer may be provided on the surface of the protective film-forming film on the support sheet side. However, when manufacturing a semiconductor device using such a protective film-forming composite sheet, the protective film-forming film or the semiconductor chip to which the protective film is attached is separated from the antistatic layer on the support sheet and picked up. At this time, the process abnormality may occur due to the interposition of the antistatic layer.
On the other hand, by using the back surface antistatic layer or the surface antistatic layer as the antistatic layer, not only the charging at the time of separating the laminate, but also more in the manufacturing process and the storage process of the protective film forming composite sheet. In this situation, it is possible to suppress the occurrence of defects due to charging.
From the viewpoints described above, the composite sheet for forming a protective film preferably includes the back surface antistatic layer or the surface antistatic layer as an antistatic layer.
前記保護膜形成用複合シートの全体構成の例を、帯電防止層の配置形態ごとに、以下、図面を参照しながら説明する。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
An example of the overall structure of the protective film-forming composite sheet will be described below for each arrangement mode of the antistatic layer with reference to the drawings. It should be noted that, in the drawings used in the following description, in order to make the features of the present invention easy to understand, there are cases in which essential portions are enlarged for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
まず初めに、帯電防止層として前記背面帯電防止層を備えた保護膜形成用複合シートについて、説明する。
First, a composite sheet for forming a protective film having the backside antistatic layer as an antistatic layer will be described.
図1は、本発明の一実施形態に係る保護膜形成用複合シートを模式的に示す断面図である。
ここに示す保護膜形成用複合シート101は、支持シート10と、支持シート10の一方の面(本明細書においては、「第1面」と称することがある)10a上に形成された保護膜形成用フィルム13と、を備えている。 FIG. 1 is a sectional view schematically showing a protective film-forming composite sheet according to an embodiment of the present invention.
The protective film-formingcomposite sheet 101 shown here is a protective film formed on the support sheet 10 and one surface (sometimes referred to as “first surface” in the present specification) 10 a of the support sheet 10. The forming film 13 is provided.
ここに示す保護膜形成用複合シート101は、支持シート10と、支持シート10の一方の面(本明細書においては、「第1面」と称することがある)10a上に形成された保護膜形成用フィルム13と、を備えている。 FIG. 1 is a sectional view schematically showing a protective film-forming composite sheet according to an embodiment of the present invention.
The protective film-forming
支持シート10は、基材11と、基材11の一方の面(本明細書においては、「第1面」と称することがある)11a上に形成された粘着剤層12と、基材11の他方の面(本明細書においては、「第2面」と称することがある)11b上に形成された背面帯電防止層17と、を備えている。すなわち、支持シート10は、背面帯電防止層17、基材11及び粘着剤層12がこの順に、これらの厚さ方向において積層されて、構成されている。支持シート10の第1面10aは、換言すると、粘着剤層12の基材11側とは反対側の面(本明細書においては、「第1面」と称することがある)12aである。
The support sheet 10 includes a base material 11, an adhesive layer 12 formed on one surface (sometimes referred to as “first surface” in this specification) 11 a of the base material 11, and the base material 11. And the back surface antistatic layer 17 formed on the other surface (which may be referred to as a "second surface" in the present specification) 11b. That is, the support sheet 10 is configured by laminating the back surface antistatic layer 17, the base material 11, and the adhesive layer 12 in this order in the thickness direction thereof. In other words, the first surface 10a of the support sheet 10 is a surface (which may be referred to as "first surface" in the present specification) of the pressure-sensitive adhesive layer 12 opposite to the base material 11 side.
すなわち、保護膜形成用複合シート101は、背面帯電防止層17、基材11、粘着剤層12及び保護膜形成用フィルム13がこの順に、これらの厚さ方向において積層されて、構成されている。また、保護膜形成用複合シート101は、さらに保護膜形成用フィルム13上に剥離フィルム15を備えている。
That is, the protective film forming composite sheet 101 is configured by laminating the back surface antistatic layer 17, the base material 11, the adhesive layer 12, and the protective film forming film 13 in this order in the thickness direction thereof. .. The protective film forming composite sheet 101 further includes a release film 15 on the protective film forming film 13.
保護膜形成用複合シート101においては、粘着剤層12の第1面12aの全面又はほぼ全面に、保護膜形成用フィルム13が積層され、保護膜形成用フィルム13の粘着剤層12側とは反対側の面(本明細書においては、「第1面」と称することがある)13aの一部、すなわち、周縁部近傍の領域に、治具用接着剤層16が積層され、保護膜形成用フィルム13の第1面13aのうち、治具用接着剤層16が積層されていない面と、治具用接着剤層16の粘着剤層12側とは反対側の面(本明細書においては、「第1面」と称することがある)16aに、剥離フィルム15が積層されている。
In the protective film-forming composite sheet 101, the protective film forming film 13 is laminated on the entire surface or almost the entire first surface 12a of the adhesive layer 12, and the adhesive layer 12 side of the protective film forming film 13 is The adhesive layer 16 for a jig is laminated on a part of the opposite surface (which may be referred to as a “first surface” in the present specification) 13a, that is, a region in the vicinity of the peripheral edge to form a protective film. Of the first surface 13a of the film 13 for jigs, the surface on which the jig adhesive layer 16 is not laminated, and the surface of the jig adhesive layer 16 opposite to the pressure-sensitive adhesive layer 12 side (in the present specification, Is sometimes referred to as the “first surface”) 16a, and the release film 15 is laminated thereon.
保護膜形成用複合シート101においては、剥離フィルム15と、この剥離フィルム15と直接接触している層との間に、一部隙間が生じていてもよい。
例えば、ここでは、治具用接着剤層16の側面16cに、剥離フィルム15が接触(積層)している状態を示しているが、前記側面16cには、剥離フィルム15が接触していないこともある。また、ここでは、保護膜形成用フィルム13の第1面13aのうち、治具用接着剤層16の近傍領域に、剥離フィルム15が接触(積層)している状態を示しているが、前記領域には、剥離フィルム15が接触していないこともある。
また、治具用接着剤層16の第1面16a及び側面16cの境界は、明確に区別できない場合もある。これらは、治具用接着剤層を備えた、他の実施形態の保護膜形成用複合シートにおいても、同様である。 In the protective film-formingcomposite sheet 101, a gap may be partially formed between the release film 15 and the layer in direct contact with the release film 15.
For example, here, the state where therelease film 15 is in contact (lamination) with the side surface 16c of the jig adhesive layer 16 is shown, but the release film 15 is not in contact with the side surface 16c. There is also. In addition, here, a state is shown in which the release film 15 is in contact (laminated) with a region near the jig adhesive layer 16 on the first surface 13a of the protective film forming film 13, The release film 15 may not be in contact with the area.
In some cases, the boundary between thefirst surface 16a and the side surface 16c of the jig adhesive layer 16 cannot be clearly distinguished. The same applies to the protective film-forming composite sheet of the other embodiment, which is provided with the jig adhesive layer.
例えば、ここでは、治具用接着剤層16の側面16cに、剥離フィルム15が接触(積層)している状態を示しているが、前記側面16cには、剥離フィルム15が接触していないこともある。また、ここでは、保護膜形成用フィルム13の第1面13aのうち、治具用接着剤層16の近傍領域に、剥離フィルム15が接触(積層)している状態を示しているが、前記領域には、剥離フィルム15が接触していないこともある。
また、治具用接着剤層16の第1面16a及び側面16cの境界は、明確に区別できない場合もある。これらは、治具用接着剤層を備えた、他の実施形態の保護膜形成用複合シートにおいても、同様である。 In the protective film-forming
For example, here, the state where the
In some cases, the boundary between the
支持シートに用いられる加工前の基材において、通常、その片面又は両面は、凹凸形状を有する凹凸面となっている。これは、このような凹凸面を有していないと、基材を巻き取ってロールとしたときに、基材同士の接触面が貼り付いてブロッキングしてしまい、使用が困難になるためである。基材同士の接触面のうち、少なくとも一方が凹凸面であれば、接触面の面積が小さくなるために、ブロッキングが抑制される。
したがって、保護膜形成用複合シート101においては、基材11の第1面11a及び第2面11bのいずれか一方又は両方は、凹凸面であってもよい。そして、基材11の第1面11a及び第2面11bのいずれか一方のみが凹凸面である場合には、どちらが凹凸面であってもよい。この場合、他方は、凹凸度が低い平滑面となる。
このような凹凸面及び平滑面の条件は、基材11を備えた他の保護膜形成用複合シートにおいても同様である。 In the unprocessed base material used for the support sheet, one or both surfaces of the base material are usually uneven surfaces having an uneven shape. This is because if the substrate does not have such a concavo-convex surface, when the substrate is wound into a roll, the contact surfaces of the substrates stick to each other and block, making it difficult to use. .. If at least one of the contact surfaces of the base materials is a concave-convex surface, the area of the contact surface is small, and thus blocking is suppressed.
Therefore, in thecomposite sheet 101 for forming a protective film, one or both of the first surface 11a and the second surface 11b of the base material 11 may be an uneven surface. When only one of the first surface 11a and the second surface 11b of the base material 11 is an uneven surface, either one may be the uneven surface. In this case, the other becomes a smooth surface with a low degree of unevenness.
The conditions for such an uneven surface and a smooth surface are the same for other composite films for forming a protective film including thebase material 11.
したがって、保護膜形成用複合シート101においては、基材11の第1面11a及び第2面11bのいずれか一方又は両方は、凹凸面であってもよい。そして、基材11の第1面11a及び第2面11bのいずれか一方のみが凹凸面である場合には、どちらが凹凸面であってもよい。この場合、他方は、凹凸度が低い平滑面となる。
このような凹凸面及び平滑面の条件は、基材11を備えた他の保護膜形成用複合シートにおいても同様である。 In the unprocessed base material used for the support sheet, one or both surfaces of the base material are usually uneven surfaces having an uneven shape. This is because if the substrate does not have such a concavo-convex surface, when the substrate is wound into a roll, the contact surfaces of the substrates stick to each other and block, making it difficult to use. .. If at least one of the contact surfaces of the base materials is a concave-convex surface, the area of the contact surface is small, and thus blocking is suppressed.
Therefore, in the
The conditions for such an uneven surface and a smooth surface are the same for other composite films for forming a protective film including the
治具用接着剤層16は、リングフレーム等の治具に、保護膜形成用複合シート101を固定するために用いる。
治具用接着剤層16は、例えば、接着剤成分を含有する単層構造を有していてもよいし、芯材となるシートの両面に接着剤成分を含有する層が積層された複数層構造を有していてもよい。 Thejig adhesive layer 16 is used for fixing the protective film forming composite sheet 101 to a jig such as a ring frame.
Thejig adhesive layer 16 may have, for example, a single-layer structure containing an adhesive component, or a plurality of layers in which a layer containing an adhesive component is laminated on both surfaces of a core sheet. It may have a structure.
治具用接着剤層16は、例えば、接着剤成分を含有する単層構造を有していてもよいし、芯材となるシートの両面に接着剤成分を含有する層が積層された複数層構造を有していてもよい。 The
The
背面帯電防止層17は、帯電防止剤を含有する。これにより、保護膜形成用複合シート101中の、支持シート10側の最表層である背面帯電防止層17の表面抵抗率が、1.0×1011Ω/□以下となる。そして、保護膜形成用複合シート101の平常時帯電が抑制される。
The back antistatic layer 17 contains an antistatic agent. Thereby, the surface resistivity of the back surface antistatic layer 17, which is the outermost layer on the support sheet 10 side, in the protective film-forming composite sheet 101 becomes 1.0×10 11 Ω/□ or less. Then, the normal charging of the protective film forming composite sheet 101 is suppressed.
保護膜形成用複合シート101は、剥離フィルム15が取り除かれた状態で、保護膜形成用フィルム13の第1面13aに半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の第1面16aが、リングフレーム等の治具に貼付されて、使用される。
In the protective film forming composite sheet 101, the back surface of the semiconductor wafer (not shown) is attached to the first surface 13a of the protective film forming film 13 in a state where the release film 15 is removed. The first surface 16a of the layer 16 is used by being attached to a jig such as a ring frame.
図2は、本発明の他の実施形態に係る保護膜形成用複合シートを模式的に示す断面図である。
なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。 FIG. 2 is a sectional view schematically showing a protective film-forming composite sheet according to another embodiment of the present invention.
2 and subsequent figures, the same components as those shown in the already-described figures are designated by the same reference numerals as those in the already-illustrated figures, and detailed description thereof will be omitted.
なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。 FIG. 2 is a sectional view schematically showing a protective film-forming composite sheet according to another embodiment of the present invention.
2 and subsequent figures, the same components as those shown in the already-described figures are designated by the same reference numerals as those in the already-illustrated figures, and detailed description thereof will be omitted.
ここに示す保護膜形成用複合シート102は、保護膜形成用フィルムの形状及び大きさが異なり、治具用接着剤層が保護膜形成用フィルムの第1面ではなく、粘着剤層の第1面に積層されている点以外は、図1に示す保護膜形成用複合シート101と同じである。
In the protective film-forming composite sheet 102 shown here, the shape and size of the protective film forming film are different, and the jig adhesive layer is not the first surface of the protective film forming film but the first adhesive layer. It is the same as the composite sheet 101 for forming a protective film shown in FIG. 1 except that it is laminated on the surface.
より具体的には、保護膜形成用複合シート102において、保護膜形成用フィルム23は、粘着剤層12の第1面12aの一部の領域、すなわち、粘着剤層12の幅方向(図2における左右方向)における中央側の領域に、積層されている。さらに、粘着剤層12の第1面12aのうち、保護膜形成用フィルム23が積層されていない面、すなわち、周縁部近傍の領域に、治具用接着剤層16が積層されている。そして、保護膜形成用フィルム23の粘着剤層12側とは反対側の面(本明細書においては、「第1面」と称することがある)23aと、治具用接着剤層16の第1面16aとに、剥離フィルム15が積層されている。
More specifically, in the protective film-forming composite sheet 102, the protective film forming film 23 has a partial area of the first surface 12a of the adhesive layer 12, that is, the width direction of the adhesive layer 12 (see FIG. 2). In the left-right direction) in the central region. Further, the jig adhesive layer 16 is laminated on the surface of the first surface 12a of the pressure-sensitive adhesive layer 12 on which the protective film forming film 23 is not laminated, that is, on the region near the peripheral portion. The surface of the protective film forming film 23 opposite to the pressure-sensitive adhesive layer 12 side (may be referred to as “first surface” in the present specification) 23 a and the jig adhesive layer 16 first surface. The release film 15 is laminated on the one surface 16a.
保護膜形成用複合シート102を上方から見下ろして平面視したとき、保護膜形成用フィルム23の第1面23aは、粘着剤層12の第1面12a(すなわち、保護膜形成用フィルム23が積層されている領域と積層されていない領域とを合わせた領域)よりも表面積が小さく、例えば、円形状等の平面形状を有する。
When the protective film-forming composite sheet 102 is viewed from above and seen in a plan view, the first surface 23a of the protective film-forming film 23 is the first surface 12a of the adhesive layer 12 (that is, the protective film-forming film 23 is laminated). The surface area is smaller than that of the combined area and the non-laminated area), and has, for example, a planar shape such as a circular shape.
保護膜形成用複合シート102においては、剥離フィルム15と、この剥離フィルム15と直接接触している層との間に、一部隙間が生じていてもよい。
例えば、ここでは、保護膜形成用フィルム23の側面23cに、剥離フィルム15が接触(積層)している状態を示しているが、前記側面23cには、剥離フィルム15が接触していないこともある。また、ここでは、粘着剤層12の表面12aのうち、保護膜形成用フィルム23及び治具用接着剤層16が積層されていない領域に、剥離フィルム15が接触(積層)している状態を示しているが、前記領域には、剥離フィルム15が接触していないこともある。
また、保護膜形成用フィルム23の第1面23a及び側面23cの境界は、明確に区別できない場合もある。これらは、同様の形状及び大きさの保護膜形成用フィルムを備えた、他の実施形態の保護膜形成用複合シートにおいても、同様である。 In the protective film-formingcomposite sheet 102, a gap may be partially formed between the release film 15 and the layer that is in direct contact with the release film 15.
For example, here, the state where therelease film 15 is in contact (lamination) with the side surface 23c of the protective film forming film 23 is shown, but the release film 15 may not be in contact with the side surface 23c. is there. In addition, here, a state in which the release film 15 is in contact (laminated) with a region of the surface 12a of the adhesive layer 12 where the protective film forming film 23 and the jig adhesive layer 16 are not laminated Although shown, the release film 15 may not be in contact with the region.
In some cases, the boundary between thefirst surface 23a and the side surface 23c of the protective film forming film 23 cannot be clearly distinguished. The same applies to the protective film-forming composite sheet of the other embodiment, which includes the protective film-forming film having the same shape and size.
例えば、ここでは、保護膜形成用フィルム23の側面23cに、剥離フィルム15が接触(積層)している状態を示しているが、前記側面23cには、剥離フィルム15が接触していないこともある。また、ここでは、粘着剤層12の表面12aのうち、保護膜形成用フィルム23及び治具用接着剤層16が積層されていない領域に、剥離フィルム15が接触(積層)している状態を示しているが、前記領域には、剥離フィルム15が接触していないこともある。
また、保護膜形成用フィルム23の第1面23a及び側面23cの境界は、明確に区別できない場合もある。これらは、同様の形状及び大きさの保護膜形成用フィルムを備えた、他の実施形態の保護膜形成用複合シートにおいても、同様である。 In the protective film-forming
For example, here, the state where the
In some cases, the boundary between the
保護膜形成用複合シート102中の、支持シート10側の最表層である背面帯電防止層17の表面抵抗率は、1.0×1011Ω/□以下であり、保護膜形成用複合シート102の平常時帯電が抑制される。
In the protective film-forming composite sheet 102, the surface resistivity of the back surface antistatic layer 17, which is the outermost layer on the supporting sheet 10 side, is 1.0×10 11 Ω/□ or less, and the protective film-forming composite sheet 102. The normal charging of is suppressed.
保護膜形成用複合シート102は、剥離フィルム15が取り除かれた状態で、保護膜形成用フィルム23の第1面23aに半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の第1面16aが、リングフレーム等の治具に貼付されて、使用される。
In the protective film forming composite sheet 102, the back surface of the semiconductor wafer (not shown) is attached to the first surface 23a of the protective film forming film 23 in a state where the release film 15 is removed, and further, the jig adhesive. The first surface 16a of the layer 16 is used by being attached to a jig such as a ring frame.
図3は、本発明のさらに他の実施形態に係る保護膜形成用複合シートを模式的に示す断面図である。
ここに示す保護膜形成用複合シート103は、治具用接着剤層16を備えていない点以外は、図2に示す保護膜形成用複合シート102と同じである。 FIG. 3 is a cross-sectional view schematically showing a protective film-forming composite sheet according to still another embodiment of the present invention.
The protective film formingcomposite sheet 103 shown here is the same as the protective film forming composite sheet 102 shown in FIG. 2 except that the jig adhesive layer 16 is not provided.
ここに示す保護膜形成用複合シート103は、治具用接着剤層16を備えていない点以外は、図2に示す保護膜形成用複合シート102と同じである。 FIG. 3 is a cross-sectional view schematically showing a protective film-forming composite sheet according to still another embodiment of the present invention.
The protective film forming
保護膜形成用複合シート103中の、支持シート10側の最表層である背面帯電防止層17の表面抵抗率は、1.0×1011Ω/□以下であり、保護膜形成用複合シート103の平常時帯電が抑制される。
The surface resistivity of the back surface antistatic layer 17 which is the outermost layer on the support sheet 10 side in the protective film-forming composite sheet 103 is 1.0×10 11 Ω/□ or less, and the protective film forming composite sheet 103. The normal charging of is suppressed.
保護膜形成用複合シート103は、剥離フィルム15が取り除かれた状態で、保護膜形成用フィルム23の第1面23aに半導体ウエハ(図示略)の裏面が貼付され、さらに、粘着剤層12の第1面12aのうち、保護膜形成用フィルム23が積層されていない領域が、リングフレーム等の治具に貼付されて、使用される。
In the protective film forming composite sheet 103, the back surface of the semiconductor wafer (not shown) is attached to the first surface 23a of the protective film forming film 23 in a state where the release film 15 is removed. An area of the first surface 12a where the protective film forming film 23 is not laminated is attached to a jig such as a ring frame and used.
図4は、本発明のさらに他の実施形態に係る保護膜形成用複合シートを模式的に示す断面図である。
ここに示す保護膜形成用複合シート104は、粘着剤層12と、保護膜形成用フィルム23と、の間に、さらに中間層18を備えている点以外は、図3に示す保護膜形成用複合シート103と同じである。保護膜形成用複合シート104は、粘着剤層12の第1面12a上に、中間層18を備えている。中間層18の粘着剤層12側とは反対側の面(本明細書においては、「第1面」と称することがある)18aは、保護膜形成用フィルム23の積層面である。 FIG. 4 is a sectional view schematically showing a protective film-forming composite sheet according to still another embodiment of the present invention.
The protective film formingcomposite sheet 104 shown here is for forming a protective film shown in FIG. 3 except that an intermediate layer 18 is further provided between the pressure-sensitive adhesive layer 12 and the protective film forming film 23. It is the same as the composite sheet 103. The protective film forming composite sheet 104 includes the intermediate layer 18 on the first surface 12 a of the pressure-sensitive adhesive layer 12. A surface of the intermediate layer 18 opposite to the pressure-sensitive adhesive layer 12 side (may be referred to as “first surface” in this specification) 18 a is a laminated surface of the protective film forming film 23.
ここに示す保護膜形成用複合シート104は、粘着剤層12と、保護膜形成用フィルム23と、の間に、さらに中間層18を備えている点以外は、図3に示す保護膜形成用複合シート103と同じである。保護膜形成用複合シート104は、粘着剤層12の第1面12a上に、中間層18を備えている。中間層18の粘着剤層12側とは反対側の面(本明細書においては、「第1面」と称することがある)18aは、保護膜形成用フィルム23の積層面である。 FIG. 4 is a sectional view schematically showing a protective film-forming composite sheet according to still another embodiment of the present invention.
The protective film forming
すなわち、保護膜形成用複合シート104は、背面帯電防止層17、基材11、粘着剤層12、中間層18及び保護膜形成用フィルム23がこの順に、これらの厚さ方向において積層されて、構成されている。また、保護膜形成用複合シート104は、さらに保護膜形成用フィルム23上に剥離フィルム15を備えている。
That is, in the protective film forming composite sheet 104, the back surface antistatic layer 17, the base material 11, the adhesive layer 12, the intermediate layer 18, and the protective film forming film 23 are laminated in this order in the thickness direction thereof, It is configured. Further, the protective film forming composite sheet 104 further includes a release film 15 on the protective film forming film 23.
保護膜形成用複合シート104において、中間層18は、保護膜形成用フィルム23と粘着剤層12との間に配置されており、最表層とはならない中間位置に配置されている。
中間層18は、このような配置位置でその機能を発揮するものであれば、特に限定されない。
中間層18として、より具体的には、例えば、一方の面が剥離処理されている剥離性改善層が挙げられる。前記剥離性改善層とは、保護膜形成用フィルム又は保護膜を備えた半導体チップを、支持シートから引き離して(剥離させて)ピックアップするときに、この半導体チップの支持シートからの剥離性を向上させる機能を有する。 In the protective film formingcomposite sheet 104, the intermediate layer 18 is arranged between the protective film forming film 23 and the pressure-sensitive adhesive layer 12, and is arranged at an intermediate position which does not become the outermost layer.
Theintermediate layer 18 is not particularly limited as long as it exhibits its function at such an arrangement position.
More specifically, examples of theintermediate layer 18 include a peelability improving layer having one surface subjected to a peeling treatment. The releasability improving layer improves the releasability of the semiconductor chip from the supporting sheet when the semiconductor chip having the protective film forming film or the protective film is picked up by separating (peeling) from the supporting sheet. It has the function of
中間層18は、このような配置位置でその機能を発揮するものであれば、特に限定されない。
中間層18として、より具体的には、例えば、一方の面が剥離処理されている剥離性改善層が挙げられる。前記剥離性改善層とは、保護膜形成用フィルム又は保護膜を備えた半導体チップを、支持シートから引き離して(剥離させて)ピックアップするときに、この半導体チップの支持シートからの剥離性を向上させる機能を有する。 In the protective film forming
The
More specifically, examples of the
中間層18の第1面18aは、保護膜形成用フィルム23の粘着剤層12側の面(本明細書においては、「第2面」と称することがある)23bと接触している。
保護膜形成用複合シート104を上方から見下ろして平面視したとき、中間層18の形状(すなわち、平面形状)及び大きさは、中間層18がその機能を発揮可能である限り、特に限定されない。ただし、中間層18の機能を十分に発揮させるためには、中間層18の第1面18aは、保護膜形成用フィルム23の第2面23bの全面と接触していることが好ましい。そのために、中間層18の第1面18aは、保護膜形成用フィルム23の第2面23bに対して、同等以上の面積を有することが好ましい。一方、中間層18の粘着剤層12側の面(本明細書においては、「第2面」と称することがある)18bは、粘着剤層12の第1面12aの全面と接触していてもよいし、粘着剤層12の第1面12aの一部の領域のみと接触していてもよい。ただし、中間層18の機能を十分に発揮させるためには、粘着剤層12の第1面12aは、中間層18の第2面18bの全面と接触していることが好ましい。
好ましい中間層18としては、例えば、その第1面18aの面積及び形状が、保護膜形成用フィルム23の第2面23bの面積及び形状と、同等であるものが挙げられる。 Thefirst surface 18a of the intermediate layer 18 is in contact with the surface of the protective film forming film 23 on the pressure-sensitive adhesive layer 12 side (which may be referred to as "second surface" in this specification) 23b.
When the protective film-formingcomposite sheet 104 is viewed from above in a plan view, the shape (that is, the planar shape) and size of the intermediate layer 18 are not particularly limited as long as the intermediate layer 18 can exhibit its function. However, in order to fully exert the function of the intermediate layer 18, it is preferable that the first surface 18a of the intermediate layer 18 is in contact with the entire second surface 23b of the protective film forming film 23. Therefore, the first surface 18a of the intermediate layer 18 preferably has an area equal to or larger than that of the second surface 23b of the protective film forming film 23. On the other hand, the surface of the intermediate layer 18 on the pressure-sensitive adhesive layer 12 side (may be referred to as “second surface” in this specification) 18 b is in contact with the entire first surface 12 a of the pressure-sensitive adhesive layer 12. Alternatively, it may be in contact with only a part of the first surface 12a of the pressure-sensitive adhesive layer 12. However, in order to fully exert the function of the intermediate layer 18, it is preferable that the first surface 12a of the adhesive layer 12 is in contact with the entire second surface 18b of the intermediate layer 18.
Examples of the preferableintermediate layer 18 include those in which the area and shape of the first surface 18a thereof are the same as the area and shape of the second surface 23b of the protective film forming film 23.
保護膜形成用複合シート104を上方から見下ろして平面視したとき、中間層18の形状(すなわち、平面形状)及び大きさは、中間層18がその機能を発揮可能である限り、特に限定されない。ただし、中間層18の機能を十分に発揮させるためには、中間層18の第1面18aは、保護膜形成用フィルム23の第2面23bの全面と接触していることが好ましい。そのために、中間層18の第1面18aは、保護膜形成用フィルム23の第2面23bに対して、同等以上の面積を有することが好ましい。一方、中間層18の粘着剤層12側の面(本明細書においては、「第2面」と称することがある)18bは、粘着剤層12の第1面12aの全面と接触していてもよいし、粘着剤層12の第1面12aの一部の領域のみと接触していてもよい。ただし、中間層18の機能を十分に発揮させるためには、粘着剤層12の第1面12aは、中間層18の第2面18bの全面と接触していることが好ましい。
好ましい中間層18としては、例えば、その第1面18aの面積及び形状が、保護膜形成用フィルム23の第2面23bの面積及び形状と、同等であるものが挙げられる。 The
When the protective film-forming
Examples of the preferable
保護膜形成用複合シート104においては、剥離フィルム15と、この剥離フィルム15と直接接触している層との間に、一部隙間が生じていてもよい。
例えば、ここでは、中間層18の側面18cに、剥離フィルム15が接触(積層)している状態を示しているが、前記側面18cには、剥離フィルム15が接触していないこともある。また、ここでは、粘着剤層12の第1面12aのうち、中間層18が積層されていない領域には、中間層18の近傍領域も含めて、剥離フィルム15が接触(積層)している状態を示しているが、前記第1面12aのうち、中間層18の近傍領域には、剥離フィルム15が接触していないこともある。
また、中間層18の第1面18a及び側面18cの境界は、明確に区別できない場合もある。 In the protective film-formingcomposite sheet 104, a gap may be partially formed between the release film 15 and the layer in direct contact with the release film 15.
For example, although therelease film 15 is in contact with (laminated) the side surface 18c of the intermediate layer 18 here, the release film 15 may not be in contact with the side surface 18c. Further, here, in the first surface 12a of the pressure-sensitive adhesive layer 12, the release film 15 is in contact (laminated) with the region where the intermediate layer 18 is not laminated, including the region in the vicinity of the intermediate layer 18. Although the state is shown, the release film 15 may not be in contact with the region of the first surface 12a in the vicinity of the intermediate layer 18.
In some cases, the boundary between thefirst surface 18a and the side surface 18c of the intermediate layer 18 cannot be clearly distinguished.
例えば、ここでは、中間層18の側面18cに、剥離フィルム15が接触(積層)している状態を示しているが、前記側面18cには、剥離フィルム15が接触していないこともある。また、ここでは、粘着剤層12の第1面12aのうち、中間層18が積層されていない領域には、中間層18の近傍領域も含めて、剥離フィルム15が接触(積層)している状態を示しているが、前記第1面12aのうち、中間層18の近傍領域には、剥離フィルム15が接触していないこともある。
また、中間層18の第1面18a及び側面18cの境界は、明確に区別できない場合もある。 In the protective film-forming
For example, although the
In some cases, the boundary between the
保護膜形成用複合シート104中の、支持シート10側の最表層である背面帯電防止層17の表面抵抗率は、1.0×1011Ω/□以下であり、保護膜形成用複合シート104の平常時帯電が抑制される。
The surface resistivity of the back surface antistatic layer 17 which is the outermost layer on the support sheet 10 side in the protective film-forming composite sheet 104 is 1.0×10 11 Ω/□ or less, and the protective film-forming composite sheet 104. The normal charging of is suppressed.
保護膜形成用複合シート104は、剥離フィルム15が取り除かれた状態で、保護膜形成用フィルム23の第1面23aに半導体ウエハ(図示略)の裏面が貼付され、さらに、粘着剤層12の第1面12aのうち、中間層18が積層されていない領域が、リングフレーム等の治具に貼付されて、使用される。
In the protective film forming composite sheet 104, the back surface of the semiconductor wafer (not shown) is attached to the first surface 23a of the protective film forming film 23 in a state where the release film 15 is removed, and the adhesive layer 12 is further formed. A region of the first surface 12a where the intermediate layer 18 is not stacked is used by being attached to a jig such as a ring frame.
図5は、本発明のさらに他の実施形態に係る保護膜形成用複合シートを模式的に示す断面図である。
ここに示す保護膜形成用複合シート105は、粘着剤層12を備えていない点以外は、図1に示す保護膜形成用複合シート101と同じである。換言すると、保護膜形成用複合シート105は、支持シート10に代えて、粘着剤層12を備えていない支持シート20を備えている点以外は、保護膜形成用複合シート101と同じである。基材11の第1面11aは、換言すると、支持シート20の保護膜形成用フィルム13側の面(本明細書においては、「第1面」と称することがある)20aである。 FIG. 5: is sectional drawing which shows typically the composite sheet for protective film formation which concerns on other embodiment of this invention.
The protective film-formingcomposite sheet 105 shown here is the same as the protective film-forming composite sheet 101 shown in FIG. 1 except that the pressure-sensitive adhesive layer 12 is not provided. In other words, the protective film-forming composite sheet 105 is the same as the protective film-forming composite sheet 101 except that the support sheet 10 is replaced by the support sheet 20 that does not include the pressure-sensitive adhesive layer 12. In other words, the first surface 11a of the base material 11 is the surface of the support sheet 20 on the protective film forming film 13 side (may be referred to as “first surface” in the present specification) 20a.
ここに示す保護膜形成用複合シート105は、粘着剤層12を備えていない点以外は、図1に示す保護膜形成用複合シート101と同じである。換言すると、保護膜形成用複合シート105は、支持シート10に代えて、粘着剤層12を備えていない支持シート20を備えている点以外は、保護膜形成用複合シート101と同じである。基材11の第1面11aは、換言すると、支持シート20の保護膜形成用フィルム13側の面(本明細書においては、「第1面」と称することがある)20aである。 FIG. 5: is sectional drawing which shows typically the composite sheet for protective film formation which concerns on other embodiment of this invention.
The protective film-forming
保護膜形成用複合シート105中の、支持シート20側の最表層である背面帯電防止層17の表面抵抗率は、1.0×1011Ω/□以下であり、保護膜形成用複合シート105の平常時帯電が抑制される。
In the protective film-forming composite sheet 105, the surface resistivity of the back surface antistatic layer 17, which is the outermost layer on the support sheet 20 side, is 1.0×10 11 Ω/□ or less, and the protective film-forming composite sheet 105. The normal charging of is suppressed.
保護膜形成用複合シート105は、剥離フィルム15が取り除かれた状態で、保護膜形成用フィルム13の第1面13aに半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の第1面16aが、リングフレーム等の治具に貼付されて、使用される。
In the protective film forming composite sheet 105, the back surface of the semiconductor wafer (not shown) is attached to the first surface 13a of the protective film forming film 13 in a state where the release film 15 is removed. The first surface 16a of the layer 16 is used by being attached to a jig such as a ring frame.
帯電防止層として前記背面帯電防止層を備えた保護膜形成用複合シートは、図1~図5に示すものに限定されない。例えば、本実施形態の保護膜形成用複合シートは、本発明の効果を損なわない範囲内において、図1~図5に示す保護膜形成用複合シートの一部の構成が変更又は削除されたものや、図1~図5に示す保護膜形成用複合シートにさらに他の構成が追加されたものであってもよい。
The composite sheet for forming a protective film having the backside antistatic layer as an antistatic layer is not limited to those shown in FIGS. 1 to 5. For example, in the composite sheet for forming a protective film of the present embodiment, a part of the structure of the composite sheet for forming a protective film shown in FIGS. 1 to 5 is changed or deleted within a range that does not impair the effects of the present invention. Alternatively, the protective sheet-forming composite sheet shown in FIGS. 1 to 5 may be added with another configuration.
図5に示す保護膜形成用複合シートは、粘着剤層を備えていない。粘着剤層を備えていない本実施形態の保護膜形成用複合シートとしては、これ以外にも、例えば、図2~図4に示す保護膜形成用複合シートにおいて、粘着剤層が省略されたものが挙げられる。
The composite sheet for forming a protective film shown in FIG. 5 does not have an adhesive layer. In addition to the composite sheet for forming a protective film of the present embodiment having no adhesive layer, for example, the composite sheet for forming a protective film shown in FIGS. 2 to 4 in which the adhesive layer is omitted Is mentioned.
また、図1、図2及び図5に示す保護膜形成用複合シートは、治具用接着剤層を備えている。治具用接着剤層を備えた本実施形態の保護膜形成用複合シートとしては、これら以外にも、例えば、図4に示す保護膜形成用複合シートにおいて、粘着剤層の第1面に治具用接着剤層が新たに設けられたものが挙げられる。この場合、前記第1面上での、治具用接着剤層の配置位置は、図1、2及び5に示す保護膜形成用複合シートの場合と同様であってよい。
Further, the composite sheet for forming a protective film shown in FIGS. 1, 2 and 5 includes a jig adhesive layer. As the protective film-forming composite sheet of the present embodiment including the jig adhesive layer, other than these, for example, in the protective film-forming composite sheet shown in FIG. The thing which the adhesive layer for tools was newly provided is mentioned. In this case, the arrangement position of the jig adhesive layer on the first surface may be the same as in the case of the protective film forming composite sheet shown in FIGS.
また、図3~図4に示す保護膜形成用複合シートは、治具用接着剤層を備えていない。治具用接着剤層を備えていない本実施形態の保護膜形成用複合シートとしては、これら以外にも、例えば、図1及び図5に示す保護膜形成用複合シートにおいて、治具用接着剤層が省略されたものが挙げられる。
Also, the composite sheet for forming a protective film shown in FIGS. 3 to 4 does not include a jig adhesive layer. Other than these, as the protective film-forming composite sheet of the present embodiment that does not include the jig adhesive layer, for example, in the protective film-forming composite sheet shown in FIG. 1 and FIG. The layer is omitted.
また、図4に示す保護膜形成用複合シートは、中間層を備えている。中間層を備えた本実施形態の保護膜形成用複合シートとしては、これ以外にも、例えば、図1、図2及び図5に示す保護膜形成用複合シートにおいて、保護膜形成用フィルムの第2面側に中間層が新たに設けられたものが挙げられる。この場合、前記第2面上での、中間層の配置形態は、図4を引用して説明した場合と同様であってよい。
Moreover, the composite sheet for forming a protective film shown in FIG. 4 includes an intermediate layer. As the protective film-forming composite sheet of the present embodiment including an intermediate layer, other than this, for example, in the protective film-forming composite sheet shown in FIGS. 1, 2 and 5, the protective film-forming composite sheet An example in which an intermediate layer is newly provided on the second surface side is mentioned. In this case, the arrangement form of the intermediate layer on the second surface may be the same as that described with reference to FIG.
また、図1~図5に示す保護膜形成用複合シートは、背面帯電防止層、基材、保護膜形成用フィルム及び剥離フィルム以外に、何も備えていないか、粘着剤層のみを備えているか、又は、粘着剤層及び中間層のみを備えている。本実施形態の保護膜形成用複合シートとしては、これら以外にも、例えば、図1~図5に示す保護膜形成用複合シートにおいて、背面帯電防止層、基材、粘着剤層、中間層、保護膜形成用フィルム及び剥離フィルム、のいずれにも該当しない、他の層を備えたものが挙げられる。
In addition, the composite sheet for forming a protective film shown in FIGS. 1 to 5 has nothing except a back surface antistatic layer, a substrate, a protective film forming film and a release film, or has only an adhesive layer. Or, it has only the adhesive layer and the intermediate layer. Other than these, the protective film-forming composite sheet of the present embodiment may be, for example, the protective film-forming composite sheet shown in FIGS. 1 to 5, in which a back surface antistatic layer, a base material, an adhesive layer, an intermediate layer, Examples thereof include those provided with other layers that do not correspond to either the protective film forming film or the release film.
また、本実施形態の保護膜形成用複合シートにおいては、各層の大きさや形状は、目的に応じて任意に調節できる。
In addition, in the composite sheet for forming a protective film of the present embodiment, the size and shape of each layer can be arbitrarily adjusted according to the purpose.
また、本実施形態の保護膜形成用複合シートにおいては、剥離フィルムと、この剥離フィルムと直接接触している層との間に、一部隙間が生じていてもよい。
また、本実施形態の保護膜形成用複合シートにおいては、各層の大きさや形状は、目的に応じて任意に調節できる。 Moreover, in the protective film-forming composite sheet of the present embodiment, a gap may be partially formed between the release film and the layer that is in direct contact with the release film.
Moreover, in the composite sheet for forming a protective film of the present embodiment, the size and shape of each layer can be arbitrarily adjusted according to the purpose.
また、本実施形態の保護膜形成用複合シートにおいては、各層の大きさや形状は、目的に応じて任意に調節できる。 Moreover, in the protective film-forming composite sheet of the present embodiment, a gap may be partially formed between the release film and the layer that is in direct contact with the release film.
Moreover, in the composite sheet for forming a protective film of the present embodiment, the size and shape of each layer can be arbitrarily adjusted according to the purpose.
次に、帯電防止層として前記表面帯電防止層を備えた保護膜形成用複合シートについて、説明する。
Next, a composite sheet for forming a protective film having the surface antistatic layer as an antistatic layer will be described.
図6は、本発明の一実施形態に係る保護膜形成用複合シートを模式的に示す断面図である。
ここに示す保護膜形成用複合シート301は、支持シート50と、支持シート50の一方の面(本明細書においては、「第1面」と称することがある)50a上に形成された保護膜形成用フィルム13と、を備えている。 FIG. 6 is a sectional view schematically showing a protective film-forming composite sheet according to an embodiment of the present invention.
The protective film-formingcomposite sheet 301 shown here is a protective film formed on the support sheet 50 and one surface (sometimes referred to as “first surface” in this specification) 50a of the support sheet 50. The forming film 13 is provided.
ここに示す保護膜形成用複合シート301は、支持シート50と、支持シート50の一方の面(本明細書においては、「第1面」と称することがある)50a上に形成された保護膜形成用フィルム13と、を備えている。 FIG. 6 is a sectional view schematically showing a protective film-forming composite sheet according to an embodiment of the present invention.
The protective film-forming
支持シート50は、基材11と、基材11の第1面11a上に形成された表面帯電防止層19と、表面帯電防止層19の基材11側とは反対側の面(本明細書においては、「第1面」と称することがある)19a上に形成された粘着剤層12と、を備えている。すなわち、支持シート50は、基材11、表面帯電防止層19及び粘着剤層12がこの順に、これらの厚さ方向において積層されて、構成されている。支持シート50の第1面50aは、換言すると、粘着剤層12の第1面12aである。
なお、符号19bは、表面帯電防止層19の基材11側の面(本明細書においては、「第2面」と称することがある。)を示す。 Thesupport sheet 50 includes the base material 11, the surface antistatic layer 19 formed on the first surface 11 a of the base material 11, and the surface of the surface antistatic layer 19 opposite to the base material 11 side (in the present specification. In some cases, the pressure-sensitive adhesive layer 12 is formed on the surface 19a). That is, the support sheet 50 is configured by laminating the base material 11, the surface antistatic layer 19, and the pressure-sensitive adhesive layer 12 in this order in the thickness direction thereof. In other words, the first surface 50a of the support sheet 50 is the first surface 12a of the pressure-sensitive adhesive layer 12.
Reference numeral 19b indicates the surface of the surface antistatic layer 19 on the side of the base material 11 (which may be referred to as "second surface" in the present specification).
なお、符号19bは、表面帯電防止層19の基材11側の面(本明細書においては、「第2面」と称することがある。)を示す。 The
すなわち、保護膜形成用複合シート301は、基材11、表面帯電防止層19、粘着剤層12及び保護膜形成用フィルム13がこの順に、これらの厚さ方向において積層されて、構成されている。また、保護膜形成用複合シート301は、さらに保護膜形成用フィルム13上に剥離フィルム15を備えている。
That is, the protective film forming composite sheet 301 is configured by laminating the base material 11, the surface antistatic layer 19, the pressure-sensitive adhesive layer 12, and the protective film forming film 13 in this order in the thickness direction thereof. .. Further, the protective film forming composite sheet 301 further includes a release film 15 on the protective film forming film 13.
保護膜形成用複合シート301においては、粘着剤層12の第1面12aの全面又はほぼ全面に、保護膜形成用フィルム13が積層され、保護膜形成用フィルム13の第1面13aの一部、すなわち、周縁部近傍の領域に、治具用接着剤層16が積層され、保護膜形成用フィルム13の第1面13aのうち、治具用接着剤層16が積層されていない面と、治具用接着剤層16の第1面16aに、剥離フィルム15が積層されている。
In the protective film-forming composite sheet 301, the protective film forming film 13 is laminated on the entire surface or substantially the entire first surface 12a of the pressure-sensitive adhesive layer 12, and a part of the first surface 13a of the protective film forming film 13 is laminated. That is, the jig adhesive layer 16 is laminated in a region near the peripheral portion, and a surface of the first surface 13a of the protective film forming film 13 on which the jig adhesive layer 16 is not laminated, The release film 15 is laminated on the first surface 16 a of the jig adhesive layer 16.
保護膜形成用複合シート301は、基材11の第2面11b上に背面帯電防止層17を備えておらず、基材11の第1面11a上、より具体的には基材11と粘着剤層12との間、に表面帯電防止層19を備えている点以外は、図1に示す保護膜形成用複合シート101と同じである。
The protective film-forming composite sheet 301 does not include the back surface antistatic layer 17 on the second surface 11b of the base material 11, and adheres to the first surface 11a of the base material 11, more specifically, the base material 11 and the adhesive. It is the same as the composite sheet 101 for forming a protective film shown in FIG. 1 except that a surface antistatic layer 19 is provided between the agent layer 12 and the agent layer 12.
表面帯電防止層19は、先に説明した背面帯電防止層17と同様のものである。
すなわち、保護膜形成用複合シート301は、保護膜形成用複合シート101において、帯電防止層の配置位置が、基材11の第2面11b上から、基材11と粘着剤層12との間、に変更されたものであるともいえる。 The surfaceantistatic layer 19 is the same as the back antistatic layer 17 described above.
That is, in the protective film-formingcomposite sheet 301, in the protective film forming composite sheet 101, the arrangement position of the antistatic layer is from the second surface 11b of the base material 11 between the base material 11 and the adhesive layer 12. It can be said that it has been changed to.
すなわち、保護膜形成用複合シート301は、保護膜形成用複合シート101において、帯電防止層の配置位置が、基材11の第2面11b上から、基材11と粘着剤層12との間、に変更されたものであるともいえる。 The surface
That is, in the protective film-forming
表面帯電防止層19は、帯電防止剤を含有する。これにより、保護膜形成用複合シート301中の、支持シート50側の最表層である基材11の表面抵抗率が、1.0×1011Ω/□以下となる。そして、保護膜形成用複合シート301の平常時帯電が抑制される。
The surface antistatic layer 19 contains an antistatic agent. As a result, the surface resistivity of the substrate 11, which is the outermost layer on the support sheet 50 side, in the protective film-forming composite sheet 301 becomes 1.0×10 11 Ω/□ or less. Then, the normal charging of the protective film forming composite sheet 301 is suppressed.
保護膜形成用複合シート301は、剥離フィルム15が取り除かれた状態で、保護膜形成用フィルム13の第1面13aに半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の第1面16aが、リングフレーム等の治具に貼付されて、使用される。
In the protective film forming composite sheet 301, the back surface of the semiconductor wafer (not shown) is attached to the first surface 13a of the protective film forming film 13 in a state where the release film 15 is removed. The first surface 16a of the layer 16 is used by being attached to a jig such as a ring frame.
帯電防止層として前記表面帯電防止層を備えた保護膜形成用複合シートは、図6に示すものに限定されない。例えば、本実施形態の保護膜形成用複合シートとしては、図2~図5に示す保護膜形成用複合シートにおいて、背面帯電防止層を備えておらず、基材の第1面に表面帯電防止層を備えるように構成したもの(換言すると、帯電防止層の配置位置が、基材の第2面から基材の第1面に変更されたもの)等も挙げられる。
The composite sheet for forming a protective film having the surface antistatic layer as an antistatic layer is not limited to that shown in FIG. For example, the protective film-forming composite sheet of the present embodiment is the same as the protective film-forming composite sheet shown in FIGS. 2 to 5, except that the back surface antistatic layer is not provided and the first surface of the base material has a surface antistatic property. Examples thereof include those configured to include a layer (in other words, the arrangement position of the antistatic layer is changed from the second surface of the base material to the first surface of the base material).
さらに、帯電防止層として前記表面帯電防止層を備えた保護膜形成用複合シートとしては、上述のものに限定されず、先に説明した、背面帯電防止層を備えた保護膜形成用複合シートにおいて、帯電防止層の配置位置が、基材の第2面から基材の第1面に変更されたものがすべて挙げられる。
Furthermore, the protective film-forming composite sheet having the surface antistatic layer as the antistatic layer is not limited to the above, and in the above-described protective film-forming composite sheet having the back surface antistatic layer. The arrangement position of the antistatic layer is changed from the second surface of the base material to the first surface of the base material.
本実施形態の保護膜形成用複合シートにおいても、各層の大きさや形状は、目的に応じて任意に調節できる。
Also in the protective film-forming composite sheet of the present embodiment, the size and shape of each layer can be arbitrarily adjusted according to the purpose.
本発明の一実施形態に係る保護膜形成用複合シートは、帯電防止層として、背面帯電防止層及び表面帯電防止層の両方を備えていてもよい。
The composite sheet for forming a protective film according to one embodiment of the present invention may include both a back surface antistatic layer and a surface antistatic layer as an antistatic layer.
背面帯電防止層及び表面帯電防止層の両方を備えた保護膜形成用複合シートとしては、例えば、支持シートと、前記支持シートの一方の面(すなわち第1面)上に形成された保護膜形成用フィルムと、を備え、前記支持シートは、背面帯電防止層、基材、表面帯電防止層及び粘着剤層がこの順に、これらの厚さ方向において積層されて構成されており、前記粘着剤層が前記保護膜形成用フィルム側に向けて配置されている保護膜形成用複合シート、が挙げられる。
このような保護膜形成用複合シートとして、より具体的には、図1に示す保護膜形成用複合シート101において、基材11と粘着剤層12との間に、さらに表面帯電防止層(例えば、図6に示す表面帯電防止層19)が設けられたものが挙げられる。 Examples of the protective film-forming composite sheet having both the back surface antistatic layer and the surface antistatic layer include, for example, a support sheet and a protection film formed on one surface (that is, the first surface) of the support sheet. The support sheet comprises a back surface antistatic layer, a base material, a surface antistatic layer, and an adhesive layer, which are laminated in this order in the thickness direction thereof. Is a composite sheet for forming a protective film, which is disposed toward the film for forming a protective film.
As such a protective film-forming composite sheet, more specifically, in the protective film-formingcomposite sheet 101 shown in FIG. 1, a surface antistatic layer (for example, between the base material 11 and the pressure-sensitive adhesive layer 12) is added. 6, which is provided with the surface antistatic layer 19) shown in FIG.
このような保護膜形成用複合シートとして、より具体的には、図1に示す保護膜形成用複合シート101において、基材11と粘着剤層12との間に、さらに表面帯電防止層(例えば、図6に示す表面帯電防止層19)が設けられたものが挙げられる。 Examples of the protective film-forming composite sheet having both the back surface antistatic layer and the surface antistatic layer include, for example, a support sheet and a protection film formed on one surface (that is, the first surface) of the support sheet. The support sheet comprises a back surface antistatic layer, a base material, a surface antistatic layer, and an adhesive layer, which are laminated in this order in the thickness direction thereof. Is a composite sheet for forming a protective film, which is disposed toward the film for forming a protective film.
As such a protective film-forming composite sheet, more specifically, in the protective film-forming
また、背面帯電防止層及び表面帯電防止層の両方を備えた保護膜形成用複合シートとしては、例えば、支持シートと、前記支持シートの一方の面(すなわち第1面)上に形成された保護膜形成用フィルムと、を備え、前記支持シートは、背面帯電防止層、基材及び表面帯電防止層がこの順に、これらの厚さ方向において積層されて構成されており、前記表面帯電防止層が前記保護膜形成用フィルム側に向けて配置されている保護膜形成用複合シート、が挙げられる。
このような保護膜形成用複合シートとして、より具体的には、図1に示す保護膜形成用複合シート101において、粘着剤層12に代えて表面帯電防止層(例えば、図6に示す表面帯電防止層19)が設けられたものが挙げられる。 The protective film-forming composite sheet provided with both the back surface antistatic layer and the front surface antistatic layer is, for example, a support sheet and a protective film formed on one surface (that is, the first surface) of the support sheet. And a film for film formation, wherein the support sheet comprises a back surface antistatic layer, a substrate and a surface antistatic layer, which are laminated in this order in the thickness direction thereof, and the surface antistatic layer comprises A composite sheet for forming a protective film, which is arranged toward the protective film forming film side, may be mentioned.
As such a protective film forming composite sheet, more specifically, in the protective film formingcomposite sheet 101 shown in FIG. 1, instead of the pressure-sensitive adhesive layer 12, a surface antistatic layer (for example, the surface charging shown in FIG. Examples thereof include those provided with the prevention layer 19).
このような保護膜形成用複合シートとして、より具体的には、図1に示す保護膜形成用複合シート101において、粘着剤層12に代えて表面帯電防止層(例えば、図6に示す表面帯電防止層19)が設けられたものが挙げられる。 The protective film-forming composite sheet provided with both the back surface antistatic layer and the front surface antistatic layer is, for example, a support sheet and a protective film formed on one surface (that is, the first surface) of the support sheet. And a film for film formation, wherein the support sheet comprises a back surface antistatic layer, a substrate and a surface antistatic layer, which are laminated in this order in the thickness direction thereof, and the surface antistatic layer comprises A composite sheet for forming a protective film, which is arranged toward the protective film forming film side, may be mentioned.
As such a protective film forming composite sheet, more specifically, in the protective film forming
ただし、これらは、背面帯電防止層、帯電防止性基材及び表面帯電防止層をすべて備えた保護膜形成用複合シートの一例である。
However, these are examples of composite sheets for forming a protective film, which are provided with a back surface antistatic layer, an antistatic substrate and a surface antistatic layer.
ここまで、帯電防止層の配置形態ごとに、前記保護膜形成用複合シートの全体構成について説明してきたが、引き続き、支持シートを構成する各層について、説明する。
Up to this point, the entire structure of the protective film-forming composite sheet has been described for each arrangement mode of the antistatic layer, but subsequently, each layer constituting the support sheet will be described.
○基材
前記基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
前記樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。 -Substrate The substrate is in the form of a sheet or a film, and examples of its constituent material include various resins.
Examples of the resin include polyethylene such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE); other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene and norbornene resin. Polyolefin: Ethylene-vinyl acetate copolymer, ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, ethylene-norbornene copolymer and other ethylene-based copolymers (ethylene as a monomer Polyvinyl chloride, vinyl chloride resin such as vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer); polystyrene; polycycloolefin; polyethylene terephthalate, polyethylene Polyesters such as naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalene dicarboxylate, wholly aromatic polyesters in which all constituent units have aromatic cyclic groups; Polymers; poly(meth)acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; polyacetal; modified polyphenylene oxide; polyphenylene sulfide; polysulfone; polyether ketone and the like.
Examples of the resin also include polymer alloys such as a mixture of the polyester and other resins. The polymer alloy of the polyester and the resin other than the polyester is preferably one in which the amount of the resin other than the polyester is relatively small.
Further, as the resin, for example, a crosslinked resin obtained by crosslinking one or two or more of the above-exemplified resins; a modified ionomer using one or more of the above-exemplified resins. Resins are also included.
前記基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
前記樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。 -Substrate The substrate is in the form of a sheet or a film, and examples of its constituent material include various resins.
Examples of the resin include polyethylene such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE); other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene and norbornene resin. Polyolefin: Ethylene-vinyl acetate copolymer, ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, ethylene-norbornene copolymer and other ethylene-based copolymers (ethylene as a monomer Polyvinyl chloride, vinyl chloride resin such as vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer); polystyrene; polycycloolefin; polyethylene terephthalate, polyethylene Polyesters such as naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalene dicarboxylate, wholly aromatic polyesters in which all constituent units have aromatic cyclic groups; Polymers; poly(meth)acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; polyacetal; modified polyphenylene oxide; polyphenylene sulfide; polysulfone; polyether ketone and the like.
Examples of the resin also include polymer alloys such as a mixture of the polyester and other resins. The polymer alloy of the polyester and the resin other than the polyester is preferably one in which the amount of the resin other than the polyester is relatively small.
Further, as the resin, for example, a crosslinked resin obtained by crosslinking one or two or more of the above-exemplified resins; a modified ionomer using one or more of the above-exemplified resins. Resins are also included.
基材を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The resin constituting the base material may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
基材は1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
The base material may be composed of one layer (single layer) or may be composed of two or more layers, and when composed of a plurality of layers, the plurality of layers may be the same or different from each other. However, the combination of these plural layers is not particularly limited.
基材の厚さは、30~300μmであることが好ましく、50~140μmであることがより好ましい。基材の厚さがこのような範囲であることで、前記保護膜形成用複合シートの可撓性と、半導体ウエハ又は半導体チップへの貼付性と、がより向上する。
ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。 The thickness of the substrate is preferably 30 to 300 μm, more preferably 50 to 140 μm. When the thickness of the base material is in such a range, the flexibility of the composite sheet for forming a protective film and the adhesiveness to a semiconductor wafer or a semiconductor chip are further improved.
Here, the “base material thickness” means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all layers constituting the base material. means.
ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。 The thickness of the substrate is preferably 30 to 300 μm, more preferably 50 to 140 μm. When the thickness of the base material is in such a range, the flexibility of the composite sheet for forming a protective film and the adhesiveness to a semiconductor wafer or a semiconductor chip are further improved.
Here, the “base material thickness” means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all layers constituting the base material. means.
基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。
The base material is preferably one with high thickness accuracy, that is, one with suppressed thickness variation regardless of the part. Of the above-mentioned constituent materials, examples of materials that can be used to form such a base material having high thickness accuracy include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer, and the like. Is mentioned.
基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。
The base material may contain various known additives such as a filler, a colorant, an antioxidant, an organic lubricant, a catalyst, a softening agent (plasticizer), in addition to the main constituent materials such as the resin.
基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。
例えば、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、基材はエネルギー線を透過させるものが好ましい。
例えば、保護膜形成用複合シート中の保護膜形成用フィルムを、基材を介して光学的に検査するためには、基材は透明であることが好ましい。 The base material may be transparent or opaque, may be colored depending on the purpose, and may have another layer deposited thereon.
For example, when the protective film-forming film has energy ray curability, the base material is preferably one that transmits energy rays.
For example, in order to optically inspect the protective film-forming film in the protective film-forming composite sheet through the substrate, the substrate is preferably transparent.
例えば、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、基材はエネルギー線を透過させるものが好ましい。
例えば、保護膜形成用複合シート中の保護膜形成用フィルムを、基材を介して光学的に検査するためには、基材は透明であることが好ましい。 The base material may be transparent or opaque, may be colored depending on the purpose, and may have another layer deposited thereon.
For example, when the protective film-forming film has energy ray curability, the base material is preferably one that transmits energy rays.
For example, in order to optically inspect the protective film-forming film in the protective film-forming composite sheet through the substrate, the substrate is preferably transparent.
基材は、その上に設けられる層(例えば、粘着剤層、中間層又は保護膜形成用フィルム)との接着性を向上させるために、サンドブラスト処理、溶剤処理等による凹凸化処理;コロナ放電処理、電子線照射処理、プラズマ処理、オゾン・紫外線照射処理、火炎処理、クロム酸処理、熱風処理等の酸化処理;等が表面に施されていてもよい。また、基材は、表面がプライマー処理されていてもよい。
The substrate is roughened by sandblasting, solvent treatment, or the like in order to improve adhesion with a layer provided thereon (eg, adhesive layer, intermediate layer or protective film forming film); corona discharge treatment , Electron beam irradiation treatment, plasma treatment, ozone/ultraviolet ray irradiation treatment, flame treatment, chromic acid treatment, hot air treatment and other oxidation treatments; The surface of the base material may be treated with a primer.
基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。
The base material can be manufactured by a known method. For example, a base material containing a resin can be manufactured by molding a resin composition containing the resin.
○粘着剤層
前記粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。
前記粘着剤としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の粘着性樹脂が挙げられ、アクリル系樹脂が好ましい。 O Adhesive Layer The adhesive layer is in the form of a sheet or a film and contains an adhesive.
Examples of the pressure-sensitive adhesive include pressure-sensitive adhesive resins such as acrylic resins, urethane-based resins, rubber-based resins, silicone-based resins, epoxy-based resins, polyvinyl ethers, polycarbonates, ester-based resins, etc., and acrylic-based resins are preferred. ..
前記粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。
前記粘着剤としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の粘着性樹脂が挙げられ、アクリル系樹脂が好ましい。 O Adhesive Layer The adhesive layer is in the form of a sheet or a film and contains an adhesive.
Examples of the pressure-sensitive adhesive include pressure-sensitive adhesive resins such as acrylic resins, urethane-based resins, rubber-based resins, silicone-based resins, epoxy-based resins, polyvinyl ethers, polycarbonates, ester-based resins, etc., and acrylic-based resins are preferred. ..
なお、本明細書において、「粘着性樹脂」には、粘着性を有する樹脂と、接着性を有する樹脂と、の両方が包含される。例えば、前記粘着性樹脂には、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用により粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含まれる。
In the present specification, "adhesive resin" includes both a resin having an adhesive property and a resin having an adhesive property. For example, the adhesive resin is not only a resin having adhesiveness itself, but also a resin that exhibits adhesiveness when used in combination with other components such as additives, and adhesiveness due to the presence of a trigger such as heat or water. Resins and the like are also included.
粘着剤層は1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
The pressure-sensitive adhesive layer may be composed of one layer (single layer) or may be composed of two or more layers. When composed of a plurality of layers, these layers may be the same or different from each other. The combination of these plural layers is not particularly limited.
粘着剤層の厚さは1~100μmであることが好ましく、1~60μmであることがより好ましく、1~30μmであることが特に好ましい。
ここで、「粘着剤層の厚さ」とは、粘着剤層全体の厚さを意味し、例えば、複数層からなる粘着剤層の厚さとは、粘着剤層を構成するすべての層の合計の厚さを意味する。 The thickness of the pressure-sensitive adhesive layer is preferably 1 to 100 μm, more preferably 1 to 60 μm, and particularly preferably 1 to 30 μm.
Here, the "thickness of the pressure-sensitive adhesive layer" means the total thickness of the pressure-sensitive adhesive layer, for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the total of all layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
ここで、「粘着剤層の厚さ」とは、粘着剤層全体の厚さを意味し、例えば、複数層からなる粘着剤層の厚さとは、粘着剤層を構成するすべての層の合計の厚さを意味する。 The thickness of the pressure-sensitive adhesive layer is preferably 1 to 100 μm, more preferably 1 to 60 μm, and particularly preferably 1 to 30 μm.
Here, the "thickness of the pressure-sensitive adhesive layer" means the total thickness of the pressure-sensitive adhesive layer, for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the total of all layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
粘着剤層は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよい。
例えば、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、粘着剤層はエネルギー線を透過させるものが好ましい。
例えば、保護膜形成用複合シート中の保護膜形成用フィルムを、粘着剤層を介して光学的に検査するためには、粘着剤層は透明であることが好ましい。 The pressure-sensitive adhesive layer may be transparent or opaque, and may be colored depending on the purpose.
For example, when the protective film forming film has energy ray curability, the adhesive layer is preferably one that transmits energy rays.
For example, in order to optically inspect the protective film-forming film in the protective film-forming composite sheet through the adhesive layer, the adhesive layer is preferably transparent.
例えば、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、粘着剤層はエネルギー線を透過させるものが好ましい。
例えば、保護膜形成用複合シート中の保護膜形成用フィルムを、粘着剤層を介して光学的に検査するためには、粘着剤層は透明であることが好ましい。 The pressure-sensitive adhesive layer may be transparent or opaque, and may be colored depending on the purpose.
For example, when the protective film forming film has energy ray curability, the adhesive layer is preferably one that transmits energy rays.
For example, in order to optically inspect the protective film-forming film in the protective film-forming composite sheet through the adhesive layer, the adhesive layer is preferably transparent.
粘着剤層は、エネルギー線硬化性粘着剤を用いて形成されたものであってもよいし、非エネルギー線硬化性粘着剤を用いて形成されたものであってもよい。すなわち、粘着剤層は、エネルギー線硬化性及び非エネルギー線硬化性のいずれであってもよい。エネルギー線硬化性の粘着剤層は、硬化前及び硬化後での物性を容易に調節できる。
The adhesive layer may be formed using an energy ray curable adhesive or may be formed using a non-energy ray curable adhesive. That is, the pressure-sensitive adhesive layer may be either energy ray curable or non-energy ray curable. The energy ray-curable pressure-sensitive adhesive layer can easily adjust physical properties before and after curing.
<<粘着剤組成物>>
粘着剤層は、粘着剤を含有する粘着剤組成物を用いて形成できる。例えば、粘着剤層の形成対象面に粘着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に粘着剤層を形成できる。粘着剤組成物における、常温で気化しない成分同士の含有量の比率は、通常、粘着剤層における前記成分同士の含有量の比率と同じとなる。本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
粘着剤層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。 << adhesive composition >>
The pressure-sensitive adhesive layer can be formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive. For example, the pressure-sensitive adhesive composition can be formed on a target site by applying the pressure-sensitive adhesive composition to the surface on which the pressure-sensitive adhesive layer is to be formed, and drying it as necessary. The ratio of the contents of the components that do not vaporize at room temperature in the pressure-sensitive adhesive composition is usually the same as the ratio of the contents of the components in the pressure-sensitive adhesive layer. In the present specification, the “normal temperature” means a temperature at which it is not cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25° C.
A more specific method of forming the pressure-sensitive adhesive layer will be described later in detail together with a method of forming other layers.
粘着剤層は、粘着剤を含有する粘着剤組成物を用いて形成できる。例えば、粘着剤層の形成対象面に粘着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に粘着剤層を形成できる。粘着剤組成物における、常温で気化しない成分同士の含有量の比率は、通常、粘着剤層における前記成分同士の含有量の比率と同じとなる。本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
粘着剤層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。 << adhesive composition >>
The pressure-sensitive adhesive layer can be formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive. For example, the pressure-sensitive adhesive composition can be formed on a target site by applying the pressure-sensitive adhesive composition to the surface on which the pressure-sensitive adhesive layer is to be formed, and drying it as necessary. The ratio of the contents of the components that do not vaporize at room temperature in the pressure-sensitive adhesive composition is usually the same as the ratio of the contents of the components in the pressure-sensitive adhesive layer. In the present specification, the “normal temperature” means a temperature at which it is not cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25° C.
A more specific method of forming the pressure-sensitive adhesive layer will be described later in detail together with a method of forming other layers.
粘着剤組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
The coating of the pressure-sensitive adhesive composition may be performed by a known method, for example, air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen coater. Examples include a method using various coaters such as a Meyer bar coater and a kiss coater.
基材上に粘着剤層を設ける場合には、例えば、基材上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、基材上に粘着剤層を積層すればよい。また、基材上に粘着剤層を設ける場合には、例えば、剥離フィルム上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に粘着剤層を形成しておき、この粘着剤層の露出面を、基材の一方の表面と貼り合わせることで、基材上に粘着剤層を積層してもよい。この場合の剥離フィルムは、保護膜形成用複合シートの製造過程又は使用過程のいずれかのタイミングで、取り除けばよい。
When the pressure-sensitive adhesive layer is provided on the base material, for example, the pressure-sensitive adhesive composition may be applied on the base material and dried as necessary to laminate the pressure-sensitive adhesive layer on the base material. When the pressure-sensitive adhesive layer is provided on the base material, for example, the pressure-sensitive adhesive composition is applied onto the release film and dried if necessary to form the pressure-sensitive adhesive layer on the release film. Alternatively, the exposed surface of the pressure-sensitive adhesive layer may be attached to one surface of the base material to laminate the pressure-sensitive adhesive layer on the base material. In this case, the release film may be removed at any timing during the manufacturing process or the use process of the protective film-forming composite sheet.
粘着剤組成物の乾燥条件は、特に限定されないが、粘着剤組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する粘着剤組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。
The drying conditions of the pressure-sensitive adhesive composition are not particularly limited, but when the pressure-sensitive adhesive composition contains the solvent described below, it is preferable to heat-dry it. The pressure-sensitive adhesive composition containing a solvent is preferably dried, for example, at 70 to 130° C. for 10 seconds to 5 minutes.
粘着剤層がエネルギー線硬化性である場合、エネルギー線硬化性粘着剤を含有する粘着剤組成物、すなわち、エネルギー線硬化性の粘着剤組成物としては、例えば、非エネルギー線硬化性の粘着性樹脂(I-1a)(以下、「粘着性樹脂(I-1a)」と略記することがある)と、エネルギー線硬化性化合物と、を含有する粘着剤組成物(I-1);非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)(以下、「粘着性樹脂(I-2a)」と略記することがある)を含有する粘着剤組成物(I-2);前記粘着性樹脂(I-2a)と、エネルギー線硬化性化合物と、を含有する粘着剤組成物(I-3)等が挙げられる。
When the pressure-sensitive adhesive layer is energy ray-curable, the pressure-sensitive adhesive composition containing the energy ray-curable pressure-sensitive adhesive, that is, the energy ray-curable pressure-sensitive adhesive composition, for example, non-energy ray-curable pressure-sensitive adhesive Adhesive composition (I-1) containing resin (I-1a) (hereinafter sometimes abbreviated as “adhesive resin (I-1a)”) and an energy ray-curable compound; non-energy Energy ray curable adhesive resin (I-2a) in which an unsaturated group is introduced into the side chain of the ray curable adhesive resin (I-1a) (hereinafter referred to as “adhesive resin (I-2a)” A pressure-sensitive adhesive composition (I-2) containing (may be abbreviated); a pressure-sensitive adhesive composition (I-3) containing the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable compound, etc. Is mentioned.
<粘着剤組成物(I-1)>
前記粘着剤組成物(I-1)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)と、エネルギー線硬化性化合物と、を含有する。 <Adhesive composition (I-1)>
As described above, the pressure-sensitive adhesive composition (I-1) contains the non-energy ray-curable pressure-sensitive adhesive resin (I-1a) and the energy ray-curable compound.
前記粘着剤組成物(I-1)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)と、エネルギー線硬化性化合物と、を含有する。 <Adhesive composition (I-1)>
As described above, the pressure-sensitive adhesive composition (I-1) contains the non-energy ray-curable pressure-sensitive adhesive resin (I-1a) and the energy ray-curable compound.
[粘着性樹脂(I-1a)]
前記粘着性樹脂(I-1a)は、アクリル系樹脂であることが好ましい。
前記アクリル系樹脂としては、例えば、少なくとも(メタ)アクリル酸アルキルエステル由来の構成単位を有するアクリル系重合体が挙げられる。
前記アクリル系樹脂が有する構成単位は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Adhesive resin (I-1a)]
The adhesive resin (I-1a) is preferably an acrylic resin.
Examples of the acrylic resin include acrylic polymers having at least a structural unit derived from an alkyl (meth)acrylate ester.
The acrylic resin may have only one type of structural unit, or may have two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
前記粘着性樹脂(I-1a)は、アクリル系樹脂であることが好ましい。
前記アクリル系樹脂としては、例えば、少なくとも(メタ)アクリル酸アルキルエステル由来の構成単位を有するアクリル系重合体が挙げられる。
前記アクリル系樹脂が有する構成単位は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Adhesive resin (I-1a)]
The adhesive resin (I-1a) is preferably an acrylic resin.
Examples of the acrylic resin include acrylic polymers having at least a structural unit derived from an alkyl (meth)acrylate ester.
The acrylic resin may have only one type of structural unit, or may have two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
前記(メタ)アクリル酸アルキルエステルとしては、例えば、アルキルエステルを構成するアルキル基の炭素数が1~20であるのものが挙げられ、前記アルキル基は、直鎖状又は分岐鎖状であることが好ましい。
(メタ)アクリル酸アルキルエステルとして、より具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸イコシル等が挙げられる。 Examples of the (meth)acrylic acid alkyl ester include those in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferred.
As the (meth)acrylic acid alkyl ester, more specifically, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, (meth)acrylic acid n-butyl, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-Ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, (meth ) Undecyl acrylate, dodecyl (meth)acrylate (lauryl (meth)acrylate), tridecyl (meth)acrylate, tetradecyl (meth)acrylate (myristyl acrylate), pentadecyl (meth)acrylate, ( Hexadecyl (meth)acrylate (palmityl (meth)acrylate), heptadecyl (meth)acrylate, octadecyl (meth)acrylate (stearyl (meth)acrylate), nonadecyl (meth)acrylate, icosyl (meth)acrylate, etc. Is mentioned.
(メタ)アクリル酸アルキルエステルとして、より具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸イコシル等が挙げられる。 Examples of the (meth)acrylic acid alkyl ester include those in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferred.
As the (meth)acrylic acid alkyl ester, more specifically, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, (meth)acrylic acid n-butyl, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-Ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, (meth ) Undecyl acrylate, dodecyl (meth)acrylate (lauryl (meth)acrylate), tridecyl (meth)acrylate, tetradecyl (meth)acrylate (myristyl acrylate), pentadecyl (meth)acrylate, ( Hexadecyl (meth)acrylate (palmityl (meth)acrylate), heptadecyl (meth)acrylate, octadecyl (meth)acrylate (stearyl (meth)acrylate), nonadecyl (meth)acrylate, icosyl (meth)acrylate, etc. Is mentioned.
粘着剤層の粘着力が向上する点から、前記アクリル系重合体は、前記アルキル基の炭素数が4以上である(メタ)アクリル酸アルキルエステル由来の構成単位を有することが好ましい。そして、粘着剤層の粘着力がより向上する点から、前記アルキル基の炭素数は、4~12であることが好ましく、4~8であることがより好ましい。また、前記アルキル基の炭素数が4以上である(メタ)アクリル酸アルキルエステルは、アクリル酸アルキルエステルであることが好ましい。
From the viewpoint of improving the adhesive strength of the pressure-sensitive adhesive layer, the acrylic polymer preferably has a structural unit derived from a (meth)acrylic acid alkyl ester in which the alkyl group has 4 or more carbon atoms. From the viewpoint that the adhesive strength of the pressure-sensitive adhesive layer is further improved, the alkyl group preferably has 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms. Further, the (meth)acrylic acid alkyl ester in which the alkyl group has 4 or more carbon atoms is preferably an acrylic acid alkyl ester.
前記アクリル系重合体は、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有することが好ましい。
前記官能基含有モノマーとしては、例えば、前記官能基が後述する架橋剤と反応することで架橋の起点となったり、前記官能基が後述する不飽和基含有化合物中の不飽和基と反応することで、アクリル系重合体の側鎖に不飽和基の導入を可能とするものが挙げられる。 The acrylic polymer preferably further has a structural unit derived from a functional group-containing monomer, in addition to the structural unit derived from the (meth)acrylic acid alkyl ester.
As the functional group-containing monomer, for example, the functional group becomes a starting point of crosslinking by reacting with a crosslinking agent described later, or the functional group reacts with an unsaturated group in an unsaturated group-containing compound described later. Examples of the acrylic polymer include those capable of introducing an unsaturated group into the side chain.
前記官能基含有モノマーとしては、例えば、前記官能基が後述する架橋剤と反応することで架橋の起点となったり、前記官能基が後述する不飽和基含有化合物中の不飽和基と反応することで、アクリル系重合体の側鎖に不飽和基の導入を可能とするものが挙げられる。 The acrylic polymer preferably further has a structural unit derived from a functional group-containing monomer, in addition to the structural unit derived from the (meth)acrylic acid alkyl ester.
As the functional group-containing monomer, for example, the functional group becomes a starting point of crosslinking by reacting with a crosslinking agent described later, or the functional group reacts with an unsaturated group in an unsaturated group-containing compound described later. Examples of the acrylic polymer include those capable of introducing an unsaturated group into the side chain.
官能基含有モノマー中の前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
すなわち、官能基含有モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。 Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group, and an epoxy group.
That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
すなわち、官能基含有モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。 Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group, and an epoxy group.
That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。
Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, (meth) Hydroxyalkyl (meth)acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate; non-(meth)acrylic non-adhesives such as vinyl alcohol and allyl alcohol. Examples thereof include saturated alcohols (unsaturated alcohols having no (meth)acryloyl skeleton).
前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。
Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth)acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above-mentioned ethylenically unsaturated dicarboxylic acids; and (meth)acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate. Be done.
官能基含有モノマーは、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
The functional group-containing monomer is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, more preferably a hydroxyl group-containing monomer.
前記アクリル系重合体を構成する官能基含有モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The functional group-containing monomer constituting the acrylic polymer may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
前記アクリル系重合体において、官能基含有モノマー由来の構成単位の含有量は、構成単位の全量に対して、1~35質量%であることが好ましく、2~32質量%であることがより好ましく、3~30質量%であることが特に好ましい。
In the acrylic polymer, the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, more preferably 2 to 32% by mass, based on the total amount of the structural unit. It is particularly preferably 3 to 30% by mass.
前記アクリル系重合体は、(メタ)アクリル酸アルキルエステル由来の構成単位、及び官能基含有モノマー由来の構成単位以外に、さらに、他のモノマー由来の構成単位を有していてもよい。
前記他のモノマーは、(メタ)アクリル酸アルキルエステル等と共重合可能なものであれば特に限定されない。
前記他のモノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、アクリルアミド等が挙げられる。 The acrylic polymer may further have a constitutional unit derived from another monomer in addition to the constitutional unit derived from the (meth)acrylic acid alkyl ester and the constitutional unit derived from the functional group-containing monomer.
The other monomer is not particularly limited as long as it can be copolymerized with (meth)acrylic acid alkyl ester and the like.
Examples of the other monomer include styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, and acrylamide.
前記他のモノマーは、(メタ)アクリル酸アルキルエステル等と共重合可能なものであれば特に限定されない。
前記他のモノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、アクリルアミド等が挙げられる。 The acrylic polymer may further have a constitutional unit derived from another monomer in addition to the constitutional unit derived from the (meth)acrylic acid alkyl ester and the constitutional unit derived from the functional group-containing monomer.
The other monomer is not particularly limited as long as it can be copolymerized with (meth)acrylic acid alkyl ester and the like.
Examples of the other monomer include styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, and acrylamide.
前記アクリル系重合体を構成する前記他のモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The other monomer constituting the acrylic polymer may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
前記アクリル系重合体は、上述の非エネルギー線硬化性の粘着性樹脂(I-1a)として使用できる。
一方、前記アクリル系重合体中の官能基に、エネルギー線重合性不飽和基(エネルギー線重合性基)を有する不飽和基含有化合物を反応させたものは、上述のエネルギー線硬化性の粘着性樹脂(I-2a)として使用できる。 The acrylic polymer can be used as the non-energy ray curable adhesive resin (I-1a).
On the other hand, the functional group in the acrylic polymer is reacted with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group (energy ray-polymerizable group) to obtain the above-mentioned energy ray-curable tackiness. It can be used as a resin (I-2a).
一方、前記アクリル系重合体中の官能基に、エネルギー線重合性不飽和基(エネルギー線重合性基)を有する不飽和基含有化合物を反応させたものは、上述のエネルギー線硬化性の粘着性樹脂(I-2a)として使用できる。 The acrylic polymer can be used as the non-energy ray curable adhesive resin (I-1a).
On the other hand, the functional group in the acrylic polymer is reacted with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group (energy ray-polymerizable group) to obtain the above-mentioned energy ray-curable tackiness. It can be used as a resin (I-2a).
粘着剤組成物(I-1)が含有する粘着性樹脂(I-1a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The adhesive resin (I-1a) contained in the adhesive composition (I-1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
粘着剤組成物(I-1)において、粘着剤組成物(I-1)の総質量に対する、粘着性樹脂(I-1a)の含有量の割合は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-1), the ratio of the content of the pressure-sensitive adhesive resin (I-1a) to the total mass of the pressure-sensitive adhesive composition (I-1) is preferably 5 to 99% by mass. It is more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
[エネルギー線硬化性化合物]
粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー又はオリゴマーが挙げられる。
エネルギー線硬化性化合物のうち、モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレート;ウレタン(メタ)アクリレート;ポリエステル(メタ)アクリレート;ポリエーテル(メタ)アクリレート;エポキシ(メタ)アクリレート等が挙げられる。
エネルギー線硬化性化合物のうち、オリゴマーとしては、例えば、上記で例示したモノマーが重合してなるオリゴマー等が挙げられる。
エネルギー線硬化性化合物は、分子量が比較的大きく、粘着剤層の貯蔵弾性率を低下させにくいという点では、ウレタン(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマーが好ましい。 [Energy ray curable compound]
Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) include monomers or oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays.
Among the energy ray curable compounds, examples of the monomer include trimethylolpropane tri(meth)acrylate, pentaerythritol(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4 -Poly(meth)acrylate such as butylene glycol di(meth)acrylate and 1,6-hexanediol (meth)acrylate; urethane (meth)acrylate; polyester (meth)acrylate; polyether (meth)acrylate; epoxy ( Examples thereof include (meth)acrylate.
Among the energy ray-curable compounds, examples of the oligomer include oligomers obtained by polymerizing the above-exemplified monomers.
The energy ray-curable compound is preferably a urethane (meth)acrylate or a urethane (meth)acrylate oligomer in that it has a relatively large molecular weight and is unlikely to reduce the storage elastic modulus of the pressure-sensitive adhesive layer.
粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー又はオリゴマーが挙げられる。
エネルギー線硬化性化合物のうち、モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレート;ウレタン(メタ)アクリレート;ポリエステル(メタ)アクリレート;ポリエーテル(メタ)アクリレート;エポキシ(メタ)アクリレート等が挙げられる。
エネルギー線硬化性化合物のうち、オリゴマーとしては、例えば、上記で例示したモノマーが重合してなるオリゴマー等が挙げられる。
エネルギー線硬化性化合物は、分子量が比較的大きく、粘着剤層の貯蔵弾性率を低下させにくいという点では、ウレタン(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマーが好ましい。 [Energy ray curable compound]
Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) include monomers or oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays.
Among the energy ray curable compounds, examples of the monomer include trimethylolpropane tri(meth)acrylate, pentaerythritol(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4 -Poly(meth)acrylate such as butylene glycol di(meth)acrylate and 1,6-hexanediol (meth)acrylate; urethane (meth)acrylate; polyester (meth)acrylate; polyether (meth)acrylate; epoxy ( Examples thereof include (meth)acrylate.
Among the energy ray-curable compounds, examples of the oligomer include oligomers obtained by polymerizing the above-exemplified monomers.
The energy ray-curable compound is preferably a urethane (meth)acrylate or a urethane (meth)acrylate oligomer in that it has a relatively large molecular weight and is unlikely to reduce the storage elastic modulus of the pressure-sensitive adhesive layer.
粘着剤組成物(I-1)が含有する前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof may be arbitrarily selected. ..
前記粘着剤組成物(I-1)において、粘着剤組成物(I-1)の総質量に対する、前記エネルギー線硬化性化合物の含有量の割合は、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-1), the ratio of the content of the energy ray-curable compound with respect to the total mass of the pressure-sensitive adhesive composition (I-1) is preferably 1 to 95% by mass, It is more preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
[架橋剤]
粘着性樹脂(I-1a)として、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-1)は、さらに架橋剤を含有することが好ましい。 [Crosslinking agent]
When the acrylic polymer having a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from a (meth)acrylic acid alkyl ester is used as the adhesive resin (I-1a), a pressure-sensitive adhesive composition ( I-1) preferably further contains a crosslinking agent.
粘着性樹脂(I-1a)として、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-1)は、さらに架橋剤を含有することが好ましい。 [Crosslinking agent]
When the acrylic polymer having a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from a (meth)acrylic acid alkyl ester is used as the adhesive resin (I-1a), a pressure-sensitive adhesive composition ( I-1) preferably further contains a crosslinking agent.
前記架橋剤は、例えば、前記官能基と反応して、粘着性樹脂(I-1a)同士を架橋する。
架橋剤としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのアダクト体等のイソシアネート系架橋剤(イソシアネート基を有する架橋剤);エチレングリコールグリシジルエーテル等のエポキシ系架橋剤(グリシジル基を有する架橋剤);ヘキサ[1-(2-メチル)-アジリジニル]トリフオスファトリアジン等のアジリジン系架橋剤(アジリジニル基を有する架橋剤);アルミニウムキレート等の金属キレート系架橋剤(金属キレート構造を有する架橋剤);イソシアヌレート系架橋剤(イソシアヌル酸骨格を有する架橋剤)等が挙げられる。
粘着剤の凝集力を向上させて粘着剤層の粘着力を向上させる点、及び入手が容易である等の点から、架橋剤はイソシアネート系架橋剤であることが好ましい。 The cross-linking agent, for example, reacts with the functional group to cross-link the adhesive resins (I-1a).
Examples of the cross-linking agent include isocyanate-based cross-linking agents (cross-linking agents having an isocyanate group) such as tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and adducts of these diisocyanates; epoxy-based cross-linking agents such as ethylene glycol glycidyl ether ( Glycidyl group-containing cross-linking agent); Hexa[1-(2-methyl)-aziridinyl]triphosphatriazine and other aziridine-based cross-linking agents (aziridinyl group-containing cross-linking agents); Aluminum chelate and other metal chelate-based cross-linking agents (metals) A cross-linking agent having a chelate structure); an isocyanurate-based cross-linking agent (cross-linking agent having an isocyanuric acid skeleton), and the like.
The cross-linking agent is preferably an isocyanate cross-linking agent from the viewpoint of improving the cohesive force of the pressure-sensitive adhesive to improve the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer, and the fact that it is easily available.
架橋剤としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのアダクト体等のイソシアネート系架橋剤(イソシアネート基を有する架橋剤);エチレングリコールグリシジルエーテル等のエポキシ系架橋剤(グリシジル基を有する架橋剤);ヘキサ[1-(2-メチル)-アジリジニル]トリフオスファトリアジン等のアジリジン系架橋剤(アジリジニル基を有する架橋剤);アルミニウムキレート等の金属キレート系架橋剤(金属キレート構造を有する架橋剤);イソシアヌレート系架橋剤(イソシアヌル酸骨格を有する架橋剤)等が挙げられる。
粘着剤の凝集力を向上させて粘着剤層の粘着力を向上させる点、及び入手が容易である等の点から、架橋剤はイソシアネート系架橋剤であることが好ましい。 The cross-linking agent, for example, reacts with the functional group to cross-link the adhesive resins (I-1a).
Examples of the cross-linking agent include isocyanate-based cross-linking agents (cross-linking agents having an isocyanate group) such as tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and adducts of these diisocyanates; epoxy-based cross-linking agents such as ethylene glycol glycidyl ether ( Glycidyl group-containing cross-linking agent); Hexa[1-(2-methyl)-aziridinyl]triphosphatriazine and other aziridine-based cross-linking agents (aziridinyl group-containing cross-linking agents); Aluminum chelate and other metal chelate-based cross-linking agents (metals) A cross-linking agent having a chelate structure); an isocyanurate-based cross-linking agent (cross-linking agent having an isocyanuric acid skeleton), and the like.
The cross-linking agent is preferably an isocyanate cross-linking agent from the viewpoint of improving the cohesive force of the pressure-sensitive adhesive to improve the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer, and the fact that it is easily available.
粘着剤組成物(I-1)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The pressure-sensitive adhesive composition (I-1) may contain only one type of crosslinking agent, or two or more types of crosslinking agents, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
前記粘着剤組成物(I-1)において、架橋剤の含有量は、粘着性樹脂(I-1a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~20質量部であることがより好ましく、0.3~15質量部であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-1), the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-1a), It is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
[光重合開始剤]
粘着剤組成物(I-1)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-1)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。 [Photopolymerization initiator]
The pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator. The pressure-sensitive adhesive composition (I-1) containing the photopolymerization initiator is sufficiently cured even when irradiated with a relatively low energy ray such as ultraviolet rays.
粘着剤組成物(I-1)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-1)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。 [Photopolymerization initiator]
The pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator. The pressure-sensitive adhesive composition (I-1) containing the photopolymerization initiator is sufficiently cured even when irradiated with a relatively low energy ray such as ultraviolet rays.
前記光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベンジル;ベンゾフェノン;2,4-ジエチルチオキサントン;1,2-ジフェニルメタン;2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン;2-クロロアントラキノン等が挙げられる。
また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等を用いることもできる。 Examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, and other benzoin compounds; acetophenone, 2-hydroxy Acetophenone compounds such as 2-methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethan-1-one; bis(2,4,6-trimethylbenzoyl)phenylphosphine Acylphosphine oxide compounds such as oxides and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfide compounds such as benzylphenyl sulfide and tetramethylthiuram monosulfide; α-ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo Azo compounds such as bisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; benzyl; dibenzyl; benzophenone; 2,4-diethylthioxanthone; 1,2-diphenylmethane 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone; 2-chloroanthraquinone and the like.
Further, as the photopolymerization initiator, for example, a quinone compound such as 1-chloroanthraquinone; a photosensitizer such as amine, or the like can be used.
また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等を用いることもできる。 Examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, and other benzoin compounds; acetophenone, 2-hydroxy Acetophenone compounds such as 2-methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethan-1-one; bis(2,4,6-trimethylbenzoyl)phenylphosphine Acylphosphine oxide compounds such as oxides and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfide compounds such as benzylphenyl sulfide and tetramethylthiuram monosulfide; α-ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo Azo compounds such as bisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; benzyl; dibenzyl; benzophenone; 2,4-diethylthioxanthone; 1,2-diphenylmethane 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone; 2-chloroanthraquinone and the like.
Further, as the photopolymerization initiator, for example, a quinone compound such as 1-chloroanthraquinone; a photosensitizer such as amine, or the like can be used.
粘着剤組成物(I-1)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-1)において、光重合開始剤の含有量は、前記エネルギー線硬化性化合物の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-1), the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the energy ray-curable compound, and 0 It is more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
[その他の添加剤]
粘着剤組成物(I-1)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
前記その他の添加剤としては、例えば、帯電防止剤、酸化防止剤、軟化剤(可塑剤)、充填材(フィラー)、防錆剤、着色剤(顔料、染料)、増感剤、粘着付与剤、反応遅延剤、架橋促進剤(触媒)、層間移行抑制剤等の公知の添加剤が挙げられる。 [Other additives]
The pressure-sensitive adhesive composition (I-1) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
Examples of the other additives include antistatic agents, antioxidants, softening agents (plasticizers), fillers (fillers), rust inhibitors, colorants (pigments, dyes), sensitizers, tackifiers. Examples include known additives such as a reaction retarder, a crosslinking accelerator (catalyst), and an inter-layer migration inhibitor.
粘着剤組成物(I-1)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
前記その他の添加剤としては、例えば、帯電防止剤、酸化防止剤、軟化剤(可塑剤)、充填材(フィラー)、防錆剤、着色剤(顔料、染料)、増感剤、粘着付与剤、反応遅延剤、架橋促進剤(触媒)、層間移行抑制剤等の公知の添加剤が挙げられる。 [Other additives]
The pressure-sensitive adhesive composition (I-1) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
Examples of the other additives include antistatic agents, antioxidants, softening agents (plasticizers), fillers (fillers), rust inhibitors, colorants (pigments, dyes), sensitizers, tackifiers. Examples include known additives such as a reaction retarder, a crosslinking accelerator (catalyst), and an inter-layer migration inhibitor.
なお、反応遅延剤とは、例えば、粘着剤組成物(I-1)中に混入している触媒の作用によって、保存中の粘着剤組成物(I-1)において、目的としない架橋反応が進行するのを抑制するための成分である。反応遅延剤としては、例えば、触媒に対するキレートによってキレート錯体を形成するものが挙げられ、より具体的には、1分子中にカルボニル基(-C(=O)-)を2個以上有するものが挙げられる。
また、層間移行抑制剤とは、例えば、保護膜形成用フィルム等の、粘着剤層に隣接する層に含有されている成分が、粘着剤層へ移行することを抑制するための成分である。層間移行抑制剤としては、移行抑制対象と同じ成分が挙げられ、例えば、移行抑制対象が保護膜形成用フィルム中のエポキシ樹脂である場合には、同種のエポキシ樹脂を使用できる。 The reaction retarder means, for example, an undesired crosslinking reaction in the adhesive composition (I-1) during storage due to the action of the catalyst mixed in the adhesive composition (I-1). It is a component for suppressing the progress. Examples of the reaction retarder include those which form a chelate complex by chelating to a catalyst, and more specifically, those having two or more carbonyl groups (-C(=O)-) in one molecule. Can be mentioned.
The inter-layer migration inhibitor is, for example, a component for suppressing the migration of components contained in a layer adjacent to the pressure-sensitive adhesive layer, such as a protective film forming film, to the pressure-sensitive adhesive layer. Examples of the inter-layer migration inhibitor include the same components as those targeted for migration inhibition. For example, when the migration inhibition target is the epoxy resin in the protective film forming film, the same type of epoxy resin can be used.
また、層間移行抑制剤とは、例えば、保護膜形成用フィルム等の、粘着剤層に隣接する層に含有されている成分が、粘着剤層へ移行することを抑制するための成分である。層間移行抑制剤としては、移行抑制対象と同じ成分が挙げられ、例えば、移行抑制対象が保護膜形成用フィルム中のエポキシ樹脂である場合には、同種のエポキシ樹脂を使用できる。 The reaction retarder means, for example, an undesired crosslinking reaction in the adhesive composition (I-1) during storage due to the action of the catalyst mixed in the adhesive composition (I-1). It is a component for suppressing the progress. Examples of the reaction retarder include those which form a chelate complex by chelating to a catalyst, and more specifically, those having two or more carbonyl groups (-C(=O)-) in one molecule. Can be mentioned.
The inter-layer migration inhibitor is, for example, a component for suppressing the migration of components contained in a layer adjacent to the pressure-sensitive adhesive layer, such as a protective film forming film, to the pressure-sensitive adhesive layer. Examples of the inter-layer migration inhibitor include the same components as those targeted for migration inhibition. For example, when the migration inhibition target is the epoxy resin in the protective film forming film, the same type of epoxy resin can be used.
粘着剤組成物(I-1)が含有するその他の添加剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The other additives contained in the pressure-sensitive adhesive composition (I-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-1)のその他の添加剤の含有量は、特に限定されず、その種類に応じて適宜選択すればよい。
The content of other additives in the pressure-sensitive adhesive composition (I-1) is not particularly limited and may be appropriately selected depending on the type.
[溶媒]
粘着剤組成物(I-1)は、溶媒を含有していてもよい。粘着剤組成物(I-1)は、溶媒を含有していることで、塗工対象面への塗工適性が向上する。 [solvent]
The pressure-sensitive adhesive composition (I-1) may contain a solvent. Since the pressure-sensitive adhesive composition (I-1) contains a solvent, the suitability for coating on the surface to be coated is improved.
粘着剤組成物(I-1)は、溶媒を含有していてもよい。粘着剤組成物(I-1)は、溶媒を含有していることで、塗工対象面への塗工適性が向上する。 [solvent]
The pressure-sensitive adhesive composition (I-1) may contain a solvent. Since the pressure-sensitive adhesive composition (I-1) contains a solvent, the suitability for coating on the surface to be coated is improved.
前記溶媒は有機溶媒であることが好ましく、前記有機溶媒としては、例えば、メチルエチルケトン、アセトン等のケトン;酢酸エチル等のエステル(カルボン酸エステル);テトラヒドロフラン、ジオキサン等のエーテル;シクロヘキサン、n-ヘキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素;1-プロパノール、2-プロパノール等のアルコール等が挙げられる。
The solvent is preferably an organic solvent, and examples of the organic solvent include ketones such as methyl ethyl ketone and acetone; esters (carboxylic acid esters) such as ethyl acetate; ethers such as tetrahydrofuran and dioxane; cyclohexane, n-hexane and the like. And aliphatic hydrocarbons; aromatic hydrocarbons such as toluene and xylene; alcohols such as 1-propanol and 2-propanol.
前記溶媒としては、例えば、粘着性樹脂(I-1a)の製造時に用いたものを粘着性樹脂(I-1a)から取り除かずに、そのまま粘着剤組成物(I-1)において用いてもよいし、粘着性樹脂(I-1a)の製造時に用いたものと同一又は異なる種類の溶媒を、粘着剤組成物(I-1)の製造時に別途添加してもよい。
As the solvent, for example, the solvent used in the production of the adhesive resin (I-1a) may be directly used in the adhesive composition (I-1) without being removed from the adhesive resin (I-1a). However, the same or different kind of solvent as that used in the production of the adhesive resin (I-1a) may be added separately during the production of the adhesive composition (I-1).
粘着剤組成物(I-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The solvent contained in the pressure-sensitive adhesive composition (I-1) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-1)の溶媒の含有量は、特に限定されず、適宜調節すればよい。
The content of the solvent in the pressure-sensitive adhesive composition (I-1) is not particularly limited and may be adjusted as appropriate.
<粘着剤組成物(I-2)>
前記粘着剤組成物(I-2)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)を含有する。 <Adhesive composition (I-2)>
As described above, the pressure-sensitive adhesive composition (I-2) is an energy-ray-curable pressure-sensitive adhesive resin in which an unsaturated group is introduced into the side chain of the non-energy-ray-curable pressure-sensitive adhesive resin (I-1a). It contains (I-2a).
前記粘着剤組成物(I-2)は、上述の様に、非エネルギー線硬化性の粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)を含有する。 <Adhesive composition (I-2)>
As described above, the pressure-sensitive adhesive composition (I-2) is an energy-ray-curable pressure-sensitive adhesive resin in which an unsaturated group is introduced into the side chain of the non-energy-ray-curable pressure-sensitive adhesive resin (I-1a). It contains (I-2a).
[粘着性樹脂(I-2a)]
前記粘着性樹脂(I-2a)は、例えば、粘着性樹脂(I-1a)中の官能基に、エネルギー線重合性不飽和基を有する不飽和基含有化合物を反応させることで得られる。 [Adhesive resin (I-2a)]
The adhesive resin (I-2a) can be obtained, for example, by reacting the functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group.
前記粘着性樹脂(I-2a)は、例えば、粘着性樹脂(I-1a)中の官能基に、エネルギー線重合性不飽和基を有する不飽和基含有化合物を反応させることで得られる。 [Adhesive resin (I-2a)]
The adhesive resin (I-2a) can be obtained, for example, by reacting the functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group.
前記不飽和基含有化合物は、前記エネルギー線重合性不飽和基以外に、さらに粘着性樹脂(I-1a)中の官能基と反応することで、粘着性樹脂(I-1a)と結合可能な基を有する化合物である。
前記エネルギー線重合性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基(エテニル基)、アリル基(2-プロペニル基)等が挙げられ、(メタ)アクリロイル基が好ましい。
粘着性樹脂(I-1a)中の官能基と結合可能な基としては、例えば、水酸基又はアミノ基と結合可能なイソシアネート基及びグリシジル基、並びにカルボキシ基又はエポキシ基と結合可能な水酸基及びアミノ基等が挙げられる。 The unsaturated group-containing compound can bond with the adhesive resin (I-1a) by reacting with a functional group in the adhesive resin (I-1a) in addition to the energy ray-polymerizable unsaturated group. It is a compound having a group.
Examples of the energy ray-polymerizable unsaturated group include a (meth)acryloyl group, a vinyl group (ethenyl group), an allyl group (2-propenyl group), and the like, and a (meth)acryloyl group is preferable.
Examples of the group capable of binding to the functional group in the adhesive resin (I-1a) include an isocyanate group and a glycidyl group capable of binding to a hydroxyl group or an amino group, and a hydroxyl group and an amino group capable of binding to a carboxy group or an epoxy group. Etc.
前記エネルギー線重合性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基(エテニル基)、アリル基(2-プロペニル基)等が挙げられ、(メタ)アクリロイル基が好ましい。
粘着性樹脂(I-1a)中の官能基と結合可能な基としては、例えば、水酸基又はアミノ基と結合可能なイソシアネート基及びグリシジル基、並びにカルボキシ基又はエポキシ基と結合可能な水酸基及びアミノ基等が挙げられる。 The unsaturated group-containing compound can bond with the adhesive resin (I-1a) by reacting with a functional group in the adhesive resin (I-1a) in addition to the energy ray-polymerizable unsaturated group. It is a compound having a group.
Examples of the energy ray-polymerizable unsaturated group include a (meth)acryloyl group, a vinyl group (ethenyl group), an allyl group (2-propenyl group), and the like, and a (meth)acryloyl group is preferable.
Examples of the group capable of binding to the functional group in the adhesive resin (I-1a) include an isocyanate group and a glycidyl group capable of binding to a hydroxyl group or an amino group, and a hydroxyl group and an amino group capable of binding to a carboxy group or an epoxy group. Etc.
前記不飽和基含有化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、グリシジル(メタ)アクリレート等が挙げられる。
Examples of the unsaturated group-containing compound include (meth)acryloyloxyethyl isocyanate, (meth)acryloyl isocyanate, and glycidyl (meth)acrylate.
粘着剤組成物(I-2)が含有する粘着性樹脂(I-2a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The adhesive resin (I-2a) contained in the adhesive composition (I-2) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
粘着剤組成物(I-2)において、粘着剤組成物(I-2)の総質量に対する、粘着性樹脂(I-2a)の含有量の割合は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、10~90質量%であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-2), the ratio of the content of the pressure-sensitive adhesive resin (I-2a) to the total mass of the pressure-sensitive adhesive composition (I-2) is preferably 5 to 99% by mass. It is more preferably 10 to 95% by mass, and particularly preferably 10 to 90% by mass.
[架橋剤]
粘着性樹脂(I-2a)として、例えば、粘着性樹脂(I-1a)におけるものと同様の、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-2)は、さらに架橋剤を含有していてもよい。 [Crosslinking agent]
As the adhesive resin (I-2a), for example, when the same acrylic polymer having a constitutional unit derived from a functional group-containing monomer as in the adhesive resin (I-1a) is used, the adhesive composition ( I-2) may further contain a crosslinking agent.
粘着性樹脂(I-2a)として、例えば、粘着性樹脂(I-1a)におけるものと同様の、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-2)は、さらに架橋剤を含有していてもよい。 [Crosslinking agent]
As the adhesive resin (I-2a), for example, when the same acrylic polymer having a constitutional unit derived from a functional group-containing monomer as in the adhesive resin (I-1a) is used, the adhesive composition ( I-2) may further contain a crosslinking agent.
粘着剤組成物(I-2)における前記架橋剤としては、粘着剤組成物(I-1)における架橋剤と同じものが挙げられる。
粘着剤組成物(I-2)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the cross-linking agent in the pressure-sensitive adhesive composition (I-2) include the same cross-linking agents in the pressure-sensitive adhesive composition (I-1).
The crosslinking agent contained in the pressure-sensitive adhesive composition (I-2) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-2)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the cross-linking agent in the pressure-sensitive adhesive composition (I-2) include the same cross-linking agents in the pressure-sensitive adhesive composition (I-1).
The crosslinking agent contained in the pressure-sensitive adhesive composition (I-2) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
前記粘着剤組成物(I-2)において、架橋剤の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~20質量部であることがより好ましく、0.3~15質量部であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-2), the content of the crosslinking agent is preferably 0.01 to 50 parts by mass relative to 100 parts by mass of the content of the adhesive resin (I-2a), It is more preferably 0.1 to 20 parts by mass, and particularly preferably 0.3 to 15 parts by mass.
[光重合開始剤]
粘着剤組成物(I-2)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-2)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。 [Photopolymerization initiator]
The pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator. The pressure-sensitive adhesive composition (I-2) containing the photopolymerization initiator is sufficiently cured even when irradiated with a relatively low energy ray such as ultraviolet rays.
粘着剤組成物(I-2)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-2)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。 [Photopolymerization initiator]
The pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator. The pressure-sensitive adhesive composition (I-2) containing the photopolymerization initiator is sufficiently cured even when irradiated with a relatively low energy ray such as ultraviolet rays.
粘着剤組成物(I-2)における前記光重合開始剤としては、粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。
粘着剤組成物(I-2)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the photopolymerization initiator in the pressure-sensitive adhesive composition (I-2) include the same as the photopolymerization initiator in the pressure-sensitive adhesive composition (I-1).
The photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or may be two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-2)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the photopolymerization initiator in the pressure-sensitive adhesive composition (I-2) include the same as the photopolymerization initiator in the pressure-sensitive adhesive composition (I-1).
The photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-2) may be only one type, or may be two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-2)において、光重合開始剤の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-2), the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-2a). It is more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
[その他の添加剤、溶媒]
粘着剤組成物(I-2)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
また、粘着剤組成物(I-2)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
粘着剤組成物(I-2)における、前記その他の添加剤及び溶媒としては、それぞれ、粘着剤組成物(I-1)における、その他の添加剤及び溶媒と同じものが挙げられる。
粘着剤組成物(I-2)が含有する、その他の添加剤及び溶媒は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
粘着剤組成物(I-2)の、その他の添加剤及び溶媒の含有量は、それぞれ、特に限定されず、その種類に応じて適宜選択すればよい。 [Other additives and solvents]
The pressure-sensitive adhesive composition (I-2) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
Further, the pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-2) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1).
The other additive and solvent contained in the pressure-sensitive adhesive composition (I-2) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-2) are not particularly limited, and may be appropriately selected depending on the type.
粘着剤組成物(I-2)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
また、粘着剤組成物(I-2)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
粘着剤組成物(I-2)における、前記その他の添加剤及び溶媒としては、それぞれ、粘着剤組成物(I-1)における、その他の添加剤及び溶媒と同じものが挙げられる。
粘着剤組成物(I-2)が含有する、その他の添加剤及び溶媒は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
粘着剤組成物(I-2)の、その他の添加剤及び溶媒の含有量は、それぞれ、特に限定されず、その種類に応じて適宜選択すればよい。 [Other additives and solvents]
The pressure-sensitive adhesive composition (I-2) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
Further, the pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-2) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1).
The other additive and solvent contained in the pressure-sensitive adhesive composition (I-2) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-2) are not particularly limited, and may be appropriately selected depending on the type.
<粘着剤組成物(I-3)>
前記粘着剤組成物(I-3)は、上述の様に、前記粘着性樹脂(I-2a)と、エネルギー線硬化性化合物と、を含有する。 <Adhesive composition (I-3)>
As described above, the pressure-sensitive adhesive composition (I-3) contains the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable compound.
前記粘着剤組成物(I-3)は、上述の様に、前記粘着性樹脂(I-2a)と、エネルギー線硬化性化合物と、を含有する。 <Adhesive composition (I-3)>
As described above, the pressure-sensitive adhesive composition (I-3) contains the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable compound.
粘着剤組成物(I-3)において、粘着剤組成物(I-3)の総質量に対する、粘着性樹脂(I-2a)の含有量の割合は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-3), the ratio of the content of the pressure-sensitive adhesive resin (I-2a) to the total mass of the pressure-sensitive adhesive composition (I-3) is preferably 5 to 99% by mass. It is more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
[エネルギー線硬化性化合物]
粘着剤組成物(I-3)が含有する前記エネルギー線硬化性化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー及びオリゴマーが挙げられ、粘着剤組成物(I-1)が含有するエネルギー線硬化性化合物と同じものが挙げられる。
粘着剤組成物(I-3)が含有する前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Energy ray curable compound]
Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) include monomers and oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays. Examples thereof include the same energy ray-curable compounds contained in the product (I-1).
The energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof may be arbitrarily selected. ..
粘着剤組成物(I-3)が含有する前記エネルギー線硬化性化合物としては、エネルギー線重合性不飽和基を有し、エネルギー線の照射により硬化可能なモノマー及びオリゴマーが挙げられ、粘着剤組成物(I-1)が含有するエネルギー線硬化性化合物と同じものが挙げられる。
粘着剤組成物(I-3)が含有する前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Energy ray curable compound]
Examples of the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) include monomers and oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays. Examples thereof include the same energy ray-curable compounds contained in the product (I-1).
The energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof may be arbitrarily selected. ..
前記粘着剤組成物(I-3)において、前記エネルギー線硬化性化合物の含有量は、粘着性樹脂(I-2a)の含有量100質量部に対して、0.01~300質量部であることが好ましく、0.03~200質量部であることがより好ましく、0.05~100質量部であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-3), the content of the energy ray-curable compound is 0.01 to 300 parts by mass based on 100 parts by mass of the adhesive resin (I-2a). It is preferably 0.03 to 200 parts by mass, more preferably 0.05 to 100 parts by mass.
[光重合開始剤]
粘着剤組成物(I-3)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-3)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。 [Photopolymerization initiator]
The pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator. The curing reaction of the pressure-sensitive adhesive composition (I-3) containing a photopolymerization initiator sufficiently proceeds even when irradiated with a relatively low energy ray such as ultraviolet rays.
粘着剤組成物(I-3)は、さらに光重合開始剤を含有していてもよい。光重合開始剤を含有する粘着剤組成物(I-3)は、紫外線等の比較的低エネルギーのエネルギー線を照射しても、十分に硬化反応が進行する。 [Photopolymerization initiator]
The pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator. The curing reaction of the pressure-sensitive adhesive composition (I-3) containing a photopolymerization initiator sufficiently proceeds even when irradiated with a relatively low energy ray such as ultraviolet rays.
粘着剤組成物(I-3)における前記光重合開始剤としては、粘着剤組成物(I-1)における光重合開始剤と同じものが挙げられる。
粘着剤組成物(I-3)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the photopolymerization initiator in the pressure-sensitive adhesive composition (I-3) include the same photopolymerization initiators in the pressure-sensitive adhesive composition (I-1).
The photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-3)が含有する光重合開始剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the photopolymerization initiator in the pressure-sensitive adhesive composition (I-3) include the same photopolymerization initiators in the pressure-sensitive adhesive composition (I-1).
The photopolymerization initiator contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-3)において、光重合開始剤の含有量は、粘着性樹脂(I-2a)及び前記エネルギー線硬化性化合物の総含有量100質量部に対して、0.01~20質量部であることが好ましく、0.03~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-3), the content of the photopolymerization initiator is 0.01 to 100 parts by mass based on the total content of the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable compound. The amount is preferably 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
[その他の添加剤、溶媒]
粘着剤組成物(I-3)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
また、粘着剤組成物(I-3)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
粘着剤組成物(I-3)における、前記その他の添加剤及び溶媒としては、それぞれ、粘着剤組成物(I-1)における、その他の添加剤及び溶媒と同じものが挙げられる。
粘着剤組成物(I-3)が含有する、その他の添加剤及び溶媒は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
粘着剤組成物(I-3)の、その他の添加剤及び溶媒の含有量は、それぞれ、特に限定されず、その種類に応じて適宜選択すればよい。 [Other additives and solvents]
The pressure-sensitive adhesive composition (I-3) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
Further, the pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-3) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1).
The other additives and solvent contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-3) are not particularly limited, and may be appropriately selected depending on the type.
粘着剤組成物(I-3)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
また、粘着剤組成物(I-3)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
粘着剤組成物(I-3)における、前記その他の添加剤及び溶媒としては、それぞれ、粘着剤組成物(I-1)における、その他の添加剤及び溶媒と同じものが挙げられる。
粘着剤組成物(I-3)が含有する、その他の添加剤及び溶媒は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
粘着剤組成物(I-3)の、その他の添加剤及び溶媒の含有量は、それぞれ、特に限定されず、その種類に応じて適宜選択すればよい。 [Other additives and solvents]
The pressure-sensitive adhesive composition (I-3) may contain other additives that do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
Further, the pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-3) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1).
The other additives and solvent contained in the pressure-sensitive adhesive composition (I-3) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-3) are not particularly limited, and may be appropriately selected depending on the type.
<粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物>
ここまでは、粘着剤組成物(I-1)、粘着剤組成物(I-2)及び粘着剤組成物(I-3)について主に説明したが、これらの含有成分として説明したものは、これら3種の粘着剤組成物以外の全般的な粘着剤組成物(本明細書においては、「粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物」と称する)でも、同様に用いることができる。 <Adhesive composition other than the adhesive compositions (I-1) to (I-3)>
Up to this point, the pressure-sensitive adhesive composition (I-1), the pressure-sensitive adhesive composition (I-2), and the pressure-sensitive adhesive composition (I-3) have been mainly described. General pressure-sensitive adhesive compositions other than these three types of pressure-sensitive adhesive compositions (herein, referred to as "pressure-sensitive adhesive compositions other than pressure-sensitive adhesive compositions (I-1) to (I-3)") However, it can be used similarly.
ここまでは、粘着剤組成物(I-1)、粘着剤組成物(I-2)及び粘着剤組成物(I-3)について主に説明したが、これらの含有成分として説明したものは、これら3種の粘着剤組成物以外の全般的な粘着剤組成物(本明細書においては、「粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物」と称する)でも、同様に用いることができる。 <Adhesive composition other than the adhesive compositions (I-1) to (I-3)>
Up to this point, the pressure-sensitive adhesive composition (I-1), the pressure-sensitive adhesive composition (I-2), and the pressure-sensitive adhesive composition (I-3) have been mainly described. General pressure-sensitive adhesive compositions other than these three types of pressure-sensitive adhesive compositions (herein, referred to as "pressure-sensitive adhesive compositions other than pressure-sensitive adhesive compositions (I-1) to (I-3)") However, it can be used similarly.
粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物としては、エネルギー線硬化性の粘着剤組成物以外に、非エネルギー線硬化性の粘着剤組成物も挙げられる。
非エネルギー線硬化性の粘着剤組成物としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の、非エネルギー線硬化性の粘着性樹脂(I-1a)を含有する粘着剤組成物(I-4)が挙げられ、アクリル系樹脂を含有するものが好ましい。 Examples of the pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) include non-energy-ray-curable pressure-sensitive adhesive compositions, in addition to the energy-ray-curable pressure-sensitive adhesive composition.
Examples of the non-energy ray curable pressure sensitive adhesive composition include non-energy ray curable materials such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates and ester resins. The pressure-sensitive adhesive composition (I-4) containing an adhesive resin (I-1a) is preferable, and the one containing an acrylic resin is preferable.
非エネルギー線硬化性の粘着剤組成物としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の、非エネルギー線硬化性の粘着性樹脂(I-1a)を含有する粘着剤組成物(I-4)が挙げられ、アクリル系樹脂を含有するものが好ましい。 Examples of the pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) include non-energy-ray-curable pressure-sensitive adhesive compositions, in addition to the energy-ray-curable pressure-sensitive adhesive composition.
Examples of the non-energy ray curable pressure sensitive adhesive composition include non-energy ray curable materials such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates and ester resins. The pressure-sensitive adhesive composition (I-4) containing an adhesive resin (I-1a) is preferable, and the one containing an acrylic resin is preferable.
粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物は、1種又は2種以上の架橋剤を含有することが好ましく、その含有量は、上述の粘着剤組成物(I-1)等の場合と同様とすることができる。
The pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contain one or more cross-linking agents, and the content thereof is the above-mentioned pressure-sensitive adhesive composition. This can be the same as the case of (I-1) or the like.
<粘着剤組成物(I-4)>
粘着剤組成物(I-4)で好ましいものとしては、例えば、前記粘着性樹脂(I-1a)と、架橋剤と、を含有するものが挙げられる。 <Adhesive composition (I-4)>
Preferred examples of the pressure-sensitive adhesive composition (I-4) include those containing the above-mentioned pressure-sensitive adhesive resin (I-1a) and a crosslinking agent.
粘着剤組成物(I-4)で好ましいものとしては、例えば、前記粘着性樹脂(I-1a)と、架橋剤と、を含有するものが挙げられる。 <Adhesive composition (I-4)>
Preferred examples of the pressure-sensitive adhesive composition (I-4) include those containing the above-mentioned pressure-sensitive adhesive resin (I-1a) and a crosslinking agent.
[粘着性樹脂(I-1a)]
粘着剤組成物(I-4)における粘着性樹脂(I-1a)としては、粘着剤組成物(I-1)における粘着性樹脂(I-1a)と同じものが挙げられる。
粘着剤組成物(I-4)が含有する粘着性樹脂(I-1a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Adhesive resin (I-1a)]
Examples of the adhesive resin (I-1a) in the adhesive composition (I-4) include the same adhesive resin (I-1a) in the adhesive composition (I-1).
The adhesive resin (I-1a) contained in the adhesive composition (I-4) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
粘着剤組成物(I-4)における粘着性樹脂(I-1a)としては、粘着剤組成物(I-1)における粘着性樹脂(I-1a)と同じものが挙げられる。
粘着剤組成物(I-4)が含有する粘着性樹脂(I-1a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Adhesive resin (I-1a)]
Examples of the adhesive resin (I-1a) in the adhesive composition (I-4) include the same adhesive resin (I-1a) in the adhesive composition (I-1).
The adhesive resin (I-1a) contained in the adhesive composition (I-4) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
粘着剤組成物(I-4)において、粘着剤組成物(I-4)の総質量に対する、粘着性樹脂(I-1a)の含有量の割合は、5~99質量%であることが好ましく、10~95質量%であることがより好ましく、15~90質量%であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-4), the ratio of the content of the pressure-sensitive adhesive resin (I-1a) to the total mass of the pressure-sensitive adhesive composition (I-4) is preferably 5 to 99% by mass. It is more preferably 10 to 95% by mass, and particularly preferably 15 to 90% by mass.
[架橋剤]
粘着性樹脂(I-1a)として、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-4)は、さらに架橋剤を含有することが好ましい。 [Crosslinking agent]
When the acrylic polymer having a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from a (meth)acrylic acid alkyl ester is used as the adhesive resin (I-1a), the pressure-sensitive adhesive composition ( I-4) preferably further contains a crosslinking agent.
粘着性樹脂(I-1a)として、(メタ)アクリル酸アルキルエステル由来の構成単位以外に、さらに、官能基含有モノマー由来の構成単位を有する前記アクリル系重合体を用いる場合、粘着剤組成物(I-4)は、さらに架橋剤を含有することが好ましい。 [Crosslinking agent]
When the acrylic polymer having a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from a (meth)acrylic acid alkyl ester is used as the adhesive resin (I-1a), the pressure-sensitive adhesive composition ( I-4) preferably further contains a crosslinking agent.
粘着剤組成物(I-4)における架橋剤としては、粘着剤組成物(I-1)における架橋剤と同じものが挙げられる。
粘着剤組成物(I-4)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the crosslinking agent in the pressure-sensitive adhesive composition (I-4) include the same as the crosslinking agent in the pressure-sensitive adhesive composition (I-1).
The crosslinking agent contained in the pressure-sensitive adhesive composition (I-4) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
粘着剤組成物(I-4)が含有する架橋剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the crosslinking agent in the pressure-sensitive adhesive composition (I-4) include the same as the crosslinking agent in the pressure-sensitive adhesive composition (I-1).
The crosslinking agent contained in the pressure-sensitive adhesive composition (I-4) may be only one kind, or may be two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
前記粘着剤組成物(I-4)において、架橋剤の含有量は、粘着性樹脂(I-1a)の含有量100質量部に対して、0.01~50質量部であることが好ましく、0.1~47質量部であることがより好ましく、0.3~44質量部であることが特に好ましい。
In the pressure-sensitive adhesive composition (I-4), the content of the crosslinking agent is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the content of the adhesive resin (I-1a), It is more preferably 0.1 to 47 parts by mass, and particularly preferably 0.3 to 44 parts by mass.
[その他の添加剤、溶媒]
粘着剤組成物(I-4)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
また、粘着剤組成物(I-4)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
粘着剤組成物(I-4)における、前記その他の添加剤及び溶媒としては、それぞれ、粘着剤組成物(I-1)における、その他の添加剤及び溶媒と同じものが挙げられる。
粘着剤組成物(I-4)が含有する、その他の添加剤及び溶媒は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
粘着剤組成物(I-4)の、その他の添加剤及び溶媒の含有量は、それぞれ、特に限定されず、その種類に応じて適宜選択すればよい。 [Other additives and solvents]
The pressure-sensitive adhesive composition (I-4) may contain other additives which do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
Further, the pressure-sensitive adhesive composition (I-4) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-4) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1).
The other additive and solvent contained in the pressure-sensitive adhesive composition (I-4) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-4) are not particularly limited, and may be appropriately selected depending on the type.
粘着剤組成物(I-4)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
また、粘着剤組成物(I-4)は、粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
粘着剤組成物(I-4)における、前記その他の添加剤及び溶媒としては、それぞれ、粘着剤組成物(I-1)における、その他の添加剤及び溶媒と同じものが挙げられる。
粘着剤組成物(I-4)が含有する、その他の添加剤及び溶媒は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
粘着剤組成物(I-4)の、その他の添加剤及び溶媒の含有量は、それぞれ、特に限定されず、その種類に応じて適宜選択すればよい。 [Other additives and solvents]
The pressure-sensitive adhesive composition (I-4) may contain other additives which do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
Further, the pressure-sensitive adhesive composition (I-4) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
Examples of the other additive and solvent in the pressure-sensitive adhesive composition (I-4) include the same as the other additives and solvent in the pressure-sensitive adhesive composition (I-1).
The other additive and solvent contained in the pressure-sensitive adhesive composition (I-4) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
The contents of the other additives and the solvent of the pressure-sensitive adhesive composition (I-4) are not particularly limited, and may be appropriately selected depending on the type.
後述する保護膜形成用フィルムがエネルギー線硬化性である場合、粘着剤層は非エネルギー線硬化性であることが好ましい。これは、粘着剤層がエネルギー線硬化性であると、エネルギー線の照射によって保護膜形成用フィルムを硬化させるときに、粘着剤層も同時に硬化するのを抑制できないことがあるためである。粘着剤層が保護膜形成用フィルムと同時に硬化してしまうと、保護膜形成用フィルムの硬化物及び粘着剤層がこれらの界面において剥離不能な程度に貼り付いてしまうことがある。その場合、保護膜形成用フィルムの硬化物、すなわち保護膜を裏面に備えた半導体チップ(すなわち保護膜付き半導体チップ)を、粘着剤層の硬化物を備えた支持シートから剥離させることが困難となり、保護膜付き半導体チップを正常にピックアップできなくなってしまう。粘着剤層が非エネルギー線硬化性であれば、このような不具合を確実に回避でき、保護膜付き半導体チップをより容易にピックアップできる。
When the protective film forming film described below is energy ray curable, the adhesive layer is preferably non-energy ray curable. This is because if the pressure-sensitive adhesive layer is energy ray-curable, it may not be possible to prevent the pressure-sensitive adhesive layer from being simultaneously cured when the protective film-forming film is cured by irradiation with energy rays. If the pressure-sensitive adhesive layer is cured at the same time as the protective film-forming film, the cured product of the protective film-forming film and the pressure-sensitive adhesive layer may stick to the interface between them so that they cannot be peeled off. In that case, it becomes difficult to release the cured product of the protective film forming film, that is, the semiconductor chip having the protective film on the back surface (that is, the semiconductor chip with the protective film) from the support sheet having the cured product of the adhesive layer. However, the semiconductor chip with the protective film cannot be normally picked up. If the pressure-sensitive adhesive layer is non-energy ray curable, such a problem can be reliably avoided, and the semiconductor chip with a protective film can be more easily picked up.
ここでは、粘着剤層が非エネルギー線硬化性である場合の効果について説明したが、支持シートの保護膜形成用フィルムと直接接触している層が粘着剤層以外の層であっても、この層が非エネルギー線硬化性であれば、同様の効果を奏する。
Here, the effect when the pressure-sensitive adhesive layer is non-energy ray curable has been described, but even if the layer that is in direct contact with the protective film-forming film of the support sheet is a layer other than the pressure-sensitive adhesive layer, If the layer is non-energy ray curable, the same effect is obtained.
<<粘着剤組成物の製造方法>>
粘着剤組成物(I-1)~(I-3)や、粘着剤組成物(I-4)等の粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物は、前記粘着剤と、必要に応じて前記粘着剤以外の成分等の、粘着剤組成物を構成するための各成分を配合することで得られる。
各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。 <<Production Method of Adhesive Composition>>
The pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) and the pressure-sensitive adhesive compositions (I-1) to (I-3) such as the pressure-sensitive adhesive composition (I-4) It is obtained by blending the above-mentioned pressure-sensitive adhesive and, if necessary, each component for constituting the pressure-sensitive adhesive composition, such as components other than the above-mentioned pressure-sensitive adhesive.
The order of adding each component is not particularly limited, and two or more components may be added simultaneously.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by diluting any compounding component other than the solvent in advance. Alternatively, the solvent may be used as a mixture with these ingredients.
The method of mixing each component at the time of compounding is not particularly limited, and a known method such as a method of mixing by rotating a stirring bar or a stirring blade; a method of mixing using a mixer; a method of mixing by adding ultrasonic waves It may be selected appropriately.
The temperature and time during addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30°C.
粘着剤組成物(I-1)~(I-3)や、粘着剤組成物(I-4)等の粘着剤組成物(I-1)~(I-3)以外の粘着剤組成物は、前記粘着剤と、必要に応じて前記粘着剤以外の成分等の、粘着剤組成物を構成するための各成分を配合することで得られる。
各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。 <<Production Method of Adhesive Composition>>
The pressure-sensitive adhesive compositions other than the pressure-sensitive adhesive compositions (I-1) to (I-3) and the pressure-sensitive adhesive compositions (I-1) to (I-3) such as the pressure-sensitive adhesive composition (I-4) It is obtained by blending the above-mentioned pressure-sensitive adhesive and, if necessary, each component for constituting the pressure-sensitive adhesive composition, such as components other than the above-mentioned pressure-sensitive adhesive.
The order of adding each component is not particularly limited, and two or more components may be added simultaneously.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting this compounding component in advance, or by diluting any compounding component other than the solvent in advance. Alternatively, the solvent may be used as a mixture with these ingredients.
The method of mixing each component at the time of compounding is not particularly limited, and a known method such as a method of mixing by rotating a stirring bar or a stirring blade; a method of mixing using a mixer; a method of mixing by adding ultrasonic waves It may be selected appropriately.
The temperature and time during addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30°C.
○背面帯電防止層
前記背面帯電防止層は、シート状又はフィルム状であり、帯電防止剤を含有する。
前記背面帯電防止層は、前記帯電防止剤以外に、樹脂を含有していてもよい。 ○ Backside Antistatic Layer The backside antistatic layer is in the form of a sheet or film and contains an antistatic agent.
The backside antistatic layer may contain a resin in addition to the antistatic agent.
前記背面帯電防止層は、シート状又はフィルム状であり、帯電防止剤を含有する。
前記背面帯電防止層は、前記帯電防止剤以外に、樹脂を含有していてもよい。 ○ Backside Antistatic Layer The backside antistatic layer is in the form of a sheet or film and contains an antistatic agent.
The backside antistatic layer may contain a resin in addition to the antistatic agent.
背面帯電防止層は1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
The backside antistatic layer may be composed of one layer (single layer) or may be composed of two or more layers. When composed of a plurality of layers, these layers may be the same as each other. They may be different, and the combination of these plural layers is not particularly limited.
背面帯電防止層の厚さは、200nm以下であることが好ましく、180nm以下であることがより好ましく、例えば、100nm以下であってもよい。厚さが200nm以下である背面帯電防止層においては、十分な帯電防止能を維持しつつ、帯電防止剤の使用量を低減できるため、このような背面帯電防止層を備えた保護膜形成用複合シートのコストを低減できる。さらに、背面帯電防止層の厚さが100nm以下である場合には、上述の効果に加え、背面帯電防止層を備えていることによる、保護膜形成用複合シートの特性の変動を最小限に抑制できるという効果も得られる。前記特性としては、例えば、エキスパンド性が挙げられる。
ここで、「背面帯電防止層の厚さ」とは、背面帯電防止層全体の厚さを意味し、例えば、複数層からなる背面帯電防止層の厚さとは、背面帯電防止層を構成するすべての層の合計の厚さを意味する。 The thickness of the back surface antistatic layer is preferably 200 nm or less, more preferably 180 nm or less, and may be 100 nm or less, for example. In the backside antistatic layer having a thickness of 200 nm or less, since the amount of the antistatic agent used can be reduced while maintaining sufficient antistatic ability, a composite film for forming a protective film including such a backside antistatic layer can be obtained. The cost of the seat can be reduced. Furthermore, in the case where the thickness of the backside antistatic layer is 100 nm or less, in addition to the above-described effects, the provision of the backside antistatic layer suppresses the fluctuation of the characteristics of the protective film-forming composite sheet to the minimum The effect that it can be obtained is also obtained. Examples of the characteristics include expandability.
Here, the “thickness of the backside antistatic layer” means the total thickness of the backside antistatic layer, and for example, the thickness of the backside antistatic layer composed of a plurality of layers means all the backside antistatic layers. Means the total thickness of the layers.
ここで、「背面帯電防止層の厚さ」とは、背面帯電防止層全体の厚さを意味し、例えば、複数層からなる背面帯電防止層の厚さとは、背面帯電防止層を構成するすべての層の合計の厚さを意味する。 The thickness of the back surface antistatic layer is preferably 200 nm or less, more preferably 180 nm or less, and may be 100 nm or less, for example. In the backside antistatic layer having a thickness of 200 nm or less, since the amount of the antistatic agent used can be reduced while maintaining sufficient antistatic ability, a composite film for forming a protective film including such a backside antistatic layer can be obtained. The cost of the seat can be reduced. Furthermore, in the case where the thickness of the backside antistatic layer is 100 nm or less, in addition to the above-described effects, the provision of the backside antistatic layer suppresses the fluctuation of the characteristics of the protective film-forming composite sheet to the minimum The effect that it can be obtained is also obtained. Examples of the characteristics include expandability.
Here, the “thickness of the backside antistatic layer” means the total thickness of the backside antistatic layer, and for example, the thickness of the backside antistatic layer composed of a plurality of layers means all the backside antistatic layers. Means the total thickness of the layers.
背面帯電防止層の厚さは、10nm以上であることが好ましく、例えば、20nm以上、30nm以上、40nm以上、及び65nm以上のいずれかであってもよい。厚さが前記下限値以上である背面帯電防止層は、形成がより容易であり、かつ、構造がより安定である。
The thickness of the back surface antistatic layer is preferably 10 nm or more, and may be any of 20 nm or more, 30 nm or more, 40 nm or more, and 65 nm or more. The backside antistatic layer having a thickness of not less than the above lower limit is easier to form and has a more stable structure.
背面帯電防止層の厚さは、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、一実施形態において、背面帯電防止層の厚さは、10~200nmであることが好ましく、例えば、20~200nm、30~200nm、40~180nm、及び65~100nmのいずれかであってもよい。ただし、これらは、背面帯電防止層の厚さの一例である。
The thickness of the backside antistatic layer can be appropriately adjusted within the range set by arbitrarily combining the above-mentioned preferred lower limit value and upper limit value. For example, in one embodiment, the backside antistatic layer preferably has a thickness of 10 to 200 nm, for example, 20 to 200 nm, 30 to 200 nm, 40 to 180 nm, and 65 to 100 nm. Good. However, these are examples of the thickness of the back surface antistatic layer.
背面帯電防止層は、支持シートを介して保護膜のレーザー印字を視認するため、透明であることが好ましい。
また、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、背面帯電防止層はエネルギー線を透過させるものが好ましい。 The back surface antistatic layer is preferably transparent in order to visually recognize the laser printing of the protective film through the support sheet.
Further, when the protective film-forming film has energy ray curability, the backside antistatic layer preferably transmits energy rays.
また、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、背面帯電防止層はエネルギー線を透過させるものが好ましい。 The back surface antistatic layer is preferably transparent in order to visually recognize the laser printing of the protective film through the support sheet.
Further, when the protective film-forming film has energy ray curability, the backside antistatic layer preferably transmits energy rays.
<<帯電防止組成物(VI-1))>>
背面帯電防止層は、前記帯電防止剤を含有する帯電防止組成物(VI-1)を用いて形成できる。例えば、背面帯電防止層の形成対象面に帯電防止組成物(VI-1)を塗工し、必要に応じて乾燥させることで、目的とする部位に背面帯電防止層を形成できる。帯電防止組成物(VI-1)における、常温で気化しない成分同士の含有量の比率は、通常、背面帯電防止層における前記成分同士の含有量の比率と同じとなる。
背面帯電防止層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。 <<Antistatic composition (VI-1)>>
The backside antistatic layer can be formed using the antistatic composition (VI-1) containing the antistatic agent. For example, by applying the antistatic composition (VI-1) to the surface on which the backside antistatic layer is to be formed and drying it as necessary, the backside antistatic layer can be formed at the target site. In the antistatic composition (VI-1), the content ratio of the components that do not vaporize at room temperature is usually the same as the content ratio of the components in the backside antistatic layer.
A more specific method of forming the backside antistatic layer will be described later in detail together with a method of forming other layers.
背面帯電防止層は、前記帯電防止剤を含有する帯電防止組成物(VI-1)を用いて形成できる。例えば、背面帯電防止層の形成対象面に帯電防止組成物(VI-1)を塗工し、必要に応じて乾燥させることで、目的とする部位に背面帯電防止層を形成できる。帯電防止組成物(VI-1)における、常温で気化しない成分同士の含有量の比率は、通常、背面帯電防止層における前記成分同士の含有量の比率と同じとなる。
背面帯電防止層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。 <<Antistatic composition (VI-1)>>
The backside antistatic layer can be formed using the antistatic composition (VI-1) containing the antistatic agent. For example, by applying the antistatic composition (VI-1) to the surface on which the backside antistatic layer is to be formed and drying it as necessary, the backside antistatic layer can be formed at the target site. In the antistatic composition (VI-1), the content ratio of the components that do not vaporize at room temperature is usually the same as the content ratio of the components in the backside antistatic layer.
A more specific method of forming the backside antistatic layer will be described later in detail together with a method of forming other layers.
帯電防止組成物(VI-1)の塗工は、公知の方法で行えばよく、例えば、上述の粘着剤組成物の場合と同じ方法であってよい。
The antistatic composition (VI-1) may be applied by a known method, for example, the same method as in the case of the pressure-sensitive adhesive composition described above.
基材上に背面帯電防止層を設ける場合には、例えば、基材上に帯電防止組成物(VI-1)を塗工し、必要に応じて乾燥させることで、基材上に背面帯電防止層を積層すればよい。また、基材上に背面帯電防止層を設ける場合には、例えば、剥離フィルム上に帯電防止組成物(VI-1)を塗工し、必要に応じて乾燥させることで、剥離フィルム上に背面帯電防止層を形成しておき、この背面帯電防止層の露出面を、基材の一方の表面と貼り合わせることで、基材上に背面帯電防止層を積層してもよい。この場合の剥離フィルムは、保護膜形成用複合シートの製造過程又は使用過程のいずれかのタイミングで、取り除けばよい。
なお、背面帯電防止層を形成する側の基材面は、粗い面でも平滑な面のいずれでも選択することができる。基材と背面帯電防止層との密着を向上させる観点や、支持シートの全光線透過率やヘーズを向上させる観点からは、背面帯電防止層を形成する側の基材面は、背面帯電防止層が形成されない側の基材面に比べて表面粗さがより粗い面を選択することが好ましい。
また、薄い膜厚で、帯電防止層表面の平滑性を維持できる観点からは、背面帯電防止層を形成する側の基材面は、背面帯電防止層が形成されない側の基材面に比べて表面粗さがより平滑な面を選択することが好ましい。 When the back surface antistatic layer is provided on the base material, for example, the antistatic composition (VI-1) is applied onto the base material and dried if necessary to prevent the back surface antistatic layer on the base material. The layers may be stacked. When the back surface antistatic layer is provided on the substrate, for example, the antistatic composition (VI-1) is applied onto the release film, and dried if necessary to form a back surface on the release film. You may laminate|stack a back surface antistatic layer on a base material by forming an antistatic layer beforehand and pasting the exposed surface of this back surface antistatic layer with one surface of a base material. In this case, the release film may be removed at any timing during the production process or the use process of the composite film for forming a protective film.
The surface of the base material on which the back surface antistatic layer is formed may be a rough surface or a smooth surface. From the viewpoint of improving the adhesion between the base material and the backside antistatic layer, and from the viewpoint of improving the total light transmittance and haze of the supporting sheet, the backside antistatic layer is the backside antistatic layer. It is preferable to select a surface having a rougher surface roughness than the surface of the base material on the side where no is formed.
Further, from the viewpoint of maintaining the smoothness of the surface of the antistatic layer with a thin film thickness, the base material surface on the side where the backside antistatic layer is formed is more than that on the side where the backside antistatic layer is not formed. It is preferable to select a surface having a smoother surface roughness.
なお、背面帯電防止層を形成する側の基材面は、粗い面でも平滑な面のいずれでも選択することができる。基材と背面帯電防止層との密着を向上させる観点や、支持シートの全光線透過率やヘーズを向上させる観点からは、背面帯電防止層を形成する側の基材面は、背面帯電防止層が形成されない側の基材面に比べて表面粗さがより粗い面を選択することが好ましい。
また、薄い膜厚で、帯電防止層表面の平滑性を維持できる観点からは、背面帯電防止層を形成する側の基材面は、背面帯電防止層が形成されない側の基材面に比べて表面粗さがより平滑な面を選択することが好ましい。 When the back surface antistatic layer is provided on the base material, for example, the antistatic composition (VI-1) is applied onto the base material and dried if necessary to prevent the back surface antistatic layer on the base material. The layers may be stacked. When the back surface antistatic layer is provided on the substrate, for example, the antistatic composition (VI-1) is applied onto the release film, and dried if necessary to form a back surface on the release film. You may laminate|stack a back surface antistatic layer on a base material by forming an antistatic layer beforehand and pasting the exposed surface of this back surface antistatic layer with one surface of a base material. In this case, the release film may be removed at any timing during the production process or the use process of the composite film for forming a protective film.
The surface of the base material on which the back surface antistatic layer is formed may be a rough surface or a smooth surface. From the viewpoint of improving the adhesion between the base material and the backside antistatic layer, and from the viewpoint of improving the total light transmittance and haze of the supporting sheet, the backside antistatic layer is the backside antistatic layer. It is preferable to select a surface having a rougher surface roughness than the surface of the base material on the side where no is formed.
Further, from the viewpoint of maintaining the smoothness of the surface of the antistatic layer with a thin film thickness, the base material surface on the side where the backside antistatic layer is formed is more than that on the side where the backside antistatic layer is not formed. It is preferable to select a surface having a smoother surface roughness.
帯電防止組成物(VI-1)の乾燥条件は、特に限定されないが、帯電防止組成物(VI-1)は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する帯電防止組成物(VI-1)は、例えば、40~130℃で10秒~5分の条件で乾燥させることが好ましい。
The drying conditions of the antistatic composition (VI-1) are not particularly limited, but when the antistatic composition (VI-1) contains the solvent described below, it is preferable to heat dry. The antistatic composition (VI-1) containing a solvent is preferably dried, for example, at 40 to 130° C. for 10 seconds to 5 minutes.
帯電防止組成物(VI-1)は、前記帯電防止剤以外に、前記樹脂を含有していてもよい。
The antistatic composition (VI-1) may contain the resin in addition to the antistatic agent.
[帯電防止剤]
前記帯電防止剤は、導電性化合物等、公知のものでよく、特に限定されないが、着色していないものが好ましい。前記帯電防止剤は、例えば、低分子化合物及び高分子化合物(換言すると、オリゴマー又はポリマー)のいずれであってもよい。 [Antistatic agent]
The antistatic agent may be a known one such as a conductive compound and is not particularly limited, but an uncolored one is preferable. The antistatic agent may be, for example, a low molecular weight compound or a high molecular weight compound (in other words, an oligomer or a polymer).
前記帯電防止剤は、導電性化合物等、公知のものでよく、特に限定されないが、着色していないものが好ましい。前記帯電防止剤は、例えば、低分子化合物及び高分子化合物(換言すると、オリゴマー又はポリマー)のいずれであってもよい。 [Antistatic agent]
The antistatic agent may be a known one such as a conductive compound and is not particularly limited, but an uncolored one is preferable. The antistatic agent may be, for example, a low molecular weight compound or a high molecular weight compound (in other words, an oligomer or a polymer).
前記帯電防止剤のうち、低分子化合物としては、例えば、各種イオン液体が挙げられる。
前記イオン液体としては、例えば、ピリミジニウム塩、ピリジニウム塩、ピペリジニウム塩、ピロリジニウム塩、イミダゾリウム塩、モルホリニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩等、公知のものが挙げられる。 Among the antistatic agents, examples of the low molecular weight compound include various ionic liquids.
Examples of the ionic liquid include known ones such as pyrimidinium salt, pyridinium salt, piperidinium salt, pyrrolidinium salt, imidazolium salt, morpholinium salt, sulfonium salt, phosphonium salt and ammonium salt.
前記イオン液体としては、例えば、ピリミジニウム塩、ピリジニウム塩、ピペリジニウム塩、ピロリジニウム塩、イミダゾリウム塩、モルホリニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩等、公知のものが挙げられる。 Among the antistatic agents, examples of the low molecular weight compound include various ionic liquids.
Examples of the ionic liquid include known ones such as pyrimidinium salt, pyridinium salt, piperidinium salt, pyrrolidinium salt, imidazolium salt, morpholinium salt, sulfonium salt, phosphonium salt and ammonium salt.
前記帯電防止剤のうち、高分子化合物としては、例えば、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(本明細書においては、「PEDOT/PSS」と称することがある)、カーボンナノチューブ等が挙げられる。
Among the antistatic agents, examples of the polymer compound include poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (sometimes referred to as “PEDOT/PSS” in the present specification) and carbon nanotubes. Etc.
帯電防止組成物(VI-1)が含有する帯電防止剤は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The antistatic agent contained in the antistatic composition (VI-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
帯電防止組成物(VI-1)において、溶媒以外の全ての成分の総含有量に対する帯電防止剤の含有量の割合(すなわち、背面帯電防止層における、背面帯電防止層の総質量に対する、帯電防止剤の含有量の割合)は、例えば、0.1~30質量%、及び0.5~15質量%のいずれかであってもよい。前記割合が前記下限値以上であることで、保護膜形成用複合シートの剥離帯電の抑制効果が高くなり、その結果、保護膜形成用フィルムと半導体ウエハとの間の異物混入の抑制効果が高くなる。前記割合が前記上限値以下であることで、背面帯電防止層の強度がより高くなる。
In the antistatic composition (VI-1), the ratio of the content of the antistatic agent to the total content of all components other than the solvent (that is, in the backside antistatic layer to the total weight of the backside antistatic layer, The ratio of the content of the agent) may be, for example, 0.1 to 30% by mass or 0.5 to 15% by mass. When the ratio is equal to or more than the lower limit value, the effect of suppressing peeling charge of the protective film-forming composite sheet becomes high, and as a result, the effect of suppressing foreign matter mixing between the protective film forming film and the semiconductor wafer is high. Become. When the ratio is not more than the upper limit value, the strength of the back surface antistatic layer becomes higher.
[樹脂]
帯電防止組成物(VI-1)及び背面帯電防止層が含有する前記樹脂は、硬化性及び非硬化性のいずれであってもよく、硬化性である場合、エネルギー線硬化性及び熱硬化性のいずれであってもよい。 [resin]
The resin contained in the antistatic composition (VI-1) and the backside antistatic layer may be either curable or non-curable. It may be either.
帯電防止組成物(VI-1)及び背面帯電防止層が含有する前記樹脂は、硬化性及び非硬化性のいずれであってもよく、硬化性である場合、エネルギー線硬化性及び熱硬化性のいずれであってもよい。 [resin]
The resin contained in the antistatic composition (VI-1) and the backside antistatic layer may be either curable or non-curable. It may be either.
好ましい前記樹脂としては、例えば、バインダー樹脂として機能するものが挙げられる。
Examples of the preferable resin include those that function as a binder resin.
前記樹脂として、より具体的には、例えば、アクリル系樹脂等が挙げられ、エネルギー線硬化性アクリル系樹脂であることが好ましい。
帯電防止組成物(VI-1)及び背面帯電防止層における前記アクリル系樹脂としては、例えば、前記粘着剤層におけるアクリル系樹脂と同じものが挙げられる。帯電防止組成物(VI-1)及び背面帯電防止層における前記エネルギー線硬化性アクリル系樹脂としては、例えば、前記粘着剤層における粘着性樹脂(I-2a)と同じものが挙げられる。 More specifically, examples of the resin include acrylic resins, and energy ray curable acrylic resins are preferable.
Examples of the acrylic resin in the antistatic composition (VI-1) and the back antistatic layer include the same acrylic resin as in the pressure-sensitive adhesive layer. Examples of the energy ray curable acrylic resin in the antistatic composition (VI-1) and the back antistatic layer include the same as the adhesive resin (I-2a) in the adhesive layer.
帯電防止組成物(VI-1)及び背面帯電防止層における前記アクリル系樹脂としては、例えば、前記粘着剤層におけるアクリル系樹脂と同じものが挙げられる。帯電防止組成物(VI-1)及び背面帯電防止層における前記エネルギー線硬化性アクリル系樹脂としては、例えば、前記粘着剤層における粘着性樹脂(I-2a)と同じものが挙げられる。 More specifically, examples of the resin include acrylic resins, and energy ray curable acrylic resins are preferable.
Examples of the acrylic resin in the antistatic composition (VI-1) and the back antistatic layer include the same acrylic resin as in the pressure-sensitive adhesive layer. Examples of the energy ray curable acrylic resin in the antistatic composition (VI-1) and the back antistatic layer include the same as the adhesive resin (I-2a) in the adhesive layer.
帯電防止組成物(VI-1)及び背面帯電防止層が含有する前記樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The resin contained in the antistatic composition (VI-1) and the backside antistatic layer may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof are arbitrarily selected. it can.
帯電防止組成物(VI-1)において、溶媒以外の全ての成分の総含有量に対する前記樹脂の含有量の割合(すなわち、背面帯電防止層における、背面帯電防止層の総質量に対する、前記樹脂の含有量の割合)は、例えば、30~99.9質量%、35~98質量%、60~98質量%、及び85~98質量%のいずれかであってもよい。前記割合が前記下限値以上であることで、背面帯電防止層の強度がより高くなる。前記割合が前記上限値以下であることで、帯電防止層の帯電防止剤の含有量をより多くすることが可能となる。
In the antistatic composition (VI-1), the ratio of the content of the resin to the total content of all components other than the solvent (that is, in the back surface antistatic layer, based on the total mass of the back surface antistatic layer, The content ratio) may be, for example, any of 30 to 99.9% by mass, 35 to 98% by mass, 60 to 98% by mass, and 85 to 98% by mass. When the ratio is not less than the lower limit value, the strength of the back surface antistatic layer becomes higher. When the ratio is not more than the upper limit value, the content of the antistatic agent in the antistatic layer can be increased.
[エネルギー線硬化性化合物、光重合開始剤]
帯電防止組成物(VI-1)は、エネルギー線硬化性の前記樹脂を含有する場合、エネルギー線硬化性化合物を含有していてもよい。
また、帯電防止組成物(VI-1)は、エネルギー線硬化性の前記樹脂を含有する場合、前記樹脂の重合反応を効率よく進めるために、光重合開始剤を含有していてもよい。
帯電防止組成物(VI-1)が含有する、前記エネルギー線硬化性化合物及び光重合開始剤としては、例えば、それぞれ、粘着剤組成物(I-1)が含有する、エネルギー線硬化性化合物及び光重合開始剤と同じものが挙げられる。
帯電防止組成物(VI-1)が含有する、エネルギー線硬化性化合物及び光重合開始剤は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
帯電防止組成物(VI-1)の、エネルギー線硬化性化合物及び光重合開始剤の含有量は、それぞれ、特に限定されず、前記樹脂、エネルギー線硬化性化合物又は光重合開始剤の種類に応じて適宜選択すればよい。 [Energy ray curable compound, photopolymerization initiator]
When the antistatic composition (VI-1) contains the energy ray-curable resin, it may contain an energy ray-curable compound.
Further, when the antistatic composition (VI-1) contains the energy ray-curable resin, it may contain a photopolymerization initiator in order to efficiently proceed the polymerization reaction of the resin.
Examples of the energy ray-curable compound and photopolymerization initiator contained in the antistatic composition (VI-1) include, for example, the energy ray-curable compound and the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1), respectively. The same as the photopolymerization initiator can be used.
Each of the energy ray-curable compound and the photopolymerization initiator contained in the antistatic composition (VI-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
The content of the energy ray-curable compound and the photopolymerization initiator in the antistatic composition (VI-1) is not particularly limited, and depends on the type of the resin, the energy ray-curable compound or the photopolymerization initiator. It may be selected as appropriate.
帯電防止組成物(VI-1)は、エネルギー線硬化性の前記樹脂を含有する場合、エネルギー線硬化性化合物を含有していてもよい。
また、帯電防止組成物(VI-1)は、エネルギー線硬化性の前記樹脂を含有する場合、前記樹脂の重合反応を効率よく進めるために、光重合開始剤を含有していてもよい。
帯電防止組成物(VI-1)が含有する、前記エネルギー線硬化性化合物及び光重合開始剤としては、例えば、それぞれ、粘着剤組成物(I-1)が含有する、エネルギー線硬化性化合物及び光重合開始剤と同じものが挙げられる。
帯電防止組成物(VI-1)が含有する、エネルギー線硬化性化合物及び光重合開始剤は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
帯電防止組成物(VI-1)の、エネルギー線硬化性化合物及び光重合開始剤の含有量は、それぞれ、特に限定されず、前記樹脂、エネルギー線硬化性化合物又は光重合開始剤の種類に応じて適宜選択すればよい。 [Energy ray curable compound, photopolymerization initiator]
When the antistatic composition (VI-1) contains the energy ray-curable resin, it may contain an energy ray-curable compound.
Further, when the antistatic composition (VI-1) contains the energy ray-curable resin, it may contain a photopolymerization initiator in order to efficiently proceed the polymerization reaction of the resin.
Examples of the energy ray-curable compound and photopolymerization initiator contained in the antistatic composition (VI-1) include, for example, the energy ray-curable compound and the energy ray-curable compound contained in the pressure-sensitive adhesive composition (I-1), respectively. The same as the photopolymerization initiator can be used.
Each of the energy ray-curable compound and the photopolymerization initiator contained in the antistatic composition (VI-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
The content of the energy ray-curable compound and the photopolymerization initiator in the antistatic composition (VI-1) is not particularly limited, and depends on the type of the resin, the energy ray-curable compound or the photopolymerization initiator. It may be selected as appropriate.
[その他の添加剤、溶媒]
帯電防止組成物(VI-1)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
また、帯電防止組成物(VI-1)は、上述の粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
帯電防止組成物(VI-1)が含有する、前記その他の添加剤及び溶媒としては、それぞれ、上述の粘着剤組成物(I-1)が含有する、その他の添加剤(ただし、帯電防止剤を除く)及び溶媒と同じものが挙げられる。さらに、帯電防止組成物(VI-1)が含有する前記その他の添加剤としては、上記のもの以外にも、乳化剤も挙げられる。さらに、帯電防止組成物(VI-1)が含有する溶媒としては、上記のもの以外にも、エタノール等の他のアルコール;2-メトキシエタノール(エチレングリコールモノメチルエーテル)、2-エトキシエタノール(エチレングリコールモノエチルエーテル)、1-メトキシ-2-プロパノール(プロピレングリコールモノメチルエーテル)等のアルコキシアルコール等も挙げられる。
帯電防止組成物(VI-1)が含有する、その他の添加剤及び溶媒は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
帯電防止組成物(VI-1)の、その他の添加剤及び溶媒の含有量は、それぞれ、特に限定されず、その種類に応じて適宜選択すればよい。 [Other additives and solvents]
The antistatic composition (VI-1) may contain other additives which do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
The antistatic composition (VI-1) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
As the other additive and solvent contained in the antistatic composition (VI-1), other additives (provided that the antistatic agent is contained in the above-mentioned pressure-sensitive adhesive composition (I-1) are included. And the same as the solvent. Further, examples of the other additives contained in the antistatic composition (VI-1) include emulsifiers other than the above. Further, as the solvent contained in the antistatic composition (VI-1), other than the above, other alcohols such as ethanol; 2-methoxyethanol (ethylene glycol monomethyl ether), 2-ethoxyethanol (ethylene glycol) Examples also include alkoxy alcohols such as monoethyl ether) and 1-methoxy-2-propanol (propylene glycol monomethyl ether).
The other additives and solvent contained in the antistatic composition (VI-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
The contents of the other additives and the solvent of the antistatic composition (VI-1) are not particularly limited, and may be appropriately selected according to their types.
帯電防止組成物(VI-1)は、本発明の効果を損なわない範囲内において、上述のいずれの成分にも該当しない、その他の添加剤を含有していてもよい。
また、帯電防止組成物(VI-1)は、上述の粘着剤組成物(I-1)の場合と同様の目的で、溶媒を含有していてもよい。
帯電防止組成物(VI-1)が含有する、前記その他の添加剤及び溶媒としては、それぞれ、上述の粘着剤組成物(I-1)が含有する、その他の添加剤(ただし、帯電防止剤を除く)及び溶媒と同じものが挙げられる。さらに、帯電防止組成物(VI-1)が含有する前記その他の添加剤としては、上記のもの以外にも、乳化剤も挙げられる。さらに、帯電防止組成物(VI-1)が含有する溶媒としては、上記のもの以外にも、エタノール等の他のアルコール;2-メトキシエタノール(エチレングリコールモノメチルエーテル)、2-エトキシエタノール(エチレングリコールモノエチルエーテル)、1-メトキシ-2-プロパノール(プロピレングリコールモノメチルエーテル)等のアルコキシアルコール等も挙げられる。
帯電防止組成物(VI-1)が含有する、その他の添加剤及び溶媒は、それぞれ、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
帯電防止組成物(VI-1)の、その他の添加剤及び溶媒の含有量は、それぞれ、特に限定されず、その種類に応じて適宜選択すればよい。 [Other additives and solvents]
The antistatic composition (VI-1) may contain other additives which do not correspond to any of the above components, as long as the effects of the present invention are not impaired.
The antistatic composition (VI-1) may contain a solvent for the same purpose as in the case of the pressure-sensitive adhesive composition (I-1).
As the other additive and solvent contained in the antistatic composition (VI-1), other additives (provided that the antistatic agent is contained in the above-mentioned pressure-sensitive adhesive composition (I-1) are included. And the same as the solvent. Further, examples of the other additives contained in the antistatic composition (VI-1) include emulsifiers other than the above. Further, as the solvent contained in the antistatic composition (VI-1), other than the above, other alcohols such as ethanol; 2-methoxyethanol (ethylene glycol monomethyl ether), 2-ethoxyethanol (ethylene glycol) Examples also include alkoxy alcohols such as monoethyl ether) and 1-methoxy-2-propanol (propylene glycol monomethyl ether).
The other additives and solvent contained in the antistatic composition (VI-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio are arbitrary. You can choose to.
The contents of the other additives and the solvent of the antistatic composition (VI-1) are not particularly limited, and may be appropriately selected according to their types.
<<帯電防止組成物(VI-1)の製造方法>>
帯電防止組成物(VI-1)は、前記帯電防止剤と、必要に応じて前記帯電防止剤以外の成分等の、帯電防止組成物(VI-1)を構成するための各成分を配合することで得られる。
帯電防止組成物(VI-1)は、配合成分が異なる点以外は、上述の粘着剤組成物の場合と同じ方法で製造できる。 <<Production Method of Antistatic Composition (VI-1)>>
The antistatic composition (VI-1) contains the above-mentioned antistatic agent and, if necessary, each component such as a component other than the above antistatic agent for constituting the antistatic composition (VI-1). It can be obtained.
The antistatic composition (VI-1) can be produced by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the compounding components are different.
帯電防止組成物(VI-1)は、前記帯電防止剤と、必要に応じて前記帯電防止剤以外の成分等の、帯電防止組成物(VI-1)を構成するための各成分を配合することで得られる。
帯電防止組成物(VI-1)は、配合成分が異なる点以外は、上述の粘着剤組成物の場合と同じ方法で製造できる。 <<Production Method of Antistatic Composition (VI-1)>>
The antistatic composition (VI-1) contains the above-mentioned antistatic agent and, if necessary, each component such as a component other than the above antistatic agent for constituting the antistatic composition (VI-1). It can be obtained.
The antistatic composition (VI-1) can be produced by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the compounding components are different.
○表面帯電防止層
前記表面帯電防止層は、保護膜形成用複合シートにおけるその配置位置が、前記背面帯電防止層とは異なるが、その構成自体は、前記背面帯電防止層と同じである。例えば、表面帯電防止層は、帯電防止組成物(VI-1)を用いて、先に説明した背面帯電防止層の形成方法と同じ方法で形成できる。そこで、表面帯電防止層の詳細な説明は省略する。
保護膜形成用複合シートが表面帯電防止層及び背面帯電防止層をともに備えている場合、これら表面帯電防止層及び背面帯電防止層は、互いに同一であってもよいし、異なっていてもよい。
なお、表面帯電防止層を形成する側の基材面は、粗い面でも平滑な面のいずれでも選択することができる。基材と表面帯電防止層との密着を向上させる観点や、支持シートの全光線透過率やヘーズを向上させる観点からは、表面帯電防止層を形成する側の基材面は、表面帯電防止層が形成されない側の基材面に比べて表面粗さがより粗い面を選択することが好ましい。
また、薄い膜厚で、帯電防止層表面の平滑性を維持できる観点からは、表面帯電防止層を形成する側の基材面は、表面帯電防止層が形成されない側の基材面に比べて表面粗さがより平滑な面を選択することが好ましい。 Surface Antistatic Layer The surface antistatic layer is different from the back surface antistatic layer in the arrangement position in the protective film forming composite sheet, but the configuration itself is the same as the back surface antistatic layer. For example, the surface antistatic layer can be formed using the antistatic composition (VI-1) by the same method as the method for forming the backside antistatic layer described above. Therefore, detailed description of the surface antistatic layer is omitted.
When the composite sheet for forming a protective film includes both the surface antistatic layer and the backside antistatic layer, the surface antistatic layer and the backside antistatic layer may be the same or different from each other.
The surface of the base material on which the surface antistatic layer is formed may be a rough surface or a smooth surface. From the viewpoint of improving the adhesion between the base material and the surface antistatic layer, and from the viewpoint of improving the total light transmittance and haze of the support sheet, the surface of the base material on which the surface antistatic layer is formed is the surface antistatic layer. It is preferable to select a surface having a rougher surface roughness than the surface of the base material on the side where no is formed.
Further, from the viewpoint of maintaining the smoothness of the surface of the antistatic layer with a thin film thickness, the base material surface on the side on which the surface antistatic layer is formed is smaller than that on the side on which the surface antistatic layer is not formed. It is preferable to select a surface having a smoother surface roughness.
前記表面帯電防止層は、保護膜形成用複合シートにおけるその配置位置が、前記背面帯電防止層とは異なるが、その構成自体は、前記背面帯電防止層と同じである。例えば、表面帯電防止層は、帯電防止組成物(VI-1)を用いて、先に説明した背面帯電防止層の形成方法と同じ方法で形成できる。そこで、表面帯電防止層の詳細な説明は省略する。
保護膜形成用複合シートが表面帯電防止層及び背面帯電防止層をともに備えている場合、これら表面帯電防止層及び背面帯電防止層は、互いに同一であってもよいし、異なっていてもよい。
なお、表面帯電防止層を形成する側の基材面は、粗い面でも平滑な面のいずれでも選択することができる。基材と表面帯電防止層との密着を向上させる観点や、支持シートの全光線透過率やヘーズを向上させる観点からは、表面帯電防止層を形成する側の基材面は、表面帯電防止層が形成されない側の基材面に比べて表面粗さがより粗い面を選択することが好ましい。
また、薄い膜厚で、帯電防止層表面の平滑性を維持できる観点からは、表面帯電防止層を形成する側の基材面は、表面帯電防止層が形成されない側の基材面に比べて表面粗さがより平滑な面を選択することが好ましい。 Surface Antistatic Layer The surface antistatic layer is different from the back surface antistatic layer in the arrangement position in the protective film forming composite sheet, but the configuration itself is the same as the back surface antistatic layer. For example, the surface antistatic layer can be formed using the antistatic composition (VI-1) by the same method as the method for forming the backside antistatic layer described above. Therefore, detailed description of the surface antistatic layer is omitted.
When the composite sheet for forming a protective film includes both the surface antistatic layer and the backside antistatic layer, the surface antistatic layer and the backside antistatic layer may be the same or different from each other.
The surface of the base material on which the surface antistatic layer is formed may be a rough surface or a smooth surface. From the viewpoint of improving the adhesion between the base material and the surface antistatic layer, and from the viewpoint of improving the total light transmittance and haze of the support sheet, the surface of the base material on which the surface antistatic layer is formed is the surface antistatic layer. It is preferable to select a surface having a rougher surface roughness than the surface of the base material on the side where no is formed.
Further, from the viewpoint of maintaining the smoothness of the surface of the antistatic layer with a thin film thickness, the base material surface on the side on which the surface antistatic layer is formed is smaller than that on the side on which the surface antistatic layer is not formed. It is preferable to select a surface having a smoother surface roughness.
◎中間層
前記中間層は、シート状又はフィルム状である。
先の説明のとおり、好ましい中間層としては、一方の面が剥離処理されている剥離性改善層が挙げられる。前記剥離性改善層としては、例えば、樹脂層と、前記樹脂層上に形成された剥離処理層と、を備えて構成された、複数層からなるものが挙げられる。保護膜形成用複合シート中で、剥離性改善層は、その剥離処理層を保護膜形成用フィルム側に向けて、配置されている。 ◎Intermediate layer The intermediate layer has a sheet shape or a film shape.
As described above, a preferable intermediate layer includes a peelability improving layer having one surface subjected to a peeling treatment. Examples of the peelability improving layer include a plurality of layers including a resin layer and a peeling treatment layer formed on the resin layer. In the composite sheet for forming a protective film, the peelability improving layer is arranged with the release treatment layer facing the protective film forming film side.
前記中間層は、シート状又はフィルム状である。
先の説明のとおり、好ましい中間層としては、一方の面が剥離処理されている剥離性改善層が挙げられる。前記剥離性改善層としては、例えば、樹脂層と、前記樹脂層上に形成された剥離処理層と、を備えて構成された、複数層からなるものが挙げられる。保護膜形成用複合シート中で、剥離性改善層は、その剥離処理層を保護膜形成用フィルム側に向けて、配置されている。 ◎Intermediate layer The intermediate layer has a sheet shape or a film shape.
As described above, a preferable intermediate layer includes a peelability improving layer having one surface subjected to a peeling treatment. Examples of the peelability improving layer include a plurality of layers including a resin layer and a peeling treatment layer formed on the resin layer. In the composite sheet for forming a protective film, the peelability improving layer is arranged with the release treatment layer facing the protective film forming film side.
剥離性改善層のうち、前記樹脂層は、樹脂を含有する樹脂組成物を成形することで作製できる。
そして、剥離性改善層は、前記樹脂層の一方の面を剥離処理することで製造できる。 Of the peelability improving layer, the resin layer can be produced by molding a resin composition containing a resin.
Then, the peelability improving layer can be manufactured by subjecting one surface of the resin layer to a peeling treatment.
そして、剥離性改善層は、前記樹脂層の一方の面を剥離処理することで製造できる。 Of the peelability improving layer, the resin layer can be produced by molding a resin composition containing a resin.
Then, the peelability improving layer can be manufactured by subjecting one surface of the resin layer to a peeling treatment.
前記樹脂層の剥離処理は、例えば、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系又はワックス系等の、公知の各種剥離剤によって行うことができる。
前記剥離剤は、耐熱性を有する点では、アルキッド系、シリコーン系又はフッ素系の剥離剤であることが好ましい。 The peeling treatment of the resin layer can be performed with various known peeling agents such as alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based or wax-based release agents.
From the viewpoint of heat resistance, the release agent is preferably an alkyd-based, silicone-based or fluorine-based release agent.
前記剥離剤は、耐熱性を有する点では、アルキッド系、シリコーン系又はフッ素系の剥離剤であることが好ましい。 The peeling treatment of the resin layer can be performed with various known peeling agents such as alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based or wax-based release agents.
From the viewpoint of heat resistance, the release agent is preferably an alkyd-based, silicone-based or fluorine-based release agent.
前記樹脂層の構成材料である樹脂は、目的に応じて適宜選択すればよく、特に限定されない。
前記樹脂で好ましいものとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。 The resin that is a constituent material of the resin layer may be appropriately selected according to the purpose and is not particularly limited.
Preferred examples of the resin include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyethylene (PE), polypropylene (PP) and the like.
前記樹脂で好ましいものとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。 The resin that is a constituent material of the resin layer may be appropriately selected according to the purpose and is not particularly limited.
Preferred examples of the resin include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyethylene (PE), polypropylene (PP) and the like.
前記中間層は、剥離性改善層であるか否かによらず、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。例えば、中間層が剥離性改善層である場合には、前記樹脂層と、前記剥離処理層とは、いずれも、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。
The intermediate layer may be composed of one layer (single layer) or may be composed of two or more layers, regardless of whether or not it is a peelability improving layer. When composed of layers, these layers may be the same or different from each other, and the combination of these layers is not particularly limited. For example, when the intermediate layer is a peelability improving layer, both the resin layer and the peeling treatment layer may be composed of one layer (single layer) or two or more layers. It may be composed of a plurality of layers.
中間層の厚さは、その種類に応じて適宜調節すればよく、特に限定されない。
例えば、剥離性改善層の厚さ(樹脂層及び剥離処理層の合計の厚さ)は、10~2000nmであることが好ましく、25~1500nmであることがより好ましく、50~1200nmであることが特に好ましい。剥離性改善層の厚さが前記下限値以上であることで、剥離性改善層の作用がより顕著となり、さらに、剥離性改善層の切断等の破損を抑制する効果がより高くなる。剥離性改善層の厚さが前記上限値以下であることで、後述する保護膜付き付き半導体チップ又は保護膜形成用フィルム付き半導体チップのピックアップ時に、これらチップを突き上げる力がこれらチップに伝達され易くなり、ピックアップをより容易に行うことができる。 The thickness of the intermediate layer may be appropriately adjusted according to its type and is not particularly limited.
For example, the thickness of the peelability improving layer (the total thickness of the resin layer and the peeling treatment layer) is preferably 10 to 2000 nm, more preferably 25 to 1500 nm, and further preferably 50 to 1200 nm. Particularly preferred. When the thickness of the peelability improving layer is equal to or more than the lower limit value, the action of the peelability improving layer becomes more remarkable, and the effect of suppressing breakage such as cutting of the peelability improving layer becomes higher. When the thickness of the peelability improving layer is less than or equal to the upper limit value, when picking up a semiconductor chip with a protective film or a semiconductor chip with a film for forming a protective film, which will be described later, the force for pushing up these chips is easily transmitted to these chips. Therefore, the pickup can be performed more easily.
例えば、剥離性改善層の厚さ(樹脂層及び剥離処理層の合計の厚さ)は、10~2000nmであることが好ましく、25~1500nmであることがより好ましく、50~1200nmであることが特に好ましい。剥離性改善層の厚さが前記下限値以上であることで、剥離性改善層の作用がより顕著となり、さらに、剥離性改善層の切断等の破損を抑制する効果がより高くなる。剥離性改善層の厚さが前記上限値以下であることで、後述する保護膜付き付き半導体チップ又は保護膜形成用フィルム付き半導体チップのピックアップ時に、これらチップを突き上げる力がこれらチップに伝達され易くなり、ピックアップをより容易に行うことができる。 The thickness of the intermediate layer may be appropriately adjusted according to its type and is not particularly limited.
For example, the thickness of the peelability improving layer (the total thickness of the resin layer and the peeling treatment layer) is preferably 10 to 2000 nm, more preferably 25 to 1500 nm, and further preferably 50 to 1200 nm. Particularly preferred. When the thickness of the peelability improving layer is equal to or more than the lower limit value, the action of the peelability improving layer becomes more remarkable, and the effect of suppressing breakage such as cutting of the peelability improving layer becomes higher. When the thickness of the peelability improving layer is less than or equal to the upper limit value, when picking up a semiconductor chip with a protective film or a semiconductor chip with a film for forming a protective film, which will be described later, the force for pushing up these chips is easily transmitted to these chips. Therefore, the pickup can be performed more easily.
中間層は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよい。
例えば、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、中間層はエネルギー線を透過させるものが好ましい。
例えば、保護膜形成用複合シート中の保護膜形成用フィルムを、中間層を介して光学的に検査するためには、中間層は透明であることが好ましい。 The intermediate layer may be transparent or opaque, and may be colored depending on the purpose.
For example, when the protective film-forming film has energy ray curability, the intermediate layer preferably transmits energy rays.
For example, in order to optically inspect the protective film-forming film in the protective film-forming composite sheet through the intermediate layer, the intermediate layer is preferably transparent.
例えば、保護膜形成用フィルムがエネルギー線硬化性を有する場合には、中間層はエネルギー線を透過させるものが好ましい。
例えば、保護膜形成用複合シート中の保護膜形成用フィルムを、中間層を介して光学的に検査するためには、中間層は透明であることが好ましい。 The intermediate layer may be transparent or opaque, and may be colored depending on the purpose.
For example, when the protective film-forming film has energy ray curability, the intermediate layer preferably transmits energy rays.
For example, in order to optically inspect the protective film-forming film in the protective film-forming composite sheet through the intermediate layer, the intermediate layer is preferably transparent.
◎保護膜形成用フィルム
前記保護膜形成用フィルムは、硬化によって保護膜となる。この保護膜は、半導体ウエハ又は半導体チップの裏面(換言すると、電極形成面とは反対側の面)を保護するためのものである。保護膜形成用フィルムは、軟質であり、貼付対象物に容易に貼付できる。 ◎Protective film forming film The protective film forming film becomes a protective film by curing. This protective film is for protecting the back surface of the semiconductor wafer or the semiconductor chip (in other words, the surface opposite to the electrode formation surface). The protective film-forming film is soft and can be easily attached to an object to be attached.
前記保護膜形成用フィルムは、硬化によって保護膜となる。この保護膜は、半導体ウエハ又は半導体チップの裏面(換言すると、電極形成面とは反対側の面)を保護するためのものである。保護膜形成用フィルムは、軟質であり、貼付対象物に容易に貼付できる。 ◎Protective film forming film The protective film forming film becomes a protective film by curing. This protective film is for protecting the back surface of the semiconductor wafer or the semiconductor chip (in other words, the surface opposite to the electrode formation surface). The protective film-forming film is soft and can be easily attached to an object to be attached.
本明細書において、「保護膜形成用フィルム」とは硬化前のものを意味し、「保護膜」とは、保護膜形成用フィルムを硬化させたものを意味する。
また、本明細書において、保護膜形成用フィルムが硬化した後であっても、支持シート及び保護膜形成用フィルムの硬化物(換言すると、支持シート及び保護膜)の積層構造が維持されている限り、この積層構造体を「保護膜形成用複合シート」と称する。 In the present specification, the "film for forming a protective film" means a film before being cured, and the "protective film" means a film obtained by curing the film for forming a protective film.
In the present specification, the laminated structure of the cured product of the support sheet and the protective film forming film (in other words, the support sheet and the protective film) is maintained even after the protective film forming film is cured. As long as this laminated structure is referred to as a "composite sheet for forming a protective film".
また、本明細書において、保護膜形成用フィルムが硬化した後であっても、支持シート及び保護膜形成用フィルムの硬化物(換言すると、支持シート及び保護膜)の積層構造が維持されている限り、この積層構造体を「保護膜形成用複合シート」と称する。 In the present specification, the "film for forming a protective film" means a film before being cured, and the "protective film" means a film obtained by curing the film for forming a protective film.
In the present specification, the laminated structure of the cured product of the support sheet and the protective film forming film (in other words, the support sheet and the protective film) is maintained even after the protective film forming film is cured. As long as this laminated structure is referred to as a "composite sheet for forming a protective film".
前記保護膜形成用フィルムは、例えば、熱硬化性及びエネルギー線硬化性のいずれかであってもよいし、熱硬化性及びエネルギー線硬化性の両方の特性を有していてもよいし、熱硬化性及びエネルギー線硬化性の両方の特性を有していなくてもよい。保護膜形成用フィルムが硬化性を有しない場合には、後述するような、保護膜形成用フィルムによる、保護膜形成用複合シートの半導体ウエハへの貼付が完了した段階で、保護膜形成用フィルムからの保護膜の形成が完了したものとみなす。
The protective film forming film may be, for example, either thermosetting or energy ray curable, or may have both thermosetting and energy ray curable properties, and It does not need to have both properties of curability and energy ray curability. When the protective film-forming film does not have curability, the protective film-forming film is formed at the stage when the protective film-forming film is attached to the semiconductor wafer by the protective film-forming film as described below. It is considered that the formation of the protective film from is completed.
保護膜形成用フィルムは、その硬化性の有無、そして、硬化性である場合には、熱硬化性及びエネルギー線硬化性のいずれであるかによらず、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。保護膜形成用フィルムが複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
The protective film-forming film is composed of one layer (single layer) regardless of whether it is curable or not, and when it is curable, whether it is thermosetting or energy ray curable. It may be present or may be composed of two or more layers. When the protective film-forming film is composed of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
保護膜形成用フィルムの厚さは、保護膜形成用フィルムの硬化性の有無、そして、硬化性である場合には、保護膜形成用フィルムが熱硬化性及びエネルギー線硬化性のいずれであるかによらず、1~100μmであることが好ましく、3~80μmであることがより好ましく、5~60μmであることが特に好ましい。保護膜形成用フィルムの厚さが前記下限値以上であることで、保護能がより高い保護膜を形成できる。また、保護膜形成用フィルムの厚さが前記上限値以下であることで、過剰な厚さとなることが避けられる。
ここで、「保護膜形成用フィルムの厚さ」とは、保護膜形成用フィルム全体の厚さを意味し、例えば、複数層からなる保護膜形成用フィルムの厚さとは、保護膜形成用フィルムを構成するすべての層の合計の厚さを意味する。 The thickness of the protective film forming film is the presence or absence of curability of the protective film forming film, and, if it is curable, whether the protective film forming film is thermosetting or energy ray curable. Regardless of the above, it is preferably 1 to 100 μm, more preferably 3 to 80 μm, and particularly preferably 5 to 60 μm. When the thickness of the protective film forming film is not less than the lower limit value, a protective film having a higher protective ability can be formed. Further, when the thickness of the protective film forming film is equal to or less than the upper limit value, it is possible to avoid an excessive thickness.
Here, the "thickness of the protective film forming film" means the total thickness of the protective film forming film, for example, the thickness of the protective film forming film composed of a plurality of layers, the protective film forming film. Means the total thickness of all the layers that make up.
ここで、「保護膜形成用フィルムの厚さ」とは、保護膜形成用フィルム全体の厚さを意味し、例えば、複数層からなる保護膜形成用フィルムの厚さとは、保護膜形成用フィルムを構成するすべての層の合計の厚さを意味する。 The thickness of the protective film forming film is the presence or absence of curability of the protective film forming film, and, if it is curable, whether the protective film forming film is thermosetting or energy ray curable. Regardless of the above, it is preferably 1 to 100 μm, more preferably 3 to 80 μm, and particularly preferably 5 to 60 μm. When the thickness of the protective film forming film is not less than the lower limit value, a protective film having a higher protective ability can be formed. Further, when the thickness of the protective film forming film is equal to or less than the upper limit value, it is possible to avoid an excessive thickness.
Here, the "thickness of the protective film forming film" means the total thickness of the protective film forming film, for example, the thickness of the protective film forming film composed of a plurality of layers, the protective film forming film. Means the total thickness of all the layers that make up.
<<保護膜形成用組成物>>
保護膜形成用フィルムは、その構成材料を含有する保護膜形成用組成物を用いて形成できる。例えば、保護膜形成用フィルムは、その形成対象面に保護膜形成用組成物を塗工し、必要に応じて乾燥させることで、形成できる。保護膜形成用組成物における、常温で気化しない成分同士の含有量の比率は、通常、保護膜形成用フィルムにおける前記成分同士の含有量の比率と同じとなる。
熱硬化性保護膜形成用フィルムは、熱硬化性保護膜形成用組成物を用いて形成でき、エネルギー線硬化性保護膜形成用フィルムは、エネルギー線硬化性保護膜形成用組成物を用いて形成できる。なお、本明細書においては、保護膜形成用フィルムが、熱硬化性及びエネルギー線硬化性の両方の特性を有する場合、保護膜の形成に対して、保護膜形成用フィルムの熱硬化の寄与が、エネルギー線硬化の寄与よりも大きい場合には、保護膜形成用フィルムを熱硬化性のものとして取り扱う。反対に、保護膜の形成に対して、保護膜形成用フィルムのエネルギー線硬化の寄与が、熱硬化の寄与よりも大きい場合には、保護膜形成用フィルムをエネルギー線硬化のものとして取り扱う。 <<Composition for forming protective film>>
The protective film-forming film can be formed by using the protective film-forming composition containing the constituent material. For example, the film for forming a protective film can be formed by applying the composition for forming a protective film to the surface on which the film is to be formed and then drying it as necessary. The content ratio of the components that do not vaporize at room temperature in the protective film-forming composition is usually the same as the content ratio of the components in the protective film-forming film.
The thermosetting protective film-forming film can be formed using the thermosetting protective film-forming composition, and the energy ray-curable protective film forming film can be formed using the energy-ray-curable protective film forming composition. it can. In the present specification, when the protective film-forming film has both thermosetting and energy ray-curable properties, the thermal curing of the protective film-forming film contributes to the formation of the protective film. If the contribution of energy ray curing is larger than the above, the protective film-forming film is treated as a thermosetting film. On the contrary, when the contribution of the energy ray curing of the protective film forming film to the formation of the protective film is larger than the thermal curing contribution, the protective film forming film is treated as the energy ray curing film.
保護膜形成用フィルムは、その構成材料を含有する保護膜形成用組成物を用いて形成できる。例えば、保護膜形成用フィルムは、その形成対象面に保護膜形成用組成物を塗工し、必要に応じて乾燥させることで、形成できる。保護膜形成用組成物における、常温で気化しない成分同士の含有量の比率は、通常、保護膜形成用フィルムにおける前記成分同士の含有量の比率と同じとなる。
熱硬化性保護膜形成用フィルムは、熱硬化性保護膜形成用組成物を用いて形成でき、エネルギー線硬化性保護膜形成用フィルムは、エネルギー線硬化性保護膜形成用組成物を用いて形成できる。なお、本明細書においては、保護膜形成用フィルムが、熱硬化性及びエネルギー線硬化性の両方の特性を有する場合、保護膜の形成に対して、保護膜形成用フィルムの熱硬化の寄与が、エネルギー線硬化の寄与よりも大きい場合には、保護膜形成用フィルムを熱硬化性のものとして取り扱う。反対に、保護膜の形成に対して、保護膜形成用フィルムのエネルギー線硬化の寄与が、熱硬化の寄与よりも大きい場合には、保護膜形成用フィルムをエネルギー線硬化のものとして取り扱う。 <<Composition for forming protective film>>
The protective film-forming film can be formed by using the protective film-forming composition containing the constituent material. For example, the film for forming a protective film can be formed by applying the composition for forming a protective film to the surface on which the film is to be formed and then drying it as necessary. The content ratio of the components that do not vaporize at room temperature in the protective film-forming composition is usually the same as the content ratio of the components in the protective film-forming film.
The thermosetting protective film-forming film can be formed using the thermosetting protective film-forming composition, and the energy ray-curable protective film forming film can be formed using the energy-ray-curable protective film forming composition. it can. In the present specification, when the protective film-forming film has both thermosetting and energy ray-curable properties, the thermal curing of the protective film-forming film contributes to the formation of the protective film. If the contribution of energy ray curing is larger than the above, the protective film-forming film is treated as a thermosetting film. On the contrary, when the contribution of the energy ray curing of the protective film forming film to the formation of the protective film is larger than the thermal curing contribution, the protective film forming film is treated as the energy ray curing film.
保護膜形成用組成物の塗工は、例えば、上述の粘着剤組成物の塗工の場合と同じ方法で行うことができる。
The coating of the composition for forming a protective film can be performed, for example, by the same method as in the case of coating the above-mentioned pressure-sensitive adhesive composition.
保護膜形成用組成物の乾燥条件は、保護膜形成用フィルムの硬化性の有無、そして、硬化性である場合には、保護膜形成用フィルムが熱硬化性及びエネルギー線硬化性のいずれであるかによらず、特に限定されない。ただし、保護膜形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する保護膜形成用組成物は、例えば、70~130℃で10秒~5分の条件で、加熱乾燥させることが好ましい。ただし、熱硬化性保護膜形成用組成物は、この組成物自体と、この組成物から形成された熱硬化性保護膜形成用フィルムと、が熱硬化しないように、加熱乾燥させることが好ましい。
The protective film-forming composition is dried under the presence or absence of curability of the protective film-forming film, and when it is curable, the protective film-forming film is either thermosetting or energy ray curable. It is not particularly limited, regardless of the above. However, when the composition for forming a protective film contains the solvent described below, it is preferable to heat-dry. Then, the composition for forming a protective film containing a solvent is preferably dried by heating, for example, at 70 to 130° C. for 10 seconds to 5 minutes. However, the composition for forming a thermosetting protective film is preferably dried by heating so that the composition itself and the film for forming a thermosetting protective film formed from this composition are not thermally cured.
以下、熱硬化性保護膜形成用フィルム及びエネルギー線硬化性保護膜形成用フィルムについて、順次説明する。
The thermosetting protective film forming film and the energy ray curable protective film forming film will be sequentially described below.
○熱硬化性保護膜形成用フィルム
熱硬化性保護膜形成用フィルムを半導体ウエハの裏面に貼付し、熱硬化させて、保護膜を形成するときの硬化条件は、保護膜が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、熱硬化性保護膜形成用フィルムの種類に応じて、適宜選択すればよい。
例えば、熱硬化性保護膜形成用フィルムの熱硬化時の加熱温度は、100~200℃であることが好ましく、110~180℃であることがより好ましく、120~170℃であることが特に好ましい。そして、前記熱硬化時の加熱時間は、0.5~5時間であることが好ましく、0.5~3時間であることがより好ましく、1~2時間であることが特に好ましい。 ○ Thermosetting protective film forming film A thermosetting protective film forming film is attached to the back surface of a semiconductor wafer and heat-cured to form a protective film. There is no particular limitation as long as the degree of curing is exhibited, and it may be appropriately selected depending on the type of the thermosetting protective film forming film.
For example, the heating temperature during thermosetting of the thermosetting protective film-forming film is preferably 100 to 200° C., more preferably 110 to 180° C., and particularly preferably 120 to 170° C. .. The heating time during the heat curing is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and particularly preferably 1 to 2 hours.
熱硬化性保護膜形成用フィルムを半導体ウエハの裏面に貼付し、熱硬化させて、保護膜を形成するときの硬化条件は、保護膜が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、熱硬化性保護膜形成用フィルムの種類に応じて、適宜選択すればよい。
例えば、熱硬化性保護膜形成用フィルムの熱硬化時の加熱温度は、100~200℃であることが好ましく、110~180℃であることがより好ましく、120~170℃であることが特に好ましい。そして、前記熱硬化時の加熱時間は、0.5~5時間であることが好ましく、0.5~3時間であることがより好ましく、1~2時間であることが特に好ましい。 ○ Thermosetting protective film forming film A thermosetting protective film forming film is attached to the back surface of a semiconductor wafer and heat-cured to form a protective film. There is no particular limitation as long as the degree of curing is exhibited, and it may be appropriately selected depending on the type of the thermosetting protective film forming film.
For example, the heating temperature during thermosetting of the thermosetting protective film-forming film is preferably 100 to 200° C., more preferably 110 to 180° C., and particularly preferably 120 to 170° C. .. The heating time during the heat curing is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and particularly preferably 1 to 2 hours.
好ましい熱硬化性保護膜形成用フィルムとしては、例えば、重合体成分(A)及び熱硬化性成分(B)を含有するものが挙げられる。重合体成分(A)は、重合性化合物が重合反応して形成されたとみなせる成分である。また、熱硬化性成分(B)は、熱を反応のトリガーとして、硬化(重合)反応し得る成分である。なお、本明細書において重合反応には、重縮合反応も含まれる。
Examples of preferable thermosetting protective film forming film include those containing a polymer component (A) and a thermosetting component (B). The polymer component (A) is a component that can be regarded as formed by a polymerization reaction of a polymerizable compound. The thermosetting component (B) is a component that can undergo a curing (polymerization) reaction by using heat as a trigger for the reaction. In the present specification, the polymerization reaction also includes a polycondensation reaction.
<熱硬化性保護膜形成用組成物(III-1)>
好ましい熱硬化性保護膜形成用組成物としては、例えば、前記重合体成分(A)及び熱硬化性成分(B)を含有する熱硬化性保護膜形成用組成物(III-1)(本明細書においては、単に「組成物(III-1)」と略記することがある)等が挙げられる。 <Thermosetting protective film forming composition (III-1)>
A preferable thermosetting protective film-forming composition is, for example, a thermosetting protective film-forming composition (III-1) containing the polymer component (A) and the thermosetting component (B) (the present specification). In the text, it may be simply abbreviated as “composition (III-1)”) and the like.
好ましい熱硬化性保護膜形成用組成物としては、例えば、前記重合体成分(A)及び熱硬化性成分(B)を含有する熱硬化性保護膜形成用組成物(III-1)(本明細書においては、単に「組成物(III-1)」と略記することがある)等が挙げられる。 <Thermosetting protective film forming composition (III-1)>
A preferable thermosetting protective film-forming composition is, for example, a thermosetting protective film-forming composition (III-1) containing the polymer component (A) and the thermosetting component (B) (the present specification). In the text, it may be simply abbreviated as “composition (III-1)”) and the like.
[重合体成分(A)]
重合体成分(A)は、熱硬化性保護膜形成用フィルムに造膜性や可撓性等を付与するための成分である。
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する重合体成分(A)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Polymer component (A)]
The polymer component (A) is a component for imparting film-forming properties and flexibility to the thermosetting protective film-forming film.
The polymer component (A) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
重合体成分(A)は、熱硬化性保護膜形成用フィルムに造膜性や可撓性等を付与するための成分である。
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する重合体成分(A)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Polymer component (A)]
The polymer component (A) is a component for imparting film-forming properties and flexibility to the thermosetting protective film-forming film.
The polymer component (A) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
重合体成分(A)としては、例えば、アクリル系樹脂、ポリエステル、ウレタン系樹脂、アクリルウレタン樹脂、シリコーン系樹脂、ゴム系樹脂、フェノキシ樹脂、熱硬化性ポリイミド等が挙げられ、アクリル系樹脂が好ましい。
Examples of the polymer component (A) include acrylic resin, polyester, urethane resin, acrylic urethane resin, silicone resin, rubber resin, phenoxy resin, and thermosetting polyimide, and acrylic resin is preferable. ..
重合体成分(A)における前記アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
アクリル系樹脂の重量平均分子量(Mw)は、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。アクリル系樹脂の重量平均分子量が前記下限値以上であることで、熱硬化性保護膜形成用フィルムの形状安定性(保管時の経時安定性)が向上する。また、アクリル系樹脂の重量平均分子量が前記上限値以下であることで、被着体の凹凸面へ熱硬化性保護膜形成用フィルムが追従し易くなり、被着体と熱硬化性保護膜形成用フィルムとの間でボイド等の発生がより抑制される。
なお、本明細書において、「重量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。 Examples of the acrylic resin in the polymer component (A) include known acrylic polymers.
The weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 15,000,000. When the weight average molecular weight of the acrylic resin is not less than the lower limit, the shape stability (temporal stability during storage) of the thermosetting protective film-forming film is improved. Further, when the weight average molecular weight of the acrylic resin is not more than the upper limit value, the thermosetting protective film forming film easily follows the uneven surface of the adherend, and the adherend and the thermosetting protective film are formed. Generation of voids and the like between the film and the film for use is further suppressed.
In addition, in this specification, a "weight average molecular weight" is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method, unless otherwise specified.
アクリル系樹脂の重量平均分子量(Mw)は、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。アクリル系樹脂の重量平均分子量が前記下限値以上であることで、熱硬化性保護膜形成用フィルムの形状安定性(保管時の経時安定性)が向上する。また、アクリル系樹脂の重量平均分子量が前記上限値以下であることで、被着体の凹凸面へ熱硬化性保護膜形成用フィルムが追従し易くなり、被着体と熱硬化性保護膜形成用フィルムとの間でボイド等の発生がより抑制される。
なお、本明細書において、「重量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。 Examples of the acrylic resin in the polymer component (A) include known acrylic polymers.
The weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 15,000,000. When the weight average molecular weight of the acrylic resin is not less than the lower limit, the shape stability (temporal stability during storage) of the thermosetting protective film-forming film is improved. Further, when the weight average molecular weight of the acrylic resin is not more than the upper limit value, the thermosetting protective film forming film easily follows the uneven surface of the adherend, and the adherend and the thermosetting protective film are formed. Generation of voids and the like between the film and the film for use is further suppressed.
In addition, in this specification, a "weight average molecular weight" is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method, unless otherwise specified.
アクリル系樹脂のガラス転移温度(Tg)は、-60~70℃であることが好ましく、-30~50℃であることがより好ましい。アクリル系樹脂のTgが前記下限値以上であることで、例えば、保護膜形成用フィルムの硬化物と支持シートとの接着力が抑制されて、支持シートの剥離性が適度に向上する。また、アクリル系樹脂のTgが前記上限値以下であることで、熱硬化性保護膜形成用フィルム及びその硬化物の被着体との接着力が向上する。
なお、アクリル系樹に限定されず、本明細書中の樹脂のTgは、例えば、示差走査熱量計(DSC)を用いて、昇温速度又は降温速度を10℃/minとして、-70℃から150℃の間で測定対象物の温度を変化させ、変曲点を確認することで求められる。 The glass transition temperature (Tg) of the acrylic resin is preferably −60 to 70° C., more preferably −30 to 50° C. When the Tg of the acrylic resin is at least the above lower limit, for example, the adhesive force between the cured product of the protective film forming film and the support sheet is suppressed, and the releasability of the support sheet is appropriately improved. Further, when the Tg of the acrylic resin is not more than the upper limit value, the adhesive force between the thermosetting protective film forming film and the adherend of the cured product thereof is improved.
It should be noted that the Tg of the resin in the present specification is not limited to an acrylic resin, and is, for example, from −70° C. using a differential scanning calorimeter (DSC) at a temperature raising rate or a temperature lowering rate of 10° C./min. It can be obtained by changing the temperature of the object to be measured between 150°C and confirming the inflection point.
なお、アクリル系樹に限定されず、本明細書中の樹脂のTgは、例えば、示差走査熱量計(DSC)を用いて、昇温速度又は降温速度を10℃/minとして、-70℃から150℃の間で測定対象物の温度を変化させ、変曲点を確認することで求められる。 The glass transition temperature (Tg) of the acrylic resin is preferably −60 to 70° C., more preferably −30 to 50° C. When the Tg of the acrylic resin is at least the above lower limit, for example, the adhesive force between the cured product of the protective film forming film and the support sheet is suppressed, and the releasability of the support sheet is appropriately improved. Further, when the Tg of the acrylic resin is not more than the upper limit value, the adhesive force between the thermosetting protective film forming film and the adherend of the cured product thereof is improved.
It should be noted that the Tg of the resin in the present specification is not limited to an acrylic resin, and is, for example, from −70° C. using a differential scanning calorimeter (DSC) at a temperature raising rate or a temperature lowering rate of 10° C./min. It can be obtained by changing the temperature of the object to be measured between 150°C and confirming the inflection point.
アクリル系樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体等が挙げられる。
The acrylic resin is selected from, for example, one or more polymers of (meth)acrylic acid ester; (meth)acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene and N-methylolacrylamide. Examples thereof include copolymers of two or more kinds of monomers.
なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語についても同様であり、例えば、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念であり、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念である。
In this specification, the term “(meth)acrylic acid” is a concept that includes both “acrylic acid” and “methacrylic acid”. The same applies to terms similar to (meth)acrylic acid, and for example, "(meth)acryloyl group" is a concept that includes both "acryloyl group" and "methacryloyl group", and "(meth)acrylate" "" is a concept including both "acrylate" and "methacrylate".
アクリル系樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である、(メタ)アクリル酸アルキルエステル;
(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
(メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
(メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
(メタ)アクリル酸イミド;
(メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
(メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。 Examples of the (meth)acrylic acid ester that constitutes the acrylic resin include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and (meth)acrylate. ) N-Butyl acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, (meth)acrylic Heptyl acid, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate Undecyl (meth)acrylate, dodecyl (meth)acrylate (lauryl (meth)acrylate), tridecyl (meth)acrylate, tetradecyl (meth)acrylate myristyl (meth)acrylate, (meth)acrylic acid The alkyl groups constituting the alkyl ester, such as pentadecyl, hexadecyl (meth)acrylate (palmityl (meth)acrylate), heptadecyl (meth)acrylate, octadecyl (meth)acrylate (stearyl (meth)acrylate), (Meth)acrylic acid alkyl ester having a chain structure of 1 to 18 carbon atoms;
(Meth)acrylic acid cycloalkyl esters such as isobornyl (meth)acrylic acid and dicyclopentanyl (meth)acrylic acid;
Aralkyl esters of (meth)acrylic acid such as benzyl (meth)acrylate;
(Meth)acrylic acid cycloalkenyl ester such as dicyclopentenyl ester;
(Meth)acrylic acid cycloalkenyloxyalkyl esters such as dicyclopentenyloxyethyl ester;
(Meth)acrylic acid imide;
Glycidyl group-containing (meth)acrylic acid ester such as glycidyl (meth)acrylate;
Hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, (meth ) Hydroxyl group-containing (meth)acrylic acid esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth)acrylate;
Examples include substituted amino group-containing (meth)acrylic acid esters such as N-methylaminoethyl (meth)acrylic acid. Here, the "substituted amino group" means a group formed by substituting one or two hydrogen atoms of an amino group with a group other than a hydrogen atom.
(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
(メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
(メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
(メタ)アクリル酸イミド;
(メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
(メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。 Examples of the (meth)acrylic acid ester that constitutes the acrylic resin include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and (meth)acrylate. ) N-Butyl acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, (meth)acrylic Heptyl acid, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate Undecyl (meth)acrylate, dodecyl (meth)acrylate (lauryl (meth)acrylate), tridecyl (meth)acrylate, tetradecyl (meth)acrylate myristyl (meth)acrylate, (meth)acrylic acid The alkyl groups constituting the alkyl ester, such as pentadecyl, hexadecyl (meth)acrylate (palmityl (meth)acrylate), heptadecyl (meth)acrylate, octadecyl (meth)acrylate (stearyl (meth)acrylate), (Meth)acrylic acid alkyl ester having a chain structure of 1 to 18 carbon atoms;
(Meth)acrylic acid cycloalkyl esters such as isobornyl (meth)acrylic acid and dicyclopentanyl (meth)acrylic acid;
Aralkyl esters of (meth)acrylic acid such as benzyl (meth)acrylate;
(Meth)acrylic acid cycloalkenyl ester such as dicyclopentenyl ester;
(Meth)acrylic acid cycloalkenyloxyalkyl esters such as dicyclopentenyloxyethyl ester;
(Meth)acrylic acid imide;
Glycidyl group-containing (meth)acrylic acid ester such as glycidyl (meth)acrylate;
Hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, (meth ) Hydroxyl group-containing (meth)acrylic acid esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth)acrylate;
Examples include substituted amino group-containing (meth)acrylic acid esters such as N-methylaminoethyl (meth)acrylic acid. Here, the "substituted amino group" means a group formed by substituting one or two hydrogen atoms of an amino group with a group other than a hydrogen atom.
アクリル系樹脂は、例えば、前記(メタ)アクリル酸エステル以外に、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーが共重合してなるものでもよい。
The acrylic resin is, for example, one or more monomers selected from (meth)acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, etc., in addition to the (meth)acrylic acid ester. May be obtained by copolymerization.
アクリル系樹脂を構成するモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The monomer that constitutes the acrylic resin may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
アクリル系樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル系樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基により他の化合物と結合することで、保護膜形成用複合シートを用いて得られたパッケージの信頼性が向上する傾向がある。
The acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth)acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group. The functional group of the acrylic resin may be bonded to another compound via a crosslinking agent (F) described below, or may be directly bonded to another compound without the crosslinking agent (F). .. When the acrylic resin is bonded to another compound through the functional group, the reliability of the package obtained by using the protective film forming composite sheet tends to be improved.
本発明においては、重合体成分(A)として、アクリル系樹脂以外の熱可塑性樹脂(以下、単に「熱可塑性樹脂」と略記することがある)を、アクリル系樹脂を用いずに単独で用いてもよいし、アクリル系樹脂と併用してもよい。前記熱可塑性樹脂を用いることで、樹脂膜の支持シートからの剥離性が向上したり、被着体の凹凸面へ熱硬化性保護膜形成用フィルムが追従し易くなり、被着体と熱硬化性保護膜形成用フィルムとの間でボイド等の発生がより抑制されることがある。
In the present invention, as the polymer component (A), a thermoplastic resin other than an acrylic resin (hereinafter sometimes simply abbreviated as “thermoplastic resin”) is used alone without using an acrylic resin. Or may be used in combination with an acrylic resin. By using the thermoplastic resin, the releasability of the resin film from the support sheet is improved, and the thermosetting protective film-forming film easily follows the uneven surface of the adherend, and the adherend and thermosetting Occurrence of voids and the like between the film and the film for forming a protective film may be further suppressed.
前記熱可塑性樹脂の重量平均分子量は1000~100000であることが好ましく、3000~80000であることがより好ましい。
The weight average molecular weight of the thermoplastic resin is preferably 1,000 to 100,000, more preferably 3,000 to 80,000.
前記熱可塑性樹脂のガラス転移温度(Tg)は、-30~150℃であることが好ましく、-20~120℃であることがより好ましい。
The glass transition temperature (Tg) of the thermoplastic resin is preferably −30 to 150° C., more preferably −20 to 120° C.
前記熱可塑性樹脂としては、例えば、ポリエステル、ポリウレタン、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレン等が挙げられる。
Examples of the thermoplastic resin include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, polystyrene and the like.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する前記熱可塑性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The thermoplastic resin contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof. Can be arbitrarily selected.
組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合(すなわち、熱硬化性保護膜形成用フィルムにおける、熱硬化性保護膜形成用フィルムの総質量に対する、重合体成分(A)の含有量の割合)は、重合体成分(A)の種類によらず、5~85質量%であることが好ましく、5~80質量%であることがより好ましく、例えば、5~65質量%、5~50質量%、及び5~35質量%のいずれかであってもよい。
In the composition (III-1), the ratio of the content of the polymer component (A) to the total content of all components other than the solvent (ie, the thermosetting protective film forming film in the thermosetting protective film forming film). The ratio of the content of the polymer component (A) to the total mass of the film for use is preferably 5 to 85% by mass, regardless of the type of the polymer component (A), and 5 to 80% by mass. More preferably, it may be any of 5 to 65% by mass, 5 to 50% by mass, and 5 to 35% by mass.
重合体成分(A)は、熱硬化性成分(B)にも該当する場合がある。本発明においては、組成物(III-1)が、このような重合体成分(A)及び熱硬化性成分(B)の両方に該当する成分を含有する場合、組成物(III-1)は、重合体成分(A)及び熱硬化性成分(B)を含有するとみなす。
The polymer component (A) may also correspond to the thermosetting component (B). In the present invention, when the composition (III-1) contains components corresponding to both the polymer component (A) and the thermosetting component (B), the composition (III-1) is , The polymer component (A) and the thermosetting component (B).
[熱硬化性成分(B)]
熱硬化性成分(B)は、熱硬化性保護膜形成用フィルムを硬化させるための成分である。
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する熱硬化性成分(B)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Thermosetting component (B)]
The thermosetting component (B) is a component for curing the thermosetting protective film forming film.
The thermosetting component (B) contained in the composition (III-1) and the film for forming a thermosetting protective film may be only one kind, or two or more kinds. The combination and the ratio can be arbitrarily selected.
熱硬化性成分(B)は、熱硬化性保護膜形成用フィルムを硬化させるための成分である。
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する熱硬化性成分(B)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [Thermosetting component (B)]
The thermosetting component (B) is a component for curing the thermosetting protective film forming film.
The thermosetting component (B) contained in the composition (III-1) and the film for forming a thermosetting protective film may be only one kind, or two or more kinds. The combination and the ratio can be arbitrarily selected.
熱硬化性成分(B)としては、例えば、エポキシ系熱硬化性樹脂、熱硬化性ポリイミド、ポリウレタン、不飽和ポリエステル、シリコーン樹脂等が挙げられ、エポキシ系熱硬化性樹脂が好ましい。
Examples of the thermosetting component (B) include epoxy thermosetting resins, thermosetting polyimides, polyurethanes, unsaturated polyesters, silicone resins and the like, with epoxy thermosetting resins being preferred.
(エポキシ系熱硬化性樹脂)
エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 (Epoxy thermosetting resin)
The epoxy thermosetting resin includes an epoxy resin (B1) and a thermosetting agent (B2).
The epoxy thermosetting resin contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 (Epoxy thermosetting resin)
The epoxy thermosetting resin includes an epoxy resin (B1) and a thermosetting agent (B2).
The epoxy thermosetting resin contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
・エポキシ樹脂(B1)
エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。 ・Epoxy resin (B1)
Examples of the epoxy resin (B1) include known ones, for example, polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and hydrogenated product thereof, orthocresol novolac epoxy resin, dicyclopentadiene type epoxy resin, Bifunctional or higher functional epoxy compounds such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin and phenylene skeleton type epoxy resin can be mentioned.
エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。 ・Epoxy resin (B1)
Examples of the epoxy resin (B1) include known ones, for example, polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and hydrogenated product thereof, orthocresol novolac epoxy resin, dicyclopentadiene type epoxy resin, Bifunctional or higher functional epoxy compounds such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin and phenylene skeleton type epoxy resin can be mentioned.
エポキシ樹脂(B1)としては、不飽和炭化水素基を有するエポキシ樹脂を用いてもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、保護膜形成用複合シートを用いて得られた樹脂膜付き半導体チップの信頼性が向上する。
An epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (B1). An epoxy resin having an unsaturated hydrocarbon group has higher compatibility with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, by using the epoxy resin having an unsaturated hydrocarbon group, the reliability of the semiconductor chip with a resin film obtained by using the composite sheet for forming a protective film is improved.
不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。 Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy groups of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction with (meth)acrylic acid or a derivative thereof.
Examples of the epoxy resin having an unsaturated hydrocarbon group include, for example, compounds in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth)acryloyl group, (meth) Examples thereof include an acrylamide group, and an acryloyl group is preferable.
また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。 Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy groups of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction with (meth)acrylic acid or a derivative thereof.
Examples of the epoxy resin having an unsaturated hydrocarbon group include, for example, compounds in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth)acryloyl group, (meth) Examples thereof include an acrylamide group, and an acryloyl group is preferable.
エポキシ樹脂(B1)の数平均分子量は、特に限定されないが、熱硬化性保護膜形成用フィルムの硬化性、並びに硬化後の樹脂膜の強度及び耐熱性の点から、300~30000であることが好ましく、300~10000であることがより好ましく、300~3000であることが特に好ましい。
The number average molecular weight of the epoxy resin (B1) is not particularly limited, but from the viewpoint of the curability of the thermosetting protective film forming film and the strength and heat resistance of the resin film after curing, it is preferably 300 to 30,000. The range of 300 to 10,000 is more preferable, and the range of 300 to 3000 is particularly preferable.
本明細書において、数平均分子量とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
In the present specification, the number average molecular weight is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method, unless otherwise specified.
エポキシ樹脂(B1)のエポキシ当量は、100~1000g/eqであることが好ましく、150~950g/eqであることがより好ましい。
本明細書において、「エポキシ当量」とは1グラム当量のエポキシ基を含むエポキシ化合物のグラム数(g/eq)を意味し、JIS K 7236:2001の方法に従って測定することができる。 The epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g/eq, and more preferably 150 to 950 g/eq.
In the present specification, "epoxy equivalent" means the number of grams (g/eq) of an epoxy compound containing 1 gram equivalent of an epoxy group, and can be measured according to the method of JIS K 7236:2001.
本明細書において、「エポキシ当量」とは1グラム当量のエポキシ基を含むエポキシ化合物のグラム数(g/eq)を意味し、JIS K 7236:2001の方法に従って測定することができる。 The epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g/eq, and more preferably 150 to 950 g/eq.
In the present specification, "epoxy equivalent" means the number of grams (g/eq) of an epoxy compound containing 1 gram equivalent of an epoxy group, and can be measured according to the method of JIS K 7236:2001.
エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
The epoxy resin (B1) may be used alone or in combination of two or more, and when two or more are used in combination, the combination and ratio thereof can be arbitrarily selected.
・熱硬化剤(B2)
熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。 ・Thermosetting agent (B2)
The thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
Examples of the thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with an epoxy group in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is dehydrated, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is dehydrated. It is preferably a group, and more preferably a phenolic hydroxyl group or an amino group.
熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。 ・Thermosetting agent (B2)
The thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
Examples of the thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with an epoxy group in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is dehydrated, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is dehydrated. It is preferably a group, and more preferably a phenolic hydroxyl group or an amino group.
熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等が挙げられる。
熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド等が挙げられる。 Among the thermosetting agents (B2), examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac type phenol resins, dicyclopentadiene type phenol resins, aralkyl type phenol resins, and the like. ..
Among the thermal curing agents (B2), examples of the amine curing agent having an amino group include dicyandiamide.
熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド等が挙げられる。 Among the thermosetting agents (B2), examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac type phenol resins, dicyclopentadiene type phenol resins, aralkyl type phenol resins, and the like. ..
Among the thermal curing agents (B2), examples of the amine curing agent having an amino group include dicyandiamide.
熱硬化剤(B2)は、不飽和炭化水素基を有していてもよい。
不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。 The thermosetting agent (B2) may have an unsaturated hydrocarbon group.
As the thermosetting agent (B2) having an unsaturated hydrocarbon group, for example, a compound obtained by substituting a part of a hydroxyl group of a phenol resin with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
The unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having an unsaturated hydrocarbon group described above.
不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。 The thermosetting agent (B2) may have an unsaturated hydrocarbon group.
As the thermosetting agent (B2) having an unsaturated hydrocarbon group, for example, a compound obtained by substituting a part of a hydroxyl group of a phenol resin with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
The unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having an unsaturated hydrocarbon group described above.
熱硬化剤(B2)としてフェノール系硬化剤を用いる場合には、保護膜の支持シートからの剥離性が向上する点から、熱硬化剤(B2)は、軟化点又はガラス転移温度が高いものが好ましい。
When a phenolic curing agent is used as the thermosetting agent (B2), the thermosetting agent (B2) having a high softening point or glass transition temperature is preferable because the peelability of the protective film from the support sheet is improved. preferable.
熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。 Of the thermosetting agent (B2), the number average molecular weight of the resin component such as a polyfunctional phenol resin, a novolac type phenol resin, a dicyclopentadiene type phenol resin, an aralkyl type phenol resin is preferably 300 to 30,000. , 400 to 10000 is more preferable, and 500 to 3000 is particularly preferable.
The molecular weight of the non-resin component such as biphenol or dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。 Of the thermosetting agent (B2), the number average molecular weight of the resin component such as a polyfunctional phenol resin, a novolac type phenol resin, a dicyclopentadiene type phenol resin, an aralkyl type phenol resin is preferably 300 to 30,000. , 400 to 10000 is more preferable, and 500 to 3000 is particularly preferable.
The molecular weight of the non-resin component such as biphenol or dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
As the thermosetting agent (B2), one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, their combination and ratio can be arbitrarily selected.
組成物(III-1)及び熱硬化性保護膜形成用フィルムにおいて、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、1~100質量部、1~50質量部、1~25質量部、及び1~10質量部のいずれかであってもよい。熱硬化剤(B2)の前記含有量が前記下限値以上であることで、熱硬化性保護膜形成用フィルムの硬化がより進行し易くなる。熱硬化剤(B2)の前記含有量が前記上限値以下であることで、熱硬化性保護膜形成用フィルムの吸湿率が低減されて、保護膜形成用複合シートを用いて得られたパッケージの信頼性がより向上する。
In the composition (III-1) and the thermosetting protective film forming film, the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the epoxy resin (B1). It is preferably 1 part to 200 parts by mass, more preferably 1 to 200 parts by mass, 1 to 50 parts by mass, 1 to 25 parts by mass, and 1 to 10 parts by mass. May be. When the content of the thermosetting agent (B2) is at least the lower limit value, the curing of the thermosetting protective film-forming film will proceed more easily. When the content of the thermosetting agent (B2) is equal to or less than the upper limit value, the moisture absorption rate of the thermosetting protective film-forming film is reduced, and the package obtained using the protective film-forming composite sheet is reduced. Reliability is improved.
組成物(III-1)及び熱硬化性保護膜形成用フィルムにおいて、熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)は、重合体成分(A)の含有量100質量部に対して、20~500質量部であることが好ましく、25~300質量部であることがより好ましく、30~150質量部であることがさらに好ましく、例えば、35~100質量部、及び40~80質量部のいずれかであってもよい。熱硬化性成分(B)の前記含有量がこのような範囲であることで、例えば、保護膜形成用フィルムの硬化物と支持シートとの接着力が抑制されて、支持シートの剥離性が向上する。
In the composition (III-1) and the thermosetting protective film forming film, the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is The content of the polymer component (A) is preferably 20 to 500 parts by mass, more preferably 25 to 300 parts by mass, further preferably 30 to 150 parts by mass, relative to 100 parts by mass. For example, it may be any one of 35 to 100 parts by mass and 40 to 80 parts by mass. When the content of the thermosetting component (B) is in such a range, for example, the adhesive force between the cured product of the protective film forming film and the support sheet is suppressed, and the peelability of the support sheet is improved. To do.
[硬化促進剤(C)]
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、組成物(III-1)の硬化速度を調整するための成分である。
好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。 [Curing accelerator (C)]
The composition (III-1) and the thermosetting protective film-forming film may contain a curing accelerator (C). The curing accelerator (C) is a component for adjusting the curing rate of the composition (III-1).
Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; 2-methylimidazole, 2-phenylimidazole. , 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, etc. (one or more hydrogen atoms are other than hydrogen atoms) Imidazole substituted with a group); organic phosphines such as tributylphosphine, diphenylphosphine, and triphenylphosphine (phosphines in which one or more hydrogen atoms are substituted with organic groups); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylboron salts such as tetraphenylborate.
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、組成物(III-1)の硬化速度を調整するための成分である。
好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。 [Curing accelerator (C)]
The composition (III-1) and the thermosetting protective film-forming film may contain a curing accelerator (C). The curing accelerator (C) is a component for adjusting the curing rate of the composition (III-1).
Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; 2-methylimidazole, 2-phenylimidazole. , 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, etc. (one or more hydrogen atoms are other than hydrogen atoms) Imidazole substituted with a group); organic phosphines such as tributylphosphine, diphenylphosphine, and triphenylphosphine (phosphines in which one or more hydrogen atoms are substituted with organic groups); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylboron salts such as tetraphenylborate.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する硬化促進剤(C)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The curing accelerator (C) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
硬化促進剤(C)を用いる場合、組成物(III-1)及び熱硬化性保護膜形成用フィルムにおいて、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~7質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。硬化促進剤(C)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で熱硬化性保護膜形成用フィルム中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなる。その結果、保護膜形成用複合シートを用いて得られた保護膜付き半導体チップの信頼性がより向上する。
When the curing accelerator (C) is used, the content of the curing accelerator (C) in the composition (III-1) and the thermosetting protective film-forming film is 100% by weight of the thermosetting component (B). It is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 7 parts by mass, relative to parts by mass. When the content of the curing accelerator (C) is at least the lower limit value, the effect of using the curing accelerator (C) can be obtained more significantly. When the content of the curing accelerator (C) is less than or equal to the upper limit value, for example, the highly polar curing accelerator (C) may be contained in the thermosetting protective film-forming film under high temperature and high humidity conditions. The effect of suppressing the segregation by moving to the adhesion interface side with the adherent is enhanced. As a result, the reliability of the semiconductor chip with a protective film obtained by using the composite sheet for forming a protective film is further improved.
[充填材(D)]
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、充填材(D)を含有していてもよい。熱硬化性保護膜形成用フィルムが充填材(D)を含有することにより、熱硬化性保護膜形成用フィルムを硬化して得られた保護膜は、熱膨張係数の調整が容易となり、この熱膨張係数を保護膜の形成対象物に対して最適化することで、保護膜形成用複合シートを用いて得られた保護膜付き半導体チップの信頼性がより向上する。また、熱硬化性保護膜形成用フィルムが充填材(D)を含有することにより、保護膜の吸湿率を低減したり、放熱性を向上させたりすることもできる。 [Filler (D)]
The composition (III-1) and the thermosetting protective film-forming film may contain a filler (D). When the thermosetting protective film-forming film contains the filler (D), the thermal expansion coefficient of the protective film obtained by curing the thermosetting protective film-forming film is easily adjusted. By optimizing the coefficient of expansion with respect to the object to be formed with the protective film, the reliability of the semiconductor chip with the protective film obtained by using the composite sheet for forming the protective film is further improved. In addition, when the thermosetting protective film forming film contains the filler (D), the hygroscopic rate of the protective film can be reduced and the heat dissipation can be improved.
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、充填材(D)を含有していてもよい。熱硬化性保護膜形成用フィルムが充填材(D)を含有することにより、熱硬化性保護膜形成用フィルムを硬化して得られた保護膜は、熱膨張係数の調整が容易となり、この熱膨張係数を保護膜の形成対象物に対して最適化することで、保護膜形成用複合シートを用いて得られた保護膜付き半導体チップの信頼性がより向上する。また、熱硬化性保護膜形成用フィルムが充填材(D)を含有することにより、保護膜の吸湿率を低減したり、放熱性を向上させたりすることもできる。 [Filler (D)]
The composition (III-1) and the thermosetting protective film-forming film may contain a filler (D). When the thermosetting protective film-forming film contains the filler (D), the thermal expansion coefficient of the protective film obtained by curing the thermosetting protective film-forming film is easily adjusted. By optimizing the coefficient of expansion with respect to the object to be formed with the protective film, the reliability of the semiconductor chip with the protective film obtained by using the composite sheet for forming the protective film is further improved. In addition, when the thermosetting protective film forming film contains the filler (D), the hygroscopic rate of the protective film can be reduced and the heat dissipation can be improved.
充填材(D)は、有機充填材及び無機充填材のいずれであってもよいが、無機充填材であることが好ましい。
好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましい。 The filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
Preferable inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride, etc.; spheres of these inorganic fillers; surface modification of these inorganic fillers. Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
Among these, the inorganic filler is preferably silica or alumina, and more preferably silica.
好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましい。 The filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
Preferable inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride, etc.; spheres of these inorganic fillers; surface modification of these inorganic fillers. Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
Among these, the inorganic filler is preferably silica or alumina, and more preferably silica.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する充填材(D)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The filler (D) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof and The ratio can be arbitrarily selected.
組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する、充填材(D)の含有量の割合(すなわち、熱硬化性保護膜形成用フィルムにおける、熱硬化性保護膜形成用フィルムの総質量に対する、充填材(D)の含有量の割合)は、5~80質量%であることが好ましく、10~70質量%であることがより好ましく、例えば、20~65質量%、30~65質量%、及び40~65質量%のいずれかであってもよい。前記割合がこのような範囲であることで、上記の、保護膜の熱膨張係数の調整がより容易となる。
In the composition (III-1), the ratio of the content of the filler (D) to the total content of all components other than the solvent (that is, the thermosetting protective film forming film in the thermosetting protective film forming film). The ratio of the content of the filler (D) to the total mass of the film for use is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and for example, 20 to 65% by mass. , 30 to 65% by mass, and 40 to 65% by mass. When the ratio is within such a range, it becomes easier to adjust the thermal expansion coefficient of the protective film.
[カップリング剤(E)]
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性保護膜形成用フィルムの被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、熱硬化性保護膜形成用フィルムの硬化物は、耐熱性を損なうことなく、耐水性が向上する。 [Coupling agent (E)]
The composition (III-1) and the thermosetting protective film-forming film may contain a coupling agent (E). By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, it is possible to improve the adhesiveness and adhesion of the thermosetting protective film-forming film to an adherend. it can. Further, by using the coupling agent (E), the cured product of the thermosetting protective film-forming film has improved water resistance without impairing heat resistance.
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性保護膜形成用フィルムの被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、熱硬化性保護膜形成用フィルムの硬化物は、耐熱性を損なうことなく、耐水性が向上する。 [Coupling agent (E)]
The composition (III-1) and the thermosetting protective film-forming film may contain a coupling agent (E). By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, it is possible to improve the adhesiveness and adhesion of the thermosetting protective film-forming film to an adherend. it can. Further, by using the coupling agent (E), the cured product of the thermosetting protective film-forming film has improved water resistance without impairing heat resistance.
カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。 The coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (A), thermosetting component (B), etc., and is preferably a silane coupling agent. More preferable.
Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, and 2-glycidyloxymethyldiethoxysilane. (3,4-Epoxycyclohexyl)ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-(2-aminoethylamino)propyltrimethoxysilane, 3-(2-amino Ethylamino)propylmethyldiethoxysilane, 3-(phenylamino)propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyl Examples thereof include dimethoxysilane, bis(3-triethoxysilylpropyl)tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane.
好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。 The coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (A), thermosetting component (B), etc., and is preferably a silane coupling agent. More preferable.
Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, and 2-glycidyloxymethyldiethoxysilane. (3,4-Epoxycyclohexyl)ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-(2-aminoethylamino)propyltrimethoxysilane, 3-(2-amino Ethylamino)propylmethyldiethoxysilane, 3-(phenylamino)propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyl Examples thereof include dimethoxysilane, bis(3-triethoxysilylpropyl)tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有するカップリング剤(E)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The coupling agent (E) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
カップリング剤(E)を用いる場合、組成物(III-1)及び熱硬化性保護膜形成用フィルムにおいて、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の総含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性保護膜形成用フィルムの被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。また、カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。
When the coupling agent (E) is used, the content of the coupling agent (E) in the composition (III-1) and the thermosetting protective film-forming film is the polymer component (A) and the thermosetting component. It is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and 0.1 to 5 parts by mass based on 100 parts by mass of the total content of (B). Is particularly preferable. When the content of the coupling agent (E) is at least the lower limit value, the dispersibility of the filler (D) in the resin is improved, and the thermosetting protective film forming film is adhered to the adherend. The effect of using the coupling agent (E), such as improved properties, can be more remarkably obtained. Moreover, when the content of the coupling agent (E) is not more than the upper limit value, the generation of outgas is further suppressed.
[架橋剤(F)]
重合体成分(A)として、上述のアクリル系樹脂等の、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、組成物(III-1)及び熱硬化性保護膜形成用フィルムは、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性保護膜形成用フィルムの初期接着力及び凝集力を調節できる。 [Crosslinking agent (F)]
As the polymer component (A), those having a functional group such as a vinyl group, a (meth)acryloyl group, an amino group, a hydroxyl group, a carboxy group or an isocyanate group, which can be bonded to other compounds, such as the above-mentioned acrylic resin. When used, the composition (III-1) and the thermosetting protective film-forming film may contain a crosslinking agent (F). The cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) to another compound for cross-linking. By thus cross-linking, the thermosetting protective film-forming film is formed. The initial adhesive strength and cohesive strength of can be adjusted.
重合体成分(A)として、上述のアクリル系樹脂等の、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、組成物(III-1)及び熱硬化性保護膜形成用フィルムは、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性保護膜形成用フィルムの初期接着力及び凝集力を調節できる。 [Crosslinking agent (F)]
As the polymer component (A), those having a functional group such as a vinyl group, a (meth)acryloyl group, an amino group, a hydroxyl group, a carboxy group or an isocyanate group, which can be bonded to other compounds, such as the above-mentioned acrylic resin. When used, the composition (III-1) and the thermosetting protective film-forming film may contain a crosslinking agent (F). The cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) to another compound for cross-linking. By thus cross-linking, the thermosetting protective film-forming film is formed. The initial adhesive strength and cohesive strength of can be adjusted.
架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。
As the cross-linking agent (F), for example, an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (cross-linking agent having a metal chelate structure), an aziridine-based cross-linking agent (cross-linking agent having an aziridinyl group), etc. Is mentioned.
前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物と、の反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。
As the organic polyvalent isocyanate compound, for example, an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as "aromatic polyvalent isocyanate compound etc." Abbreviated); trimers such as the aromatic polyvalent isocyanate compounds, isocyanurates and adducts; terminal isocyanate urethane prepolymers obtained by reacting the aromatic polyvalent isocyanate compounds and the like with polyol compounds Etc. The "adduct" is an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound or an alicyclic polyvalent isocyanate compound, and ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil or the like. It means a reaction product of a compound containing a molecular active hydrogen. Examples of the adduct include a trimethylolpropane xylylene diisocyanate adduct as described below. The term “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。
Specific examples of the organic polyvalent isocyanate compound include, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4. ,4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol A compound in which one or more of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate are added to all or part of hydroxyl groups of polyol such as propane; lysine diisocyanate and the like can be mentioned.
前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。
Examples of the organic polyvalent imine compound include N,N′-diphenylmethane-4,4′-bis(1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinylpropionate, and tetramethylolmethane. -Tri-β-aziridinyl propionate, N,N′-toluene-2,4-bis(1-aziridinecarboxamide)triethylenemelamine and the like can be mentioned.
架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性保護膜形成用フィルムに架橋構造を簡便に導入できる。
When an organic polyisocyanate compound is used as the crosslinking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A). When the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, a reaction between the cross-linking agent (F) and the polymer component (A) gives a thermosetting protective film-forming film. A crosslinked structure can be easily introduced.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する架橋剤(F)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The cross-linking agent (F) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or may be two or more kinds, and in the case of two or more kinds, a combination thereof and The ratio can be arbitrarily selected.
架橋剤(F)を用いる場合、組成物(III-1)において、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。また、架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。
When the crosslinking agent (F) is used, in the composition (III-1), the content of the crosslinking agent (F) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). The amount is preferably 0.1 part by mass, more preferably 0.1-10 parts by mass, particularly preferably 0.5-5 parts by mass. When the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) can be more remarkably obtained. Further, when the content of the crosslinking agent (F) is not more than the upper limit value, excessive use of the crosslinking agent (F) is suppressed.
[エネルギー線硬化性樹脂(G)]
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有していてもよい。熱硬化性保護膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。 [Energy ray curable resin (G)]
The composition (III-1) and the thermosetting protective film-forming film may contain an energy ray-curable resin (G). Since the thermosetting protective film-forming film contains the energy ray-curable resin (G), its characteristics can be changed by irradiation with energy rays.
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有していてもよい。熱硬化性保護膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。 [Energy ray curable resin (G)]
The composition (III-1) and the thermosetting protective film-forming film may contain an energy ray-curable resin (G). Since the thermosetting protective film-forming film contains the energy ray-curable resin (G), its characteristics can be changed by irradiation with energy rays.
エネルギー線硬化性樹脂(G)は、エネルギー線硬化性化合物を重合(硬化)して得られたものである。
前記エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。 The energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound.
Examples of the energy ray-curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferable.
前記エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。 The energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound.
Examples of the energy ray-curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth)acryloyl group are preferable.
前記アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ジシクロペンタニルジ(メタ)アクリレート等の環状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー;エポキシ変性(メタ)アクリレート;前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート;イタコン酸オリゴマー等が挙げられる。
Examples of the acrylate-based compound include trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta( (Meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate and the like (meth)acrylate containing a chain aliphatic skeleton; Cycloaliphatic skeleton-containing (meth)acrylate such as cyclopentanyl di(meth)acrylate; polyalkylene glycol (meth)acrylate such as polyethylene glycol di(meth)acrylate; oligoester (meth)acrylate; urethane (meth)acrylate oligomer An epoxy-modified (meth)acrylate; a polyether (meth)acrylate other than the polyalkylene glycol (meth)acrylate; an itaconic acid oligomer and the like.
前記エネルギー線硬化性化合物の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。
The weight average molecular weight of the energy ray-curable compound is preferably 100 to 30,000, and more preferably 300 to 10,000.
重合に用いる前記エネルギー線硬化性化合物は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The energy ray-curable compound used for the polymerization may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有するエネルギー線硬化性樹脂(G)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The energy ray-curable resin (G) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, two or more kinds, or two or more kinds. The combination and ratio of can be arbitrarily selected.
エネルギー線硬化性樹脂(G)を用いる場合、組成物(III-1)において、組成物(III-1)の総質量に対する、エネルギー線硬化性樹脂(G)の含有量の割合は、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。
When the energy ray-curable resin (G) is used, in the composition (III-1), the ratio of the content of the energy ray-curable resin (G) to the total mass of the composition (III-1) is 1 to. It is preferably 95% by mass, more preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
[光重合開始剤(H)]
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有する場合、エネルギー線硬化性樹脂(G)の重合反応を効率よく進めるために、光重合開始剤(H)を含有していてもよい。 [Photopolymerization initiator (H)]
When the composition (III-1) and the thermosetting protective film forming film contain the energy ray-curable resin (G), in order to efficiently proceed the polymerization reaction of the energy ray-curable resin (G), The polymerization initiator (H) may be contained.
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、エネルギー線硬化性樹脂(G)を含有する場合、エネルギー線硬化性樹脂(G)の重合反応を効率よく進めるために、光重合開始剤(H)を含有していてもよい。 [Photopolymerization initiator (H)]
When the composition (III-1) and the thermosetting protective film forming film contain the energy ray-curable resin (G), in order to efficiently proceed the polymerization reaction of the energy ray-curable resin (G), The polymerization initiator (H) may be contained.
組成物(III-1)における光重合開始剤(H)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベンジル;ベンゾフェノン;2,4-ジエチルチオキサントン;1,2-ジフェニルメタン;2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン;2-クロロアントラキノン等が挙げられる。
また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等も挙げられる。 Examples of the photopolymerization initiator (H) in the composition (III-1) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal. Benzoin compounds such as; acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethan-1-one; bis(2, Acylphosphine oxide compounds such as 4,6-trimethylbenzoyl)phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfide compounds such as benzylphenyl sulfide and tetramethylthiuram monosulfide; 1-hydroxycyclohexyl Α-ketol compounds such as phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; benzyl; dibenzyl; benzophenone; 4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone; 2-chloroanthraquinone and the like.
Examples of the photopolymerization initiator also include quinone compounds such as 1-chloroanthraquinone; photosensitizers such as amines.
また、前記光重合開始剤としては、例えば、1-クロロアントラキノン等のキノン化合物;アミン等の光増感剤等も挙げられる。 Examples of the photopolymerization initiator (H) in the composition (III-1) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal. Benzoin compounds such as; acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethan-1-one; bis(2, Acylphosphine oxide compounds such as 4,6-trimethylbenzoyl)phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; sulfide compounds such as benzylphenyl sulfide and tetramethylthiuram monosulfide; 1-hydroxycyclohexyl Α-ketol compounds such as phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; benzyl; dibenzyl; benzophenone; 4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone; 2-chloroanthraquinone and the like.
Examples of the photopolymerization initiator also include quinone compounds such as 1-chloroanthraquinone; photosensitizers such as amines.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する光重合開始剤(H)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The photopolymerization initiator (H) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and when two or more kinds are contained, The combination and the ratio can be arbitrarily selected.
光重合開始剤(H)を用いる場合、組成物(III-1)において、光重合開始剤(H)の含有量は、エネルギー線硬化性樹脂(G)の含有量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが特に好ましい。
When the photopolymerization initiator (H) is used, the content of the photopolymerization initiator (H) in the composition (III-1) is 100 parts by mass of the content of the energy ray-curable resin (G). The amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
[着色剤(I)]
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、着色剤(I)を含有していてもよい。
着色剤(I)としては、例えば、無機系顔料、有機系顔料、有機系染料等、公知のものが挙げられる。 [Colorant (I)]
The composition (III-1) and the thermosetting protective film-forming film may contain a colorant (I).
Examples of the colorant (I) include known pigments such as inorganic pigments, organic pigments and organic dyes.
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、着色剤(I)を含有していてもよい。
着色剤(I)としては、例えば、無機系顔料、有機系顔料、有機系染料等、公知のものが挙げられる。 [Colorant (I)]
The composition (III-1) and the thermosetting protective film-forming film may contain a colorant (I).
Examples of the colorant (I) include known pigments such as inorganic pigments, organic pigments and organic dyes.
前記有機系顔料及び有機系染料としては、例えば、アミニウム系色素、シアニン系色素、メロシアニン系色素、クロコニウム系色素、スクアリウム系色素、アズレニウム系色素、ポリメチン系色素、ナフトキノン系色素、ピリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ナフトラクタム系色素、アゾ系色素、縮合アゾ系色素、インジゴ系色素、ペリノン系色素、ペリレン系色素、ジオキサジン系色素、キナクリドン系色素、イソインドリノン系色素、キノフタロン系色素、ピロール系色素、チオインジゴ系色素、金属錯体系色素(金属錯塩染料)、ジチオール金属錯体系色素、インドールフェノール系色素、トリアリルメタン系色素、アントラキノン系色素、ナフトール系色素、アゾメチン系色素、ベンズイミダゾロン系色素、ピランスロン系色素及びスレン系色素等が挙げられる。
Examples of the organic pigments and organic dyes include aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squarylium dyes, azulenium dyes, polymethine dyes, naphthoquinone dyes, pyrylium dyes, phthalocyanines. Dye, naphthalocyanine dye, naphtholactam dye, azo dye, condensed azo dye, indigo dye, perinone dye, perylene dye, dioxazine dye, quinacridone dye, isoindolinone dye, quinophthalone dye , Pyrrole dyes, thioindigo dyes, metal complex dyes (metal complex salt dyes), dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, anthraquinone dyes, naphthol dyes, azomethine dyes, benzimidazo Examples thereof include Rhone-based dyes, pyranthrone-based dyes and slene-based dyes.
前記無機系顔料としては、例えば、カーボンブラック、コバルト系色素、鉄系色素、クロム系色素、チタン系色素、バナジウム系色素、ジルコニウム系色素、モリブデン系色素、ルテニウム系色素、白金系色素、ITO(インジウムスズオキサイド)系色素、ATO(アンチモンスズオキサイド)系色素等が挙げられる。
Examples of the inorganic pigments include carbon black, cobalt pigments, iron pigments, chromium pigments, titanium pigments, vanadium pigments, zirconium pigments, molybdenum pigments, ruthenium pigments, platinum pigments, ITO ( Examples thereof include indium tin oxide) type dyes and ATO (antimony tin oxide) type dyes.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する着色剤(I)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The colorant (I) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof and The ratio can be arbitrarily selected.
着色剤(I)を用いる場合、熱硬化性保護膜形成用フィルムの着色剤(I)の含有量は、目的に応じて適宜調節すればよい。例えば、熱硬化性保護膜形成用フィルムの着色剤(I)の含有量を調節し、保護膜の光透過性を調節することにより、保護膜に対してレーザー印字を行った場合の印字視認性を調節できる。また、熱硬化性保護膜形成用フィルムの着色剤(I)の含有量を調節することで、保護膜の意匠性を向上させたり、半導体ウエハの裏面の研削痕を見え難くすることもできる。これらの点を考慮すると、組成物(III-1)において、溶媒以外の全ての成分の総含有量に対する、着色剤(I)の含有量の割合(すなわち、熱硬化性保護膜形成用フィルムにおける、熱硬化性保護膜形成用フィルムの総質量に対する、着色剤(I)の含有量の割合)は、0.1~10質量%であることが好ましく、0.1~7.5質量%であることがより好ましく、0.1~5質量%であることが特に好ましい。前記割合が前記下限値以上であることで、着色剤(I)を用いたことによる効果がより顕著に得られる。また、前記割合が前記上限値以下であることで、熱硬化性保護膜形成用フィルムの光透過性の過度な低下が抑制される。
When the colorant (I) is used, the content of the colorant (I) in the thermosetting protective film forming film may be appropriately adjusted according to the purpose. For example, when the content of the colorant (I) in the thermosetting protective film forming film is adjusted and the light transmittance of the protective film is adjusted, the print visibility when laser printing is performed on the protective film. Can be adjusted. Further, by adjusting the content of the colorant (I) in the thermosetting protective film forming film, it is possible to improve the designability of the protective film and make it difficult to see the grinding marks on the back surface of the semiconductor wafer. Considering these points, in the composition (III-1), the ratio of the content of the colorant (I) to the total content of all components other than the solvent (that is, in the thermosetting protective film-forming film) The ratio of the content of the colorant (I) to the total mass of the thermosetting protective film forming film is preferably 0.1 to 10% by mass, and 0.1 to 7.5% by mass. It is more preferable that the amount is 0.1 to 5% by mass, and particularly preferably 0.1 to 5% by mass. When the ratio is equal to or more than the lower limit value, the effect of using the colorant (I) can be more remarkably obtained. Moreover, when the said ratio is below the said upper limit, the excessive fall of the light transmittance of the film for thermosetting protective film formation is suppressed.
[汎用添加剤(J)]
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、本発明の効果を損なわない範囲内において、汎用添加剤(J)を含有していてもよい。
汎用添加剤(J)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されないが、好ましいものとしては、例えば、可塑剤、帯電防止剤、酸化防止剤、ゲッタリング剤等が挙げられる。 [General-purpose additive (J)]
The composition (III-1) and the thermosetting protective film-forming film may contain a general-purpose additive (J) as long as the effects of the present invention are not impaired.
The general-purpose additive (J) may be a known one and can be arbitrarily selected according to the purpose and is not particularly limited, but preferable examples include, for example, a plasticizer, an antistatic agent, an antioxidant, a gettering agent and the like. Is mentioned.
組成物(III-1)及び熱硬化性保護膜形成用フィルムは、本発明の効果を損なわない範囲内において、汎用添加剤(J)を含有していてもよい。
汎用添加剤(J)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されないが、好ましいものとしては、例えば、可塑剤、帯電防止剤、酸化防止剤、ゲッタリング剤等が挙げられる。 [General-purpose additive (J)]
The composition (III-1) and the thermosetting protective film-forming film may contain a general-purpose additive (J) as long as the effects of the present invention are not impaired.
The general-purpose additive (J) may be a known one and can be arbitrarily selected according to the purpose and is not particularly limited, but preferable examples include, for example, a plasticizer, an antistatic agent, an antioxidant, a gettering agent and the like. Is mentioned.
組成物(III-1)及び熱硬化性保護膜形成用フィルムが含有する汎用添加剤(J)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
組成物(III-1)及び熱硬化性保護膜形成用フィルムの汎用添加剤(J)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。 The general-purpose additive (J) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
The content of the general-purpose additive (J) in the composition (III-1) and the thermosetting protective film-forming film is not particularly limited and may be appropriately selected depending on the purpose.
組成物(III-1)及び熱硬化性保護膜形成用フィルムの汎用添加剤(J)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。 The general-purpose additive (J) contained in the composition (III-1) and the thermosetting protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
The content of the general-purpose additive (J) in the composition (III-1) and the thermosetting protective film-forming film is not particularly limited and may be appropriately selected depending on the purpose.
[溶媒]
組成物(III-1)は、さらに溶媒を含有することが好ましい。溶媒を含有する組成物(III-1)は、取り扱い性が良好となる。
前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
組成物(III-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [solvent]
The composition (III-1) preferably further contains a solvent. The composition (III-1) containing a solvent has good handleability.
The solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
The solvent contained in the composition (III-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
組成物(III-1)は、さらに溶媒を含有することが好ましい。溶媒を含有する組成物(III-1)は、取り扱い性が良好となる。
前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
組成物(III-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 [solvent]
The composition (III-1) preferably further contains a solvent. The composition (III-1) containing a solvent has good handleability.
The solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
The solvent contained in the composition (III-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
組成物(III-1)が含有する溶媒は、組成物(III-1)中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。
The solvent contained in the composition (III-1) is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the composition (III-1) can be mixed more uniformly.
組成物(III-1)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。
The content of the solvent of the composition (III-1) is not particularly limited, and may be appropriately selected depending on the type of components other than the solvent.
<<熱硬化性保護膜形成用組成物の製造方法>>
組成物(III-1)等の熱硬化性保護膜形成用組成物は、これを構成するための各成分を配合することで得られる。
熱硬化性保護膜形成用組成物は、例えば、配合成分の種類が異なる点以外は、先に説明した粘着剤組成物の場合と同じ方法で製造できる。 <<Method for producing thermosetting protective film-forming composition>>
The composition for forming a thermosetting protective film such as the composition (III-1) can be obtained by blending the respective components constituting the composition.
The thermosetting protective film-forming composition can be produced, for example, by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the types of compounding components are different.
組成物(III-1)等の熱硬化性保護膜形成用組成物は、これを構成するための各成分を配合することで得られる。
熱硬化性保護膜形成用組成物は、例えば、配合成分の種類が異なる点以外は、先に説明した粘着剤組成物の場合と同じ方法で製造できる。 <<Method for producing thermosetting protective film-forming composition>>
The composition for forming a thermosetting protective film such as the composition (III-1) can be obtained by blending the respective components constituting the composition.
The thermosetting protective film-forming composition can be produced, for example, by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the types of compounding components are different.
○エネルギー線硬化性保護膜形成用フィルム
エネルギー線硬化性保護膜形成用フィルムを半導体ウエハの裏面に貼付し、エネルギー線硬化させて、保護膜を形成するときの硬化条件は、保護膜が十分にその機能を発揮する程度の硬化度となる限り特に限定されず、エネルギー線硬化性保護膜形成用フィルムの種類に応じて、適宜選択すればよい。
例えば、エネルギー線硬化性保護膜形成用フィルムのエネルギー線硬化時における、エネルギー線の照度は、120~280mW/cm2であることが好ましい。そして、前記硬化時における、エネルギー線の光量は、100~1000mJ/cm2であることが好ましい。 ○Energy-ray-curable protective film forming film An energy-ray-curable protective film forming film is attached to the back surface of a semiconductor wafer and cured by energy rays to form a protective film. There is no particular limitation as long as the degree of curing is such that the function is exhibited, and it may be appropriately selected depending on the type of the energy ray-curable protective film forming film.
For example, the illuminance of energy rays during energy ray curing of the energy ray-curable protective film forming film is preferably 120 to 280 mW/cm 2 . The light amount of energy rays during the curing is preferably 100 to 1000 mJ/cm 2 .
エネルギー線硬化性保護膜形成用フィルムを半導体ウエハの裏面に貼付し、エネルギー線硬化させて、保護膜を形成するときの硬化条件は、保護膜が十分にその機能を発揮する程度の硬化度となる限り特に限定されず、エネルギー線硬化性保護膜形成用フィルムの種類に応じて、適宜選択すればよい。
例えば、エネルギー線硬化性保護膜形成用フィルムのエネルギー線硬化時における、エネルギー線の照度は、120~280mW/cm2であることが好ましい。そして、前記硬化時における、エネルギー線の光量は、100~1000mJ/cm2であることが好ましい。 ○Energy-ray-curable protective film forming film An energy-ray-curable protective film forming film is attached to the back surface of a semiconductor wafer and cured by energy rays to form a protective film. There is no particular limitation as long as the degree of curing is such that the function is exhibited, and it may be appropriately selected depending on the type of the energy ray-curable protective film forming film.
For example, the illuminance of energy rays during energy ray curing of the energy ray-curable protective film forming film is preferably 120 to 280 mW/cm 2 . The light amount of energy rays during the curing is preferably 100 to 1000 mJ/cm 2 .
エネルギー線硬化性保護膜形成用フィルムとしては、エネルギー線硬化性成分(a)を含有するものが挙げられ、エネルギー線硬化性成分(a)及び充填材を含有するものが好ましい。
エネルギー線硬化性保護膜形成用フィルムにおいて、エネルギー線硬化性成分(a)は、未硬化であることが好ましく、粘着性を有することが好ましく、未硬化でかつ粘着性を有することがより好ましい。 Examples of the film for forming an energy ray-curable protective film include those containing the energy ray-curable component (a), and those containing the energy ray-curable component (a) and a filler are preferable.
In the energy ray-curable protective film-forming film, the energy ray-curable component (a) is preferably uncured, preferably has tackiness, and more preferably is uncured and has tackiness.
エネルギー線硬化性保護膜形成用フィルムにおいて、エネルギー線硬化性成分(a)は、未硬化であることが好ましく、粘着性を有することが好ましく、未硬化でかつ粘着性を有することがより好ましい。 Examples of the film for forming an energy ray-curable protective film include those containing the energy ray-curable component (a), and those containing the energy ray-curable component (a) and a filler are preferable.
In the energy ray-curable protective film-forming film, the energy ray-curable component (a) is preferably uncured, preferably has tackiness, and more preferably is uncured and has tackiness.
<エネルギー線硬化性保護膜形成用組成物(IV-1)>
好ましいエネルギー線硬化性保護膜形成用組成物としては、例えば、前記エネルギー線硬化性成分(a)を含有するエネルギー線硬化性保護膜形成用組成物(IV-1)(本明細書においては、単に「組成物(IV-1)」と略記することがある)等が挙げられる。 <Energy ray curable protective film forming composition (IV-1)>
As a preferable composition for forming an energy ray-curable protective film, for example, the composition for forming an energy ray-curable protective film (IV-1) containing the energy ray-curable component (a) (in the present specification, It may be abbreviated as "composition (IV-1)") and the like.
好ましいエネルギー線硬化性保護膜形成用組成物としては、例えば、前記エネルギー線硬化性成分(a)を含有するエネルギー線硬化性保護膜形成用組成物(IV-1)(本明細書においては、単に「組成物(IV-1)」と略記することがある)等が挙げられる。 <Energy ray curable protective film forming composition (IV-1)>
As a preferable composition for forming an energy ray-curable protective film, for example, the composition for forming an energy ray-curable protective film (IV-1) containing the energy ray-curable component (a) (in the present specification, It may be abbreviated as "composition (IV-1)") and the like.
[エネルギー線硬化性成分(a)]
エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分であり、エネルギー線硬化性保護膜形成用フィルムに造膜性や、可撓性等を付与するとともに、硬化後に硬質の樹脂膜を形成するための成分でもある。
エネルギー線硬化性成分(a)としては、例えば、エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)、及びエネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)が挙げられる。前記重合体(a1)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。 [Energy ray curable component (a)]
The energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and imparts film-forming properties, flexibility, and the like to the energy-ray-curable protective film-forming film, and is a hard resin after curing. It is also a component for forming a film.
Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80,000 to 2,000,000, and an energy ray-curable group having a molecular weight of 100 to 80,000. The compound (a2) may be mentioned. At least a part of the polymer (a1) may be crosslinked with a crosslinking agent, or may not be crosslinked.
エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分であり、エネルギー線硬化性保護膜形成用フィルムに造膜性や、可撓性等を付与するとともに、硬化後に硬質の樹脂膜を形成するための成分でもある。
エネルギー線硬化性成分(a)としては、例えば、エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)、及びエネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)が挙げられる。前記重合体(a1)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。 [Energy ray curable component (a)]
The energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and imparts film-forming properties, flexibility, and the like to the energy-ray-curable protective film-forming film, and is a hard resin after curing. It is also a component for forming a film.
Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80,000 to 2,000,000, and an energy ray-curable group having a molecular weight of 100 to 80,000. The compound (a2) may be mentioned. At least a part of the polymer (a1) may be crosslinked with a crosslinking agent, or may not be crosslinked.
(エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1))
エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基を有するアクリル系重合体(a11)と、前記官能基と反応する基、及びエネルギー線硬化性二重結合等のエネルギー線硬化性基を有するエネルギー線硬化性化合物(a12)と、が反応してなるアクリル系樹脂(a1-1)が挙げられる。 (Polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80,000 to 2,000,000)
Examples of the polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80,000 to 2,000,000 include an acrylic polymer (a11) having a functional group capable of reacting with a group of another compound, and An acrylic resin (a1-1) obtained by reacting an energy ray-curable compound (a12) having a group that reacts with a functional group and an energy ray-curable group such as an energy ray-curable double bond is included. ..
エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基を有するアクリル系重合体(a11)と、前記官能基と反応する基、及びエネルギー線硬化性二重結合等のエネルギー線硬化性基を有するエネルギー線硬化性化合物(a12)と、が反応してなるアクリル系樹脂(a1-1)が挙げられる。 (Polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80,000 to 2,000,000)
Examples of the polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80,000 to 2,000,000 include an acrylic polymer (a11) having a functional group capable of reacting with a group of another compound, and An acrylic resin (a1-1) obtained by reacting an energy ray-curable compound (a12) having a group that reacts with a functional group and an energy ray-curable group such as an energy ray-curable double bond is included. ..
他の化合物が有する基と反応可能な前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、置換アミノ基(アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基)、エポキシ基等が挙げられる。ただし、半導体ウエハや半導体チップ等の回路の腐食を防止するという点では、前記官能基はカルボキシ基以外の基であることが好ましい。
これらの中でも、前記官能基は、水酸基であることが好ましい。 Examples of the functional group capable of reacting with the group of another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (wherein one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom). And a epoxy group. However, the functional group is preferably a group other than a carboxy group in terms of preventing corrosion of circuits such as a semiconductor wafer and a semiconductor chip.
Among these, the functional group is preferably a hydroxyl group.
これらの中でも、前記官能基は、水酸基であることが好ましい。 Examples of the functional group capable of reacting with the group of another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (wherein one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom). And a epoxy group. However, the functional group is preferably a group other than a carboxy group in terms of preventing corrosion of circuits such as a semiconductor wafer and a semiconductor chip.
Among these, the functional group is preferably a hydroxyl group.
・官能基を有するアクリル系重合体(a11)
前記官能基を有するアクリル系重合体(a11)としては、例えば、前記官能基を有するアクリル系モノマーと、前記官能基を有しないアクリル系モノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリル系モノマー以外のモノマー(非アクリル系モノマー)が共重合したものであってもよい。
また、前記アクリル系重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよく、重合方法についても公知の方法を採用できる。 .Acrylic polymer having functional group (a11)
Examples of the functional group-containing acrylic polymer (a11) include those obtained by copolymerizing the functional group-containing acrylic monomer and the functional group-free acrylic monomer. In addition to the monomer, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized.
The acrylic polymer (a11) may be a random copolymer or a block copolymer, and a known method can be adopted as a polymerization method.
前記官能基を有するアクリル系重合体(a11)としては、例えば、前記官能基を有するアクリル系モノマーと、前記官能基を有しないアクリル系モノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリル系モノマー以外のモノマー(非アクリル系モノマー)が共重合したものであってもよい。
また、前記アクリル系重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよく、重合方法についても公知の方法を採用できる。 .Acrylic polymer having functional group (a11)
Examples of the functional group-containing acrylic polymer (a11) include those obtained by copolymerizing the functional group-containing acrylic monomer and the functional group-free acrylic monomer. In addition to the monomer, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized.
The acrylic polymer (a11) may be a random copolymer or a block copolymer, and a known method can be adopted as a polymerization method.
前記官能基を有するアクリル系モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、置換アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
Examples of the acrylic monomer having a functional group include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。
Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, (meth) Hydroxyalkyl (meth)acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate; non-(meth)acrylic non-adhesives such as vinyl alcohol and allyl alcohol. Examples thereof include saturated alcohols (unsaturated alcohols having no (meth)acryloyl skeleton).
前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。
Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth)acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the above-mentioned ethylenically unsaturated dicarboxylic acids; and (meth)acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate. Be done.
前記官能基を有するアクリル系モノマーは、水酸基含有モノマーが好ましい。
The hydroxyl group-containing monomer is preferable as the acrylic monomer having the functional group.
前記アクリル系重合体(a11)を構成する、前記官能基を有するアクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The functional group-containing acrylic monomer constituting the acrylic polymer (a11) may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof are arbitrary. You can choose.
前記官能基を有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である、(メタ)アクリル酸アルキルエステル等が挙げられる。
Examples of the acrylic monomer having no functional group include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate. -Butyl, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, ( 2-Ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, (meth) Undecyl acrylate, dodecyl (meth)acrylate (lauryl (meth)acrylate), tridecyl (meth)acrylate, tetradecyl (meth)acrylate (myristyl acrylate), pentadecyl (meth)acrylate, (meth ) Hexadecyl acrylate (palmityl (meth)acrylate), heptadecyl (meth)acrylate, octadecyl (meth)acrylate (stearyl (meth)acrylate), and the like. Examples thereof include (meth)acrylic acid alkyl ester having a chain structure of 18 to 18 and the like.
また、前記官能基を有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル等のアルコキシアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル等を含む、芳香族基を有する(メタ)アクリル酸エステル;非架橋性の(メタ)アクリルアミド及びその誘導体;(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノプロピル等の非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル等も挙げられる。
Examples of the acrylic monomer having no functional group include alkoxy such as methoxymethyl (meth)acrylate, methoxyethyl (meth)acrylate, ethoxymethyl (meth)acrylate, and ethoxyethyl (meth)acrylate. Alkyl group-containing (meth)acrylic acid ester; (meth)acrylic acid ester having an aromatic group, including (meth)acrylic acid aryl ester such as phenyl (meth)acrylic acid; non-crosslinkable (meth)acrylamide and Derivatives thereof; (meth)acrylic acid esters having a non-crosslinkable tertiary amino group such as N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate and the like can also be mentioned. ..
前記アクリル系重合体(a11)を構成する、前記官能基を有しないアクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The acrylic monomer having no functional group, which constitutes the acrylic polymer (a11), may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof are arbitrary. You can choose to.
前記非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。
前記アクリル系重合体(a11)を構成する前記非アクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the non-acrylic monomers include olefins such as ethylene and norbornene; vinyl acetate; styrene.
The non-acrylic monomer constituting the acrylic polymer (a11) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
前記アクリル系重合体(a11)を構成する前記非アクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Examples of the non-acrylic monomers include olefins such as ethylene and norbornene; vinyl acetate; styrene.
The non-acrylic monomer constituting the acrylic polymer (a11) may be only one kind, or two or more kinds, and in the case of two or more kinds, their combination and ratio can be arbitrarily selected.
前記アクリル系重合体(a11)において、これを構成する構成単位の全量に対する、前記官能基を有するアクリル系モノマーから誘導された構成単位の量の割合(含有量)は、0.1~50質量%であることが好ましく、1~40質量%であることがより好ましく、3~30質量%であることが特に好ましい。前記割合がこのような範囲であることで、前記アクリル系重合体(a11)と前記エネルギー線硬化性化合物(a12)との共重合によって得られた前記アクリル系樹脂(a1-1)において、エネルギー線硬化性基の含有量は、保護膜の硬化の程度を好ましい範囲に容易に調節可能となる。
In the acrylic polymer (a11), the ratio (content) of the amount of the structural unit derived from the acrylic monomer having the functional group to the total amount of the structural units constituting the acrylic polymer (a11) is 0.1 to 50 mass. %, more preferably 1 to 40% by mass, particularly preferably 3 to 30% by mass. When the ratio is within such a range, the energy of the acrylic resin (a1-1) obtained by copolymerization of the acrylic polymer (a11) and the energy ray-curable compound (a12) is increased. The content of the linear curable group makes it possible to easily adjust the degree of curing of the protective film within a preferable range.
前記アクリル系樹脂(a1-1)を構成する前記アクリル系重合体(a11)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The acrylic polymer (a11) constituting the acrylic resin (a1-1) may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination and a ratio thereof are arbitrary. You can choose.
組成物(IV-1)において、溶媒以外の成分の総含有量に対する、アクリル系樹脂(a1-1)の含有量の割合(すなわち、エネルギー線硬化性保護膜形成用フィルムにおける、前記フィルムの総質量に対する、アクリル系樹脂(a1-1)の含有量の割合)は、1~70質量%であることが好ましく、5~60質量%であることがより好ましく、10~50質量%であることが特に好ましい。
In the composition (IV-1), the ratio of the content of the acrylic resin (a1-1) to the total content of the components other than the solvent (that is, the total amount of the above-mentioned films in the energy ray-curable protective film-forming film). The ratio of the content of the acrylic resin (a1-1) to the mass) is preferably 1 to 70% by mass, more preferably 5 to 60% by mass, and 10 to 50% by mass. Is particularly preferable.
・エネルギー線硬化性化合物(a12)
前記エネルギー線硬化性化合物(a12)は、前記アクリル系重合体(a11)が有する官能基と反応可能な基として、イソシアネート基、エポキシ基及びカルボキシ基からなる群より選択される1種又は2種以上を有するものが好ましく、前記基としてイソシアネート基を有するものがより好ましい。前記エネルギー線硬化性化合物(a12)は、例えば、前記基としてイソシアネート基を有する場合、このイソシアネート基が、前記官能基として水酸基を有するアクリル系重合体(a11)のこの水酸基と容易に反応する。 ・Energy ray curable compound (a12)
The energy ray-curable compound (a12) is one or two kinds selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). Those having the above are preferable, and those having an isocyanate group as the above group are more preferable. When the energy ray-curable compound (a12) has, for example, an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
前記エネルギー線硬化性化合物(a12)は、前記アクリル系重合体(a11)が有する官能基と反応可能な基として、イソシアネート基、エポキシ基及びカルボキシ基からなる群より選択される1種又は2種以上を有するものが好ましく、前記基としてイソシアネート基を有するものがより好ましい。前記エネルギー線硬化性化合物(a12)は、例えば、前記基としてイソシアネート基を有する場合、このイソシアネート基が、前記官能基として水酸基を有するアクリル系重合体(a11)のこの水酸基と容易に反応する。 ・Energy ray curable compound (a12)
The energy ray-curable compound (a12) is one or two kinds selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). Those having the above are preferable, and those having an isocyanate group as the above group are more preferable. When the energy ray-curable compound (a12) has, for example, an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
前記エネルギー線硬化性化合物(a12)が、その1分子中に有する前記エネルギー線硬化性基の数は、特に限定されず、例えば、目的とする保護膜に求められる収縮率等の物性を考慮して、適宜選択できる。
例えば、前記エネルギー線硬化性化合物(a12)は、1分子中に前記エネルギー線硬化性基を1~5個有することが好ましく、1~3個有することがより好ましい。 The number of the energy ray-curable groups contained in the molecule of the energy ray-curable compound (a12) is not particularly limited. Can be selected as appropriate.
For example, the energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in a molecule, and more preferably 1 to 3 energy ray-curable groups.
例えば、前記エネルギー線硬化性化合物(a12)は、1分子中に前記エネルギー線硬化性基を1~5個有することが好ましく、1~3個有することがより好ましい。 The number of the energy ray-curable groups contained in the molecule of the energy ray-curable compound (a12) is not particularly limited. Can be selected as appropriate.
For example, the energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in a molecule, and more preferably 1 to 3 energy ray-curable groups.
前記エネルギー線硬化性化合物(a12)としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;
ジイソシアネート化合物又はポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;
ジイソシアネート化合物又はポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物等が挙げられる。
これらの中でも、前記エネルギー線硬化性化合物(a12)は、2-メタクリロイルオキシエチルイソシアネートであることが好ましい。 Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α,α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-(bisacryloyloxymethyl). Ethyl isocyanate;
An acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with hydroxyethyl (meth)acrylate;
Examples thereof include an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound, a polyol compound, and hydroxyethyl (meth)acrylate.
Among these, the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
ジイソシアネート化合物又はポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;
ジイソシアネート化合物又はポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物等が挙げられる。
これらの中でも、前記エネルギー線硬化性化合物(a12)は、2-メタクリロイルオキシエチルイソシアネートであることが好ましい。 Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α,α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-(bisacryloyloxymethyl). Ethyl isocyanate;
An acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with hydroxyethyl (meth)acrylate;
Examples thereof include an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound, a polyol compound, and hydroxyethyl (meth)acrylate.
Among these, the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
前記アクリル系樹脂(a1-1)を構成する前記エネルギー線硬化性化合物(a12)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be of one type, or of two or more types, and in the case of two or more types, their combination and ratio are arbitrary. You can choose to.
前記アクリル系樹脂(a1-1)において、前記アクリル系重合体(a11)に由来する前記官能基の含有量に対する、前記エネルギー線硬化性化合物(a12)に由来するエネルギー線硬化性基の含有量の割合は、20~120モル%であることが好ましく、35~100モル%であることがより好ましく、50~100モル%であることが特に好ましい。前記含有量の割合がこのような範囲であることで、保護膜の接着力がより大きくなる。なお、前記エネルギー線硬化性化合物(a12)が一官能(前記基を1分子中に1個有する)化合物である場合には、前記含有量の割合の上限値は100モル%となるが、前記エネルギー線硬化性化合物(a12)が多官能(前記基を1分子中に2個以上有する)化合物である場合には、前記含有量の割合の上限値は100モル%を超えることがある。
In the acrylic resin (a1-1), the content of the energy ray-curable group derived from the energy ray-curable compound (a12) with respect to the content of the functional group derived from the acrylic polymer (a11). The ratio is preferably 20 to 120 mol %, more preferably 35 to 100 mol %, and particularly preferably 50 to 100 mol %. When the ratio of the content is within such a range, the adhesive force of the protective film is increased. When the energy ray-curable compound (a12) is a monofunctional compound (having one group in one molecule), the upper limit of the content ratio is 100 mol%. When the energy ray-curable compound (a12) is a polyfunctional compound (having two or more groups in one molecule), the upper limit of the content ratio may exceed 100 mol %.
前記重合体(a1)の重量平均分子量(Mw)は、100000~2000000であることが好ましく、300000~1500000であることがより好ましい。
ここで、「重量平均分子量」とは、先に説明したとおりである。 The weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, and more preferably 300,000 to 15,000,000.
Here, the “weight average molecular weight” is as described above.
ここで、「重量平均分子量」とは、先に説明したとおりである。 The weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, and more preferably 300,000 to 15,000,000.
Here, the “weight average molecular weight” is as described above.
前記重合体(a1)が、その少なくとも一部が架橋剤によって架橋されたものである場合、前記重合体(a1)は、前記アクリル系重合体(a11)を構成するものとして説明した、上述のモノマーのいずれにも該当せず、かつ架橋剤と反応する基を有するモノマーが重合して、前記架橋剤と反応する基において架橋されたものであってもよいし、前記エネルギー線硬化性化合物(a12)に由来する、前記官能基と反応する基において、架橋されたものであってもよい。
When at least a part of the polymer (a1) is cross-linked with a cross-linking agent, the polymer (a1) has been described as constituting the acrylic polymer (a11). A monomer that does not correspond to any of the monomers and has a group that reacts with a crosslinking agent may be polymerized to be crosslinked at a group that reacts with the crosslinking agent, or the energy ray-curable compound ( The group derived from a12) which reacts with the functional group may be crosslinked.
組成物(IV-1)及びエネルギー線硬化性保護膜形成用フィルムが含有する前記重合体(a1)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The polymer (a1) contained in the composition (IV-1) and the energy ray-curable protective film-forming film may be only one kind, or two or more kinds, and in the case of two or more kinds, The combination and the ratio can be arbitrarily selected.
(エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2))
エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)中の前記エネルギー線硬化性基としては、エネルギー線硬化性二重結合を含む基が挙げられ、好ましいものとしては、(メタ)アクリロイル基、ビニル基等が挙げられる。 (Compound (a2) having an energy ray-curable group and a molecular weight of 100 to 80,000)
Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include groups containing an energy ray-curable double bond, and preferred examples include (meta ) Examples thereof include an acryloyl group and a vinyl group.
エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)中の前記エネルギー線硬化性基としては、エネルギー線硬化性二重結合を含む基が挙げられ、好ましいものとしては、(メタ)アクリロイル基、ビニル基等が挙げられる。 (Compound (a2) having an energy ray-curable group and a molecular weight of 100 to 80,000)
Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include groups containing an energy ray-curable double bond, and preferred examples include (meta ) Examples thereof include an acryloyl group and a vinyl group.
前記化合物(a2)は、上記の条件を満たすものであれば、特に限定されないが、エネルギー線硬化性基を有する低分子量化合物、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂等が挙げられる。
The compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group. Examples thereof include phenolic resins.
前記化合物(a2)のうち、エネルギー線硬化性基を有する低分子量化合物としては、例えば、多官能のモノマー又はオリゴマー等が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
前記アクリレート系化合物としては、例えば、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、2,2-ビス[4-((メタ)アクリロキシポリプロポキシ)フェニル]プロパン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン等の2官能(メタ)アクリレート;
トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;
ウレタン(メタ)アクリレートオリゴマー等の多官能(メタ)アクリレートオリゴマー等が挙げられる。 Among the compounds (a2), examples of the low molecular weight compound having an energy ray-curable group include a polyfunctional monomer or oligomer, and an acrylate compound having a (meth)acryloyl group is preferable.
Examples of the acrylate compound include 2-hydroxy-3-(meth)acryloyloxypropyl methacrylate, polyethylene glycol di(meth)acrylate, propoxylated ethoxylated bisphenol A di(meth)acrylate, 2,2-bis[4 -((Meth)acryloxypolyethoxy)phenyl]propane, ethoxylated bisphenol A di(meth)acrylate, 2,2-bis[4-((meth)acryloxydiethoxy)phenyl]propane, 9,9-bis [4-(2-(meth)acryloyloxyethoxy)phenyl]fluorene, 2,2-bis[4-((meth)acryloxypolypropoxy)phenyl]propane, tricyclodecanedimethanol di(meth)acrylate, 1 ,10-decanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth) ) Acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 2,2-bis [4-((meth)acryloxyethoxy)phenyl]propane, neopentyl glycol di(meth)acrylate, ethoxylated polypropylene glycol di(meth)acrylate, 2-hydroxy-1,3-di(meth)acryloxypropane, etc. A bifunctional (meth)acrylate of:
Tris(2-(meth)acryloxyethyl)isocyanurate, ε-caprolactone-modified tris-(2-(meth)acryloxyethyl)isocyanurate, ethoxylated glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, Trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol poly(meth)acrylate, dipentaerythritol hexa( Polyfunctional (meth)acrylates such as (meth)acrylates;
Examples thereof include polyfunctional (meth)acrylate oligomers such as urethane (meth)acrylate oligomers.
前記アクリレート系化合物としては、例えば、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、2,2-ビス[4-((メタ)アクリロキシポリプロポキシ)フェニル]プロパン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン等の2官能(メタ)アクリレート;
トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;
ウレタン(メタ)アクリレートオリゴマー等の多官能(メタ)アクリレートオリゴマー等が挙げられる。 Among the compounds (a2), examples of the low molecular weight compound having an energy ray-curable group include a polyfunctional monomer or oligomer, and an acrylate compound having a (meth)acryloyl group is preferable.
Examples of the acrylate compound include 2-hydroxy-3-(meth)acryloyloxypropyl methacrylate, polyethylene glycol di(meth)acrylate, propoxylated ethoxylated bisphenol A di(meth)acrylate, 2,2-bis[4 -((Meth)acryloxypolyethoxy)phenyl]propane, ethoxylated bisphenol A di(meth)acrylate, 2,2-bis[4-((meth)acryloxydiethoxy)phenyl]propane, 9,9-bis [4-(2-(meth)acryloyloxyethoxy)phenyl]fluorene, 2,2-bis[4-((meth)acryloxypolypropoxy)phenyl]propane, tricyclodecanedimethanol di(meth)acrylate, 1 ,10-decanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth) ) Acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 2,2-bis [4-((meth)acryloxyethoxy)phenyl]propane, neopentyl glycol di(meth)acrylate, ethoxylated polypropylene glycol di(meth)acrylate, 2-hydroxy-1,3-di(meth)acryloxypropane, etc. A bifunctional (meth)acrylate of:
Tris(2-(meth)acryloxyethyl)isocyanurate, ε-caprolactone-modified tris-(2-(meth)acryloxyethyl)isocyanurate, ethoxylated glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, Trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol poly(meth)acrylate, dipentaerythritol hexa( Polyfunctional (meth)acrylates such as (meth)acrylates;
Examples thereof include polyfunctional (meth)acrylate oligomers such as urethane (meth)acrylate oligomers.
前記化合物(a2)のうち、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂としては、例えば、「特開2013-194102号公報」の段落0043等に記載されているものを用いることができる。このような樹脂は、後述する熱硬化性成分を構成する樹脂にも該当するが、本発明においては前記化合物(a2)として取り扱う。
Among the compounds (a2), the epoxy resin having an energy ray-curable group and the phenol resin having an energy ray-curable group are described, for example, in paragraph 0043 of JP-A-2013-194102. Any thing can be used. Such a resin corresponds to a resin constituting a thermosetting component described later, but is treated as the compound (a2) in the present invention.
前記化合物(a2)の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。
The weight average molecular weight of the compound (a2) is preferably 100 to 30,000, and more preferably 300 to 10,000.
組成物(IV-1)及びエネルギー線硬化性保護膜形成用フィルムが含有する前記化合物(a2)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The compound (a2) contained in the composition (IV-1) and the film for forming an energy ray-curable protective film may be only one kind, or two or more kinds, and in the case of two or more kinds, a combination thereof. And the ratio can be arbitrarily selected.
[エネルギー線硬化性基を有しない重合体(b)]
組成物(IV-1)及びエネルギー線硬化性保護膜形成用フィルムは、前記エネルギー線硬化性成分(a)として前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましい。
前記重合体(b)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。 [Polymer (b) having no energy ray curable group]
When the composition (IV-1) and the energy ray-curable protective film-forming film contain the compound (a2) as the energy ray-curable component (a), the polymer further has no energy ray-curable group. It is preferable to also contain (b).
At least a part of the polymer (b) may be crosslinked with a crosslinking agent, or may not be crosslinked.
組成物(IV-1)及びエネルギー線硬化性保護膜形成用フィルムは、前記エネルギー線硬化性成分(a)として前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましい。
前記重合体(b)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。 [Polymer (b) having no energy ray curable group]
When the composition (IV-1) and the energy ray-curable protective film-forming film contain the compound (a2) as the energy ray-curable component (a), the polymer further has no energy ray-curable group. It is preferable to also contain (b).
At least a part of the polymer (b) may be crosslinked with a crosslinking agent, or may not be crosslinked.
エネルギー線硬化性基を有しない重合体(b)としては、例えば、アクリル系重合体、フェノキシ樹脂、ウレタン樹脂、ポリエステル、ゴム系樹脂、アクリルウレタン樹脂等が挙げられる。
これらの中でも、前記重合体(b)は、アクリル系重合体(以下、「アクリル系重合体(b-1)」と略記することがある)であることが好ましい。 Examples of the polymer (b) having no energy ray-curable group include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, acrylic urethane resins and the like.
Among these, the polymer (b) is preferably an acrylic polymer (hereinafter sometimes abbreviated as “acrylic polymer (b-1)”).
これらの中でも、前記重合体(b)は、アクリル系重合体(以下、「アクリル系重合体(b-1)」と略記することがある)であることが好ましい。 Examples of the polymer (b) having no energy ray-curable group include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, acrylic urethane resins and the like.
Among these, the polymer (b) is preferably an acrylic polymer (hereinafter sometimes abbreviated as “acrylic polymer (b-1)”).
アクリル系重合体(b-1)は、公知のものでよく、例えば、1種のアクリル系モノマーの単独重合体であってもよいし、2種以上のアクリル系モノマーの共重合体であってもよいし、1種又は2種以上のアクリル系モノマーと、1種又は2種以上のアクリル系モノマー以外のモノマー(非アクリル系モノマー)と、の共重合体であってもよい。
The acrylic polymer (b-1) may be a known one and may be, for example, a homopolymer of one type of acrylic monomer or a copolymer of two or more types of acrylic monomer. Alternatively, it may be a copolymer of one or more acrylic monomers and one or more monomers other than acrylic monomers (non-acrylic monomers).
アクリル系重合体(b-1)を構成する前記アクリル系モノマーとしては、例えば、(メタ)アクリル酸アルキルエステル、環状骨格を有する(メタ)アクリル酸エステル、グリシジル基含有(メタ)アクリル酸エステル、水酸基含有(メタ)アクリル酸エステル、置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、先に説明したとおりである。
Examples of the acrylic monomer constituting the acrylic polymer (b-1) include (meth)acrylic acid alkyl ester, (meth)acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth)acrylic acid ester, Examples thereof include a hydroxyl group-containing (meth)acrylic acid ester and a substituted amino group-containing (meth)acrylic acid ester. Here, the “substituted amino group” is as described above.
前記(メタ)アクリル酸アルキルエステルとしては、例えば、先に説明した、アクリル系重合体(a11)を構成する、前記官能基を有しないアクリル系モノマー(アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である、(メタ)アクリル酸アルキルエステル等)と同じものが挙げられる。
As the (meth)acrylic acid alkyl ester, for example, the above-described functional group-free acrylic monomer constituting the acrylic polymer (a11) (wherein the alkyl group constituting the alkyl ester has a carbon number of Is a (meth)acrylic acid alkyl ester and the like) having a chain structure of 1 to 18).
前記環状骨格を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
(メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
(メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル等が挙げられる。 Examples of the (meth)acrylic acid ester having a cyclic skeleton include (meth)acrylic acid cycloalkyl esters such as (meth)acrylic acid isobornyl and (meth)acrylic acid dicyclopentanyl;
Aralkyl esters of (meth)acrylic acid such as benzyl (meth)acrylate;
(Meth)acrylic acid cycloalkenyl ester such as dicyclopentenyl ester;
Examples thereof include (meth)acrylic acid cycloalkenyloxyalkyl esters such as (meth)acrylic acid dicyclopentenyloxyethyl ester.
(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
(メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
(メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル等が挙げられる。 Examples of the (meth)acrylic acid ester having a cyclic skeleton include (meth)acrylic acid cycloalkyl esters such as (meth)acrylic acid isobornyl and (meth)acrylic acid dicyclopentanyl;
Aralkyl esters of (meth)acrylic acid such as benzyl (meth)acrylate;
(Meth)acrylic acid cycloalkenyl ester such as dicyclopentenyl ester;
Examples thereof include (meth)acrylic acid cycloalkenyloxyalkyl esters such as (meth)acrylic acid dicyclopentenyloxyethyl ester.
前記グリシジル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。
前記水酸基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
前記置換アミノ基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸N-メチルアミノエチル等が挙げられる。 Examples of the glycidyl group-containing (meth)acrylic acid ester include glycidyl (meth)acrylate.
Examples of the hydroxyl group-containing (meth)acrylic acid ester include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 3-hydroxy (meth)acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
Examples of the substituted amino group-containing (meth)acrylic acid ester include N-methylaminoethyl (meth)acrylate.
前記水酸基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
前記置換アミノ基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸N-メチルアミノエチル等が挙げられる。 Examples of the glycidyl group-containing (meth)acrylic acid ester include glycidyl (meth)acrylate.
Examples of the hydroxyl group-containing (meth)acrylic acid ester include hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 3-hydroxy (meth)acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
Examples of the substituted amino group-containing (meth)acrylic acid ester include N-methylaminoethyl (meth)acrylate.
アクリル系重合体(b-1)を構成する前記非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。
Examples of the non-acrylic monomer constituting the acrylic polymer (b-1) include olefins such as ethylene and norbornene; vinyl acetate; styrene.
少なくとも一部が架橋剤によって架橋された、前記エネルギー線硬化性基を有しない重合体(b)としては、例えば、前記重合体(b)中の反応性官能基が架橋剤と反応したものが挙げられる。
前記反応性官能基は、架橋剤の種類等に応じて適宜選択すればよく、特に限定されない。例えば、架橋剤がポリイソシアネート化合物である場合には、前記反応性官能基としては、水酸基、カルボキシ基、アミノ基等が挙げられ、これらの中でも、イソシアネート基との反応性が高い水酸基が好ましい。また、架橋剤がエポキシ系化合物である場合には、前記反応性官能基としては、カルボキシ基、アミノ基、アミド基等が挙げられ、これらの中でもエポキシ基との反応性が高いカルボキシ基が好ましい。ただし、半導体ウエハや半導体チップの回路の腐食を防止するという点では、前記反応性官能基はカルボキシ基以外の基であることが好ましい。 Examples of the polymer (b) having no energy ray-curable group, at least a part of which is crosslinked with a crosslinking agent, include those in which the reactive functional group in the polymer (b) has reacted with the crosslinking agent. Can be mentioned.
The reactive functional group may be appropriately selected according to the type of the cross-linking agent and is not particularly limited. For example, when the crosslinking agent is a polyisocyanate compound, examples of the reactive functional group include a hydroxyl group, a carboxy group and an amino group, and among these, a hydroxyl group having a high reactivity with an isocyanate group is preferable. When the crosslinking agent is an epoxy compound, examples of the reactive functional group include a carboxy group, an amino group, an amide group, and among these, a carboxy group having high reactivity with an epoxy group is preferable. .. However, the reactive functional group is preferably a group other than a carboxy group from the viewpoint of preventing the corrosion of the circuit of the semiconductor wafer or the semiconductor chip.
前記反応性官能基は、架橋剤の種類等に応じて適宜選択すればよく、特に限定されない。例えば、架橋剤がポリイソシアネート化合物である場合には、前記反応性官能基としては、水酸基、カルボキシ基、アミノ基等が挙げられ、これらの中でも、イソシアネート基との反応性が高い水酸基が好ましい。また、架橋剤がエポキシ系化合物である場合には、前記反応性官能基としては、カルボキシ基、アミノ基、アミド基等が挙げられ、これらの中でもエポキシ基との反応性が高いカルボキシ基が好ましい。ただし、半導体ウエハや半導体チップの回路の腐食を防止するという点では、前記反応性官能基はカルボキシ基以外の基であることが好ましい。 Examples of the polymer (b) having no energy ray-curable group, at least a part of which is crosslinked with a crosslinking agent, include those in which the reactive functional group in the polymer (b) has reacted with the crosslinking agent. Can be mentioned.
The reactive functional group may be appropriately selected according to the type of the cross-linking agent and is not particularly limited. For example, when the crosslinking agent is a polyisocyanate compound, examples of the reactive functional group include a hydroxyl group, a carboxy group and an amino group, and among these, a hydroxyl group having a high reactivity with an isocyanate group is preferable. When the crosslinking agent is an epoxy compound, examples of the reactive functional group include a carboxy group, an amino group, an amide group, and among these, a carboxy group having high reactivity with an epoxy group is preferable. .. However, the reactive functional group is preferably a group other than a carboxy group from the viewpoint of preventing the corrosion of the circuit of the semiconductor wafer or the semiconductor chip.
前記反応性官能基を有する、エネルギー線硬化性基を有しない重合体(b)としては、例えば、少なくとも前記反応性官能基を有するモノマーを重合させて得られたものが挙げられる。アクリル系重合体(b-1)の場合であれば、これを構成するモノマーとして挙げた、前記アクリル系モノマー及び非アクリル系モノマーのいずれか一方又は両方として、前記反応性官能基を有するものを用いればよい。反応性官能基として水酸基を有する前記重合体(b)としては、例えば、水酸基含有(メタ)アクリル酸エステルを重合して得られたものが挙げられ、これ以外にも、先に挙げた前記アクリル系モノマー又は非アクリル系モノマーにおいて、1個又は2個以上の水素原子が前記反応性官能基で置換されてなるモノマーを重合して得られたものが挙げられる。
Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group. In the case of the acrylic polymer (b-1), one or both of the above-mentioned acrylic monomer and non-acrylic monomer, which are mentioned as the monomer constituting the acrylic polymer (b-1), have the above-mentioned reactive functional group. You can use it. Examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth)acrylic acid ester, and in addition to this, the above-mentioned acryl Examples thereof include those obtained by polymerizing a monomer in which one or two or more hydrogen atoms are substituted with the above-mentioned reactive functional group in the system monomer or the non-acrylic monomer.
反応性官能基を有する前記重合体(b)において、これを構成する構成単位の全量に対する、反応性官能基を有するモノマーから誘導された構成単位の量の割合(含有量)は、1~20質量%であることが好ましく、2~10質量%であることがより好ましい。前記割合がこのような範囲であることで、前記重合体(b)において、架橋の程度がより好ましい範囲となる。
In the polymer (b) having a reactive functional group, the ratio (content) of the amount of the structural unit derived from the monomer having a reactive functional group to the total amount of the structural unit constituting the polymer (b) is 1 to 20. It is preferably mass%, and more preferably 2 to 10 mass%. When the ratio is within such a range, the degree of crosslinking in the polymer (b) becomes a more preferable range.
エネルギー線硬化性基を有しない重合体(b)の重量平均分子量(Mw)は、組成物(IV-1)の造膜性がより良好となる点から、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。ここで、「重量平均分子量」とは、先に説明したとおりである。
The weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is preferably 10,000 to 2,000,000 from the viewpoint that the film-forming property of the composition (IV-1) is better. It is more preferably 100,000 to 15,000,000. Here, the "weight average molecular weight" is as described above.
組成物(IV-1)及びエネルギー線硬化性保護膜形成用フィルムが含有する、エネルギー線硬化性基を有しない重合体(b)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The polymer (b) having no energy ray-curable group contained in the composition (IV-1) and the energy ray-curable protective film-forming film may be only one type, or may be two or more types. When there are more than one species, their combination and ratio can be arbitrarily selected.
組成物(IV-1)としては、前記重合体(a1)及び前記化合物(a2)のいずれか一方又は両方を含有するものが挙げられる。そして、組成物(IV-1)は、前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましく、この場合、さらに前記(a1)を含有することも好ましい。また、組成物(IV-1)は、前記化合物(a2)を含有せず、前記重合体(a1)、及びエネルギー線硬化性基を有しない重合体(b)をともに含有していてもよい。
Examples of the composition (IV-1) include those containing one or both of the polymer (a1) and the compound (a2). And, when the composition (IV-1) contains the compound (a2), it is preferable that the composition (IV-1) further contains a polymer (b) having no energy ray-curable group. It is also preferable to contain. The composition (IV-1) may contain neither the compound (a2) but the polymer (a1) and the polymer (b) having no energy ray-curable group. ..
組成物(IV-1)が、前記重合体(a1)、前記化合物(a2)及びエネルギー線硬化性基を有しない重合体(b)を含有する場合、組成物(IV-1)において、前記化合物(a2)の含有量は、前記重合体(a1)及びエネルギー線硬化性基を有しない重合体(b)の総含有量100質量部に対して、10~400質量部であることが好ましく、30~350質量部であることがより好ましい。
When the composition (IV-1) contains the polymer (a1), the compound (a2) and the polymer (b) having no energy ray-curable group, the composition (IV-1) is The content of the compound (a2) is preferably 10 to 400 parts by mass based on 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group. More preferably 30 to 350 parts by mass.
組成物(IV-1)において、溶媒以外の成分の総含有量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合(すなわち、エネルギー線硬化性保護膜形成用フィルムにおける、前記フィルムの総質量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合)は、5~90質量%であることが好ましく、10~80質量%であることがより好ましく、20~70質量%であることが特に好ましい。エネルギー線硬化性成分の含有量の前記割合がこのような範囲であることで、エネルギー線硬化性保護膜形成用フィルムのエネルギー線硬化性がより良好となる。
In the composition (IV-1), the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of components other than the solvent (that is, The ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total mass of the film in the film for forming an energy ray-curable protective film is It is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. When the above-mentioned ratio of the content of the energy ray-curable component is in such a range, the energy ray-curable property of the energy ray-curable protective film forming film becomes better.
組成物(IV-1)は、前記エネルギー線硬化性成分以外に、目的に応じて、熱硬化性成分、充填材、カップリング剤、架橋剤、光重合開始剤、着色剤及び汎用添加剤からなる群より選択される1種又は2種以上を含有していてもよい。
The composition (IV-1) comprises a thermosetting component, a filler, a coupling agent, a cross-linking agent, a photopolymerization initiator, a colorant, and a general-purpose additive, depending on the purpose, in addition to the energy ray-curable component. You may contain 1 type(s) or 2 or more types selected from the group consisting of.
組成物(IV-1)における前記熱硬化性成分、充填材、カップリング剤、架橋剤、光重合開始剤、着色剤及び汎用添加剤としては、それぞれ、組成物(III-1)における熱硬化性成分(B)、充填材(D)、カップリング剤(E)、架橋剤(F)、光重合開始剤(H)、着色剤(I)及び汎用添加剤(J)と同じものが挙げられる。
The thermosetting component, the filler, the coupling agent, the crosslinking agent, the photopolymerization initiator, the colorant, and the general-purpose additive in the composition (IV-1) are each the thermosetting in the composition (III-1). The same as the component (B), the filler (D), the coupling agent (E), the cross-linking agent (F), the photopolymerization initiator (H), the colorant (I) and the general-purpose additive (J). Be done.
例えば、前記エネルギー線硬化性成分及び熱硬化性成分を含有する組成物(IV-1)を用いることにより、形成されるエネルギー線硬化性保護膜形成用フィルムは、加熱によって被着体に対する接着力が向上し、このエネルギー線硬化性保護膜形成用フィルムから形成された樹脂膜の強度も向上する。
また、前記エネルギー線硬化性成分及び着色剤を含有する組成物(IV-1)を用いることにより、形成されるエネルギー線硬化性保護膜形成用フィルムは、先に説明した熱硬化性保護膜形成用フィルムが着色剤(I)を含有する場合と同様の効果を発現する。 For example, the energy ray-curable protective film-forming film formed by using the composition (IV-1) containing the energy ray-curable component and the thermosetting component has an adhesive force to an adherend by heating. And the strength of the resin film formed from this energy ray-curable protective film-forming film is also improved.
Further, the energy ray-curable protective film-forming film formed by using the composition (IV-1) containing the energy ray-curable component and the colorant is the thermosetting protective film-forming film described above. The same effect as when the film for use contains the colorant (I) is exhibited.
また、前記エネルギー線硬化性成分及び着色剤を含有する組成物(IV-1)を用いることにより、形成されるエネルギー線硬化性保護膜形成用フィルムは、先に説明した熱硬化性保護膜形成用フィルムが着色剤(I)を含有する場合と同様の効果を発現する。 For example, the energy ray-curable protective film-forming film formed by using the composition (IV-1) containing the energy ray-curable component and the thermosetting component has an adhesive force to an adherend by heating. And the strength of the resin film formed from this energy ray-curable protective film-forming film is also improved.
Further, the energy ray-curable protective film-forming film formed by using the composition (IV-1) containing the energy ray-curable component and the colorant is the thermosetting protective film-forming film described above. The same effect as when the film for use contains the colorant (I) is exhibited.
組成物(IV-1)において、前記熱硬化性成分、充填材、カップリング剤、架橋剤、光重合開始剤、着色剤及び汎用添加剤は、それぞれ、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
In the composition (IV-1), the thermosetting component, the filler, the coupling agent, the cross-linking agent, the photopolymerization initiator, the colorant, and the general-purpose additive may be used each alone. Two or more kinds may be used in combination, and when two or more kinds are used in combination, their combination and ratio can be arbitrarily selected.
組成物(IV-1)における前記熱硬化性成分、充填材、カップリング剤、架橋剤、光重合開始剤、着色剤及び汎用添加剤の含有量は、目的に応じて適宜調節すればよく、特に限定されない。
The contents of the thermosetting component, the filler, the coupling agent, the cross-linking agent, the photopolymerization initiator, the colorant and the general-purpose additive in the composition (IV-1) may be appropriately adjusted according to the purpose, It is not particularly limited.
組成物(IV-1)は、希釈によってその取り扱い性が向上することから、さらに溶媒を含有するものが好ましい。
組成物(IV-1)が含有する溶媒としては、例えば、組成物(III-1)における溶媒と同じものが挙げられる。
組成物(IV-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよい。
組成物(IV-1)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。 It is preferable that the composition (IV-1) further contains a solvent since the handling property thereof is improved by dilution.
Examples of the solvent contained in the composition (IV-1) include the same solvents as those in the composition (III-1).
The solvent contained in the composition (IV-1) may be only one kind or two or more kinds.
The content of the solvent in the composition (IV-1) is not particularly limited, and may be appropriately selected depending on, for example, the type of components other than the solvent.
組成物(IV-1)が含有する溶媒としては、例えば、組成物(III-1)における溶媒と同じものが挙げられる。
組成物(IV-1)が含有する溶媒は、1種のみでもよいし、2種以上でもよい。
組成物(IV-1)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。 It is preferable that the composition (IV-1) further contains a solvent since the handling property thereof is improved by dilution.
Examples of the solvent contained in the composition (IV-1) include the same solvents as those in the composition (III-1).
The solvent contained in the composition (IV-1) may be only one kind or two or more kinds.
The content of the solvent in the composition (IV-1) is not particularly limited, and may be appropriately selected depending on, for example, the type of components other than the solvent.
<<エネルギー線硬化性保護膜形成用組成物の製造方法>>
組成物(IV-1)等のエネルギー線硬化性保護膜形成用組成物は、これを構成するための各成分を配合することで得られる。
エネルギー線硬化性保護膜形成用組成物は、例えば、配合成分の種類が異なる点以外は、先に説明した粘着剤組成物の場合と同じ方法で製造できる。 <<Method for producing energy ray-curable protective film-forming composition>>
The energy ray-curable protective film forming composition such as the composition (IV-1) can be obtained by blending the respective components for constituting the same.
The energy ray-curable protective film-forming composition can be produced, for example, by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the types of compounding components are different.
組成物(IV-1)等のエネルギー線硬化性保護膜形成用組成物は、これを構成するための各成分を配合することで得られる。
エネルギー線硬化性保護膜形成用組成物は、例えば、配合成分の種類が異なる点以外は、先に説明した粘着剤組成物の場合と同じ方法で製造できる。 <<Method for producing energy ray-curable protective film-forming composition>>
The energy ray-curable protective film forming composition such as the composition (IV-1) can be obtained by blending the respective components for constituting the same.
The energy ray-curable protective film-forming composition can be produced, for example, by the same method as in the case of the pressure-sensitive adhesive composition described above, except that the types of compounding components are different.
◎剥離フィルム
前記剥離フィルムは、前記保護膜形成用複合シートが、その保護膜形成用フィルム側の最表層として備えていてもよい、任意の構成要素である。保護膜形成用フィルム上に剥離フィルムを備えた状態となっている保護膜形成用複合シートにおいて、この剥離フィルムを保護膜形成用フィルムから取り除いたとき、保護膜形成用複合シートは剥離帯電が抑制される。 ◎Release film The release film is an optional component which the protective film-forming composite sheet may be provided as an outermost layer on the protective film forming film side. When a protective film-forming composite sheet is provided with a release film on the protective film-forming film, when the release film is removed from the protective film-forming film, the protective film-forming composite sheet suppresses peeling electrification. To be done.
前記剥離フィルムは、前記保護膜形成用複合シートが、その保護膜形成用フィルム側の最表層として備えていてもよい、任意の構成要素である。保護膜形成用フィルム上に剥離フィルムを備えた状態となっている保護膜形成用複合シートにおいて、この剥離フィルムを保護膜形成用フィルムから取り除いたとき、保護膜形成用複合シートは剥離帯電が抑制される。 ◎Release film The release film is an optional component which the protective film-forming composite sheet may be provided as an outermost layer on the protective film forming film side. When a protective film-forming composite sheet is provided with a release film on the protective film-forming film, when the release film is removed from the protective film-forming film, the protective film-forming composite sheet suppresses peeling electrification. To be done.
前記剥離フィルムは、公知のものでよく、例えば、ポリエチレンテレフタレート製フィルム等の樹脂製フィルムの片面が、シリコーン処理等の剥離処理を施されたものが挙げられる。
前記剥離フィルムは、上述の中間層としての剥離性改善層と、同様の構成を有していてもよい。 The release film may be a known release film, and examples thereof include those in which one side of a resin film such as a polyethylene terephthalate film is subjected to a release treatment such as silicone treatment.
The release film may have the same structure as the above-mentioned release property improving layer as the intermediate layer.
前記剥離フィルムは、上述の中間層としての剥離性改善層と、同様の構成を有していてもよい。 The release film may be a known release film, and examples thereof include those in which one side of a resin film such as a polyethylene terephthalate film is subjected to a release treatment such as silicone treatment.
The release film may have the same structure as the above-mentioned release property improving layer as the intermediate layer.
前記剥離フィルムの厚さは、特に限定されず、例えば、10~1000μm等であってもよい。
The thickness of the release film is not particularly limited and may be, for example, 10 to 1000 μm.
前記保護膜形成用複合シートの一実施形態としては、例えば、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面または両面上に形成された帯電防止層と、を備えており、前記支持シートの全光線透過率が85%以上であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下であり、前記帯電防止層は、ピリミジニウム塩、ピリジニウム塩、ピペリジニウム塩、ピロリジニウム塩、イミダゾリウム塩、モルホリニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート及びカーボンナノチューブからなる群より選択される1種又は2種以上を含有するものが挙げられる。
As one embodiment of the protective film-forming composite sheet, for example, a protective film-forming composite sheet including a support sheet and a protective film-forming film formed on one surface of the support sheet, The support sheet includes a base material and an antistatic layer formed on one surface or both surfaces of the base material, and the total light transmittance of the support sheet is 85% or more, The composite sheet for forming a protective film has a surface resistivity of 1.0×10 11 Ω/□ or less, and the antistatic layer has a pyrimidinium salt, a pyridinium salt, a piperidinium salt, a pyrrolidinium salt, an imidazolium salt, a morpholinium salt, or a sulfonium salt. Examples thereof include those containing one or more selected from the group consisting of salts, phosphonium salts, ammonium salts, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate, and carbon nanotubes.
前記保護膜形成用複合シートの一実施形態としては、例えば、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面または両面上に形成された帯電防止層と、を備えており、前記支持シートの全光線透過率が85%以上であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下であり、前記帯電防止層は、ピリミジニウム塩、ピリジニウム塩、ピペリジニウム塩、ピロリジニウム塩、イミダゾリウム塩、モルホリニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート及びカーボンナノチューブからなる群より選択される1種又は2種以上を含有し、前記基材の片面又は両面上に形成された帯電防止層の合計の厚さが10~200nmであるものが挙げられる。
As one embodiment of the composite film for forming a protective film, for example, a composite sheet for forming a protective film, which includes a support sheet and a film for forming a protective film formed on one surface of the support sheet, The support sheet includes a base material and an antistatic layer formed on one surface or both surfaces of the base material, and the total light transmittance of the support sheet is 85% or more, The composite sheet for forming a protective film has a surface resistivity of 1.0×10 11 Ω/□ or less, and the antistatic layer has a pyrimidinium salt, a pyridinium salt, a piperidinium salt, a pyrrolidinium salt, an imidazolium salt, a morpholinium salt, or a sulfonium salt. One or more selected from the group consisting of salts, phosphonium salts, ammonium salts, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate and carbon nanotubes, and on one or both sides of the substrate The total thickness of the antistatic layer formed in the above is 10 to 200 nm.
前記保護膜形成用複合シートの一実施形態としては、例えば、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面または両面上に形成された帯電防止層と、を備えており、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下であり、前記支持シートのヘーズが43%以下であり、前記帯電防止層は、ピリミジニウム塩、ピリジニウム塩、ピペリジニウム塩、ピロリジニウム塩、イミダゾリウム塩、モルホリニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート及びカーボンナノチューブからなる群より選択される1種又は2種以上を含有するものが挙げられる。
As one embodiment of the protective film-forming composite sheet, for example, a protective film-forming composite sheet including a support sheet and a protective film-forming film formed on one surface of the support sheet, The support sheet includes a base material and an antistatic layer formed on one or both sides of the base material, and the surface resistivity of the protective film-forming composite sheet is 1.0×. 10 11 Ω/□ or less, the haze of the support sheet is 43% or less, and the antistatic layer has a pyrimidinium salt, a pyridinium salt, a piperidinium salt, a pyrrolidinium salt, an imidazolium salt, a morpholinium salt, a sulfonium salt, or a phosphonium. Examples thereof include salts, ammonium salts, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate, and those containing one or more selected from the group consisting of carbon nanotubes.
前記保護膜形成用複合シートの一実施形態としては、例えば、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面または両面上に形成された帯電防止層と、を備えており、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下であり、前記支持シートのヘーズが43%以下であり、前記帯電防止層は、ピリミジニウム塩、ピリジニウム塩、ピペリジニウム塩、ピロリジニウム塩、イミダゾリウム塩、モルホリニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート及びカーボンナノチューブからなる群より選択される1種又は2種以上を含有し、前記基材の片面又は両面上に形成された帯電防止層の合計の厚さが10~200nmであるものが挙げられる。
As one embodiment of the composite film for forming a protective film, for example, a composite sheet for forming a protective film, which includes a support sheet and a film for forming a protective film formed on one surface of the support sheet, The support sheet includes a base material and an antistatic layer formed on one or both sides of the base material, and the surface resistivity of the protective film-forming composite sheet is 1.0×. 10 11 Ω/□ or less, the haze of the support sheet is 43% or less, and the antistatic layer has a pyrimidinium salt, a pyridinium salt, a piperidinium salt, a pyrrolidinium salt, an imidazolium salt, a morpholinium salt, a sulfonium salt, or a phosphonium. Containing one or more selected from the group consisting of salts, ammonium salts, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate and carbon nanotubes, and formed on one side or both sides of the substrate. Also, the total thickness of the antistatic layer is 10 to 200 nm.
前記保護膜形成用複合シートの一実施形態としては、例えば、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面または両面上に形成された帯電防止層と、を備えており、前記支持シートの全光線透過率が85%以上であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下であり、前記支持シートのヘーズが43%以下であり、前記帯電防止層は、ピリミジニウム塩、ピリジニウム塩、ピペリジニウム塩、ピロリジニウム塩、イミダゾリウム塩、モルホリニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート及びカーボンナノチューブからなる群より選択される1種又は2種以上を含有するものが挙げられる。
As one embodiment of the composite film for forming a protective film, for example, a composite sheet for forming a protective film, which includes a support sheet and a film for forming a protective film formed on one surface of the support sheet, The support sheet includes a base material and an antistatic layer formed on one surface or both surfaces of the base material, and the total light transmittance of the support sheet is 85% or more, The composite sheet for forming a protective film has a surface resistivity of 1.0×10 11 Ω/□ or less, a haze of the support sheet of 43% or less, and the antistatic layer has a pyrimidinium salt, a pyridinium salt, or a piperidinium salt. , Pyrrolidinium salt, imidazolium salt, morpholinium salt, sulfonium salt, phosphonium salt, ammonium salt, poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate, and one or more selected from the group consisting of carbon nanotubes And the like.
前記保護膜形成用複合シートの一実施形態としては、例えば、支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、前記支持シートは、基材と、前記基材の片面または両面上に形成された帯電防止層と、を備えており、前記支持シートの全光線透過率が85%以上であり、前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下であり、前記支持シートのヘーズが43%以下であり、前記帯電防止層は、ピリミジニウム塩、ピリジニウム塩、ピペリジニウム塩、ピロリジニウム塩、イミダゾリウム塩、モルホリニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート及びカーボンナノチューブからなる群より選択される一種以上を含み、前記基材の片面又は両面上に形成された帯電防止層の合計の厚さが10~200nmであるものが挙げられる。
As one embodiment of the composite film for forming a protective film, for example, a composite sheet for forming a protective film, which includes a support sheet and a film for forming a protective film formed on one surface of the support sheet, The support sheet includes a base material and an antistatic layer formed on one surface or both surfaces of the base material, and the total light transmittance of the support sheet is 85% or more, The surface resistivity of the protective film-forming composite sheet is 1.0×10 11 Ω/□ or less, the haze of the support sheet is 43% or less, and the antistatic layer is composed of a pyrimidinium salt, a pyridinium salt, or a piperidinium salt. , A pyrrolidinium salt, an imidazolium salt, a morpholinium salt, a sulfonium salt, a phosphonium salt, an ammonium salt, a poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate, and one or more selected from the group consisting of carbon nanotubes, and The antistatic layer formed on one side or both sides of the substrate has a total thickness of 10 to 200 nm.
◇保護膜形成用複合シートの製造方法
前記保護膜形成用複合シートは、上述の各層を対応する位置関係となるように積層することで製造できる。各層の形成方法は、先に説明したとおりである。 ◇Method for producing a composite sheet for forming a protective film The composite sheet for forming a protective film can be produced by laminating the above-mentioned layers in a corresponding positional relationship. The method of forming each layer is as described above.
前記保護膜形成用複合シートは、上述の各層を対応する位置関係となるように積層することで製造できる。各層の形成方法は、先に説明したとおりである。 ◇Method for producing a composite sheet for forming a protective film The composite sheet for forming a protective film can be produced by laminating the above-mentioned layers in a corresponding positional relationship. The method of forming each layer is as described above.
例えば、支持シートを製造するときに、基材上に粘着剤層を積層する場合には、基材上に、上述の粘着剤組成物を塗工し、必要に応じて乾燥させればよい。この方法は、基材の前記凹凸面上に粘着剤層を積層する場合と、基材の前記平滑面上に粘着剤層を積層する場合と、のいずれにおいても適用できる。そして、この方法は、特に、前記凹凸面上に粘着剤層を積層する場合に好適である。その理由は、この方法を適用した場合に、基材の前記凹凸面と、粘着剤層と、の間において、空隙部の発生を抑制する高い効果が得られるためである。
For example, when a pressure-sensitive adhesive layer is laminated on a base material when manufacturing a support sheet, the above-mentioned pressure-sensitive adhesive composition may be applied onto the base material and dried as necessary. This method can be applied to both the case of laminating the pressure-sensitive adhesive layer on the uneven surface of the substrate and the case of laminating the pressure-sensitive adhesive layer on the smooth surface of the substrate. This method is particularly suitable for laminating the pressure-sensitive adhesive layer on the uneven surface. The reason is that when this method is applied, a high effect of suppressing the generation of voids between the uneven surface of the base material and the pressure-sensitive adhesive layer can be obtained.
支持シートを製造するときに、基材上に背面帯電防止層又は表面帯電防止層を積層する場合も同様である。
この場合には、粘着剤組成物に代えて帯電防止組成物(VI-1)を用いる点以外は、上述の粘着剤層を積層する方法と同じ方法で、基材上に、背面帯電防止層又は表面帯電防止層を積層できる。 The same applies to the case of laminating the back surface antistatic layer or the surface antistatic layer on the substrate when manufacturing the support sheet.
In this case, the back surface antistatic layer is formed on the substrate in the same manner as the above-mentioned method for laminating the pressure-sensitive adhesive layer, except that the antistatic composition (VI-1) is used instead of the pressure-sensitive adhesive composition. Alternatively, a surface antistatic layer can be laminated.
この場合には、粘着剤組成物に代えて帯電防止組成物(VI-1)を用いる点以外は、上述の粘着剤層を積層する方法と同じ方法で、基材上に、背面帯電防止層又は表面帯電防止層を積層できる。 The same applies to the case of laminating the back surface antistatic layer or the surface antistatic layer on the substrate when manufacturing the support sheet.
In this case, the back surface antistatic layer is formed on the substrate in the same manner as the above-mentioned method for laminating the pressure-sensitive adhesive layer, except that the antistatic composition (VI-1) is used instead of the pressure-sensitive adhesive composition. Alternatively, a surface antistatic layer can be laminated.
一方、基材上に粘着剤層を積層する場合には、上述の様に、基材上に粘着剤組成物を塗工する方法に代えて、以下の方法も適用できる。
すなわち、剥離フィルム上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に粘着剤層を形成しておき、この粘着剤層の露出面を、基材の表面と貼り合わせる方法でも、粘着剤層を基材上に積層できる。そして、この方法は、特に、前記平滑面上に粘着剤層を積層する場合に好適である。その理由は、この方法を適用した場合に、基材の前記平滑面と、粘着剤層と、の間であれば、空隙部の発生を抑制する高い効果が得られるためである。 On the other hand, when the pressure-sensitive adhesive layer is laminated on the substrate, the following method can be applied instead of the method of coating the pressure-sensitive adhesive composition on the substrate as described above.
That is, a pressure-sensitive adhesive composition is applied onto a release film and dried as necessary to form a pressure-sensitive adhesive layer on the release film, and the exposed surface of this pressure-sensitive adhesive layer is used as the surface of the substrate. The pressure-sensitive adhesive layer can also be laminated on the substrate by a method of laminating with. This method is particularly suitable for laminating the pressure-sensitive adhesive layer on the smooth surface. The reason is that when this method is applied, a high effect of suppressing the generation of voids can be obtained between the smooth surface of the base material and the pressure-sensitive adhesive layer.
すなわち、剥離フィルム上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に粘着剤層を形成しておき、この粘着剤層の露出面を、基材の表面と貼り合わせる方法でも、粘着剤層を基材上に積層できる。そして、この方法は、特に、前記平滑面上に粘着剤層を積層する場合に好適である。その理由は、この方法を適用した場合に、基材の前記平滑面と、粘着剤層と、の間であれば、空隙部の発生を抑制する高い効果が得られるためである。 On the other hand, when the pressure-sensitive adhesive layer is laminated on the substrate, the following method can be applied instead of the method of coating the pressure-sensitive adhesive composition on the substrate as described above.
That is, a pressure-sensitive adhesive composition is applied onto a release film and dried as necessary to form a pressure-sensitive adhesive layer on the release film, and the exposed surface of this pressure-sensitive adhesive layer is used as the surface of the substrate. The pressure-sensitive adhesive layer can also be laminated on the substrate by a method of laminating with. This method is particularly suitable for laminating the pressure-sensitive adhesive layer on the smooth surface. The reason is that when this method is applied, a high effect of suppressing the generation of voids can be obtained between the smooth surface of the base material and the pressure-sensitive adhesive layer.
支持シートを製造するときに、剥離フィルムを用いて、基材上に背面帯電防止層又は表面帯電防止層を積層する場合も同様である。
この場合には、粘着剤組成物に代えて帯電防止組成物(VI-1)を用いる点以外は、上述の、剥離フィルムを用いて粘着剤層を積層する方法と同じ方法で、基材上に、背面帯電防止層又は表面帯電防止層を積層できる。 The same applies to the case of laminating a back surface antistatic layer or a surface antistatic layer on a substrate using a release film when manufacturing a support sheet.
In this case, on the base material, the same method as the method for laminating the pressure-sensitive adhesive layer using the release film described above is used except that the antistatic composition (VI-1) is used instead of the pressure-sensitive adhesive composition. In addition, a back surface antistatic layer or a surface antistatic layer can be laminated.
この場合には、粘着剤組成物に代えて帯電防止組成物(VI-1)を用いる点以外は、上述の、剥離フィルムを用いて粘着剤層を積層する方法と同じ方法で、基材上に、背面帯電防止層又は表面帯電防止層を積層できる。 The same applies to the case of laminating a back surface antistatic layer or a surface antistatic layer on a substrate using a release film when manufacturing a support sheet.
In this case, on the base material, the same method as the method for laminating the pressure-sensitive adhesive layer using the release film described above is used except that the antistatic composition (VI-1) is used instead of the pressure-sensitive adhesive composition. In addition, a back surface antistatic layer or a surface antistatic layer can be laminated.
ここまでは、基材上に、粘着剤層、背面帯電防止層又は表面帯電防止層を積層する場合を例に挙げたが、上述の方法は、例えば、基材上に中間層を積層する場合など、他の層を積層する場合にも適用できる。
Up to this point, the case where the pressure-sensitive adhesive layer, the back surface antistatic layer, or the surface antistatic layer is laminated on the base material has been taken as an example, but the above-described method is, for example, a case where the intermediate layer is laminated on the base material. It is also applicable to stacking other layers.
一方、例えば、基材上に積層済みの粘着剤層の上に、さらに保護膜形成用フィルムを積層する場合には、粘着剤層上に保護膜形成用組成物を塗工して、保護膜形成用フィルムを直接形成することが可能である。保護膜形成用フィルム以外の層も、この層を形成するための組成物を用いて、同様の方法で、粘着剤層の上にこの層を積層できる。このように、基材上に積層済みのいずれかの層(以下、「第1層」と略記する)上に、新たな層(以下、「第2層」と略記する)を形成して、連続する2層の積層構造(換言すると、第1層及び第2層の積層構造)を形成する場合には、前記第1層上に、前記第2層を形成するための組成物を塗工して、必要に応じて乾燥させる方法が適用できる。
ただし、第2層は、これを形成するための組成物を用いて、剥離フィルム上にあらかじめ形成しておき、この形成済みの第2層の前記剥離フィルムと接触している側とは反対側の露出面を、第1層の露出面と貼り合わせることで、連続する2層の積層構造を形成することが好ましい。このとき、前記組成物は、剥離フィルムの剥離処理面に塗工することが好ましい。剥離フィルムは、積層構造の形成後、必要に応じて取り除けばよい。
ここでは、粘着剤層上に保護膜形成用フィルムを積層する場合を例に挙げたが、例えば、粘着剤層上に中間層を積層する場合、中間層上に保護膜形成用フィルムを積層する場合、表面帯電防止層上に粘着剤層を積層する場合など、対象となる積層構造は、任意に選択できる。 On the other hand, for example, in the case of further laminating a protective film forming film on a pressure-sensitive adhesive layer already laminated on a substrate, a protective film forming composition is applied onto the pressure-sensitive adhesive layer to form a protective film. It is possible to directly form the forming film. For layers other than the film for forming a protective film, this layer can be laminated on the pressure-sensitive adhesive layer in the same manner by using the composition for forming this layer. In this way, a new layer (hereinafter abbreviated as “second layer”) is formed on any layer (hereinafter abbreviated as “first layer”) already laminated on the substrate, In the case of forming a continuous two-layer laminated structure (in other words, a laminated structure of a first layer and a second layer), a composition for forming the second layer is applied onto the first layer. Then, a method of drying can be applied if necessary.
However, the second layer is formed on the release film in advance by using the composition for forming the second layer, and the second layer is formed on the side opposite to the side in contact with the release film. It is preferable to form a continuous two-layer laminated structure by laminating the exposed surface of (1) with the exposed surface of the first layer. At this time, the composition is preferably applied to the release-treated surface of the release film. The release film may be removed as needed after the laminated structure is formed.
Here, the case where the protective film-forming film is laminated on the pressure-sensitive adhesive layer has been described as an example, but for example, when the intermediate layer is laminated on the adhesive layer, the protective film-forming film is laminated on the intermediate layer. In this case, the target laminated structure can be arbitrarily selected, for example, when the pressure-sensitive adhesive layer is laminated on the surface antistatic layer.
ただし、第2層は、これを形成するための組成物を用いて、剥離フィルム上にあらかじめ形成しておき、この形成済みの第2層の前記剥離フィルムと接触している側とは反対側の露出面を、第1層の露出面と貼り合わせることで、連続する2層の積層構造を形成することが好ましい。このとき、前記組成物は、剥離フィルムの剥離処理面に塗工することが好ましい。剥離フィルムは、積層構造の形成後、必要に応じて取り除けばよい。
ここでは、粘着剤層上に保護膜形成用フィルムを積層する場合を例に挙げたが、例えば、粘着剤層上に中間層を積層する場合、中間層上に保護膜形成用フィルムを積層する場合、表面帯電防止層上に粘着剤層を積層する場合など、対象となる積層構造は、任意に選択できる。 On the other hand, for example, in the case of further laminating a protective film forming film on a pressure-sensitive adhesive layer already laminated on a substrate, a protective film forming composition is applied onto the pressure-sensitive adhesive layer to form a protective film. It is possible to directly form the forming film. For layers other than the film for forming a protective film, this layer can be laminated on the pressure-sensitive adhesive layer in the same manner by using the composition for forming this layer. In this way, a new layer (hereinafter abbreviated as “second layer”) is formed on any layer (hereinafter abbreviated as “first layer”) already laminated on the substrate, In the case of forming a continuous two-layer laminated structure (in other words, a laminated structure of a first layer and a second layer), a composition for forming the second layer is applied onto the first layer. Then, a method of drying can be applied if necessary.
However, the second layer is formed on the release film in advance by using the composition for forming the second layer, and the second layer is formed on the side opposite to the side in contact with the release film. It is preferable to form a continuous two-layer laminated structure by laminating the exposed surface of (1) with the exposed surface of the first layer. At this time, the composition is preferably applied to the release-treated surface of the release film. The release film may be removed as needed after the laminated structure is formed.
Here, the case where the protective film-forming film is laminated on the pressure-sensitive adhesive layer has been described as an example, but for example, when the intermediate layer is laminated on the adhesive layer, the protective film-forming film is laminated on the intermediate layer. In this case, the target laminated structure can be arbitrarily selected, for example, when the pressure-sensitive adhesive layer is laminated on the surface antistatic layer.
このように、保護膜形成用複合シートを構成する基材以外の層はいずれも、剥離フィルム上にあらかじめ形成しておき、目的とする層の表面に貼り合わせる方法で積層できるため、必要に応じてこのような工程を採用する層を適宜選択して、保護膜形成用複合シートを製造すればよい。
As described above, all layers other than the base material constituting the protective film-forming composite sheet can be formed on the release film in advance and laminated on the surface of the target layer by a method of laminating. The layer adopting such a step may be appropriately selected to manufacture the protective film-forming composite sheet.
なお、保護膜形成用複合シートは、通常、その支持シートとは反対側の最表層(例えば、保護膜形成用フィルム)の表面に剥離フィルムが貼り合わされた状態で保管される。したがって、この剥離フィルム(好ましくはその剥離処理面)上に、保護膜形成用組成物等の、最表層を構成する層を形成するための組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に最表層を構成する層を形成しておき、この層の剥離フィルムと接触している側とは反対側の露出面上に残りの各層を上述のいずれかの方法で積層し、剥離フィルムを取り除かずに貼り合わせた状態のままとすることで、剥離フィルム付きの保護膜形成用複合シートが得られる。
Note that the protective film-forming composite sheet is usually stored with a release film attached to the surface of the outermost layer (eg, protective film forming film) on the side opposite to the support sheet. Therefore, a composition for forming a layer forming the outermost layer, such as a composition for forming a protective film, should be applied onto this release film (preferably the release-treated surface), and dried if necessary. Then, a layer constituting the outermost layer is formed on the release film, and the remaining layers are laminated on any of the above-described methods on the exposed surface of the layer opposite to the side in contact with the release film. Then, by leaving the release film in a bonded state without removing it, a protective film-forming composite sheet with a release film is obtained.
◇半導体チップの製造方法
前記保護膜形成用複合シートは、半導体チップの製造に用いることができる。
このときの半導体チップの製造方法としては、例えば、前記保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程(以下、「貼付工程」と略記することがある)と、前記半導体ウエハに貼付した後の前記保護膜形成用フィルムを硬化させて、保護膜を形成する工程(以下、「保護膜形成工程」と略記することがある)と、前記半導体ウエハを分割し、前記保護膜又は保護膜形成用フィルムを切断して、切断後の保護膜又は保護膜形成用フィルムを備えた複数個の半導体チップを得る工程(以下、「分割工程」と略記することがある)と、前記切断後の保護膜又は保護膜形成用フィルムを備えた半導体チップを、前記支持シートから引き離してピックアップする工程(以下、「ピックアップ工程」と略記することがある)と、を有し、さらに、前記貼付工程と前記ピックアップ工程との間に、前記保護膜形成用フィルム又は保護膜にレーザー光を照射して、印字を行う工程(以下、「レーザー印字工程」と略記することがある)を有するものが挙げられる。
前記製造方法においては、前記貼付工程後に、前記保護膜形成工程、レーザー印字工程、分割工程及びピックアップ工程を行う。そして、分割工程後及びレーザー印字工程後にピックアップ工程を行うが、この点を除けば、保護膜形成工程、分割工程、レーザー印字工程及びピックアップ工程を行う順序は、目的に応じて任意に設定できる。 ◇Method for manufacturing semiconductor chip The composite sheet for forming a protective film can be used for manufacturing a semiconductor chip.
As a method of manufacturing a semiconductor chip at this time, for example, a step of attaching the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (hereinafter, may be abbreviated as “attaching step”) , A step of curing the protective film forming film after being attached to the semiconductor wafer to form a protective film (hereinafter, may be abbreviated as “protective film forming step”), and dividing the semiconductor wafer. A step of cutting the protective film or the protective film forming film to obtain a plurality of semiconductor chips having the protective film or the protective film forming film after cutting (hereinafter, may be abbreviated as “dividing step”) ), and a step of separating the semiconductor chip provided with the protective film after cutting or a film for forming a protective film from the supporting sheet to pick up (hereinafter, may be abbreviated as “pickup step”). Further, between the pasting step and the pickup step, a step of irradiating the protective film forming film or the protective film with laser light to perform printing (hereinafter, may be abbreviated as "laser printing step"). ) Are included.
In the manufacturing method, after the attaching step, the protective film forming step, the laser printing step, the dividing step, and the pickup step are performed. Then, the pickup process is performed after the dividing process and the laser printing process. Except this point, the order of performing the protective film forming process, the dividing process, the laser printing process, and the pickup process can be arbitrarily set according to the purpose.
前記保護膜形成用複合シートは、半導体チップの製造に用いることができる。
このときの半導体チップの製造方法としては、例えば、前記保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程(以下、「貼付工程」と略記することがある)と、前記半導体ウエハに貼付した後の前記保護膜形成用フィルムを硬化させて、保護膜を形成する工程(以下、「保護膜形成工程」と略記することがある)と、前記半導体ウエハを分割し、前記保護膜又は保護膜形成用フィルムを切断して、切断後の保護膜又は保護膜形成用フィルムを備えた複数個の半導体チップを得る工程(以下、「分割工程」と略記することがある)と、前記切断後の保護膜又は保護膜形成用フィルムを備えた半導体チップを、前記支持シートから引き離してピックアップする工程(以下、「ピックアップ工程」と略記することがある)と、を有し、さらに、前記貼付工程と前記ピックアップ工程との間に、前記保護膜形成用フィルム又は保護膜にレーザー光を照射して、印字を行う工程(以下、「レーザー印字工程」と略記することがある)を有するものが挙げられる。
前記製造方法においては、前記貼付工程後に、前記保護膜形成工程、レーザー印字工程、分割工程及びピックアップ工程を行う。そして、分割工程後及びレーザー印字工程後にピックアップ工程を行うが、この点を除けば、保護膜形成工程、分割工程、レーザー印字工程及びピックアップ工程を行う順序は、目的に応じて任意に設定できる。 ◇Method for manufacturing semiconductor chip The composite sheet for forming a protective film can be used for manufacturing a semiconductor chip.
As a method of manufacturing a semiconductor chip at this time, for example, a step of attaching the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (hereinafter, may be abbreviated as “attaching step”) , A step of curing the protective film forming film after being attached to the semiconductor wafer to form a protective film (hereinafter, may be abbreviated as “protective film forming step”), and dividing the semiconductor wafer. A step of cutting the protective film or the protective film forming film to obtain a plurality of semiconductor chips having the protective film or the protective film forming film after cutting (hereinafter, may be abbreviated as “dividing step”) ), and a step of separating the semiconductor chip provided with the protective film after cutting or a film for forming a protective film from the supporting sheet to pick up (hereinafter, may be abbreviated as “pickup step”). Further, between the pasting step and the pickup step, a step of irradiating the protective film forming film or the protective film with laser light to perform printing (hereinafter, may be abbreviated as "laser printing step"). ) Are included.
In the manufacturing method, after the attaching step, the protective film forming step, the laser printing step, the dividing step, and the pickup step are performed. Then, the pickup process is performed after the dividing process and the laser printing process. Except this point, the order of performing the protective film forming process, the dividing process, the laser printing process, and the pickup process can be arbitrarily set according to the purpose.
前記保護膜形成用複合シートの使用対象である半導体ウエハの厚さは、特に限定されないが、後述する半導体チップへの分割がより容易となる点では、30~1000μmであることが好ましく、100~400μmであることがより好ましい。
The thickness of the semiconductor wafer to be used for the protective film-forming composite sheet is not particularly limited, but is preferably 30 to 1000 μm, and 100 to 100 μm, from the viewpoint of easier division into semiconductor chips described later. More preferably, it is 400 μm.
以下、図面を参照しながら、上述の製造方法について説明する。図7は、本発明の一実施形態に係る半導体チップの製造方法を模式的に説明するための断面図である。ここでは、保護膜形成用複合シートが図1に示すものである場合の製造方法を例に挙げて、説明する。
The above manufacturing method will be described below with reference to the drawings. FIG. 7 is a cross-sectional view for schematically explaining the method of manufacturing a semiconductor chip according to the embodiment of the present invention. Here, the manufacturing method in the case where the protective film forming composite sheet is the one shown in FIG. 1 will be described as an example.
本実施形態の製造方法(本明細書においては、「製造方法(1)」と称することがある)は、前記保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程(貼付工程)と、前記半導体ウエハに貼付した後の前記保護膜形成用フィルムを硬化させて、保護膜を形成する工程(保護膜形成工程)と、前記半導体ウエハを分割し、前記保護膜を切断して、切断後の保護膜を備えた複数個の半導体チップを得る工程(分割工程)と、前記切断後の保護膜を備えた半導体チップを、前記支持シートから引き離してピックアップする工程(ピックアップ工程)と、を有し、さらに、前記貼付工程と前記ピックアップ工程との間に、前記レーザー印字工程(前記保護膜形成用フィルム又は保護膜にレーザー光を照射して、印字を行う工程)を有する。
The manufacturing method of the present embodiment (sometimes referred to as “manufacturing method (1)” in the present specification) is a step of attaching the protective film-forming film in the protective film-forming composite sheet to a semiconductor wafer. (A sticking step), a step of curing the protective film forming film after sticking to the semiconductor wafer to form a protective film (protective film forming step), dividing the semiconductor wafer, and removing the protective film. A step of cutting and obtaining a plurality of semiconductor chips having a protective film after cutting (dividing step), and a step of separating the semiconductor chip having the protective film after cutting from the support sheet and picking it up (pickup And a laser printing step (a step of performing printing by irradiating the protective film forming film or the protective film with a laser beam) between the attaching step and the pickup step. Have.
図1に示す保護膜形成用複合シート101を用いる場合には、製造方法(1)においては、前記貼付工程に先立ち、図7Aに示すように、保護膜形成用フィルム101から剥離フィルム15を取り除く工程(以下、「剥離工程」と略記することがある)を行う。
なお、ここでは便宜上、剥離フィルム15を取り除いた後の保護膜形成用複合シートも、符号101を付して示している。
剥離フィルム15を取り除いた後の保護膜形成用複合シート101は、先の説明のとおり、剥離帯電が抑制されている。 When the protective film-formingcomposite sheet 101 shown in FIG. 1 is used, in the manufacturing method (1), the release film 15 is removed from the protective film forming film 101 as shown in FIG. 7A prior to the attaching step. A process (hereinafter sometimes abbreviated as “peeling process”) is performed.
Here, for the sake of convenience, the composite sheet for forming a protective film after removing therelease film 15 is also denoted by reference numeral 101.
In the protective film-formingcomposite sheet 101 after the release film 15 is removed, peeling charge is suppressed as described above.
なお、ここでは便宜上、剥離フィルム15を取り除いた後の保護膜形成用複合シートも、符号101を付して示している。
剥離フィルム15を取り除いた後の保護膜形成用複合シート101は、先の説明のとおり、剥離帯電が抑制されている。 When the protective film-forming
Here, for the sake of convenience, the composite sheet for forming a protective film after removing the
In the protective film-forming
製造方法(1)の剥離工程後は、前記貼付工程において、図7Bに示すように、半導体ウエハ9の裏面9bに、剥離フィルム15を取り除いた後の保護膜形成用複合シート101中の保護膜形成用フィルム13を貼付する。
貼付工程においては、保護膜形成用フィルム13を加熱することにより軟化させて、半導体ウエハ9に貼付してもよい。
なお、ここでは、半導体ウエハ9において、回路面上のバンプ等の図示を省略している。 After the peeling step of the manufacturing method (1), as shown in FIG. 7B, in the pasting step, the protective film in the protective film-formingcomposite sheet 101 after removing the peeling film 15 from the back surface 9b of the semiconductor wafer 9 is shown. The forming film 13 is attached.
In the attaching step, the protectivefilm forming film 13 may be softened by heating and attached to the semiconductor wafer 9.
Here, in thesemiconductor wafer 9, bumps and the like on the circuit surface are not shown.
貼付工程においては、保護膜形成用フィルム13を加熱することにより軟化させて、半導体ウエハ9に貼付してもよい。
なお、ここでは、半導体ウエハ9において、回路面上のバンプ等の図示を省略している。 After the peeling step of the manufacturing method (1), as shown in FIG. 7B, in the pasting step, the protective film in the protective film-forming
In the attaching step, the protective
Here, in the
先の説明のとおり、剥離工程後、保護膜形成用複合シート101の剥離帯電は抑制されている。そのため、貼付工程後は、保護膜形成用フィルム13と半導体ウエハ9との間において、異物の混入が抑制されている。より具体的には、保護膜形成用フィルム13の第1面13aと、半導体ウエハ9の裏面9bと、の間に、異物が認められないか、又は、認められる異物の数が際立って少ない。
As described above, the peeling charge of the protective film forming composite sheet 101 is suppressed after the peeling step. Therefore, after the attaching step, foreign matter is prevented from entering between the protective film forming film 13 and the semiconductor wafer 9. More specifically, no foreign matter is recognized between the first surface 13a of the protective film forming film 13 and the back surface 9b of the semiconductor wafer 9, or the number of recognized foreign matter is extremely small.
製造方法(1)の貼付工程後は、前記保護膜形成工程において、半導体ウエハ9に貼付した後の保護膜形成用フィルム13を硬化させて、図7Cに示すように、保護膜13’を形成する。このとき、保護膜形成用フィルム13が熱硬化性である場合には、保護膜形成用フィルム13を加熱することにより、保護膜13’を形成する。保護膜形成用フィルム13がエネルギー線硬化性である場合には、支持シート10を介して保護膜形成用フィルム13にエネルギー線を照射することにより、保護膜13’を形成する。
なお、ここでは、保護膜形成用フィルム13が保護膜13’となった後の保護膜形成用複合シートを、符号101’で示している。これは、以降の図においても同様である。 After the attaching step of the manufacturing method (1), in the protective film forming step, the protectivefilm forming film 13 attached to the semiconductor wafer 9 is cured to form a protective film 13′ as shown in FIG. 7C. To do. At this time, when the protective film forming film 13 is thermosetting, the protective film forming film 13 is heated to form the protective film 13′. When the protective film forming film 13 is energy ray curable, the protective film 13′ is formed by irradiating the protective film forming film 13 with energy rays through the support sheet 10.
Here, the protective film forming composite sheet after the protectivefilm forming film 13 has become the protective film 13′ is indicated by reference numeral 101′. This also applies to subsequent figures.
なお、ここでは、保護膜形成用フィルム13が保護膜13’となった後の保護膜形成用複合シートを、符号101’で示している。これは、以降の図においても同様である。 After the attaching step of the manufacturing method (1), in the protective film forming step, the protective
Here, the protective film forming composite sheet after the protective
保護膜形成工程において、保護膜形成用フィルム13の硬化条件、すなわち、熱硬化時の加熱温度及び加熱時間、並びに、エネルギー線硬化時のエネルギー線の照度及び光量は、先に説明したとおりである。
In the protective film forming step, the curing conditions of the protective film forming film 13, that is, the heating temperature and the heating time at the time of thermosetting, and the illuminance and the light amount of the energy beam at the time of energy beam curing are as described above. ..
製造方法(1)の保護膜形成工程後は、前記分割工程において、半導体ウエハ9を分割し、保護膜13’を切断して、図7Dに示すように、切断後の保護膜130’を備えた複数個の半導体チップ9’を得る。このとき、保護膜13’は半導体チップ9’の周縁部に沿った位置で切断(分割)される。
After the protective film forming step of the manufacturing method (1), in the dividing step, the semiconductor wafer 9 is divided, the protective film 13′ is cut, and the cut protective film 130′ is provided as shown in FIG. 7D. A plurality of semiconductor chips 9'are obtained. At this time, the protective film 13' is cut (divided) at a position along the peripheral edge of the semiconductor chip 9'.
前記分割工程において、半導体ウエハ9を分割し、保護膜13’を切断する方法は、公知の方法でよい。
このような方法としては、例えば、ダイシングブレードを用いて、半導体ウエハ9を保護膜13’ごと分割(切断)する方法;半導体ウエハ9の内部に設定された焦点に集束するようにレーザー光を照射して、半導体ウエハ9の内部に改質層を形成し、次いで、この改質層が形成され、かつ裏面9bには保護膜13’が貼付された半導体ウエハ9を、この保護膜13’とともに、保護膜13’の表面方向にエキスパンドして、保護膜13’を切断するとともに、改質層の部位において半導体ウエハ9を分割する方法等が挙げられる。 The method of dividing thesemiconductor wafer 9 and cutting the protective film 13′ in the dividing step may be a known method.
As such a method, for example, a method of dividing (cutting) thesemiconductor wafer 9 together with the protective film 13 ′ by using a dicing blade; irradiating a laser beam so as to focus on a focus set inside the semiconductor wafer 9 Then, a modified layer is formed inside the semiconductor wafer 9, and then, the semiconductor wafer 9 on which the modified layer is formed and which has the protective film 13′ adhered on the back surface 9b is provided together with the protective film 13′. The method of expanding the protective film 13' in the surface direction to cut the protective film 13' and dividing the semiconductor wafer 9 at the modified layer portion may be used.
このような方法としては、例えば、ダイシングブレードを用いて、半導体ウエハ9を保護膜13’ごと分割(切断)する方法;半導体ウエハ9の内部に設定された焦点に集束するようにレーザー光を照射して、半導体ウエハ9の内部に改質層を形成し、次いで、この改質層が形成され、かつ裏面9bには保護膜13’が貼付された半導体ウエハ9を、この保護膜13’とともに、保護膜13’の表面方向にエキスパンドして、保護膜13’を切断するとともに、改質層の部位において半導体ウエハ9を分割する方法等が挙げられる。 The method of dividing the
As such a method, for example, a method of dividing (cutting) the
製造方法(1)の分割工程後は、前記ピックアップ工程において、図7Eに示すように、切断後の保護膜130’を備えた半導体チップ9’を、支持シート10から引き離してピックアップする。ここでは、ピックアップの方向を矢印Iで示しているが、これは以降の図においても同様である。半導体チップ9’を保護膜130’ごと支持シート10から引き離すための引き離し手段8としては、真空コレット等が挙げられる。
以上により、目的とする半導体チップ9’が、保護膜付き半導体チップとして得られる。
製造方法(1)で得られた保護膜付き半導体チップは、保護膜130’と半導体チップ9’との間において、異物の混入が抑制されており、優れた特性を有する。 After the dividing step of the manufacturing method (1), in the pickup step, as shown in FIG. 7E, thesemiconductor chip 9′ provided with the protective film 130′ after cutting is separated from the support sheet 10 and picked up. Here, the direction of the pickup is indicated by the arrow I, but this is the same in the subsequent figures. As the separating means 8 for separating the semiconductor chip 9′ together with the protective film 130′ from the support sheet 10, a vacuum collet or the like can be used.
As a result, the target semiconductor chip 9'is obtained as a semiconductor chip with a protective film.
The semiconductor chip with a protective film obtained by the manufacturing method (1) has excellent characteristics because foreign matter is prevented from entering between theprotective film 130′ and the semiconductor chip 9′.
以上により、目的とする半導体チップ9’が、保護膜付き半導体チップとして得られる。
製造方法(1)で得られた保護膜付き半導体チップは、保護膜130’と半導体チップ9’との間において、異物の混入が抑制されており、優れた特性を有する。 After the dividing step of the manufacturing method (1), in the pickup step, as shown in FIG. 7E, the
As a result, the target semiconductor chip 9'is obtained as a semiconductor chip with a protective film.
The semiconductor chip with a protective film obtained by the manufacturing method (1) has excellent characteristics because foreign matter is prevented from entering between the
製造方法(1)の貼付工程後、かつピックアップ工程前には、前記レーザー印字工程において、保護膜形成用フィルム又は保護膜にレーザー光を照射して、保護膜形成用フィルム又は保護膜にレーザー印字を行う。保護膜に対してレーザー印字を行う場合には、切断前の保護膜13’及び切断後の保護膜130’のいずれに対して行ってもよい。
After the attaching step of the manufacturing method (1) and before the pickup step, in the laser printing step, the protective film forming film or protective film is irradiated with laser light to perform laser printing on the protective film forming film or protective film. I do. When laser printing is performed on the protective film, it may be performed on either the protective film 13' before cutting or the protective film 130' after cutting.
レーザー印字工程においては、保護膜形成用フィルム又は保護膜に対して、支持シートを介してレーザー光を照射する。
In the laser printing process, the protective film forming film or the protective film is irradiated with laser light through the support sheet.
レーザー印字工程において、レーザー印字は、例えば、波長:532nm、周波数:20kHz、印字速度:100mm/sec、出力:0.24Wの条件で行うことができる。
In the laser printing process, laser printing can be performed, for example, under the conditions of wavelength: 532 nm, frequency: 20 kHz, printing speed: 100 mm/sec, output: 0.24 W.
製造方法(1)においては、保護膜形成工程後に分割工程を行うが、本実施形態に係る半導体チップの製造方法においては、保護膜形成工程を行わずに分割工程を行い、分割工程後に保護膜形成工程を行ってもよい(本実施形態を「製造方法(2)」と称することがある)。
すなわち、本実施形態の製造方法(製造方法(2))は、前記保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程(貼付工程)と、前記半導体ウエハを分割し、前記保護膜形成用フィルムを切断して、切断後の保護膜形成用フィルムを備えた複数個の半導体チップを得る工程(分割工程)と、前記半導体ウエハに貼付した後の前記保護膜形成用フィルム(切断後の保護膜形成用フィルム)を硬化させて、保護膜を形成する工程(保護膜形成工程)と、前記切断後(切断済み)の保護膜を備えた半導体チップを、前記支持シートから引き離してピックアップする工程(ピックアップ工程)と、を有し、さらに、前記貼付工程と前記ピックアップ工程との間に、前記レーザー印字工程(前記保護膜形成用フィルム又は保護膜にレーザー光を照射して、印字を行う工程)を有する。
図8は、このような半導体チップの製造方法の一実施形態を模式的に説明するための断面図である。 In the manufacturing method (1), the dividing step is performed after the protective film forming step. However, in the semiconductor chip manufacturing method according to the present embodiment, the dividing step is performed without the protective film forming step, and the protective film is formed after the dividing step. You may perform a formation process (this embodiment may be called "manufacturing method (2)").
That is, the manufacturing method (manufacturing method (2)) of the present embodiment includes a step of sticking the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (sticking step), and dividing the semiconductor wafer. Then, the step of dividing the protective film forming film to obtain a plurality of semiconductor chips having the cut protective film forming film (dividing step), and the protective film forming after being attached to the semiconductor wafer. The step of curing a protective film (a film for forming a protective film after cutting) to form a protective film (protective film forming process) and the semiconductor chip provided with the protective film after cutting (cut) are supported by the support. And a step of picking up by separating from the sheet (pickup step). Further, between the attaching step and the pickup step, the laser printing step (irradiating the protective film forming film or the protective film with laser light) is performed. And then printing).
FIG. 8 is a cross-sectional view for schematically explaining one embodiment of such a semiconductor chip manufacturing method.
すなわち、本実施形態の製造方法(製造方法(2))は、前記保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程(貼付工程)と、前記半導体ウエハを分割し、前記保護膜形成用フィルムを切断して、切断後の保護膜形成用フィルムを備えた複数個の半導体チップを得る工程(分割工程)と、前記半導体ウエハに貼付した後の前記保護膜形成用フィルム(切断後の保護膜形成用フィルム)を硬化させて、保護膜を形成する工程(保護膜形成工程)と、前記切断後(切断済み)の保護膜を備えた半導体チップを、前記支持シートから引き離してピックアップする工程(ピックアップ工程)と、を有し、さらに、前記貼付工程と前記ピックアップ工程との間に、前記レーザー印字工程(前記保護膜形成用フィルム又は保護膜にレーザー光を照射して、印字を行う工程)を有する。
図8は、このような半導体チップの製造方法の一実施形態を模式的に説明するための断面図である。 In the manufacturing method (1), the dividing step is performed after the protective film forming step. However, in the semiconductor chip manufacturing method according to the present embodiment, the dividing step is performed without the protective film forming step, and the protective film is formed after the dividing step. You may perform a formation process (this embodiment may be called "manufacturing method (2)").
That is, the manufacturing method (manufacturing method (2)) of the present embodiment includes a step of sticking the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (sticking step), and dividing the semiconductor wafer. Then, the step of dividing the protective film forming film to obtain a plurality of semiconductor chips having the cut protective film forming film (dividing step), and the protective film forming after being attached to the semiconductor wafer. The step of curing a protective film (a film for forming a protective film after cutting) to form a protective film (protective film forming process) and the semiconductor chip provided with the protective film after cutting (cut) are supported by the support. And a step of picking up by separating from the sheet (pickup step). Further, between the attaching step and the pickup step, the laser printing step (irradiating the protective film forming film or the protective film with laser light) is performed. And then printing).
FIG. 8 is a cross-sectional view for schematically explaining one embodiment of such a semiconductor chip manufacturing method.
製造方法(2)の前記剥離工程及び貼付工程は、それぞれ、図8A~図8Bに示すように、製造方法(1)の剥離工程及び貼付工程と同様の方法で(図7A~図7Bに示すように)行うことができる。
製造方法(1)の場合と同様に、製造方法(2)においても、貼付工程後は、保護膜形成用フィルム13と半導体ウエハ9との間において、異物の混入が抑制されている。 The peeling step and the sticking step of the manufacturing method (2) are the same as the peeling step and the sticking step of the manufacturing method (1) as shown in FIGS. 8A to 8B (shown in FIGS. 7A to 7B). Can be done).
Similar to the case of the manufacturing method (1), also in the manufacturing method (2), foreign matter is suppressed between the protectivefilm forming film 13 and the semiconductor wafer 9 after the attaching step.
製造方法(1)の場合と同様に、製造方法(2)においても、貼付工程後は、保護膜形成用フィルム13と半導体ウエハ9との間において、異物の混入が抑制されている。 The peeling step and the sticking step of the manufacturing method (2) are the same as the peeling step and the sticking step of the manufacturing method (1) as shown in FIGS. 8A to 8B (shown in FIGS. 7A to 7B). Can be done).
Similar to the case of the manufacturing method (1), also in the manufacturing method (2), foreign matter is suppressed between the protective
製造方法(2)の前記分割工程においては、半導体ウエハ9を分割し、保護膜形成用フィルム13を切断して、図8Cに示すように、切断後の保護膜形成用フィルム130を備えた複数個の半導体チップ9’を得る。このとき、保護膜形成用フィルム13は半導体チップ9’の周縁部に沿った位置で切断(分割)される。この切断後の保護膜形成用フィルム13を符号130で示している。
In the dividing step of the manufacturing method (2), the semiconductor wafer 9 is divided, the protective film forming film 13 is cut, and as shown in FIG. 8C, a plurality of cut protective film forming films 130 are provided. Individual semiconductor chips 9'are obtained. At this time, the protective film forming film 13 is cut (divided) at a position along the peripheral edge of the semiconductor chip 9'. The protective film forming film 13 after the cutting is indicated by reference numeral 130.
製造方法(2)の前記保護膜形成工程においては、保護膜形成用フィルム130を硬化させて、図8Dに示すように、半導体チップ9’に保護膜130’を形成する。
製造方法(2)における保護膜形成工程は、製造方法(1)における保護膜形成工程と同様の方法で行うことができる。
本工程を行うことにより、製造方法(1)の分割工程終了後、すなわち、図7(d)と同じ状態の保護膜付き半導体チップが得られる。 In the protective film forming step of the manufacturing method (2), the protectivefilm forming film 130 is cured to form the protective film 130′ on the semiconductor chip 9′ as shown in FIG. 8D.
The protective film forming step in the manufacturing method (2) can be performed by the same method as the protective film forming step in the manufacturing method (1).
By performing this step, a semiconductor chip with a protective film can be obtained after the dividing step of the manufacturing method (1), that is, in the same state as in FIG.
製造方法(2)における保護膜形成工程は、製造方法(1)における保護膜形成工程と同様の方法で行うことができる。
本工程を行うことにより、製造方法(1)の分割工程終了後、すなわち、図7(d)と同じ状態の保護膜付き半導体チップが得られる。 In the protective film forming step of the manufacturing method (2), the protective
The protective film forming step in the manufacturing method (2) can be performed by the same method as the protective film forming step in the manufacturing method (1).
By performing this step, a semiconductor chip with a protective film can be obtained after the dividing step of the manufacturing method (1), that is, in the same state as in FIG.
製造方法(2)の前記ピックアップ工程においては、図8Eに示すように、切断後の保護膜130’を備えた半導体チップ9’を、支持シート10から引き離してピックアップする。
製造方法(2)におけるピックアップ工程は、製造方法(1)におけるピックアップ工程と同様の方法で(図8Eに示すように)行うことができる。
以上により、目的とする半導体チップ9’が、保護膜付き半導体チップとして得られる。
製造方法(2)で得られた保護膜付き半導体チップは、保護膜130’と半導体チップ9’との間において、異物の混入が抑制されており、優れた特性を有する。 In the pickup step of the manufacturing method (2), as shown in FIG. 8E, thesemiconductor chip 9′ having the cut protective film 130′ is separated from the support sheet 10 and picked up.
The pickup step in the manufacturing method (2) can be performed by the same method as the pickup step in the manufacturing method (1) (as shown in FIG. 8E).
As a result, the target semiconductor chip 9'is obtained as a semiconductor chip with a protective film.
The semiconductor chip with a protective film obtained by the manufacturing method (2) has excellent properties because foreign matter is prevented from entering between theprotective film 130′ and the semiconductor chip 9′.
製造方法(2)におけるピックアップ工程は、製造方法(1)におけるピックアップ工程と同様の方法で(図8Eに示すように)行うことができる。
以上により、目的とする半導体チップ9’が、保護膜付き半導体チップとして得られる。
製造方法(2)で得られた保護膜付き半導体チップは、保護膜130’と半導体チップ9’との間において、異物の混入が抑制されており、優れた特性を有する。 In the pickup step of the manufacturing method (2), as shown in FIG. 8E, the
The pickup step in the manufacturing method (2) can be performed by the same method as the pickup step in the manufacturing method (1) (as shown in FIG. 8E).
As a result, the target semiconductor chip 9'is obtained as a semiconductor chip with a protective film.
The semiconductor chip with a protective film obtained by the manufacturing method (2) has excellent properties because foreign matter is prevented from entering between the
製造方法(2)の貼付工程後、かつピックアップ工程前には、前記レーザー印字工程において、保護膜形成用フィルム又は保護膜にレーザー光を照射して、保護膜形成用フィルム又は保護膜にレーザー印字を行う。保護膜形成用フィルムに対してレーザー印字を行う場合には、切断前の保護膜形成用フィルム13及び切断後の保護膜形成用フィルム130のいずれに対して行ってもよい。
After the attaching step of the production method (2) and before the pickup step, in the laser printing step, the protective film forming film or the protective film is irradiated with laser light to perform laser printing on the protective film forming film or the protective film. I do. When laser printing is performed on the protective film forming film, it may be performed on either the protective film forming film 13 before cutting or the protective film forming film 130 after cutting.
レーザー印字工程においては、保護膜形成用フィルム又は保護膜に対して、支持シートを介してレーザー光を照射する。
In the laser printing process, the protective film forming film or the protective film is irradiated with laser light through the support sheet.
レーザー印字工程において、レーザー印字は、例えば、製造方法(1)の場合と同じ印字条件で行うことができる。
In the laser printing process, laser printing can be performed under the same printing conditions as in the manufacturing method (1), for example.
製造方法(1)及び(2)においては、保護膜形成工程後にピックアップ工程を行うが、本実施形態に係る半導体チップの製造方法においては、保護膜形成工程を行わずにピックアップ工程までを行い、ピックアップ工程後に保護膜形成工程を行ってもよい(本実施形態を「製造方法(3)」と称することがある)。
すなわち、本実施形態の製造方法(製造方法(3))は、前記保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程(貼付工程)と、前記半導体ウエハを分割し、前記保護膜形成用フィルムを切断して、切断後の保護膜形成用フィルムを備えた複数個の半導体チップを得る工程(分割工程)と、前記切断後の保護膜形成用フィルムを備えた半導体チップを、前記支持シートから引き離してピックアップする工程(ピックアップ工程)と、前記半導体ウエハに貼付した後の前記保護膜形成用フィルム(切断及びピックアップ後の保護膜形成用フィルム)を硬化させて、保護膜を形成する工程(保護膜形成工程)と、を有し、さらに、前記貼付工程と前記ピックアップ工程との間に、前記レーザー印字工程(前記保護膜形成用フィルムにレーザー光を照射して、印字を行う工程)を有する。
図9は、このような半導体チップの製造方法の一実施形態を模式的に説明するための断面図である。 In the manufacturing methods (1) and (2), the pickup step is performed after the protective film forming step. However, in the semiconductor chip manufacturing method according to the present embodiment, the pickup step is performed without performing the protective film forming step. You may perform a protective film formation process after a pick-up process (this embodiment may be called "manufacturing method (3)").
That is, the manufacturing method (manufacturing method (3)) of the present embodiment includes a step of sticking the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (sticking step), and dividing the semiconductor wafer. Then, the step of dividing the protective film forming film to obtain a plurality of semiconductor chips having the cut protective film forming film (dividing step), and the cutting protective film forming film A step of picking up the semiconductor chip by separating it from the support sheet (pickup step), and curing the protective film forming film (the protective film forming film after cutting and picking up) after being attached to the semiconductor wafer, A step of forming a protective film (a protective film forming step), and further, between the attaching step and the pickup step, the laser printing step (irradiating the protective film forming film with a laser beam). , A step of performing printing).
FIG. 9 is a cross-sectional view for schematically explaining an embodiment of such a semiconductor chip manufacturing method.
すなわち、本実施形態の製造方法(製造方法(3))は、前記保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程(貼付工程)と、前記半導体ウエハを分割し、前記保護膜形成用フィルムを切断して、切断後の保護膜形成用フィルムを備えた複数個の半導体チップを得る工程(分割工程)と、前記切断後の保護膜形成用フィルムを備えた半導体チップを、前記支持シートから引き離してピックアップする工程(ピックアップ工程)と、前記半導体ウエハに貼付した後の前記保護膜形成用フィルム(切断及びピックアップ後の保護膜形成用フィルム)を硬化させて、保護膜を形成する工程(保護膜形成工程)と、を有し、さらに、前記貼付工程と前記ピックアップ工程との間に、前記レーザー印字工程(前記保護膜形成用フィルムにレーザー光を照射して、印字を行う工程)を有する。
図9は、このような半導体チップの製造方法の一実施形態を模式的に説明するための断面図である。 In the manufacturing methods (1) and (2), the pickup step is performed after the protective film forming step. However, in the semiconductor chip manufacturing method according to the present embodiment, the pickup step is performed without performing the protective film forming step. You may perform a protective film formation process after a pick-up process (this embodiment may be called "manufacturing method (3)").
That is, the manufacturing method (manufacturing method (3)) of the present embodiment includes a step of sticking the protective film forming film in the protective film forming composite sheet to a semiconductor wafer (sticking step), and dividing the semiconductor wafer. Then, the step of dividing the protective film forming film to obtain a plurality of semiconductor chips having the cut protective film forming film (dividing step), and the cutting protective film forming film A step of picking up the semiconductor chip by separating it from the support sheet (pickup step), and curing the protective film forming film (the protective film forming film after cutting and picking up) after being attached to the semiconductor wafer, A step of forming a protective film (a protective film forming step), and further, between the attaching step and the pickup step, the laser printing step (irradiating the protective film forming film with a laser beam). , A step of performing printing).
FIG. 9 is a cross-sectional view for schematically explaining an embodiment of such a semiconductor chip manufacturing method.
製造方法(3)の前記剥離工程、貼付工程及び分割工程は、それぞれ、図9A~図9Cに示すように、製造方法(2)の剥離工程、貼付工程及び分割工程と同様の方法で(図8A~図8Cに示すように)行うことができる。
製造方法(1)の場合と同様に、製造方法(3)においても、貼付工程後は、保護膜形成用フィルム13と半導体ウエハ9との間において、異物の混入が抑制されている。 The peeling step, the attaching step and the dividing step of the manufacturing method (3) are the same as the peeling step, the attaching step and the dividing step of the manufacturing method (2) as shown in FIGS. 9A to 9C, respectively (see FIG. 8A-8C).
As in the case of the manufacturing method (1), in the manufacturing method (3) as well, after the attaching step, the contamination of foreign matter is suppressed between the protectivefilm forming film 13 and the semiconductor wafer 9.
製造方法(1)の場合と同様に、製造方法(3)においても、貼付工程後は、保護膜形成用フィルム13と半導体ウエハ9との間において、異物の混入が抑制されている。 The peeling step, the attaching step and the dividing step of the manufacturing method (3) are the same as the peeling step, the attaching step and the dividing step of the manufacturing method (2) as shown in FIGS. 9A to 9C, respectively (see FIG. 8A-8C).
As in the case of the manufacturing method (1), in the manufacturing method (3) as well, after the attaching step, the contamination of foreign matter is suppressed between the protective
製造方法(3)の前記ピックアップ工程においては、図9Dに示すように、切断後の保護膜形成用フィルム130を備えた半導体チップ9’を、支持シート10から引き離してピックアップする。
製造方法(3)におけるピックアップ工程は、製造方法(1)及び(2)におけるピックアップ工程と同様の方法で(図7E及び図8Eに示すように)行うことができる。 In the pickup step of the manufacturing method (3), as shown in FIG. 9D, thesemiconductor chip 9′ including the cut protective film forming film 130 is separated from the support sheet 10 and picked up.
The pickup step in the manufacturing method (3) can be performed by the same method as the pickup step in the manufacturing methods (1) and (2) (as shown in FIGS. 7E and 8E).
製造方法(3)におけるピックアップ工程は、製造方法(1)及び(2)におけるピックアップ工程と同様の方法で(図7E及び図8Eに示すように)行うことができる。 In the pickup step of the manufacturing method (3), as shown in FIG. 9D, the
The pickup step in the manufacturing method (3) can be performed by the same method as the pickup step in the manufacturing methods (1) and (2) (as shown in FIGS. 7E and 8E).
製造方法(3)の貼付工程後、かつピックアップ工程前には、前記レーザー印字工程において、保護膜形成用フィルムにレーザー光を照射して、保護膜形成用フィルムにレーザー印字を行う。この場合には、切断前の保護膜形成用フィルム13及び切断後の保護膜形成用フィルム130のいずれに対して行ってもよい。
After the attaching step of the manufacturing method (3) and before the pickup step, in the laser printing step, the protective film forming film is irradiated with laser light to perform laser printing on the protective film forming film. In this case, it may be performed on either the protective film forming film 13 before cutting or the protective film forming film 130 after cutting.
レーザー印字工程においては、保護膜形成用フィルムに対して、支持シートを介してレーザー光を照射する。
In the laser printing process, the protective film forming film is irradiated with laser light through the support sheet.
レーザー印字工程において、レーザー印字は、例えば、製造方法(1)の場合と同じ印字条件で行うことができる。
In the laser printing process, laser printing can be performed under the same printing conditions as in the manufacturing method (1), for example.
製造方法(3)の前記保護膜形成工程においては、ピックアップ後の保護膜形成用フィルム130を硬化させて、図9Eに示すように、半導体チップ9’に保護膜130’を形成する。
保護膜形成用フィルム13が熱硬化性である場合には、製造方法(3)における保護膜形成工程は、製造方法(1)及び(2)における保護膜形成工程と同様の方法で行うことができる。保護膜形成用フィルム13がエネルギー線硬化性である場合には、製造方法(3)における保護膜形成工程は、保護膜形成用フィルム130へのエネルギー線の照射を、支持シート10を介して行う必要がない点以外は、製造方法(1)及び(2)における保護膜形成工程と同様の方法で行うことができる。
以上により、目的とする半導体チップ9’が、保護膜付き半導体チップとして得られる。
製造方法(3)で得られた保護膜付き半導体チップは、保護膜130’と半導体チップ9’との間において、異物の混入が抑制されており、優れた特性を有する。 In the protective film forming step of the manufacturing method (3), the protectivefilm forming film 130 after picking up is cured to form a protective film 130′ on the semiconductor chip 9′ as shown in FIG. 9E.
When the protectivefilm forming film 13 is thermosetting, the protective film forming step in the manufacturing method (3) may be performed by the same method as the protective film forming step in the manufacturing methods (1) and (2). it can. When the protective film forming film 13 is energy ray curable, the protective film forming step in the manufacturing method (3) irradiates the protective film forming film 130 with energy rays through the support sheet 10. Except that it is not necessary, it can be carried out by the same method as the protective film forming step in the manufacturing methods (1) and (2).
As a result, the target semiconductor chip 9'is obtained as a semiconductor chip with a protective film.
The semiconductor chip with a protective film obtained by the manufacturing method (3) has excellent characteristics because foreign matter is prevented from entering between theprotective film 130′ and the semiconductor chip 9′.
保護膜形成用フィルム13が熱硬化性である場合には、製造方法(3)における保護膜形成工程は、製造方法(1)及び(2)における保護膜形成工程と同様の方法で行うことができる。保護膜形成用フィルム13がエネルギー線硬化性である場合には、製造方法(3)における保護膜形成工程は、保護膜形成用フィルム130へのエネルギー線の照射を、支持シート10を介して行う必要がない点以外は、製造方法(1)及び(2)における保護膜形成工程と同様の方法で行うことができる。
以上により、目的とする半導体チップ9’が、保護膜付き半導体チップとして得られる。
製造方法(3)で得られた保護膜付き半導体チップは、保護膜130’と半導体チップ9’との間において、異物の混入が抑制されており、優れた特性を有する。 In the protective film forming step of the manufacturing method (3), the protective
When the protective
As a result, the target semiconductor chip 9'is obtained as a semiconductor chip with a protective film.
The semiconductor chip with a protective film obtained by the manufacturing method (3) has excellent characteristics because foreign matter is prevented from entering between the
製造方法(1)~(3)においては、先に説明したとおり、半導体ウエハ9を分割して半導体チップ9’を得る方法として、ダイシングブレードを用いずに、半導体ウエハ9の内部に改質層を形成し、この改質層の部位において半導体ウエハ9を分割する方法を適用できる。この場合、前記分割工程のうち、半導体ウエハ9の内部に改質層を形成する工程は、改質層の部位において半導体ウエハ9を分割する工程より前の段階であれば、いずれの段階で行ってもよく、例えば、貼付工程の前、貼付工程と保護膜形成工程との間、等のいずれかの段階で行うことができる。
In the manufacturing methods (1) to (3), as described above, as a method of dividing the semiconductor wafer 9 to obtain the semiconductor chips 9′, the modified layer is formed inside the semiconductor wafer 9 without using a dicing blade. Can be applied and the semiconductor wafer 9 can be divided at the portion of the modified layer. In this case, in the dividing step, the step of forming the modified layer inside the semiconductor wafer 9 may be performed at any step before the step of dividing the semiconductor wafer 9 at the modified layer portion. Alternatively, for example, it can be performed at any stage before the attaching step, between the attaching step and the protective film forming step, or the like.
ここまでは、図1に示す保護膜形成用複合シート101を用いた場合の、半導体チップの製造方法について説明したが、本発明の半導体チップの製造方法は、これに限定されない。
例えば、本発明の半導体チップの製造方法は、図2~図5に示す保護膜形成用複合シート102~105、図6に示す保護膜形成用複合シート301等、図1に示す保護膜形成用複合シート101以外のものを用いても、同様に半導体チップを製造できる。
このように、他の実施形態の保護膜形成用複合シートを用いる場合には、これらシートの構造の相違に基づいて、上述の製造方法において、適宜、工程の追加、変更、削除等を行って、半導体チップを製造すればよい。 Up to this point, the method of manufacturing a semiconductor chip using thecomposite film 101 for forming a protective film shown in FIG. 1 has been described, but the method of manufacturing a semiconductor chip of the present invention is not limited to this.
For example, the method for manufacturing a semiconductor chip according to the present invention can be applied to the protective film formingcomposite sheets 102 to 105 shown in FIGS. 2 to 5, the protective film forming composite sheet 301 shown in FIG. A semiconductor chip can be similarly manufactured by using a material other than the composite sheet 101.
Thus, when using the composite film for forming a protective film of another embodiment, based on the difference in the structure of these sheets, in the above-described manufacturing method, the addition, change, deletion, etc. of steps are appropriately performed. The semiconductor chip may be manufactured.
例えば、本発明の半導体チップの製造方法は、図2~図5に示す保護膜形成用複合シート102~105、図6に示す保護膜形成用複合シート301等、図1に示す保護膜形成用複合シート101以外のものを用いても、同様に半導体チップを製造できる。
このように、他の実施形態の保護膜形成用複合シートを用いる場合には、これらシートの構造の相違に基づいて、上述の製造方法において、適宜、工程の追加、変更、削除等を行って、半導体チップを製造すればよい。 Up to this point, the method of manufacturing a semiconductor chip using the
For example, the method for manufacturing a semiconductor chip according to the present invention can be applied to the protective film forming
Thus, when using the composite film for forming a protective film of another embodiment, based on the difference in the structure of these sheets, in the above-described manufacturing method, the addition, change, deletion, etc. of steps are appropriately performed. The semiconductor chip may be manufactured.
◇半導体装置の製造方法
上述の製造方法により、保護膜付き半導体チップを得た後は、公知の方法により、この半導体チップを、基板の回路面にフリップチップ接続した後、半導体パッケージとし、この半導体パッケージを用いることにより、目的とする半導体装置を製造できる(図示略)。 ◇Method for manufacturing semiconductor device After the semiconductor chip with the protective film is obtained by the above-mentioned manufacturing method, the semiconductor chip is flip-chip connected to the circuit surface of the substrate by a known method to form a semiconductor package. A target semiconductor device can be manufactured by using the package (not shown).
上述の製造方法により、保護膜付き半導体チップを得た後は、公知の方法により、この半導体チップを、基板の回路面にフリップチップ接続した後、半導体パッケージとし、この半導体パッケージを用いることにより、目的とする半導体装置を製造できる(図示略)。 ◇Method for manufacturing semiconductor device After the semiconductor chip with the protective film is obtained by the above-mentioned manufacturing method, the semiconductor chip is flip-chip connected to the circuit surface of the substrate by a known method to form a semiconductor package. A target semiconductor device can be manufactured by using the package (not shown).
以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples described below.
<帯電防止組成物>
実施例又は比較例で用いた帯電防止組成物を以下に示す。
帯電防止組成物(VI-1)-1:ポリピロールを反応性乳化剤によって乳化し、有機溶媒に溶解させて得られたポリピロール溶液。
帯電防止組成物(VI-1)-2:出光興産社製「UVH515」 <Antistatic composition>
The antistatic composition used in the examples or comparative examples is shown below.
Antistatic composition (VI-1)-1: A polypyrrole solution obtained by emulsifying polypyrrole with a reactive emulsifier and dissolving it in an organic solvent.
Antistatic composition (VI-1)-2: "UVH515" manufactured by Idemitsu Kosan Co., Ltd.
実施例又は比較例で用いた帯電防止組成物を以下に示す。
帯電防止組成物(VI-1)-1:ポリピロールを反応性乳化剤によって乳化し、有機溶媒に溶解させて得られたポリピロール溶液。
帯電防止組成物(VI-1)-2:出光興産社製「UVH515」 <Antistatic composition>
The antistatic composition used in the examples or comparative examples is shown below.
Antistatic composition (VI-1)-1: A polypyrrole solution obtained by emulsifying polypyrrole with a reactive emulsifier and dissolving it in an organic solvent.
Antistatic composition (VI-1)-2: "UVH515" manufactured by Idemitsu Kosan Co., Ltd.
<保護膜形成用組成物の製造原料>
保護膜形成用組成物の製造に用いた原料を以下に示す。
[重合体成分(A)]
(A)-1:アクリル酸n-ブチル(10質量部)、アクリル酸メチル(70質量部)、メタクリル酸グリシジル(5質量部)及びアクリル酸2-ヒドロキシエチル(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量400000、ガラス転移温度-1℃)
[熱硬化性成分(B)]
・エポキシ樹脂(B1)
(B1)-1:ビスフェノールA型エポキシ樹脂(三菱化学社製「jER1055」、エポキシ当量800~900g/eq)
(B1)-2:ビスフェノールA型エポキシ樹脂(日本触媒社製「BPA328」、エポキシ当量235g/eq)
(B1)-3:ジシクロペンタジエン型エポキシ樹脂(DIC社製「エピクロンHP-7200HH」、エポキシ当量274~286g/eq)
・熱硬化剤(B2)
(B2)-1:ジシアンジアミド(熱活性潜在性エポキシ樹脂硬化剤、三菱化学社製「DICY7」、活性水素量21g/eq)
[硬化促進剤(C)]
(C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
[充填材(D)]
(D)-1:シリカフィラー(アドマテックス社製「SC2050MA」、エポキシ系化合物で表面修飾されたシリカフィラー、平均粒子径500nm)
[着色剤(I)]
(I)-1:カーボンブラック(三菱化学社製「MA600B」) <Manufacturing raw material of protective film forming composition>
The raw materials used for producing the protective film-forming composition are shown below.
[Polymer component (A)]
(A)-1: Copolymerized with n-butyl acrylate (10 parts by mass), methyl acrylate (70 parts by mass), glycidyl methacrylate (5 parts by mass) and 2-hydroxyethyl acrylate (15 parts by mass) Acrylic resin (weight average molecular weight 400000, glass transition temperature -1°C)
[Thermosetting component (B)]
・Epoxy resin (B1)
(B1)-1: Bisphenol A type epoxy resin (“jER1055” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 800 to 900 g/eq)
(B1)-2: Bisphenol A type epoxy resin (“BPA328” manufactured by Nippon Shokubai Co., epoxy equivalent 235 g/eq)
(B1)-3: Dicyclopentadiene type epoxy resin (“Epiclone HP-7200HH” manufactured by DIC, epoxy equivalent 274 to 286 g/eq)
・Thermosetting agent (B2)
(B2)-1: Dicyandiamide (heat activated latent epoxy resin curing agent, "DICY7" manufactured by Mitsubishi Chemical Co., active hydrogen amount 21 g/eq)
[Curing accelerator (C)]
(C)-1:2-Phenyl-4,5-dihydroxymethylimidazole ("CUREZOL 2PHZ-PW" manufactured by Shikoku Chemicals)
[Filler (D)]
(D)-1: Silica filler (“SC2050MA” manufactured by Admatechs, silica filler surface-modified with an epoxy compound, average particle diameter 500 nm)
[Colorant (I)]
(I)-1: Carbon black ("MA600B" manufactured by Mitsubishi Chemical Corporation)
保護膜形成用組成物の製造に用いた原料を以下に示す。
[重合体成分(A)]
(A)-1:アクリル酸n-ブチル(10質量部)、アクリル酸メチル(70質量部)、メタクリル酸グリシジル(5質量部)及びアクリル酸2-ヒドロキシエチル(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量400000、ガラス転移温度-1℃)
[熱硬化性成分(B)]
・エポキシ樹脂(B1)
(B1)-1:ビスフェノールA型エポキシ樹脂(三菱化学社製「jER1055」、エポキシ当量800~900g/eq)
(B1)-2:ビスフェノールA型エポキシ樹脂(日本触媒社製「BPA328」、エポキシ当量235g/eq)
(B1)-3:ジシクロペンタジエン型エポキシ樹脂(DIC社製「エピクロンHP-7200HH」、エポキシ当量274~286g/eq)
・熱硬化剤(B2)
(B2)-1:ジシアンジアミド(熱活性潜在性エポキシ樹脂硬化剤、三菱化学社製「DICY7」、活性水素量21g/eq)
[硬化促進剤(C)]
(C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
[充填材(D)]
(D)-1:シリカフィラー(アドマテックス社製「SC2050MA」、エポキシ系化合物で表面修飾されたシリカフィラー、平均粒子径500nm)
[着色剤(I)]
(I)-1:カーボンブラック(三菱化学社製「MA600B」) <Manufacturing raw material of protective film forming composition>
The raw materials used for producing the protective film-forming composition are shown below.
[Polymer component (A)]
(A)-1: Copolymerized with n-butyl acrylate (10 parts by mass), methyl acrylate (70 parts by mass), glycidyl methacrylate (5 parts by mass) and 2-hydroxyethyl acrylate (15 parts by mass) Acrylic resin (weight average molecular weight 400000, glass transition temperature -1°C)
[Thermosetting component (B)]
・Epoxy resin (B1)
(B1)-1: Bisphenol A type epoxy resin (“jER1055” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 800 to 900 g/eq)
(B1)-2: Bisphenol A type epoxy resin (“BPA328” manufactured by Nippon Shokubai Co., epoxy equivalent 235 g/eq)
(B1)-3: Dicyclopentadiene type epoxy resin (“Epiclone HP-7200HH” manufactured by DIC, epoxy equivalent 274 to 286 g/eq)
・Thermosetting agent (B2)
(B2)-1: Dicyandiamide (heat activated latent epoxy resin curing agent, "DICY7" manufactured by Mitsubishi Chemical Co., active hydrogen amount 21 g/eq)
[Curing accelerator (C)]
(C)-1:2-Phenyl-4,5-dihydroxymethylimidazole ("CUREZOL 2PHZ-PW" manufactured by Shikoku Chemicals)
[Filler (D)]
(D)-1: Silica filler (“SC2050MA” manufactured by Admatechs, silica filler surface-modified with an epoxy compound, average particle diameter 500 nm)
[Colorant (I)]
(I)-1: Carbon black ("MA600B" manufactured by Mitsubishi Chemical Corporation)
[実施例1]
<<保護膜形成用複合シートの製造>>
<熱硬化性保護膜形成用組成物(III-1)の製造>
重合体成分(A)-1(150質量部)、エポキシ樹脂(B1)-1(10質量部)、エポキシ樹脂(B1)-2(60質量部)、エポキシ樹脂(B1)-3(30質量部)、熱硬化剤(B2)-1(2.4質量部)、硬化促進剤(C)-1(2.4質量部)、充填材(D)-1(320質量部)、及び着色剤(I)-1(1.16質量部)を混合し、さらに、これらの合計濃度が55質量%となるように、メチルエチルケトンで希釈して、熱硬化性保護膜形成用組成物(III-1)を調製した。 [Example 1]
<<Production of composite sheet for forming protective film>>
<Production of Thermosetting Protective Film Forming Composition (III-1)>
Polymer component (A)-1 (150 parts by mass), epoxy resin (B1)-1 (10 parts by mass), epoxy resin (B1)-2 (60 parts by mass), epoxy resin (B1)-3 (30 parts by mass) Parts), thermosetting agent (B2)-1 (2.4 parts by mass), curing accelerator (C)-1 (2.4 parts by mass), filler (D)-1 (320 parts by mass), and coloring. The agent (I)-1 (1.16 parts by mass) is mixed, and further diluted with methyl ethyl ketone so that the total concentration thereof is 55% by mass, and the thermosetting protective film-forming composition (III- 1) was prepared.
<<保護膜形成用複合シートの製造>>
<熱硬化性保護膜形成用組成物(III-1)の製造>
重合体成分(A)-1(150質量部)、エポキシ樹脂(B1)-1(10質量部)、エポキシ樹脂(B1)-2(60質量部)、エポキシ樹脂(B1)-3(30質量部)、熱硬化剤(B2)-1(2.4質量部)、硬化促進剤(C)-1(2.4質量部)、充填材(D)-1(320質量部)、及び着色剤(I)-1(1.16質量部)を混合し、さらに、これらの合計濃度が55質量%となるように、メチルエチルケトンで希釈して、熱硬化性保護膜形成用組成物(III-1)を調製した。 [Example 1]
<<Production of composite sheet for forming protective film>>
<Production of Thermosetting Protective Film Forming Composition (III-1)>
Polymer component (A)-1 (150 parts by mass), epoxy resin (B1)-1 (10 parts by mass), epoxy resin (B1)-2 (60 parts by mass), epoxy resin (B1)-3 (30 parts by mass) Parts), thermosetting agent (B2)-1 (2.4 parts by mass), curing accelerator (C)-1 (2.4 parts by mass), filler (D)-1 (320 parts by mass), and coloring. The agent (I)-1 (1.16 parts by mass) is mixed, and further diluted with methyl ethyl ketone so that the total concentration thereof is 55% by mass, and the thermosetting protective film-forming composition (III- 1) was prepared.
<保護膜形成用フィルムの製造>
ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた熱硬化性保護膜形成用組成物(III-1)を塗工し、100℃で2分乾燥させることにより、厚さ40μmの熱硬化性の保護膜形成用フィルムを製造した。 <Production of protective film forming film>
A release film (“SP-PET381031” manufactured by Lintec Co., thickness 38 μm) in which one side of a polyethylene terephthalate film was subjected to release treatment by silicone treatment was used, and the thermosetting protective film obtained above was applied to the release treated surface. The composition (III-1) for forming was applied and dried at 100° C. for 2 minutes to produce a thermosetting protective film-forming film having a thickness of 40 μm.
ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた熱硬化性保護膜形成用組成物(III-1)を塗工し、100℃で2分乾燥させることにより、厚さ40μmの熱硬化性の保護膜形成用フィルムを製造した。 <Production of protective film forming film>
A release film (“SP-PET381031” manufactured by Lintec Co., thickness 38 μm) in which one side of a polyethylene terephthalate film was subjected to release treatment by silicone treatment was used, and the thermosetting protective film obtained above was applied to the release treated surface. The composition (III-1) for forming was applied and dried at 100° C. for 2 minutes to produce a thermosetting protective film-forming film having a thickness of 40 μm.
<帯電防止層の形成>
基材として、一方の面の表面粗さRaが0.2μmであり、他方の面の表面粗さRaがこの値よりも小さく、このように一方の面が凹凸面であり、他方の面が平滑面である、ポリプロピレン製基材(厚さ80μm)を準備した。
このポリプロピレン製基材の前記凹凸面に、バーコーターを用いて、前記帯電防止組成物(VI-1)-2を塗布し、50℃で1分乾燥させることにより、前記基材上に、厚さ170nmの背面帯電防止層を形成した。 <Formation of antistatic layer>
As the base material, the surface roughness Ra of one surface is 0.2 μm, the surface roughness Ra of the other surface is smaller than this value, and thus one surface is an uneven surface and the other surface is A polypropylene base material (thickness 80 μm) having a smooth surface was prepared.
The antistatic composition (VI-1)-2 was applied to the uneven surface of the polypropylene base material using a bar coater, and dried at 50° C. for 1 minute to form a thick film on the base material. A backside antistatic layer having a thickness of 170 nm was formed.
基材として、一方の面の表面粗さRaが0.2μmであり、他方の面の表面粗さRaがこの値よりも小さく、このように一方の面が凹凸面であり、他方の面が平滑面である、ポリプロピレン製基材(厚さ80μm)を準備した。
このポリプロピレン製基材の前記凹凸面に、バーコーターを用いて、前記帯電防止組成物(VI-1)-2を塗布し、50℃で1分乾燥させることにより、前記基材上に、厚さ170nmの背面帯電防止層を形成した。 <Formation of antistatic layer>
As the base material, the surface roughness Ra of one surface is 0.2 μm, the surface roughness Ra of the other surface is smaller than this value, and thus one surface is an uneven surface and the other surface is A polypropylene base material (thickness 80 μm) having a smooth surface was prepared.
The antistatic composition (VI-1)-2 was applied to the uneven surface of the polypropylene base material using a bar coater, and dried at 50° C. for 1 minute to form a thick film on the base material. A backside antistatic layer having a thickness of 170 nm was formed.
<粘着剤組成物(I-4)の製造>
アクリル系重合体(100質量部)、ビスフェノールA型エポキシ樹脂(三菱ケミカル社製「JER828」)(前記エポキシ樹脂の量として30質量部)、及び3官能キシリレンジイソシアネート系架橋剤(三井武田ケミカル社製「タケネートD110N」)(前記架橋剤の量として35質量部)を含有し、さらに溶媒としてメチルエチルケトンを含有し、前記アクリル系重合体、エポキシ樹脂及び架橋剤の合計濃度が35質量%の非エネルギー線硬化性の粘着剤組成物(I-4)を調製した。前記アクリル系重合体は、アクリル酸-2-エチルヘキシル(60質量部)、メタクリル酸メチル(30質量部)、及びアクリル酸2-ヒドロキシエチル(10質量部)を共重合してなる、重量平均分子量が600000の共重合体である。 <Production of adhesive composition (I-4)>
Acrylic polymer (100 parts by mass), bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation) (30 parts by mass as the amount of the epoxy resin), and trifunctional xylylene diisocyanate cross-linking agent (Mitsui Takeda Chemical Co., Ltd. "Takenate D110N") (35 parts by mass as the amount of the cross-linking agent) and methyl ethyl ketone as the solvent, and the total concentration of the acrylic polymer, the epoxy resin and the cross-linking agent is 35% by mass of non-energy. A line-curable pressure-sensitive adhesive composition (I-4) was prepared. The acrylic polymer is a copolymer of 2-ethylhexyl acrylate (60 parts by mass), methyl methacrylate (30 parts by mass), and 2-hydroxyethyl acrylate (10 parts by mass), which is a weight average molecular weight. Is 600,000.
アクリル系重合体(100質量部)、ビスフェノールA型エポキシ樹脂(三菱ケミカル社製「JER828」)(前記エポキシ樹脂の量として30質量部)、及び3官能キシリレンジイソシアネート系架橋剤(三井武田ケミカル社製「タケネートD110N」)(前記架橋剤の量として35質量部)を含有し、さらに溶媒としてメチルエチルケトンを含有し、前記アクリル系重合体、エポキシ樹脂及び架橋剤の合計濃度が35質量%の非エネルギー線硬化性の粘着剤組成物(I-4)を調製した。前記アクリル系重合体は、アクリル酸-2-エチルヘキシル(60質量部)、メタクリル酸メチル(30質量部)、及びアクリル酸2-ヒドロキシエチル(10質量部)を共重合してなる、重量平均分子量が600000の共重合体である。 <Production of adhesive composition (I-4)>
Acrylic polymer (100 parts by mass), bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation) (30 parts by mass as the amount of the epoxy resin), and trifunctional xylylene diisocyanate cross-linking agent (Mitsui Takeda Chemical Co., Ltd. "Takenate D110N") (35 parts by mass as the amount of the cross-linking agent) and methyl ethyl ketone as the solvent, and the total concentration of the acrylic polymer, the epoxy resin and the cross-linking agent is 35% by mass of non-energy. A line-curable pressure-sensitive adhesive composition (I-4) was prepared. The acrylic polymer is a copolymer of 2-ethylhexyl acrylate (60 parts by mass), methyl methacrylate (30 parts by mass), and 2-hydroxyethyl acrylate (10 parts by mass), which is a weight average molecular weight. Is 600,000.
<支持シートの製造>
上述の保護膜形成用フィルムの製造時に用いたものと同じ剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その剥離処理面に、上記で得られた粘着剤組成物(I-4)を塗工し、120℃で2分加熱乾燥させることにより、厚さ5μmの非エネルギー線硬化性の粘着剤層を形成した。
次いで、この剥離フィルム及び粘着剤層の積層物のうち、粘着剤層の露出面(換言すると、粘着剤層の剥離フィルム側とは反対側の面)と、上記で得られた基材及び背面帯電防止層の積層物のうち、基材の露出面(換言すると、基材の背面帯電防止層側とは反対側の面)と、を貼り合わせた。これにより、背面帯電防止層、基材、粘着剤層及び剥離フィルムがこの順に、これらの厚さ方向において積層されて構成された、剥離フィルム付きの支持シートを製造した。 <Manufacture of support sheet>
The same release film (“SP-PET381031” manufactured by Lintec Co., thickness 38 μm) as that used in the production of the above-mentioned film for forming a protective film was used, and the pressure-sensitive adhesive composition obtained above on the release-treated surface ( I-4) was applied and dried by heating at 120° C. for 2 minutes to form a non-energy ray curable pressure-sensitive adhesive layer having a thickness of 5 μm.
Next, in the laminate of the release film and the pressure-sensitive adhesive layer, the exposed surface of the pressure-sensitive adhesive layer (in other words, the surface opposite to the release film side of the pressure-sensitive adhesive layer), the substrate and the back surface obtained above Of the laminate of the antistatic layer, the exposed surface of the base material (in other words, the surface opposite to the back surface antistatic layer side of the base material) was bonded. As a result, a support sheet with a release film was produced, in which the back surface antistatic layer, the substrate, the pressure-sensitive adhesive layer, and the release film were laminated in this order in the thickness direction.
上述の保護膜形成用フィルムの製造時に用いたものと同じ剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その剥離処理面に、上記で得られた粘着剤組成物(I-4)を塗工し、120℃で2分加熱乾燥させることにより、厚さ5μmの非エネルギー線硬化性の粘着剤層を形成した。
次いで、この剥離フィルム及び粘着剤層の積層物のうち、粘着剤層の露出面(換言すると、粘着剤層の剥離フィルム側とは反対側の面)と、上記で得られた基材及び背面帯電防止層の積層物のうち、基材の露出面(換言すると、基材の背面帯電防止層側とは反対側の面)と、を貼り合わせた。これにより、背面帯電防止層、基材、粘着剤層及び剥離フィルムがこの順に、これらの厚さ方向において積層されて構成された、剥離フィルム付きの支持シートを製造した。 <Manufacture of support sheet>
The same release film (“SP-PET381031” manufactured by Lintec Co., thickness 38 μm) as that used in the production of the above-mentioned film for forming a protective film was used, and the pressure-sensitive adhesive composition obtained above on the release-treated surface ( I-4) was applied and dried by heating at 120° C. for 2 minutes to form a non-energy ray curable pressure-sensitive adhesive layer having a thickness of 5 μm.
Next, in the laminate of the release film and the pressure-sensitive adhesive layer, the exposed surface of the pressure-sensitive adhesive layer (in other words, the surface opposite to the release film side of the pressure-sensitive adhesive layer), the substrate and the back surface obtained above Of the laminate of the antistatic layer, the exposed surface of the base material (in other words, the surface opposite to the back surface antistatic layer side of the base material) was bonded. As a result, a support sheet with a release film was produced, in which the back surface antistatic layer, the substrate, the pressure-sensitive adhesive layer, and the release film were laminated in this order in the thickness direction.
<保護膜形成用複合シートの製造>
上記で得られた支持シートにおいて、剥離フィルムを取り除いた。そして、この支持シートのうち、新たに生じた粘着剤層の露出面(換言すると、粘着剤層の基材側とは反対側の面)と、上記で得られた剥離フィルム及び保護膜形成用フィルムの積層物のうち、保護膜形成用フィルムの露出面(換言すると、保護膜形成用フィルムの剥離フィルム側とは反対側の面)と、を貼り合わせた。これにより、背面帯電防止層(厚さ170nm)、基材(厚さ80μm)、粘着剤層(厚さ5μm)、保護膜形成用フィルム(厚さ40μm)及び剥離フィルム(厚さ38μm)がこの順に、これらの厚さ方向において積層されて構成された保護膜形成用複合シートを得た。この保護膜形成用複合シートにおいては、背面帯電防止層、基材及び粘着剤層の積層体(換言すると、支持シート)の平面形状を、直径が270mmの円形とし、保護膜形成用フィルム及び剥離フィルムの積層体の平面形状を、直径が210mmの円形として、これら2つの円が同心になるようにした。
次いで、剥離フィルムを取り除き、保護膜形成用フィルムの露出面(換言すると、保護膜形成用フィルムの粘着剤層側とは反対側の面、又は第1面)のうち、保護膜形成用フィルムの周縁部近傍の領域に、治具用接着剤層を設けた。
次いで、保護膜形成用フィルムの第1面と、治具用接着剤層の第1面とに、先に取り除いたものと同じ剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を貼り合わせた。
以上により、図2に示す構成で、かつ、保護膜形成用フィルムの大きさが支持シートの大きさよりもわずかに小さくなっている、剥離フィルム付きの保護膜形成用複合シートを製造した。
表1に、保護膜形成用複合シートを構成する各層を示す。層の欄の「-」との記載は、保護膜形成用複合シートがその層を備えていないことを意味する。 <Production of composite sheet for forming protective film>
The release film was removed from the support sheet obtained above. Then, of this support sheet, the newly-exposed exposed surface of the pressure-sensitive adhesive layer (in other words, the surface opposite to the base material side of the pressure-sensitive adhesive layer) and the release film and protective film formation obtained above Of the laminate of films, the exposed surface of the protective film forming film (in other words, the surface of the protective film forming film opposite to the release film side) was attached. As a result, the back surface antistatic layer (thickness 170 nm), substrate (thickness 80 μm), adhesive layer (thickness 5 μm), protective film forming film (thickness 40 μm) and release film (thickness 38 μm) In order, a protective film-forming composite sheet constituted by laminating these in the thickness direction was obtained. In this composite sheet for forming a protective film, the laminate of the back surface antistatic layer, the base material and the pressure-sensitive adhesive layer (in other words, the support sheet) has a planar shape of a circle having a diameter of 270 mm, and the protective film-forming film and peeling film are formed. The planar shape of the film laminate was a circle with a diameter of 210 mm, and these two circles were concentric.
Next, the release film is removed, and the exposed surface of the protective film-forming film (in other words, the surface opposite to the pressure-sensitive adhesive layer side of the protective film-forming film, or the first surface) is the protective film-forming film. An adhesive layer for a jig was provided in a region near the peripheral edge.
Then, on the first surface of the protective film-forming film and the first surface of the jig adhesive layer, the same release film as previously removed (“SP-PET381031” manufactured by Lintec Co., Ltd., thickness: 38 μm) was used. Pasted together
As described above, a protective film-forming composite sheet with a release film, which has the configuration shown in FIG. 2 and in which the size of the protective film-forming film is slightly smaller than the size of the support sheet, was produced.
Table 1 shows each layer constituting the composite sheet for forming a protective film. The description of "-" in the layer column means that the composite film for forming a protective film does not have the layer.
上記で得られた支持シートにおいて、剥離フィルムを取り除いた。そして、この支持シートのうち、新たに生じた粘着剤層の露出面(換言すると、粘着剤層の基材側とは反対側の面)と、上記で得られた剥離フィルム及び保護膜形成用フィルムの積層物のうち、保護膜形成用フィルムの露出面(換言すると、保護膜形成用フィルムの剥離フィルム側とは反対側の面)と、を貼り合わせた。これにより、背面帯電防止層(厚さ170nm)、基材(厚さ80μm)、粘着剤層(厚さ5μm)、保護膜形成用フィルム(厚さ40μm)及び剥離フィルム(厚さ38μm)がこの順に、これらの厚さ方向において積層されて構成された保護膜形成用複合シートを得た。この保護膜形成用複合シートにおいては、背面帯電防止層、基材及び粘着剤層の積層体(換言すると、支持シート)の平面形状を、直径が270mmの円形とし、保護膜形成用フィルム及び剥離フィルムの積層体の平面形状を、直径が210mmの円形として、これら2つの円が同心になるようにした。
次いで、剥離フィルムを取り除き、保護膜形成用フィルムの露出面(換言すると、保護膜形成用フィルムの粘着剤層側とは反対側の面、又は第1面)のうち、保護膜形成用フィルムの周縁部近傍の領域に、治具用接着剤層を設けた。
次いで、保護膜形成用フィルムの第1面と、治具用接着剤層の第1面とに、先に取り除いたものと同じ剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を貼り合わせた。
以上により、図2に示す構成で、かつ、保護膜形成用フィルムの大きさが支持シートの大きさよりもわずかに小さくなっている、剥離フィルム付きの保護膜形成用複合シートを製造した。
表1に、保護膜形成用複合シートを構成する各層を示す。層の欄の「-」との記載は、保護膜形成用複合シートがその層を備えていないことを意味する。 <Production of composite sheet for forming protective film>
The release film was removed from the support sheet obtained above. Then, of this support sheet, the newly-exposed exposed surface of the pressure-sensitive adhesive layer (in other words, the surface opposite to the base material side of the pressure-sensitive adhesive layer) and the release film and protective film formation obtained above Of the laminate of films, the exposed surface of the protective film forming film (in other words, the surface of the protective film forming film opposite to the release film side) was attached. As a result, the back surface antistatic layer (thickness 170 nm), substrate (thickness 80 μm), adhesive layer (thickness 5 μm), protective film forming film (thickness 40 μm) and release film (thickness 38 μm) In order, a protective film-forming composite sheet constituted by laminating these in the thickness direction was obtained. In this composite sheet for forming a protective film, the laminate of the back surface antistatic layer, the base material and the pressure-sensitive adhesive layer (in other words, the support sheet) has a planar shape of a circle having a diameter of 270 mm, and the protective film-forming film and peeling film are formed. The planar shape of the film laminate was a circle with a diameter of 210 mm, and these two circles were concentric.
Next, the release film is removed, and the exposed surface of the protective film-forming film (in other words, the surface opposite to the pressure-sensitive adhesive layer side of the protective film-forming film, or the first surface) is the protective film-forming film. An adhesive layer for a jig was provided in a region near the peripheral edge.
Then, on the first surface of the protective film-forming film and the first surface of the jig adhesive layer, the same release film as previously removed (“SP-PET381031” manufactured by Lintec Co., Ltd., thickness: 38 μm) was used. Pasted together
As described above, a protective film-forming composite sheet with a release film, which has the configuration shown in FIG. 2 and in which the size of the protective film-forming film is slightly smaller than the size of the support sheet, was produced.
Table 1 shows each layer constituting the composite sheet for forming a protective film. The description of "-" in the layer column means that the composite film for forming a protective film does not have the layer.
<<保護膜形成用複合シートの評価>>
<保護膜形成用フィルムが熱硬化する前の、保護膜形成用複合シートの表面抵抗率の測定>
表面抵抗率計(アドバンテスト社製「R12704 Resistivity chamber」)を用い、上記で得られた保護膜形成用複合シート中の保護膜形成用フィルムを熱硬化させることなく、印加電圧を100Vとして、このシート中の背面帯電防止層の、基材とは反対側の露出面において、表面抵抗率を測定した。結果を、表1中の「保護膜形成用複合シートの熱硬化前の表面抵抗率(Ω/□)」の欄に示す。 <<Evaluation of protective film forming composite sheet>>
<Measurement of the surface resistivity of the protective film-forming composite sheet before the protective film-forming film is thermally cured>
Using a surface resistivity meter ("R12704 Resistivity chamber" manufactured by Advantest), the protective film-forming film in the protective film-forming composite sheet obtained above was heated to 100 V and the applied voltage was set to 100 V without thermosetting. The surface resistivity was measured on the exposed surface of the backside antistatic layer opposite to the substrate. The results are shown in the column of “Surface resistivity (Ω/□) of the composite sheet for forming a protective film before thermosetting” in Table 1.
<保護膜形成用フィルムが熱硬化する前の、保護膜形成用複合シートの表面抵抗率の測定>
表面抵抗率計(アドバンテスト社製「R12704 Resistivity chamber」)を用い、上記で得られた保護膜形成用複合シート中の保護膜形成用フィルムを熱硬化させることなく、印加電圧を100Vとして、このシート中の背面帯電防止層の、基材とは反対側の露出面において、表面抵抗率を測定した。結果を、表1中の「保護膜形成用複合シートの熱硬化前の表面抵抗率(Ω/□)」の欄に示す。 <<Evaluation of protective film forming composite sheet>>
<Measurement of the surface resistivity of the protective film-forming composite sheet before the protective film-forming film is thermally cured>
Using a surface resistivity meter ("R12704 Resistivity chamber" manufactured by Advantest), the protective film-forming film in the protective film-forming composite sheet obtained above was heated to 100 V and the applied voltage was set to 100 V without thermosetting. The surface resistivity was measured on the exposed surface of the backside antistatic layer opposite to the substrate. The results are shown in the column of “Surface resistivity (Ω/□) of the composite sheet for forming a protective film before thermosetting” in Table 1.
<保護膜形成用フィルムが熱硬化した後の、保護膜形成用複合シートの表面抵抗率の測定>
上記の熱硬化前の表面抵抗率を測定した保護膜形成用複合シートを用い、その中の保護膜形成用フィルムを、130℃で2時間熱硬化させた。次いで、この熱硬化後の保護膜形成用複合シート中の背面帯電防止層の表面抵抗率を、上記と同じ方法で測定した。結果を、表1中の「保護膜形成用複合シートの熱硬化後の表面抵抗率(Ω/□)」の欄に示す。 <Measurement of surface resistivity of protective film-forming composite sheet after thermal protection of the protective film-forming film>
The above-mentioned protective film-forming composite sheet was used to measure the surface resistivity before thermosetting, and the protective film-forming film therein was thermally cured at 130° C. for 2 hours. Next, the surface resistivity of the backside antistatic layer in the composite sheet for forming a protective film after heat curing was measured by the same method as described above. The results are shown in the column of “Surface resistivity (Ω/□) of the composite sheet for forming a protective film after thermosetting” in Table 1.
上記の熱硬化前の表面抵抗率を測定した保護膜形成用複合シートを用い、その中の保護膜形成用フィルムを、130℃で2時間熱硬化させた。次いで、この熱硬化後の保護膜形成用複合シート中の背面帯電防止層の表面抵抗率を、上記と同じ方法で測定した。結果を、表1中の「保護膜形成用複合シートの熱硬化後の表面抵抗率(Ω/□)」の欄に示す。 <Measurement of surface resistivity of protective film-forming composite sheet after thermal protection of the protective film-forming film>
The above-mentioned protective film-forming composite sheet was used to measure the surface resistivity before thermosetting, and the protective film-forming film therein was thermally cured at 130° C. for 2 hours. Next, the surface resistivity of the backside antistatic layer in the composite sheet for forming a protective film after heat curing was measured by the same method as described above. The results are shown in the column of “Surface resistivity (Ω/□) of the composite sheet for forming a protective film after thermosetting” in Table 1.
<保護膜形成用フィルム及び半導体ウエハ間における異物混入の抑制効果の確認>
上記で得られた剥離フィルム付きの保護膜形成用複合シートを、その基材側の最表層である背面帯電防止層の側から、目視により観察し、さらにデジタル顕微鏡(キーエンス社製「VE-8000」)を用いて観察した。そして、保護膜形成用フィルムと剥離フィルムとの間に、最大長が0.5mm以上の異物が無いことを、保護膜形成用フィルムと剥離フィルムの全領域で確認した。 <Confirmation of the effect of suppressing foreign matter mixing between the protective film forming film and the semiconductor wafer>
The protective film-forming composite sheet with the release film obtained above was visually observed from the back surface antistatic layer side, which is the outermost layer on the base material side, and was further observed with a digital microscope ("VE-8000" manufactured by KEYENCE CORPORATION). ]) was used for observation. Then, it was confirmed that there was no foreign matter having a maximum length of 0.5 mm or more between the protective film forming film and the release film in all areas of the protective film forming film and the release film.
上記で得られた剥離フィルム付きの保護膜形成用複合シートを、その基材側の最表層である背面帯電防止層の側から、目視により観察し、さらにデジタル顕微鏡(キーエンス社製「VE-8000」)を用いて観察した。そして、保護膜形成用フィルムと剥離フィルムとの間に、最大長が0.5mm以上の異物が無いことを、保護膜形成用フィルムと剥離フィルムの全領域で確認した。 <Confirmation of the effect of suppressing foreign matter mixing between the protective film forming film and the semiconductor wafer>
The protective film-forming composite sheet with the release film obtained above was visually observed from the back surface antistatic layer side, which is the outermost layer on the base material side, and was further observed with a digital microscope ("VE-8000" manufactured by KEYENCE CORPORATION). ]) was used for observation. Then, it was confirmed that there was no foreign matter having a maximum length of 0.5 mm or more between the protective film forming film and the release film in all areas of the protective film forming film and the release film.
次いで、テープマウンタ(リンテック社製「RAD-2500」)を用いて、この剥離フィルム付きの保護膜形成用複合シートから剥離フィルムを剥離する(取り除く)とともに、直ちに、保護膜形成用複合シート中の保護膜形成用フィルムの露出面(換言すると、第1面)を、8インチシリコンウエハ(厚さ350μm)の研磨面に貼付し、治具用接着剤層の露出面(換言すると、第1面)を、リングフレームの表面に貼付して、保護膜形成用複合シート及びシリコンウエハの積層物を得た。
Then, using a tape mounter (“RAD-2500” manufactured by Lintec Co., Ltd.), the release film is peeled (removed) from the protective film-forming composite sheet with the release film, and immediately the protective film-forming composite sheet The exposed surface of the protective film forming film (in other words, the first surface) was attached to the polishing surface of an 8-inch silicon wafer (thickness: 350 μm), and the exposed surface of the jig adhesive layer (in other words, the first surface). Was attached to the surface of the ring frame to obtain a laminate of the protective film-forming composite sheet and the silicon wafer.
次いで、得られたこの積層物を、その基材側の最表層である背面帯電防止層の側から、目視により観察し、さらにデジタル顕微鏡(キーエンス社製「VE-8000」)を用いて観察して、保護膜形成用フィルムとシリコンウエハとの間における異物混入の有無を、シリコンウエハの全領域で確認した。異物が混入していた場合には、保護膜形成用複合シートをシリコンウエハから剥離して、前記デジタル顕微鏡を用いて、その異物の最大長を測定した。そして、下記評価基準に従って、異物混入の抑制効果を評価した。結果を表1に示す。
(評価基準)
A:最大長が0.5mm以上の異物が無い。
B:最大長が0.5mm以上の異物が1~3個ある。
C:最大長が0.5mm以上の異物が4個以上ある。 Then, the obtained laminate was visually observed from the back surface antistatic layer side, which is the outermost layer on the substrate side, and further observed using a digital microscope (“VE-8000” manufactured by KEYENCE CORPORATION). Then, the presence or absence of foreign matter mixed between the protective film forming film and the silicon wafer was confirmed in the entire area of the silicon wafer. When foreign matter was mixed in, the composite sheet for forming a protective film was peeled from the silicon wafer, and the maximum length of the foreign matter was measured using the digital microscope. Then, according to the following evaluation criteria, the effect of suppressing foreign matter contamination was evaluated. The results are shown in Table 1.
(Evaluation criteria)
A: There is no foreign matter having a maximum length of 0.5 mm or more.
B: There are 1 to 3 foreign matter having a maximum length of 0.5 mm or more.
C: There are four or more foreign substances having a maximum length of 0.5 mm or more.
(評価基準)
A:最大長が0.5mm以上の異物が無い。
B:最大長が0.5mm以上の異物が1~3個ある。
C:最大長が0.5mm以上の異物が4個以上ある。 Then, the obtained laminate was visually observed from the back surface antistatic layer side, which is the outermost layer on the substrate side, and further observed using a digital microscope (“VE-8000” manufactured by KEYENCE CORPORATION). Then, the presence or absence of foreign matter mixed between the protective film forming film and the silicon wafer was confirmed in the entire area of the silicon wafer. When foreign matter was mixed in, the composite sheet for forming a protective film was peeled from the silicon wafer, and the maximum length of the foreign matter was measured using the digital microscope. Then, according to the following evaluation criteria, the effect of suppressing foreign matter contamination was evaluated. The results are shown in Table 1.
(Evaluation criteria)
A: There is no foreign matter having a maximum length of 0.5 mm or more.
B: There are 1 to 3 foreign matter having a maximum length of 0.5 mm or more.
C: There are four or more foreign substances having a maximum length of 0.5 mm or more.
なお、本評価項目において、「異物の最大長」とは、デジタル顕微鏡での観察像中で、異物の表面において任意の互いに異なる2点を選択し、これら2点間を結ぶ線分の長さを測定したときに、この異物において最長となる前記線分の長さを意味する。
In this evaluation item, the "maximum length of a foreign substance" is the length of a line segment connecting two different points on the surface of the foreign substance selected in the observation image with a digital microscope. Means the length of the longest line segment in the foreign substance when the measurement is made.
<支持シートの全光線透過率の測定>
上記で得られた支持シートについて、JIS K 7375:2008に準拠して、UV-VIS-NIR SPECTROPHOTOMETER UV-3600(島津製作所製)を使用し、全光線透過率(%)を測定した。結果を表1に示す。 <Measurement of total light transmittance of support sheet>
The total light transmittance (%) of the support sheet obtained above was measured according to JIS K 7375:2008 using UV-VIS-NIR SPECTROPHOTOMETER UV-3600 (manufactured by Shimadzu Corporation). The results are shown in Table 1.
上記で得られた支持シートについて、JIS K 7375:2008に準拠して、UV-VIS-NIR SPECTROPHOTOMETER UV-3600(島津製作所製)を使用し、全光線透過率(%)を測定した。結果を表1に示す。 <Measurement of total light transmittance of support sheet>
The total light transmittance (%) of the support sheet obtained above was measured according to JIS K 7375:2008 using UV-VIS-NIR SPECTROPHOTOMETER UV-3600 (manufactured by Shimadzu Corporation). The results are shown in Table 1.
<支持シートのヘーズの測定>
上記で得られた支持シートについて、JIS K 7136:2000に準拠して、NDH5000(日本電色工業社製)を使用し、光源として白色LED(5V、3W)を用いて、ヘーズ(%)を測定した。結果を表1に示す。 <Measurement of haze of support sheet>
Regarding the support sheet obtained above, NDH5000 (manufactured by Nippon Denshoku Industries Co., Ltd.) was used in accordance with JIS K 7136:2000, and white LEDs (5V, 3W) were used as a light source to measure haze (%). It was measured. The results are shown in Table 1.
上記で得られた支持シートについて、JIS K 7136:2000に準拠して、NDH5000(日本電色工業社製)を使用し、光源として白色LED(5V、3W)を用いて、ヘーズ(%)を測定した。結果を表1に示す。 <Measurement of haze of support sheet>
Regarding the support sheet obtained above, NDH5000 (manufactured by Nippon Denshoku Industries Co., Ltd.) was used in accordance with JIS K 7136:2000, and white LEDs (5V, 3W) were used as a light source to measure haze (%). It was measured. The results are shown in Table 1.
<保護膜のレーザー印字視認性の評価>
上記で得られた保護膜形成用複合シートから、剥離フィルムを取り除き、これにより生じた保護膜形成用フィルムの露出面(換言すると、第1面)を、8インチのシリコンウエハの裏面に貼付した。このときの貼付は、テープマウンタ(リンテック社製「RAD2700」)を用いて行った。これにより、基材、粘着剤層、保護膜形成用フィルム及びシリコンウエハがこの順に、これらの厚さ方向において積層されて構成された第1積層構造体を作製した。 <Evaluation of laser marking visibility of protective film>
The release film was removed from the protective film-forming composite sheet obtained above, and the exposed surface (in other words, the first surface) of the protective film-forming film thus produced was attached to the back surface of an 8-inch silicon wafer. .. The attachment at this time was performed using a tape mounter (“RAD2700” manufactured by Lintec Co., Ltd.). As a result, a first laminated structure was produced in which the base material, the adhesive layer, the protective film forming film, and the silicon wafer were laminated in this order in the thickness direction thereof.
上記で得られた保護膜形成用複合シートから、剥離フィルムを取り除き、これにより生じた保護膜形成用フィルムの露出面(換言すると、第1面)を、8インチのシリコンウエハの裏面に貼付した。このときの貼付は、テープマウンタ(リンテック社製「RAD2700」)を用いて行った。これにより、基材、粘着剤層、保護膜形成用フィルム及びシリコンウエハがこの順に、これらの厚さ方向において積層されて構成された第1積層構造体を作製した。 <Evaluation of laser marking visibility of protective film>
The release film was removed from the protective film-forming composite sheet obtained above, and the exposed surface (in other words, the first surface) of the protective film-forming film thus produced was attached to the back surface of an 8-inch silicon wafer. .. The attachment at this time was performed using a tape mounter (“RAD2700” manufactured by Lintec Co., Ltd.). As a result, a first laminated structure was produced in which the base material, the adhesive layer, the protective film forming film, and the silicon wafer were laminated in this order in the thickness direction thereof.
次いで、レーザー印字装置(EOテクニクス社製「CSM300M」)を用いて、保護膜形成用フィルムの粘着剤層側の面(換言すると、第2面)に、支持シートを介してレーザー光を波長:532nm、周波数:20kHzの条件で照射することにより、印字を行った。このとき、印字速度100mm/secで、0.3mm×0.2mmの大きさの文字を印字した。
Then, using a laser printing device ("CSM300M" manufactured by EO Technics Co., Ltd.), a laser beam is passed through the support sheet onto the pressure-sensitive adhesive layer side surface (in other words, the second surface) of the protective film forming film through the supporting sheet: Printing was performed by irradiating under conditions of 532 nm and frequency: 20 kHz. At this time, a character having a size of 0.3 mm×0.2 mm was printed at a printing speed of 100 mm/sec.
次いで、この保護膜形成用フィルムの印字(レーザー印字)を、支持シートを介して、デジタル顕微鏡(キーエンス社製「VHS-1000」)を用いて、倍率100倍にて観察し、下記基準にしたがって、印字(文字)の視認性を評価した。結果を表1に示す。ここで評価している保護膜形成用フィルムのレーザー印字視認性は、保護膜のレーザー印字視認性に等しいと見做せる。
A:印字は、鮮明であり、容易に視認可能である。
B:印字は、若干ぼけており、容易には視認できない。
C:印字は、不鮮明であり、視認不可能である。 Then, the printing (laser printing) of the protective film-forming film was observed through a support sheet with a digital microscope ("VHS-1000" manufactured by Keyence Corporation) at a magnification of 100 times, and according to the following criteria. , And the visibility of printing (characters) was evaluated. The results are shown in Table 1. The laser printing visibility of the protective film-forming film evaluated here can be regarded as being equal to the laser printing visibility of the protective film.
A: The print is clear and easily visible.
B: The print is slightly blurred and is not easily visible.
C: The print is unclear and invisible.
A:印字は、鮮明であり、容易に視認可能である。
B:印字は、若干ぼけており、容易には視認できない。
C:印字は、不鮮明であり、視認不可能である。 Then, the printing (laser printing) of the protective film-forming film was observed through a support sheet with a digital microscope ("VHS-1000" manufactured by Keyence Corporation) at a magnification of 100 times, and according to the following criteria. , And the visibility of printing (characters) was evaluated. The results are shown in Table 1. The laser printing visibility of the protective film-forming film evaluated here can be regarded as being equal to the laser printing visibility of the protective film.
A: The print is clear and easily visible.
B: The print is slightly blurred and is not easily visible.
C: The print is unclear and invisible.
<保護膜形成用複合シートの製造>
[実施例2]
前記帯電防止組成物(VI-1)-2の塗布量を変更して、背面帯電防止層の厚さを170nmに代えて50nmとした点以外は、実施例1の場合と同じ方法で、保護膜形成用複合シートを製造した。本実施例で製造した保護膜形成用複合シートは、背面帯電防止層(厚さ50nm)、基材(厚さ80μm)、粘着剤層(厚さ5μm)、保護膜形成用フィルム(厚さ40μm)及び剥離フィルム(厚さ38μm)がこの順に、これらの厚さ方向において積層されて構成された、図2に示す構成で、かつ、保護膜形成用フィルムの大きさが支持シートの大きさよりもわずかに小さくなっている、剥離フィルム付きの保護膜形成用複合シートである。
結果を表1に示す。 <Production of composite sheet for forming protective film>
[Example 2]
Protection was carried out in the same manner as in Example 1 except that the coating amount of the antistatic composition (VI-1)-2 was changed and the thickness of the backside antistatic layer was changed from 170 nm to 50 nm. A composite sheet for film formation was produced. The composite sheet for forming a protective film produced in this example includes a back surface antistatic layer (thickness: 50 nm), a base material (thickness: 80 μm), an adhesive layer (thickness: 5 μm), a protective film forming film (thickness: 40 μm). ) And a release film (thickness 38 μm) are laminated in this order in the thickness direction, and the size of the protective film-forming film is larger than the size of the support sheet. It is a slightly smaller composite sheet for forming a protective film with a release film.
The results are shown in Table 1.
[実施例2]
前記帯電防止組成物(VI-1)-2の塗布量を変更して、背面帯電防止層の厚さを170nmに代えて50nmとした点以外は、実施例1の場合と同じ方法で、保護膜形成用複合シートを製造した。本実施例で製造した保護膜形成用複合シートは、背面帯電防止層(厚さ50nm)、基材(厚さ80μm)、粘着剤層(厚さ5μm)、保護膜形成用フィルム(厚さ40μm)及び剥離フィルム(厚さ38μm)がこの順に、これらの厚さ方向において積層されて構成された、図2に示す構成で、かつ、保護膜形成用フィルムの大きさが支持シートの大きさよりもわずかに小さくなっている、剥離フィルム付きの保護膜形成用複合シートである。
結果を表1に示す。 <Production of composite sheet for forming protective film>
[Example 2]
Protection was carried out in the same manner as in Example 1 except that the coating amount of the antistatic composition (VI-1)-2 was changed and the thickness of the backside antistatic layer was changed from 170 nm to 50 nm. A composite sheet for film formation was produced. The composite sheet for forming a protective film produced in this example includes a back surface antistatic layer (thickness: 50 nm), a base material (thickness: 80 μm), an adhesive layer (thickness: 5 μm), a protective film forming film (thickness: 40 μm). ) And a release film (thickness 38 μm) are laminated in this order in the thickness direction, and the size of the protective film-forming film is larger than the size of the support sheet. It is a slightly smaller composite sheet for forming a protective film with a release film.
The results are shown in Table 1.
<<保護膜形成用複合シートの評価>>
上記で得られた保護膜形成用複合シートについて、実施例1の場合と同じ方法で、評価を行った。結果を表1に示す。 <<Evaluation of protective film forming composite sheet>>
The composite sheet for forming a protective film obtained above was evaluated in the same manner as in Example 1. The results are shown in Table 1.
上記で得られた保護膜形成用複合シートについて、実施例1の場合と同じ方法で、評価を行った。結果を表1に示す。 <<Evaluation of protective film forming composite sheet>>
The composite sheet for forming a protective film obtained above was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例1]
前記帯電防止組成物(VI-1)-2に代えて前記帯電防止組成物(VI-1)-1を用い、前記帯電防止組成物(VI-1)-1の塗布量を変更して、背面帯電防止層の厚さを170nmに代えて75nm、背面帯電防止層の乾燥を100℃で2分とした点以外は、実施例1の場合と同じ方法で、保護膜形成用複合シートを製造及び評価した。本比較例で製造した保護膜形成用複合シートは、背面帯電防止層(厚さ75nm)、基材(厚さ80μm)、粘着剤層(厚さ5μm)、保護膜形成用フィルム(厚さ40μm)及び剥離フィルム(厚さ38μm)がこの順に、これらの厚さ方向において積層されて構成された、図2に示す構成で、かつ、保護膜形成用フィルムの大きさが支持シートの大きさよりもわずかに小さくなっている、剥離フィルム付きの保護膜形成用複合シートである。
結果を表1に示す。 [Comparative Example 1]
The antistatic composition (VI-1)-1 was used in place of the antistatic composition (VI-1)-2, and the coating amount of the antistatic composition (VI-1)-1 was changed. A composite sheet for forming a protective film was produced by the same method as in Example 1 except that the thickness of the backside antistatic layer was changed to 170 nm and changed to 75 nm, and the backside antistatic layer was dried at 100° C. for 2 minutes. And evaluated. The protective film-forming composite sheet produced in this comparative example has a back surface antistatic layer (thickness: 75 nm), a base material (thickness: 80 μm), an adhesive layer (thickness: 5 μm), a protective film-forming film (thickness: 40 μm). ) And a release film (thickness 38 μm) are laminated in this order in the thickness direction, and the size of the protective film-forming film is larger than the size of the support sheet. It is a slightly smaller composite sheet for forming a protective film with a release film.
The results are shown in Table 1.
前記帯電防止組成物(VI-1)-2に代えて前記帯電防止組成物(VI-1)-1を用い、前記帯電防止組成物(VI-1)-1の塗布量を変更して、背面帯電防止層の厚さを170nmに代えて75nm、背面帯電防止層の乾燥を100℃で2分とした点以外は、実施例1の場合と同じ方法で、保護膜形成用複合シートを製造及び評価した。本比較例で製造した保護膜形成用複合シートは、背面帯電防止層(厚さ75nm)、基材(厚さ80μm)、粘着剤層(厚さ5μm)、保護膜形成用フィルム(厚さ40μm)及び剥離フィルム(厚さ38μm)がこの順に、これらの厚さ方向において積層されて構成された、図2に示す構成で、かつ、保護膜形成用フィルムの大きさが支持シートの大きさよりもわずかに小さくなっている、剥離フィルム付きの保護膜形成用複合シートである。
結果を表1に示す。 [Comparative Example 1]
The antistatic composition (VI-1)-1 was used in place of the antistatic composition (VI-1)-2, and the coating amount of the antistatic composition (VI-1)-1 was changed. A composite sheet for forming a protective film was produced by the same method as in Example 1 except that the thickness of the backside antistatic layer was changed to 170 nm and changed to 75 nm, and the backside antistatic layer was dried at 100° C. for 2 minutes. And evaluated. The protective film-forming composite sheet produced in this comparative example has a back surface antistatic layer (thickness: 75 nm), a base material (thickness: 80 μm), an adhesive layer (thickness: 5 μm), a protective film-forming film (thickness: 40 μm). ) And a release film (thickness 38 μm) are laminated in this order in the thickness direction, and the size of the protective film-forming film is larger than the size of the support sheet. It is a slightly smaller composite sheet for forming a protective film with a release film.
The results are shown in Table 1.
[比較例2]
背面帯電防止層を形成しなかった点以外は、実施例1の場合と同じ方法で、保護膜形成用複合シートを製造及び評価した。本比較例で製造した保護膜形成用複合シートは、基材(厚さ80μm)、粘着剤層(厚さ5μm)、保護膜形成用フィルム(厚さ40μm)及び剥離フィルム(厚さ38μm)がこの順に、これらの厚さ方向において積層されて構成され、さらに治具用接着剤層を備えた保護膜形成用複合シートであり、図2において背面帯電防止層を備えておらず、かつ、保護膜形成用フィルムの大きさが支持シートの大きさよりもわずかに小さくなっている、剥離フィルム付きの保護膜形成用複合シートである。
結果を表1に示す。 [Comparative example 2]
A composite sheet for forming a protective film was produced and evaluated in the same manner as in Example 1 except that the backside antistatic layer was not formed. The protective film-forming composite sheet produced in this comparative example had a substrate (thickness 80 μm), an adhesive layer (thickness 5 μm), a protective film-forming film (thickness 40 μm) and a release film (thickness 38 μm). A composite sheet for protective film formation, which is formed by stacking these layers in this order in the thickness direction and further includes an adhesive layer for jigs, and does not have a back surface antistatic layer in FIG. A protective film-forming composite sheet with a release film, wherein the size of the film-forming film is slightly smaller than the size of the support sheet.
The results are shown in Table 1.
背面帯電防止層を形成しなかった点以外は、実施例1の場合と同じ方法で、保護膜形成用複合シートを製造及び評価した。本比較例で製造した保護膜形成用複合シートは、基材(厚さ80μm)、粘着剤層(厚さ5μm)、保護膜形成用フィルム(厚さ40μm)及び剥離フィルム(厚さ38μm)がこの順に、これらの厚さ方向において積層されて構成され、さらに治具用接着剤層を備えた保護膜形成用複合シートであり、図2において背面帯電防止層を備えておらず、かつ、保護膜形成用フィルムの大きさが支持シートの大きさよりもわずかに小さくなっている、剥離フィルム付きの保護膜形成用複合シートである。
結果を表1に示す。 [Comparative example 2]
A composite sheet for forming a protective film was produced and evaluated in the same manner as in Example 1 except that the backside antistatic layer was not formed. The protective film-forming composite sheet produced in this comparative example had a substrate (thickness 80 μm), an adhesive layer (thickness 5 μm), a protective film-forming film (thickness 40 μm) and a release film (thickness 38 μm). A composite sheet for protective film formation, which is formed by stacking these layers in this order in the thickness direction and further includes an adhesive layer for jigs, and does not have a back surface antistatic layer in FIG. A protective film-forming composite sheet with a release film, wherein the size of the film-forming film is slightly smaller than the size of the support sheet.
The results are shown in Table 1.
上記結果から明らかなように、実施例1~2の保護膜形成用複合シートにおいては、背面帯電防止層の表面抵抗率が、保護膜形成用フィルムを熱硬化させる前は2.8×108~4.1×108Ω/□であり、保護膜形成用フィルムを熱硬化させた後は1.7×109~5.3×109Ω/□であって、これら保護膜形成用複合シートは、平常時において帯電防止性に優れていた。そして、これら保護膜形成用複合シートを用いた場合に、保護膜形成用フィルム及び半導体ウエハ間における異物混入が抑制されていた。
As is clear from the above results, in the protective film-forming composite sheets of Examples 1 and 2, the back surface antistatic layer had a surface resistivity of 2.8×10 8 before the protective film-forming film was thermally cured. Is 4.1×10 8 Ω/□, and is 1.7×10 9 to 5.3×10 9 Ω/□ after thermosetting the protective film forming film. The composite sheet was excellent in antistatic properties in normal times. When these protective film forming composite sheets are used, foreign matter is suppressed from entering between the protective film forming film and the semiconductor wafer.
実施例1~2の保護膜形成用複合シート中の支持シートの全光線透過率は、85%以上(91%)であり、ヘーズは、43%以下(36~37%)であり、これら複合シートは、支持シートを介した保護膜のレーザー印字視認性に優れていた。
The total light transmittance of the support sheet in the composite film for forming a protective film of Examples 1 and 2 is 85% or more (91%), and the haze is 43% or less (36 to 37%). The sheet was excellent in laser marking visibility of the protective film through the support sheet.
これに対して、比較例1の保護膜形成用複合シート中の支持シートの全光線透過率は、85%未満(80%)であり、ヘーズは、43%を超えており(47%)、実施例1~2の保護膜形成用複合シートと比較して、支持シートを介した保護膜のレーザー印字視認性が劣っていた。
On the other hand, the total light transmittance of the support sheet in the composite film for protective film formation of Comparative Example 1 was less than 85% (80%), and the haze was more than 43% (47%), Compared with the composite sheet for forming a protective film of Examples 1 and 2, the laser printing visibility of the protective film via the support sheet was inferior.
比較例2の保護膜形成用複合シートにおいては、背面帯電防止層の表面抵抗率が、保護膜形成用フィルムを熱硬化させる前は5.0×1015Ω/□であり、保護膜形成用フィルムを熱硬化させた後は5.6×1015Ω/□であって、これら保護膜形成用複合シートは、平常時において帯電防止性が劣っていた。そして、これら保護膜形成用複合シートを用いた場合に、保護膜形成用フィルム及び半導体ウエハ間における異物混入が抑制されていなかった。また、比較例2の保護膜形成用複合シート中の支持シートのヘーズは、43%を超えており(47%)、実施例1~2の保護膜形成用複合シートと比較して、支持シートを介した保護膜のレーザー印字視認性が劣っていた。
In the protective film-forming composite sheet of Comparative Example 2, the surface resistivity of the back surface antistatic layer was 5.0×10 15 Ω/□ before the protective film-forming film was heat-cured. After heat curing of the film, it was 5.6×10 15 Ω/□, and these protective film-forming composite sheets were inferior in antistatic property in normal times. Further, when these protective film forming composite sheets were used, foreign matter mixing between the protective film forming film and the semiconductor wafer was not suppressed. In addition, the haze of the support sheet in the composite sheet for forming a protective film of Comparative Example 2 is more than 43% (47%), which is higher than that of the composite sheet for forming a protective film of Examples 1 and 2. The visibility of laser printing on the protective film through the film was poor.
本発明は、半導体装置の製造に利用可能である。
The present invention can be used for manufacturing semiconductor devices.
101,102,103,104,105,301・・・保護膜形成用複合シート
10,20,50・・・支持シート
10a,20a,50a・・・支持シートの第1面
11・・・基材
11a・・・基材の第1面
11b・・・基材の第2面
12・・・粘着剤層
13,23・・・保護膜形成用フィルム
130・・・切断後の保護膜形成用フィルム
13’・・・保護膜
130’・・・切断後の保護膜
15・・・剥離フィルム
16・・・治具用接着剤層
17・・・背面帯電防止層
18・・・中間層
19・・・表面帯電防止層
9・・・半導体ウエハ
9b・・・半導体ウエハの裏面
9’・・・半導体チップ 101, 102, 103, 104, 105, 301... Composite sheet for forming protective film 10, 20, 50... Support sheet 10a, 20a, 50a... First surface of support sheet 11... Base material 11a... 1st surface of base material 11b... 2nd surface of base material 12... Adhesive layer 13, 23... Protective film forming film 130... Protective film forming film after cutting 13'... Protective film 130'... Protective film after cutting 15... Peeling film 16... Jig adhesive layer 17... Back surface antistatic layer 18... Intermediate layer 19... -Front surface antistatic layer 9... Semiconductor wafer 9b... Semiconductor wafer back surface 9'... Semiconductor chip
10,20,50・・・支持シート
10a,20a,50a・・・支持シートの第1面
11・・・基材
11a・・・基材の第1面
11b・・・基材の第2面
12・・・粘着剤層
13,23・・・保護膜形成用フィルム
130・・・切断後の保護膜形成用フィルム
13’・・・保護膜
130’・・・切断後の保護膜
15・・・剥離フィルム
16・・・治具用接着剤層
17・・・背面帯電防止層
18・・・中間層
19・・・表面帯電防止層
9・・・半導体ウエハ
9b・・・半導体ウエハの裏面
9’・・・半導体チップ 101, 102, 103, 104, 105, 301... Composite sheet for forming
Claims (5)
- 支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、
前記支持シートは、基材と、前記基材の片面または両面上に形成された帯電防止層と、を備えており、
前記支持シートの全光線透過率が85%以上であり、
前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下である、保護膜形成用複合シート。 A composite sheet for forming a protective film, comprising a supporting sheet and a film for forming a protective film formed on one surface of the supporting sheet,
The support sheet comprises a base material, and an antistatic layer formed on one surface or both surfaces of the base material,
The total light transmittance of the support sheet is 85% or more,
A composite sheet for forming a protective film, wherein the composite sheet for forming a protective film has a surface resistivity of 1.0×10 11 Ω/□ or less. - 前記支持シートのヘーズが43%以下である、請求項1に記載の保護膜形成用複合シート。 The composite sheet for forming a protective film according to claim 1, wherein the haze of the support sheet is 43% or less.
- 支持シートと、前記支持シートの一方の面上に形成された保護膜形成用フィルムと、を備えた、保護膜形成用複合シートであって、
前記支持シートは、基材と、前記基材の片面または両面上に形成された帯電防止層と、を備えており、
前記支持シートのヘーズが43%以下であり、
前記保護膜形成用複合シートの表面抵抗率が1.0×1011Ω/□以下である、保護膜形成用複合シート。 A composite sheet for forming a protective film, comprising a supporting sheet and a film for forming a protective film formed on one surface of the supporting sheet,
The support sheet comprises a base material, and an antistatic layer formed on one surface or both surfaces of the base material,
The haze of the support sheet is 43% or less,
A composite sheet for forming a protective film, wherein the composite sheet for forming a protective film has a surface resistivity of 1.0×10 11 Ω/□ or less. - 前記帯電防止層の厚さが、200nm以下である、請求項1~3のいずれか一項に記載の保護膜形成用複合シート。 The composite sheet for forming a protective film according to any one of claims 1 to 3, wherein the antistatic layer has a thickness of 200 nm or less.
- 請求項1~4のいずれか一項に記載の保護膜形成用複合シート中の保護膜形成用フィルムを、半導体ウエハに貼付する工程と、
前記半導体ウエハに貼付した後の前記保護膜形成用フィルムを硬化させて、保護膜を形成する工程と、
前記半導体ウエハを分割し、前記保護膜又は保護膜形成用フィルムを切断して、切断後の保護膜又は保護膜形成用フィルムを備えた複数個の半導体チップを得る工程と、
前記切断後の保護膜又は保護膜形成用フィルムを備えた半導体チップを、前記支持シートから引き離してピックアップする工程と、を有し、
さらに、前記貼付する工程と、前記ピックアップする工程と、の間に、前記保護膜形成用フィルム又は保護膜にレーザー光を照射して、印字を行う工程を有する、半導体チップの製造方法。 Bonding the protective film-forming film in the protective film-forming composite sheet according to any one of claims 1 to 4 to a semiconductor wafer;
Curing the protective film forming film after being attached to the semiconductor wafer to form a protective film;
Dividing the semiconductor wafer, cutting the protective film or the protective film forming film, to obtain a plurality of semiconductor chips provided with the protective film after cutting or the protective film forming film,
A semiconductor chip provided with the protective film after cutting or a film for forming a protective film, and a step of picking up by separating from the support sheet,
Furthermore, the manufacturing method of a semiconductor chip which has a process of irradiating a laser beam to the said film for protective film formation or a protective film, and performing printing between the said sticking process and the said picking-up process.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980079821.XA CN113261091A (en) | 2018-12-05 | 2019-11-27 | Composite sheet for forming protective film and method for manufacturing semiconductor chip |
KR1020217015784A KR20210098975A (en) | 2018-12-05 | 2019-11-27 | Composite sheet for forming a protective film, and manufacturing method of a semiconductor chip |
JP2020559107A JP7497297B2 (en) | 2018-12-05 | 2019-11-27 | Composite sheet for forming protective film and method for manufacturing semiconductor chip |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-228529 | 2018-12-05 | ||
JP2018228529 | 2018-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020116288A1 true WO2020116288A1 (en) | 2020-06-11 |
Family
ID=70973491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/046430 WO2020116288A1 (en) | 2018-12-05 | 2019-11-27 | Composite sheet for protective film formation and method for producing semiconductor chip |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7497297B2 (en) |
KR (1) | KR20210098975A (en) |
CN (1) | CN113261091A (en) |
TW (1) | TWI837233B (en) |
WO (1) | WO2020116288A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280520A (en) * | 2007-04-11 | 2008-11-20 | Furukawa Electric Co Ltd:The | Pressure-sensitive adhesive tape for fixing semiconductor |
JP2013120839A (en) * | 2011-12-07 | 2013-06-17 | Lintec Corp | Dicing sheet with protective film forming layer and method for fabricating semiconductor chip |
WO2017149808A1 (en) * | 2016-03-04 | 2017-09-08 | リンテック株式会社 | Protective film-forming composite sheet |
WO2017188216A1 (en) * | 2016-04-28 | 2017-11-02 | リンテック株式会社 | Film for forming protective coat and composite sheet for forming protective coat |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5432853B2 (en) | 1971-10-11 | 1979-10-17 | ||
TW201100529A (en) * | 2009-06-30 | 2011-01-01 | 3M Innovative Properties Co | Anti-static protection film and product containing the same |
JP5776957B2 (en) * | 2010-10-29 | 2015-09-09 | ナガセケムテックス株式会社 | Thermosetting conductive coating composition, optical film and protective film |
JP6077922B2 (en) | 2012-12-10 | 2017-02-08 | 日東電工株式会社 | Dicing tape integrated adhesive sheet, semiconductor device manufacturing method using dicing tape integrated adhesive sheet, and semiconductor device |
CN104870592B (en) * | 2012-12-19 | 2016-10-12 | 昭和电工株式会社 | Blooming adhesion agent composition and surface protection film |
JP6205925B2 (en) * | 2013-07-12 | 2017-10-04 | 日立化成株式会社 | Photosensitive conductive film, conductive pattern forming method using the same, and conductive pattern substrate |
JP6092034B2 (en) * | 2013-07-30 | 2017-03-08 | 日東電工株式会社 | Surface protective film and optical member |
JP6419548B2 (en) * | 2014-11-27 | 2018-11-07 | 日東電工株式会社 | Surface protective film, method for manufacturing surface protective film, and optical member |
CN107148663B (en) * | 2014-12-25 | 2020-11-06 | 电化株式会社 | Adhesive sheet for laser dicing and method for manufacturing semiconductor device |
WO2017086249A1 (en) * | 2015-11-17 | 2017-05-26 | 住友化学株式会社 | Pressure-sensitive-adhesive-coated resin film and optical laminate including same |
CN106280603B (en) * | 2016-08-05 | 2019-01-18 | 张家港康得新光电材料有限公司 | A kind of antistatic light transmission coating and its application |
CN108164728A (en) * | 2017-11-23 | 2018-06-15 | 上海世系新材料有限公司 | The preparation method of liquid antistatic composition and anti-static polyester film |
-
2019
- 2019-11-27 JP JP2020559107A patent/JP7497297B2/en active Active
- 2019-11-27 KR KR1020217015784A patent/KR20210098975A/en not_active Application Discontinuation
- 2019-11-27 WO PCT/JP2019/046430 patent/WO2020116288A1/en active Application Filing
- 2019-11-27 CN CN201980079821.XA patent/CN113261091A/en active Pending
- 2019-12-02 TW TW108143978A patent/TWI837233B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008280520A (en) * | 2007-04-11 | 2008-11-20 | Furukawa Electric Co Ltd:The | Pressure-sensitive adhesive tape for fixing semiconductor |
JP2013120839A (en) * | 2011-12-07 | 2013-06-17 | Lintec Corp | Dicing sheet with protective film forming layer and method for fabricating semiconductor chip |
WO2017149808A1 (en) * | 2016-03-04 | 2017-09-08 | リンテック株式会社 | Protective film-forming composite sheet |
WO2017188216A1 (en) * | 2016-04-28 | 2017-11-02 | リンテック株式会社 | Film for forming protective coat and composite sheet for forming protective coat |
Also Published As
Publication number | Publication date |
---|---|
TW202038319A (en) | 2020-10-16 |
KR20210098975A (en) | 2021-08-11 |
JP7497297B2 (en) | 2024-06-10 |
TWI837233B (en) | 2024-04-01 |
CN113261091A (en) | 2021-08-13 |
JPWO2020116288A1 (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018179475A1 (en) | Protection film-forming composite sheet | |
JP6298226B1 (en) | Composite sheet for protective film formation | |
JPWO2019172439A1 (en) | Method for manufacturing composite sheet for forming protective film and semiconductor chip with protective film | |
WO2017145938A1 (en) | Protective film formation sheet, manufacturing method for protective film formation sheet, and manufacturing method for semiconductor device | |
JPWO2019008898A1 (en) | Resin film forming film and resin film forming composite sheet | |
TW202106502A (en) | Composite sheet for forming protective film | |
JP7290771B2 (en) | Protective film forming film and protective film forming composite sheet | |
TWI764885B (en) | Complex sheet for forming protective film | |
JP6833804B2 (en) | Composite sheet for forming a protective film | |
JP7516255B2 (en) | Composite sheet for forming protective film and method for manufacturing semiconductor chip | |
JP6686241B1 (en) | Protective film forming film, protective film forming composite sheet, inspection method and identification method | |
JPWO2019186990A1 (en) | Support sheet and composite sheet for forming protective film | |
WO2020116288A1 (en) | Composite sheet for protective film formation and method for producing semiconductor chip | |
JP7516256B2 (en) | Composite sheet for forming protective film and method for manufacturing semiconductor chip | |
JP7292308B2 (en) | COMPOSITE SHEET FOR PROTECTIVE FILM FORMATION AND METHOD FOR MANUFACTURING SEMICONDUCTOR CHIP | |
JP7495355B2 (en) | Composite sheet for forming protective film and method for manufacturing semiconductor chip | |
JPWO2019186994A1 (en) | Composite sheet for forming a protective film and its manufacturing method | |
JP7482035B2 (en) | Composite sheet for forming protective film and method for manufacturing semiconductor chip | |
JP2019062107A (en) | Composite sheet for resin film formation | |
JP6805230B2 (en) | Composite sheet for forming a protective film | |
JP2021158181A (en) | Protective film formation film, composite sheet for protective film formation, and transport method for work with protective film formation film | |
JP2021125591A (en) | Composite sheet for protection film formation, and method for manufacturing chip with protection film | |
JPWO2019187000A1 (en) | Support sheet and its manufacturing method, and protective film forming composite sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19893063 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020559107 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19893063 Country of ref document: EP Kind code of ref document: A1 |