WO2020115996A1 - Optical system including reflecting body and focusing body - Google Patents

Optical system including reflecting body and focusing body Download PDF

Info

Publication number
WO2020115996A1
WO2020115996A1 PCT/JP2019/037444 JP2019037444W WO2020115996A1 WO 2020115996 A1 WO2020115996 A1 WO 2020115996A1 JP 2019037444 W JP2019037444 W JP 2019037444W WO 2020115996 A1 WO2020115996 A1 WO 2020115996A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
columnar lens
columnar
axis
Prior art date
Application number
PCT/JP2019/037444
Other languages
French (fr)
Japanese (ja)
Inventor
栄治 浅利
Original Assignee
栄治 浅利
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栄治 浅利 filed Critical 栄治 浅利
Publication of WO2020115996A1 publication Critical patent/WO2020115996A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors

Definitions

  • the present invention relates to an optical system used for a reflecting telescope or the like, and more specifically, instead of a mortar-shaped parabolic mirror used for a conventional reflecting telescope, a flat plate curved in only one direction has a concave shape.
  • the present invention relates to an optical system that uses a main mirror having a reflecting surface and combines one or a plurality of columnar lenses with the main mirror, and that can be easily and inexpensively manufactured with a large focusing power.
  • Patent Document 1 The system described in Patent Document 1 has been proposed as a technique for solving such a problem in medium-sized and large-sized reflecting telescopes.
  • two concave reflectors are arranged with their concave surfaces facing each other.
  • the light beam emitted from the object is reflected by the first reflector, which is the primary mirror, toward the opposing second reflector.
  • the light ray from the first reflector is reflected by the second reflector.
  • the first reflector and the second reflector are each bent in one direction orthogonal to each other, so that the respective linear foci are merged at the foci.
  • Patent Document 3 proposes an optical device in which two columnar lenses are arranged such that their column axes are orthogonal to each other. According to this apparatus, the light can be converged and diverged independently for the two orthogonal components that are perpendicular to the optical axis, so that images with different vertical and horizontal magnifications can be obtained.
  • Patent Document 1 and Patent Document 2 have the following problems.
  • the shape of the second concave reflector for focusing the light reflected by the first concave reflector on the point focus without distortion is calculated, and the complicated shape of the second concave reflector that matches the calculation result is calculated. It is difficult to manufacture the first reflector and the second reflector with high precision, and neither a telescope that realizes this optical system nor a captured image thereof has been obtained yet.
  • the second reflecting mirror having a complicated shape is distorted between the object whose image is to be captured and the first reflecting body. It must be fixed in the hollow so that it does not exist.
  • a large-scale and expensive structure is required to fix the second reflecting mirror in the hollow state while stabilizing the optical shape.
  • the optical device proposed in Patent Document 3 is said to be able to obtain images with different vertical and horizontal magnifications by using two columnar lenses whose column axes are orthogonal to each other. It is speculated that this optical device can be used for the purpose of broadening the spectrum in either direction, for example. However, if a columnar lens is used as the primary mirror as in this optical device, the weight becomes large when the size of the primary mirror is increased to form an image of a distant object. It is difficult to adopt it in a telescope.
  • An object of the present invention is to provide an optical system which has a large light-collecting power and can be manufactured easily and inexpensively and which can be used for a medium-sized or larger reflecting telescope or the like.
  • the present invention provides an optical system.
  • the optical system includes a reflector, one or more focusing bodies, and a light receiving unit.
  • the reflector has a reflecting surface that reflects the light emitted from the object, and can collect the reflected light on a linear focus.
  • the focusing body is arranged between the reflector and the linear focus of the reflector, and the light reflected by the reflector can be transmitted to focus the light on the point focus.
  • the number of the focusing bodies may be one or more.
  • the light receiving unit is arranged on the downstream side in the traveling direction of the light passing through the focusing body, and can receive the light passing through the focusing body.
  • the reflector has a concave reflecting surface that is curved in only one direction.
  • the reflecting surface preferably has any shape selected from the group consisting of a parabolic cylinder surface, a dipole cylinder surface, an elliptic cylinder surface, and a cylinder surface.
  • the one or more concentrators may include plano-convex columnar lenses or biconvex columnar lenses, or a combination thereof.
  • the plurality of columnar lenses include a plano-convex columnar lens, a biconvex columnar lens, or a combination thereof.
  • it may include a plano-concave columnar lens, a biconcave columnar lens, or a combination thereof.
  • the plurality of converging bodies are for correcting the upstream side converging body arranged on the upstream side in the traveling direction of light and the distortion of the light transmitted through the upstream side converging body. And a downstream side focusing body of the above.
  • the light reflected by the first reflecting mirror may be focused by using the columnar lens, complicated optical calculation for obtaining an image is not required, and the first reflecting mirror is highly polished. Since an expensive mortar-shaped parabolic mirror that requires technology is not used, it is possible to easily and inexpensively manufacture even a medium-sized or larger reflective telescope.
  • the present invention it is not necessary to use a complicated concave reflecting mirror having a curved surface shape as the second reflecting mirror, and a columnar lens having a stable optical shape that can be manufactured using glass or resin is provided. Since it can be used as a light collector, the light collector can be easily fixed in the hollow by a simple structure.
  • the focal point can be easily arranged outside the optical system as in the conventional Newton type telescope, so that it is easy to add an optical device such as an eyepiece or a light receiving element.
  • the first reflecting mirror can be manufactured to be lightweight, the mirror surface distortion due to gravity can be reduced, and the generated distortion can be easily corrected by using a columnar lens or the like. You can
  • FIG. 2 is a diagram of the optical system of FIG. 1 as viewed from the X-axis direction, showing the relationship between the positions of the columnar lens, the screen and the object, and the positions of the focal points of the primary mirror and the columnar lens, with the position of the primary mirror as the origin.
  • .. 3 is a photograph showing an experiment when an object (character A) arranged at a distance is projected on a screen using the optical system according to the embodiment of the present invention, and is the character A used as an object.
  • 3B is a photograph showing an experiment when an object (character A) arranged at a distance is projected on a screen using the optical system according to the embodiment of the present invention, and is a projected image of the character A in FIG. 3A.
  • 4 is a photograph showing an experiment when an object (character A) arranged closer to the case of FIG. 3 is projected on the screen by using the optical system according to the embodiment of the present invention, and is the character A used as the object.
  • .. 4A is a photograph showing an experiment when an object (letter A) arranged closer to the case of FIG. 3 is projected on a screen by using the optical system according to the embodiment of the present invention, and a projected image of the letter A in FIG. 4A. Is.
  • 6 is a graph showing the relationship between the position of an object and the position of a screen in the optical system according to the embodiment of the present invention.
  • 6 is a graph showing the relationship between the position of an object and the position of a columnar lens in the optical system according to the embodiment of the present invention.
  • 6 is a graph showing the relationship between the position of an object and the difference between the position of the screen and the position of the cylindrical lens in the optical system according to the embodiment of the present invention.
  • 6 is a photograph showing an experiment when an object is projected on a screen in an optical system according to an embodiment of the present invention, and is a projected image of a character A when a correcting columnar lens that corrects lateral distortion is used.
  • FIG. 6 is a photograph showing an experiment when an object is projected on a screen in the optical system according to the embodiment of the present invention, and is a projected image when the correcting columnar lens is not used (reprinted in FIG. 3B).
  • FIG. 1 is a schematic diagram showing a configuration of an optical system OS according to an embodiment of the present invention.
  • the horizontal axis of the paper is the y-axis
  • the vertical axis of the paper perpendicular to the y-axis is the z-axis
  • the axis perpendicular to the y-axis and the z-axis is the x-axis.
  • the optical system OS is arranged on the optical axis of the main mirror M (reflector) that reflects the light from the object K and the light reflected from the main mirror M, and has a column shape that transmits the light reflected by the main mirror M.
  • a lens L focusing body
  • the light from the object K may be light reflected by the object K or light emitted from the object K, and may be visible light or electromagnetic waves other than visible light.
  • the optical system OS further includes a screen S (light receiving unit) that receives the light transmitted through the columnar lens L.
  • the primary mirror M, the columnar lens L, and the screen S are arranged on a straight line on the y-axis, but the arrangement is not limited to this.
  • M and the columnar lens L are arranged on the y-axis, and the light passing through the columnar lens L is extracted to the side by using the oblique mirror arranged on the y-axis, and is received by the screen S arranged on the side. You may do so.
  • the primary mirror M has a concave reflecting surface 12 that is curved only in one direction (that is, only in the y-axis direction in FIG. 1 ), and this reflecting surface 12 reflects light from the object K. be able to.
  • the concave shape of the reflecting surface 12 is not limited, but may be a parabolic cylinder surface, an elliptic cylinder surface, a cylinder surface, a dipole cylinder surface, or the like, and focuses on one point on the y-axis. In addition to being able to do so, there is no aberration, so it is more preferable to use a parabolic prism surface.
  • the reflecting surface 12 has a parabolic shape as a concave shape. It is relatively easy to adopt a shape other than the pillar surface.
  • the primary mirror M can focus the light reflected by the concave reflecting surface 12 on a linear focus at any position in the y-axis direction.
  • the shape of the portion of the main mirror M on the side opposite to the reflecting surface is not particularly limited.
  • the main mirror M may be fixed to the inside of the lens barrel forming the telescope by using an appropriate support or the like.
  • the size of the primary mirror M is not limited, and can be appropriately determined according to conditions such as the distance to the observed object and the required focusing power.
  • the material that can be used as the reflecting surface 12 of the primary mirror M is not limited, but it is preferable that the material has little deformation due to thermal expansion and can be easily processed, and it can be processed according to conditions such as application and allowable weight. Therefore, aluminum, stainless steel, glass, resin, or the like can be used as appropriate.
  • the reflecting surface 12 can be formed by using these materials as a base material and depositing a metal or attaching a mirror surface plate on the surface thereof.
  • the reflecting surface 12 can be manufactured based on a mold formed by using a general-purpose numerical control machine tool or the like. If the primary mirror M is made of a shape memory alloy, for example, the primary mirror M wound in a roll shape is mounted on a rocket, transported to a satellite orbit, and deployed in orbit to construct a huge space telescope. You can also
  • the columnar lens L has a column axis 22 extending in the x-axis direction and can be a columnar lens having a convex shape in the bending direction of the primary mirror M (y-axis direction). It is arranged between the linear focal point of the mirror M.
  • the columnar lens L is arranged such that the direction of the column axis 22 (x-axis direction) is orthogonal to the bending direction of the primary mirror M (y-axis direction), and therefore the light reflected by the primary mirror M is transmitted through the column axis 22. It is possible to focus on a point focus by transmitting light from a direction perpendicular to.
  • the shape of the columnar lens L is not limited, but a side surface of the primary mirror M facing the reflecting surface 12 is a flat surface, and the opposite side surface is a convex surface.
  • a biconvex columnar lens having a convex surface on both the side surface facing the reflecting surface 12 of M and the side surface on the opposite side can be appropriately selected and used according to the required focal length.
  • a plano-convex columnar lens is preferably used for increasing the focal length, and a biconvex columnar lens is preferably used for shortening the focal length.
  • a lens having a cylindrical Fresnel surface as the columnar lens L, it is possible to manufacture a large telescope at a lighter weight and at a lower cost.
  • the columnar lens L is preferably movably supported on a rail installed inside the lens barrel so as to extend in the optical axis direction.
  • the number of columnar lenses L is not limited to one and may be plural.
  • a plurality of columnar lens groups L 1 to L n are arranged on the y-axis depending on the shape of the reflecting surface 12 of the primary mirror M, the final use of the image, and the like, and It may be configured such that the light transmitted through the lens L n of the position is focused on the point focus.
  • the columnar lens L when distortion occurs between an image generated by the primary mirror M and an image generated by one columnar lens L due to different magnifications in the horizontal direction and the vertical direction, the columnar lens L (that is, By disposing another columnar lens L′ behind (ie, on the upstream side in the traveling direction of the reflected light of the primary mirror M) (that is, on the downstream side in the traveling direction of the reflected light of the primary mirror M), the distortion can be corrected. ..
  • a column axis in a direction orthogonal to the column axis 22 in the x-axis direction of the columnar lens L that is, a column axis in the z-axis direction.
  • a columnar lens having a can be used.
  • the columnar axis in the direction parallel to the columnar axis 22 of the columnar lens L in the x-axis direction that is, the columnar axis in the x-axis direction is set.
  • a columnar lens having the same can be used.
  • all of the lens groups L 1 to L n may be plano-convex columnar lenses or may be biconvex columnar lenses. Alternatively, one or a plurality of plano-convex columnar lenses and one or a plurality of biconvex columnar lenses may be appropriately combined.
  • the columnar lens groups L 1 to L n include one or more plano-concave columnar lenses in addition to a plurality of plano-convex columnar lenses, a plurality of biconvex columnar lenses, or a combination thereof. It may include one or a plurality of biconcave columnar lenses, or a lens group combining these.
  • plano-concave columnar lens and/or the biconcave columnar lens is arranged so that the direction of the column axis (that is, the x-axis direction) is parallel to the plano-convex columnar lens and/or the biconvex columnar lens. Is located in.
  • the size of the columnar lens L is not limited, but it is preferable to make it as small as possible from the viewpoint of weight reduction.
  • the height of the columnar lens L (that is, the length in the Z-axis direction) can be determined according to the height of the primary mirror M (the length in the Z direction).
  • the material of the columnar lens L is not particularly limited, and glass or resin can be appropriately used according to conditions such as application and allowable weight.
  • (screen) Screen S is arranged in the traveling direction downstream side of the light transmitted through the columnar lens L or columnar lens group L 1 ⁇ L n, can receive light transmitted through the columnar lens L or columnar lens group L 1 ⁇ L n .
  • the screen S is used as an example of the light receiving unit, but the present invention is not limited to this, and it may be an image pickup device such as a CCD or CMOS arranged at the position of the screen S, or an eyepiece. You can When a telescope is realized by using this optical system, the screen S is preferably movably supported on a rail installed in the lens barrel so as to extend in the optical axis direction.
  • FIG. 2 is a view of the optical system of FIG. 1 viewed from the x-axis direction.
  • the axis extending in the left-right direction in the figure is the y-axis
  • the axis extending in the up-down direction in the figure is the z-axis.
  • FIG. 2 with the position of the primary mirror M as the origin O, the positions of the columnar lens L, the screen S and the object K on the y-axis, and the position of the focus of the primary mirror M on the y-axis y FM and the columnar lens L.
  • the relationship with the position y FL of the focal point on the y-axis is shown.
  • the position y of the columnar lens L with respect to the position y K of the object K is used. It is necessary to determine L and the position y S of the screen.
  • the position on the x-axis at the point where the optical path connecting the focal point 1/(4a) of the primary mirror M on the y-axis and the end of the columnar lens L intersects with the primary mirror M is x′, and the columnar lens L
  • the magnification m of the convex lens having the focal length f is the distance from the object to the convex lens is a, and the distance from the convex lens to the image is Let be b It is represented by.
  • the position y K of the object K, and the focus position y FM of the primary mirror M It can be expressed as.
  • magnification m z in the z-direction using the position y L of the columnar lens L, the position y S of the screen, the position y K of the object K, the focal position y FL columnar lens L, It can be expressed as.
  • the position y S of the screen S is 165 mm from the formula (10).
  • the position y L of the columnar lens L is 100 mm.
  • FIG. 3 is a photograph showing an experiment when the character A is projected on the screen.
  • FIG. 3A is the character A used as an object
  • FIG. 3B is a projected image of the character A on the screen S.
  • the size of the letter A was 280 mm in width and 210 mm in length.
  • the image on the screen S was projected upside down, and the measured size of the character A on the screen was 22 mm in the horizontal direction and 6 mm in the vertical direction. On the screen S, it can be seen that the character A has been deformed (spread in the horizontal direction) and projected.
  • FIG. 4 is a photograph showing an experiment when the character A is projected on the screen.
  • FIG. 4A is a character A used as an object
  • FIG. 4B is a projected image of the character A on the screen S. Also in this case, as in the case of FIG. 3, the character A is deformed and projected on the screen S.
  • FIG. 5 is a diagram showing the equations (4) and (8) as a graph.
  • 5A is a graph showing the relationship between the position y S position y K and the screen S of the object K when defining the focal position y FM of the main mirror M in equation (4), and the vertical axis y S ( The range of the scale is 100 mm to 300 mm, and the horizontal axis represents y K (the range of the scale is 0 mm to 30000 mm). Further, FIG.
  • the vertical axis represents y L (scale range is 100 mm to 150 mm)
  • the horizontal axis represents y K (scale range is 0 mm to 30000 mm).
  • Both the screen S and the columnar lens L may be arranged at a fixed position when the object K is at a distance. Further, in FIG.
  • the character A is deformed and projected on the screen S.
  • the values of the magnifications m x and m z of the deformed projection image A with respect to the character A are calculated by using the equations (2) and (3).
  • the distortion of the projected image on the screen S is determined by the positions of the screen S and the columnar lens L.
  • Distortion of the projected image on the screen S is obtained by disposing another convex columnar lens L′ in the subsequent stage of the columnar lens L (that is, on the downstream side in the light traveling direction) so that the aspect ratio of the projected image becomes an object. It can be easily corrected to have the same aspect ratio as K.
  • the columnar lens L′ is a columnar lens having a column axis in a direction orthogonal to the column axis 22 of the columnar lens L, and may be installed under the condition that m ⁇ 1 in the expression (1).
  • FIG. 7A is a projected image on the screen S when the columnar lens L′ is arranged on the screen S side of the columnar lens L such that the column axis of the columnar lens L is orthogonal to the column axis 22 of the columnar lens L. ..
  • a biconvex lens having a central axis length of 25 mm ⁇ thickness of 9 mm ⁇ height of 40 mm and a focal length of 50 mm was used, and this lens was arranged at a position 120 mm from the main mirror M. It can be seen that the projected image of FIG. 7A is laterally compressed with respect to the projected image shown in FIG. 7B (reprinted in FIG. 3B).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Telescopes (AREA)
  • Lenses (AREA)

Abstract

Provided is an optical system that has a large focusing power, that can be easily and inexpensively manufactured, and that can be used in a midsize or larger reflecting telescope or the like. The optical system comprises: a reflecting body; one or more focusing bodies; and a light-receiving unit. The reflecting body includes a reflective surface that reflects light radiated by an object and is capable of condensing the reflected light at a linear focal point. The focusing body is disposed between the reflecting body and the linear focal point of the reflecting body and is capable of focusing light at a spot focal point by transmitting the light reflected by the reflecting body. The light-receiving unit is disposed downstream, in the direction of travel of the light transmitted through the focusing body, and is capable of receiving the light transmitted through the focusing body.

Description

反射体と集束体とを有する光学システムOptical system having a reflector and a focusing body
 本発明は、反射望遠鏡などに用いられる光学システムに関し、より具体的には、従来の反射望遠鏡に用いられるすり鉢状の放物面鏡に代えて、平板を一方向にのみ湾曲させた凹形状の反射面を有する主鏡を用いるとともに、この主鏡に1つ又は複数の柱状レンズを組み合わせた、容易かつ安価に作製することができる大集光力の光学システムに関する。 The present invention relates to an optical system used for a reflecting telescope or the like, and more specifically, instead of a mortar-shaped parabolic mirror used for a conventional reflecting telescope, a flat plate curved in only one direction has a concave shape. The present invention relates to an optical system that uses a main mirror having a reflecting surface and combines one or a plurality of columnar lenses with the main mirror, and that can be easily and inexpensively manufactured with a large focusing power.
 放物面反射鏡が用いられるニュートン式反射望遠鏡をはじめとして、これまで多くの改良型反射望遠鏡が開発されてきたが、主鏡として用いられる放物面反射鏡の研磨技術に要求される精度の高さとその作業工程の複雑さは、今日に至るまで変わるものではない。そのため、特に中大型の反射望遠鏡は高価なものになり、中型以上の反射望遠鏡を自製することは殆ど不可能である。大型の放物面反射鏡は、重量が数トンから数十トンにも及ぶため、重力による鏡面の変形が問題となり、その変形も観測する天体の高さにより異なる。したがって、鏡面の変形の補正は、スバル望遠鏡などの特殊な最新の制御システムが用いられるもの以外は不可能である。 Many improved reflection telescopes have been developed up to now, including the Newton-type reflection telescope in which a parabolic reflection mirror is used, but the accuracy required for the polishing technology of the parabolic reflection mirror used as the primary mirror has been improved. The height and complexity of its working process remains unchanged to this day. Therefore, the medium-sized and large-sized reflecting telescopes are expensive, and it is almost impossible to manufacture a medium-sized or larger reflecting telescope. Large parabolic reflectors weigh from a few tons to a few tens of tons, so the deformation of the mirror surface due to gravity becomes a problem, and the deformation also depends on the height of the observing body. Therefore, the correction of the deformation of the mirror surface is impossible except for a special state-of-the-art control system such as a Subaru telescope.
 中規模以上の反射望遠鏡は、技術的な観点及びコスト的な観点から、大掛かりな組織でなければ製作は困難である。そこで、莫大な資金を要する大集光力の反射望遠鏡を、従来の望遠鏡より廉価かつ簡便に、軽量で製作することが可能であれば、一般市民レベルでも中型以上の反射望遠鏡を所有したり、自作したりすることができる。  Medium-scale and larger reflecting telescopes are difficult to manufacture unless they are large-scale organizations from the technical and cost perspectives. Therefore, if it is possible to manufacture a reflecting telescope with a large condensing power that requires a huge amount of money at a lower cost, more convenience, and a lighter weight than a conventional telescope, even a general citizen level owns a medium-sized or larger reflecting telescope, You can make your own.
 中大型の反射望遠鏡におけるこうした問題を解決する技術として、特許文献1に記載のシステムが提案されている。このシステムでは、2つの凹形状反射体が、それらの凹面が互いに対向するように配置されている。物体から放射された光線は、主鏡である第1の反射体によって、対向する第2の反射体の方向に反射される。第1の反射体からの光線は、第2の反射体によって反射される。第1の反射体及び第2の反射体は、それぞれ互いに対して直交する一方向に曲げられており、したがって、それぞれの線状焦点は、焦点で合体するようになっている。このシステムは、高コストの放物面反射鏡を用いるのではなく、薄いシート状の金属等から作製することができる凹形状反射体を用いるため、軽量かつ安価に構築することができるとされている。本出願の出願人もまた、特許文献2に開示されるように、特許文献1と同様の原理を用いた複合放射面式の望遠鏡を提案している。 The system described in Patent Document 1 has been proposed as a technique for solving such a problem in medium-sized and large-sized reflecting telescopes. In this system, two concave reflectors are arranged with their concave surfaces facing each other. The light beam emitted from the object is reflected by the first reflector, which is the primary mirror, toward the opposing second reflector. The light ray from the first reflector is reflected by the second reflector. The first reflector and the second reflector are each bent in one direction orthogonal to each other, so that the respective linear foci are merged at the foci. Since this system uses a concave reflector that can be made from a thin sheet metal or the like, rather than using a high-cost parabolic reflector, it is said that it can be constructed lightweight and inexpensively. There is. The applicant of the present application also proposes a compound radiation surface type telescope using the same principle as that of Patent Document 1, as disclosed in Patent Document 2.
 特許文献3には、2つの柱状レンズを、それらの柱軸が互いに直行するように配置した光学装置が提案されている。この装置によれば、光軸に垂直な直交する2方向成分について独立に光の収斂及び発散を行うことができるため、縦及び横の倍率が異なる像を得ることができる。 Patent Document 3 proposes an optical device in which two columnar lenses are arranged such that their column axes are orthogonal to each other. According to this apparatus, the light can be converged and diverged independently for the two orthogonal components that are perpendicular to the optical axis, so that images with different vertical and horizontal magnifications can be obtained.
特開2005-164881号公報JP, 2005-164881, A 特開2010-15116号公報JP, 2010-15116, A 特開昭57-204018号公報JP-A-57-204018
 特許文献1及び特許文献2に提案されている光学システムにおいては、以下のような課題がある。
 まず、これらの光学システムにおいては、歪みのない最終的な像を得るためには、特許文献2に示されるように高度な光学計算を行った上で、その計算結果を実現する高精度の光学系を構築する必要がある。特に、第1の凹形状反射体によって反射された光を、歪みなく点焦点に合焦させるための第2の凹形状反射体の形状を計算し、その計算結果に合致した複雑な形状の第1の反射体及び第2の反射体を精度よく製作することは困難であり、この光学システムを実現した望遠鏡も、それによる撮影像も、いまだ得られていない。
The optical systems proposed in Patent Document 1 and Patent Document 2 have the following problems.
First, in these optical systems, in order to obtain a final image without distortion, high-precision optics for realizing the calculation result after performing advanced optical calculation as shown in Patent Document 2 It is necessary to build a system. In particular, the shape of the second concave reflector for focusing the light reflected by the first concave reflector on the point focus without distortion is calculated, and the complicated shape of the second concave reflector that matches the calculation result is calculated. It is difficult to manufacture the first reflector and the second reflector with high precision, and neither a telescope that realizes this optical system nor a captured image thereof has been obtained yet.
 次に、これらの光学システムの原理を実現した望遠鏡を製作するには、像を捉えようとする物体と第1の反射体との間において、複雑な形状の第2の反射鏡を歪みが生じないように中空に固定する必要がある。しかし、光学的形状を安定させた状態で第2の反射鏡を中空に固定するには、大規模で高価な構造を要する。 Next, in order to fabricate a telescope that realizes the principles of these optical systems, the second reflecting mirror having a complicated shape is distorted between the object whose image is to be captured and the first reflecting body. It must be fixed in the hollow so that it does not exist. However, a large-scale and expensive structure is required to fix the second reflecting mirror in the hollow state while stabilizing the optical shape.
 また、特許文献1及び特許文献2の光学システムでは、焦点を光学系の外部に配置することが難しい。特許文献1の光学システムでは、上述のように第1及び第2の反射体を傾斜させずに点焦点に合焦させるだけでも困難であるのに、これらの反射体をいずれも傾斜させた状態で光学系の外部に歪みのない結像を実現する光学系の計算及び設計は、きわめて難しい。特許文献2の光学システムでは、第1の反射体に第2の反射体から反射された光の経路を設ける必要があるため、作製が難しく、高コストである。 Also, with the optical systems of Patent Documents 1 and 2, it is difficult to place the focal point outside the optical system. In the optical system of Patent Document 1, it is difficult to focus the light on the point focus without tilting the first and second reflectors as described above, but the reflectors are tilted. It is extremely difficult to calculate and design an optical system that realizes distortion-free imaging outside the optical system. In the optical system of Patent Document 2, since it is necessary to provide the first reflector with a path for the light reflected from the second reflector, it is difficult to manufacture and the cost is high.
 さらに、特許文献1及び特許文献2の光学システムにおいて、最終的な像に縦又は横方向の歪みが生じる場合に、その補正を行うためには、第1の反射体と第2の反射体との間に屈折体を配置する必要があるため、光学系の構造が複雑となる。 Further, in the optical systems of Patent Document 1 and Patent Document 2, in the case where a vertical or horizontal distortion occurs in the final image, in order to correct the distortion, the first reflector and the second reflector are used. Since it is necessary to dispose a refracting body between them, the structure of the optical system becomes complicated.
 特許文献3に提案される光学装置は、柱軸が互いに直交する2つの柱状レンズを用いて、縦及び横の倍率が異なる像を得ることができるとされている。この光学装置は、例えばいずれかの方向のスペクトルを広げるなどといった目的で用いることができると推測される。しかし、この光学装置のように主鏡として柱状レンズを用いると、遠方の物体を結像させるために主鏡のサイズを大きくした場合には重量が大きくなるため、この光学装置は、中型以上の望遠鏡に採用することが難しい。 The optical device proposed in Patent Document 3 is said to be able to obtain images with different vertical and horizontal magnifications by using two columnar lenses whose column axes are orthogonal to each other. It is speculated that this optical device can be used for the purpose of broadening the spectrum in either direction, for example. However, if a columnar lens is used as the primary mirror as in this optical device, the weight becomes large when the size of the primary mirror is increased to form an image of a distant object. It is difficult to adopt it in a telescope.
 本発明は、集光力が大きく、容易かつ安価に製造することができる、中型以上の反射望遠鏡等に用いることが可能な光学システムを提供することを課題とする。 An object of the present invention is to provide an optical system which has a large light-collecting power and can be manufactured easily and inexpensively and which can be used for a medium-sized or larger reflecting telescope or the like.
 本発明は、光学システムを提供する。光学システムは、反射体と、1つ又は複数の集束体と、受光部とを備える。反射体は、物体から放射された光を反射させる反射面を有し、反射された光を線状の焦点に集光させることができる。集束体は、反射体と反射体の線状の焦点との間に配置され、反射体によって反射された光を透過させることにより光を点焦点に集束させることができる。集束体は、1つであっても複数であってもよい。受光部は、集束体を透過する光の進行方向下流側に配置され、集束体を透過した光を受けることができる。 The present invention provides an optical system. The optical system includes a reflector, one or more focusing bodies, and a light receiving unit. The reflector has a reflecting surface that reflects the light emitted from the object, and can collect the reflected light on a linear focus. The focusing body is arranged between the reflector and the linear focus of the reflector, and the light reflected by the reflector can be transmitted to focus the light on the point focus. The number of the focusing bodies may be one or more. The light receiving unit is arranged on the downstream side in the traveling direction of the light passing through the focusing body, and can receive the light passing through the focusing body.
 一実施形態においては、反射体は、一方向にのみ湾曲した凹形状の反射面を有する。反射面は、放物柱面、双極柱面、楕円柱面、及び円柱面からなる群から選択されるいずれかの形状を有することが好ましい。 In one embodiment, the reflector has a concave reflecting surface that is curved in only one direction. The reflecting surface preferably has any shape selected from the group consisting of a parabolic cylinder surface, a dipole cylinder surface, an elliptic cylinder surface, and a cylinder surface.
 一実施形態においては、1つ又は複数の集束体は、平凸形状の柱状レンズ若しくは両凸形状の柱状レンズ又はこれらの組み合わせを含むものとすることができる。別の実施形態においては、集束体が複数の柱状レンズから構成されたものとした場合には、複数の柱状レンズは、平凸形状の柱状レンズ若しくは両凸形状の柱状レンズ又はこれらの組み合わせに加えて、平凹形状の柱状レンズ若しくは両凹形状の柱状レンズ又はこれらの組み合わせを含むものとすることもできる。 In one embodiment, the one or more concentrators may include plano-convex columnar lenses or biconvex columnar lenses, or a combination thereof. In another embodiment, in the case where the focusing body is composed of a plurality of columnar lenses, the plurality of columnar lenses include a plano-convex columnar lens, a biconvex columnar lens, or a combination thereof. Thus, it may include a plano-concave columnar lens, a biconcave columnar lens, or a combination thereof.
 一実施形態において、集束体が複数の場合に、複数の集束体は、光の進行方向上流側に配置された上流側集束体と、当該上流側集束体を透過した光の歪みを補正するための下流側集束体とを含むものとすることができる。 In one embodiment, when there are a plurality of converging bodies, the plurality of converging bodies are for correcting the upstream side converging body arranged on the upstream side in the traveling direction of light and the distortion of the light transmitted through the upstream side converging body. And a downstream side focusing body of the above.
 本発明によれば、第1の反射鏡による反射光を柱状レンズを用いて合焦させればよく、像を得るための複雑な光学計算が不要であり、第1の反射鏡として高度な研磨技術を要する高価なすり鉢型の放物面鏡を用いないため、中型以上の反射望遠鏡でも容易かつ安価に製作することができる。 According to the present invention, the light reflected by the first reflecting mirror may be focused by using the columnar lens, complicated optical calculation for obtaining an image is not required, and the first reflecting mirror is highly polished. Since an expensive mortar-shaped parabolic mirror that requires technology is not used, it is possible to easily and inexpensively manufacture even a medium-sized or larger reflective telescope.
 また、本発明によれば、第2の反射鏡として曲面形状の複雑な凹状反射鏡を用いる必要がなく、ガラスや樹脂を用いて作製することが可能な安定した光学的形状を有する柱状レンズを集光体として用いることができるため、集光体を簡単な構造物によって容易に中空に固定することができる。 Further, according to the present invention, it is not necessary to use a complicated concave reflecting mirror having a curved surface shape as the second reflecting mirror, and a columnar lens having a stable optical shape that can be manufactured using glass or resin is provided. Since it can be used as a light collector, the light collector can be easily fixed in the hollow by a simple structure.
 さらに、本発明の光学システムにおいては、従来のニュートン型望遠鏡と同様に、焦点を容易に光学系の外部に配置することができるため、接眼鏡や受光素子などの光学機器を追加しやすい。 Furthermore, in the optical system of the present invention, the focal point can be easily arranged outside the optical system as in the conventional Newton type telescope, so that it is easy to add an optical device such as an eyepiece or a light receiving element.
 さらに、本発明によれば、第1の反射鏡を軽量に作製することができるため、重力による鏡面歪みを軽減することができ、発生した歪みも、柱状レンズ等を用いて容易に補正することができる。 Further, according to the present invention, since the first reflecting mirror can be manufactured to be lightweight, the mirror surface distortion due to gravity can be reduced, and the generated distortion can be easily corrected by using a columnar lens or the like. You can
本発明の一実施形態による光学システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the optical system by one Embodiment of this invention. 図1の光学システムをX軸方向からみた図であり、主鏡の位置を原点として、柱状レンズ、スクリーン及び物体の位置と、主鏡及び柱状レンズの焦点の位置との関係を示す図である。FIG. 2 is a diagram of the optical system of FIG. 1 as viewed from the X-axis direction, showing the relationship between the positions of the columnar lens, the screen and the object, and the positions of the focal points of the primary mirror and the columnar lens, with the position of the primary mirror as the origin. .. 本発明の一実施形態による光学システムを用いて、遠方に配置した物体(文字A)をスクリーンに投影したときの実験を示す写真であり、物体として用いた文字Aである。3 is a photograph showing an experiment when an object (character A) arranged at a distance is projected on a screen using the optical system according to the embodiment of the present invention, and is the character A used as an object. 本発明の一実施形態による光学システムを用いて、遠方に配置した物体(文字A)をスクリーンに投影したときの実験を示す写真であり、図3Aの文字Aの投影像である。3B is a photograph showing an experiment when an object (character A) arranged at a distance is projected on a screen using the optical system according to the embodiment of the present invention, and is a projected image of the character A in FIG. 3A. 本発明の一実施形態による光学システムを用いて、図3の場合より近い位置に配置した物体(文字A)をスクリーンに投影したときの実験を示す写真であり、物体として用いた文字Aである。4 is a photograph showing an experiment when an object (character A) arranged closer to the case of FIG. 3 is projected on the screen by using the optical system according to the embodiment of the present invention, and is the character A used as the object. .. 本発明の一実施形態による光学システムを用いて、図3の場合より近い位置に配置した物体(文字A)をスクリーンに投影したときの実験を示す写真であり、図4Aの文字Aの投影像である。4A is a photograph showing an experiment when an object (letter A) arranged closer to the case of FIG. 3 is projected on a screen by using the optical system according to the embodiment of the present invention, and a projected image of the letter A in FIG. 4A. Is. 本発明の一実施形態による光学システムにおいて、物体の位置とスクリーンの位置との関係を示すグラフである。6 is a graph showing the relationship between the position of an object and the position of a screen in the optical system according to the embodiment of the present invention. 本発明の一実施形態による光学システムにおいて、物体の位置と柱状レンズの位置との関係を示すグラフである。6 is a graph showing the relationship between the position of an object and the position of a columnar lens in the optical system according to the embodiment of the present invention. 本発明の一実施形態による光学システムにおいて、スクリーンの位置と柱状レンズの位置の差と、物体の位置との関係を示すグラフである。6 is a graph showing the relationship between the position of an object and the difference between the position of the screen and the position of the cylindrical lens in the optical system according to the embodiment of the present invention. 本発明の一実施形態による光学システムにおいて、物体をスクリーンに投影したときの実験を示す写真であり、横方向の歪みを補正する補正用柱状レンズを用いたときの文字Aの投影像である。6 is a photograph showing an experiment when an object is projected on a screen in an optical system according to an embodiment of the present invention, and is a projected image of a character A when a correcting columnar lens that corrects lateral distortion is used. 本発明の一実施形態による光学システムにおいて、物体をスクリーンに投影したときの実験を示す写真であり、補正用柱状レンズを用いないときの投影像(図3(b)の再掲)である。FIG. 6 is a photograph showing an experiment when an object is projected on a screen in the optical system according to the embodiment of the present invention, and is a projected image when the correcting columnar lens is not used (reprinted in FIG. 3B).
 以下に、図面を参照しながら、本発明の一実施形態を詳細に説明する。 An embodiment of the present invention will be described in detail below with reference to the drawings.
 図1は、本発明の一実施形態による光学システムOSの構成を示す模式図である。図1においては、図中に示されるとおり、紙面の左右方向の軸をy軸、y軸に垂直な紙面の上下方向の軸をz軸、y軸及びz軸に垂直な方向の軸をx軸とする。光学システムOSは、物体Kからの光を反射させる主鏡M(反射体)と、主鏡Mから反射された光の光軸上に配置され、主鏡Mによって反射された光を透過させる柱状レンズL(集束体)とを含む。物体Kからの光は、物体Kにおいて反射された光であっても物体Kから放出された光であってもよく、可視光であっても可視光以外の電磁波であってもよい。光学システムOSは、さらに、柱状レンズLを透過した光を受けるスクリーンS(受光部)を含む。 FIG. 1 is a schematic diagram showing a configuration of an optical system OS according to an embodiment of the present invention. In FIG. 1, as shown in the figure, the horizontal axis of the paper is the y-axis, the vertical axis of the paper perpendicular to the y-axis is the z-axis, and the axis perpendicular to the y-axis and the z-axis is the x-axis. The axis. The optical system OS is arranged on the optical axis of the main mirror M (reflector) that reflects the light from the object K and the light reflected from the main mirror M, and has a column shape that transmits the light reflected by the main mirror M. And a lens L (focusing body). The light from the object K may be light reflected by the object K or light emitted from the object K, and may be visible light or electromagnetic waves other than visible light. The optical system OS further includes a screen S (light receiving unit) that receives the light transmitted through the columnar lens L.
 図1の光学システムOSにおいては、主鏡M及び柱状レンズLとスクリーンSとがy軸上において直線上に配置されているが、このような配置に限定されるものではなく、例えば、主鏡Mと柱状レンズLとがy軸上に配置されており、柱状レンズLを通過した光をy軸に配置された斜鏡を用いて側方に取り出し、側方に配置されたスクリーンSで受光するようにしてもよい。 In the optical system OS of FIG. 1, the primary mirror M, the columnar lens L, and the screen S are arranged on a straight line on the y-axis, but the arrangement is not limited to this. M and the columnar lens L are arranged on the y-axis, and the light passing through the columnar lens L is extracted to the side by using the oblique mirror arranged on the y-axis, and is received by the screen S arranged on the side. You may do so.
[本発明にかかる光学システムの構成]
(主鏡)
 主鏡Mは、一方向にのみ(すなわち、図1のy軸方向にのみ)に湾曲した凹形状の反射面12を有しており、この反射面12は、物体Kからの光を反射させることができる。反射面12の凹形状は、限定されるものではないが、放物柱面、楕円柱面、円柱面、双極柱面などの形状とすることができ、y軸状の1点に焦点を結ぶことができることに加えて、収差がないことから、放物柱面とすることがより好ましい。ただし、本発明においては、主鏡による収差が生じても、適切に選択された複数の補正用柱状レンズを配置することによって収差を吸収させることができるため、反射面12の凹形状として放物柱面以外の形状を採用することも比較的容易である。反射面12の形状が放物柱面を有する主鏡Mの場合には、例えば、一枚の鏡面板を、反射面12となる鏡面を内側にして、放物線y=ax(aは定数)に沿ってy軸方向にのみ湾曲させることにより、作製することができる。例えば、放物線y=axに沿って湾曲させた主鏡Mの場合には、その放物線の焦点はy=1/(4a)であるため、例えば図1のスクリーンSを主鏡Mの焦点の位置に配置するものとすれば、その位置からaを決定し、主鏡Mの反射面12の形状を設計することができる。
[Configuration of Optical System According to the Present Invention]
(Primary mirror)
The primary mirror M has a concave reflecting surface 12 that is curved only in one direction (that is, only in the y-axis direction in FIG. 1 ), and this reflecting surface 12 reflects light from the object K. be able to. The concave shape of the reflecting surface 12 is not limited, but may be a parabolic cylinder surface, an elliptic cylinder surface, a cylinder surface, a dipole cylinder surface, or the like, and focuses on one point on the y-axis. In addition to being able to do so, there is no aberration, so it is more preferable to use a parabolic prism surface. However, in the present invention, even if aberration occurs due to the primary mirror, it is possible to absorb the aberration by disposing a plurality of appropriately selected correction columnar lenses, so that the reflecting surface 12 has a parabolic shape as a concave shape. It is relatively easy to adopt a shape other than the pillar surface. When the shape of the reflecting surface 12 is the main mirror M having a parabolic cylindrical surface, for example, a single mirror surface plate with the mirror surface serving as the reflecting surface 12 inside is parabolic y=ax 2 (a is a constant). It can be manufactured by bending only along the y-axis direction. For example, in the case of the primary mirror M curved along the parabola y=ax 2 , the focus of the parabola is y=1/(4a), so that the screen S of FIG. If it is arranged at a position, a can be determined from that position and the shape of the reflecting surface 12 of the primary mirror M can be designed.
 主鏡Mは、凹形状の反射面12によって反射された光を、y軸方向のいずれかの位置において線状の焦点に集光させることができる。なお、主鏡Mの反射面とは反対側の部分の形状は、特に限定されるものではない。主鏡Mは、例えばこの光学システムを用いて望遠鏡を実現する場合には、適切な支持具等を用いて、望遠鏡を構成する鏡筒の内部に固定すればよい。 The primary mirror M can focus the light reflected by the concave reflecting surface 12 on a linear focus at any position in the y-axis direction. The shape of the portion of the main mirror M on the side opposite to the reflecting surface is not particularly limited. When realizing the telescope using this optical system, for example, the main mirror M may be fixed to the inside of the lens barrel forming the telescope by using an appropriate support or the like.
 主鏡Mの大きさは、限定されるものではなく、観測される物体との距離や必要とされる集光力などの条件に応じて、適宜決定することができる。主鏡Mの反射面12として用いることができる材料は、限定されるものではないが、熱膨張による変形が少なく加工しやすいものであることが好ましく、用途や許容される重量などの条件に応じて、アルミニウム、ステンレス、ガラス、樹脂などを適宜用いることができる。ガラスや樹脂を用いる場合には、これらの材料を基材とし、その表面に金属を蒸着したり鏡面板を貼り付けたりすることによって、反射面12を形成することができる。反射面12は、汎用の数値制御工作機械などを用いて形成された型に基づいて、作製することができる。主鏡Mを形状記憶合金で作製すれば、例えばロール状に巻いた主鏡Mをロケットに搭載して衛星軌道までで運搬し、軌道上で展開することによって、巨大な宇宙望遠鏡を構築することもできる。 The size of the primary mirror M is not limited, and can be appropriately determined according to conditions such as the distance to the observed object and the required focusing power. The material that can be used as the reflecting surface 12 of the primary mirror M is not limited, but it is preferable that the material has little deformation due to thermal expansion and can be easily processed, and it can be processed according to conditions such as application and allowable weight. Therefore, aluminum, stainless steel, glass, resin, or the like can be used as appropriate. When glass or resin is used, the reflecting surface 12 can be formed by using these materials as a base material and depositing a metal or attaching a mirror surface plate on the surface thereof. The reflecting surface 12 can be manufactured based on a mold formed by using a general-purpose numerical control machine tool or the like. If the primary mirror M is made of a shape memory alloy, for example, the primary mirror M wound in a roll shape is mounted on a rocket, transported to a satellite orbit, and deployed in orbit to construct a huge space telescope. You can also
(柱状レンズ)
 柱状レンズLは、x軸方向に延びる柱軸22を有し、主鏡Mの湾曲方向(y軸方向)に凸形状を有する柱状レンズとすることができ、y軸方向において主鏡Mと主鏡Mの線状焦点との間に配置される。柱状レンズLは、その柱軸22の方向(x軸方向)が主鏡Mの湾曲方向(y軸方向)と直交するように配置され、したがって、主鏡Mによって反射された光を柱軸22に垂直な方向から透過させることによって、点焦点に集束させることができる。
(Columnar lens)
The columnar lens L has a column axis 22 extending in the x-axis direction and can be a columnar lens having a convex shape in the bending direction of the primary mirror M (y-axis direction). It is arranged between the linear focal point of the mirror M. The columnar lens L is arranged such that the direction of the column axis 22 (x-axis direction) is orthogonal to the bending direction of the primary mirror M (y-axis direction), and therefore the light reflected by the primary mirror M is transmitted through the column axis 22. It is possible to focus on a point focus by transmitting light from a direction perpendicular to.
 柱状レンズLの形状は、限定されるものではないが、主鏡Mの反射面12に対向する側面が平面で、その反対側の側面が凸面である平凸形状の柱状レンズ、又は、主鏡Mの反射面12に対向する側面もその反対側の側面も凸面となった両凸形状の柱状レンズを、必要とされる焦点距離に応じて適宜選択して用いることができる。焦点距離を長くする場合には平凸形状の柱状レンズを用いることが好ましく、焦点距離を短くする場合には両凸形状の柱状レンズを用いることが好ましい。また、柱状レンズLとして、シリンドリカルフレネル面を有するレンズを用いることによって、より軽量かつ安価に大型の望遠鏡を製造できるようにすることも可能である。柱状レンズLは、例えばこの光学システムを用いて望遠鏡を実現する場合には、鏡筒の内部において光軸方向に延びるように設置されたレール上に移動可能に支持されることが好ましい。 The shape of the columnar lens L is not limited, but a side surface of the primary mirror M facing the reflecting surface 12 is a flat surface, and the opposite side surface is a convex surface. A biconvex columnar lens having a convex surface on both the side surface facing the reflecting surface 12 of M and the side surface on the opposite side can be appropriately selected and used according to the required focal length. A plano-convex columnar lens is preferably used for increasing the focal length, and a biconvex columnar lens is preferably used for shortening the focal length. Further, by using a lens having a cylindrical Fresnel surface as the columnar lens L, it is possible to manufacture a large telescope at a lighter weight and at a lower cost. When a telescope is realized by using this optical system, the columnar lens L is preferably movably supported on a rail installed inside the lens barrel so as to extend in the optical axis direction.
 柱状レンズLの数は、1つに限定されるものではなく、複数であってもよい。例えば、主鏡Mの反射面12の形状や最終的に必要となる像の用途等に応じて、複数の柱状レンズ群L~Lをy軸上に配置し、主鏡Mから最も遠位のレンズLを透過した光が点焦点に集光されるように構成することができる。 The number of columnar lenses L is not limited to one and may be plural. For example, a plurality of columnar lens groups L 1 to L n are arranged on the y-axis depending on the shape of the reflecting surface 12 of the primary mirror M, the final use of the image, and the like, and It may be configured such that the light transmitted through the lens L n of the position is focused on the point focus.
 また、例えば、主鏡Mによって生成される像と1つの柱状レンズLによって生成される像との間で、横方向と縦方向の倍率が異なることによって歪みが生じる場合に、柱状レンズL(すなわち、主鏡Mの反射光の進行方向上流側)の後方(すなわち、主鏡Mの反射光の進行方向下流側)に別の柱状レンズL’を配置することによって、歪みを補正することができる。この用途で用いられる柱状レンズL'として、例えばx軸方向の歪みを補正したい場合には、柱状レンズLのx軸方向の柱軸22と直交する方向の柱軸、すなわちz軸方向の柱軸を有する柱状レンズを用いることができる。また、別の柱状レンズL’として、例えばz軸方向の歪みを補正したい場合には、柱状レンズLのx軸方向の柱軸22と平行な方向の柱軸、すなわちx軸方向の柱軸を有する柱状レンズを用いることができる。 Further, for example, when distortion occurs between an image generated by the primary mirror M and an image generated by one columnar lens L due to different magnifications in the horizontal direction and the vertical direction, the columnar lens L (that is, By disposing another columnar lens L′ behind (ie, on the upstream side in the traveling direction of the reflected light of the primary mirror M) (that is, on the downstream side in the traveling direction of the reflected light of the primary mirror M), the distortion can be corrected. .. As the columnar lens L′ used in this application, for example, when it is desired to correct the distortion in the x-axis direction, a column axis in a direction orthogonal to the column axis 22 in the x-axis direction of the columnar lens L, that is, a column axis in the z-axis direction. A columnar lens having a can be used. Further, as another columnar lens L′, for example, when it is desired to correct the distortion in the z-axis direction, the columnar axis in the direction parallel to the columnar axis 22 of the columnar lens L in the x-axis direction, that is, the columnar axis in the x-axis direction is set. A columnar lens having the same can be used.
 柱状レンズ群L~Lとして用いられる場合には、レンズ群L~Lは、すべてが平凸形状の柱状レンズであってもよく、すべてが両凸形状の柱状レンズであってもよく、1つ又は複数の平凸形状の柱状レンズと1つ又は複数の両凸形状の柱状レンズとが適宜組み合わされたものであってもよい。また、柱状レンズ群L~Lは、複数の平凸形状の柱状レンズ若しくは複数の両凸形状の柱状レンズ又はこれらの組み合わせに加えて、1つ又は複数の平凹形状の柱状レンズ、若しくは1つ又は複数の両凹形状の柱状レンズ、又はこれらを組み合わせたレンズ群を含んでいてもよい。平凹形状の柱状レンズ及び/又は両凹形状の柱状レンズは、平凸形状の柱状レンズ及び/又は両凸形状の柱状レンズと、その柱軸の方向(すなわちx軸方向)が平行になるように配置される。 When used as the columnar lens groups L 1 to L n , all of the lens groups L 1 to L n may be plano-convex columnar lenses or may be biconvex columnar lenses. Alternatively, one or a plurality of plano-convex columnar lenses and one or a plurality of biconvex columnar lenses may be appropriately combined. The columnar lens groups L 1 to L n include one or more plano-concave columnar lenses in addition to a plurality of plano-convex columnar lenses, a plurality of biconvex columnar lenses, or a combination thereof. It may include one or a plurality of biconcave columnar lenses, or a lens group combining these. The plano-concave columnar lens and/or the biconcave columnar lens is arranged so that the direction of the column axis (that is, the x-axis direction) is parallel to the plano-convex columnar lens and/or the biconvex columnar lens. Is located in.
 柱状レンズLの大きさは、限定されるものではないが、軽量化の観点からできるだけ小さくすることが好ましい。柱状レンズLの高さ(すなわち、Z軸方向の長さ)は、主鏡Mの高さ(Z方向の長さ)に応じて定めることができる。柱状レンズLの材料としては、特に限定されるものではなく、用途や許容される重量などの条件に応じて、ガラスや樹脂を適宜用いることができる。 The size of the columnar lens L is not limited, but it is preferable to make it as small as possible from the viewpoint of weight reduction. The height of the columnar lens L (that is, the length in the Z-axis direction) can be determined according to the height of the primary mirror M (the length in the Z direction). The material of the columnar lens L is not particularly limited, and glass or resin can be appropriately used according to conditions such as application and allowable weight.
(スクリーン)
 スクリーンSは、柱状レンズL又は柱状レンズ群L~Lを透過する光の進行方向下流側に配置され、柱状レンズL又は柱状レンズ群L~Lを透過した光を受けることができる。図1においては、受光部の一例としてスクリーンSが用いられているが、これに限定されるものではなく、スクリーンSの位置に配置されたCCD、CMOSなどの撮像素子や接眼鏡などとすることができる。スクリーンSは、例えばこの光学システムを用いて望遠鏡を実現する場合には、鏡筒内において光軸方向に延びるように設置されたレール上に移動可能に支持されることが好ましい。
(screen)
Screen S is arranged in the traveling direction downstream side of the light transmitted through the columnar lens L or columnar lens group L 1 ~ L n, can receive light transmitted through the columnar lens L or columnar lens group L 1 ~ L n .. In FIG. 1, the screen S is used as an example of the light receiving unit, but the present invention is not limited to this, and it may be an image pickup device such as a CCD or CMOS arranged at the position of the screen S, or an eyepiece. You can When a telescope is realized by using this optical system, the screen S is preferably movably supported on a rail installed in the lens barrel so as to extend in the optical axis direction.
[本発明に係る光学システムの設計]
 次に、本発明に係る光学システムを設計する方法を説明する。図2は、図1の光学システムをx軸方向からみた図であり、図の左右方向に延びる軸がy軸、図の上下方向に延びる軸がz軸である。図2においては、主鏡Mの位置を原点Oとして、柱状レンズL、スクリーンS及び物体Kのy軸上の位置と、主鏡Mの焦点のy軸上の位置yFM及び柱状レンズLの焦点のy軸上の位置yFLとの関係が示されている。ここで、本発明に係る光学システムを設計するためには、ある焦点距離の主鏡Mと柱状レンズLとを用いたときに、物体Kの位置yに対して、柱状レンズLの位置y及びスクリーンの位置yを決める必要がある。
[Design of Optical System According to the Present Invention]
Next, a method of designing the optical system according to the present invention will be described. 2 is a view of the optical system of FIG. 1 viewed from the x-axis direction. The axis extending in the left-right direction in the figure is the y-axis, and the axis extending in the up-down direction in the figure is the z-axis. In FIG. 2, with the position of the primary mirror M as the origin O, the positions of the columnar lens L, the screen S and the object K on the y-axis, and the position of the focus of the primary mirror M on the y-axis y FM and the columnar lens L. The relationship with the position y FL of the focal point on the y-axis is shown. Here, in order to design the optical system according to the present invention, when the main mirror M and the columnar lens L having a certain focal length are used, the position y of the columnar lens L with respect to the position y K of the object K is used. It is necessary to determine L and the position y S of the screen.
 物体Kから放射され図2の右方向から主鏡Mに入射した光は、主鏡Mの凹形状の反射面12(図2の例では、y=axの放物線に沿って湾曲した面)で反射される。反射された光は、放物線y=axの焦点y=1/(4a)=yFMの位置で、z軸方向に延びる線状の焦点を結ぶことになる。この線状の焦点と反射面12との間y=yの位置に柱状レンズLを配置すると、反射面12からの光は、柱状レンズLによってz軸方向に収縮し、y=yFLの位置に点状に焦点を結ぶ。 Light emitted from the object K and incident on the primary mirror M from the right direction in FIG. 2 is a concave reflecting surface 12 of the primary mirror M (in the example of FIG. 2, a curved surface along a parabola of y=ax 2 ). Is reflected by. The reflected light forms a linear focus extending in the z-axis direction at the position of the focal point y=1/(4a)=y FM of the parabola y=ax 2 . When the columnar lens L is arranged at the position of y=y L between the linear focus and the reflecting surface 12, the light from the reflecting surface 12 is contracted in the z-axis direction by the columnar lens L, and y=y FL Focus on a point in a dot pattern.
 ここで、主鏡Mのy軸上の焦点1/(4a)と柱状レンズLの端部とを結ぶ光路が主鏡Mと交わる点のx軸上の位置をx’とし、柱状レンズLと主鏡Mの焦点との距離をf(=柱状レンズLの焦点距離)、y軸と柱状レンズLの端部との間の距離(=柱状レンズLの柱軸に平行な長さの1/2)をαとすると、
α/f=x'/(1/4a)
であるので、x'は、
x'=α/4af
となる。したがって、集光力を上げるためにはx’を大きくすることになり、x’を大きくするためには、a及びfが小さく、αが大きくなるように、主鏡M及び柱状レンズLを設計することになる。
Here, the position on the x-axis at the point where the optical path connecting the focal point 1/(4a) of the primary mirror M on the y-axis and the end of the columnar lens L intersects with the primary mirror M is x′, and the columnar lens L The distance from the focal point of the primary mirror M is f (=focal length of the columnar lens L), and the distance between the y-axis and the end of the columnar lens L (=1/the length parallel to the column axis of the columnar lens L). If 2) is α,
α/f=x'/(1/4a)
Therefore, x'is
x'=α/4af
Becomes Therefore, the primary mirror M and the columnar lens L are designed so that x′ is increased in order to increase the condensing power, and a and f are decreased and α is increased in order to increase x′. Will be done.
 一般に、焦点距離fの凸レンズを用い、物体を凸レンズの焦点距離fより遠くに置いた場合、焦点距離fの凸レンズによる倍率mは、物体から凸レンズまでの距離をaとし、凸レンズから像までの距離をbとすると
Figure JPOXMLDOC01-appb-M000001
で表される。この倍率の計算に従えば、図2に示される主鏡M及び柱状レンズLの配置の場合には、x方向の倍率mは、主鏡Mの位置y=O、スクリーンSの位置y、物体Kの位置y、及び主鏡Mの焦点位置yFMを用いて、
Figure JPOXMLDOC01-appb-M000002
と表すことができる。また、z方向の倍率mは、柱状レンズLの位置y、スクリーンの位置y、物体Kの位置y、柱状レンズLの焦点位置yFLを用いて、
Figure JPOXMLDOC01-appb-M000003
と表すことができる。
Generally, when a convex lens having a focal length f is used and an object is placed farther than the focal length f of the convex lens, the magnification m of the convex lens having the focal length f is the distance from the object to the convex lens is a, and the distance from the convex lens to the image is Let be b
Figure JPOXMLDOC01-appb-M000001
It is represented by. According to the calculation of the magnification, in the case of the arrangement of the primary mirror M and the columnar lens L shown in FIG. 2, the magnification m x in the x direction is the position y M =O of the primary mirror M, the position y of the screen S. Using S 1 , the position y K of the object K, and the focus position y FM of the primary mirror M,
Figure JPOXMLDOC01-appb-M000002
It can be expressed as. Further, the magnification m z in the z-direction, using the position y L of the columnar lens L, the position y S of the screen, the position y K of the object K, the focal position y FL columnar lens L,
Figure JPOXMLDOC01-appb-M000003
It can be expressed as.
 (2)式及び(3)式から、
Figure JPOXMLDOC01-appb-M000004
 ここで、柱状レンズLの焦点距離をfとすると、柱状レンズLの焦点位置yFL=y+fであるので、(4)の左辺は、
Figure JPOXMLDOC01-appb-M000005
となる。(5)式をyについてまとめると、
Figure JPOXMLDOC01-appb-M000006
となるので、(6)式からyを求めると、
Figure JPOXMLDOC01-appb-M000007
となる。(7)式のAを(4)式を用いて戻すと、以下の式が得られる。
Figure JPOXMLDOC01-appb-M000008
 ここで、xが1より十分に大きいときには、以下の近似式、
Figure JPOXMLDOC01-appb-M000009
が成立することを利用すると、物体Kが十分に遠方にあるとき(y>>yFM)には、
Figure JPOXMLDOC01-appb-M000010
となり、柱状レンズLの位置は、物体Kの位置に依存せず、主鏡Mの焦点位置yFMと柱状レンズLの焦点距離fのみで決まる。また、物体Kが十分に遠方にあるときには、入射光は平行光なので、スクリーンSに像が映るようにするためには、
Figure JPOXMLDOC01-appb-M000011
となる。
From equations (2) and (3),
Figure JPOXMLDOC01-appb-M000004
Here, assuming that the focal length of the columnar lens L is f, the focal position of the columnar lens L is y FL =y L +f, so the left side of (4) is
Figure JPOXMLDOC01-appb-M000005
Becomes Summarizing equation (5) for y L ,
Figure JPOXMLDOC01-appb-M000006
Therefore, when y L is calculated from the equation (6),
Figure JPOXMLDOC01-appb-M000007
Becomes By returning A of the expression (7) using the expression (4), the following expression is obtained.
Figure JPOXMLDOC01-appb-M000008
Here, when x is sufficiently larger than 1, the following approximate expression,
Figure JPOXMLDOC01-appb-M000009
If the object K is sufficiently far away (y K >>y FM ) by using the fact that
Figure JPOXMLDOC01-appb-M000010
Therefore, the position of the columnar lens L does not depend on the position of the object K, and is determined only by the focal position y FM of the primary mirror M and the focal length f of the columnar lens L. Further, when the object K is sufficiently distant, the incident light is parallel light, and therefore, in order to display an image on the screen S,
Figure JPOXMLDOC01-appb-M000011
Becomes
 ここで主鏡Mとしてステンレス製の鏡面平板(100mm×300mm)をy=axの放物線に沿って湾曲させたものを用い、柱状レンズLとして柱軸長さ14mm×厚み14mm×高さ58mm、焦点距離f=65mm、透明樹脂製の両凸形状のものを用いて、実験を行った。主鏡Mの焦点位置yFM=1/(4a)=165mmの放物面形状のものを用いた場合には、(10)式から、スクリーンSの位置yは165mmとなる。また、(9)式から、柱状レンズLの位置yは100mmとなる。主鏡Mの位置をy=0mmとし、柱状レンズLをy=100mmの位置に、スクリーンSをy=165mmの位置にそれぞれ配置したときに、100m先の屋外の景色の倒置像をスクリーンSに投影することができた。 Here, as the main mirror M, a stainless mirror plate (100 mm×300 mm) curved along a parabola of y=ax 2 is used, and as the columnar lens L, a column axis length 14 mm×thickness 14 mm×height 58 mm, The experiment was conducted using a transparent resin biconvex lens having a focal length f=65 mm. When the parabolic shape of the focal position y FM =1/(4a)=165 mm of the primary mirror M is used, the position y S of the screen S is 165 mm from the formula (10). Further, from the expression (9), the position y L of the columnar lens L is 100 mm. When the position of the primary mirror M is set to y M =0 mm, the columnar lens L is placed at the position of y L =100 mm, and the screen S is placed at the position of y S =165 mm, the inverted image of the outdoor scenery 100 m ahead is obtained. It was possible to project on the screen S.
 次に、物体Kとして文字Aを準備し、距離y=2000mmの位置に配置した。主鏡M、柱状レンズLの条件は上記と同じである。スクリーンSの位置は、(4)式より、y=180mmとなる。また、柱状レンズLの位置は、(8)式より、y=113mm
となる。図3は、文字Aをスクリーンに投影したときの実験を示す写真であり、図3Aは物体として用いた文字A、図3Bは文字AのスクリーンS上の投影像である。文字Aのサイズは、横280mm、縦210mmとした。スクリーンS上の像は、上下が逆さまに投影されており、スクリーン上の文字Aのサイズの実測値は、横22mm、縦6mmであった。スクリーンS上では、文字Aが変形されて(横方向に広がって)投影されたことが分かる。
Next, the letter A was prepared as the object K and arranged at the position of the distance y K =2000 mm. The conditions for the primary mirror M and the columnar lens L are the same as above. From the formula (4), the position of the screen S is y S =180 mm. Further, the position of the columnar lens L is y L =113 mm from the formula (8).
Becomes FIG. 3 is a photograph showing an experiment when the character A is projected on the screen. FIG. 3A is the character A used as an object, and FIG. 3B is a projected image of the character A on the screen S. The size of the letter A was 280 mm in width and 210 mm in length. The image on the screen S was projected upside down, and the measured size of the character A on the screen was 22 mm in the horizontal direction and 6 mm in the vertical direction. On the screen S, it can be seen that the character A has been deformed (spread in the horizontal direction) and projected.
 さらに、物体Kとして文字Aを準備し、距離y=730mmの位置に配置した。主鏡M、柱状レンズLの条件は上記と同じである。スクリーンSの位置は、(4)式より、y=213mmとなり、柱状レンズLの位置は、(8)式より、y=143mmとなる。図4は、文字Aをスクリーンに投影したときの実験を示す写真であり、図4Aは物体として用いた文字A、図4Bは文字AのスクリーンS上の投影像である。この場合も、図3の場合と同様に、スクリーンS上では文字Aが変形されて投影された。 Further, the letter A was prepared as the object K and arranged at the position of the distance y K =730 mm. The conditions for the primary mirror M and the columnar lens L are the same as above. The position of the screen S is y S =213 mm from the formula (4), and the position of the columnar lens L is y L =143 mm from the formula (8). FIG. 4 is a photograph showing an experiment when the character A is projected on the screen. FIG. 4A is a character A used as an object, and FIG. 4B is a projected image of the character A on the screen S. Also in this case, as in the case of FIG. 3, the character A is deformed and projected on the screen S.
 図5は、(4)式及び(8)式をグラフとして表した図を示す。図5Aは、(4)式において主鏡Mの焦点位置yFMを定めたときの物体Kの位置yとスクリーンSの位置yとの関係を示すグラフであり、縦軸はy(目盛の範囲は100mm~300mm)、横軸はy(目盛の範囲は0mm~30000mm)を表す。また、図5Bは、(8)式において主鏡Mの焦点位置yFM及び柱状レンズLの焦点距離fを定めたときの物体Kの位置yと柱状レンズLの位置yとの関係を示すグラフであり、縦軸はy(目盛の範囲は100mm~150mm)、横軸はy(目盛の範囲は0mm~30000mm)を表す。スクリーンS及び柱状レンズLはいずれも、物体Kが遠方にあるときには一定の位置に配置されればよい。また、図6には、物体Kの位置yを横軸とし、スクリーンSの位置yと柱状レンズLの位置yとの差(y-y)を縦軸としたグラフであり、縦軸はy-y(目盛の範囲は60mm~75mm)、横軸はy(目盛の範囲は0mm~30000mm)を表す。図6より、差は、物体Kが遠方にあるときには約65mmに漸近し、この値は柱状レンズLの焦点距離に等しいことがわかる。柱状レンズL及びスクリーンSの図5及び図6に示される位置関係は、例えば、柱状レンズL及びスクリーンSをそれぞれ別個に移動させるモータを用い、これらのモータを電子制御することによって実現することができる。 FIG. 5 is a diagram showing the equations (4) and (8) as a graph. 5A is a graph showing the relationship between the position y S position y K and the screen S of the object K when defining the focal position y FM of the main mirror M in equation (4), and the vertical axis y S ( The range of the scale is 100 mm to 300 mm, and the horizontal axis represents y K (the range of the scale is 0 mm to 30000 mm). Further, FIG. 5B, the relationship between the position y L position y K and the columnar lens L on the object K when defining the focal length f of the focal position y FM and the columnar lens L of the primary mirror M in (8) In the graph shown, the vertical axis represents y L (scale range is 100 mm to 150 mm), and the horizontal axis represents y K (scale range is 0 mm to 30000 mm). Both the screen S and the columnar lens L may be arranged at a fixed position when the object K is at a distance. Further, in FIG. 6, the position y K of the object K on the horizontal axis, there graphically the difference a (y S -y L) was the vertical axis between the position y L position y S and the columnar lens L of the screen S The vertical axis represents y S -y L (scale range is 60 mm to 75 mm), and the horizontal axis represents y K (scale range is 0 mm to 30000 mm). From FIG. 6, it can be seen that the difference asymptotically approaches 65 mm when the object K is at a distance, and this value is equal to the focal length of the columnar lens L. The positional relationship between the columnar lens L and the screen S shown in FIGS. 5 and 6 can be realized by, for example, using motors that move the columnar lens L and the screen S separately and electronically controlling these motors. it can.
 上述のとおり、図3に示された例、すなわち距離y=2000mmの位置に文字Aを配置した例において、スクリーンS上では文字Aが変形されて投影された。この変形された投影像Aの、文字Aに対する倍率m及びmの値は、(2)、(3)式を用いて計算すれば、
=180/2000=0.09倍
=(180-113)/(2000+113)=0.0317倍
となる。したがって、計算によって求められる像の大きさは、
横 280mm×0.09=25.2mm
縦 210mm×0.0317=6.66mm
となり、実測値とほぼ一致する。物体Kが十分に遠方にある場合(y=∞)には、物体Kのx方向の倍率mとy方向の倍率mとの比は、
Figure JPOXMLDOC01-appb-M000012
であるため、スクリーンS上の投影像の歪みは、スクリーンS及び柱状レンズLの位置で決まる。
As described above, in the example shown in FIG. 3, that is, the example in which the character A is arranged at the position of the distance y K =2000 mm, the character A is deformed and projected on the screen S. The values of the magnifications m x and m z of the deformed projection image A with respect to the character A are calculated by using the equations (2) and (3).
m x =180/2000=0.09 times m z =(180-113)/(2000+113)=0.0317 times. Therefore, the calculated image size is
Width 280 mm x 0.09 = 25.2 mm
Vertical 210 mm x 0.0317=6.66 mm
And almost agrees with the measured value. When the object K is sufficiently far away (y K =∞), the ratio between the x-direction magnification m x and the y-direction magnification m y of the object K is
Figure JPOXMLDOC01-appb-M000012
Therefore, the distortion of the projected image on the screen S is determined by the positions of the screen S and the columnar lens L.
 スクリーンS上の投影像の歪みは、柱状レンズLの後段(すなわち、光の進行方向下流側)に、さらに別の凸形状の柱状レンズL’を配置することによって、投影像の縦横比が物体Kの縦横比と同じになるように容易に補正することができる。この柱状レンズL’は、柱状レンズLの柱軸22と直交する方向の柱軸を有する柱状レンズであり、(1)式においてm<1となる条件で設置すればよい。図7Aは、柱状レンズLのスクリーンS側に、柱状レンズL’を、その柱軸が柱状レンズLの柱軸22と直交する向きになるように配置した場合のスクリーンS上の投影像である。このときの柱状レンズL’は、中軸長さ25mm×厚み9mm×高さ40mm、焦点距離50mmの両凸形状のレンズを用い、このレンズを主鏡Mから120mmの位置に配置した。図7Aの投影像は、図7Bに示される投影像(図3Bの再掲)に対して、横方向に圧縮されたことがわかる。 Distortion of the projected image on the screen S is obtained by disposing another convex columnar lens L′ in the subsequent stage of the columnar lens L (that is, on the downstream side in the light traveling direction) so that the aspect ratio of the projected image becomes an object. It can be easily corrected to have the same aspect ratio as K. The columnar lens L′ is a columnar lens having a column axis in a direction orthogonal to the column axis 22 of the columnar lens L, and may be installed under the condition that m<1 in the expression (1). FIG. 7A is a projected image on the screen S when the columnar lens L′ is arranged on the screen S side of the columnar lens L such that the column axis of the columnar lens L is orthogonal to the column axis 22 of the columnar lens L. .. As the columnar lens L′ at this time, a biconvex lens having a central axis length of 25 mm×thickness of 9 mm×height of 40 mm and a focal length of 50 mm was used, and this lens was arranged at a position 120 mm from the main mirror M. It can be seen that the projected image of FIG. 7A is laterally compressed with respect to the projected image shown in FIG. 7B (reprinted in FIG. 3B).
M 主鏡
L、L’、L” 柱状レンズ
~L 柱状レンズ群
S スクリーン
K 物体
12 主鏡Mの反射面
22 柱状レンズLの柱軸
 主鏡Mのy軸上の位置
 柱状レンズLのy軸上の位置
FM 主鏡Mの焦点のy軸上の位置
FL 柱状レンズの焦点のy軸上の位置
 スクリーンSのy軸上の位置
 物体Kのy軸上の位置
 

 
M primary mirror L, L ', L "shaped lenses L 1 ~ L n columnar lens group S screen K object 12 primary mirror M position y on the y-axis of the cylindrical axis y M primary mirror M of the reflecting surface 22 shaped lenses L of Position of the L columnar lens L on the y-axis y FM Position of the focus of the primary mirror M on the y-axis y Position of the focus of the FL columnar lens on the y-axis y S Position of the screen S on the y-axis y K Object K Position on y-axis

Claims (6)

  1.  物体からの光を反射面で反射させるとともに、反射された光を線状の焦点に集光させることができる、反射体と、
     前記反射体と前記反射体の線状の焦点との間に配置され、前記反射体によって反射された光を透過させることにより光を点焦点に集束させる、1つ又は複数の集束体と、
     前記1つ又は複数の集束体を透過する光の進行方向下流側に配置され、前記1つ又は複数の集束体を透過した光を受ける、受光部と
    を備える光学システム。
    A reflector that allows light from an object to be reflected by a reflecting surface and also allows the reflected light to be focused on a linear focus,
    One or a plurality of focusing bodies that are arranged between the reflector and the linear focus of the reflector and focus the light to a point focus by transmitting the light reflected by the reflector.
    An optical system comprising: a light receiving unit, which is arranged on a downstream side in a traveling direction of light passing through the one or more focusing bodies and receives light transmitted through the one or more focusing bodies.
  2.  前記反射体は、一方向にのみ湾曲した凹形状の反射面を有する、請求項1に記載の光学システム。 The optical system according to claim 1, wherein the reflector has a concave reflecting surface that is curved only in one direction.
  3.  前記反射面は、放物柱面、双極柱面、楕円柱面、及び円柱面からなる群から選択されるいずれかの形状を有する、請求項2に記載の光学システム。 The optical system according to claim 2, wherein the reflecting surface has any shape selected from the group consisting of a parabolic cylinder surface, a dipole cylinder surface, an elliptic cylinder surface, and a cylinder surface.
  4.  前記1つ又は複数の集束体は、平凸形状の柱状レンズ若しくは両凸形状の柱状レンズ又はこれらの組み合わせを含む、請求項1から請求項3までのいずれか1項に記載の光学システム。 The optical system according to any one of claims 1 to 3, wherein the one or more converging bodies include a plano-convex columnar lens, a biconvex columnar lens, or a combination thereof.
  5.  前記集束体は複数の柱状レンズから構成されており、該複数の柱状レンズは、平凹形状の柱状レンズ若しくは両凹形状の柱状レンズ又はこれらの組み合わせをさらに含む、請求項4に記載の光学システム。 The optical system according to claim 4, wherein the focusing body is composed of a plurality of columnar lenses, and the plurality of columnar lenses further include a plano-concave columnar lens, a biconcave columnar lens, or a combination thereof. ..
  6.  前記集束体は複数であり、該複数の集束体は、光の進行方向上流側に配置された上流側集束体と、当該上流側集束体を透過した光の歪みを補正するための下流側集束体とを含む、請求項1から請求項5までのいずれか1項に記載の光学システム。
     

     
    A plurality of the converging bodies are provided, and the plurality of converging bodies include an upstream converging body arranged on the upstream side in the traveling direction of light and a downstream converging body for correcting distortion of light transmitted through the upstream converging body. An optical system according to any one of claims 1 to 5, including a body.


PCT/JP2019/037444 2018-12-03 2019-09-25 Optical system including reflecting body and focusing body WO2020115996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-226538 2018-12-03
JP2018226538A JP6602942B1 (en) 2018-12-03 2018-12-03 Optical system having a reflector and a focusing body

Publications (1)

Publication Number Publication Date
WO2020115996A1 true WO2020115996A1 (en) 2020-06-11

Family

ID=68462409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037444 WO2020115996A1 (en) 2018-12-03 2019-09-25 Optical system including reflecting body and focusing body

Country Status (2)

Country Link
JP (1) JP6602942B1 (en)
WO (1) WO2020115996A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037846B1 (en) * 2021-04-26 2022-03-17 合同会社北海道環境・エネルギー研究所 Offset optical system with primary mirror and secondary mirror with offset position

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204018A (en) * 1981-06-09 1982-12-14 Mitsubishi Electric Corp Optical device
JP2005164881A (en) * 2003-12-02 2005-06-23 Sven Kooneeru System for focusing light ray

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204018A (en) * 1981-06-09 1982-12-14 Mitsubishi Electric Corp Optical device
JP2005164881A (en) * 2003-12-02 2005-06-23 Sven Kooneeru System for focusing light ray

Also Published As

Publication number Publication date
JP6602942B1 (en) 2019-11-06
JP2020091315A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
CN108028089B (en) X-ray microscope
US20080042079A1 (en) Collector with fastening devices for fastening mirror shells
CN105259648B (en) A kind of heavy caliber whole world face laser radar optical system
JP2011253023A (en) Projection type video display device
CN104977705A (en) Large-visual-field off-axis reflection zooming optical system
WO2020115996A1 (en) Optical system including reflecting body and focusing body
CN107885041B (en) A kind of big visual field exposure system
RU2375676C2 (en) Method of adjusting double-mirror centred optical systems
WO2022230416A1 (en) Offset optical system including primary mirror and positionally-offset sub-mirror
CN101750754B (en) Field cut-off optical synthesis aperture imaging system
US20150323799A1 (en) Light beam formatter and method for formatting a light beam
US4836666A (en) Compensation for primary reflector wavefront error
US20180343396A1 (en) Reflective truncated ball imaging system
US9946061B2 (en) Robust support structure for an optical reflecting telescope
Baldwin-Olguin Telecentric lens for precision machine vision
US8085466B2 (en) Optical system of light gathering using orthogonal compressions to form large diameter, shallow depth telescopes
US7477438B2 (en) Optical imaging system for imaging at least two planes of a light beam spaced apart in the beam direction
JP2507912B2 (en) Non-coaxial confocal zoom reflection optical system
Wippermann et al. Applications of chirped microlens arrays for aberration compensation and improved system integration
Dragovan et al. The DART system for far-IR/submillimeter space telescopes
JP2010015116A (en) Compound parabolic telescope
US11921284B2 (en) Optical zoom system using an adjustable reflective fresnel lens implemented with a micro-electro-mechanical system (MEMs) micro-mirror array (MMA)
JP2005164881A (en) System for focusing light ray
US20230003982A1 (en) Compact zoom relay system and method with varifocal freeform lens
Spagnesi et al. Thermal effects in the Solar Disk Sextant telescope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892372

Country of ref document: EP

Kind code of ref document: A1