WO2020115841A1 - シフトレジスタ、表示装置、および、シフトレジスタの制御方法 - Google Patents

シフトレジスタ、表示装置、および、シフトレジスタの制御方法 Download PDF

Info

Publication number
WO2020115841A1
WO2020115841A1 PCT/JP2018/044749 JP2018044749W WO2020115841A1 WO 2020115841 A1 WO2020115841 A1 WO 2020115841A1 JP 2018044749 W JP2018044749 W JP 2018044749W WO 2020115841 A1 WO2020115841 A1 WO 2020115841A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
shift register
voltage
terminal
control
Prior art date
Application number
PCT/JP2018/044749
Other languages
English (en)
French (fr)
Inventor
展之 他谷
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/044749 priority Critical patent/WO2020115841A1/ja
Priority to US17/296,531 priority patent/US11386848B2/en
Publication of WO2020115841A1 publication Critical patent/WO2020115841A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356008Bistable circuits ensuring a predetermined initial state when the supply voltage has been applied; storing the actual state when the supply voltage fails
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/3562Bistable circuits of the master-slave type
    • H03K3/35625Bistable circuits of the master-slave type using complementary field-effect transistors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit

Definitions

  • the present invention relates to a shift register having a configuration in which a plurality of unit circuits are connected in multiple stages, and a display device including the shift register.
  • Organic electroluminescence (EL) display devices are widely used as thin, lightweight, and high-quality display devices.
  • a typical organic EL display device includes an organic EL panel, a scanning line drive circuit, a data line drive circuit, and a light emission control line drive circuit.
  • a shift register having a configuration in which a plurality of unit circuits are connected in multiple stages is used for the scanning line driving circuit and the emission control line driving circuit.
  • FIG. 20 is a circuit diagram of a semi-static type unit circuit.
  • the unit circuit 90 shown in FIG. 20 includes four clocked inverters and two inverters. By connecting a plurality of unit circuits 90 in multiple stages, a shift register used as a scanning line driving circuit and an emission control line driving circuit of the organic EL display device can be configured.
  • Patent Document 1 describes a latch circuit in which a depletion type MIS (Metal Insulator Semiconductor) transistor is connected as a pull-down element to the output in order to surely raise an RS latch in a reset state. ..
  • MIS Metal Insulator Semiconductor
  • the shift register included in the display device it is preferable to initialize the internal node of the unit circuit before the display device starts operating. The reason is that when the display device starts to operate without initializing the internal node, the scanning line drive circuit or the light emission control line drive circuit may malfunction and an image may not be displayed normally.
  • the unit circuit 90 shown in FIG. 20 it is preferable to initialize the nodes N1 and N2 or the nodes N3 and N4.
  • initialization wiring is provided to initialize the internal node of the unit circuit (see FIGS. 8 and 9 described later), and after the power is turned on, before the display device starts the operation. An initialization voltage is applied to the initialization wiring. For this reason, in the conventional shift register, it is necessary to provide an input terminal for an initialization signal in the display panel, the size of the display panel increases by the amount of the initialization wiring, and it takes a predetermined time after the power is turned on to initialize the display panel. There is a problem that it is necessary to convert
  • the above problem is, for example, a shift register having a configuration in which a plurality of unit circuits are connected in multiple stages, and the unit circuit has a plurality of control transistors, an internal node connected to the terminals of the control transistors, and an internal node directly.
  • a depletion-type initialization transistor having a first conduction terminal, a second conduction terminal, and a control terminal that are connected via a resistor, and one of a power supply voltage and a ground voltage is applied to the second conduction terminal.
  • the other of the power supply voltage and the ground voltage is applied to the control terminal, and the initialization transistor can be solved by a shift register which is turned on in the power-off state.
  • the above problems include a display panel including a plurality of scanning lines, a plurality of data lines, and a plurality of pixel circuits, a scanning line driving circuit that drives the scanning lines, and a data line driving circuit that drives the data lines,
  • the problem can also be solved by a display device including the above shift register.
  • the above problem is a method of controlling a shift register having a configuration in which a plurality of unit circuits are connected in multiple stages, wherein the unit circuit includes a plurality of control transistors, an internal node connected to the terminals of the control transistors, and an internal node.
  • the unit circuit includes a plurality of control transistors, an internal node connected to the terminals of the control transistors, and an internal node.
  • a depletion type initialization transistor having a first conduction terminal, a second conduction terminal, and a control terminal that are connected directly or via a resistor
  • a shift register including a step of applying the other of the power supply voltage and the ground voltage to the control terminal to operate the shift register, and a step of stopping the supply of the power supply voltage and turning on the initialization transistor. It can also be solved by the control method of.
  • the initialization transistor is turned on in the power-off state, and thus the ground voltage is applied to the internal node by the action of the initialization transistor. Therefore, the internal node of the unit circuit of the shift register can be easily initialized when the power is off without using the initialization signal.
  • FIG. 3 is a block diagram showing a configuration of a shift register according to the first embodiment.
  • FIG. FIG. 3 is a block diagram showing a configuration of an organic EL display device including the shift register shown in FIG. 1.
  • 2 is a circuit diagram of a unit circuit of the shift register shown in FIG. 1.
  • FIG. FIG. 4 is a diagram for explaining the operation of the unit circuit shown in FIG. 3.
  • 3 is a timing chart of the shift register shown in FIG. 1. It is a characteristic view of a depletion type and P channel type transistor.
  • FIG. 4 is a diagram for explaining a method of initializing internal nodes of the unit circuit shown in FIG. 3.
  • FIG. 6 is a circuit diagram of a unit circuit of a shift register according to a first comparative example.
  • FIG. 9 is a circuit diagram of a unit circuit of a shift register according to a second comparative example. 6 is a circuit diagram of a unit circuit of a shift register according to a second embodiment.
  • FIG. It is a figure which shows the structural example of the resistance contained in the unit circuit shown in FIG.
  • FIG. 11 is a diagram for explaining a method of initializing internal nodes of the unit circuit shown in FIG. 10.
  • FIG. 9 is a circuit diagram of a unit circuit of a shift register according to a third embodiment. It is a characteristic view of a depletion type and N channel type transistor.
  • FIG. 14 is a diagram for explaining a method of initializing internal nodes of the unit circuit shown in FIG. 13.
  • FIG. 17 is a diagram for explaining a method of initializing internal nodes of the unit circuit shown in FIG. 16. It is a circuit diagram which shows the other example of the clocked inverter contained in a unit circuit. It is a circuit diagram of a unit circuit of a conventional shift register.
  • a shift register according to each embodiment and a display device including the shift register will be described below with reference to the drawings.
  • a signal input or output via a certain terminal will be referred to by the same name as that terminal.
  • a signal input via the clock terminal CK is called a clock signal CK.
  • m and n are integers of 2 or more
  • i is an integer of 1 or more and m or less
  • j is an integer of 1 or more and n or less.
  • a character string SRi described in the drawing indicates a unit circuit of the i-th stage of the shift register.
  • FIG. 1 is a block diagram showing the configuration of the shift register according to the first embodiment.
  • the shift register 1 shown in FIG. 1 has a configuration in which m unit circuits 10 are connected in multiple stages.
  • the unit circuit 10 has clock terminals CK and CKB, an input terminal IN, and an output terminal OUT.
  • Clock signals CK1 and CK2 and a start signal SP are externally supplied to the shift register 1.
  • the clock signal CK2 is a negative signal of the clock signal CK1.
  • the clock signal CK1 is given to the clock terminal CK of the unit circuit 10 of each stage.
  • the clock signal CK2 is given to the clock terminal CKB of the unit circuit 10 of each stage.
  • the start signal SP is given to the input terminal IN of the unit circuit 10 of the first stage.
  • the output signals OUT of the unit circuits 10 of the 1st to (m-1)th stages are applied to the input terminals IN of the unit circuits 10 of the 2nd to mth stages, respectively.
  • the output signal OUT of the i-th stage unit circuit 10 is output to the outside as the i-th output signal Gi of the shift register 1.
  • FIG. 2 is a block diagram showing a configuration of an organic EL display device including the shift register 1.
  • the organic EL display device 50 shown in FIG. 2 includes an organic EL panel 51, a display control circuit 52, a scanning line drive circuit 53, a data line drive circuit 54, and a light emission control line drive circuit 55.
  • the organic EL panel 51 includes m scanning lines G1 to Gm, n data lines S1 to Sn, m emission control lines E1 to Em, and (m ⁇ n) pixel circuits 56. ..
  • the scanning lines G1 to Gm are arranged in parallel with each other.
  • the data lines S1 to Sn are arranged parallel to each other and orthogonal to the scanning lines G1 to Gm.
  • the emission control lines E1 to Em are arranged in parallel with the scanning lines G1 to Gm.
  • the scanning lines G1 to Gm and the data lines S1 to Sn intersect at (m ⁇ n) points.
  • the (m ⁇ n) pixel circuits 56 are arranged corresponding to the intersections of the scanning lines G1 to Gm and the data lines S1 to Sn, respectively.
  • the pixel circuit 56 includes an organic EL element 57.
  • the organic EL element 57 functions as an electro-optical element that emits light with brightness according to the current.
  • the pixel circuit 56 in the i-th row and the j-th column is connected to the scanning line Gi, the data line Sj, and the emission control line Ei.
  • the display control circuit 52 outputs the control signal C1 to the scanning line drive circuit 53, outputs the control signal C2 and the video signal V1 to the data line drive circuit 54, and controls the light emission control line drive circuit 55.
  • the signal C3 is output.
  • the scanning line driving circuit 53 drives the scanning lines G1 to Gm based on the control signal C1.
  • the data line driving circuit 54 drives the data lines S1 to Sn based on the control signal C2 and the video signal V1.
  • the light emission control line drive circuit 55 drives the light emission control lines E1 to Em based on the control signal C3.
  • the scanning line driving circuit 53 sequentially selects one scanning line from the scanning lines G1 to Gm based on the control signal C1, and selects a selected voltage (for example, a high level voltage) for the selected scanning line. And a non-selection voltage (for example, a low level voltage) is applied to the remaining scanning lines.
  • a selected voltage for example, a high level voltage
  • a non-selection voltage for example, a low level voltage
  • the data line drive circuit 54 applies n voltages corresponding to the video signal V1 to the data lines S1 to Sn based on the control signal C2.
  • n voltages are respectively written in the selected n pixel circuits 56.
  • a current according to the voltage written in the pixel circuit 56 flows through the organic EL element 57, and the organic EL element 57 emits light with a brightness according to the flowing current.
  • the light emitting period of the organic EL element 57 is set for each row of the pixel circuits 56.
  • the light-emission control line drive circuit 55 applies a light-emission voltage (for example, a high level voltage) to the i-th light-emission control line Ei in the light-emission period of the pixel circuit 56 in the i-th row, and does not emit light in other periods.
  • a voltage for example, a low level voltage
  • the shift register 1 shown in FIG. 1 is used for the scanning line driving circuit 53.
  • a shift register having the same configuration as the shift register 1 is used for the light emission control line drive circuit 55.
  • FIG. 3 is a circuit diagram of the unit circuit 10.
  • the unit circuit 10 shown in FIG. 3 includes four clocked inverters 11, 13, 14, 16 and two inverters 12 and 15, and two transistors 17 and 18.
  • the unit circuit 10 is obtained by adding transistors 17 and 18 to the unit circuit 90 shown in FIG.
  • the transistors 17 and 18 are depletion type and P channel type transistors, and function as initialization transistors.
  • the high level power supply voltage VGH is 10V
  • the low level power supply voltage is the ground voltage GND (0V).
  • the P-channel type transistor (including the transistors 17 and 18) included in the unit circuit 10 is formed by using, for example, LTPS (Low Temperature Polycrystalline Silicon).
  • the N-channel type transistor included in the unit circuit 10 is formed using, for example, LTPS, an oxide semiconductor, or the like.
  • As the oxide semiconductor for example, IGZO (Indium Gallium Zinc Oxide) can be used.
  • the clocked inverter 11 includes two P-channel type transistors Q11 and Q12 and two N-channel type transistors Q13 and Q14 connected in series.
  • the high level power supply voltage VGH is applied to the source terminal of the transistor Q11.
  • the drain terminal of the transistor Q11 is connected to the source terminal of the transistor Q12.
  • the drain terminal of the transistor Q12 is connected to the drain terminal of the transistor Q13.
  • the source terminal of the transistor Q13 is connected to the drain terminal of the transistor Q14.
  • the ground voltage GND is applied to the drain terminal of the transistor Q14.
  • Clock signals CKB and CK are applied to the gate terminals of the transistors Q11 and Q14, respectively.
  • the gate terminals of the transistors Q12 and Q13 are connected to the input terminal of the clocked inverter 11.
  • the drain terminals of the transistors Q12 and Q13 are connected to the output terminal of the clocked inverter 11.
  • the inverter 12 includes a P-channel type transistor Q21 and an N-channel type transistor Q22 connected in series.
  • the high level power supply voltage VGH is applied to the source terminal of the transistor Q21.
  • the drain terminal of the transistor Q21 is connected to the drain terminal of the transistor Q22.
  • the ground voltage GND is applied to the source terminal of the transistor Q22.
  • the gate terminals of the transistors Q21 and Q22 are connected to the input terminal of the inverter 12.
  • the drain terminals of the transistors Q21 and Q22 are connected to the output terminal of the inverter 12.
  • the clocked inverter 13 has the same configuration as the clocked inverter 11. However, clock signals CK and CKB are applied to the gate terminals of the transistors Q31 and Q34 included in the clocked inverter 13, respectively.
  • the clocked inverters 14 and 16 have the same configurations as the clocked inverters 13 and 11, respectively.
  • Inverter 15 has the same configuration as inverter 12. The transistors included in the clocked inverters 11, 13, 14, 16 and the inverters 12, 15 function as control transistors.
  • the inverters 12 and 15 output a low level signal when the input signal is at a high level, and output a high level signal when the input signal is at a low level.
  • the clocked inverters 11 and 16 function as inverters when the clock signal CK is at high level. When the clock signal CK is at low level, the outputs of the clocked inverters 11 and 16 are in a high impedance state.
  • the clocked inverters 13 and 14 function as inverters when the clock signal CK is at low level. When the clock signal CK is at high level, the outputs of the clocked inverters 13 and 14 are in a high impedance state.
  • the input terminal of the clocked inverter 11 is connected to the input terminal IN of the unit circuit 10.
  • the output terminals of the clocked inverters 11 and 13 are connected to the input terminal of the inverter 12.
  • the output terminal of the inverter 12 is connected to the input terminals of the clocked inverters 13 and 14.
  • the output terminals of the clocked inverters 14 and 16 are connected to the input terminal of the inverter 15.
  • the output terminal of the inverter 15 is connected to the input terminal of the clocked inverter 16 and the output terminal OUT of the unit circuit 10.
  • the nodes connected to the output terminals of the inverters 12 and 15 are referred to as N1 and N2, respectively.
  • the source terminals (first conduction terminals) of the transistors 17 and 18 are connected to the nodes N1 and N2, respectively.
  • the ground voltage GND is applied to the drain terminals (second conduction terminals) of the transistors 17 and 18.
  • the high-level power supply voltage VGH is applied to the gate terminals (control terminals) of the transistors 17 and 18.
  • the first conduction terminals of the transistors 17 and 18 are directly connected to the nodes N1 and N2, respectively.
  • the transistors 17 and 18 do not affect the operation of the unit circuit 10 in the power-on state. Therefore, in the power-on state, the unit circuit 10 performs the same operation as the unit circuit 90 shown in FIG.
  • the operation of the unit circuit 10 in the power-on state will be described with reference to FIG.
  • the output of the element indicated by the broken line in FIG. 4 is in a high impedance state.
  • the unit circuit 10 holds the input signal IN at the node N1 when the clock signal CK changes from the low level to the high level.
  • the output signal OUT becomes equal to the signal held at the node N1.
  • the clocked inverters 11 and 16 function as inverters, and the outputs of the clocked inverters 13 and 14 are in a high impedance state.
  • the input signal IN is applied to the node N1, and a negative signal of the input signal of the inverter 15 (equal to the signal held in the node N1) is output as the output signal OUT.
  • the output signal OUT does not change.
  • the clocked inverters 13 and 14 function as inverters, and the outputs of the clocked inverters 11 and 16 are in a high impedance state.
  • the input signal IN is not applied to the node N1, and the input signal of the clocked inverter 14 (the signal held in the node N1) is output as the output signal OUT.
  • the signal held at the node N1 does not change and the output signal OUT does not change.
  • FIG. 5 is a timing chart of the shift register 1.
  • N1_i represents the voltage of the node N1 in the unit circuit 10 at the i-th stage.
  • the start signal SP becomes high level for one cycle of the clock signal CK1.
  • the clock signal CK1 changes to the high level at time t11 after the start signal SP changes to the high level
  • the voltage N1_1 of the node N1 of the unit circuit 10 of the first stage changes to the high level.
  • the output signal G1 of the first-stage unit circuit 10 changes to the high level.
  • the output signal G1 of the unit circuit 10 of the first stage goes high for one cycle of the clock signal CK1 after the start signal SP goes high.
  • the output signal G2 of the unit circuit 10 of the second stage is delayed by one cycle of the clock signal CK1 with respect to the output signal G1 of the unit circuit 10 of the first stage, and becomes high level for one cycle of the clock signal CK1.
  • the output signal Gi of the unit circuit 10 of the i-th stage is delayed by one cycle of the clock signal CK1 from the output signal Gi-1 of the unit circuit 10 of the (i-1)th stage, and It goes high for one cycle.
  • the output signals G1 to Gm of the unit circuit 10 become high level for each cycle of the clock signal CK1 in ascending order.
  • FIG. 6 is a characteristic diagram of a depletion type P-channel transistor. As shown in FIG. 6, in the depletion type transistor, the drain current flows when the gate-source voltage is 0V.
  • the transistors 17 and 18 included in the unit circuit 10 have the characteristics shown in FIG.
  • FIG. 7 is a diagram for explaining a method of initializing the internal node of the unit circuit 10.
  • FIG. 7A shows a state in which the transistor Q22 (FIG. 3) is turned on and the ground voltage GND is applied to the node N1 in the power-on state.
  • FIG. 7B shows a state in which the transistor Q21 (FIG. 3) is turned on in the power-on state and the high-level power supply voltage VGH is applied to the node N1.
  • FIG. 7C shows a power-off state. In the power-on state, the high-level power supply voltage VGH is applied to the gate terminal of the transistor 17. In the power-off state, the voltage of the gate terminal of the transistor 17 becomes the ground voltage GND.
  • the transistor 17 When the ground voltage GND is applied to the node N1 in the power-on state (FIG. 7A), the transistor 17 is turned off and the voltage of the node N1 becomes the ground voltage. At this time, the logic level (low level) corresponding to the voltage of the node N1 is the same as the logic level corresponding to the voltage applied to the node N1 using the transistor Q22. Therefore, at this time, the transistor 17 does not affect the operation of the unit circuit 10.
  • the high-level power supply voltage VGH is applied to the node N1 in the power-on state (FIG. 7(b)). If the transistor 17 is off at this time, no current flows through the transistor 17 between the node N1 and the ground, and the voltage of the node N1 becomes the high-level power supply voltage VGH. Since the gate-source voltage of the depletion type transistor 17 becomes 0 V, the transistor 17 is turned on and a current flows through the transistor 17. At this time, the voltage of the node N1 becomes a voltage (hereinafter referred to as Va) according to the ratio of the on resistance of the transistor Q21 and the on resistance of the transistor 17.
  • the unit circuit 10 is designed so that the logic level corresponding to the voltage Va is a high level. Therefore, the unit circuit 10 is designed, for example, so that the on-resistance of the transistor 17 is sufficiently higher than the on-resistance of the transistor Q21.
  • the threshold voltage of the transistor 17 is Vthp (>0)
  • Va ⁇ VGH ⁇ Vthp there are cases where Va ⁇ VGH ⁇ Vthp and cases where Va ⁇ VGH ⁇ Vthp
  • the former is the first case
  • the latter is the second case). That's the case).
  • the first case even after the voltage of the node N1 becomes Va, the transistor 17 remains in the ON state, and the current passing through the transistor 17 continues to flow. Therefore, in the first case, the voltage of the node N1 does not change from Va.
  • the second case when the voltage of the node N1 becomes the voltage Vaa below (VGH-Vthp), the transistor 17 is turned off, and the voltage of the node N1 becomes the high level power supply voltage VGH again.
  • the transistor 17 is turned on again, and the voltage of the node N1 becomes Vaa again. After that, the same situation occurs repeatedly. Therefore, in the second case, the transistor 17 is repeatedly turned on and off, and the voltage of the node N1 alternately becomes Vaa and VGH.
  • the logic level corresponding to the voltage Va of the node N1 corresponds to the voltage applied to the node N1 using the transistor Q21 (corresponding to the high level power supply voltage VGH). High level). Therefore, the clocked inverter 14 provided next to the node N1 performs the same operation as when the transistor 17 is not provided. Therefore, the transistor 17 does not affect the operation of the unit circuit 10 even when the high-level power supply voltage VGH is applied to the node N1.
  • the voltage of the node N1 is initialized to the ground voltage GND when the power is turned off by the action of the transistor 17.
  • the voltage of the node N2 is initialized to the ground voltage GND by the action of the transistor 18 when the power is off.
  • FIG. 8 is a circuit diagram of a unit circuit of the shift register according to the first comparative example.
  • the unit circuit 91 shown in FIG. 8 is obtained by adding enhancement type P-channel transistors 92 and 93 to the unit circuit 90 shown in FIG.
  • the drain terminals of the transistors 92 and 93 are connected to the nodes N3 and N4, which are connected to the input terminals of the inverters 12 and 15, respectively.
  • the high level power supply voltage VGH is applied to the source terminals of the transistors 92 and 93.
  • An initialization signal INITB is applied to the gate terminals of the transistors 92 and 93.
  • the initialization signal INITB is controlled to the low level when the initialization is performed.
  • the transistors 92 and 93 are turned on, and the voltages of the nodes N3 and N4 are initialized to the high level power supply voltage VGH.
  • FIG. 9 is a circuit diagram of a unit circuit of the shift register according to the second comparative example.
  • a unit circuit 95 shown in FIG. 9 is obtained by adding enhancement type N-channel type transistors 96 and 97 to the unit circuit 90 shown in FIG.
  • the drain terminals of the transistors 96 and 97 are connected to the nodes N1 and N2, respectively.
  • the ground voltage GND is applied to the source terminals of the transistors 96 and 97.
  • An initialization signal INIT is applied to the gate terminals of the transistors 96 and 97.
  • the initialization signal INIT is controlled to a high level when performing initialization. At this time, the transistors 96 and 97 are turned on, and the voltages of the nodes N1 and N2 are initialized to the ground voltage GND.
  • the initialization signal is used when initializing the internal node of the unit circuit. Therefore, an initialization wiring for propagating the initialization signal is provided, and after the power is turned on, the initialization voltage is applied to the initialization wiring before the display device starts operating.
  • the shift registers according to the first and second comparative examples it is necessary to provide an input terminal for an initialization signal in the organic EL panel, and the size of the organic EL panel is increased by the amount of the initialization wiring. There is a problem that it is necessary to perform initialization for a predetermined time after charging.
  • the logic level corresponding to the voltage of the node N1 corresponds to the voltage applied to the node N1 using the transistor Q21 or Q22. Same as the level. Further, in the power-on state, the logic level corresponding to the voltage of node N2 is the same as the logic level corresponding to the voltage applied to node N2 using transistor Q51 or Q52. Therefore, the transistors 17 and 18 do not affect the operation of the unit circuit 10. Since the transistors 17 and 18 are turned on in the power-off state, the ground voltage GND is applied to the nodes N1 and N2 by the action of the transistors 17 and 18.
  • the internal nodes (nodes N1 and N2) of the unit circuit 10 can be initialized when the power is turned off without using the initialization signal. Therefore, it is not necessary to provide an input terminal for the initialization signal in the organic EL panel 51, the size of the organic EL panel 51 does not increase by the amount of the initialization wiring, and the initialization is automatically performed when the power is turned off. You can Therefore, the internal node of the unit circuit 10 of the shift register 1 can be easily initialized when the power is off.
  • the shift register 1 has a configuration in which a plurality of unit circuits 10 are connected in multiple stages.
  • the unit circuit 10 includes a plurality of control transistors (transistors Q11 to Q14, Q21, Q22, Q31 to Q34, Q41 to Q44, Q51, Q52, Q61 to Q64) and an internal node (node N1 connected to the terminals of the control transistor). , N2), a first conduction terminal (source terminal) directly connected to the internal node, a second conduction terminal (drain terminal), and a control terminal (gate terminal), a depletion-type and P-channel initialization transistor. (Transistors 17, 18) are included.
  • the ground voltage GND is applied to the second conduction terminal of the initialization transistor, and the power supply voltage (high-level power supply voltage VGH) is applied to the control terminal of the initialization transistor.
  • the initialization transistor is turned on when the power is off. Therefore, according to the shift register 1, the internal node of the unit circuit 10 can be easily initialized when the power is turned off.
  • the logic level corresponding to the voltage of the internal node is the same as the logic level corresponding to the voltage applied to the internal node using the control transistors (Q21, Q22, Q51, Q52). Therefore, in the power-on state, the initialization transistor does not affect the operation of the unit circuit 10.
  • the unit circuit 10 includes two or more initialization transistors. Therefore, a plurality of internal nodes included in the unit circuit 10 can be easily initialized when the power is turned off. Further, the plurality of control transistors include both P-channel type transistors and N-channel type transistors. Therefore, the above effect can be obtained in the shift register including both the P-channel transistor and the N-channel transistor.
  • the display device includes a plurality of scanning lines G1 to Gm, a plurality of data lines S1 to Sn, a plurality of emission control lines E1 to Em, and a plurality of pixel circuits 56.
  • Panel organic EL panel 51
  • scanning line driving circuit 53 for driving scanning lines G1 to Gm
  • data line driving circuit 54 for driving data lines S1 to Sn
  • light emission control for driving light emission control lines E1 to Em
  • a line drive circuit 55 is the shift register 1 described above.
  • the light emission control line drive circuit 55 has the same configuration as the shift register 1 described above.
  • an internal node of the unit circuit 10 of the shift register 1 is easily initialized when the power is turned off, so that the malfunction of the scanning line drive circuit 53 and the emission control line drive circuit 55 after the power is turned on can be prevented. Therefore, the image can be normally displayed after the power is turned on.
  • the pixel circuit 56 includes an electro-optical element (organic EL element 57) that emits light with a brightness according to the current.
  • the display panel is the organic EL panel 51. Therefore, the above-mentioned effects can be achieved in the organic EL display device including the organic EL panel 51.
  • the shift register according to the second embodiment has the same configuration as the shift register 1 according to the first embodiment and is used in the same manner as the shift register 1 (see FIGS. 1 and 2).
  • the differences from the first embodiment will be described.
  • FIG. 10 is a circuit diagram of a unit circuit of the shift register according to this embodiment.
  • the unit circuit 20 shown in FIG. 10 includes four clocked inverters 11, 13, 14, 16, two inverters 12, 15, two transistors 17, 18, and two resistors 21, 22. I'm out.
  • the unit circuit 20 is obtained by adding transistors 17 and 18 and resistors 21 and 22 to the unit circuit 90 shown in FIG.
  • the upper terminal of the resistors 21 and 22 is called the first terminal, and the lower terminal is called the second terminal.
  • the first terminals of the resistors 21 and 22 are connected to the nodes N1 and N2, respectively.
  • the source terminals (first conduction terminals) of the transistors 17 and 18 are connected to the second terminals of the resistors 21 and 22, respectively.
  • the first conduction terminals of the transistors 17 and 18 are connected to the nodes N1 and N2 via the resistors 21 and 22, respectively.
  • a semiconductor layer (including an intrinsic semiconductor and a conductor region) of a transistor ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and a metal layer are used. It is formed.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • a metal layer In order to increase the resistance value of the resistors 21 and 22, it is preferable to form the resistors 21 and 22 by using the conductor region of the semiconductor layer of the transistor.
  • the material is an intrinsic semiconductor, as shown in FIG. 11, a depletion-type and P-channel type in which a gate terminal (control terminal) and a source terminal (conduction terminal connected to the node N1) are short-circuited. It is preferable to use the transistor 23 as the resistors 21 and 22.
  • the transistors 17 and 18 do not affect the operation of the unit circuit 20. Therefore, in the power-on state, the unit circuit 20 performs the same operation as the unit circuit 90 shown in FIG.
  • the shift register according to the present embodiment operates according to the timing chart shown in FIG. 5, similarly to the shift register 1 according to the first embodiment.
  • FIG. 12 is a diagram for explaining a method of initializing the internal node of the unit circuit 20.
  • a method of initializing the voltage of the node N1 using the transistor 17 will be described.
  • the node connected to the second terminal of the resistor 21 and the source terminal of the transistor 17 is referred to as N11, and the voltage of the node N11 is referred to as Vn11.
  • the transistor 17 When the ground voltage GND is applied to the node N1 in the power-on state (FIG. 12(a)), the transistor 17 is turned off and the voltage of the node N1 becomes the ground voltage. At this time, the logic level (low level) corresponding to the voltage of the node N1 is the same as the logic level corresponding to the voltage applied to the node N1 using the transistor Q22. Therefore, at this time, the transistor 17 does not affect the operation of the unit circuit 10.
  • the transistor 17 repeats on and off.
  • the transistor 17 is turned on while Vn11 ⁇ VGH ⁇ Vthp, and turned off while Vn11 ⁇ VGH ⁇ Vthp.
  • the voltage Vn11 fluctuates, but the voltage of the node N1 is substantially equal to the high-level power supply voltage VGH.
  • the logic level (high level) corresponding to the voltage of the node N1 is the same as the logic level corresponding to the voltage applied to the node N1 using the transistor Q21. Therefore, the clocked inverter 14 provided next to the node N1 performs the same operation as when the transistor 17 is not provided. Therefore, the transistor 17 does not affect the operation of the unit circuit 10 even when the high level power supply voltage VGH is applied to the node N1.
  • the absolute value of the threshold voltage of the transistor 17 is preferably 0 V or more and 1 V or less.
  • the voltage of the node N1 is initialized to the ground voltage GND when the power is turned off by the action of the transistor 17.
  • the voltage of the node N2 is initialized to the ground voltage GND by the action of the transistor 18 when the power is off.
  • the unit circuit 20 has the first conduction terminal (source terminal) connected to the internal nodes (nodes N1 and N2) via the resistors (resistors 21 and 22). , A depletion type P-channel type initialization transistor (transistors 17, 18) having a second conduction terminal (drain terminal) and a control terminal (gate terminal). According to the shift register according to the present embodiment, by providing the resistor, it is possible to easily initialize the internal node of the unit circuit 20 when the power is off while suppressing the change in the voltage of the internal node in the power on state. ..
  • the shift register according to the third embodiment has the same configuration as the shift register 1 according to the first embodiment and is used in the same manner as the shift register 1 (see FIGS. 1 and 2).
  • the differences from the first embodiment will be described.
  • FIG. 13 is a circuit diagram of a unit circuit of the shift register according to this embodiment.
  • the unit circuit 30 shown in FIG. 13 includes four clocked inverters 11, 13, 14, 16, two inverters 12, 15, and two transistors 31, 32.
  • the unit circuit 30 is obtained by adding transistors 31 and 32 to the unit circuit 90 shown in FIG.
  • the transistors 31 and 32 are depletion type and N channel type transistors, and function as initialization transistors.
  • the source terminals (first conduction terminals) of the transistors 31 and 32 are connected to the nodes N1 and N2, respectively.
  • the high-level power supply voltage VGH is applied to the drain terminals (second conduction terminals) of the transistors 31 and 32.
  • the ground voltage GND is applied to the gate terminals (control terminals) of the transistors 31 and 32.
  • the first conduction terminals of the transistors 31 and 32 are directly connected to the nodes N1 and N2, respectively.
  • the transistors 31 and 32 do not affect the operation of the unit circuit 30. Therefore, in the power-on state, the unit circuit 30 performs the same operation as the unit circuit 90 shown in FIG.
  • the shift register according to the present embodiment operates according to the timing chart shown in FIG. 5, similarly to the shift register 1 according to the first embodiment.
  • FIG. 14 is a characteristic diagram of a depletion type and N channel type transistor. As shown in FIG. 14, in the depletion type transistor, the drain current flows when the gate-source voltage is 0V.
  • the transistors 31 and 32 included in the unit circuit 30 have the characteristics shown in FIG.
  • FIG. 15 is a diagram for explaining a method of initializing the internal node of the unit circuit 30.
  • a method of initializing the voltage of the node N1 using the transistor 31 will be described.
  • FIG. 15A shows a state in which the transistor Q21 (FIG. 3) is turned on in the power-on state and the high-level power supply voltage VGH is applied to the node N1.
  • FIG. 15B shows a state in which the transistor Q22 (FIG. 3) is turned on in the power-on state and the ground voltage GND is applied to the node N1.
  • FIG. 15C shows a power-off state. In the power-on state, the high level power supply voltage VGH is applied to the drain terminal (second conduction terminal) of the transistor 31. In the power-off state, the voltage of the drain terminal of the transistor 31 becomes the ground voltage GND.
  • the transistor 31 When the high-level power supply voltage VGH is applied to the node N1 in the power-on state (FIG. 15(a)), the transistor 31 is turned off, and the voltage of the node N1 becomes the high-level power supply voltage VGH. At this time, the logic level (high level) corresponding to the voltage of the node N1 is the same as the logic level corresponding to the voltage applied to the node N1 using the transistor Q21. Therefore, at this time, the transistor 31 does not affect the operation of the unit circuit 30.
  • the former is the third case
  • the latter is the fourth case. That.
  • the transistor 31 In the third case, even after the voltage of the node N1 becomes Vb, the transistor 31 remains in the ON state, and the current passing through the transistor 31 continues to flow. Therefore, in the third case, the voltage of the node N1 does not change from Vb.
  • the fourth case when the voltage of the node N1 becomes the voltage Vbb exceeding -Vthn, the transistor 31 is turned off, and the voltage of the node N1 becomes the ground voltage GND again.
  • the transistor 31 is turned on again, and the voltage of the node N1 becomes Vbb again. After that, the same situation occurs repeatedly. Therefore, in the fourth case, the transistor 31 is repeatedly turned on and off, and the voltage of the node N1 alternately becomes Vbb and GND.
  • the logic level corresponding to the voltage Vb of the node N1 is the logic level corresponding to the voltage applied to the node N1 using the transistor Q22 (low level corresponding to the ground voltage GND). Level). Therefore, the clocked inverter 14 provided at the next stage of the node N1 performs the same operation as when the transistor 31 is not provided. Therefore, the transistor 31 does not affect the operation of the unit circuit 30 even when the ground voltage GND is applied to the node N1.
  • the voltage of the drain terminal (second conduction terminal) of the transistor 31 is the high-level power supply voltage.
  • the voltage VGH drops to the ground voltage GND.
  • this voltage becomes lower than a predetermined level, the transistor 31 turns on and a current flows through the transistor 31. Therefore, the voltage of the node N1 becomes the ground voltage GND.
  • the voltage of the node N1 is initialized to the ground voltage GND when the power is turned off by the action of the transistor 31.
  • the voltage of the node N2 is initialized to the ground voltage GND by the action of the transistor 32 when the power is off.
  • the unit circuit 30 includes the first conduction terminal (source terminal) and the second conduction terminal (drain terminal) that are directly connected to the internal nodes (nodes N1 and N2). , And depletion type and N-channel type initialization transistors (transistors 31 and 32) having control terminals (gate terminals).
  • the power supply voltage high level power supply voltage VGH
  • VGH high level power supply voltage
  • GND ground voltage
  • the initialization transistor is turned on when the power is off. Therefore, the shift register according to the present embodiment can easily initialize the internal node of the unit circuit 30 when the power is off.
  • the logic level corresponding to the voltage of the internal node is the same as the logic level corresponding to the voltage applied to the internal node using the control transistors (Q21, Q22, Q51, Q52). Therefore, in the power-on state, the initialization transistor does not affect the operation of the unit circuit 30.
  • the shift register according to the fourth embodiment has the same configuration as the shift register 1 according to the first embodiment and is used in the same manner as the shift register 1 (see FIGS. 1 and 2). Hereinafter, the differences from the first embodiment will be described.
  • FIG. 16 is a circuit diagram of a unit circuit of the shift register according to this embodiment.
  • the unit circuit 40 shown in FIG. 16 includes four clocked inverters 11, 13, 14, 16, two inverters 12, 15, two transistors 31, 32, and two resistors 41, 42. I'm out.
  • the unit circuit 40 is obtained by adding transistors 31, 32 and resistors 41, 42 to the unit circuit 90 shown in FIG.
  • the lower terminals of the resistors 41 and 42 are called the first terminal, and the upper terminals are called the second terminal.
  • the first terminals of the resistors 41 and 42 are connected to the nodes N1 and N2, respectively.
  • the source terminals (first conduction terminals) of the transistors 31 and 32 are connected to the second terminals of the resistors 41 and 42, respectively.
  • the first conduction terminals of the transistors 31 and 32 are connected to the nodes N1 and N2 via the resistors 41 and 42, respectively.
  • the resistors 41 and 42 are formed by the same method as the resistors 21 and 22 according to the second embodiment. In order to form the resistors 41 and 42 large, it is preferable that the resistance values of the resistors 41 and 42 be formed using the conductor region of the semiconductor layer of the transistor. In particular, when the material is an intrinsic semiconductor, as shown in FIG. 17, a depletion-type and N-channel type in which a gate terminal (control terminal) and a source terminal (conduction terminal connected to the node N1) are short-circuited It is preferable to use the transistor 43 as the resistors 41 and 42.
  • the transistors 31 and 32 do not affect the operation of the unit circuit 40. Therefore, in the power-on state, the unit circuit 40 performs the same operation as the unit circuit 90 shown in FIG.
  • the shift register according to the present embodiment operates according to the timing chart shown in FIG. 5, similarly to the shift register 1 according to the first embodiment.
  • FIG. 18 is a diagram for explaining a method of initializing the internal node of the unit circuit 40.
  • a method of initializing the voltage of the node N1 using the transistor 31 will be described.
  • the node connected to the second terminal of the resistor 41 and the source terminal of the transistor 31 is referred to as N12
  • the voltage of the node N12 is referred to as Vn12.
  • the transistor 31 When the high level power supply voltage VGH is applied to the node N1 in the power-on state (FIG. 18(a)), the transistor 31 is turned off and the voltage of the node N1 becomes the high level power supply voltage VGH. At this time, the logic level (high level) corresponding to the voltage of the node N1 is the same as the logic level corresponding to the voltage applied to the node N1 using the transistor Q21. Therefore, at this time, the transistor 31 does not affect the operation of the unit circuit 40.
  • the transistor 31 repeats on and off.
  • the transistor 31 is turned on while Vn12 ⁇ Vthn, and turned off while Vn12> ⁇ Vthn.
  • the voltage Vn12 fluctuates, but the voltage of the node N1 is substantially equal to the ground voltage GND.
  • the logic level (low level) corresponding to the voltage of the node N1 is the same as the logic level corresponding to the voltage applied to the node N1 using the transistor Q22. Therefore, the clocked inverter 14 provided at the next stage of the node N1 performs the same operation as when the transistor 31 is not provided.
  • the transistor 31 does not affect the operation of the unit circuit 10 even when the ground voltage GND is applied to the node N1.
  • the absolute value of the threshold voltage of the transistor 31 is preferably 0 V or more and 1 V or less.
  • the voltage of the drain terminal (second conduction terminal) of the transistor 31 is the high-level power supply voltage.
  • the voltage VGH drops to the ground voltage GND.
  • this voltage becomes lower than a predetermined level, the transistor 31 turns on and a current flows through the transistor 31. Therefore, the voltage of the node N1 becomes the ground voltage GND.
  • the voltage of the node N1 is initialized to the ground voltage GND when the power is turned off by the action of the transistor 31.
  • the voltage of the node N2 is initialized to the ground voltage GND by the action of the transistor 32 when the power is off.
  • the unit circuit 40 has the first conduction terminal (source terminal) connected to the internal nodes (nodes N1 and N2) via the resistors (resistances 41 and 42). , A depletion type N-channel type initialization transistor (transistors 31, 32) having a second conduction terminal (drain terminal) and a control terminal (gate terminal). According to the shift register according to the present embodiment, by providing the resistor, it is possible to easily initialize the internal node of the unit circuit 40 when the power is turned off while suppressing the change in the voltage of the internal node in the power-on state. ..
  • the unit circuits 10, 20, 30, 40 of the shift register In the unit circuits 10, 20, 30, 40 of the shift register according to the first to fourth embodiments, two P-channel type transistors are connected in reverse order and two N-channel type transistors are connected in reverse order.
  • the clocked inverter may be included.
  • the unit circuits 10, 20, 30, 40 may include the clocked inverter 19 shown in FIG. 19 instead of the clocked inverter 11.
  • the transistors Q11 and Q12 are connected in reverse order, and the transistors Q13 and Q14 are connected in reverse order.
  • the unit circuit may include one initialization transistor.
  • the plurality of control transistors may be P-channel transistors or N-channel transistors, and the conductivity type of the initialization transistor may be the same as the conductivity type of the control transistor. ..
  • the above-described effect can be obtained for the shift register configured using only the P-channel type transistor or the N-channel type transistor.
  • an organic EL panel including a pixel circuit including an organic EL element has been used as an example of a display device having a shift register having a configuration in which a plurality of unit circuits including depletion type initialization transistors are connected in multiple stages.
  • a liquid crystal display device having a liquid crystal panel having a pixel circuit including a liquid crystal element and an inorganic EL display device having a display panel including a pixel circuit including an inorganic light emitting diode are described in the same manner.
  • a QLED (Quantum-dot Light Emitting Diode) display device including a display panel including a pixel circuit including a quantum dot light emitting diode may be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

表示装置の走査線駆動回路として、複数の単位回路を多段接続した構成を有するシフトレジスタを使用する。単位回路は、複数の制御トランジスタと、制御トランジスタの端子に接続された内部ノードと、内部ノードに直接または抵抗を介して接続された第1導通端子、第2導通端子、および、制御端子を有するデプレッション型の初期化トランジスタとを含む。第2導通端子に電源電圧およびグランド電圧の一方を印加し、制御端子に他方の電圧を印加する。初期化トランジスタは、電源オフ状態ではオンする。

Description

シフトレジスタ、表示装置、および、シフトレジスタの制御方法
 本発明は、複数の単位回路を多段接続した構成を有するシフトレジスタ、および、これを備えた表示装置に関する。
 有機エレクトロルミネッセンス(Electro Luminescence:以下、ELという)表示装置は、薄型、軽量、高画質の表示装置として広く利用されている。典型的な有機EL表示装置は、有機ELパネル、走査線駆動回路、データ線駆動回路、および、発光制御線駆動回路を備えている。走査線駆動回路と発光制御線駆動回路には、複数の単位回路を多段接続した構成を有するシフトレジスタが使用される。
 シフトレジスタの単位回路については、従来から各種の回路が知られている。図20は、セミスタテッィク型の単位回路の回路図である。図20に示す単位回路90は、4個のクロックドインバータと2個のインバータを含んでいる。複数の単位回路90を多段接続することにより、有機EL表示装置の走査線駆動回路と発光制御線駆動回路として使用されるシフトレジスタを構成することができる。
 本願発明に関連して、特許文献1には、RSラッチを確実にリセット状態で立ち上げるために、出力にデプレッション型MIS(Metal Insulator Semiconductor )トランジスタをプルダウン素子として接続したラッチ回路が記載されている。
日本国特開2003-332892号公報
 表示装置に含まれるシフトレジスタについては、表示装置が動作を開始する前に、単位回路の内部ノードを初期化することが好ましい。その理由は、内部ノードを初期化せずに表示装置が動作を開始した場合、走査線駆動回路や発光制御線駆動回路が誤動作し、画像を正常に表示できないことがあるからである。例えば、図20に示す単位回路90では、ノードN1、N2を初期化するか、ノードN3、N4を初期化することが好ましい。
 従来のシフトレジスタでは、単位回路の内部ノードを初期化するために、初期化用配線が設けられ(後述する図8および図9を参照)、電源投入後、表示装置が動作を開始する前に初期化用配線に初期化電圧が印加される。このため、従来のシフトレジスタには、初期化信号の入力端子を表示パネルに設ける必要がある、初期化用配線の分だけ表示パネルのサイズが大きくなる、電源投入後に所定の時間をかけて初期化を行う必要があるという問題がある。
 それ故に、単位回路の内部ノードを容易に初期化できるシフトレジスタ、および、これを備えた表示装置を提供することが課題として挙げられる。
 上記の課題は、例えば、複数の単位回路を多段接続した構成を有するシフトレジスタであって、単位回路は、複数の制御トランジスタと、制御トランジスタの端子に接続された内部ノードと、内部ノードに直接または抵抗を介して接続された第1導通端子、第2導通端子、および、制御端子を有するデプレッション型の初期化トランジスタとを含み、第2導通端子には電源電圧およびグランド電圧の一方が印加され、制御端子には電源電圧およびグランド電圧の他方が印加され、初期化トランジスタは、電源オフ状態ではオンするシフトレジスタによって解決することができる。
 上記の課題は、複数の走査線と、複数のデータ線と、複数の画素回路とを含む表示パネルと、走査線を駆動する走査線駆動回路と、データ線を駆動するデータ線駆動回路と、上記のシフトレジスタとを備えた表示装置によっても解決することができる。
 上記の課題は、複数の単位回路を多段接続した構成を有するシフトレジスタの制御方法であって、単位回路が、複数の制御トランジスタと、制御トランジスタの端子に接続された内部ノードと、内部ノードに直接または抵抗を介して接続された第1導通端子、第2導通端子、および、制御端子を有するデプレッション型の初期化トランジスタとを含む場合に、第2導通端子に電源電圧およびグランド電圧の一方を印加し、制御端子に電源電圧およびグランド電圧の他方を印加して、シフトレジスタを動作させるステップと、電源電圧の供給を停止して、初期化トランジスタをオン状態にするステップとを備えたシフトレジスタの制御方法によっても解決することができる。
 上記のシフトレジスタ、表示装置、および、シフトレジスタの制御方法によれば、電源オフ状態では、初期化トランジスタはオンするので、初期化トランジスタの作用によって内部ノードにグランド電圧が与えられる。したがって、初期化信号を用いることなく、電源オフ時にシフトレジスタの単位回路の内部ノードを容易に初期化することができる。
第1の実施形態に係るシフトレジスタの構成を示すブロック図である。 図1に示すシフトレジスタを含む有機EL表示装置の構成を示すブロック図である。 図1に示すシフトレジスタの単位回路の回路図である。 図3に示す単位回路の動作を説明するための図である。 図1に示すシフトレジスタのタイミングチャートである。 デプレッション型かつPチャネル型のトランジスタの特性図である。 図3に示す単位回路の内部ノードの初期化方法を説明するための図である。 第1比較例に係るシフトレジスタの単位回路の回路図である。 第2比較例に係るシフトレジスタの単位回路の回路図である。 第2の実施形態に係るシフトレジスタの単位回路の回路図である。 図10に示す単位回路に含まれる抵抗の構成例を示す図である。 図10に示す単位回路の内部ノードの初期化方法を説明するための図である。 第3の実施形態に係るシフトレジスタの単位回路の回路図である。 デプレッション型かつNチャネル型のトランジスタの特性図である。 図13に示す単位回路の内部ノードの初期化方法を説明するための図である。 第4の実施形態に係るシフトレジスタの単位回路の回路図である。 図16に示す単位回路に含まれる抵抗の構成例を示す図である。 図16に示す単位回路の内部ノードの初期化方法を説明するための図である。 単位回路に含まれるクロックドインバータの他の例を示す回路図である。 従来のシフトレジスタの単位回路の回路図である。
 以下、図面を参照して、各実施形態に係るシフトレジスタ、および、これを備えた表示装置について説明する。以下の説明では、ある端子経由で入力または出力される信号をその端子と同じ名前で呼ぶ。例えば、クロック端子CK経由で入力される信号をクロック信号CKという。mおよびnは2以上の整数、iは1以上m以下の整数、jは1以上n以下の整数であるとする。図面に記載された文字列SRiは、シフトレジスタのi段目の単位回路を示す。
 (第1の実施形態)
 図1は、第1の実施形態に係るシフトレジスタの構成を示すブロック図である。図1に示すシフトレジスタ1は、m個の単位回路10を多段接続した構成を有する。単位回路10は、クロック端子CK、CKB、入力端子IN、および、出力端子OUTを有する。
 シフトレジスタ1には、外部からクロック信号CK1、CK2とスタート信号SPが供給される。クロック信号CK2は、クロック信号CK1の否定信号である。クロック信号CK1は、各段の単位回路10のクロック端子CKに与えられる。クロック信号CK2は、各段の単位回路10のクロック端子CKBに与えられる。スタート信号SPは、1段目の単位回路10の入力端子INに与えられる。2~m段目の単位回路10の入力端子INには、それぞれ、1~(m-1)段目の単位回路10の出力信号OUTが与えられる。i段目の単位回路10の出力信号OUTは、シフトレジスタ1のi番目の出力信号Giとして外部に出力される。
 図2は、シフトレジスタ1を含む有機EL表示装置の構成を示すブロック図である。図2に示す有機EL表示装置50は、有機ELパネル51、表示制御回路52、走査線駆動回路53、データ線駆動回路54、および、発光制御線駆動回路55を含んでいる。有機ELパネル51は、m本の走査線G1~Gm、n本のデータ線S1~Sn、m本の発光制御線E1~Em、および、(m×n)個の画素回路56を含んでいる。走査線G1~Gmは、互いに平行に配置される。データ線S1~Snは、互いに平行に走査線G1~Gmと直交するように配置される。発光制御線E1~Emは、走査線G1~Gmと平行に配置される。走査線G1~Gmとデータ線S1~Snは、(m×n)箇所で交差する。(m×n)個の画素回路56は、それぞれ、走査線G1~Gmとデータ線S1~Snの交点に対応して配置される。画素回路56は、有機EL素子57を含んでいる。有機EL素子57は、電流に応じた輝度で発光する電気光学素子として機能する。i行j列目の画素回路56は、走査線Gi、データ線Sj、および、発光制御線Eiに接続される。
 表示制御回路52は、走査線駆動回路53に対して制御信号C1を出力し、データ線駆動回路54に対して制御信号C2と映像信号V1を出力し、発光制御線駆動回路55に対して制御信号C3を出力する。走査線駆動回路53は、制御信号C1に基づき、走査線G1~Gmを駆動する。データ線駆動回路54は、制御信号C2と映像信号V1に基づき、データ線S1~Snを駆動する。発光制御線駆動回路55は、制御信号C3に基づき、発光制御線E1~Emを駆動する。
 より詳細には、走査線駆動回路53は、制御信号C1に基づき走査線G1~Gmの中から1本の走査線を順に選択し、選択された走査線に選択電圧(例えば、ハイレベル電圧)を印加し、残余の走査線に非選択電圧(例えば、ローレベル電圧)を印加する。これにより、選択された走査線に接続されたn個の画素回路56が一括して選択される。データ線駆動回路54は、制御信号C2に基づき、映像信号V1に応じたn個の電圧をデータ線S1~Snにそれぞれ印加する。これにより、選択されたn個の画素回路56にn個の電圧がそれぞれ書き込まれる。有機EL素子57には画素回路56に書き込まれた電圧に応じた電流が流れ、有機EL素子57は流れる電流に応じた輝度で発光する。
 有機EL表示装置50では、画素回路56の行ごとに有機EL素子57の発光期間が設定される。発光制御線駆動回路55は、i番目の発光制御線Eiに対して、i行目の画素回路56の発光期間では発光電圧(例えば、ハイレベル電圧)を印加し、それ以外の期間では非発光電圧(例えば、ローレベル電圧)を印加する。走査線駆動回路53には、図1に示すシフトレジスタ1が用いられる。発光制御線駆動回路55には、シフトレジスタ1と同様の構成を有するシフトレジスタが用いられる。
 図3は、単位回路10の回路図である。図3に示す単位回路10は、4個のクロックドインバータ11、13、14、16、2個のインバータ12、15、および、2個のトランジスタ17、18を含んでいる。単位回路10は、図20に示す単位回路90にトランジスタ17、18を追加したものである。トランジスタ17、18は、デプレッション型かつPチャネル型のトランジスタであり、初期化トランジスタとして機能する。例えば、ハイレベル電源電圧VGHは10Vであり、ローレベル電源電圧はグランド電圧GND(0V)である。
 単位回路10に含まれるPチャネル型のトランジスタ(トランジスタ17、18を含む)は、例えば、LTPS(Low Temperature Polycrystalline Silicon :低温ポリシリコン)などを用いて形成される。単位回路10に含まれるNチャネル型のトランジスタは、例えば、LTPS、酸化物半導体などを用いて形成される。酸化物半導体には、例えば、IGZO(Indium Gallium Zinc Oxide)を用いることができる。
 クロックドインバータ11は、直列に接続された2個のPチャネル型トランジスタQ11、Q12と2個のNチャネル型トランジスタQ13、Q14とを含んでいる。トランジスタQ11のソース端子には、ハイレベル電源電圧VGHが印加される。トランジスタQ11のドレイン端子は、トランジスタQ12のソース端子に接続される。トランジスタQ12のドレイン端子は、トランジスタQ13のドレイン端子に接続される。トランジスタQ13のソース端子は、トランジスタQ14のドレイン端子に接続される。トランジスタQ14のドレイン端子には、グランド電圧GNDが印加される。トランジスタQ11、Q14のゲート端子には、それぞれ、クロック信号CKB、CKが与えられる。トランジスタQ12、Q13のゲート端子は、クロックドインバータ11の入力端子に接続される。トランジスタQ12、Q13のドレイン端子は、クロックドインバータ11の出力端子に接続される。
 インバータ12は、直列に接続されたPチャネル型トランジスタQ21とNチャネル型トランジスタQ22とを含んでいる。トランジスタQ21のソース端子には、ハイレベル電源電圧VGHが印加される。トランジスタQ21のドレイン端子は、トランジスタQ22のドレイン端子に接続される。トランジスタQ22のソース端子には、グランド電圧GNDが印加される。トランジスタQ21、Q22のゲート端子は、インバータ12の入力端子に接続される。トランジスタQ21、Q22のドレイン端子は、インバータ12の出力端子に接続される。
 クロックドインバータ13は、クロックドインバータ11と同様の構成を有する。ただし、クロックドインバータ13に含まれるトランジスタQ31、Q34のゲート端子には、それぞれ、クロック信号CK、CKBが与えられる。クロックドインバータ14、16は、それぞれ、クロックドインバータ13、11と同じ構成を有する。インバータ15は、インバータ12と同じ構成を有する。クロックドインバータ11、13、14、16、および、インバータ12、15に含まれるトランジスタは、制御トランジスタとして機能する。
 インバータ12、15は、入力信号がハイレベルのときにはローレベルの信号を出力し、入力信号がローレベルのときにはハイレベルの信号を出力する。クロックドインバータ11、16は、クロック信号CKがハイレベルのときにはインバータとして機能する。クロック信号CKがローレベルのときには、クロックドインバータ11、16の出力はハイインピーダンス状態になる。クロックドインバータ13、14は、クロック信号CKがローレベルのときにはインバータとして機能する。クロック信号CKがハイレベルのときには、クロックドインバータ13、14の出力はハイインピーダンス状態になる。
 クロックドインバータ11の入力端子は、単位回路10の入力端子INに接続される。クロックドインバータ11、13の出力端子は、インバータ12の入力端子に接続される。インバータ12の出力端子は、クロックドインバータ13、14の入力端子に接続される。クロックドインバータ14、16の出力端子は、インバータ15の入力端子に接続される。インバータ15の出力端子は、クロックドインバータ16の入力端子と単位回路10の出力端子OUTに接続される。
 以下、インバータ12、15の出力端子に接続されたノードを、それぞれ、N1、N2という。トランジスタ17、18のソース端子(第1導通端子)は、それぞれ、ノードN1、N2に接続される。トランジスタ17、18のドレイン端子(第2導通端子)には、グランド電圧GNDが印加される。トランジスタ17、18のゲート端子(制御端子)には、ハイレベル電源電圧VGHが印加される。単位回路10では、トランジスタ17、18の第1導通端子は、それぞれ、ノードN1、N2に直接接続される。後述するように、電源オン状態では、トランジスタ17、18は単位回路10の動作に影響を与えない。したがって、電源オン状態では、単位回路10は図20に示す単位回路90と同じ動作を行う。
 図4を参照して、電源オン状態における単位回路10の動作を説明する。図4に破線で記載した素子の出力は、ハイインピーダンス状態である。以下に示すように、単位回路10は、クロック信号CKがローレベルからハイレベルに変化するときに、入力信号INをノードN1に保持する。クロック信号CKがハイレベルからローレベルに変化するときに、出力信号OUTはノードN1に保持された信号に等しくなる。
 クロック信号CKがハイレベルのとき(図4(a))には、クロックドインバータ11、16はインバータとして機能し、クロックドインバータ13、14の出力はハイインピーダンス状態になる。このとき、入力信号INはノードN1に与えられ、インバータ15の入力信号の否定信号(ノードN1に保持された信号に等しい)が出力信号OUTとして出力される。クロック信号CKがハイレベルである間に入力信号INが変化しても、出力信号OUTは変化しない。
 クロック信号CKがローレベルのとき(図4(b))には、クロックドインバータ13、14はインバータとして機能し、クロックドインバータ11、16の出力はハイインピーダンス状態になる。このとき、入力信号INはノードN1に与えられず、クロックドインバータ14の入力信号(ノードN1に保持された信号)が出力信号OUTとして出力される。クロック信号CKがローレベルである間に入力信号INが変化しても、ノードN1に保持された信号は変化せず、出力信号OUTも変化しない。
 図5は、シフトレジスタ1のタイミングチャートである。図5において、N1_iは、i段目の単位回路10内のノードN1の電圧を示す。スタート信号SPは、クロック信号CK1の1周期分だけハイレベルになる。スタート信号SPがハイレベルに変化した後、時刻t11においてクロック信号CK1がハイレベルに変化すると、1段目の単位回路10のノードN1の電圧N1_1はハイレベルに変化する。次に、時刻t12においてクロック信号CK1がローレベルに変化すると、1段目の単位回路10の出力信号G1はハイレベルに変化する。次に、時刻t13においてクロック信号CK1がハイレベルに変化すると、1段目の単位回路10のノードN1の電圧N1_1はローレベルに変化し、2段目の単位回路10のノードN1の電圧N1_2はハイレベルに変化する。次に、時刻t14においてクロック信号CK1がローレベルに変化すると、1段目の単位回路10の出力信号G1はローレベルに変化し、2段目の単位回路10の出力信号G2はハイレベルに変化する。時刻t14以降、シフトレジスタ1は同様に動作する。
 1段目の単位回路10の出力信号G1は、スタート信号SPがハイレベルになった後、クロック信号CK1の1周期分だけハイレベルになる。2段目の単位回路10の出力信号G2は、1段目の単位回路10の出力信号G1よりもクロック信号CK1の1周期分だけ遅れて、クロック信号CK1の1周期分だけハイレベルになる。同様に、i段目の単位回路10の出力信号Giは、(i-1)段目の単位回路10の出力信号Gi-1よりもクロック信号CK1の1周期分だけ遅れて、クロック信号CK1の1周期分だけハイレベルになる。単位回路10の出力信号G1~Gmは、昇順にクロック信号CK1の1周期ずつハイレベルになる。
 図6は、デプレッション型かつPチャネル型のトランジスタの特性図である。図6に示すように、デプレッション型トランジスタでは、ゲート-ソース間電圧が0Vのときにドレイン電流が流れる。単位回路10に含まれるトランジスタ17、18は、図6に示す特性を有する。
 図7は、単位回路10の内部ノードの初期化方法を説明するための図である。ここでは、トランジスタ17を用いてノードN1の電圧を初期化する方法を説明する。図7(a)は、電源オン状態においてトランジスタQ22(図3)がオンし、ノードN1にグランド電圧GNDが印加されているときの状態を示す。図7(b)は、電源オン状態においてトランジスタQ21(図3)がオンし、ノードN1にハイレベル電源電圧VGHが印加されているときの状態を示す。図7(c)は、電源オフ状態を示す。電源オン状態では、トランジスタ17のゲート端子には、ハイレベル電源電圧VGHが印加される。電源オフ状態では、トランジスタ17のゲート端子の電圧は、グランド電圧GNDになる。
 電源オン状態でノードN1にグランド電圧GNDが印加されているとき(図7(a))には、トランジスタ17はオフし、ノードN1の電圧はグランド電圧になる。このときノードN1の電圧に対応する論理レベル(ローレベル)は、トランジスタQ22を用いてノードN1に印加されている電圧に対応する論理レベルと同じである。したがって、このときトランジスタ17は単位回路10の動作に影響を与えない。
 電源オン状態でノードN1にハイレベル電源電圧VGHが印加されているとき(図7(b))を考える。このときにトランジスタ17がオフ状態であるとすると、ノードN1とグランドの間にトランジスタ17を経由する電流は流れないので、ノードN1の電圧はハイレベル電源電圧VGHになる。デプレッション型のトランジスタ17のゲート-ソース間電圧が0Vになるので、トランジスタ17はオンし、トランジスタ17を経由する電流が流れる。このときノードN1の電圧は、トランジスタQ21のオン抵抗とトランジスタ17のオン抵抗との比に応じた電圧(以下、Vaという)になる。単位回路10は、電圧Vaに対応する論理レベルがハイレベルであるように設計される。このため、単位回路10は、例えば、トランジスタ17のオン抵抗がトランジスタQ21のオン抵抗よりも十分に大きくなるように設計される。
 トランジスタ17の閾値電圧をVthp(>0)としたとき、Va≧VGH-Vthpである場合と、Va<VGH-Vthpである場合とがある(以下、前者を第1の場合、後者を第2の場合という)。第1の場合には、ノードN1の電圧がVaになった後も、トランジスタ17はオン状態を保ち、トランジスタ17を経由する電流が流れ続ける。したがって、第1の場合には、ノードN1の電圧はVaから変化しない。第2の場合には、ノードN1の電圧が(VGH-Vthp)を下回る電圧Vaaになると、トランジスタ17はオフし、ノードN1の電圧は再びハイレベル電源電圧VGHになる。このため、トランジスタ17は再びオンし、ノードN1の電圧は再びVaaになる。これ以降も、同じ状況が繰り返し発生する。したがって、第2の場合には、トランジスタ17はオンとオフを繰り返し、ノードN1の電圧は交互にVaaとVGHになる。
 第1の場合でも、第2の場合でも、ノードN1の電圧Vaに対応する論理レベルは、トランジスタQ21を用いてノードN1に印加されている電圧に対応する論理レベル(ハイレベル電源電圧VGHに対応するハイレベル)と同じである。このため、ノードN1の次段に設けられたクロックドインバータ14は、トランジスタ17が設けられていないときと同じ動作を行う。したがって、ノードN1にハイレベル電源電圧VGHが印加されているときにも、トランジスタ17は単位回路10の動作に影響を与えない。
 ハイレベル電源電圧VGHの供給を停止して、電源オン状態から電源オフ状態(図7(c))に遷移するときに、トランジスタ17のゲート端子の電圧はハイレベル電源電圧VGHからグランド電圧GNDに低下する。この電圧が所定レベルよりも低くなると、トランジスタ17はオンし、トランジスタ17を経由する電流が流れる。したがって、ノードN1の電圧はグランド電圧GNDになる。
 このようにノードN1の電圧は、トランジスタ17の作用によって電源オフ時にグランド電圧GNDに初期化される。同様に、ノードN2の電圧は、トランジスタ18の作用によって電源オフ時にグランド電圧GNDに初期化される。
 図8は、第1比較例に係るシフトレジスタの単位回路の回路図である。図8に示す単位回路91は、図20に示す単位回路90にエンハンスメント型かつPチャネル型のトランジスタ92、93を追加したものである。トランジスタ92、93のドレイン端子は、それぞれ、インバータ12、15の入力端子に接続されたノードN3、N4に接続される。トランジスタ92、93のソース端子には、ハイレベル電源電圧VGHが印加される。トランジスタ92、93のゲート端子には、初期化信号INITBが与えられる。第1比較例に係るシフトレジスタでは、初期化を行うときに初期化信号INITBをローレベルに制御する。このとき、トランジスタ92、93はオンし、ノードN3、N4の電圧はハイレベル電源電圧VGHに初期化される。
 図9は、第2比較例に係るシフトレジスタの単位回路の回路図である。図9に示す単位回路95は、図20に示す単位回路90にエンハンスメント型かつNチャネル型のトランジスタ96、97を追加したものである。トランジスタ96、97のドレイン端子は、それぞれ、ノードN1、N2に接続される。トランジスタ96、97のソース端子には、グランド電圧GNDが印加される。トランジスタ96、97のゲート端子には、初期化信号INITが与えられる。第2比較例に係るシフトレジスタでは、初期化を行うときに初期化信号INITをハイレベルに制御する。このとき、トランジスタ96、97はオンし、ノードN1、N2の電圧はグランド電圧GNDに初期化される。
 第1および第2比較例に係るシフトレジスタでは、単位回路の内部ノードを初期化するときに初期化信号が用いられる。このため、初期化信号を伝搬する初期化用配線が設けられ、電源投入後、表示装置が動作を開始する前に初期化用配線に初期化電圧が印加される。この結果、第1および第2比較例に係るシフトレジスタには、初期化信号の入力端子を有機ELパネルに設ける必要がある、初期化用配線の分だけ有機ELパネルのサイズが大きくなる、電源投入後に所定の時間をかけて初期化を行う必要があるという問題がある。
 これに対して、本実施形態に係るシフトレジスタ1では、電源オン状態では、ノードN1の電圧に対応する論理レベルは、トランジスタQ21またはQ22を用いてノードN1に印加されている電圧に対応する論理レベルと同じである。また、電源オン状態では、ノードN2の電圧に対応する論理レベルは、トランジスタQ51またはQ52を用いてノードN2に印加されている電圧に対応する論理レベルと同じである。このため、トランジスタ17、18は単位回路10の動作に影響を与えない。電源オフ状態では、トランジスタ17、18はオンするので、トランジスタ17、18の作用によってノードN1、N2にグランド電圧GNDが与えられる。したがって、初期化信号を用いることなく、電源オフ時に単位回路10の内部ノード(ノードN1、N2)を初期化することができる。したがって、初期化信号の入力端子を有機ELパネル51に設ける必要がなく、初期化用配線の分だけ有機ELパネル51のサイズが大きくなることがなく、電源オフ時に自動的に初期化を行うことができる。よって、電源オフ時にシフトレジスタ1の単位回路10の内部ノードを容易に初期化することができる。
 以上に示すように、本実施形態に係るシフトレジスタ1は、複数の単位回路10を多段接続した構成を有する。単位回路10は、複数の制御トランジスタ(トランジスタQ11~Q14、Q21、Q22、Q31~Q34、Q41~Q44、Q51、Q52、Q61~Q64)と、制御トランジスタの端子に接続された内部ノード(ノードN1、N2)と、内部ノードに直接接続された第1導通端子(ソース端子)、第2導通端子(ドレイン端子)、および、制御端子(ゲート端子)を有するデプレッション型かつPチャネル型の初期化トランジスタ(トランジスタ17、18)とを含んでいる。初期化トランジスタの第2導通端子にはグランド電圧GNDが印加され、初期化トランジスタの制御端子には電源電圧(ハイレベル電源電圧VGH)が印加されている。初期化トランジスタは、電源オフ状態ではオンする。したがって、シフトレジスタ1によれば、電源オフ時に単位回路10の内部ノードを容易に初期化することができる。
 また、電源オン状態では、内部ノードの電圧に対応する論理レベルは、制御トランジスタ(Q21、Q22、Q51、Q52)を用いて内部ノードに印加されている電圧に対応する論理レベルと同じである。したがって、電源オン状態では初期化トランジスタは単位回路10の動作に影響を与えない。また、単位回路10は、初期化トランジスタを2個以上含んでいる。したがって、電源オフ時に単位回路10に含まれる複数の内部ノードを容易に初期化することができる。また、複数の制御トランジスタは、Pチャネル型トランジスタおよびNチャネル型トランジスタの両方を含んでいる。したがって、Pチャネル型トランジスタおよびNチャネル型トランジスタの両方を用いて構成されたシフトレジスタについて、上記の効果を奏することができる。
 上記の表示装置(有機EL表示装置50)は、複数の走査線G1~Gmと、複数のデータ線S1~Snと、複数の発光制御線E1~Emと、複数の画素回路56とを含む表示パネル(有機ELパネル51)と、走査線G1~Gmを駆動する走査線駆動回路53と、データ線S1~Snを駆動するデータ線駆動回路54と、発光制御線E1~Emを駆動する発光制御線駆動回路55とを備えている。走査線駆動回路53は、上記のシフトレジスタ1である。発光制御線駆動回路55は、上記のシフトレジスタ1と同様の構成を有する。このような表示装置によれば、電源オフ時にシフトレジスタ1の単位回路10の内部ノードを容易に初期化することにより、電源オン後の走査線駆動回路53や発光制御線駆動回路55の誤動作を防止し、電源オン後に画像を正常に表示することができる。
 また、画素回路56は、電流に応じた輝度で発光する電気光学素子(有機EL素子57)を含んでいる。表示パネルは、有機ELパネル51である。したがって、有機ELパネル51を備えた有機EL表示装置について、上記の効果を奏することができる。
 (第2の実施形態)
 第2の実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ1と同じ構成を有し、シフトレジスタ1と同様の態様で使用される(図1および図2を参照)。以下、第1の実施形態との相違点を説明する。
 図10は、本実施形態に係るシフトレジスタの単位回路の回路図である。図10に示す単位回路20は、4個のクロックドインバータ11、13、14、16、2個のインバータ12、15、2個のトランジスタ17、18、および、2個の抵抗21、22を含んでいる。単位回路20は、図20に示す単位回路90にトランジスタ17、18と抵抗21、22を追加したものである。
 以下、抵抗21、22の上側の端子を第1端子、下側の端子を第2端子という。抵抗21、22の第1端子は、それぞれ、ノードN1、N2に接続される。トランジスタ17、18のソース端子(第1導通端子)は、それぞれ、抵抗21、22の第2端子に接続される。単位回路20では、トランジスタ17、18の第1導通端子は、それぞれ、抵抗21、22を介してノードN1、N2に接続される。
 抵抗21、22は、例えば、トランジスタの半導体層(真性半導体、導体領域を含む)、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide :酸化インジウム亜鉛)、金属層などを用いて形成される。抵抗21、22の抵抗値を大きく形成するためには、抵抗21、22をトランジスタの半導体層の導体領域を用いて形成することが好ましい。特に、材料が真性半導体である場合には、図11に示すように、ゲート端子(制御端子)とソース端子(ノードN1に接続された導通端子)が短絡された、デプレッション型かつPチャネル型のトランジスタ23を抵抗21、22として用いることが好ましい。
 後述するように、電源オン状態では、トランジスタ17、18は単位回路20の動作に影響を与えない。したがって、電源オン状態では、単位回路20は図20に示す単位回路90と同じ動作を行う。本実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ1と同様に、図5に示すタイミングチャートに従い動作する。
 図12は、単位回路20の内部ノードの初期化方法を説明するための図である。ここでは、トランジスタ17を用いてノードN1の電圧を初期化する方法を説明する。以下、抵抗21の第2端子とトランジスタ17のソース端子に接続されたノードをN11といい、ノードN11の電圧をVn11とする。
 電源オン状態でノードN1にグランド電圧GNDが印加されているとき(図12(a))には、トランジスタ17はオフし、ノードN1の電圧はグランド電圧になる。このときノードN1の電圧に対応する論理レベル(ローレベル)は、トランジスタQ22を用いてノードN1に印加されている電圧に対応する論理レベルと同じである。したがって、このときトランジスタ17は単位回路10の動作に影響を与えない。
 電源オン状態でノードN1にハイレベル電源電圧VGHが印加されているとき(図12(b))を考える。このときにトランジスタ17がオフ状態であるとすると、ノードN1とグランドの間にトランジスタ17を経由する電流は流れないので、ノードN1、N11の電圧はどちらもハイレベル電源電圧VGHになる。デプレッション型のトランジスタ17のゲート-ソース間電圧が0Vになるので、トランジスタ17はオンし、トランジスタ17を経由する電流が流れる。このとき、ノードN11の電圧は、ノードN1の電圧よりも抵抗21における電圧降下分だけ低くなる。ノードN11の電圧が所定レベルよりも低くなると、トランジスタ17はオフする。このため、トランジスタ17を経由する電流は流れなくなり、ノードN1、N11の電圧はどちらも再びハイレベル電源電圧VGHになる。
 したがって、電源オン状態でノードN1にハイレベル電源電圧VGHが印加されているときには、トランジスタ17はオンとオフを繰り返す。トランジスタ17は、Vn11≧VGH-Vthpである間はオンし、Vn11<VGH-Vthpである間はオフする。このとき電圧Vn11は変動するが、ノードN1の電圧はハイレベル電源電圧VGHにほぼ等しい。このときノードN1の電圧に対応する論理レベル(ハイレベル)は、トランジスタQ21を用いてノードN1に印加されている電圧に対応する論理レベルと同じである。このため、ノードN1の次段に設けられたクロックドインバータ14は、トランジスタ17が設けられていないときと同じ動作を行う。したがって、ノードN1にハイレベル電源電圧VGHが印加されているときでも、トランジスタ17は単位回路10の動作に影響を与えない。
 ノードN1にハイレベル電源電圧VGHが印加されているときのハイレベル電源電圧とノードN1の電圧との差は、トランジスタ17の閾値電圧の絶対値が小さいほど小さくなる。このため、単位回路20では、トランジスタ17の閾値電圧の絶対値は0V以上1V以下であることが好ましい。
 ハイレベル電源電圧VGHの供給を停止して、電源オン状態から電源オフ状態(図12(c))に遷移するときに、トランジスタ17のゲート端子の電圧はハイレベル電源電圧VGHからグランド電圧GNDに低下する。この電圧が所定レベルよりも低くなると、トランジスタ17はオンし、トランジスタ17を経由する電流が流れる。したがって、ノードN1の電圧はグランド電圧GNDになる。
 このようにノードN1の電圧は、トランジスタ17の作用によって電源オフ時にグランド電圧GNDに初期化される。同様に、ノードN2の電圧は、トランジスタ18の作用によって電源オフ時にグランド電圧GNDに初期化される。
 以上に示すように、本実施形態に係るシフトレジスタでは、単位回路20は、内部ノード(ノードN1、N2)に抵抗(抵抗21、22)を介して接続された第1導通端子(ソース端子)、第2導通端子(ドレイン端子)、および、制御端子(ゲート端子)を有するデプレッション型かつPチャネル型の初期化トランジスタ(トランジスタ17、18)を含んでいる。本実施形態に係るシフトレジスタによれば、抵抗を設けることにより、電源オン状態では内部ノードの電圧の変化を抑制しながら、電源オフ時に単位回路20の内部ノードを容易に初期化することができる。
 (第3の実施形態)
 第3の実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ1と同じ構成を有し、シフトレジスタ1と同様の態様で使用される(図1および図2を参照)。以下、第1の実施形態との相違点を説明する。
 図13は、本実施形態に係るシフトレジスタの単位回路の回路図である。図13に示す単位回路30は、4個のクロックドインバータ11、13、14、16、2個のインバータ12、15、および、2個のトランジスタ31、32を含んでいる。単位回路30は、図20に示す単位回路90にトランジスタ31、32を追加したものである。
 トランジスタ31、32は、デプレッション型かつNチャネル型のトランジスタであり、初期化トランジスタとして機能する。トランジスタ31、32のソース端子(第1導通端子)は、それぞれ、ノードN1、N2に接続される。トランジスタ31、32のドレイン端子(第2導通端子)には、ハイレベル電源電圧VGHが印加される。トランジスタ31、32のゲート端子(制御端子)には、グランド電圧GNDが印加される。単位回路30では、トランジスタ31、32の第1導通端子は、それぞれ、ノードN1、N2に直接接続される。
 後述するように、電源オン状態では、トランジスタ31、32は単位回路30の動作に影響を与えない。したがって、電源オン状態では、単位回路30は図20に示す単位回路90と同じ動作を行う。本実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ1と同様に、図5に示すタイミングチャートに従い動作する。
 図14は、デプレッション型かつNチャネル型のトランジスタの特性図である。図14に示すように、デプレッション型トランジスタでは、ゲート-ソース間電圧が0Vのときにドレイン電流が流れる。単位回路30に含まれるトランジスタ31、32は、図14に示す特性を有する。
 図15は、単位回路30の内部ノードの初期化方法を説明するための図である。ここでは、トランジスタ31を用いてノードN1の電圧を初期化する方法を説明する。図15(a)は、電源オン状態においてトランジスタQ21(図3)がオンし、ノードN1にハイレベル電源電圧VGHが印加されているときの状態を示す。図15(b)は、電源オン状態においてトランジスタQ22(図3)がオンし、ノードN1にグランド電圧GNDが印加されているときの状態を示す。図15(c)は、電源オフ状態を示す。電源オン状態では、トランジスタ31のドレイン端子(第2導通端子)には、ハイレベル電源電圧VGHが印加される。電源オフ状態では、トランジスタ31のドレイン端子の電圧は、グランド電圧GNDになる。
 電源オン状態でノードN1にハイレベル電源電圧VGHが印加されているとき(図15(a))には、トランジスタ31はオフし、ノードN1の電圧はハイレベル電源電圧VGHになる。このときノードN1の電圧に対応する論理レベル(ハイレベル)は、トランジスタQ21を用いてノードN1に印加されている電圧に対応する論理レベルと同じである。したがって、このときトランジスタ31は単位回路30の動作に影響を与えない。
 電源オン状態でノードN1にグランド電圧GNDが印加されているとき(図15(b))を考える。このときにトランジスタ31がオフ状態であるとすると、ノードN1とハイレベル電源線の間にトランジスタ31を経由する電流は流れないので、ノードN1の電圧はグランド電圧GNDになる。デプレッション型のトランジスタ17のゲート-ソース間電圧が0Vになるので、トランジスタ31はオンし、トランジスタ31を経由する電流が流れる。このときノードN1の電圧は、トランジスタQ22のオン抵抗とトランジスタ31のオン抵抗との比に応じた電圧(以下、Vbという)になる。単位回路30は、電圧Vbに対応する論理レベルがローレベルであるように設計される。このため、単位回路30は、例えば、トランジスタ31のオン抵抗がトランジスタQ22のオン抵抗よりも十分に大きくなるように設計される。
 トランジスタ31の閾値電圧をVthn(<0)としたとき、Vb≦-Vthnである場合と、Vb>-Vthnである場合とがある(以下、前者を第3の場合、後者を第4の場合という)。第3の場合には、ノードN1の電圧がVbになった後も、トランジスタ31はオン状態を保ち、トランジスタ31を経由する電流が流れ続ける。したがって、第3の場合には、ノードN1の電圧はVbから変化しない。第4の場合には、ノードN1の電圧が-Vthnを上回る電圧Vbbになると、トランジスタ31はオフし、ノードN1の電圧は再びグランド電圧GNDになる。このため、トランジスタ31は再びオンし、ノードN1の電圧は再びVbbになる。これ以降も、同じ状況が繰り返し発生する。したがって、第4の場合には、トランジスタ31はオンとオフを繰り返し、ノードN1の電圧は交互にVbbとGNDになる。
 第3の場合でも、第4の場合でも、ノードN1の電圧Vbに対応する論理レベルは、トランジスタQ22を用いてノードN1に印加されている電圧に対応する論理レベル(グランド電圧GNDに対応するローレベル)と同じである。このため、ノードN1の次段に設けられたクロックドインバータ14は、トランジスタ31が設けられていないときと同じ動作を行う。したがって、ノードN1にグランド電圧GNDが印加されているときにも、トランジスタ31は単位回路30の動作に影響を与えない。
 ハイレベル電源電圧VGHの供給を停止して、電源オン状態から電源オフ状態(図15(c))に遷移するときに、トランジスタ31のドレイン端子(第2導通端子)の電圧はハイレベル電源電圧VGHからグランド電圧GNDに低下する。この電圧が所定レベルよりも低くなると、トランジスタ31はオンし、トランジスタ31を経由する電流が流れる。したがって、ノードN1の電圧はグランド電圧GNDになる。
 このようにノードN1の電圧は、トランジスタ31の作用によって電源オフ時にグランド電圧GNDに初期化される。同様に、ノードN2の電圧は、トランジスタ32の作用によって電源オフ時にグランド電圧GNDに初期化される。
 以上に示すように、本実施形態に係るシフトレジスタでは、単位回路30は、内部ノード(ノードN1、N2)に直接接続された第1導通端子(ソース端子)、第2導通端子(ドレイン端子)、および、制御端子(ゲート端子)を有するデプレッション型かつNチャネル型の初期化トランジスタ(トランジスタ31、32)を含んでいる。初期化トランジスタの第2導通端子には電源電圧(ハイレベル電源電圧VGH)が印加され、初期化トランジスタの制御端子にはグランド電圧GNDが印加されている。初期化トランジスタは、電源オフ状態ではオンする。したがって、本実施形態に係るシフトレジスタによれば、電源オフ時に単位回路30の内部ノードを容易に初期化することができる。
 また、電源オン状態では、内部ノードの電圧に対応する論理レベルは、制御トランジスタ(Q21、Q22、Q51、Q52)を用いて内部ノードに印加されている電圧に対応する論理レベルと同じである。したがって、電源オン状態では初期化トランジスタは単位回路30の動作に影響を与えない。
 (第4の実施形態)
 第4の実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ1と同じ構成を有し、シフトレジスタ1と同様の態様で使用される(図1および図2を参照)。以下、第1の実施形態との相違点を説明する。
 図16は、本実施形態に係るシフトレジスタの単位回路の回路図である。図16に示す単位回路40は、4個のクロックドインバータ11、13、14、16、2個のインバータ12、15、2個のトランジスタ31、32、および、2個の抵抗41、42を含んでいる。単位回路40は、図20に示す単位回路90にトランジスタ31、32と抵抗41、42を追加したものである。
 以下、抵抗41、42の下側の端子を第1端子、上側の端子を第2端子という。抵抗41、42の第1端子は、それぞれ、ノードN1、N2に接続される。トランジスタ31、32のソース端子(第1導通端子)は、それぞれ、抵抗41、42の第2端子に接続される。単位回路40では、トランジスタ31、32の第1導通端子は、それぞれ、抵抗41、42を介してノードN1、N2に接続される。
 抵抗41、42は、第2の実施形態に係る抵抗21、22と同じ方法で形成される。抵抗41、42を大きく形成するためには、抵抗41、42の抵抗値をトランジスタの半導体層の導体領域を用いて形成することが好ましい。特に、材料が真性半導体である場合には、図17に示すように、ゲート端子(制御端子)とソース端子(ノードN1に接続された導通端子)が短絡された、デプレッション型かつNチャネル型のトランジスタ43を抵抗41、42として用いることが好ましい。
 後述するように、電源オン状態では、トランジスタ31、32は単位回路40の動作に影響を与えない。したがって、電源オン状態では、単位回路40は図20に示す単位回路90と同じ動作を行う。本実施形態に係るシフトレジスタは、第1の実施形態に係るシフトレジスタ1と同様に、図5に示すタイミングチャートに従い動作する。
 図18は、単位回路40の内部ノードの初期化方法を説明するための図である。ここでは、トランジスタ31を用いてノードN1の電圧を初期化する方法を説明する。以下、抵抗41の第2端子とトランジスタ31のソース端子に接続されたノードをN12といい、ノードN12の電圧をVn12とする。
 電源オン状態でノードN1にハイレベル電源電圧VGHが印加されているとき(図18(a))には、トランジスタ31はオフし、ノードN1の電圧はハイレベル電源電圧VGHになる。このときノードN1の電圧に対応する論理レベル(ハイレベル)は、トランジスタQ21を用いてノードN1に印加されている電圧に対応する論理レベルと同じである。したがって、このときトランジスタ31は単位回路40の動作に影響を与えない。
 電源オン状態でノードN1にグランド電圧GNDが印加されているとき(図18(b))を考える。このときにトランジスタ31がオフ状態であるとすると、ノードN1とハイレベル電源線の間にトランジスタ31を経由する電流は流れないので、ノードN1、N12の電圧はどちらもグランド電圧GNDになる。デプレッション型のトランジスタ31のゲート-ソース間電圧が0Vになるので、トランジスタ31はオンし、トランジスタ31を経由する電流が流れる。このとき、ノードN12の電圧は、ノードN1の電圧よりも抵抗41における電圧降下分だけ高くなる。ノードN12の電圧が所定レベルよりも高くなると、トランジスタ31はオフする。このため、トランジスタ31を経由する電流は流れなくなり、ノードN1、N12はどちらも再びグランド電圧GNDになる。
 したがって、電源オン状態でノードN1にグランド電圧GNDが印加されているときには、トランジスタ31はオンとオフを繰り返す。トランジスタ31は、Vn12≦-Vthnである間はオンし、Vn12>-Vthnである間はオフする。このとき電圧Vn12は変動するが、ノードN1の電圧はグランド電圧GNDにほぼ等しい。このときノードN1の電圧に対応する論理レベル(ローレベル)は、トランジスタQ22を用いてノードN1に印加されている電圧に対応する論理レベルと同じである。このため、ノードN1の次段に設けられたクロックドインバータ14は、トランジスタ31が設けられていないときと同じ動作を行う。したがって、ノードN1にグランド電圧GNDが印加されているときでも、トランジスタ31は単位回路10の動作に影響を与えない。トランジスタ32についても、これと同様である。単位回路40でも、トランジスタ31の閾値電圧の絶対値は0V以上1V以下であることが好ましい。
 ハイレベル電源電圧VGHの供給を停止して、電源オン状態から電源オフ状態(図18(c))に遷移するときに、トランジスタ31のドレイン端子(第2導通端子)の電圧はハイレベル電源電圧VGHからグランド電圧GNDに低下する。この電圧が所定レベルよりも低くなると、トランジスタ31はオンし、トランジスタ31を経由する電流が流れる。したがって、ノードN1の電圧はグランド電圧GNDになる。
 このようにノードN1の電圧は、トランジスタ31の作用によって電源オフ時にグランド電圧GNDに初期化される。同様に、ノードN2の電圧は、トランジスタ32の作用によって電源オフ時にグランド電圧GNDに初期化される。
 以上に示すように、本実施形態に係るシフトレジスタでは、単位回路40は、内部ノード(ノードN1、N2)に抵抗(抵抗41、42)を介して接続された第1導通端子(ソース端子)、第2導通端子(ドレイン端子)、および、制御端子(ゲート端子)を有するデプレッション型かつNチャネル型の初期化トランジスタ(トランジスタ31、32)を含んでいる。本実施形態に係るシフトレジスタによれば、抵抗を設けることにより、電源オン状態では内部ノードの電圧の変化を抑制しながら、電源オフ時に単位回路40の内部ノードを容易に初期化することができる。
 なお、第1~第4の実施形態に係るシフトレジスタの単位回路10、20、30、40は、2個のPチャネル型トランジスタを逆順に接続し、2個のNチャネル型トランジスタを逆順に接続したクロックドインバータを含んでいてもよい。例えば、単位回路10、20、30、40は、クロックドインバータ11に代えて、図19に示すクロックドインバータ19を含んでいてもよい。クロックドインバータ19では、クロックドインバータ11と比べて、トランジスタQ11、Q12は逆順で接続され、トランジスタQ13、Q14は逆順で接続されている。
 変形例に係るシフトレジスタでは、単位回路は、初期化トランジスタを1個含んでいてもよい。これにより、電源オフ時に単位回路に含まれる1個の内部ノードを容易に初期化することができる。また、変形例に係るシフトレジスタでは、複数の制御トランジスタはすべてPチャネル型トランジスタであるか、Nチャネル型トランジスタであり、初期化トランジスタの導電型は制御トランジスタの導電型と同じであってもよい。これにより、Pチャネル型トランジスタまたはNチャネル型トランジスタだけを用いて構成されたシフトレジスタについて、上記の効果を奏することができる。
 ここまで、デプレッション型の初期化トランジスタを含む複数の単位回路を多段接続した構成を有するシフトレジスタを有する表示装置の例として、有機EL素子(有機発光ダイオード)を含む画素回路を含む有機ELパネルを備えた有機EL表示装置について説明したが、同様の方法で、液晶素子を含む画素回路を液晶パネルを備えた液晶表示装置、無機発光ダイオードを含む画素回路を含む表示パネルを備えた無機EL表示装置、量子ドット発光ダイオードを含む画素回路を含む表示パネルを備えたQLED(Quantum-dot Light Emitting Diode)表示装置などを構成してもよい。
 1…シフトレジスタ
 10、20、30、40…単位回路
 11、13、14、16、19…クロックドインバータ
 12、15…インバータ
 17、18、23、31、32、43…トランジスタ
 21、22、41、42…抵抗
 50…有機EL表示装置
 51…有機ELパネル
 52…表示制御回路
 53…走査線駆動回路
 54…データ線駆動回路
 55…発光制御線駆動回路
 56…画素回路
 57…有機EL素子

Claims (20)

  1.  複数の単位回路を多段接続した構成を有するシフトレジスタであって、
     前記単位回路は、
      複数の制御トランジスタと、
      前記制御トランジスタの端子に接続された内部ノードと、
      前記内部ノードに直接または抵抗を介して接続された第1導通端子、第2導通端子、および、制御端子を有するデプレッション型の初期化トランジスタとを含み、
     前記第2導通端子には電源電圧およびグランド電圧の一方が印加され、
     前記制御端子には前記電源電圧および前記グランド電圧の他方が印加され、
     前記初期化トランジスタは、電源オフ状態ではオンすることを特徴とする、シフトレジスタ。
  2.  前記初期化トランジスタは、Pチャネル型トランジスタであり、
     前記第2導通端子には前記グランド電圧が印加され、
     前記制御端子には前記電源電圧が印加されていることを特徴とする、請求項1に記載のシフトレジスタ。
  3.  前記初期化トランジスタは、Nチャネル型トランジスタであり、
     前記第2導通端子には前記電源電圧が印加され、
     前記制御端子には前記グランド電圧が印加されていることを特徴とする、請求項1に記載のシフトレジスタ。
  4.  電源オン状態では、前記内部ノードの電圧に対応する論理レベルは、前記制御トランジスタを用いて前記内部ノードに印加されている電圧に対応する論理レベルと同じであることを特徴とする、請求項1~3のいずれかに記載のシフトレジスタ。
  5.  前記単位回路は、前記初期化トランジスタを1個含むことを特徴とする、請求項1~4のいずれかに記載のシフトレジスタ。
  6.  前記単位回路は、前記初期化トランジスタを2個以上含むことを特徴とする、請求項1~4のいずれかに記載のシフトレジスタ。
  7.  前記複数の制御トランジスタは、Pチャネル型トランジスタおよびNチャネル型トランジスタの両方を含むことを特徴とする、請求項1~6のいずれかに記載のシフトレジスタ。
  8.  前記複数の制御トランジスタは、すべてPチャネル型トランジスタであるか、すべてNチャネル型トランジスタであるかのいずれかであり、
     前記初期化トランジスタの導電型は、前記制御トランジスタの導電型と同じであることを特徴とする、請求項1~6のいずれかに記載のシフトレジスタ。
  9.  前記第1導通端子は、前記抵抗を介して前記内部ノードに接続され、
     前記抵抗は、制御端子と前記内部ノードに接続された導通端子とが短絡されたトランジスタであることを特徴とする、請求項1~8のいずれかに記載のシフトレジスタ。
  10.  前記第1導通端子は、前記抵抗を介して前記内部ノードに接続され、
     前記初期化トランジスタの閾値電圧の絶対値は、0V以上1V以下であることを特徴とする、請求項1~8のいずれかに記載のシフトレジスタ。
  11.  複数の走査線と、複数のデータ線と、複数の画素回路とを含む表示パネルと、
     前記走査線を駆動する走査線駆動回路と、
     前記データ線を駆動するデータ線駆動回路と、
     請求項1~10のいずれかに記載のシフトレジスタとを備えた、表示装置。
  12.  前記走査線駆動回路は、前記シフトレジスタであることを特徴とする、請求項11に記載の表示装置。
  13.  前記表示パネルは、複数の発光制御線をさらに含み、
     前記発光制御線を駆動する発光制御線駆動回路をさらに備え、
     前記発光制御線駆動回路は、前記シフトレジスタであることを特徴とする、請求項11または12に記載の表示装置。
  14.  前記画素回路は、電流に応じた輝度で発光する電気光学素子を含むことを特徴とする、請求項11~13のいずれかに記載の表示装置。
  15.  前記表示パネルは、有機エレクトロルミネッセンスパネルであることを特徴とする、請求項14に記載の表示装置。
  16.  前記表示パネルは、液晶パネルであることを特徴とする、請求項11または12に記載の表示装置。
  17.  複数の単位回路を多段接続した構成を有するシフトレジスタの制御方法であって、
     前記単位回路が、複数の制御トランジスタと、前記制御トランジスタの端子に接続された内部ノードと、前記内部ノードに直接または抵抗を介して接続された第1導通端子、第2導通端子、および、制御端子を有するデプレッション型の初期化トランジスタとを含む場合に、
     前記第2導通端子に電源電圧およびグランド電圧の一方を印加し、前記制御端子に前記電源電圧および前記グランド電圧の他方を印加して、前記シフトレジスタを動作させるステップと、
     前記電源電圧の供給を停止して、前記初期化トランジスタをオン状態にするステップとを備えた、シフトレジスタの制御方法。
  18.  前記初期化トランジスタは、Pチャネル型トランジスタであり、
     前記シフトレジスタを動作させるステップは、前記第2導通端子に前記グランド電圧を印加し、前記制御端子に前記電源電圧を印加することを特徴とする、請求項17に記載のシフトレジスタの制御方法。
  19.  前記初期化トランジスタは、Nチャネル型トランジスタであり、
     前記シフトレジスタを動作させるステップは、前記第2導通端子に前記電源電圧を印加し、前記制御端子に前記グランド電圧を印加することを特徴とする、請求項17に記載のシフトレジスタの制御方法。
  20.  電源オン状態では、前記内部ノードの電圧に対応する論理レベルは、前記制御トランジスタを用いて前記内部ノードに印加されている電圧に対応する論理レベルと同じであることを特徴とする、請求項17~19のいずれかに記載のシフトレジスタの制御方法。
PCT/JP2018/044749 2018-12-05 2018-12-05 シフトレジスタ、表示装置、および、シフトレジスタの制御方法 WO2020115841A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/044749 WO2020115841A1 (ja) 2018-12-05 2018-12-05 シフトレジスタ、表示装置、および、シフトレジスタの制御方法
US17/296,531 US11386848B2 (en) 2018-12-05 2018-12-05 Shift register, display device, and method for controlling shift register

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044749 WO2020115841A1 (ja) 2018-12-05 2018-12-05 シフトレジスタ、表示装置、および、シフトレジスタの制御方法

Publications (1)

Publication Number Publication Date
WO2020115841A1 true WO2020115841A1 (ja) 2020-06-11

Family

ID=70975011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044749 WO2020115841A1 (ja) 2018-12-05 2018-12-05 シフトレジスタ、表示装置、および、シフトレジスタの制御方法

Country Status (2)

Country Link
US (1) US11386848B2 (ja)
WO (1) WO2020115841A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159153A (en) * 1978-06-07 1979-12-15 Toshiba Corp Flip flop circuit
JPS61157113A (ja) * 1984-12-28 1986-07-16 Nec Corp フリツプフロツプ回路
JPH0213963B2 (ja) * 1983-10-31 1990-04-05 Nippon Denki Aishii Maikon Shisutemu Kk
JPH0340535B2 (ja) * 1985-01-18 1991-06-19
JPH07262775A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 内部電位発生回路
JP2003332892A (ja) * 2002-05-14 2003-11-21 Seiko Instruments Inc ラッチ回路及び半導体集積回路装置
JP2005038482A (ja) * 2003-07-17 2005-02-10 Toshiba Microelectronics Corp 半導体装置
JP2016181704A (ja) * 2009-09-24 2016-10-13 株式会社半導体エネルギー研究所 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204703B1 (en) * 1998-12-21 2001-03-20 Samsung Electronics Co., Ltd. Power on reset circuit with power noise immunity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159153A (en) * 1978-06-07 1979-12-15 Toshiba Corp Flip flop circuit
JPH0213963B2 (ja) * 1983-10-31 1990-04-05 Nippon Denki Aishii Maikon Shisutemu Kk
JPS61157113A (ja) * 1984-12-28 1986-07-16 Nec Corp フリツプフロツプ回路
JPH0340535B2 (ja) * 1985-01-18 1991-06-19
JPH07262775A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 内部電位発生回路
JP2003332892A (ja) * 2002-05-14 2003-11-21 Seiko Instruments Inc ラッチ回路及び半導体集積回路装置
JP2005038482A (ja) * 2003-07-17 2005-02-10 Toshiba Microelectronics Corp 半導体装置
JP2016181704A (ja) * 2009-09-24 2016-10-13 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
US11386848B2 (en) 2022-07-12
US20220028342A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US9336897B2 (en) Shift register circuit
JP5214030B2 (ja) 表示装置
JP6914270B2 (ja) シフトレジスタユニット及びその駆動方法、ゲート駆動回路
US7492853B2 (en) Shift register and image display apparatus containing the same
WO2013160941A1 (ja) シフトレジスタ及び表示装置
US20180218674A1 (en) Pixel circuit, method for driving the same, display panel and display device
JP2019527844A (ja) 電子回路及び駆動方法、表示パネル、並びに表示装置
CN110634528B (zh) 移位寄存器、其驱动方法、驱动控制电路及显示装置
JP2007207411A (ja) シフトレジスタ回路およびそれを備える画像表示装置
US20200342811A1 (en) Pixel driving circuit, display device and driving method
JP2010238323A (ja) シフトレジスタ及び電子機器
TW200414534A (en) Semiconductor device and display appliance using the semiconductor device
JP7443420B2 (ja) レベルシフト回路
TWI520117B (zh) 位移控制單元
WO2022160802A1 (zh) 移位寄存器及其控制方法、栅极驱动电路和显示面板
US10770003B2 (en) Transfer circuit, shift register, gate driver, display panel, and flexible substrate
JP2007072079A (ja) 信号レベル変換回路及び平面表示装置
WO2020115841A1 (ja) シフトレジスタ、表示装置、および、シフトレジスタの制御方法
KR102600597B1 (ko) 주사 구동부 및 그의 구동방법
TWI718909B (zh) 畫素驅動電路
JP4371645B2 (ja) 半導体装置
JP4050628B2 (ja) 電圧レベルシフタ及び表示装置
US11848063B2 (en) Circuit configured to output output signal and shift register
US11200862B2 (en) Shift register and display device provided with the same
WO2022070404A1 (ja) 走査線駆動回路およびこれを備えた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP