WO2020114175A1 - 核级锆板轧制、淬火热处理专用的连续生产线及工艺 - Google Patents

核级锆板轧制、淬火热处理专用的连续生产线及工艺 Download PDF

Info

Publication number
WO2020114175A1
WO2020114175A1 PCT/CN2019/115582 CN2019115582W WO2020114175A1 WO 2020114175 A1 WO2020114175 A1 WO 2020114175A1 CN 2019115582 W CN2019115582 W CN 2019115582W WO 2020114175 A1 WO2020114175 A1 WO 2020114175A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
rolling
heating
roller group
zirconium plate
Prior art date
Application number
PCT/CN2019/115582
Other languages
English (en)
French (fr)
Inventor
蒋宗轩
蒋铭根
周志明
Original Assignee
苏州中门子工业炉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州中门子工业炉科技有限公司 filed Critical 苏州中门子工业炉科技有限公司
Publication of WO2020114175A1 publication Critical patent/WO2020114175A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Definitions

  • the invention belongs to the field of heat treatment, and specifically relates to a continuous production line dedicated to nuclear grade zirconium plate rolling and quenching heat treatment, and also relates to a nuclear grade zirconium plate rolling and quenching heat treatment process.
  • the heat treatment process is used to change the internal structure of the workpiece and improve the strength and service life of the workpiece. Therefore, the heat treatment step is an indispensable step for forming the workpiece.
  • the heat treatment process of the zirconium plate cannot be completed continuously, which not only causes a complicated structure of the equipment, but also has a high cost of heat treatment;
  • the heating area of the rolling heating furnace and the quenching heating furnace is very long. Therefore, this will inevitably cause the furnace body to be longer and occupy a large area. At the same time, the structure of the heat treatment furnace is more complicated and the cost of use is higher.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art, and to provide an improved continuous production line dedicated to nuclear grade zirconium plate rolling and quenching heat treatment.
  • the invention also provides a nuclear grade zirconium plate rolling and quenching heat treatment process.
  • the present invention adopts the following technical solutions:
  • a continuous production line dedicated to nuclear grade zirconium plate rolling and quenching heat treatment which includes
  • a rolling system includes a rolling heating furnace and a rolling mill, wherein the rolling heating furnace includes a furnace body and a furnace roller assembly provided in the furnace body, and the furnace body includes a feeding area and a heating area which are sequentially arranged from the inlet to the outlet of the furnace body In the discharge area, the furnace roller assembly includes a first furnace roller group, a second furnace roller group, and a third furnace roller group, which are respectively arranged in the feed region, the heating region, and the discharge region;
  • a quenching system which includes a heating furnace and a rapid quenching device provided at the outlet of the heating furnace, wherein the heating furnace has the same structure as the rolling heating furnace;
  • the furnace roll assembly further includes a first drive member, a second drive member, and a third drive member that respectively drive the first furnace roll group, the second furnace roll group, and the third furnace roll group to transport the zirconium plate to move in the furnace body ;
  • PLC control system to issue motion instructions to the first drive part, the second drive part and the third drive part respectively to control the conveying speed and transfer direction of each furnace roll group, when the zirconium plate is located in the heating zone, the second drive part drives The zirconium plate of the second furnace roll group moves back and forth in the heating zone.
  • the second furnace roll group transfers the zirconium plate to the third furnace roll group, and the third furnace roll group heats Complete the zirconium plate out of the furnace body;
  • the quenching system also includes a traversing roller table that is provided at the inlet of the heating furnace and communicates with the conveying roller table of the rolling heating furnace leading to the rolling mill.
  • the PLC control system includes monitoring units respectively arranged in the feeding zone, heating zone and discharging zone for monitoring the position of the specific section of the zirconium plate; receiving the information fed back by the monitoring unit to the first driving part and the second
  • the driving part and the third driving part give instructions to the processor of the transmission speed and the transmission direction.
  • the monitoring unit includes a plurality of sensors respectively disposed at the boundary points of the feed zone, the heating zone and the discharge zone.
  • each two sensors correspond to a feed zone, a heating zone and a discharge zone, respectively, and are located between two adjacent temperature zones.
  • the sensors are spaced apart.
  • one sensor can also be used in two adjacent temperature zones, so that three sensors are also feasible, but the advantage of this application is that once a sensor between two adjacent temperature zones fails , It will not cause confusion in the driving instructions, to ensure that the zirconium plate can only move back and forth in the heating zone to heat.
  • the sensors are arranged side by side on opposite sides of the plurality of furnace rollers forming the conveying channel.
  • the first furnace roller group, the second furnace roller group, and the third furnace roller group are independently driven. This facilitates the control of the in and out of the material, and the speed of movement in the heating zone, and is more conducive to the heat treatment of the material.
  • the first furnace roller group and the second furnace roller group have the same transmission degree, and the third furnace roller group idles; when the material enters the heating zone, the transmission direction is changed by the second furnace roller group, and the material is heating The zone moves back and forth, the first furnace roller group and the third furnace roller group are idling at the same speed; when discharging, the transmission degrees of the second furnace roller group and the third furnace roller group are equal, and the first furnace roller group is idling.
  • the material can be quickly fed and discharged, and when two sets of furnace rollers are in the feeding state, the other set of furnace rollers is still idling, so that the furnace rollers can be extended under high temperature environment. Service life, reduce the probability of deformation.
  • nuclear grade zirconium plates or zirconium tubes can be quickly entered and exited in the furnace, and slowly oscillated back and forth in the heating zone.
  • the heating zone is divided into multiple zones along its own length.
  • the monitoring unit also includes a sensor located at the boundary between adjacent zones, where the position of the zirconium plate is more accurately determined under the monitoring of multiple sensors. Therefore, with the aid of multiple sensors, the zirconium plate can be accurately and smoothly moved back and forth in the heating zone.
  • the first furnace roller group, the second furnace roller group and the third furnace roller group have the same structure, and each includes a plurality of furnace rollers arranged side by side and arranged at even intervals.
  • first drive member, the second drive member, and the third drive member have the same structure, and all include a drive motor, which is used to drively connect the drive motor to all or part of the plurality of furnace rollers in the corresponding position.
  • Transmission Parts The applicant here explains a part of the furnace roller drive connection. It can choose several furnace rollers adjacent to each other or several furnace rollers spaced apart, but the final result is: it must ensure that the zirconium plate goes back and forth smoothly in the heating zone mobile.
  • Another technical solution of the present invention is: a nuclear grade zirconium plate rolling and quenching heat treatment process, which uses the above-mentioned continuous production line dedicated to nuclear grade zirconium plate rolling and quenching heat treatment.
  • the specific steps are as follows:
  • the zirconium plate enters the rolling heating furnace for heating through the feed roller table and the first furnace roll group, wherein when the zirconium plate is located in the heating zone, the zirconium plate passes through the conveying speed and direction of the second furnace roll group Move back and forth in the heating zone until the heating is completed, and pass out of the furnace body through the third furnace roller group;
  • the zirconium plate passing out of the rolling heating furnace is sent to the rolling mill through a conveying roller table for rolling treatment;
  • the whole zirconium plate is first returned to the horizontal conveying roller table, and then moved to the quenching station, and enters the heating furnace.
  • the rolling After the zirconium plate is moved back and forth in the heating zone of the heating furnace for heating, after the heating is completed, it quickly enters the quenching water tank for quenching. After the quenching is completed, the material is discharged and all heat treatment processes are completed.
  • the zirconium plate returns to the rolling heating furnace through the conveying roller table to continue heating, and after the heating is completed, the rolling is continued until the rolling process is completed.
  • the same furnace roller assembly is also used in the heating furnace, so that the rolled zirconium plate moves back and forth in the heating zone of the heating furnace for heating.
  • the present invention has the following advantages compared with the prior art:
  • the invention directly connects the rolling and quenching processes to achieve continuous processing; on the other hand, the combination of the temperature zone of the furnace roller assembly of the heating furnace shortens the length of the entire furnace body, simplifies the equipment structure, and greatly reduces the cost of heat treatment. Each furnace roller group is driven independently, thereby reducing energy consumption.
  • Figure 1 is a schematic structural view of the continuous production line of the present invention
  • FIG. 2 is a schematic cross-sectional view of the structure of the rolling heating furnace in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of the structure of the quenching system in FIG. 1;
  • A rolling system
  • A1 rolling heating furnace
  • A10 feeding roller table
  • A11 conveying roller table
  • 1a feeding area
  • 1b heating area
  • b1 partition
  • 1c Discharge zone
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the meaning of "plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two components or the interaction between two components, unless otherwise specified Limit.
  • installation can be a fixed connection or a detachable connection , Or integrated; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two components or the interaction between two components, unless otherwise specified Limit.
  • the first feature “above” or “below” the second feature may be the direct contact of the first and second features, or the indirect contact of the first and second features through an intermediary .
  • the first feature is “above”, “above” and “above” the second feature may be that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • this embodiment relates to a continuous production line dedicated to nuclear grade zirconium plate rolling and quenching heat treatment, which includes a rolling system A and a quenching system B,
  • the rolling system A includes a rolling heating furnace A1 and a rolling mill A2, wherein the feeding end of the rolling heating furnace A1 is provided with a feeding roller table A10, and the discharging end is connected to the rolling mill A2 through a conveying roller table A11. That is, the zirconium plate heated by the rolling heating furnace A1 enters the rolling mill A2 through the transfer roller table A11 and is rolled.
  • a quenching system B which includes a heating furnace B1, a rapid quenching device B2 provided at the outlet of the heating furnace B1, and a traverse roller that is provided at the inlet of the heating furnace B1 and communicates with the transfer roller path A11 of the rolling furnace to the rolling mill Lane B3, in which the heating furnace B1 and the rolling heating furnace A1 have the same structure, so as long as one of them is described, the other is also clear.
  • the rolling heating furnace A1 will be described in detail first.
  • the rolling heating furnace A1 includes a furnace body 1 and a furnace roller assembly 2 provided in the furnace body 1.
  • the furnace body 1 includes a feed zone 1a, a heating zone 1b, and a discharge zone 1c that are provided in this order from the inlet to the outlet of the furnace body 1.
  • the furnace roller assembly 2 includes a first furnace roller group 2a, a second furnace roller group 2b, and a third furnace roller group 2c that are respectively disposed in the feed zone 1a, the heating zone 1b, and the discharge zone 1c; Furnace roller group 2a, second furnace roller group 2b and third furnace roller group 2c to convey the first drive member (not shown in the figure, but not difficult to imagine) and the second drive member (picture Not shown, but not difficult to think of) and the third drive member (not shown in the picture, but not difficult to think of); and respectively issued motion instructions to the first drive member, the second drive member and the third drive member to control each furnace roller PLC control system 2d for group conveying speed and transfer direction, when the zirconium plate is located in the heating zone, the second driving member drives the second furnace roller group 2b to drive the zirconium plate to move back and forth in the heating zone, and after the direct heating is completed, the second furnace The roller group 2b passes the zirconium plate to the third furnace roller group 2c, and the third
  • the PLC control system 2d includes monitoring units d1 that are respectively provided in the feeding zone 1a, the heating zone 1b and the discharging zone 1c to monitor the position of the specific section of the zirconium plate; the information fed back by the monitoring unit d1 is sent to the first A driving part, a second driving part and a third driving part give a processor of instructions of transmission speed and transmission direction.
  • the monitoring unit d1 includes a plurality of sensors d10 respectively provided at the boundary points of the feed zone 1a, the heating zone 1b and the discharge zone 1c.
  • each two sensors d10 correspond to the feed zone 1a, the heating zone 1b and the discharge zone 1c, respectively, and are located between each of the two adjacent temperature zones. Set at intervals.
  • one sensor d1 can also be used in two adjacent temperature zones, so that four sensors are also feasible, but the advantage of this application is that once a sensor located between two adjacent temperature zones fails Afterwards, it will not cause confusion in the driving instructions, ensuring that the zirconium plate can only be moved back and forth in the heating zone for heating.
  • the sensors d10 are arranged side by side on opposite sides of the plurality of furnace rollers forming the conveying channel.
  • first furnace roller group 2a, the second furnace roller group 2b, and the third furnace roller group 2c are independently driven. This facilitates the control of the in and out of the material, and the speed of movement in the heating zone, and is more conducive to the heat treatment of the material.
  • the third furnace roller group 2c is idling
  • the first furnace roller group 2a and the third furnace roller group 2c are idling at the same speed
  • the first One furnace roller group 2a is idling. In this way, the material is quickly fed and discharged, and when two sets of furnace rollers are in the transport state, the other set of rollers is still idling, so that the furnace rollers can be extended under high temperature environment Service life, reduce the probability of deformation.
  • nuclear grade zirconium plates or zirconium tubes can be quickly moved into and out of the furnace, and at the same time, nuclear grade zirconium plates or zirconium tubes can slowly swing back and forth in the heating zone.
  • the heating zone 1b is divided into two zones b1 along its own length, and the monitoring unit d1 also includes a sensor d11 located at the boundary of the adjacent zone, wherein the zirconium plate is more accurately judged under the monitoring of the sensor d11 position. Therefore, with the aid of the inductor d11, the zirconium plate can be accurately and smoothly moved back and forth in the heating zone.
  • two sensors d11 are provided at the boundary of the two zones b1, and the two sensors d11 are distributed on opposite sides of the furnace roll at the junction of the two zones b1.
  • the first furnace roller group 2a, the second furnace roller group 2b, and the third furnace roller group 2c have the same structure, and each includes a plurality of furnace rollers arranged side by side at even intervals.
  • the first driving member, the second driving member and the third driving member have the same structure, and all include a driving motor and a driving member for drivingly connecting the driving motor to all or part of the plurality of furnace rollers at corresponding positions.
  • the applicant here explains a part of the furnace roller drive connection. It can choose several furnace rollers adjacent to each other or several furnace rollers spaced apart, but the final result is: it must ensure that the zirconium plate goes back and forth smoothly in the heating zone mobile.
  • the internal temperature zone and the structure of the furnace roller assembly and the rolling heating furnace are the same, that is, when the rolled zirconium plate enters the heating furnace for heating, it can be moved back and forth. Heat at high temperature.
  • the applicant has proposed a rapid water quenching system dedicated to the heat treatment of zirconium plates on 2017-12-14, patent number: 201721741171.5, which will not be elaborated here.
  • the rolling heating furnace and the heating furnace are arranged parallel to each other, and the outlet of the rolling heating furnace and the inlet of the heating furnace are arranged in alignment.
  • the zirconium plate is quickly fed into the rolling heating furnace (1000°C) through the feed roller table and the first furnace roll group for heating, wherein when the zirconium plate moves to the heating zone, the transfer speed through the second furnace roll group And direction, so that the zirconium plate moves back and forth in the heating zone until after the heating is completed, it passes out of the furnace body through the third furnace roller group;
  • the zirconium plate coming out of the rolling heating furnace is sent to the rolling mill through the transfer roller table for rolling treatment.
  • the zirconium plate passes through the transfer roller table Return to the rolling heating furnace to continue heating, and continue to roll after the heating is completed until the rolling process is completed;
  • the whole zirconium plate is returned to the horizontal conveying roller table, and then moved to the quenching station, and enters the heating furnace (1200 °C).
  • the rolled zirconium plate is moved back and forth in the heating zone of the heating furnace for heating. After the heating is completed, it quickly enters the quenching water tank for quenching. After the quenching is completed, the material is discharged, and all heat treatment processes are completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)
  • Metal Rolling (AREA)

Abstract

一种核级锆板轧制、淬火热处理专用的连续生产线及工艺,该生产线包括轧制系统(A)和淬火系统(B)。轧制系统(A)包括轧制加热炉(A1)、轧机(A2),其中锆板能够在轧制加热炉的加热区(1b)来回移动;淬火系统(B)包括加热炉(B1)、设置在加热炉出口处快速淬火装置(B 2),设置在加热炉出口,且与轧制加热炉通向轧机的传送辊道相连通的横移辊道(B 3)。该生产线和工艺一方面将轧制和淬火过程直接对接,实现连续加工;另一方面,加热炉中的炉辊组件的温区设置,缩短整个炉体的长度,简化设备结构,降低了成本和能耗。

Description

核级锆板轧制、淬火热处理专用的连续生产线及工艺 技术领域
本发明属于热处理领域,具体涉及一种核级锆板轧制、淬火热处理专用的连续生产线,同时还涉及一种核级锆板轧制、淬火热处理工艺。
背景技术
众所周知,热处理过程用来改变工件的内部组织结构,提高工件的强度和使用寿命,因此,热处理步骤是工件成型必不可少的步骤。
目前,核级锆板的轧制过程和淬火处理过程是完全两个独立的过程,也就是说,当锆板完成轧制,经过收集和转运后,再将锆板送入淬火设备中进行淬火处理,因此,存在以下缺陷:
1、无法连续性完成锆板的热处理过程,不仅造成设备结构复杂,而且热处理的成本也较高;
2、轧制加热炉和淬火加热炉的加热区要很长,因此,这样势必造成炉体较长且占用面积很大,同时热处理炉的结构更复杂,且使用成本较高。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种改进的核级锆板轧制、淬火热处理专用的连续生产线。
同时,本发明还提供一种核级锆板轧制、淬火热处理工艺。
为解决以上技术问题,本发明采取如下技术方案:
一种核级锆板轧制、淬火热处理专用的连续生产线,其包括
轧制系统,其包括轧制加热炉、轧机,其中轧制加热炉包括炉体、设置在炉体内的炉辊组件,炉体包括自炉体的进口向出口依次设置的进料区、加热区、出料区,炉辊组件包括分别对应设置在进料区、加热区、及出料区内的第一炉辊组、第二炉辊组和第三炉辊组;
淬火系统,其包括加热炉、设置在加热炉出口处的快速淬火装置,其中加热炉与轧制加热炉的结构相同;
特别是,炉辊组件还包括分别驱动第一炉辊组、第二炉辊组和第三炉辊组以传送锆板在炉体内移动的第一驱动件、第二驱动件和第三驱动件;以及分别向第一驱动件、第二驱动件和第三驱动件下达运动指令以控制各个炉辊组传送速 度和传递方向的PLC控制系统,当锆板位于加热区时,第二驱动件驱动第二炉辊组传动锆板在所述加热区内进行来回移动,直接加热完成后所述第二炉辊组再将锆板传向第三炉辊组,并由第三炉辊组将加热完成锆板传出炉体;
淬火系统还包括设置在加热炉的进口、且与轧制加热炉通向轧机的传送辊道相连通的横移辊道。
优选地,PLC控制系统包括分别设置在进料区、加热区和出料区中用于监控锆板所处具体区间位置的监控单元;接收监控单元所反馈的信息向第一驱动件、第二驱动件和第三驱动件下达传送速度和传送方向指令的处理器。
优选地,监控单元包括分别对应设置在进料区、加热区和出料区的区间界点处的多个传感器。
根据本发明的一个具体实施和优选方面,传感器有六个,其中每两个传感器之间分别对应进料区、加热区和出料区,且位于每相邻两个温区的之间两个传感器之间隔开设置。当然,相邻两个温区也可以采用一个传感器,这样一来三个传感器也是可行的,但是,本申请这样设置的好处是,一旦位于相邻两个温区之间的一个传感器出现故障后,也不会造成驱动指令的混乱,确保锆板只能在加热区来回移动加热。
优选地,传感器并排设置在多根炉辊形成传送通道的相对侧边。
优选地,第一炉辊组、第二炉辊组、及第三炉辊组分别独立的传动。这样便于进出料、以及在加热区来回移动速度的掌握,更有利于物料的热处理。
具体的,当进料时,第一炉辊组和第二炉辊组传动度相等,第三炉辊组空转;当物料进入加热区后,由第二炉辊组改变传动方向,物料在加热区来回移动,第一炉辊组和第三炉辊组以相同的速度空转;当出料时,第二炉辊组和第三炉辊组传动度相等,第一炉辊组空转。这样一来,实现物料的快速进料和快速出料,而且当其中两组炉辊组处于运料状态时,另一组炉辊组依然处于空转状态,这样才能延长炉辊组在高温环境下使用寿命,降低变形概率。
因此,在三个炉辊组的传动下,实现核级锆板或锆管快速进出炉,在加热区慢速的来回摆动。
此外,加热区沿着自身长度方向划分为多个分区,监控单元还包括位于相邻分区的界点处的感应器,其中在多个感应器的监控下更准确的判断锆板的位置。 因此,在多个感应器的辅助下,更能够准确地实现锆板在加热区平稳的来回移动。
优选地,第一炉辊组、第二炉辊组和第三炉辊组的结构相同,均包括多根并排且均匀间隔设置的炉辊。
进一步的,第一驱动件、第二驱动件和第三驱动件的结构相同,均包括驱动电机、用于将驱动电机与所对应位置的多根炉辊中全部或部分炉辊相传动连接的传动件。申请人在此解释一下部分炉辊传动连接,其可以选择相邻的几根炉辊,也可以选择相间隔的几根炉辊,但最终的结果是:必须保证锆板在加热区平稳的来回移动。
本发明的另一技术方案是:一种核级锆板轧制、淬火热处理工艺,其采用了上述的核级锆板轧制、淬火热处理专用的连续生产线,具体步骤如下:
1)锆板通过进料辊道和第一炉辊组进入轧制加热炉内进行加热、其中当锆板位于所述加热区时,通过第二炉辊组的传送速度和方向,使得锆板在加热区来回移动,直到加热完成后,通过第三炉辊组传出炉体外;
2)、传出所述轧制加热炉的锆板通过传送辊道送入所述轧机进行轧制处理;
3)、轧制完成后的锆板整体先返回到横向输送辊道,再横移至淬火工位,并进入加热炉,同时,根据上述加热炉中所采用相同的炉辊组件,使得轧制后的锆板在加热炉加热区来回移动进行加热,待加热完成后,快速进入淬火水槽中进行淬火,淬火完成后,出料,即完成所有热处理工序。
优选地,在轧制过程中,当锆板温度过低无法继续轧制时,锆板通过传送辊道返回轧制加热炉继续加热,待加热完成后继续轧制,直至轧制工艺完成,同时,在加热炉中也采用的相同的炉辊组件,使得轧制后的锆板在加热炉加热区来回移动进行加热。
由于以上技术方案的实施,本发明与现有技术相比具有如下优点:
本发明一方面将轧制和淬火过程直接对接,实现连续加工;另一方面结合加热炉的炉辊组件的温区的设置,缩短整个炉体的长度,简化设备结构,大大降低热处理成本,同时每个炉辊组独立驱动,进而降低能耗。
附图说明
下面结合附图和具体的实施例,对本发明做进一步详细的说明:
图1为本发明连续生产线的结构示意图;
图2为图1中轧制加热炉的结构剖视示意图;
图3为图1中淬火系统的结构剖视示意图;
其中:A、轧制系统;A1、轧制加热炉;A10、进料辊道;A11、传送辊道;1、炉体;1a、进料区;1b、加热区;b1、分区;1c、出料区;2、炉辊组件;2a、第一炉辊组;2b、第二炉辊组;2c、第三炉辊组;2d、PLC控制系统;d1、监控单元;d10、传感器;d11、感应器;A2、轧机;B、淬火系统;B1、加热炉;B2、快速淬火装置;B3、横移辊道。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图与具体实施方式对本发明做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
如图1所示,本实施例涉及核级锆板轧制、淬火热处理专用的连续生产线,其包括轧制系统A和淬火系统B,
具体的,轧制系统A包括轧制加热炉A1、轧机A2,其中轧制加热炉A1进料端部设有进料辊道A10,出料端部通过传送辊道A11与轧机A2相连通,也就是说,轧制加热炉A1加热后的锆板通过传送辊道A11进入轧机A2进行轧制。
淬火系统B,其包括加热炉B1、设置在加热炉B1出口处的快速淬火装置B2、设置在加热炉B1的进口且与轧制加热炉通向轧机的传送辊道A11相连通的横移辊道B3,其中加热炉B1与轧制加热炉A1的结构相同,因此,只要对其中一个进行描述,另一个也是清楚的。
本例中,先对轧制加热炉A1进行详细阐述。
轧制加热炉A1包括炉体1、设置在炉体1内的炉辊组件2。
炉体1包括自炉体1的进口向出口依次设置的进料区1a、加热区1b、出料区1c。
炉辊组件2包括分别对应设置在进料区1a、加热区1b、及出料区1c内的第一炉辊组2a、第二炉辊组2b和第三炉辊组2c;分别驱动第一炉辊组2a、第二炉辊组2b和第三炉辊组2c以传送锆板在炉体内移动的第一驱动件(图中未显示,但不难想到)、第二驱动件(图中未显示,但不难想到)和第三驱动件(图中未显示,但不难想到);以及分别向第一驱动件、第二驱动件和第三驱动件下 达运动指令以控制各个炉辊组传送速度和传递方向的PLC控制系统2d,其中当锆板位于加热区时,第二驱动件驱动第二炉辊组2b传动锆板在加热区内进行来回移动,直接加热完成后第二炉辊组2b再将锆板传向第三炉辊组2c,并由第三炉辊组2c将加热完成锆板传出炉体1。
具体的,PLC控制系统2d包括分别设置在进料区1a、加热区1b和出料区1c中用于监控锆板所处具体区间位置的监控单元d1;接收监控单元d1所反馈的信息向第一驱动件、第二驱动件和第三驱动件下达传送速度和传送方向指令的处理器。
监控单元d1包括分别对应设置在进料区1a、加热区1b和出料区1c的区间界点处的多个传感器d10。
本例中,传感器d10有六个,其中每两个传感器d10之间分别对应进料区1a、加热区1b和出料区1c,且位于每相邻两个温区的之间两个传感器之间隔开设置。当然,相邻两个温区也可以采用一个传感器d1,这样一来四个传感器也是可行的,但是,本申请这样设置的好处是,一旦位于相邻两个温区之间的一个传感器出现故障后,也不会造成驱动指令的混乱,确保锆板只能在加热区来回移动加热。
传感器d10并排设置在多根炉辊形成传送通道的相对侧边。
本例中,第一炉辊组2a、第二炉辊组2b、及第三炉辊组2c分别独立的传动。这样便于进出料、以及在加热区来回移动速度的掌握,更有利于物料的热处理。
具体的,当进料时,第一炉辊组2a和第二炉辊组2b传动度相等,第三炉辊组2c空转;当物料进入加热区后,由第二炉辊组2b改变传动方向,物料在加热区来回移动,第一炉辊组2a和第三炉辊组2c以相同的速度空转;当出料时,第二炉辊组2b和第三炉辊组2c传动度相等,第一炉辊组2a空转。这样一来,实现物料的快速进料和快速出料,而且当其中两组炉辊组处于运料状态时,另一组炉辊组依然处于空转状态,这样才能延长炉辊组在高温环境下使用寿命,降低变形概率。
因此,在三个炉辊组的传动下,实现核级锆板或锆管快速进出炉,同时也使得核级锆板或锆管在加热区慢速的来回摆动。
此外,加热区1b沿着自身长度方向划分为两个分区b1,监控单元d1还包 括位于相邻分区的界点处的感应器d11,其中在感应器d11的监控下更准确的判断锆板的位置。因此,在感应器d11的辅助下,更能够准确地实现锆板在加热区平稳的来回移动。
本例中,两个分区b1的界点处设有两个感应器d11,该两个感应器d11分布在两个分区b1交界处炉辊的相对两侧。
然后,第一炉辊组2a、第二炉辊组2b和第三炉辊组2c的结构相同,均包括多根并排且均匀间隔设置的炉辊。
第一驱动件、第二驱动件和第三驱动件的结构相同,均包括驱动电机、用于将驱动电机与所对应位置的多根炉辊中全部或部分炉辊相传动连接的传动件。申请人在此解释一下部分炉辊传动连接,其可以选择相邻的几根炉辊,也可以选择相间隔的几根炉辊,但最终的结果是:必须保证锆板在加热区平稳的来回移动。
然后,针对加热炉B1,其内部设置的温区和炉辊组件和轧制加热炉的结构相同,也就是说,当轧制完的锆板进入加热炉加热时,可以采用来回移动的方式在高温进行加热。
针对快速淬火装置B2,本申请人2017-12-14已经提出一种锆板热处理专用的快速入水的淬火系统,专利号:201721741171.5,在此,不对其进行详细阐述。
同时,在本例中,轧制加热炉与加热炉相互平行设置,且轧制加热炉的出口与加热炉的入口对齐设置。
然后,本实施热处理工艺如下:
1)锆板通过进料辊道和第一炉辊组快速的送入轧制加热炉(1000℃)内进行加热、其中当锆板移动至加热区时,通过第二炉辊组的传送速度和方向,使得锆板在加热区来回移动,直到加热完成后,通过第三炉辊组传出炉体外;
2)、传出轧制加热炉的锆板通过传送辊道送入轧机进行轧制处理,同时在在轧制过程中,当锆板温度过低无法继续轧制时,锆板通过传送辊道返回轧制加热炉继续加热,待加热完成后继续轧制,直至轧制工艺完成;
3)、轧制完成后的锆板整体先返回到横向输送辊道,再横移至淬火工位,并进入加热炉(1200℃),同时,根据加热炉中所采用相同的炉辊组件,使得轧制后的锆板在加热炉加热区来回移动进行加热,待加热完成后,快速进入淬火 水槽中进行淬火,淬火完成后,出料,即完成所有热处理工序。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (13)

  1. 一种核级锆板轧制、淬火热处理专用的连续生产线,其包括
    轧制系统,其包括轧制加热炉、轧机,其中所述轧制加热炉包括炉体、设置在所述炉体内的炉辊组件,其中所述炉体包括自所述炉体的进口向出口依次设置的进料区、加热区、出料区,所述的炉辊组件包括分别对应设置在所述进料区、所述加热区、及所述出料区内的第一炉辊组、第二炉辊组和第三炉辊组;
    淬火系统,其包括加热炉、设置在所述加热炉出口处的快速淬火装置,其中加热炉与所述的轧制加热炉结构相同;
    其特征在于:所述的炉辊组件还包括分别驱动所述第一炉辊组、所述第二炉辊组和所述第三炉辊组以传送锆板在所述炉体内移动的第一驱动件、第二驱动件和第三驱动件;以及分别向所述第一驱动件、第二驱动件和第三驱动件下达运动指令以控制各个炉辊组传送速度和传递方向的PLC控制系统,当锆板位于所述的加热区时,所述的第二驱动件驱动所述第二炉辊组传动锆板在所述加热区内进行来回移动,直接加热完成后所述第二炉辊组再将锆板传向所述第三炉辊组,并由所述第三炉辊组将加热完成锆板传出所述炉体;
    所述的淬火系统还包括设置在所述的加热炉的进口、且与所述轧制加热炉通向所述轧机的传送辊道相连通的横移辊道。
  2. 根据权利要求1所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述的PLC控制系统包括分别设置在所述进料区、所述加热区和所述出料区中用于监控锆板所处具体区间位置的监控单元;接收所述监控单元所反馈的信息向所述第一驱动件、第二驱动件和第三驱动件下达传送速度和传送方向指令的处理器。
  3. 根据权利要求2所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述监控单元包括分别对应设置在所述进料区、所述加热区和所述出料区的区间界点处的多个传感器。
  4. 根据权利要求3所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述的传感器有六个,其中每两个所述传感器之间分别对应所述进料区、所述加热区和所述出料区,且位于每相邻两个温区的之间两个所述传感器之间隔开设置。
  5. 根据权利要求4所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述传感器并排设置在多根所述炉辊形成传送通道的相对侧边。
  6. 根据权利要求3所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述的加热区沿着自身长度方向划分为多个分区,所述的监控单元还包括位于相邻分区的界点处的感应器,其中在多个所述感应器的监控下更准确的判断锆板的位置。
  7. 根据权利要求1所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述的第一炉辊组、第二炉辊组、及所述的第三炉辊组分别独立的传动。
  8. 根据权利要求7所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:当进料时,所述第一炉辊组和第二炉辊组传动度相等,所述第三炉辊组空转;当物料进入所述的加热区后,由所述的第二炉辊组改变传动方向,物料在加热区来回移动,所述第一炉辊组和所述第三炉辊组以相同的速度空转;当出料时,所述第二炉辊组和第三炉辊组传动度相等,所述第一炉辊组空转。
  9. 根据权利要求7所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述第一炉辊组、所述第二炉辊组和所述第三炉辊组的结构相同,均包括多根并排且均匀间隔设置的炉辊。
  10. 根据权利要求9所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述第一驱动件、所述第二驱动件和所述第三驱动件的结构相同,均包括驱动电机、用于将驱动电机与所对应位置的多根炉辊中全部或部分炉辊相传动连接的传动件。
  11. 根据权利要求1所述的核级锆板轧制、淬火热处理专用的连续生产线,其特征在于:所述的PLC控制系统包括分别设置在所述进料区、所述加热区和所述出料区中用于监控锆板所处具体区间位置的监控单元;接收所述监控单元所反馈的信息向所述第一驱动件、第二驱动件和第三驱动件下达传送速度和传送方向指令的处理器;
    所述监控单元包括分别对应设置在所述进料区、所述加热区和所述出料区的区间界点处的六个传感器,其中每两个所述传感器之间分别对应所述进料区、所述加热区和所述出料区,且位于每相邻两个温区的之间两个所述传感器之间 隔开设置;
    所述传感器并排设置在多根所述炉辊形成传送通道的相对侧边;
    所述的加热区沿着自身长度方向划分为多个分区,所述的监控单元还包括位于相邻分区的界点处的感应器,其中在多个所述感应器的监控下更准确的判断锆板的位置;
    所述的第一炉辊组、第二炉辊组、及所述的第三炉辊组分别独立的传动;所述第一炉辊组、所述第二炉辊组和所述第三炉辊组的结构相同,均包括多根并排且均匀间隔设置的炉辊;
    当进料时,所述第一炉辊组和第二炉辊组传动度相等,所述第三炉辊组空转;当物料进入所述的加热区后,由所述的第二炉辊组改变传动方向,物料在加热区来回移动,所述第一炉辊组和所述第三炉辊组以相同的速度空转;当出料时,所述第二炉辊组和第三炉辊组传动度相等,所述第一炉辊组空转;
    所述第一驱动件、所述第二驱动件和所述第三驱动件的结构相同,均包括驱动电机、用于将驱动电机与所对应位置的多根炉辊中全部或部分炉辊相传动连接的传动件。
  12. 一种核级锆板轧制、淬火热处理工艺,其特征在于:采用了权利要求1-11中任一项权利要求所述的核级锆板轧制、淬火热处理专用的连续生产线,其步骤如下:
    1)锆板通过进料辊道和第一炉辊组进入轧制加热炉内进行加热、其中当锆板位于所述加热区时,通过第二炉辊组的传送速度和方向,使得锆板在加热区来回移动,直到加热完成后,通过第三炉辊组传出炉体外;
    2)、传出所述轧制加热炉的锆板通过传送辊道送入所述轧机进行轧制处理;
    3)、轧制完成后的锆板整体先返回到横向输送辊道,再横移至淬火工位,并进入加热炉,同时,根据上述加热炉中所采用相同的炉辊组件,使得轧制后的锆板在加热炉加热区来回移动进行加热,待加热完成后,快速进入淬火水槽中进行淬火,淬火完成后,出料,即完成所有热处理工序。
  13. 根据权利要求12所述的核级锆板轧制、淬火热处理工艺,其特征在于:在轧制过程中,当锆板温度过低无法继续轧制时,锆板通过传送辊道返回轧制 加热炉继续加热,待加热完成后继续轧制,直至轧制工艺完成,同时,在加热炉中也采用的相同的炉辊组件,使得轧制后的锆板在加热炉加热区来回移动进行加热。
PCT/CN2019/115582 2018-12-04 2019-11-05 核级锆板轧制、淬火热处理专用的连续生产线及工艺 WO2020114175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811476319.6A CN109402347A (zh) 2018-12-04 2018-12-04 核级锆板轧制、淬火热处理专用的连续生产线及工艺
CN201811476319.6 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020114175A1 true WO2020114175A1 (zh) 2020-06-11

Family

ID=65457186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115582 WO2020114175A1 (zh) 2018-12-04 2019-11-05 核级锆板轧制、淬火热处理专用的连续生产线及工艺

Country Status (2)

Country Link
CN (1) CN109402347A (zh)
WO (1) WO2020114175A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402347A (zh) * 2018-12-04 2019-03-01 苏州中门子工业炉科技有限公司 核级锆板轧制、淬火热处理专用的连续生产线及工艺
CN113462874A (zh) * 2021-06-21 2021-10-01 周传盛 一种钢板弹簧自动化生产线
CN113512640B (zh) * 2021-07-12 2022-02-25 浙江五洲新春集团股份有限公司 一种轴承部件的热处理生产线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2260783A1 (en) * 1996-07-19 1998-01-29 W. Shane Swanger System, apparatus and method for heating metal products in an oscillating induction furnace
CN1927485A (zh) * 2006-09-29 2007-03-14 邯郸钢铁股份有限公司 一种csp薄板坯生产线冷轧供料的工艺方法
CN101586178A (zh) * 2009-07-01 2009-11-25 苏州金楷科技有限公司 一种热处理工艺及其设备
CN102181804A (zh) * 2011-05-16 2011-09-14 舞阳钢铁有限责任公司 一种核一级关键设备用钢板及其生产方法
CN109402347A (zh) * 2018-12-04 2019-03-01 苏州中门子工业炉科技有限公司 核级锆板轧制、淬火热处理专用的连续生产线及工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172830B (zh) * 2011-01-06 2013-05-08 中冶东方工程技术有限公司 复合生产线系统
CN102134634B (zh) * 2011-03-02 2013-08-21 北京北方车辆集团有限公司 燃气式生产线炉体闭环控制方法
CN105032974B (zh) * 2015-08-26 2017-04-05 陕西凸鹏钛锆有限公司 锆及锆合金带卷的生产方法
CN106825044B (zh) * 2017-03-27 2019-02-12 北京国网富达科技发展有限责任公司 一种TiAl合金板材热轧装置及热轧方法
CN209522874U (zh) * 2018-12-04 2019-10-22 苏州中门子工业炉科技有限公司 核级锆板轧制、淬火热处理专用的连续生产线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2260783A1 (en) * 1996-07-19 1998-01-29 W. Shane Swanger System, apparatus and method for heating metal products in an oscillating induction furnace
CN1927485A (zh) * 2006-09-29 2007-03-14 邯郸钢铁股份有限公司 一种csp薄板坯生产线冷轧供料的工艺方法
CN101586178A (zh) * 2009-07-01 2009-11-25 苏州金楷科技有限公司 一种热处理工艺及其设备
CN102181804A (zh) * 2011-05-16 2011-09-14 舞阳钢铁有限责任公司 一种核一级关键设备用钢板及其生产方法
CN109402347A (zh) * 2018-12-04 2019-03-01 苏州中门子工业炉科技有限公司 核级锆板轧制、淬火热处理专用的连续生产线及工艺

Also Published As

Publication number Publication date
CN109402347A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020114175A1 (zh) 核级锆板轧制、淬火热处理专用的连续生产线及工艺
WO2022067624A1 (zh) 一种棒材的连续节拍推送热处理工艺
CN103060544A (zh) 一种长杆类工件热处理线
CN102435056B (zh) 新型木屑烘干机
CN101979153A (zh) 全自动水平式pcb板双面涂布机
WO2020114257A1 (zh) 一种核级锆板或锆管专用的连续热处理炉
CN104973755A (zh) 玻璃杯自动加工设备
CN110514069A (zh) 一种纸筒烘干自动化烘干装置
JP2012187593A (ja) 鍛造用素材の加熱装置
CN209522874U (zh) 核级锆板轧制、淬火热处理专用的连续生产线
CN104607560B (zh) 大口径双金属复合管材制造工艺及扩径成形装置
CN102248597A (zh) 建筑墙板的生产方法及建筑墙板的生产装置
CN204848957U (zh) 一种斜底链式加热炉
CN205310792U (zh) 同步双向薄膜拉伸机换热系统
CN108531705B (zh) 铝合金轮毂热处理炉多层辊筒输送系统
CN102586565A (zh) 中厚板热处理炉炉后快冷方法及快冷装置
CN112267012B (zh) 一种棒材的连续节拍推送热处理工艺
CN206593437U (zh) 盘式干燥窑及其进料系统
CN110951964A (zh) 一种可实现余热利用的斜轧球磨钢球热处理系统
CN213289153U (zh) 用于热轧不锈钢连续退火酸洗线的焊缝冷却装置
CN205300232U (zh) 全自动磁性材料烧制辊道窑
CN210176919U (zh) 辊面离合装置
CN204786369U (zh) 一种膜式冷渣机筒体
WO2022067620A1 (zh) 一种连续节拍式热处理炉的棒材出料系统
CN211897051U (zh) 可实现余热利用的斜轧球磨钢球热处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891739

Country of ref document: EP

Kind code of ref document: A1