WO2020115856A1 - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
WO2020115856A1
WO2020115856A1 PCT/JP2018/044873 JP2018044873W WO2020115856A1 WO 2020115856 A1 WO2020115856 A1 WO 2020115856A1 JP 2018044873 W JP2018044873 W JP 2018044873W WO 2020115856 A1 WO2020115856 A1 WO 2020115856A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
angle
wide
incident
light
Prior art date
Application number
PCT/JP2018/044873
Other languages
English (en)
French (fr)
Inventor
優佑 伊藤
柳澤 隆行
有賀 博
勝治 今城
航 吉岐
俊平 亀山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/044873 priority Critical patent/WO2020115856A1/ja
Priority to EP18942552.3A priority patent/EP3879304B1/en
Priority to JP2020558744A priority patent/JPWO2020115856A1/ja
Publication of WO2020115856A1 publication Critical patent/WO2020115856A1/ja
Priority to US17/236,359 priority patent/US11940564B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Definitions

  • the present invention relates to a laser radar device.
  • This invention irradiates a distance measurement target with laser light, receives reflected light from the target, and outputs the transmitted light and the time difference between the time when the received light is received, to the target.
  • the present invention relates to a laser radar device that obtains three-dimensional information by calculating a distance and beam scanning.
  • the conventional laser radar device shown in Patent Document 1 below detects the distance and the intensity from the received signal and generates the distance image and the intensity image based on the beam scanning angle at that time.
  • a movable optical element that scans a beam for example, a galvano scanner, MEMS
  • MEMS galvano scanner
  • the beam scanning range is limited, which causes a problem that the viewing angle as a device is limited.
  • the MEMS it is advantageous in terms of small size, light weight, and robustness (here, it means environment resistance), but the dynamic range is narrow, and the desired viewing angle required for the laser radar device is smaller than that.
  • the dynamic range is small and it is difficult to secure a desired viewing angle.
  • the present invention has been made to solve the above problems, and even in the case where the scanning range is limited by the mechanical scanning angle dynamic range in the movable optical element forming the beam scanning unit, It is an object of the present invention to widen the viewing angle of the laser sensor device and to secure a desired viewing angle by providing an optical system that widens the viewing angle.
  • beam scanning will be referred to as “scan”
  • scanner a movable optical element that performs beam scanning
  • the laser radar device of the present invention includes a light source that outputs a laser beam, a scanner that scans the laser beam, a laser beam scanned by the scanner that is incident, and a horizontal component of the incident laser beam and the horizontal direction of the emitted laser beam.
  • the first optical system that emits the incident laser light so that the directional components are different, and the horizontal incident range of the laser light that is incident by the laser light scanned by the scanner and the first optical system Of the second optical system that emits the incident laser light so that the emission range of the incident laser light and the emission range of the first optical system are different from each other. Equipped with.
  • the scanning range is limited by the mechanical scanning angle dynamic range in the movable optical element forming the beam scanning unit, which is desirable as the laser radar device. Even when it is difficult to secure the desired viewing angle, it is possible to widen the viewing angle of the laser sensor device and obtain the desired viewing angle.
  • FIG. 3 is a diagram showing scan positions on the incident surface of the wide-angle optical system 7 of the laser radar device according to Embodiment 1 of the present invention. It is a figure explaining widening of a field of view of a laser radar device concerning Embodiment 1 of this invention. It is a block diagram explaining the other structural example of the wide angle optical system 7 of the laser radar apparatus which concerns on Embodiment 1 of this invention.
  • Embodiment 1. 1 is a configuration diagram showing a configuration example of a laser radar device according to Embodiment 1 of the present invention.
  • This laser radar device includes a laser light source 1, a modulator 2, a trigger generator 3, a transmission optical system 4, a transmission/reception separation optical system 5, a scanner 6, a wide-angle optical system 7, a reception lens 8, a light receiving element 9, a current/voltage.
  • a conversion device 10, a distance measuring device 11, an intensity measuring device 12, an angle monitoring device 13, and a signal processing device 14 are provided.
  • the laser light source 1 is a laser light source that outputs laser light having a predetermined wavelength and intensity.
  • a laser diode, a fiber laser, etc. are used for the laser light source 1.
  • the wavelength and intensity are set according to the application, specifications, and usage environment of the laser radar device.
  • the modulator 2 is a modulator that modulates the laser light according to the trigger signal output from the trigger generator 3 and outputs it as pulsed light.
  • AOM Acoustic Optical Modulators
  • SOA semiconductor Optical Amplifier
  • the trigger generation device 3 is a trigger generation device that outputs a trigger signal indicating the modulation timing of laser light.
  • a trigger generation device that outputs a trigger signal indicating the modulation timing of laser light.
  • a DA Digital to Analog
  • an FPGA Field-Programmable Gate Array
  • a function generator or the like is used for the trigger generator 3.
  • the transmission optical system 4 is a transmission optical system that forms laser light pulsed by the modulator 2 into laser light having a predetermined beam diameter and divergence angle, and outputs the laser light as transmission light.
  • the transmission optical system 4 is designed or set with respect to the beam diameter of the laser light in accordance with specifications such as a distance finally output as a laser radar device, a spatial resolution of an intensity image, and an angular resolution.
  • the transmission optical system 4 outputs the transmission light output from the transmission optical system 4 in advance so that the transmission light output from the widening angle optical system 7 to the distance measurement target with respect to the horizontal beam divergence angle of the laser light becomes collimated light. Adjust the horizontal spread angle.
  • the transmission optical system 4 outputs the transmission optical system 4 in advance so that the transmission light output from the widening angle optical system 7 to the distance measurement target with respect to the vertical beam divergence becomes collimated light. Adjusts the vertical spread angle of transmitted light.
  • the transmission optical system 4 is composed of spherical and aspherical convex lenses, concave lenses, plano-convex lenses, plano-concave lenses, and combinations thereof.
  • the transmission/reception separation optical system 5 is a transmission/reception separation optical system that guides the transmission light output from the transmission optical system 4 to the scanner 6, receives scattered light from the distance measurement target, and guides it to the reception lens 8.
  • a fiber type circulator, a space type polarization beam splitter, or the like is used for the transmission/reception separating optical system 5.
  • the scanner 6 is a scanner that has two rotation axes in the horizontal direction and the vertical direction, and angularly scans the transmitted light within the range of the mechanical angular scanning dynamic range.
  • the scanner 6 performs angle scanning in each direction at a predetermined cycle with each axis as a reference. It has a two-dimensional scanning function.
  • a resonance type scanner such as a MEMS mirror or a resonant scanner or a non-resonance type scanner such as a galvano scanner is used as an example of the scanner.
  • the wide-angle optical system 7 is composed of a wide-angle upper optical system 71 (an example of a first optical system) and a wide-angle lower optical system 72 (an example of a second optical system), and two-dimensionally scanned by a scanner. Light is received, the received transmission light is emitted toward the distance measurement target so that the scanning angle is larger than the horizontal beam scanning angle dynamic range of the scanner 6 with respect to the horizontal direction, and the scattered light from the distance measurement target is received.
  • the upper and lower entrance surfaces are formed by curved surfaces that are concave in the horizontal direction.
  • the concave surface diffuses incident light, thereby obtaining a horizontal widening effect.
  • the radius of curvature when the concave surface is a spherical surface, the polynomial coefficient when the concave surface is an aspherical surface, etc. are determined in the design.
  • the curved surface of the incident surface of the upper stage By making the curved surface of the incident surface of the upper stage asymmetric with respect to the axis (optical axis) at which the horizontal scanning angle is 0 deg, an action is obtained in which the diffusion action is biased in the negative or positive direction in the horizontal direction.
  • the incident light is diffused as outgoing light in the positive and negative directions in the horizontal direction, respectively, so that the field of view is evenly distributed in the horizontal direction. Wider angle can be obtained.
  • the entrance surface of the lens In the vertical direction, the entrance surface of the lens is formed as a flat surface and arranged so as to be perpendicular to the optical axis.
  • the emission surfaces 71 and 72 are both formed in the horizontal plane.
  • the emitting surface With respect to the vertical direction, the emitting surface becomes a plane having an inclination by arranging so that the angle formed by the optical axis is 90 degrees or less. Due to the inclination, the field of view shifted vertically in the upper and lower stages is substantially matched in the measurement field of view at a distance. It is made of a material having a refractive index higher than that in the environment of use. For example, when it is used in the atmosphere and the refractive index of the atmosphere is 1, it is composed of a refractive index material larger than 1. Details are as described below.
  • FIG. 2 is a configuration diagram showing a configuration example of the wide-angle optical system 7 in the laser radar device according to the first embodiment of the present invention.
  • the configuration of the wide-angle optical system 7 will be described below with reference to FIG.
  • a solid line indicates a light beam scanned by the widening angle upper optical system 71
  • a dotted line indicates a light beam scanned by the widening angle lower optical system 72.
  • AA indicated by a chain line indicates an optical axis
  • all chain lines indicate a line parallel to the optical axis.
  • the widening angle optical system 7 includes a widening angle upper stage optical system 71 arranged symmetrically with respect to an axis (optical axis) where the scanning angle of the scanner in the vertical direction is 0 deg. And a wide-angle lower optical system 72.
  • the surface of the wide-angle optical system 7 on which the transmission light two-dimensionally scanned by the scanner 6 is incident is referred to as a “wide-angle optical system incident surface”, and the surface of the wide-angle optical system 7 from which the transmission light is emitted is referred to as “a surface.
  • Wide-angle optical system emission surface The entrance surface of the wide-angle widening upper optical system 71 is called the upper entrance surface, the exit surface of the wide-angle widening upper optical system 71 is called the upper exit surface, and the entrance surface of the wide-angle lower-stage optical system 72 is the lower exit surface and the wide-angle lower-stage optical system 72.
  • the emission surface of is called the lower emission surface.
  • both the entrance surface and the exit surface of the wide-angle increasing upper optical system 71 and the wide-angle increasing lower optical system 72 are referred to.
  • the term “upper stage” indicates the wide-angle widening upper stage optical system 71
  • the case “lower stage” indicates the wide-angle widening lower stage optical system 72.
  • ⁇ iu represents the angle between the optical axis and the upper incident surface
  • ⁇ id represents the angle between the optical axis and the lower incident surface
  • ⁇ iu ⁇ id .
  • ⁇ ou represents the angle between the optical axis and the upper exit surface
  • ⁇ od represents the angle between the optical axis and the lower exit surface
  • ⁇ ou ⁇ od .
  • ⁇ ou and ⁇ od are defined as being negative in the counterclockwise direction and positive in the clockwise direction from the optical axis.
  • a iu represents the horizontal scanning angle dynamic range of the transmission light incident on the widening angle upper optical system 71
  • a id represents the horizontal scanning angle dynamic range of the transmission light incident on the widening angle lower optical system 72.
  • a ou represents the dynamic range of the horizontal scanning angle of the transmitted light that has passed through the widening upper optical system 71
  • a od represents the dynamic range of the horizontal scanning angle of the transmission light that has passed through the widening lower optical system 72.
  • the center line is a line indicating the center of the incident range. That is, the center lines of the incident ranges in the horizontal direction coincide with each other in the wide-angle widening upper optical system 71 and the wide-angle widening lower optical system 72.
  • the optical axis is a line perpendicular to the reflection surface of the scanner 6.
  • the line is defined as a line intersecting with the center of the scanner 6, but the line intersecting with the center is not limited in defining the angle of the scan range.
  • the dynamic range of the vertical scanning angle of the transmission light that has passed through the wide-angle increasing upper optical system 71 or the wide-angle increasing lower optical system 72 is b.
  • the curved surfaces forming the upper and lower incident surfaces are inclined with respect to the optical axis by ⁇ iu and ⁇ id , respectively, and their absolute values are equal, and ⁇ iu is It is formed and configured so that it is clockwise from the optical axis and ⁇ id is counterclockwise from the optical axis. This means that the normal vector of the upper incident surface and the normal vector of the lower incident surface are symmetrical with respect to the optical axis.
  • the light beam of the full angle a deg obtained by the scanning of the scanner 6 enters the widening angle upper stage optical system 71 and the widening angle lower stage optical system 72. It is arranged with respect to the optical axis so that it is entirely incident on the surface.
  • the wide-angle upper-stage optical system 71 and the wide-angle lower-stage optical system are arranged so that the intersection of the incident surface of the wide-angle upper-stage optical system 71 and the incident surface of the wide-angle lower-stage optical system 72 is located on the optical axis.
  • the system 72 is arranged.
  • the angle ⁇ ou of the upper incident surface with respect to the optical axis and the angle ⁇ od of the lower incident surface with respect to the optical axis are equal in absolute value, 90 deg or less, and symmetrical with respect to the optical axis.
  • the widening angle upper stage optical system 71 and the widening angle lower stage optical system 72 are arranged.
  • the wide-angle increasing upper optical system 71 and the wide-angle increasing lower optical system 72 among the rays of full angle 2b deg obtained by the scanning of the scanner 6, the ray of b deg is incident on the wide-angle increasing upper optical system 71, and the ray of b deg is changed.
  • the wide-angle widening upper optical system 71 and the wide-angle widening lower optical system 72 are arranged symmetrically with respect to the optical axis in the vertical direction so that they are incident on the wide-angle widening lower optical system 72.
  • the vertical component of the normal vector of the incident surface of the widening angle upper optical system 71 and the vertical direction component of the normal vector of the incident surface of the widening lower optical system 72 coincide with each other, and are 0 in this case.
  • the widening angle upper optical system 71 and the widening angle lower optical system 72 are arranged. In other words, in the side view of FIG.
  • the angle between the incident surface of the wide-angle widening upper stage optical system 71 and the incident surface of the wide-angle widening lower stage optical system 72 and the optical axis is both 90 deg.
  • the incident angle of the transmitted light with respect to the incident surfaces of the wide-angle widening upper optical system 71 and the wide-angle widening lower optical system 72 is from ⁇ /2 to ⁇ /2-b. It becomes a range.
  • the incident angles of the transmitted light with respect to the exit surfaces of the widening angle upper optical system 71 and the widening angle lower optical system 72 are in the range of sin ⁇ 1 (sin(b)/n)+ ⁇ ou to ⁇ ou and , Sin ⁇ 1 (sin(b)/n)+ ⁇ od to ⁇ od .
  • the entrance surface of the wide-angle optics 7 is formed by a curved surface, but it may be a flat surface, a spherical surface, or an aspherical surface.
  • the incident surface may be formed as a flat surface.
  • the horizontal scan angle after the exit from the wide-angle optical system in each of the upper and lower stages is a deg, but as described above, it is formed as in [0022].
  • the horizontal viewing angle a h as the laser radar device obtains a scanning angle of 2 a deg.
  • the horizontal scan angles after emission of the upper-angle and lower-angle widening optical systems 7 are >a deg, and by forming the widening optical system 7 as [0022],
  • the horizontal viewing angle (scanning angle) a h as the laser radar device is >2a deg.
  • the incident surface of the lens is formed as a curved surface in the horizontal direction.
  • the incident surface of the lens is formed so as to be perpendicular to the optical axis.
  • the emission surfaces 71 and 72 are both flat and are formed according to [0024].
  • the emission direction of the optical axis ray 71 is emitted in the positive direction with respect to the optical axis.
  • the emission direction of the light beam of the optical axis 72 is emitted in the negative direction with respect to the optical axis.
  • the incident surface and the emitting surface of the transmission light 71 and 72 in the vertical direction are flat, the dynamic range of the scanning angle does not widen in the vertical direction.
  • the emission direction of the optical axis ray 71 is emitted in the negative direction with respect to the optical axis.
  • the emission direction of the light beam of the optical axis 72 is emitted in the positive direction with respect to the optical axis.
  • the wide-angle optical system 7 is made of a material having a refractive index higher than the refractive index under the usage environment. For example, when it is used in the atmosphere and the refractive index of the atmosphere is 1, it is composed of a material having a refractive index of 1 or more. When it is used in water and the refractive index of water is 1.3, the refractive index material is 1.3 or more. When the refractive index differs depending on the wavelength, the wide-angle optical system 7 is made of a refractive index material whose refractive index is larger than the reference, based on the refractive index at the used wavelength under the use environment. The wide-angle optics system 7 does not have to have a two-stage configuration of upper and lower stages. Further, the entrance surface and the exit surface may be AR-coated.
  • the receiving lens 8 is a receiving lens that collects scattered light from the distance measurement target on the light receiving element 9.
  • the receiving lens 8 may be a spherical or aspherical convex lens, a concave lens, a plano-convex lens, a plano-concave lens, or a combination thereof.
  • the light receiving element 9 is a light receiving element that receives the scattered light condensed by the receiving lens 8, converts the received scattered light into a current, and outputs it as a received current signal.
  • a photodiode, an avalanche photodiode, a photomultiplier tube, or the like is used as the light receiving element 9.
  • the current/voltage converter 10 is a current/voltage converter 10 that converts the received current signal output from the light receiving element 9 into a voltage and outputs the voltage as a received voltage signal.
  • a transimpedance amplifier is used for the current/voltage conversion device 10.
  • a TDC Time to Digital Converter
  • TAC Time to Amplitude Converter
  • the strength measuring device 12 is a strength measuring device that records the peak voltage value of the received voltage signal (pulse signal) output from the current/voltage converter 10 and outputs the recorded peak voltage value as the strength signal.
  • the intensity measuring device 12 uses a peak hold circuit.
  • the angle monitor device 13 is an angle monitor device that monitors the angle of the scanner 6 and outputs the monitored angle of the scanner 6 to the signal processing device 14 as a scanner angle signal.
  • a PSD Position Sensitive Detector
  • the signal processing device 14 is a signal processing device that generates a distance image and an intensity image from a distance signal, an intensity image, and a scanner angle signal.
  • the signal processing device 14 uses an FPGA (Field-Programmable Gate Array), a microcomputer, a PC (Personal Computer), and a combination thereof.
  • FPGA Field-Programmable Gate Array
  • the FPGA or the microcomputer converts the scanner angle signal and the distance signal into horizontal and vertical distances, and the PC displays the image after the conversion processing.
  • the conversion into the horizontal and vertical distances may be performed by S/W on the PC.
  • the laser light source 1 outputs laser light with a predetermined wavelength and intensity, and outputs it to the modulator 2.
  • the trigger generator 3 outputs a trigger signal designating the modulation timing of the laser light to the modulator 2.
  • the modulator 2 modulates the laser light output from the laser light source 1 according to the trigger signal and outputs the pulsed laser light to the transmission optical system 4.
  • the transmission optical system 4 receives the pulsed laser light output from the modulator 2, forms the received pulsed laser light into a predetermined beam diameter and beam divergence angle, and outputs the formed pulsed laser light as transmission light.
  • the transmission optical system 4 outputs the transmission light output from the transmission optical system 4 in advance so that the transmission light output from the widening angle optical system 7 to the distance measurement target with respect to the horizontal beam divergence angle of the laser light becomes collimated light. Adjust the horizontal spread angle.
  • the transmission optical system 4 is arranged in advance so that the transmission light output from the widening angle optical system 7 to the distance measurement target becomes collimated light with respect to the beam divergence angle in the vertical direction as in the horizontal direction. Adjusts the vertical divergence angle of output transmission light.
  • the transmission optical system 4 is adjusted according to the specifications of the distance finally output as a laser radar device, the spatial resolution of the intensity image, and the angular resolution.
  • FIG. 3 is a diagram showing scan positions on the incident surface of the wide-angle optical system 7 of the laser radar device according to the first embodiment of the present invention.
  • the operation of the scanner 6 will be described with reference to FIG.
  • the hatched portion indicates the wide-angle widening upper optical system 71
  • the non-hatched portion indicates the entrance surface of the wide-angle widening lower optical system 72.
  • the scanner 6 two-dimensionally scans the laser light by the following operation, and emits the scanned laser light to the incident surface of the wide-angle optical system 7.
  • the scanner 6 scans in the horizontal direction for one cycle or more while scanning for one cycle in the vertical direction, so as to form a zigzag pattern on the incident surface of the widening angle optical system 7, as shown in FIG. to scan.
  • l_1, l_2,..., L_N represent lines scanned by the scanner on the entrance surface of the wide-angle optics 7 by vertical and horizontal scanning.
  • the pulse cycle is set according to the number of pixels desired as the laser radar device. The number of pixels is set from the spatial resolution and angular resolution desired by the laser radar device.
  • the scanner 6 emits the two-dimensionally scanned pulsed laser light to the wide-angle optical system 7.
  • FIG. 4 is a diagram for explaining the widening of the field of view of the laser radar device according to the first embodiment of the present invention.
  • An_1 and An_2 respectively represent ranges scanned by the widening angle upper stage optical system 71 and the widening angle lower stage optical system 72 in the vicinity area after being emitted from the widening angle optical system.
  • a measurement visual field 1 and a measurement visual field 2 indicate the measurement visual fields of the widening angle upper stage optical system 71 and the widening angle lower stage optical system 72 at the distance measurement target position, respectively.
  • Wh_far indicates the horizontal scanning range at the distance measurement target position
  • Wv_far indicates the vertical scanning range at the distance measurement target position.
  • the vertical scanning angle dynamic range of the scanner when the vertical scanning angle dynamic range of the scanner is set to 2bdeg, the scanning angles of the widening upper stage optical system 71 and the widening lower stage optical system 72 are bdeg, respectively, as shown in FIG.
  • the field of view of the transmission light incident on the wide-angle optics upper stage optical system 71 becomes the measurement FOV 1 at the distance measurement target position.
  • the field of view of the transmitted light incident on the lower conversion optical system 72 is the measurement field of view 2.
  • the wide-angle widening optical system 7 includes a wide-angle widening upper optical system 71 and a wide-angle widening lower-stage optical system 72 arranged in the vertical direction, and a horizontal incidence surface of the wide-angle widening upper-stage optical system 71 and a horizontal direction of the wide-angle widening lower optical system 72. Since the incident surface is configured to be symmetrical with respect to the optical axis in a different direction, the horizontal angle range of the transmitted light is the same in the wide-angle widening upper stage optical system 71 and the wide-angle widening lower stage optical system 72 immediately after being emitted from the scanner 6. After the emission of the wide-angle optical system 7, the wide-angle upper optical system 71 and the wide-angle lower optical system 72 propagate in different horizontal directions, so that the horizontal viewing angle of the laser device becomes large.
  • the vertical emission surface of the wide-angle increasing upper optical system 71 and the vertical emission surface of the wide-angle increasing lower optical system 72 have different angles and are symmetrical with respect to the optical axis.
  • the transmission light output from the widening upper optical system 71 and the widening lower optical system 72 is corrected for vertical axis misalignment due to the difference in the incident angles of the widening upper optical system 71 and the widening lower optical system 72 with respect to the vertical direction.
  • the word "axis deviation" here means the deviation of the visual fields of 71 and 72 with respect to the vertical direction.
  • An_1 and An_2 schematically show the visual fields of 71 and 72 in the vicinity of the desired distance measurement object, and the measurement visual field 1 and the measurement visual field 2 are the positions of the desired distance measurement object. Shows the field of view.
  • the measurement field of view 1 and the measurement field of view 2 are vertically deviated in the vertical direction in the vicinity immediately after the emission of the wide-angle optical system 7, but at the desired distance measurement target position (far), the wide-angle measurement is performed. Since the vertical emission surfaces of the conversion upper optical system 71 and the widening angle lower optical system 72 are configured as shown in FIG. 2, the vertical misalignment between the measurement visual field 1 and the measurement visual field 2 is negligible.
  • the vertical field of view of the scanner is divided into two by the wide-angle optical system and converted into a horizontal field of view at the distance measurement target position.
  • a view angle of the laser radar device a view angle which is equal to or larger than the horizontal scanning angle dynamic range of the scanner is obtained.
  • the measurement visual field 1 and the measurement visual field 2 may be partially overlapped with each other at the distance measurement target position.
  • Measurement field of view 1 and the allowed overlap adjacent without measuring field 2 in the case of constituting the incident surface in plan a h is 2a deg, case where the incident surface is a curved surface a h is> 2a deg, become.
  • a h is reduced by 2 c deg.
  • the upper and lower stages are configured in two stages, but it may be configured in two or more stages. In the case of a plurality of stages, the same number of measurement fields of view can be obtained.
  • the respective measurement fields of view in the horizontal direction by the wide angle angle learning system, a measurement field of view that is equal to or larger than the horizontal scanning angle dynamic range of the scanner can be obtained.
  • the scattered light from the distance measurement target is output to the transmission/reception separating optical system 5 as the received light via the wide-angle optics 7 and the scanner 6.
  • the transmission/reception separation optical system 5 outputs the scattered light from the distance measurement object to the reception lens 8 as reception light.
  • the receiving lens 8 collects the received light and collects it on the light receiving element 9.
  • the light receiving element 9 receives the collected received light, converts the received light into an electric current, and outputs the converted current signal of the received light to the current/voltage converter 10.
  • the current signal of the received light is a pulse signal.
  • the current/voltage converter 10 converts a current signal into a voltage signal and outputs the voltage signal to the distance measuring device 11 and the strength measuring device 12.
  • the distance measuring device 11 measures the time difference between the received voltage signal output from the current/voltage conversion device 10 and the trigger signal output from the trigger generation device 3, calculates the distance corresponding to the time difference, and outputs the signal as a distance signal. Output to the processing device 14.
  • the intensity measuring device 12 detects the peak voltage value of the received voltage signal output by the current/voltage converting device 10, and outputs it as the intensity signal to the signal processing device 14.
  • the signal processing device 14 generates an intensity image and a distance image from the scan angle signal output by the angle monitor device 13 and the intensity signal and the distance signal.
  • the horizontal and vertical distances are calculated from the scan angle signal and the range signal.
  • the scan angle signal is the angle after emission from the wide-angle optical system 7.
  • the wide-angle optical system 7 is configured by the wide-angle upper optical system 71 and the wide-angle lower optical system 72 to widen the vertical field of view of the scanner.
  • the optical system 7 divides the visual field into two, and the divided visual field is converted into a horizontal visual field at the distance measurement target position.
  • a visual angle of the laser radar device a visual field angle greater than the horizontal scanning angle dynamic range of the scanner is obtained. Obtainable.
  • a jig for holding the wide-angle optical system 7 may be provided with a manual or electric optical axis adjusting jig.
  • the anti-reflection coating may be applied to the entrance and exit surfaces of the wide-angle optical system 7.
  • the distance measurement method using pulsed light as the transmitted light is shown as an example, but the widening of the field of view by the widening angle optical system 7 may be applied to other methods.
  • Examples include CW (Continuous Wave) system, FMCW (Frequency Modulated Continuous Wave) system, and the like.
  • the receiving lens 8 and the transmission optical system 4 may be composed of a plurality of optical elements.
  • the entrance surface of the wide-angle optics 7 is a curved surface, it may be spherical or aspherical.
  • the upper stage of the wide-angle optical system 7 (corresponding to the wide-angle upper optical system 71) and the lower stage (corresponding to the wide-angle lower optical system 72) are integrally machined, they are separately manufactured and joined. You may.
  • the two-dimensional scan incident on the incident surface of the widening-angle optical system 7 shows the scanning period in the horizontal and vertical directions of the scanner so that the forward and backward lines (l_1 to l_N) overlap each other.
  • the forward and backward lines l_1 to l_N
  • the incident surface of the wide-angle optical system 7 may have a curved surface even in the vertical direction. That is, the incident surface may be a toroidal surface.
  • the vertical beam divergence angle of the transmission optical system is adjusted so that the desired divergence angle is obtained after emission from the wide-angle optics system.
  • the angles ( ⁇ ou and ⁇ od ) of the emission surfaces of the upper stage and the lower stage defined in FIG. 2 may not be equal. If they are equal, at the desired observation distance, the measurement field of view 1 and the measurement field of view 2 are arranged on the optical axis in the vertical direction, but when ⁇ ou and ⁇ od are configured at different angles, they are vertical at the distance measurement target position. It is arranged at a position deviated from the optical axis with respect to the direction. As a supplement, when ⁇ ou and ⁇ od are made equal, the optical axis passes through the position of Wv_far/2 in FIG. 4, but when ⁇ ou and ⁇ od are configured at different angles, they deviate from the position of Wv_far/2. The optical axis passes through the position.
  • a curved surface is formed on the horizontal incident surface of the wide-angle optical system 7, and a flat inclined surface is formed on the vertical output surface so that the upper and lower surfaces have different orientations.
  • the shape of the exit surface in the direction may be configured such that the incident direction of the transmitted light and the outgoing direction of the transmitted light are opposite. The case will be described below.
  • FIG. 5 is a configuration diagram illustrating another configuration example of the wide-angle optical system 7 of the laser radar device according to the first embodiment of the present invention.
  • the vertical incident surface may be a flat inclined surface and the horizontal outgoing surface may be a curved surface.
  • the variable definition of FIG. 5 is the same as that of FIG. The different variables are defined below.
  • the angles ( ⁇ ou and ⁇ od ) of the incident surfaces with respect to the upper and lower optical axes defined in FIG. 5 are equal in absolute value, and are 90 deg or less. Therefore, when the positive and negative angular directions from the optical axis are defined as shown in FIG. 5, the angle ⁇ ou of the upper incident surface is the positive direction from the optical axis, and the angle ⁇ od of the lower incident surface is the optical axis from the optical axis.
  • the upper and lower stages are in contact with each other in the negative direction. That is, the upper incident surface and the lower incident surface are arranged symmetrically with respect to the optical axis.
  • the angle ⁇ ou of the upper exit surface with respect to the optical axis defined in FIG. 5 is absolutely equal to the angle ⁇ od of the lower exit surface. Make the values the same. That is, the upper and lower exit surfaces are arranged symmetrically with respect to the optical axis.
  • the horizontal incident surface is formed of a curved surface
  • vignetting may occur in a part of the transmission light input by the scanner due to the step generated at the upper and lower boundaries, but as shown in FIG.
  • the vignetting can be reduced.
  • the horizontal viewing angle can be widened.
  • the horizontal emission surface of the wide-angle optical system 7 does not have to be a flat surface.
  • the horizontal exit surface may have a curvature.
  • the incident surface is a concave surface and the outgoing surface is also a concave surface, the effect of a biconcave lens is exhibited, and the horizontal viewing angle is further widened.
  • the transmitted light in the horizontal and vertical directions after emission from the wide-angle optical system 7 does not have to be collimated light.
  • the scanner 6 has been shown to have two axes for angular scanning, but two scanners with one axis for angular scanning may be used instead.
  • the wide-angle optical system 7 is made of the transmissive material, but in the second embodiment, the wide-angle optical system 20 is made of the reflective material.
  • FIG. 6 shows a laser according to the second embodiment of the present invention. It is a block diagram which shows one structural example of a radar apparatus.
  • the laser radar device according to the second embodiment of the present invention includes a laser light source 1, a modulator 2, a trigger generator 3, a transmission optical system 4, a transmission/reception separation optical system 5, a scanner 6, a wide angle optical system 20, and a reception lens 8. 1, a light receiving element 9, a current/voltage converter 10, a distance measuring device 11, an intensity measuring device 12, an angle monitoring device 13, and a signal processing device 14.
  • FIG. 7 is a configuration diagram showing a configuration example of the wide-angle optical system 20 in the laser radar device according to the first embodiment of the present invention.
  • the wide-angle optical system 20 includes a wide-angle upper optical system 201 and a wide-angle lower optical system 202.
  • the term “upper stage” refers to the wide-angle widening upper stage optical system 201
  • the term “lower stage” refers to the wide-angle widening lower stage optical system 202.
  • the surface on which the transmitted light that is two-dimensionally scanned by the scanner 6 is incident and is reflected is defined as the "reflection surface of the wide-angle optical system 20".
  • the wide-angle widening upper optical system 201 and the wide-angle widening lower optical system 202 are indicated.
  • incident surface or a reflective surface it is the same surface in this embodiment.
  • the subscripts (iu, id) of a iu and a id indicate the widening angle upper stage optical system 201 and the widening angle lower stage optical system 202 on which the transmission light is incident.
  • a ou and a od represent the horizontal viewing angles of the transmitted light after passing through the wide-angle widening upper optical system 201 and the wide-angle widening lower optical system 202, respectively.
  • the vertical viewing angle of the transmitted light after passing through the widening angle upper optical system 201 and the widening angle lower optical system 202 is b deg, respectively.
  • the reflection surface of the wide-angle optical system 20 is configured to be a curved surface when viewed in a horizontal section and a flat surface when viewed in a vertical section.
  • the entrance surface is a curved surface when viewed in a horizontal cross section, but it may be a flat surface, a spherical surface, or an aspherical surface.
  • the wide-angle optical system 20 has the following structure.
  • the horizontal reflecting surfaces of the widening angle upper optical system 201 and the widening angle lower optical system 202 are configured to be rotationally symmetrical with respect to the optical axis.
  • the wide-angle optical system 20 is formed of a reflection system, a reflection surface in the vertical direction is formed by a plane and is inclined with respect to the optical axis.
  • the angles of the reflecting surfaces in the vertical direction of the widening angle upper stage optical system 201 and the widening angle lower stage optical system 202 with respect to the optical axis are configured to be equal in absolute value.
  • the vertical reflecting surface of the widening angle upper optical system 201 and the vertical reflecting surface of the widening lower optical system 202 are arranged line-symmetrically with respect to the optical axis.
  • the horizontal curved surface shape of the incident surface is the same as that of the first embodiment. The difference is that it is configured as a reflecting surface.
  • the reflecting surface is made of a material having a reflectance capable of reflecting at the wavelength used. Examples include a metal vapor deposition film and a dielectric multilayer film. Other structures are similar to those of the first embodiment. Details are as described below.
  • the transmission light from 0 deg to +b deg enters the wide-angle wide upper optical system 201
  • the transmission light from 0 deg to ⁇ b deg is configured to enter the wide-angle lower-stage optical system 202.
  • the wide-angle increasing upper optical system 201 and the wide-angle increasing lower optical system 202 are set so that the transmission light when the vertical scanning angle of the scanner 6 is 0 deg is at the boundary between the wide-angle increasing upper optical system 201 and the wide-angle increasing lower optical system 202. Place and.
  • the horizontal reflecting surfaces of the widening angle upper stage optical system 201 and the widening angle lower stage optical system 202 are configured to be symmetrical with respect to the optical axis.
  • the angle ⁇ iu of the upper incident surface with respect to the optical axis and the angle ⁇ id of the lower incident surface with respect to the optical axis are configured to match in absolute value.
  • the wide-angle optics system 20 is composed of the reflection system, as shown in the vertical direction (cross-sectional view) of FIG. ..
  • the angles ( ⁇ ou and ⁇ od ) of the upper and lower reflecting surfaces in the vertical direction with respect to the optical axis are configured to be equal in absolute value. Therefore, the upper vertical reflecting surface and the lower vertical reflecting surface are configured symmetrically with respect to the optical axis.
  • the transmission light output from the transmission optical system 4 is directed to the reflection surface of the scanner 6 so that the transmission light after being reflected by the reflection surface of the wide-angle optical system 20 is not vignetted by the scanner 6. Oblique incidence. Therefore, the transmission light reflected by the reflection surface of the scanner 6 has an inclination of ⁇ (see FIG. 7) with respect to the transmission light output by the transmission optical system 4 in the vertical direction.
  • This axis is defined as a vertical optical axis BB.
  • the optical axis in the horizontal direction is AA.
  • the transmission light reflected by the reflecting surface of the scanner is incident on the incident surface of the wide-angle optical system 20, so that the joint surface between the wide-angle upper optical system 201 and the wide-angle lower optical system 202 is the optical axis B. -Place it so that it passes through B.
  • the angle ⁇ ou of the upper reflecting surface is the positive direction from the optical axis and the angle of the lower reflecting surface.
  • ⁇ od is in the negative direction from the optical axis, and the wide-angle widening upper optical system 201 and wide-angle widening lower optical system 202 are configured so that their absolute values match.
  • the reflecting surfaces of the widening angle upper optical system 201 and the widening angle lower optical system 202 are made of a material having a reflectance capable of reflecting at the wavelength used. Examples include a metal vapor deposition film and a dielectric multilayer film.
  • the scanner 6 two-dimensionally scans the laser light by the following operation, and makes the scanned laser light incident on the incident surface of the wide-angle optical system 20. As shown in FIG. 3, by performing the scanning in the horizontal direction for one period or more while performing the scanning for one period in the vertical direction, the scanner 6 is zigzag-shaped on the incident surface of the wide-angle optical system 20. to scan.
  • the transmission light from the transmission optical system 4 obliquely enters the wide-angle optical system 20 at an angle ⁇ in the vertical direction via the scanner 6.
  • the transmission light that has entered the wide-angle widening upper optical system 201 from the scanner 6 enters the measurement visual field 1 at the distance measurement target position and is transmitted to the wide-angle widening lower optical system 202. The light is applied to the measurement visual field 2, respectively.
  • the transmitted light propagates in the same horizontal range with respect to the upper and lower stages immediately after being emitted from the scanner 6 and before being incident on the wide-angle optical system 20, as shown in FIG. 7 (horizontal direction: top view).
  • the scanner 6 since the horizontal incident surface of the wide-angle increasing upper optical system 201 and the horizontal incident surface of the wide-angle increasing lower optical system 202 are arranged symmetrically with respect to the AA axis, the scanner 6 outputs.
  • the transmitted light is reflected in different directions by the wide-angle widening optical system 201 and the wide-angle widening lower optical system 202, and propagates in different horizontal directions after being emitted from the wide-angle widening optical system 20.
  • the transmission light reflected by the wide-angle widening upper optical system 201 and the transmission light reflected by the wide-angle widening lower optical system 202 are incident on the wide-angle widening upper optical system 201 and the wide-angle widening lower optical system 202.
  • an angle shift that is, an axis shift occurs, as shown in FIG. 7 (vertical direction: cross-sectional view taken along line AA), the vertical reflection surface of the widening angle upper stage optical system 201 and the vertical direction of the widening angle lower stage optical system 202.
  • the transmission light reflected by the widening upper stage optical system 201 and the transmission light reflected by the widening lower stage optical system 202 are misaligned. Since the light propagates so as to be corrected, the distance measurement target is irradiated with a small vertical axis deviation at a desired position of the distance measurement target.
  • the same effect as that of the first embodiment is obtained.
  • the wide-angle optical system 20 by configuring the wide-angle optical system 20 with a reflective system, the range of materials that can be selected can be widened, and, for example, a resin material can be applied and can be mounted at low cost.
  • the measurement visual field 1 and the measurement visual field 2 may be partially overlapped at the distance measurement target position.
  • the horizontal field of view a h is 2 a deg
  • a h is >2 a deg. ..
  • the measurement visual field 1 and the measurement visual field 2 have c deg overlap, a h is reduced by 2 c deg.
  • the wide-angle optical system 20 may be composed of a plurality of stages of two stages or more.
  • An example of application to a plurality of stages is shown as an example in which a transmission system is used in the following fourth embodiment, but a reflection system can also be configured as an extension of the two stages shown in the second embodiment.
  • the reflecting surface (incident surface) of the wide-angle optical system 20 is a curved surface, but it may be a flat surface.
  • the transmission optical system 41 forms transmission light having a vertical field of view or a beam divergence angle larger than that required by the laser radar device in the vertical direction, and the light receiving element described in the first embodiment receives the transmitted light.
  • the array element 15 is used, and the scanner 6 is configured to perform horizontal angular scanning, whereby the same measurement result as when biaxial angular scanning is performed with uniaxial angular scanning can be obtained.
  • FIG. 8 is a configuration diagram showing a configuration example of a laser radar device according to Embodiment 3 of the present invention.
  • This laser radar device includes a laser light source 1, a modulator 2, a trigger generator 3, a transmission optical system 41, a transmission/reception separation optical system 5, a scanner 61, a wide-angle optical system 7, a reception lens 8, a light receiving array element 15, a current
  • the voltage conversion device 10 the distance measuring device 11, the intensity measuring device 12, the angle monitoring device 13, and the signal processing device 14 are provided.
  • the scanner 61 has a horizontal one-axis angle scanning function.
  • Ah the axis for scanning in the horizontal direction
  • it has a function of performing one-dimensional scanning by performing angular scanning at a predetermined cycle with Ah as a reference.
  • it has a function of receiving the received light output from the wide-angle optical system 7 and guiding it to the transmission/reception separating optical system 5.
  • Examples of the scanner 61 include a resonance type scanner such as a MEMS mirror and a resonant scanner, and a non-resonance type scanner such as a galvano scanner.
  • the configuration and function of the wide-angle optics system 7 are the same as in FIG.
  • the light receiving array element 15 has a function of converting light received by each element into a current and outputting the light received by each element as a received current signal.
  • Examples of the light receiving array element 15 include a photodiode array and an avalanche photodiode array.
  • the number of light-receiving array elements 15 is set according to the number of vertical pixels required for the laser radar device. The number of pixels may be set based on the desired spatial resolution and angular resolution of the laser radar device.
  • the wide-angle optical system 7 may be configured by a reflective system, and the wide-angle optical system 7 in this case is the wide-angle optical system 20.
  • the transmission optical system 41 receives the transmission light (pulse-shaped laser light) from the modulator 2 and forms it into a predetermined beam diameter and beam divergence angle.
  • the horizontal beam divergence angle after emission from the transmission optical system 41 is set so that the transmission light to the distance measurement target becomes collimated light in the horizontal direction. ..
  • the transmission optical system 41 sets the beam divergence angle in the vertical direction required for the laser radar device or in the vertical direction. Further, the transmission optical system 41 is set in accordance with the specifications of the distance finally output as the laser radar device, the spatial resolution of the intensity image, and the angular resolution regarding the horizontal beam diameter.
  • the transmission optical system 41 includes spherical and aspherical convex lenses, a concave lens, a plano-convex lens, a plano-concave lens, and a combination thereof, and shapes the beam into a desired beam shape.
  • the scanner 61 one-dimensionally scans the laser light by the following operation, and makes the scanned laser light incident on the incident surface of the wide-angle optical system 7.
  • FIG. 9 is a diagram showing scan positions on the incident surface of the wide-angle optical system 7 of the laser radar device according to the third embodiment of the present invention.
  • a region B hatched by an ellipse in FIG. 9 shows a beam pattern of transmission light incident on the wide-angle optical system 7.
  • the transmission optical system 41 shapes the transmission light having a divergence angle in the vertical direction, and the scanner 61 beam scans the transmission light having a divergence angle in the vertical direction in the horizontal direction.
  • the incident surface of the wide-angle optical system 7 is irradiated with the transmission light that spreads in the vertical direction, and the transmission light is scanned while being horizontally moved by scanning in the horizontal direction.
  • the broken lines lh_1 to lh_N represent the position of the transmission light with which the incident surface of the wide-angle optical system 7 is irradiated.
  • 1h means a line, and the number of a subscript shows a line number.
  • Intervals between the broken lines in FIG. 9 are determined by the laser repetition period and the horizontal angular scanning period of the scanner.
  • the laser repetition frequency is 10 Hz and the horizontal angular scanning cycle is 1 Hz
  • the forward scanning and the backward scanning (1 cycle in total) of the horizontal scanning are performed on the entrance surface of the widening angle optical system.
  • the laser repetition period is set according to the number of pixels desired for the laser radar device. The number of pixels may be set based on the desired spatial resolution and angular resolution of the laser radar device.
  • the pulsed laser light that is one-dimensionally scanned by the scanner 61 is incident on the incident surface of the wide-angle optics system 7.
  • FIG. 10 is a diagram for explaining the widening of the field of view of the laser radar device according to the third embodiment of the present invention.
  • the operation of the wide-angle optical system 7 will be described with reference to FIG.
  • An_1 and An_2 respectively indicate ranges scanned from the wide-angle widening optical system and then scanned by the wide-angle widening upper optical system 71 and the wide-angle widening lower optical system 72 in the vicinity area.
  • a measurement visual field 1 and a measurement visual field 2 indicate the measurement visual fields of the widening angle upper stage optical system 71 and the widening angle lower stage optical system 72 at the distance measurement target position, respectively.
  • Wh_far indicates the horizontal scanning range at the distance measurement target position
  • Wv_far indicates the vertical scanning range at the distance measurement target position.
  • Reference numerals 71, 72, An_1, An_2, the measurement visual field 1 and the measurement visual field 2 schematically indicate vertical positions of the transmission beam spot positions indicated by B in FIG. 9 and indicate that the scanning is performed only in the horizontal direction.
  • the operation for the horizontal viewing angle is [0046], [ The same as 0048], [0049], [0052], [0053], and [0054].
  • the respective incident angles to the wide-angle widening upper optical system 71 and the wide-angle widening lower optical system 72 are ⁇ v/2 deg.
  • the operation regarding the viewing angle in the vertical direction is the same as [0050], [0051], and [0052].
  • the scattered light from the distance measurement object is output to the transmission/reception separation optical system 5 as the reception light via the wide-angle optical system 7 and the scanner 61.
  • the transmission/reception separation optical system 5 outputs the scattered light from the distance measurement target to the reception lens 8 as reception light.
  • the receiving lens 8 collects the received light and collects it on the light receiving array element 15.
  • the light receiving array element 15 receives the collected reception light, converts the received light into a current for each pixel, and outputs each current signal of the converted reception light to the current/voltage conversion device 10.
  • the current signal of the received light is a pulse signal.
  • the current/voltage converter 10 converts the current signal of each pixel into a voltage signal for each pixel and outputs the voltage signal to the distance measuring device 11 and the intensity measuring device 12.
  • the same effect as that of the first embodiment is obtained.
  • the scanning angle of the scanner 61 is set to one axis, the adjustment for accurately adjusting the angle scanning control of the two axes in the horizontal direction and the vertical direction can be avoided, so that the complexity of the scanner manufacturing and control is reduced. descend. This makes it possible to reduce the cost and size of the device. Further, when it is difficult to manufacture the scanner reflecting surface which is difficult to be elongated in the vertical direction, this can be solved.
  • the present invention is not limited to this, and the reflecting surface of the scanner 61 is arrayed in the vertical direction or in the vertical and horizontal directions.
  • Each element may be configured to be independently angularly scannable.
  • the light receiving array element 15 may be arrayed not only in the vertical direction but also in the horizontal direction.
  • the wide-angle optical system 30 is composed of three stages of a wide-angle upper optical system 301, a wide-angle middle optical system 302, and a wide-angle lower optical system 303.
  • the upper stage indicates the wide-angle widening optical system 301
  • the middle stage indicates the wide-angle middle stage optical system 302
  • the lower stage indicates the wide-angle lower stage optical system 303.
  • FIG. 11 is a configuration diagram showing a configuration example of a laser radar device according to Embodiment 4 of the present invention.
  • This laser radar device includes a laser light source 1, a modulator 2, a trigger generator 3, a transmission optical system 4, a transmission/reception separation optical system 5, a scanner 6, a wide-angle optical system 30, a reception lens 8, a light receiving element 9, a current/voltage.
  • a conversion device 10, a distance measuring device 11, an intensity measuring device 12, an angle monitoring device 13, and a signal processing device 14 are provided.
  • FIG. 12 is a configuration diagram showing one configuration example of the wide-angle optical system 30 of the laser radar device according to the fourth embodiment of the present invention.
  • the wide-angle optical system 30 is composed of a wide-angle upper optical system 301, a wide-angle middle optical system 302, and a wide-angle lower optical system 303.
  • a wide-angle upper-stage optical system 301, a wide-angle middle-stage optical system 302, and a wide-angle lower-stage optical system 303 on which light is incident are shown.
  • a ou , a om , and a od represent the horizontal viewing angles of the transmitted light after passing through the widening angle upper stage optical system 301, the widening angle middle stage optical system 302, and the widening angle lower stage optical system 303, respectively.
  • the scanning angle (viewing angle) dynamic range of the transmission light in the vertical direction of the scanner 6 is 3b deg, and the viewing angle b is set to the widening angle upper stage optical system 301, the widening angle middle stage optical system 302, and the widening angle lower stage optical system 303, respectively.
  • the deg transmitted light is incident.
  • the vertical viewing angle of the transmitted light after passing through the widening angle upper stage optical system 301, the widening angle middle stage optical system 302, and the widening angle lower stage optical system 303 is b deg, respectively.
  • ⁇ ou represents the angle between the optical axis and the upper exit surface
  • ⁇ od represents the angle between the optical axis and the lower exit surface
  • ⁇ ou ⁇ od .
  • ⁇ ou and ⁇ od are defined as being negative in the counterclockwise direction and positive in the clockwise direction from the optical axis.
  • the vertical exit surfaces of the wide-angle upper-stage optical system 301 and the wide-angle lower-stage optical system 303 are symmetrical with respect to the optical axis AA as in the first embodiment, and
  • the horizontal incidence surface of the wide-angle middle-stage optical system 302 is a curved surface, and the horizontal and vertical emission surfaces are flat surfaces. If the adjacent visual fields of the measurement visual fields 1, 2 and 3 partially overlap or are adjacent to each other with no gap at the measurement object distance, the incident surface in the horizontal direction may be a flat surface, a spherical surface, or an aspherical surface instead of a curved surface. The horizontal and vertical emission surfaces do not have to be flat.
  • the wide angle optical system 30 has the following structure.
  • the wide-angle optical system 30 differs from the wide-angle optical system 7 in that the middle optical system is inserted between the upper and lower stages.
  • the incident surface of the middle stage is composed of a curved surface in the horizontal direction, and is rotationally symmetrical with respect to the optical axis.
  • the emission surface is composed of a plane that is not inclined with respect to the horizontal and vertical directions. Other structures are similar to those of the first embodiment.
  • the incident surface in the vertical direction of the wide-angle middle-stage optical system 302 is configured so that the transmission light of the scanning angle 0 deg in the horizontal direction of the scanner 6 is vertically incident. That is, the angle of the incident surface in the vertical direction of the wide-angle middle-stage optical system 302 with respect to the optical axis AA is 90 deg. Further, the wide-angle middle-stage optical system 302 is arranged so that its center is on the optical axis AA in the side view in FIG.
  • the horizontal incident surface is configured so that the horizontal viewing angle of the transmitted light after the middle stage emission is symmetrical with respect to the optical axis AA. Therefore, for example, when the incident surface is a spherical surface, the center of curvature is located on AA.
  • the pulsed laser light that is two-dimensionally scanned by the scanner 6 is incident on the incident surface of the wide-angle optical system 30.
  • the transmission light transmitted through the wide-angle optical system 30 is incident on the wide-angle upper optical system 301 from the scanner 6 into the measurement visual field 1 at the distance measurement target position and the wide-angle lower optical system.
  • the transmission light incident on 303 is irradiated on the measurement visual field 3
  • the transmission light incident on the wide-angle middle-stage optical system 302 is irradiated on the measurement visual field 2.
  • the horizontal incidence surfaces of the wide-angle optical system 30 are arranged in different directions in the upper stage, the lower stage, and the middle stage, immediately after the emission of the scanner 6 and before the incidence of the wide-angle optical system 30,
  • the transmitted light propagating in the same horizontal range in the upper, middle, and lower stages propagates in different horizontal directions after being emitted from the wide-angle optical system 30.
  • the transmitted light from the upper stage, the lower stage, and the middle stage emitted from the wide-angle optical system 30 can measure the desired distance.
  • the distance measurement target is illuminated at the target position without vertical axis deviation.
  • the same effect as that of the first embodiment can be obtained.
  • the wide-angle optical system 30 is composed of three stages, the wide-angle upper optical system 301, the wide-angle middle optical system 302, and the wide-angle lower optical system 303, it is possible to obtain a wider viewing angle than the first embodiment. .
  • a flat inclined surface for correcting the vertical direction is formed on the incident surface of the wide-angle optical system 30, and a curved surface is formed on the exit surface. It may be applied to the wide-angle widening optical system 30 having a plurality of stages as shown in the fourth embodiment, for example, by configuring the aging optical system 30 with a reflection system and (3) using a light receiving element array for the light receiving element.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

従来のレーザレーダ装置は、ビーム走査する可動の光学素子に機械的な走査角ダイナミックレンジがある場合、ビーム走査範囲が限定されるため、装置としての視野角が制限される課題があった。 本発明のレーザレーダ装置は、レーザ光を出力する光源と、レーザ光をスキャンするスキャナと、スキャナがスキャンしたレーザ光が入射され、入射されたレーザ光の水平方向成分と出射するレーザ光の水平方向成分とが異なるように、入射されたレーザ光を出射する第1の光学系と、スキャナがスキャンしたレーザ光が入射され、入射されるレーザ光の水平方向の入射範囲と第1の光学系の水平方向の入射範囲とは同じであって、入射されたレーザ光の出射範囲と第1の光学系の出射範囲とが異なるように、入射されたレーザ光を出射する第2の光学系とを備える。

Description

レーザレーダ装置
 本発明は、レーザレーダ装置に関する。
 この発明は、距離測定対象に対してレーザ光を照射し、該対象からの反射光を受光し、送信光を出射した時間と、前記受信光を受信した時間との時間差から、該対象までの距離を算出し、ビーム走査することで3次元情報を得るレーザレーダ装置に関するものである。以下の特許文献1に示す従来のレーザレーダ装置は、受信した信号から距離および強度を検出し、その際のビーム走査角度を基に距離画像および強度画像を生成していた。
再表2011/138895号公報
 従来構成では、ビーム走査する可動の光学素子(例えばガルバノスキャナ、MEMS)に機械的な走査角ダイナミックレンジがある場合、ビーム走査範囲が限定されるため、装置としての視野角が制限される課題があった。
 特にMEMSを使用した場合、小型、軽量、堅牢性(ここでは耐環境性を意味する)という観点でメリットあるが、上記ダイナミックレンジが狭く、レーザレーダ装置として必要とされる所望の視野角よりも該ダイナミックレンジが小さく、所望の視野角を確保することが困難となる課題があった。
 本発明は、前記のような課題を解決するためになされたものであり、ビーム走査部を構成する可動の光学素子において機械的な走査角ダイナミックレンジにより走査範囲が制限される場合においても、これを広角化する光学系を備えることで、レーザセンサ装置の視野角を広角化し、所望とする視野角を確保することを目的とする。なお、以降では、ビーム走査を「スキャン」、ビーム走査する可動の光学素子を「スキャナ」と呼称する。
 本発明のレーザレーダ装置は、レーザ光を出力する光源と、レーザ光をスキャンするスキャナと、スキャナがスキャンしたレーザ光が入射され、入射されたレーザ光の水平方向成分と出射するレーザ光の水平方向成分とが異なるように、入射されたレーザ光を出射する第1の光学系と、スキャナがスキャンしたレーザ光が入射され、入射されるレーザ光の水平方向の入射範囲と第1の光学系の水平方向の入射範囲とは同じであって、入射されたレーザ光の出射範囲と第1の光学系の出射範囲とが異なるように、入射されたレーザ光を出射する第2の光学系とを備える。
 本発明に係わるレーザレーダ装置によれば、広角化光学系を備えることで、ビーム走査部を構成する可動の光学素子に機械的な走査角ダイナミックレンジにより走査範囲が制限され、レーザレーダ装置として所望とする視野角が確保困難な場合においても、レーザセンサ装置の視野角を広角化し、所望とする視野角を得ることができる。
この発明の実施の形態1に係るレーザレーダ装置の一構成例を示す構成図である。 この発明の実施の形態1に係るレーザレーダ装置における広角化光学系7の一構成例を示す構成図である。 この発明の実施の形態1に係るレーザレーダ装置の広角化光学系7の入射面におけるスキャン位置を示す図。 この発明の実施の形態1に係るレーザレーダ装置の広視野化を説明する図である。 この発明の実施の形態1に係るレーザレーダ装置の広角化光学系7の他の構成例を説明する構成図である。 この発明の実施の形態2に係るレーザレーダ装置の一構成例を示す構成図である。 この発明の実施の形態1に係るレーザレーダ装置における広角化光学系20の一構成例を示す構成図である。 この発明の実施の形態3に係るレーザレーダ装置の一構成例を示す構成図である。 この発明の実施の形態3に係るレーザレーダ装置の広角化光学系7の入射面におけるスキャン位置を示す図である。 この発明の実施の形態3に係るレーザレーダ装置の広視野化を説明する図である。 この発明の実施の形態4に係るレーザレーダ装置の一構成例を示す構成図である。 この発明の実施の形態4に係るレーザレーダ装置の広角化光学系30の一構成例を示す構成図である。
実施の形態1.
 図1は、この発明の実施の形態1に係わるレーザレーダ装置の一構成例を示す構成図である。本レーザレーダ装置は、レーザ光源1、変調器2、トリガ発生装置3、送信光学系4、送受分離光学系5、スキャナ6、広角化光学系7、受信レンズ8、受光素子9、電流・電圧変換装置10、距離測定装置11、強度測定装置12、角度モニタ装置13、信号処理装置14を備える。
 レーザ光源1は、所定の波長及び強度のレーザ光を出力するレーザ光源である。例えば、レーザ光源1には、レーザダイオード、ファイバレーザなどが用いられる。波長、強度は、レーザレーダ装置の用途、仕様、使用環境に応じて設定する。
 変調器2は、トリガ発生装置3が出力するトリガ信号に従いレーザ光を変調し、パルス光として出力する変調器である。例えば、変調器2には、AOM(Acoust Optical Modulators)、SOA(Semiconductor Optical Amplifier)などが用いられる。
 トリガ発生装置3は、レーザ光の変調タイミングを示すトリガ信号を出力するトリガ発生装置である。例えば、トリガ発生装置3には、DA(Digital to Analog)ボード、FPGA(Field-Programmable Gate Array)、ファンクションジェネレータなどが用いられる。
 送信光学系4は、変調器2がパルス化したレーザ光を所定のビーム径及び広がり角を有するレーザ光に形成し、送信光として出力する送信光学系である。送信光学系4は、レーザ光のビーム径に関し、レーザレーダ装置として最終的に出力される距離、強度画像の空間分解能、角度分解能などの仕様に合わせて設計もしくは設定される。送信光学系4は、レーザ光の水平方向のビーム拡がり角に関して広角化光学系7から距離測定対象へ出力される送信光がコリメート光となるように、予め送信光学系4が出力する送信光の水平方向広がり角を調整する。送信光学系4は、水平方向と同様に、垂直方向のビーム広がり角に関して広角化光学系7から距離測定対象へ出力される送信光がコリメート光となるように、予め送信光学系4が出力する送信光の垂直方向広がり角を調整する。例えば、送信光学系4は、球面、及び非球面の凸レンズ、凹レンズ、平凸レンズ、平凹レンズ、及びこれらの組み合わせで構成される。
 送受分離光学系5は、送信光学系4が出力した送信光をスキャナ6へ誘導するとともに、距離測定対象からの散乱光を受信し、受信レンズ8へ誘導する送受分離光学系である。例えば、送受分離光学系5には、ファイバ型のサーキュレータ、空間型の偏光ビームスプリッタなどが用いられる。
 スキャナ6は、水平方向及び垂直方向の2軸の回転軸を有し、機械的な角度走査ダイナミックレンジの範囲において送信光を角度走査するスキャナである。垂直方向を走査するための軸をA-v、水平方向を走査するための軸をA-hとした場合、スキャナ6は、各々の軸を基準としてそれぞれ方向を所定の周期で角度スキャンすることで、2次元スキャンする機能を持つ。例えば、スキャナ6は、スキャナの例としてMEMSミラーやレゾナントスキャナのような共振型スキャナや、ガルバノスキャナのような非共振型スキャナが用いられる。
 広角化光学系7は、広角化上段光学系71(第1の光学系の一例)及び広角化下段光学系72(第2の光学系の一例)から構成され、スキャナによって2次元スキャンされた送信光を受信し、受信した送信光を水平方向に関してスキャナ6の水平方向のビーム走査角ダイナミックレンジより大きい走査角となるように距離測定対象方向へ出射するとともに、距離測定対象からの散乱光を受信し、スキャナ6へ誘導する広角化光学系である。
 上記機能を得るため、広角化光学系7は次の構造を有する。垂直方向のスキャナの走査角が0degの軸(光軸)に対して180度回転対称に配置された広角化上段光学系71と広角化下段光学系72とで構成される。上段と下段の入射面は水平方向に対して凹面を成す曲面で形成する。凹面とすることで、入射光を拡散させ、これにより水平方向の広角化作用を得る。凹面が球面で有る場合の曲率半径、非球面である場合の多項式係数等については設計において決定される。上段の入射面の曲面を、水平方向の走査角が0degの軸(光軸)に対して非対称とすることで、水平方向の負もしくは正の方向に拡散作用が偏る作用を得る。上記の通り、71と72を垂直方向の光軸に対して対象に配置することで、各々水平方向の正と負の方向へ入射光が出射光として拡散されることにより、水平方向に等しく視野の広角化が得られる。垂直方向に対してはレンズの入射面を平面で形成し、光軸に対して垂直となるよう配置する。出射面は71、72共に水平方向について平面で形成する。垂直方向に対し、出射面は前記光軸から成す角度が90度以下となるよう配置することで傾斜を有した平面となる。同傾斜により、上下段で垂直方向にずれている視野を、遠方での測定視野において略一致させる作用を得る。使用環境下の屈折率より大きい屈折率を有する材料で構成する。例えば、大気中での使用とし、大気の屈折率を1とした場合、1より大きい屈折率材料で構成する。詳細は後述の通りである。
 図2は、この発明の実施の形態1に係るレーザレーダ装置における広角化光学系7の一構成例を示す構成図である。
 以下、図2を参照して広角化光学系7の構成を説明する。
 図2中、実線は広角化上段光学系71により走査される光線を示し、点線は広角化下段光学系72により走査される光線を示す。また、一点鎖線で示したA-Aは光軸を示し、一点鎖線は全て光軸に平行な線を示す。
 図2の垂直方向(側面図)に示す通り、広角化光学系7は、垂直方向のスキャナの走査角が0degの軸(光軸)に対して対称に配置された広角化上段光学系71と広角化下段光学系72とで構成される。
 図2中、広角化光学系7においてスキャナ6によって2次元スキャンされた送信光が入射する面を「広角化光学系入射面」と言い、広角化光学系7において送信光が出射する面を「広角化光学系出射面」と言う。
 広角化上段光学系71の入射面を上段入射面、広角化上段光学系71の出射面を上段出射面と言い、広角化下段光学系72の入射面を下段出射面、広角化下段光学系72の出射面を下段出射面と言う。
 なお、単に入射面、出射面と記した場合、広角化上段光学系71及び広角化下段光学系72の両方の入射面、出射面を指すものとする。また、上段と記した場合、広角化上段光学系71を示し、下段と記した場合、広角化下段光学系72を示す。
 θiuは、光軸と上段入射面との間の角度を示し、θidは、光軸と下段入射面と間の角を示し、θiu=θidである。Φouは、光軸と上段出射面との間の角度を示し、Φodは、光軸と下段出射面との間の角度を示し、Φou=Φodである。図2の側面図においてΦou及びΦodは光軸から反時計まわりを負、時計まわりの方向を正と定義する。
 スキャナ6の水平方向の走査角のダイナミックレンジをa=aiu=aid deg 、垂直方向の走査角のダイナミックレンジを2b degと定義する。aiuは広角化上段光学系71に入射される送信光の水平方向の走査角のダイナミックレンジを示し、aidは広角化下段光学系72に入射される送信光の水平方向の走査角のダイナミックレンジを示す。aouは広角化上段光学系71を通過した送信光の水平方向の走査角のダイナミックレンジを示し、aodは広角化下段光学系72を通過した送信光の水平方向の走査角のダイナミックレンジを示す。ここで、aou>aiu、aod>aidである。
 スキャナ6のスキャン範囲はa=aiu=aid degであり、スキャン範囲の中心線は光軸と一致する。したがって、広角化上段光学系71及び広角化下段光学系72の送信光の水平方向の入射範囲は、a=aiu=aid degであり、水平方向の入射範囲の中心線は光軸と一致する。中心線とは入射範囲の中心を示す線である。つまり、水平方向の入射範囲の中心線は、広角化上段光学系71及び広角化下段光学系72で一致する。ここで光軸とは、スキャナ6の反射面に対して垂直な線である。通常、前記線はスキャナ6の中央と交わる線として定義するが、前記スキャン範囲の角度を定義する上では、中央と交わる線に限定しない。
 bは、広角化上段光学系71もしくは広角化下段光学系72に入射される送信光の垂直方向のダイナミックレンジを示す。したがって、広角化上段光学系71に入射される送信光の水平方向の走査角のダイナミックレンジと広角化下段光学系72に入射される送信光の水平方向の走査角のダイナミックレンジとを合わせると、スキャナ6の垂直方向の走査角のダイナミックレンジとなる。広角化上段光学系71もしくは広角化下段光学系72を通過した送信光の垂直方向の走査角のダイナミックレンジは、それぞれbである。
 図2の水平方向(上面図)に示す通り、上段と下段の入射面を形成する曲面は、光軸に対してそれぞれθiu、θid傾いており、両者の絶対値は等しく、θiuは光軸から時計まわり、θidは光軸から反時計まわりとなるように形成・構成する。これは、上段入射面の法線ベクトルと下段入射面の法線ベクトルとが、光軸に対して対称となるように構成することを意味する。
 図2の上面図において広角化上段光学系71及び広角化下段光学系72は、スキャナ6の走査で得られる全角a degの光線が、広角化上段光学系71及び広角化下段光学系72の入射面に全て入射されるように、光軸に対し配置する。
 図2の上面図において、広角化上段光学系71の入射面と広角化下段光学系72の入射面との交点が光軸上に位置するように、広角化上段光学系71及び広角化下段光学系72は配置する。
 図2の側面図において、光軸に対する上段入射面の角度Φouと、光軸に対する下段入射面の角度Φodとは、絶対値として等しく、90deg以下とし、かつ光軸に対して対称であるように、広角化上段光学系71及び広角化下段光学系72は配置される。
 広角化上段光学系71及び広角化下段光学系72は、スキャナ6の走査で得られる全角2b degの光線のうち、b degの光線が広角化上段光学系71に入射され、b degの光線が広角化下段光学系72に入射されるように、広角化上段光学系71及び広角化下段光学系72は、垂直方向において光軸に対して対称に配置される。
 図2の側面図において広角化上段光学系71の入射面の法線ベクトルの垂直方向成分と広角化下段光学系72の入射面の法線ベクトルの垂直方向成分とは一致し、ここでは0になるように、広角化上段光学系71及び広角化下段光学系72は配置される。これは言い換えると図2の側面図において広角化上段光学系71の入射面及び広角化下段光学系72の入射面と光軸との間の角度は、ともに90degであることを意味する。
 図2の側面図において、上記のように配置したことで、広角化上段光学系71及び広角化下段光学系72の入射面に対する送信光の入射角度は、π/2からπ/2-bの範囲となる。
 図2の側面図において、広角化上段光学系71及び広角化下段光学系72の出射面に対する送信光の入射角度は、sin-1(sin(b)/n)+ΦouからΦouの範囲及び、sin-1(sin(b)/n)+ΦodからΦodの範囲となる。
 図2中、広角化光学系7の入射面を曲面で構成しているが、平面、球面、非球面形状であっても良い。
 なお、入射面は平面で形成してもよく、その場合、上段及び下段それぞれの広角化光学系出射後の水平方向スキャン角はa degとなるが、上述の通り、[0022]のように形成することで、レーザレーダ装置としての水平方向の視野角aは2a degの走査角度を得る。
 入射面を曲面で構成した場合、上段及び下段それぞれの広角化光学系7の出射後の水平方向スキャン角は>a degとなり、広角化光学系7を[0022]のように形成することで、レーザレーダ装置としての水平方向の視野角(走査角)aは>2a degとなる。
 広角化上段光学系71及び広角化下段光学系72のレンズ形状に関して、実施の形態1ではレンズの入射面を水平方向に対して曲面で形成する。垂直方向に対してはレンズの入射面を光軸に対して垂直となるよう形成する。出射面は71、72共に平面で形成し、[0024]の通り形成する。
 上記のように形成することにより、送信光に対して71及び72の水平方向の入射面が曲面で出射面が平面なので、水平方向は走査角のダイナミックレンジが広がる。
また、[0022]の通り形成したので、水平方向に関し、71の光軸光線の出射方向は光軸に対し正の方向に出射される。同様に72の光軸光線の出射方向は光軸に対し負の方向に出射される。これは言い換えれば、広角化上段光学系71の出射範囲の中心線の水平方向成分と広角化下段光学系72の出射範囲の中心線の水平方向成分とが異なることを意味する。
 また、上記のように形成することにより、送信光に対して71及び72の垂直方向の入射面と出射面が平面なので、垂直方向は走査角のダイナミックレンジは広がらない。
また[0022]の通り形成したので、垂直方向に関し、71の光軸光線の出射方向は光軸に対し負の方向に出射される。同様に72の光軸光線の出射方向は光軸に対し正の方向に出射される。
 広角化光学系7は、使用環境下の屈折率より大きい屈折率を有する材料で構成する。例えば、大気中での使用とし、大気の屈折率を1とした場合、1以上の屈折率材料で構成する。水中での使用とし、水の屈折率を1.3とした場合、1.3以上の屈折率材料で構成する。屈折率が波長によって異なる場合、広角化光学系7は、使用環境下における使用波長での屈折率を基準とし、基準より屈折率が大きい屈折率材料で構成される。なお、広角化光学系7は、上下段の2段構成でなくても良い。また、入射面、出射面にはARコーティングが施されていても良い。
 受信レンズ8は、距離測定対象からの散乱光を受光素子9に集光する受信レンズである。例えば、受信レンズ8には、球面、及び非球面の凸レンズ、凹レンズ、平凸レンズ、平凹レンズ、及びこれらの組み合わせが用いられる。
 受光素子9は、受信レンズ8が集光した散乱光を受信し、受信した散乱光を電流に変換し、受信電流信号として出力する受光素子である。
 例えば、受光素子9には、フォトダイオードやアバランシェフォトダイオード、光電子増倍管などが用いられる。
 電流・電圧変換装置10は、受光素子9が出力した受信電流信号を電圧に変換し、受信電圧信号として出力する電流・電圧変換装置10である。例えば、電流・電圧変換装置10には、トランスインピーダンスアンプが用いられる。
 距離測定装置11は、電流・電圧変換装置10が出力した受信電圧信号のピーク電圧値を検出し、受信電圧信号とトリガ信号との時間差(Δt)を測定し、その時間差に相当する距離(ΔL)を、ΔL=光速×Δt/2により算出し、距離信号として出力する距離測定装置である。例えば、距離測定装置11は、TDC(Time to Digital Converter)回路やTAC (Time to Amplitude Converter) 回路などが用いられる。なお、時間差から距離への変換はS/W(Software)上において上記計算式を用いて算出しても良い。
 強度測定装置12は、電流・電圧変換装置10が出力した受信電圧信号(パルス信号)のピーク電圧値を記録し、記録したピーク電圧値を強度信号として出力する強度測定装置である。例えば、強度測定装置12には、ピークホールド回路が用いられる。
 角度モニタ装置13は、スキャナ6の角度をモニタし、モニタしたスキャナ6の角度をスキャナ角度信号として信号処理装置14へ出力する角度モニタ装置である。例えば、角度モニタ装置13には、PSD(Position Sensitive Detector)が用いられる。
 信号処理装置14は、距離信号、強度画像、及びスキャナ角度信号から距離画像及び強度画像を生成する信号処理装置である。例えば、信号処理装置14は、FPGA(Field-Programmable Gate Array)、マイコン、PC(Personal Computer)及びこれらの組み合わせが用いられる。FPGAもしくはマイコンは、画像を生成する際、スキャナ角度信号及び距離信号から水平方向及び垂直方向の距離へ変換処理を行い、PCは変換処理を実施後、画像表示する。なお、水平方向及び垂直方向の距離への変換をPC上のS/Wで行っても良い。
 次に、この発明の実施の形態1に係るレーザレーダ装置の動作について説明する。
 レーザ光源1は、所定の波長と強度でレーザ光を出力し、変調器2へ出力する。
 トリガ発生装置3は、レーザ光の変調タイミングを指定するトリガ信号を変調器2へ出力する。
 変調器2は、トリガ信号に従い、レーザ光源1が出力したレーザ光を変調し、パルス状のレーザ光を送信光学系4へ出力する。
 送信光学系4は、変調器2が出力したパルスレーザ光を受信し、受信したパルスレーザ光を所定のビーム径及びビーム拡がり角に形成し、形成したパルスレーザ光を送信光として出力する。送信光学系4は、レーザ光の水平方向のビーム拡がり角に関して広角化光学系7から距離測定対象へ出力される送信光がコリメート光となるように、予め送信光学系4が出力する送信光の水平方向広がり角を調整する。また、送信光学系4は、水平方向と同様に、垂直方向のビーム広がり角に関して広角化光学系7から距離測定対象へ出力される送信光がコリメート光となるように、予め送信光学系4が出力する送信光の垂直方向広がり角を調整する。送信光学系4は、ビーム径に関し、レーザレーダ装置として最終的に出力される距離、強度画像の空間分解能、角度分解能の仕様に合わせて調整される。
 図3は、この発明の実施の形態1に係るレーザレーダ装置の広角化光学系7の入射面におけるスキャン位置を示す図である。
 図3を用いてスキャナ6の動作を説明する。
 図3中、ハッチングされている部分は広角化上段光学系71を示し、ハッチングされていない部分は広角化下段光学系72の入射面を示す。
 図3のWvは広角化光学系7の入射面におけるスキャナの垂直方向走査範囲(=スキャナの垂直方向視野)を示し、Whは広角化光学系7の入射面におけるスキャナの水平方向走査範囲(=スキャナの水平方向視野)を示す。
 スキャナ6は、以下の動作によりレーザ光を2次元スキャンし、スキャンしたレーザ光を広角化光学系7の入射面に出射する。
 スキャナ6は、垂直方向に対し1周期の走査を実施する間に水平方向の走査を1周期以上実施することで、図3に示す通り、広角化光学系7の入射面上において、ジグザグ状にスキャンする。
 例えば、垂直方向1周期の間に水平方向の走査を10周期実施した場合、広角化光学系7の入射面において、垂直方向の走査の往路と復路(合わせて1周期)において各々10本によって構成されるグザグ状のスキャンとなる。
 図3において、l_1, l_2, ・・・, l_Nは、スキャナによる垂直方向と水平方向のスキャンによって広角化光学系7の入射面においてビーム走査されるラインを示す。lはラインを意味し、添え字の数字はライン番号を示す。上記例の場合、N=10である。このライン上において、距離測定される位置は、パルス化されたレーザ光のパルス周期に依存する。パルス周期は、レーザレーダ装置として所望とする画素数に応じて設定される。画素数はレーザレーダ装置として所望とする空間分解能、角度分解能から設定される。
 以上のように、スキャナ6は、2次元スキャンされたパルス状のレーザ光を広角化光学系7へ出射する。
 図4は、この発明の実施の形態1に係るレーザレーダ装置の広視野化を説明する図である。
 図4を参照して、広角化光学系7の動作を説明する。
 図4において、An_1とAn_2はそれぞれ広角化光学系から出射後、近傍領域において広角化上段光学系71と広角化下段光学系72によって走査される範囲を示す。測定視野1と測定視野2は、それぞれ距離測定対象位置における広角化上段光学系71と広角化下段光学系72の測定視野を示す。Wh_farは、距離測定対象位置における水平方向走査範囲を示し、Wv_farは距離測定対象位置における垂直方向走査範囲を示す。
 水平方向に関してスキャナ6の水平方向の走査角ダイナミックレンジをa=aiu=aid degとした場合、図2に示すように広角化上段光学系71の水平方向スキャン角aou及び広角化下段光学系72の水平方向スキャン角aodは、>a degとなるので、広角化光学系7の出射後の水平方向のスキャン角(=レーザレーダ装置としての水平方向の視野角)ahは、>2a degとなる。
 垂直方向に関してスキャナの垂直方向の走査角ダイナミックレンジを2b degとした場合、図2に示すように広角化上段光学系71及び広角化下段光学系72のスキャン角度はそれぞれb degとなるので、広角化光学系出射後の垂直方向のスキャン角(=レーザレーダ装置としての垂直方向の視野角)は、b degとなる。
 図4に示すように、スキャナ6が広角化光学系7に出射した送信光のうち、広角化上段光学系71に入射された送信光の視野は、距離測定対象位置において測定視野1となり、広角化下段光学系72に入射された送信光の視野は、測定視野2となる。このように、広角化上段光学系71及び広角化下段光学系72は、それぞれ水平方向に異なる測定視野を得る。
 広角化光学系7は、広角化上段光学系71及び広角化下段光学系72が垂直方向に配置され、広角化上段光学系71の水平方向の入射面と広角化下段光学系72の水平方向の入射面とを異なる向きで光軸に対称に構成したことより、スキャナ6の出射直後、送信光の水平方向の角度範囲は広角化上段光学系71及び広角化下段光学系72で同一であるが、広角化光学系7の出射後、広角化上段光学系71及び広角化下段光学系72でそれぞれ異なる水平方向へ伝搬するため、レーザ装置としての水平方向の視野角は大きくなる。
 また、広角化上段光学系71の垂直方向の出射面及び広角化下段光学系72の垂直方向の出射面を互いに異なる角度であって光軸に対して対称となるように構成したことで、広角化上段光学系71及び広角化下段光学系72が出力した送信光は、垂直方向に対して広角化上段光学系71及び広角化下段光学系72の入射角度の違いによる垂直方向の軸ずれを補正するように伝播し、所望とする距離測定対象位置において垂直方向の軸ずれが小さくなる。ここでの軸ずれという文言は、垂直方向に対する71と72の視野のずれを意味する。このずれに関し、図4においてAn_1とAn_2は所望とする距離測定対象よりも近傍での71と72の視野を模式的に示し、測定視野1と測定視野2は所望とする距離測定対象の位置での視野を示す。
 図4に示すように、広角化光学系7の出射直後の近傍においては、測定視野1と測定視野2は垂直方向に軸ずれが生じるが、所望の距離測定対象位置(遠方)においては、広角化上段光学系71及び広角化下段光学系72の垂直方向の出射面を図2のように構成したため、測定視野1と測定視野2の垂直方向の軸ずれは無視できる程度となる。
 このように広角化光学系7を上記の通り構成することで、スキャナの垂直方向の視野は、広角化光学系により2分割され、距離測定対象位置において水平方向の視野に変換されることで、レーザレーダ装置の視野角として、スキャナの有する水平方向の走査角ダイナミックレンジ以上の視野角を得る。
 なお、距離測定対象位置において、測定視野1と測定視野2の一部が重なるよう構成しても良い。測定視野1と測定視野2に重なりが無く隣接させ、入射面を平面で構成した場合ahは2a deg、入射面を曲面で構成した場合ahは>2a deg、となる。測定視野1と測定視野2がc deg重なりを有する場合、ahは2c deg減少する。
 また、上記では上下段の2段で構成したが、2段以上の複数段で構成しても良い。複数段で構成した場合、その段数と等しい測定視野が得られ、各々の測定視野を広角化苦学系により水平方向に並べることで、スキャナの水平方向の走査角ダイナミックレンジ以上の測定視野を得る。
 以下、広角化光学系7以降の本レーザレーダ装置の動作の説明に戻る。
 距離測定対象物における散乱光は、受信光として広角化光学系7及びスキャナ6を介し、送受分離光学系5へ出力される。
 送受分離光学系5は、距離測定対象物からの散乱光を受信光として受信レンズ8へ出力する。
 受信レンズ8は、受信光を集光し受光素子9へ集光する。
 受光素子9は、集光された受信光を受光し、受光した光を電流に変換し、変換した受信光の電流信号を電流・電圧変換装置10に出力する。この受信光の電流信号はパルス状の信号となる。
 電流・電圧変換装置10は、電流信号を電圧信号に変換して距離測定装置11及び強度測定装置12に出力する。
 距離測定装置11は、電流・電圧変換装置10が出力する受信電圧信号とトリガ発生装置3が出力するするトリガ信号との時間差を測定し、その時間差に相当する距離を算出し、距離信号として信号処理装置14に出力する。
 強度測定装置12は、電流・電圧変換装置10が出力する受信電圧信号のピーク電圧値を検出し、強度信号として信号処理装置14に出力する。
 信号処理装置14は、角度モニタ装置13が出力するスキャン角度信号と、強度信号及び距離信号とから、強度画像および距離画像を生成する。距離画像及び強度画像を生成する際、スキャン角度信号と距離信号とから水平方向と垂直方向の距離を計算する。スキャン角度信号は、広角化光学系7の出射後の角度である。
 以上で明らかなように、この発明の実施の形態1によれば、広角化光学系7を広角化上段光学系71及び広角化下段光学系72で構成し、スキャナの垂直方向の視野を広角化光学系7により2分割し、分割した視野を距離測定対象位置において水平方向の視野に変換することで、レーザレーダ装置の視野角として、スキャナの有する水平方向の走査角ダイナミックレンジ以上の視野角を得ることができる。
 なお、広角化光学系7を保持する治具には手動、及び電動の光軸調整治具が付加されていても良い。
 広角化光学系7の入射及び出射面には反射防止コーティングを施しても良い。
 ここでは、送信光はパルス光を用いた距離測定方式を例に示したが、広角化光学系7による視野の広角化は、他方式にも適用して良い。例として、CW(Continuous Wave)方式、FMCW(Frequency Modulated Continuous Wave)方式、などが挙げられる。
 受信レンズ8、送信光学系4は、複数の光学素子から構成しても良い。
 広角化光学系7の入射面を曲面で形成した場合、これは球面でも非球面でも良い。
 広角化光学系7の上段(広角化上段光学系71に対応)と下段(広角化下段光学系72に対応)は一体の削り出しで構成しても、分離して製造し、接合して構成しても良い。
 広角化光学系7の入射面への入射する2次元スキャンは、図3に示すように往路と復路のライン(l_1~l_N)が重なるようにスキャナの水平方向と垂直方向の走査周期を示したが、これに限るものではない。
 広角化光学系7の入射面は、垂直方向に対しても曲面を持たせても良い。すなわち、入射面に関しトロイダル面としても良い。この場合、送信光学系の垂直方向のビーム広がり角の調整として、広角化光学系出射後において所望の広がり角となるよう調整する。
 垂直方向の出射面に関し、図2中にて定義される上段と下段との出射面の角度(ΦouとΦod)は等しくなくても良い。等しくした場合、所望の観測距離において、測定視野1と測定視野2は垂直方向において光軸上に配列されるが、ΦouとΦodとを異なる角度で構成した場合、距離測定対象位置において垂直方向に対して光軸上から外れた位置に配列される。補足として、ΦouとΦodと等しくした場合、図4中、光軸はWv_far/2の位置を通るが、ΦouとΦodとを異なる角度で構成した場合、Wv_far/2の位置から外れた位置に光軸が通る。
 図2では、広角化光学系7の水平方向の入射面に曲面、垂直方向の出射面に平面の傾斜面を上段と下段とで異なる向きとなるよう構成したが、水平方向の入射面と垂直方向の出射面の形状は、送信光の入射方向と送信光の出射方向が逆となるよう構成しても良い。以下でその場合を説明する。
 図5は、この発明の実施の形態1に係るレーザレーダ装置の広角化光学系7の他の構成例を説明する構成図である。
 図5に示す通り、垂直方向の入射面を平面の傾斜面、水平方向の出射面を曲面としても良い。図5の変数定義は、図2と同様である。異なる変数は以下で定義する。
 垂直方向の入射面に関し、図5中にて定義される上段と下段の光軸に対する入射面の角度(ηouとηod)は絶対値で等しく、90deg以下とする。従って、図5中に示すように光軸からの正負の角度方向を定義した場合、上段の入射面の角度ηouを光軸から正の方向、下段の入射面の角度ηodを光軸から負の方向となるよう、上段と下段が接するよう構成する。つまり、上段の入射面と下段の入射面とは光軸に対して対称に配置される。
 水平方向の出射面に関し、図5の水平方向(上面図)に示す通り、図5中にて定義される光軸に対する上段出射面の角度θouが、下段の出射面の角度θodと絶対値で同じになるようにする。つまり、上段及び下段の出射面は、光軸に対して対称に配置される。
水平方向の入射面を曲面で構成した場合、上下段の境界に生じる段差によりスキャナによって入力された送信光の一部にケラレが生じる場合があるが、図5の通り、水平方向の入射面を平面の傾斜面で構成することで、前記ケラレが低減する効果を奏する。
 図5のように、水平方向の入射面に平面の傾斜面を用いて、水平方向の出射面に曲面を用いる構成であっても、水平方向の視野角を広げるという効果を奏する。
 広角化光学系7の水平方向の出射面は平面でなくても良い。例として水平方向の出射面に対して曲率を持たせても良い。例として、図2に示す通り、入射面を凹面で構成し、出射面も凹面で構成した場合、両凹レンズの効果を奏することにより、水平方向の視野角はさらに広がる。
 広角化光学系7の出射後の水平方向及び垂直方向の送信光はコリメート光でなくても良い。
 スキャナ6は2軸で角度走査する軸を有することを示したが、1軸で角度走査する軸を有するスキャナを2つ用いることで代用しても良い。
実施の形態2.
 実施の形態1では、透過材料で広角化光学系7を構成したが、実施の形態2では、広角化光学系20を反射材料で構成する
 図6は、この発明の実施の形態2に係るレーザレーダ装置の一構成例を示す構成図である。この発明の実施の形態2に係わるレーザレーダ装置は、レーザ光源1、変調器2、トリガ発生装置3、送信光学系4、送受分離光学系5、スキャナ6、広角化光学系20、受信レンズ8、受光素子9、電流・電圧変換装置10、距離測定装置11、強度測定装置12、角度モニタ装置13、信号処理装置14を備える。
 図7は、この発明の実施の形態1に係るレーザレーダ装置における広角化光学系20の一構成例を示す構成図である。広角化光学系20は、広角化上段光学系201と広角化下段光学系202とから構成される。なお、以下で上段と記した場合、広角化上段光学系201を示し、下段と記した場合、広角化下段光学系202を示す。
 スキャナ6によって2次元スキャンされた送信光が入射し、かつ反射する面を、「広角化光学系20の反射面」と定義する。なお、単に入射面、反射面と記した場合、広角化上段光学系201及び広角化下段光学系202の両者を指すものとする。以下、入射面もしくは反射面と呼称する場合があるが、本形態では同一の面を指す。
 スキャナ6の水平方向の走査角度(視野角度)ダイナミックレンジをa=aiu=aid deg 、垂直方向の走査角ダイナミックレンジを2b degと定義する。aiu及びaidの添え字(iu、id)は、送信光が入射される広角化上段光学系201及び広角化下段光学系202を示す。
 aou、aod は、それぞれ広角化上段光学系201、広角化下段光学系202を通過したあとの送信光の水平方向の視野角を示す。広角化上段光学系201、広角化下段光学系202を通過した後の送信光の垂直方向の視野角は、それぞれb degである。
 図7に示す通り、広角化光学系20の反射面を、水平方向の断面で見た場合に曲面、垂直方向の断面で見た場合に平面となるよう構成する。実施の形態2では水平方向の断面で見た場合に入射面を曲面で構成するが、これは平面、球面、非球面であっても良い。
 上記機能を得るため、広角化光学系20は次の構造を有する。広角化上段光学系201及び広角化下段光学系202の水平方向の反射面は光軸に対して回転対称になるように構成される。広角化光学系20を反射系で構成するため、垂直方向の反射面を平面で形成し、光軸に対して傾斜させる。光軸に対する広角化上段光学系201と広角化下段光学系202の垂直方向の反射面の角度は、絶対値で等しくなるように構成する。広角化上段光学系201の垂直方向の反射面と広角化下段光学系202の垂直方向の反射面は光軸に対して線対称に構成される。入射面の水平方向の曲面形状については実施の形態1と同様である。異なる点は反射面として構成していることである。反射面は、使用する波長で反射可能な反射率を有する材料で構成する。例として、金属蒸着膜や誘電体多層膜などが挙げられる。その他の構造は、実施の形態1と同様である。詳細は後述の通りである。
 図7の垂直方向(側面図)に示す通り、スキャナ6の垂直方向の走査角ダイナミックレンジ(全角2b deg)のうち、 0degから+b degまでの送信光が広角化上段光学系201に入射し、0degから-b degまでの送信光が広角化下段光学系202に入射するように構成する。スキャナ6の垂直方向の走査角度が0degのときの送信光が広角化上段光学系201と広角化下段光学系202との境目にくるように、広角化上段光学系201と広角化下段光学系202とを配置する。
 図7の水平方向(上面図)に示す通り、広角化上段光学系201及び広角化下段光学系202の水平方向の反射面は光軸に対して対称になるように構成される。光軸に対する上段入射面の角度θiuと光軸に対する下段入射面の角度θidとが、絶対値で一致するように構成する。
 実施の形態2では、広角化光学系20を反射系で構成するため、図7の垂直方向(断面図)に示す通り、垂直方向の反射面を平面で形成し、光軸に対して傾斜させる。光軸に対する上段と下段の垂直方向の反射面の角度(γouとγodと)は、絶対値で等しくなるように構成する。したがって、上段の垂直方向の反射面と下段の垂直方向の反射面とは光軸に対して対称に構成される。
 反射系で構成するため、広角化光学系20の反射面で反射した後の送信光がスキャナ6でケラレないように、送信光学系4から出力された送信光は、スキャナ6の反射面に対して斜入射となる。従って、スキャナ6の反射面で反射された送信光は、垂直方向において、送信光学系4が出力した送信光に対してα(図7参照)の傾きを持つ。この軸を垂直方向の光軸B-Bと定義する。なお、水平方向の光軸はA-Aである。
 上記の構成としたため、スキャナの反射面で反射した送信光を広角化光学系20の入射面に入射させるため、広角化上段光学系201と広角化下段光学系202との接合面は光軸B-Bを通るように配置する。
 上記の配置としたため、図7中に示すように光軸B-Bから正負の角度方向を定義した場合、上段の反射面の角度γouは光軸から正の方向、下段の反射面の角度はγodを光軸から負の方向となり、絶対値が一致するように、広角化上段光学系201と広角化下段光学系202とは構成される。
 広角化上段光学系201及び広角化下段光学系202の反射面は、使用する波長で反射可能な反射率を有する材料で構成する。例として、金属蒸着膜や誘電体多層膜などが挙げられる。
 その他の構成は、実施の形態1と同様である。
 次に、この発明の実施の形態2に係るレーザレーダ装置の動作について説明する。広角化光学系20以外の動作は、実施の形態1と同様であるので、説明を省略する。
 スキャナ6は以下の動作によりレーザ光を2次元スキャンし、スキャンされたレーザ光を広角化光学系20の入射面に入射させる。
 図3で示したように垂直方向に対し1周期の走査を実施する間に水平方向の走査を1周期以上実施することで、スキャナ6は、広角化光学系20の入射面上においてジグザグ状にスキャンする。
 図7の側面図で示したように、送信光学系4からの送信光は、スキャナ6を介して垂直方向において広角化光学系20に角度αで斜入射する。
 図3で示したように、本実施の形態でも、スキャナ6から広角化上段光学系201へ入射した送信光は距離測定対象位置にて測定視野1へ、広角化下段光学系202へ入射した送信光は測定視野2へ、それぞれ照射される。
 スキャナ6の出射直後、広角化光学系20に入射される前まで、送信光は、上下段に対して同一の水平方向の範囲に伝搬するが、図7(水平方向:上面図)に示すように、広角化上段光学系201の水平方向の入射面と、広角化下段光学系202の水平方向の入射面とはA-A軸に対して対称に配置されているので、スキャナ6が出力した送信光は、広角化上段光学系201と広角化下段光学系202とで異なる方向に反射され、広角化光学系20の出射後、異なる水平方向へ伝搬する。
 また、垂直方向において、広角化上段光学系201で反射された送信光と広角化下段光学系202で反射された送信光とは、広角化上段光学系201と広角化下段光学系202とにおいて入射角度のずれ、すなわち軸ずれが生じるが、図7(垂直方向:A-A断面図)に示すように、広角化上段光学系201の垂直方向の反射面と広角化下段光学系202の垂直方向の反射面とをB-B軸に対して対称に構成したことで、広角化上段光学系201で反射された送信光と広角化下段光学系202で反射された送信光とは、軸ずれを補正するように伝播するので、所望とする距離測定対象位置において垂直方向の軸ずれが小さい状態で距離測定対象に照射される。
 その他の構成は実施の形態1と同等の動作を行うため、説明を省略する。
 以上で明らかなように、この発明の実施の形態2によれば、実施の形態1と同様な効果を奏する。加えて、実施の形態2では、広角化光学系20を反射系で構成することにより、材料の選択できる幅を広げることができ、例えば樹脂材料の適用が可能となり、廉価に実装できる。
 距離測定対象位置において、測定視野1と測定視野2の一部が重なるよう構成しても良い。測定視野1と測定視野2に重なりが無く丁度隣接させ、入射面を平面で構成した場合、水平方向の視野ahは2a deg、入射面を曲面で構成した場合ahは>2a degとなる。測定視野1と測定視野2がc deg重なりを有する場合、ahは2c deg減少する。
 実施の形態2は、実施の形態1と同様、2段以上の複数段で広角化光学系20を構成しても良い。複数段に対する応用例については、以下に示す実施の形態4において透過系で構成した場合を例に示すが、反射系でも実施の形態2で示した2段の拡張として構成可能である。
 ここでは、広角化光学系20の反射面(入射面)は曲面としたが、平面でも良い。
 その他、実施の形態1に記載した構成、機能、動作の変更例は本実施の形態2でも同様に適用できる。
 実施の形態3.
 実施の形態3では、送信光学系41により垂直方向においてレーザレーダ装置として要求される垂直方向の視野もしくはそれ以上のビーム広がり角を有する送信光を形成し、実施の形態1で示す受光素子を受光アレイ素子15で構成し、スキャナ6は水平方向の角度走査をするよう構成することで、1軸の角度走査で2軸の角度走査をした場合と同様の測定結果が得られる。
 図8は、この発明の実施の形態3に係るレーザレーダ装置の一構成例を示す構成図である。本レーザレーダ装置は、レーザ光源1、変調器2、トリガ発生装置3、送信光学系41、送受分離光学系5、スキャナ61、広角化光学系7、受信レンズ8、受光アレイ素子15、電流・電圧変換装置10、距離測定装置11、強度測定装置12、角度モニタ装置13、信号処理装置14を備える。
 スキャナ61は水平方向の1軸の角度スキャン機能を有する。
 水平方向を走査するための軸をA-hと定義(図8参照)した場合、A-hを基準とし所定の周期で角度スキャンすることで、1次元スキャンする機能を持つ。加えて、広角化光学系7から出力された受信光を受信し、送受分離光学系5へ誘導する機能を有する。
 スキャナ61の例としてMEMSミラーやレゾナントスキャナのような共振型スキャナや、ガルバノスキャナのような非共振型スキャナが挙げられる。
 広角化光学系7の構成と機能は図2と同様である。
 受光アレイ素子15は、各々の素子が受光した光を各々電流に変換し、各々の素子が受光した光を受信電流信号として出力する機能を持つ。
受光アレイ素子15の例として、フォトダイオードアレイやアバランシェフォトダイオードアレイ、などが挙げられる。受光アレイ素子15の素子数は、レーザレーダ装置として要求される垂直方向の画素数に応じて設定する。画素数はレーザレーダ装置として所望とする空間分解能、角度分解能から設定しても良い。
 その他の構成は実施の形態1と同様である。
 なお、広角化光学系7は反射系で構成しても良く、この場合の広角化光学系7の構成は、広角化光学系20となる。
 次に、この発明の実施の形態2に係るレーザレーダ装置の動作について説明する。送信光学系41、スキャナ61、受光アレイ素子15以外の動作は、実施の形態1と同様であるので、説明を省略する。
 送信光学系41は、変調器2からの送信光(パルス状のレーザ光)を受信し、所定のビーム径とビーム拡がり角に形成する。実施の形態3では、広角化光学系7の出力後、水平方向に関して、距離測定対象への送信光がコリメート光となるよう、送信光学系41の出射後の水平方向のビーム広がり角を設定する。
 送信光学系41は、垂直方向のビーム広がり角に関し、垂直方向においてレーザレーダ装置として要求される垂直方向の視野もしくはそれ以上のビーム広がり角にする。
また、送信光学系41は、水平方向のビーム径に関し、レーザレーダ装置として最終的に出力される距離、強度画像の空間分解能、角度分解能の仕様に合わせて設定される。
加えて、送信光学系41は、球面、及び非球面の凸レンズ、凹レンズ、平凸レンズ、平凹レンズ、及びこれらの組み合わせから構成され、所望のビーム形状に整形する。
 スキャナ61は、以下の動作によりレーザ光を1次元スキャンし、スキャンしたレーザ光を広角化光学系7の入射面に入射させる。
 図9は、この発明の実施の形態3に係るレーザレーダ装置の広角化光学系7の入射面におけるスキャン位置を示す図である。
 図9の楕円でハッチした領域Bが広角化光学系7に入射される送信光のビームパターンを示す。
 送信光学系41は垂直方向に対しては拡がり角を有した送信光に整形し、垂直方向に対しては拡がり角を有した送信光をスキャナ61が水平方向に対してビーム走査することで、図9に示す通り、広角化光学系7の入射面上において、垂直方向に広がった送信光が照射され、水平方向のスキャンによって送信光が水平方向に移動する形でスキャンされる。
 図9において、lh_1 ~ lh_Nの各破線は、広角化光学系7の入射面に照射される送信光の位置を表す。なお、lhはラインを意味し、添え字の数字はライン番号を示す。
 図9の各破線の間隔は、レーザ繰り返し周期及びスキャナの水平方向の角度走査周期により定まる。
 1次元スキャンの例として、レーザ繰り返し周波数を10Hzとし、水平方向の角度走査周期を1Hzとした場合、広角化光学系の入射面において、水平方向の走査の往路と復路(合わせて1周期)において各々5本によって構成されるスキャンとなる。
上記例の場合、N=5に相当する。レーザ繰り返し周期は、レーザレーダ装置として所望とする画素数に応じて設定する。画素数はレーザレーダ装置として所望とする空間分解能、角度分解能から設定しても良い。
 スキャナ61により1次元スキャンされたパルス状のレーザ光は広角化光学系7の入射面へ入射される。
 図10は、この発明の実施の形態3に係るレーザレーダ装置の広視野化を説明する図である。図10を参照して、広角化光学系7の動作を説明する。
 図10において、An_1とAn_2はそれぞれ広角化光学系から出射後、近傍領域において広角化上段光学系71と広角化下段光学系72によって走査される範囲を示す。測定視野1と測定視野2は、それぞれ距離測定対象位置における広角化上段光学系71と広角化下段光学系72の測定視野を示す。Wh_farは、距離測定対象位置における水平方向走査範囲を示し、Wv_farは距離測定対象位置における垂直方向走査範囲を示す。71、72、An_1、An_2、測定視野1、測定視野2に示す垂直方向の破線は図9のBで示す送信ビームのスポット位置を模式的に示し、水平方向へのみスキャンされる様子を示す。
 実施の形態3では71、72、An_1、An_2、測定視野1、測定視野2に対し送信される送信光の形状、スキャン方法のみが異なるため、水平方向の視野角に対する動作は[0046]、[0048]、[0049]、[0052]、[0053]、[0054]と同様である。
 垂直方向のビーム広がり角に関し、広がり角(全角)をθvとした場合、広角化上段光学系71及び広角化下段光学系72への各々の入射角度は θv/2degとなるので、広角化光学系出射後の垂直方向のスキャン角(=レーザレーダ装置としての垂直方向の視野角)は、θv/2degとなる。垂直方向への視野角に関する動作は[0050]、[0051]、[0052]と同様である。
 距離測定対象物からの散乱光は、受信光として広角化光学系7及びスキャナ61を介し、送受分離光学系5へ出力される。
 送受分離光学系5は、距離測定対象物からの散乱光を受信光として受信レンズ8へ出力する。
 受信レンズ8は、受信光を集光し受光アレイ素子15へ集光する。
 受光アレイ素子15は、集光された受信光を受光し、受光した光をピクセル毎に電流に変換し、変換した受信光の各電流信号を電流・電圧変換装置10に出力する。この受信光の電流信号はパルス状の信号となる。
電流・電圧変換装置10は、各ピクセルの電流信号をピクセル毎に電圧信号に変換して距離測定装置11及び強度測定装置12に出力する。
 その他の構成は実施の形態1と同等の動作を行う。
 以上で明らかなように、この発明の実施の形態3によれば、実施の形態1と同様な効果を奏する。加えて、スキャナ61の走査角度する軸を1軸にしたことで、水平方向と垂直方向の2軸の角度走査制御を精度良く合わせる調整が回避されるため、スキャナ製造及び制御に伴う煩雑性が低下する。これにより装置の低コスト化、小型化を図ることが可能となる。また、垂直方向に長尺化困難なスキャナ反射面の製造に困難がある場合に、これを解決することが可能となる。
 なお、スキャナ61は単一反射面を有する構成を例に実施の形態3は説明したが、これに限るものではく、スキャナ61の反射面も垂直方向、もしくは垂直方向と水平方向にアレイ化し、各々の素子が独立に角度走査できるように構成しても良い。
 受光アレイ素子15は垂直方向だけでなく、水平方向にアレイ化しても良い。
 その他、実施の形態1、2に記載した構成、機能、動作の変更例は本実施の形態3でも同様に適用できる。
実施の形態4.
 実施の形態4では広角化光学系30を広角化上段光学系301、広角化中段光学系302、広角化下段光学系303の3段で構成した場合について説明する。なお、以下で上段と記した場合、広角化上段光学系301を示し、中段と記した場合、広角化中段光学系302を示し、下段と記した場合、広角化下段光学系303を示す。
 図11は、この発明の実施の形態4に係るレーザレーダ装置の一構成例を示す構成図である。本レーザレーダ装置は、レーザ光源1、変調器2、トリガ発生装置3、送信光学系4、送受分離光学系5、スキャナ6、広角化光学系30、受信レンズ8、受光素子9、電流・電圧変換装置10、距離測定装置11、強度測定装置12、角度モニタ装置13、信号処理装置14を備える。
 図12は、この発明の実施の形態4に係るレーザレーダ装置の広角化光学系30の一構成例を示す構成図である。
広角化光学系30は、広角化上段光学系301、広角化中段光学系302、広角化下段光学系303から構成される。
 図12において、スキャナ6の水平方向の送信光の走査角度(視野角度)ダイナミックレンジはa=aiu=aim=aid degであり、それぞれの添え字(iu、im、id)は、送信光が入射される広角化上段光学系301、広角化中段光学系302、及び広角化下段光学系303を示す。aou、aom、aod は、それぞれ広角化上段光学系301、広角化中段光学系302、広角化下段光学系303を通過したあとの送信光の水平方向の視野角を示す。
 スキャナ6の垂直方向の送信光の走査角度(視野角度)ダイナミックレンジは、3b degであり、広角化上段光学系301、広角化中段光学系302、広角化下段光学系303にそれぞれ、視野角b degの送信光が入射される。広角化上段光学系301、広角化中段光学系302、広角化下段光学系303を通過した後の送信光の垂直方向の視野角は、それぞれb degである。
 Φouは光軸と上段出射面との間の角度を示し、Φodは光軸と下段出射面との間の角度を示し、Φou=Φodである。図2の側面図においてΦou及びΦodは光軸から反時計まわりを負、時計まわりの方向を正と定義する。
 広角化上段光学系301及び広角化下段光学系303の垂直方向の出射面は、実施の形態1と同様、光軸A-Aに対して対称であり、|Φou|=| Φod|である。
 広角化中段光学系302の水平方向の入射面は、上段および下段と同様に、曲面で構成し、水平方向及び垂直方向の出射面は平面で構成する。なお、測定対象距離において測定視野1、2、3の隣接する視野が一部重なる、もしくは隙間なく隣接する場合、水平方向の入射面は曲面でなく、平面、球面、非球面であっても良く、水平方向及び垂直方向の出射面は平面でなくても良い。
 上記機能を得るため、広角化光学系30は次の構造を有する。広角化光学系30が、広角化光学系7と異なる点は上段と下段の間に中段の光学系が挿入された点である。中段の入射面は水平方向に対して曲面で構成し、光軸に対し回転対称である。出射面は、水平及び垂直方向に対して傾斜のない平面で構成する。その他の構造については実施の形態1と同様である。
 広角化中段光学系302の垂直方向の入射面は、スキャナ6の水平方向の走査角度0degの送信光が垂直に入射するよう構成する。つまり、光軸A-Aに対する広角化中段光学系302の垂直方向の入射面の角度は、90degである。また、広角化中段光学系302は、図12中の側面図において、光軸A-A軸上に中心がくるように配置する。
 図12中の水平方向(上面図)に示す通り、中段出射後の送信光の水平方向の視野角が光軸A-Aに対して対称となるように、水平方向の入射面を構成する。従って、例えば入射面が球面の場合、曲率中心はA-A上に位置する。
 次に、この発明の実施の形態4に係わるレーザレーダ装置の動作について説明する。広角化光学系30以外の動作は、実施の形態1と同様であるので、説明を省略する。
 スキャナ6で2次元スキャンされたパルス状のレーザ光を広角化光学系30の入射面へ入射する。
 広角化光学系30を透過した送信光は、図11に示すように、スキャナ6から広角化上段光学系301へ入射した送信光は距離測定対象位置にて測定視野1へ、広角化下段光学系303へ入射した送信光は測定視野3へ、広角化中段光学系302へ入射した送信光は測定視野2へ照射される。
 図12に示すように、広角化光学系30の水平方向の入射面を上段、下段、及び中段で異なる向きに配置したことより、スキャナ6の出射直後、広角化光学系30の入射前では、上中下段で同一の水平方向の範囲に伝搬している送信光は、広角化光学系30の出射後において異なる水平方向へ伝搬する。
 また、広角化光学系30の垂直方向の出射面を図12に示すように構成したことで、広角化光学系30を出射した上段、下段、及び中段からの送信光は、所望とする距離測定対象位置において垂直方向の軸ずれなく距離測定対象に照射される。
 その他の構成は実施の形態1と同等の動作を行う。
 以上で明らかなように、この発明の実施の形態4によれば、実施の形態1と同様な効果を奏する。加えて、広角化光学系30を広角化上段光学系301、広角化中段光学系302、広角化下段光学系303という3段で構成したので、実施の形態1より広い視野角を得ることができる。
 実施の形態1~3に記載された内容は、(1)広角化光学系30の入射面に垂直方向を補正する平面の傾斜面を形成し、出射面に曲面を形成する、(2)広角化光学系30を反射系で構成する、(3)受光素子に受光素子アレイを用いるなど、実施の形態4で示すような複数段への広角化光学系30に適用しても良い。
 その他、実施の形態1、2、3に記載した構成、機能、動作の変更例は本実施の形態4でも同様に適用できる。
1 レーザ光源、2 変調器、3 トリガ発生装置、4 送信光学系、5 送受分離光学系、6 61 スキャナ、7 20 30 広角化光学系、71 201 301 広角化上段光学系、302 広角化中段光学系 72 202 303広角化下段光学系、8 受信レンズ、9 受光素子、10 電流・電圧変換装置、11 距離測定装置、12 強度測定装置、13 角度モニタ装置、14 信号処理装置、15 受光アレイ素子。

Claims (6)

  1.  レーザ光を出力する光源と、
     前記レーザ光をスキャンするスキャナと、
     前記スキャナがスキャンした前記レーザ光が入射され、入射された前記レーザ光の水平方向成分と出射する前記レーザ光の水平方向成分とが異なるように、入射された前記レーザ光を出射する第1の光学系と、
     前記スキャナがスキャンした前記レーザ光が入射され、入射される前記レーザ光の水平方向の入射範囲と前記第1の光学系の水平方向の入射範囲とは同じであって、入射された前記レーザ光の出射範囲と前記第1の光学系の出射範囲とが異なるように、入射された前記レーザ光を出射する第2の光学系と、
     を備えたことを特徴とするレーザレーダ装置。
  2.  前記第1の光学系は、入射される前記レーザ光の垂直方向成分の符号と出射する前記レーザ光の垂直方向成分の符号とが異なるように、入射された前記レーザ光を出射し、
     前記第2の光学系は、垂直方向の入射範囲が前記第1の光学系の垂直方向の入射範囲と光軸に対して対称であって、入射された前記レーザ光の垂直方向成分の符号と出射する前記レーザ光の垂直方向成分の符号とが異なるように、入射された前記レーザ光を出射することを特徴とする請求項1に記載のレーザレーダ装置。
  3.  前記第1の光学系及び第2の光学系は、入射される前記レーザ光を反射し、反射することにより前記レーザ光を出射することを特徴とする請求項2に記載のレーザレーダ装置。
  4.  前記第1の光学系の入射面の法線ベクトルの水平方向成分と前記第2の光学系の入射面の法線ベクトルの水平方向成分とが異なり、前記第1の光学系の出射面の法線ベクトルの水平方向成分と前記第2の光学系の出射面の法線ベクトル水平方向成分とが同じであることを特徴とする請求項2に記載のレーザレーダ装置。
  5.  前記第1の光学系の入射面の法線ベクトルの水平方向成分と前記第2の光学系の入射面の法線ベクトルの水平方向成分とが同じで、前記第1の光学系の出射面の法線ベクトルの水平方向成分と前記第2の光学系の出射面の法線ベクトルの水平方向性分とが異なることを特徴とする請求項2に記載のレーザレーダ装置。
  6.  前記光源が出力した前記レーザ光を垂直方向に広げ、垂直方向に広げた前記レーザ光を前記スキャナに出力する送信光学系を備えたことを特徴とする請求項1に記載のレーザレーダ装置。
PCT/JP2018/044873 2018-12-06 2018-12-06 レーザレーダ装置 WO2020115856A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/044873 WO2020115856A1 (ja) 2018-12-06 2018-12-06 レーザレーダ装置
EP18942552.3A EP3879304B1 (en) 2018-12-06 2018-12-06 Laser radar device
JP2020558744A JPWO2020115856A1 (ja) 2018-12-06 2018-12-06 レーザレーダ装置
US17/236,359 US11940564B2 (en) 2018-12-06 2021-04-21 Laser radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044873 WO2020115856A1 (ja) 2018-12-06 2018-12-06 レーザレーダ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/236,359 Continuation US11940564B2 (en) 2018-12-06 2021-04-21 Laser radar device

Publications (1)

Publication Number Publication Date
WO2020115856A1 true WO2020115856A1 (ja) 2020-06-11

Family

ID=70975045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044873 WO2020115856A1 (ja) 2018-12-06 2018-12-06 レーザレーダ装置

Country Status (4)

Country Link
US (1) US11940564B2 (ja)
EP (1) EP3879304B1 (ja)
JP (1) JPWO2020115856A1 (ja)
WO (1) WO2020115856A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019182073A1 (ja) * 2018-03-20 2021-04-08 Agc株式会社 ホモジェナイザ、照明光学系および照明装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138895A (ja) 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd 結晶の製造方法および発光素子の製造方法
JP2013072991A (ja) * 2011-09-27 2013-04-22 Nec Corp 走査型画像表示装置および画像表示方法
JP2014219330A (ja) * 2013-05-09 2014-11-20 国立大学法人東京大学 計測システム
JP2015125317A (ja) * 2013-12-26 2015-07-06 リコーインダストリアルソリューションズ株式会社 2次元走査型のレーザビーム投射装置および2次元測距装置
JP2016035436A (ja) * 2014-08-04 2016-03-17 船井電機株式会社 レーザレンジファインダ
WO2017040066A1 (en) * 2015-08-31 2017-03-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Range-finder apparatus, methods, and applications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2568314B1 (en) 2010-05-07 2021-06-09 Mitsubishi Electric Corporation Laser radar device
JP7169272B2 (ja) * 2016-11-16 2022-11-10 イノヴィズ テクノロジーズ リミテッド Lidarシステム及び方法
JP6930120B2 (ja) * 2017-02-02 2021-09-01 株式会社リコー 表示装置、移動体装置及び表示方法。

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138895A (ja) 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd 結晶の製造方法および発光素子の製造方法
JP2013072991A (ja) * 2011-09-27 2013-04-22 Nec Corp 走査型画像表示装置および画像表示方法
JP2014219330A (ja) * 2013-05-09 2014-11-20 国立大学法人東京大学 計測システム
JP2015125317A (ja) * 2013-12-26 2015-07-06 リコーインダストリアルソリューションズ株式会社 2次元走査型のレーザビーム投射装置および2次元測距装置
JP2016035436A (ja) * 2014-08-04 2016-03-17 船井電機株式会社 レーザレンジファインダ
WO2017040066A1 (en) * 2015-08-31 2017-03-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Range-finder apparatus, methods, and applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3879304A4

Also Published As

Publication number Publication date
JPWO2020115856A1 (ja) 2021-02-18
US11940564B2 (en) 2024-03-26
US20210239805A1 (en) 2021-08-05
EP3879304A1 (en) 2021-09-15
EP3879304A4 (en) 2021-11-17
EP3879304B1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
JP7019894B2 (ja) 物体を感知する方法及びセンサシステム
US10788574B2 (en) LIDAR device and LIDAR system including the same
US20170261612A1 (en) Optical distance measuring system and light ranging method
WO2018068363A1 (zh) 激光雷达光学系统
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
US8738320B2 (en) Light condensing lens and three-dimensional distance measuring apparatus
US9048609B2 (en) Laser emitter module and laser detecting system to which the laser emitter module is applied
JP6856784B2 (ja) 固体光検出及び測距(lidar)システム、固体光検出及び測距(lidar)分解能を改善するためのシステム及び方法
US11815628B2 (en) Apparatus providing a plurality of light beams
US20150029490A1 (en) Laser scanning device
US20210173051A1 (en) Optoelectronic sensor and method for detecting an object
CN111289995A (zh) 三维激光雷达装置及系统
CN110312947B (zh) 用于检测对象的激光雷达传感器
US11940564B2 (en) Laser radar device
RU2528109C1 (ru) Система импульсной лазерной локации
CN113544542A (zh) 具有相位光调制器的lidar
WO2019176749A1 (ja) 走査装置及び測定装置
JP2022125206A (ja) 走査装置及び光検出装置
CN209803333U (zh) 三维激光雷达装置及系统
WO2019159933A1 (ja) 電磁波検出装置および情報取得システム
JP2011095103A (ja) 距離測定装置
US20230161018A1 (en) Optoelectronic sensor and method for the alignment of an optoelectronic sensor
US11381722B2 (en) Electromagnetic wave detection apparatus and information acquisition system
US20220236418A1 (en) Lidar system comprising an interferential diffractive element and lidar imaging method
JP7260966B2 (ja) 電磁波検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018942552

Country of ref document: EP

Effective date: 20210608