WO2020114293A1 - 基于磁测滚转的旋转弹炮口初始参数测量方法 - Google Patents

基于磁测滚转的旋转弹炮口初始参数测量方法 Download PDF

Info

Publication number
WO2020114293A1
WO2020114293A1 PCT/CN2019/121309 CN2019121309W WO2020114293A1 WO 2020114293 A1 WO2020114293 A1 WO 2020114293A1 CN 2019121309 W CN2019121309 W CN 2019121309W WO 2020114293 A1 WO2020114293 A1 WO 2020114293A1
Authority
WO
WIPO (PCT)
Prior art keywords
projectile
rotating
measurement
muzzle
initial
Prior art date
Application number
PCT/CN2019/121309
Other languages
English (en)
French (fr)
Inventor
魏晓慧
龙达峰
曹建忠
黄近秋
孙俊丽
罗中良
徐瑜
周英隆
Original Assignee
惠州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州学院 filed Critical 惠州学院
Publication of WO2020114293A1 publication Critical patent/WO2020114293A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B35/00Testing or checking of ammunition
    • F42B35/02Gauging, sorting, trimming or shortening cartridges or missiles

Definitions

  • the invention relates to the technical field of initial parameter measurement of a high-speed rotating projectile muzzle, in particular to a joint measuring method of initial attitude and velocity of a rotating projectile muzzle based on a three-axis accelerometer and a single-axis magnetic sensor.
  • the purpose of the present invention is to provide a method for measuring the initial attitude and speed of a rotating projectile, and to achieve accurate measurement of the initial attitude parameters of the rotating projectile.
  • a method for measuring initial parameters of a rotating projectile muzzle based on magnetic measurement roll includes the following steps:
  • the projectile coordinate system (OX b Y b Z b ) is defined as the front upper right part, in line with the right-hand relationship;
  • the three-axis accelerometer is completely installed in the coordinate system of the projectile body.
  • the directions of the sensitive axes of the accelerometer are consistent with the directions of each axis of the projectile coordinate system.
  • the X, Y, and Z axis accelerometer measurement outputs are used separately. with Indicates that each accelerometer is used to measure the acceleration component within the projectile;
  • the single-axis magnetic sensor is installed in a strap-down manner with the elastic body's rolling axis X b axis.
  • the single-axis magnetic sensor is used to measure the angular velocity information of the rotating elastic body, and its measurement output is represented by M x ;
  • ⁇ m is the maximum magnetic flux in the artillery chamber
  • N is the number of coil turns
  • ⁇ m is the flux linkage
  • ⁇ x is the angular rate of the projectile's rotation
  • ⁇ m, x is the estimated rolling angular rate
  • ⁇ i, x is the ideal rolling angular rate
  • n x is the measurement noise
  • the filter is composed of the state equation (3) and the observation equation (4) to construct the system filter equation system, and the filter based on the discrete Kalman filter algorithm is used to perform the optimal estimation of the roll rate.
  • the filter algorithm includes the following time updates and Two processes of measurement update:
  • K (k) represents the filter gain
  • H k is the measurement value
  • R k is the measurement noise
  • Q k-1 is the system noise
  • P (k, k-1) is the estimated variance of the system at the previous moment
  • P (k) is the current system variance
  • I is the unit matrix
  • P (k1) is the estimated system variance
  • k is the sampling time.
  • the estimate of the total velocity of the projectile is as follows:
  • D is the caliber of the rotating projectile
  • ⁇ g is the entanglement angle of the rifle.
  • the entanglement is determined by the model of the artillery system. If the model of the measured rotating projectile is known, the initial muzzle velocity v 0 corresponds to the angular velocity ⁇ x of the rotating elastic shaft;
  • the three-axis accelerometer strapdown is installed with the projectile coordinate system. Before the artillery is fired, the acceleration output of each axis is the projected component of the gravity component in the projectile coordinate system, which is expressed as:
  • the pitch angle and roll angle of the rotating projectile before the artillery launch is obtained; assuming that the rotating projectile moves in the bore, the yaw angle and pitch angle of the projectile remain unchanged, and the yaw angle is zero, Therefore, the formulas for calculating the initial pitch angle when rotating and ejecting the muzzle and the roll angle before ignition are:
  • the size of the muzzle roll angle of the rotating projectile is obtained through integral calculation.
  • the calculation formula of the initial roll angle of the projectile (when exiting the muzzle) is:
  • the three-axis accelerometer and single-axis magnetic sensor measurement scheme is more suitable for the present invention, which is more suitable for the "three high" harsh bomb load test application environment under high overload, high spin and high dynamics. Its measurement system has higher survivability and reliability.
  • the measurement method of the present invention can complete the measurement of the three-dimensional initial velocity and the three-dimensional initial attitude of the muzzle at the same time, and realize the acquisition of all parameters of the initial parameters of the muzzle.
  • the measurement scheme of the present invention has the advantages of simplicity, easy implementation, and high personality ratio.
  • Fig. 1 shows a schematic diagram of the installation scheme of the bomb-mounted sensor.
  • Figure 2 shows the navigation reference coordinate system
  • a combined method for measuring the initial attitude and velocity of a rotating projectile muzzle based on a three-axis accelerometer and a single-axis magnetic sensor includes the following steps:
  • the bomb-mounted sensor is mainly composed of a three-axis accelerometer and a single-axis magnetic sensor.
  • the measurement and installation scheme of the bomb-mounted sensor is shown in Figure 1.
  • the coordinate system (OX b Y b Z b ) is the projectile coordinate system, which is defined as the front upper right part, which conforms to the right-hand relationship.
  • the three-axis accelerometer is completely installed in the coordinate system of the projectile body.
  • the directions of the sensitive axes of the accelerometer are consistent with the directions of each axis of the projectile coordinate system.
  • the X, Y, and Z axis accelerometer measurement outputs are used separately. with Represents that each accelerometer is used to measure the acceleration component within the projectile.
  • the single-axis magnetic sensor is installed in a strap-down manner with the elastic body rolling axis X b- axis.
  • the single-axis magnetic sensor is used to measure the angular velocity information of the rotating elastic body, and its measurement output is represented by M x .
  • the invention selects the launch coordinate system as the rotary bomb navigation reference coordinate system (OX n Y n Z n ), as shown in FIG. 2, Is the yaw angle of the projectile, ⁇ is the pitch angle of the projectile, and ⁇ is the roll angle of the projectile.
  • OX n Y n Z n the rotary bomb navigation reference coordinate system
  • the magnetic sensor of the strapdown shaft Due to the high-speed self-rotation movement of the rotating bomb in the artillery chamber, the magnetic sensor of the strapdown shaft also follows the body of the projectile, and the magnetic sensor will generate an induced voltage in the magnetic field. According to the law of electromagnetic induction, the output voltage of the magnetic sensor of strapdown mounted on the elastic shaft can be derived to satisfy the following equation:
  • ⁇ m is the maximum magnetic flux in the artillery chamber
  • N is the number of coil turns
  • ⁇ x is the angular rate of the projectile's rotation.
  • the magnetic measurement output equation shows that the projectile roll angular rate ( ⁇ x ) can be calculated using the output of the magnetic sensor. Therefore, the present invention uses the magnetic measurement output (M x ) of the strapdown mounted on the roll shaft to estimate the roll angle rate ( ⁇ m,x ) of the projectile.
  • ⁇ m, x is the measured roll angular rate
  • ⁇ i, x is the ideal roll angular rate
  • n x is the measurement noise.
  • the present invention uses a Kalman filter to filter the optimal estimation of the magnetic measuring roll rate to improve the rolling angular rate accuracy.
  • the filter designed by the present invention jointly constructs the system filter equation group by the equation of state (3) and the observation equation (4), and uses the filter based on the discrete Kalman filter algorithm to perform the optimal estimation of the roll rate.
  • the filter algorithm includes The two processes of time update and measurement update are as follows:
  • K (k) represents the filter gain
  • H k is the measurement value
  • R k is the measurement noise
  • Q k-1 is the system noise
  • P (k, k-1) is the estimated variance of the system at the previous moment
  • P (k) is the system variance at the current moment
  • I is the unit matrix
  • P (k-1) is the estimated variance of the system
  • H k T is the measurement matrix
  • k is the sampling moment.
  • the initial velocity of the projectile out of the muzzle directly determines the flight distance or range of the projectile.
  • the flying distance corresponding to one revolution of the projectile in the bore is independent of the initial velocity, which is mainly determined by the model of the artillery system, the entanglement angle of the inner rifle of the artillery, and the caliber of the projectile.
  • the estimate of the total velocity of the projectile can be expressed as:
  • D is the caliber of the rotating projectile
  • ⁇ g is the entanglement angle of the rifle.
  • the entanglement angle is determined by the model of the artillery system. If the model of the measured rotating projectile is known, the muzzle is initially discharged. There is a corresponding relationship between the speed v 0 and the angular velocity ⁇ x of the rotating elastic shaft.
  • the present invention makes use of the aforementioned discrete Kalman filter algorithm to optimally estimate the magnetic measurement roll angular rate
  • the initial total velocity v 0 of the muzzle of the rotating projectile is obtained by looking up the table.
  • the corresponding relationship between the accurate initial speed and the roll angular speed is provided by the artillery manufacturer and stored in advance in the ammunition measurement system.
  • the strap coordinate system of the three-axis accelerometer strapdown is installed.
  • the acceleration measurement output of each axis is the projected component of the gravity component in the projectile coordinate system, which can be expressed as:
  • the pitch angle and roll angle of the rotating projectile before the artillery can be derived.
  • the present invention assumes that when the rotating projectile moves in the bore, the yaw angle and pitch angle of the projectile remain unchanged, and the yaw angle is zero. Therefore, the formulas for calculating the initial pitch angle and the roll angle before ignition when rotating and ejecting the muzzle are:
  • the size of the muzzle roll angle of the rotating projectile is obtained through integral calculation.
  • the calculation formula of the initial roll angle of the projectile (when exiting the muzzle) is:
  • the steps of measuring and solving the initial velocity of the muzzle of the rotating bomb in the present invention mainly include the following:
  • the initial total velocity v 0 of the projectile is back-calculated using the formula for calculating the total velocity of the rotating projectile muzzle (7).
  • the present invention finally achieves the initial attitude of the rotating bomb muzzle ( ⁇ 0 and ⁇ 0 ) and initial velocity (v 0, x , v 0, y and v 0, z ) are jointly measured and solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Navigation (AREA)

Abstract

一种基于磁测滚转的旋转弹炮口初始参数测量方法,包括如下步骤:(1)、旋转弹炮口初始参数测量方案,(2)、磁测滚转速率及其滤波估计方法,(3)、旋转弹炮口初始速度解算方法,(4)、旋转弹炮口初始姿态解算方法,(5)、利用炮口初始姿态解算所得弹体三维姿态信息(ψ 0,θ 0和γ 0),再按速度投影公式计算旋转弹出炮口时各初始速度分量(v 0 x,v 0 y和v 0 z)。该方法实现旋转弹体初始姿态参数的准确测量,具有简单、容易实施,性格比高等优点。

Description

基于磁测滚转的旋转弹炮口初始参数测量方法 技术领域
本发明涉及高速旋转弹体炮口初始参数测量技术领域,具体是一种基于三轴加速计和单轴磁传感器的旋转弹炮口初始姿态和速度联合测量方法。
背景技术
旋转弹制导化改造是常规武器发展方向,旋转弹飞行姿态的实时测量是实现其导航与控制的前提。但由于旋转弹发射时具有高自转和高过载等的限制,所用弹载姿态测量系统必须具有抗高过载、小体积和低成本等性能要求。特别是旋转弹高速旋转特性,高达40转/秒自旋速度,就目前弹载陀螺仪的量程与精度很难同时满足这类应用要求,从而影响了弹丸导航初始姿态和速度的准确获取,而初始姿态和速度是进行惯导解算的前提条件,因此,旋转弹初始姿态和速度参数的准确获取是的其制导化改造的难点之一。
发明内容
本发明目的是提供一种适用于旋转弹的初始姿态和速度测量方法,实现旋转弹体初始姿态参数的准确测量。
本发明是采用如下技术方案实现的:
一种基于磁测滚转的旋转弹炮口初始参数测量方法,包括如下步骤:
(1)、旋转弹炮口初始参数测量方案
弹体坐标系(OX bY bZ b)规定为前上右部,符合右手关系;
三轴加速度计完全捷联安装于弹体坐标系,加速度计各敏感轴方向与弹体坐标系各轴方向一致,X、Y和Z轴加速度计测量输出分别用
Figure PCTCN2019121309-appb-000001
Figure PCTCN2019121309-appb-000002
表示,各加速度计用来测量弹体内加速度分量;
单轴磁传感器与弹体滚转轴X b轴完全捷联安装,单轴磁传感用于测量旋转弹滚转角速率信息,其测量输出用M x表示;
选取发射坐标系为旋转弹导航参考坐标系(OX nY nZ n),其中
Figure PCTCN2019121309-appb-000003
为弹体偏航角,θ为弹体俯仰角,γ为弹体滚转角;
(2)、磁测滚转速率及其滤波估计方法
2.1、旋转弹滚转角速率观测量的获取方法
根据电磁感应定律,得到捷联安装于弹轴的单轴磁传感器的输出电压满足如下方程:
Figure PCTCN2019121309-appb-000004
上式(1)中,Φ m为火炮膛内的最大磁通量,N为线圈匝数,ψ m为磁通链,ω x为弹体自旋转的角速率;
利用捷联安装于滚转轴的磁测量输出M x估算弹体滚转角速率ω m,x
2.2、弹体滚转角速率滤波器
利用磁传感器测量输出M x估算得到的弹体滚转角速率ω m,x总是存在一定的误差,其测量误差方程表示为:
ω m,x=ω i,x+n x   (2)
上式(2)中,ω m,x为测量估算所得滚转角速率,ω i,x为理想的滚转角速率,n x为测量噪声;
滤波器选取滚转角速率ω x作为系统的状态变量X=ω x,状态方程表示为:
X (k)=X (k-1)+w (k-1)   (3)
上式(3)中,w (k-1)为假设为零均值高斯白噪声,满足E[w(t)]=0,E[w(t),w T(τ)]=Q(t)δ(t-τ);
选取按式(1)反推计算所得磁测滚转角速率ω m,x作为滤波系统的观测变量z(t)=ω m,x,其观测方程表示为:
z(t)=X(t)+v(t)   (4)
上式中,v(t)为系统的量测噪声,假设v(t)为高斯白噪声,并满足E[v(t)]=0,E[v(t),v T(τ)]=R(t)δ(t-τ);
因此,滤波器由状态方程式(3)和观测方程式(4)共同构建系统滤波方程组,并采用基于离散kalman滤波算法的滤波器进行滚转速率的最优估计,其滤波算法包括如下时间更新和量测更新两个过程:
2.2.1、时间更新过程:
Figure PCTCN2019121309-appb-000005
2.2.2、量测更新过程:
Figure PCTCN2019121309-appb-000006
上式中,K (k)表示滤波增益;H k为量测值;R k为量测噪声;Q k-1为系统噪声;P (k,k-1)为前一时刻系统估计方差;P (k)为当前时刻系统方差;I为单位阵;P (k1)为系统估计方差;
Figure PCTCN2019121309-appb-000007
为量测阵;k为采样时刻。
因此,通过离散kalman滤波算法最终完成弹体滚转角速率ω m,x的最优估计
Figure PCTCN2019121309-appb-000008
(3)、旋转弹炮口初始速度解算方法
弹丸出膛总速度的估算表示为:
Figure PCTCN2019121309-appb-000009
上式(7)中,D为旋转弹口径大小,γ g为膛线的缠角大小,缠角大小由火炮系统的 型号所决定,若已知所测旋转弹型号,炮口的出膛初始速度v 0与旋转弹轴的角速度ω x存在相互对应关系;
因此,利用前述基于离散kalman滤波算法最优估计所得磁测滚转角速率
Figure PCTCN2019121309-appb-000010
通过查表得到旋转弹炮口初始总速度v 0
(4)、旋转弹炮口初始姿态解算方法
三轴加速度计捷联安装弹体坐标系,在火炮发射前,各轴加速度测量输出为重力分量在弹体坐标系的投影分量,其表示为:
Figure PCTCN2019121309-appb-000011
上式(8)中,
Figure PCTCN2019121309-appb-000012
Figure PCTCN2019121309-appb-000013
分别代表为X、Y和Z轴加速度计测量输出;[0,0,-g] T为导航坐标系下重力投影分量;
Figure PCTCN2019121309-appb-000014
为旋转弹姿态变换方向余弦矩阵;
Figure PCTCN2019121309-appb-000015
根据式(8)的投影关系,得到在火炮发射前旋转弹俯仰角和滚转角;假设旋转弹在膛内运动时,弹体偏航角和俯仰角均不变,且偏航角为零,因此,旋转弹出炮口时初始俯仰角和点火前的滚转角计算公式分别为:
Figure PCTCN2019121309-appb-000016
Figure PCTCN2019121309-appb-000017
若旋转弹在膛内运动所需时间为τ秒,则利用前述滤波器估计所得磁测滚转角速率
Figure PCTCN2019121309-appb-000018
通过积分计算得到旋转弹炮口滚转角大小,弹体初始滚转角(出炮口时)计算公式为:
Figure PCTCN2019121309-appb-000019
因此,通过上式(10)~(12)最终完成旋转弹炮口初始偏航角、俯仰角和滚转角三维姿态角的测量解算;
(5)、利用炮口初始姿态解算所得弹体三维姿态信息(
Figure PCTCN2019121309-appb-000020
θ 0和γ 0),再按如下速度投影公式(13)计算旋转弹出炮口时各初始速度分量(v 0,x,v 0,y和v 0,z)。
Figure PCTCN2019121309-appb-000021
由上述解算步骤完成旋转弹出炮口时各初始速度分量测量解算。
本发明方法具体如下优点:
1、本发明采用三轴加速计和单轴磁传感器测量组合方案相比之传统的陀螺仪测量方案,更加适用于高过载、高自旋和高动态下的“三高”恶劣弹载测试应用环境,其测量系统具有更高的存活性和可靠性。
2、本发明所述测量方法,能够同时完成炮口三维初始速度和三维初始姿态的测量,实现了炮口初始参数的全参数的获取。
3、本发明所述测量方案具有简单、容易实施,性格比高等优点。
附图说明
图1表示弹载传感器安装方案示意图。
图2表示导航参考坐标系。
具体实施方式
下面结合附图对本发明的具体实施例进行详细说明。
一种基于三轴加速计和单轴磁传感器的旋转弹炮口初始姿态和速度联合测量方法,包括如下步骤:
1、旋转弹炮口初始参数测量方案
弹载传感器主要由三轴加速度计和单轴磁传感器组成,弹载传感器测量安装方案如图1所示。坐标系(OX bY bZ b)为弹体坐标系,规定为前上右部,符合右手关系。三轴加速度计完全捷联安装于弹体坐标系,加速度计各敏感轴方向与弹体坐标系各轴方向一致,X、Y和Z轴加速度计测量输出分别用
Figure PCTCN2019121309-appb-000022
Figure PCTCN2019121309-appb-000023
表示,各加速度计用来测量弹体内加速度分量。而单轴磁传感器与弹体滚转轴X b轴完全捷联安装,单轴磁传感用于测量旋转弹滚转角速率信息,其测量输出用M x表示。
本发明选取发射坐标系为旋转弹导航参考坐标系(OX nY nZ n),如图2所示,
Figure PCTCN2019121309-appb-000024
为弹体偏航角,θ为弹体俯仰角,γ为弹体滚转角。
2、磁测滚转速率及其滤波估计方法
2.1、旋转弹滚转角速率观测量的获取方法
由于旋转弹在火炮膛内作高速自旋转运动,捷联于弹轴的磁传感器也跟随弹体一起自旋运动,磁传感器在磁场中将会产生感应电压。根据电磁感应定律,可推导得到捷联安装于弹轴的磁传感器的输出电压满足如下方程:
Figure PCTCN2019121309-appb-000025
上式(1)中,Φ m为火炮膛内的最大磁通量,N为线圈匝数,为ψ m磁通链,ω x为弹体自旋转的角速率。
由式(1)磁测输出方程可知,弹体滚转角速率(ω x)可以利用磁传感器的输出反推计算得到。因此,本发明利用捷联安装于滚转轴的磁测量输出(M x)估算弹体滚转角速率(ω m,x)。
2.2、弹体滚转角速率滤波器
由于外磁干扰、传感器本身误差参数和测量电路噪声等不利因素存在,所以捷联磁传感器的实际测量输出总是有测量误差。因此,利用磁传感器测量输出(M x)估算得到的弹体滚转角速率(ω m,x)总是存在一定的误差,其测量误差方程可以表示为:
ω m,x=ω i,x+n x  (2)
上式(2)中,ω m,x为测量估算所得滚转角速率,ω i,x为理想的滚转角速率,n x为测量噪声。
为了提高磁测弹体滚转角速率的测量精度,本发明采用卡尔曼滤波器对磁测滚转率进行滤波最优估计,以提高滚转角速率精度。本发明所设计的滤波器选取滚转角速率ω x作为系统的状态变量X=ω x,状态方程可以表示为:
X (k)=X (x-1)+w (k-1)   (3)
上式(3)中,w (k-1)为假设为零均值高斯白噪声,满足E[w(t)]=0,E[w(t),w T(τ)]=Q(t)δ(t-τ)。
选取按式(1)反推计算所得磁测滚转角速率(ω x)作为滤波系统的观测变量z(t)=ω m,x,其观测方程可表示为:
z(t)=X(t)+v(t)   (4)
上式(4)中,v(t)为系统的量测噪声,假设v(t)为高斯白噪声,并满足E[v(t)]=0,E[v(t),v T(τ)]=R(t)δ(t-τ)。
因此,本发明所设计滤波器由状态方程式(3)和观测方程式(4)共同构建系统滤波方程组,并采用基于离散kalman滤波算法的滤波器进行滚转速率的最优估计,其滤波算法包括如下时间更新和量测更新两个过程:
(1)时间更新过程:
Figure PCTCN2019121309-appb-000026
(2)量测更新过程:
Figure PCTCN2019121309-appb-000027
上式中,K (k)表示滤波增益;H k为量测值;R k为量测噪声;Q k-1为系统噪声;P (k,k-1)为前一时刻系统估计方差;P (k)为当前时刻系统方差;I为单位阵;P (k-1)为系统估计方差;H k T为量测阵;k为采样时刻。
因此,通过离散kalman滤波算法最终完成弹体滚转角速率ω m,x的最优估计
Figure PCTCN2019121309-appb-000028
3、旋转弹炮口初始速度解算方法
由于旋转弹出炮口后依靠惯性飞行,弹丸出炮口的初始速度的直接决定了弹体飞行距离或射程。但弹丸在膛内自旋一圈所对应的飞行距离跟初速度无关,其主要由火炮系统型号、火炮内膛线的缠角和弹丸口径等所决定的。弹丸出膛总速度的估算可表示为:
Figure PCTCN2019121309-appb-000029
上式(7)中,D为旋转弹口径大小,γ g为膛线的缠角大小,缠角大小由火炮系统的型号所决定的,若已知所测旋转弹型号,炮口的出膛初始速度v 0与旋转弹轴的角速度ω x存在相互对应关系。
因此,本发明利用前述基于离散kalman滤波算法最优估计所得磁测滚转角速率
Figure PCTCN2019121309-appb-000030
通过查表得到旋转弹炮口初始总速度v 0。准确的初始速度与滚转角速度对应关系由火炮生产企业提供,并事前存储于弹载测量系统中。
4、旋转弹炮口初始姿态解算方法
本发明弹载传感器测量方案中,三轴加速度计捷联安装弹体坐标系。在火炮发射前,各轴加速度测量输出为重力分量在弹体坐标系的投影分量,其可表示为:
Figure PCTCN2019121309-appb-000031
上式(8)中,
Figure PCTCN2019121309-appb-000032
Figure PCTCN2019121309-appb-000033
分别代表为X、Y和Z轴加速度计测量输出;[0,0,-g] T为导航坐标系下重力投影分量;
Figure PCTCN2019121309-appb-000034
为旋转弹姿态变换方向余弦矩阵。
Figure PCTCN2019121309-appb-000035
根据式(8)的投影关系,可以推导得到在火炮发射前旋转弹俯仰角和滚转角。本发明假设旋转弹在膛内运动时,弹体偏航角和俯仰角均不变,且偏航角为零。因此,旋转弹出炮口时初始俯仰角和点火前滚转角计算公式分别为:
Figure PCTCN2019121309-appb-000036
Figure PCTCN2019121309-appb-000037
若旋转弹在膛内运动所需时间为τ秒,则利用前述滤波器估计所得磁测滚转角速率
Figure PCTCN2019121309-appb-000038
通过积分计算得到旋转弹炮口滚转角大小,弹体初始滚转角(出炮口时)计算公式为:
Figure PCTCN2019121309-appb-000039
因此,通过上式(10)~(12)最终完成旋转弹炮口初始偏航角、俯仰角和滚转角三维姿态角的测量解算。
5、旋转弹炮口初始速度解算方法
本发明所述旋转弹炮口初始速度测量解算步骤主要包括如下:
根据滤波器估计所得最优磁测滚转速率
Figure PCTCN2019121309-appb-000040
大小,利用旋转弹炮口总速度计算公式(7)反推得到弹丸初始总速度v 0
利用炮口初始姿态解算所得弹体三维姿态信息(
Figure PCTCN2019121309-appb-000041
θ 0和γ 0),再按如下速度投影公式(13)计算旋转弹出炮口时各初始速度分量(v 0,x,v 0,y和v 0,z)。
Figure PCTCN2019121309-appb-000042
由上述解算步骤完成旋转弹出炮口时各初始速度分量测量解算。
因此,本发明按前述姿态测量方法和速度测量方法,最终同时实现了旋转弹炮口初始姿态(
Figure PCTCN2019121309-appb-000043
θ 0和γ 0)和初始速度(v 0,x,v 0,y和v 0,z)联合测量解算。
应当指出,对于本技术领域的一般技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和应用,这些改进和应用也视为本发明的保护范围。

Claims (1)

  1. 一种基于磁测滚转的旋转弹炮口初始参数测量方法,其特征在于:包括如下步骤:
    (1)、旋转弹炮口初始参数测量方案
    弹体坐标系(OX bY bZ b)规定为前上右部,符合右手关系;
    三轴加速度计完全捷联安装于弹体坐标系,加速度计各敏感轴方向与弹体坐标系各轴方向一致,X、Y和Z轴加速度计测量输出分别用
    Figure PCTCN2019121309-appb-100001
    Figure PCTCN2019121309-appb-100002
    表示,各加速度计用来测量弹体内加速度分量;
    单轴磁传感器与弹体滚转轴X b轴完全捷联安装,单轴磁传感用于测量旋转弹滚转角速率信息,其测量输出用M x表示;
    选取发射坐标系为旋转弹导航参考坐标系(OX nY nZ n),其中
    Figure PCTCN2019121309-appb-100003
    为弹体偏航角,θ为弹体俯仰角,γ为弹体滚转角;
    (2)、磁测滚转速率及其滤波估计方法
    2.1、旋转弹滚转角速率观测量的获取方法
    根据电磁感应定律,得到捷联安装于弹轴的单轴磁传感器的输出电压满足如下方程:
    Figure PCTCN2019121309-appb-100004
    上式(1)中,Φ m为火炮膛内的最大磁通量,N为线圈匝数,ψ m为磁通链,ω x为弹体自旋转的角速率;
    利用捷联安装于滚转轴的磁测量输出M x估算弹体滚转角速率ω m,x
    2.2、弹体滚转角速率滤波器
    利用磁传感器测量输出M x估算得到的弹体滚转角速率ω m,x存在误差,其测量误差方程表示为:
    ω m,x=ω i,x+n x  (2)
    上式(2)中,ω m,x为测量估算所得滚转角速率,ω i,x为理想的滚转角速率,n x为测量噪声;
    滤波器选取滚转角速率ω x作为系统的状态变量X=ω x,状态方程表示为:
    X (k)=X (k-1)+w (k-1)  (3)
    上式(3)中,w (k-1)为假设为零均值高斯白噪声;
    选取按式(1)反推计算所得磁测滚转角速率ω m,x作为滤波系统的观测变量z(t)=ω m,x,其观测方程表示为:
    z(t)=X(t)+v(t)  (4)
    上式中,v(t)为系统的量测噪声;
    因此,滤波器由状态方程式(3)和观测方程式(4)共同构建系统滤波方程组,并采用基于离散kalman滤波算法的滤波器进行滚转速率的最优估计,其滤波算法包括如下时间更新和量测更新两个过程:
    2.2.1、时间更新过程:
    Figure PCTCN2019121309-appb-100005
    2.2.2、量测更新过程:
    Figure PCTCN2019121309-appb-100006
    上式中,K (k)表示滤波增益;H k为量测值;R k为量测噪声;Q k-1为系统噪声;P( k,k-1)为前一时刻系统估计方差;P (k)为当前时刻系统方差;I为单位阵;P (k-1)为系统估计方差;
    Figure PCTCN2019121309-appb-100007
    为量测阵;
    因此,通过离散kalman滤波算法最终完成弹体滚转角速率ω m,x的最优估计
    Figure PCTCN2019121309-appb-100008
    (3)、旋转弹炮口初始速度解算方法
    弹丸出膛总速度的估算表示为:
    Figure PCTCN2019121309-appb-100009
    上式(7)中,D为旋转弹口径大小,γ g为膛线的缠角大小,缠角大小由火炮系统的型号所决定,若已知所测旋转弹型号,炮口的出膛初始速度v 0与旋转弹轴的角速度ω x存在相互对应关系;
    因此,利用前述基于离散kalman滤波算法最优估计所得磁测滚转角速率
    Figure PCTCN2019121309-appb-100010
    通过查表得到旋转弹炮口初始总速度v 0
    (4)、旋转弹炮口初始姿态解算方法
    三轴加速度计捷联安装弹体坐标系,在火炮发射前,各轴加速度测量输出为重力分量在弹体坐标系的投影分量,其表示为:
    Figure PCTCN2019121309-appb-100011
    上式(8)中,
    Figure PCTCN2019121309-appb-100012
    Figure PCTCN2019121309-appb-100013
    分别代表为X、Y和Z轴加速度计测量输出;[0,0,-g] T为导航坐标系下重力投影分量;
    Figure PCTCN2019121309-appb-100014
    为旋转弹姿态变换方向余弦矩阵;
    Figure PCTCN2019121309-appb-100015
    根据式(8)的投影关系,得到在火炮发射前旋转弹俯仰角和滚转角;假设旋转弹在膛内运动时,弹体偏航角和俯仰角均不变,且偏航角为零,因此,旋转弹出炮口时初始俯仰角和 滚转角计算公式分别为:
    Figure PCTCN2019121309-appb-100016
    Figure PCTCN2019121309-appb-100017
    若旋转弹在膛内运动所需时间为τ秒,则利用前述滤波器估计所得磁测滚转角速率
    Figure PCTCN2019121309-appb-100018
    通过积分计算得到旋转弹炮口滚转角大小,弹体初始滚转角计算公式为:
    Figure PCTCN2019121309-appb-100019
    因此,通过上式(10)~(12)最终完成旋转弹炮口初始偏航角、俯仰角和滚转角三维姿态角的测量解算;
    (5)、利用炮口初始姿态解算所得弹体三维姿态信息(
    Figure PCTCN2019121309-appb-100020
    ,θ0和γ0),再按如下速度投影公式(13)计算旋转弹出炮口时各初始速度分量(v 0,x,v 0,y和v 0,z)。
    Figure PCTCN2019121309-appb-100021
    由上述解算步骤完成旋转弹出炮口时各初始速度分量测量解算。
PCT/CN2019/121309 2018-12-07 2019-11-27 基于磁测滚转的旋转弹炮口初始参数测量方法 WO2020114293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811493274.3 2018-12-07
CN201811493274.3A CN109373832B (zh) 2018-12-07 2018-12-07 基于磁测滚转的旋转弹炮口初始参数测量方法

Publications (1)

Publication Number Publication Date
WO2020114293A1 true WO2020114293A1 (zh) 2020-06-11

Family

ID=65376210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121309 WO2020114293A1 (zh) 2018-12-07 2019-11-27 基于磁测滚转的旋转弹炮口初始参数测量方法

Country Status (2)

Country Link
CN (1) CN109373832B (zh)
WO (1) WO2020114293A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109373832B (zh) * 2018-12-07 2020-11-06 惠州学院 基于磁测滚转的旋转弹炮口初始参数测量方法
CN110702064B (zh) * 2019-09-16 2021-08-17 中国矿业大学 基于磁感应的无人航行器姿态信息获取方法和系统
CN111562527B (zh) * 2020-03-28 2021-10-26 电子科技大学 一种提高磁力计敏感性的方法
CN112710298B (zh) * 2020-12-02 2022-04-01 惠州学院 基于动力学模型辅助的旋转弹用地磁卫星组合导航方法
CN112946313B (zh) * 2021-02-01 2022-10-14 北京信息科技大学 二维弹道脉冲修正弹的滚转角速率的确定方法及装置
CN113959279B (zh) * 2021-10-14 2023-08-22 北京理工大学 一种利用多传感器信息融合的弹道环境特征辨识方法
CN114001602A (zh) * 2021-10-26 2022-02-01 东北大学秦皇岛分校 基于四元数卡尔曼滤波去噪融合的火箭炮扰动检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188561A1 (en) * 2003-03-28 2004-09-30 Ratkovic Joseph A. Projectile guidance with accelerometers and a GPS receiver
CN1932444A (zh) * 2006-09-30 2007-03-21 中北大学 适用于高速旋转体的姿态测量方法
CN103075930A (zh) * 2012-12-25 2013-05-01 中北大学 适用于高速旋转弹体炮口初始姿态的测量方法
US9702674B2 (en) * 2014-08-07 2017-07-11 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for GPS-denied navigation of spin-stabilized projectiles
CN109373832A (zh) * 2018-12-07 2019-02-22 惠州学院 基于磁测滚转的旋转弹炮口初始参数测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519313B2 (en) * 2008-12-01 2013-08-27 Raytheon Company Projectile navigation enhancement method
CN102519485B (zh) * 2011-12-08 2014-02-26 南昌大学 一种引入陀螺信息的二位置捷联惯性导航系统初始对准方法
CN103697887B (zh) * 2013-12-05 2017-03-01 东南大学 一种基于捷联惯导系统和多普勒计程仪的优化导航方法
CN107314718B (zh) * 2017-05-31 2018-11-13 中北大学 基于磁测滚转角速率信息的高速旋转弹姿态估计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188561A1 (en) * 2003-03-28 2004-09-30 Ratkovic Joseph A. Projectile guidance with accelerometers and a GPS receiver
CN1932444A (zh) * 2006-09-30 2007-03-21 中北大学 适用于高速旋转体的姿态测量方法
CN103075930A (zh) * 2012-12-25 2013-05-01 中北大学 适用于高速旋转弹体炮口初始姿态的测量方法
US9702674B2 (en) * 2014-08-07 2017-07-11 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for GPS-denied navigation of spin-stabilized projectiles
CN109373832A (zh) * 2018-12-07 2019-02-22 惠州学院 基于磁测滚转的旋转弹炮口初始参数测量方法

Also Published As

Publication number Publication date
CN109373832A (zh) 2019-02-22
CN109373832B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2020114293A1 (zh) 基于磁测滚转的旋转弹炮口初始参数测量方法
CN109373833B (zh) 适用于旋转弹初始姿态和速度联合测量方法
JP6388661B2 (ja) 慣性航法装置
CN109596018B (zh) 基于磁测滚转角速率信息的旋转弹飞行姿态高精度估计方法
KR20170142903A (ko) 관성 내비게이션 시스템
CN107314718A (zh) 基于磁测滚转角速率信息的高速旋转弹姿态估计方法
CN105115508B (zh) 基于后数据的旋转制导炮弹快速空中对准方法
CN108931155B (zh) 一种不依赖卫星导航增程制导弹药自主制导系统
CN112363195B (zh) 基于运动学方程的旋转弹空中快速粗对准方法
CN111351401B (zh) 应用于捷联导引头制导飞行器的防侧偏制导方法
CN105180728B (zh) 基于前数据的旋转制导炮弹快速空中对准方法
CN107883940A (zh) 一种制导炮弹用高动态姿态测量方法
CN104697521B (zh) 一种采用陀螺冗余斜交配置方式测量高速旋转体姿态和角速度的方法
CN110017808A (zh) 利用地磁信息和加速计解算飞行器姿态的方法
US8561898B2 (en) Ratio-metric horizon sensing using an array of thermopiles
KR101958151B1 (ko) 지자기 센서와 위성항법 신호에 기반한 유도 포탄용 롤각 정렬 항법 시스템 및 방법
CN105987652B (zh) 姿态角速率估算系统及应用其的弹药
CN105352528B (zh) 一种应用于弹道导弹的惯导误差在线补偿方法
CN110986926B (zh) 一种基于地磁要素的飞行弹体旋转姿态测量方法
CN116070066B (zh) 一种制导炮弹滚动角计算方法
Long et al. Method of attitude measurement based on the geomagnetic and gyroscope
Chuanjun et al. Magnetometer-Based Attitude Determination for Spinning Flight Vehicles
Pingan et al. Attitude measurement of special aircraft based on geomagnetic and angular velocity sensors
CN116150552A (zh) 一种制导炮弹初始姿态计算方法
Fleck et al. Study of real-time filtering for an inertial measurement unit (IMU) with magnetometer in a 155mm projectile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893098

Country of ref document: EP

Kind code of ref document: A1