WO2020114088A1 - 一种扬声器振动系统的运动过程分析方法 - Google Patents
一种扬声器振动系统的运动过程分析方法 Download PDFInfo
- Publication number
- WO2020114088A1 WO2020114088A1 PCT/CN2019/111141 CN2019111141W WO2020114088A1 WO 2020114088 A1 WO2020114088 A1 WO 2020114088A1 CN 2019111141 W CN2019111141 W CN 2019111141W WO 2020114088 A1 WO2020114088 A1 WO 2020114088A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration system
- model
- analysis method
- motion process
- finite element
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 title claims abstract description 33
- 238000004458 analytical method Methods 0.000 title claims abstract description 29
- 238000006073 displacement reaction Methods 0.000 claims abstract description 49
- 238000012805 post-processing Methods 0.000 claims abstract description 15
- 238000009826 distribution Methods 0.000 claims description 21
- 239000000428 dust Substances 0.000 claims description 20
- 238000010586 diagram Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 19
- 239000007787 solid Substances 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000008676 import Effects 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims description 3
- 239000013013 elastic material Substances 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 238000004088 simulation Methods 0.000 abstract description 9
- 238000004364 calculation method Methods 0.000 abstract description 2
- 230000003252 repetitive effect Effects 0.000 abstract 1
- 238000005070 sampling Methods 0.000 abstract 1
- 238000012827 research and development Methods 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010129 solution processing Methods 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Definitions
- the invention belongs to the field of loudspeakers, and relates to a motion process analysis method of a loudspeaker vibration system.
- Dynamic coil speakers also known as electrodynamic speakers, are based on the principle that a changing current flows through a coil to produce a changing magnetic field.
- the coil is forced by an external magnetic field to drive the speaker diaphragm to vibrate, thereby producing sound.
- the vibration system reciprocates with the voice coil, and soft components such as the paper cone folding ring, the positioning support piece, and the dust ring (especially the dust ring of the coaxial speaker) are periodically deformed.
- This deformation Usually elastic deformation.
- Pure tone listening is one of the common ways to detect the abnormal sound of the speaker. Since pure tone listening can only be done after the speaker sample is made, it is necessary to reverse the sample during the entire product development cycle. Therefore, the current pure tone listening method has the following defects: 1) Pure tone listening must be done after the speaker sample is made, and the anti-replication sample is required during the research and development process, which has the problems of long time and high cost; 2) Trial production The sample requires a professional mold-opening machine, which has high requirements on the hardware of the research and development environment; 3) Pure tone listening can only detect whether there is abnormal sound when the speaker is working, and cannot accurately analyze the deformation of the vibration system and its stress and strain. Spatial distribution.
- the present invention provides a method for analyzing the motion process of a speaker vibration system.
- the numerical simulation analysis method is used to analyze the motion state of the speaker vibration system.
- the dynamic sound of the dynamic speaker can be calculated in different sounds. Deformation of the vibration system at the displacement of the ring, and then determine whether the vibration system will collide with other components to produce abnormal sounds; during the development cycle, modifying the simulation model instead of anti-copying samples can save more resources and time.
- a motion analysis method of a speaker vibration system provides a geometric model of the speaker vibration system, establishes a finite element model of the speaker vibration system according to the geometric model, solves the finite element model, and obtains the speaker vibration system through post-processing Movement process parameters;
- [M] is the mass matrix
- [C] is the damping matrix
- [K] is the static stiffness matrix
- ⁇ X ⁇ is the nodal displacement vector
- ⁇ F ⁇ is the excitation load vector.
- the motion process parameters of the speaker vibration system include the deformation of the vibration system or the spatial distribution of stress and strain.
- the motion process parameters obtained through post-processing are displayed in an image or a list, and the motion process parameters include: the shapes of components of the vibration system at different voice coil displacements; and the magnitude of stress on the speaker vibration system at different voice coil displacements Or stress distribution diagram; elastic strain or elastic strain distribution on the speaker vibration system at different voice coil displacements.
- establishing a finite element model of the speaker vibration system according to the geometric model includes the following steps:
- the geometric model is a three-dimensional geometric model or a two-dimensional axisymmetric model.
- the geometric model is imported into the finite element analysis software, redundant points, lines, areas or volumes are removed.
- a solid mechanical physics field is selected to simulate the deformation of the speaker vibration system, and the material model is set to a linear elastic model.
- step S23 the surface of the vibration system that does not participate in the motion is set as a fixed constraint, and a specified displacement is added to the voice coil or other components of the vibration system along the direction of the voice coil movement.
- the material properties include Young's modulus, density, Poisson's ratio, and isotropic tangent modulus.
- the geometric model of the speaker vibration system includes: a model of some components of the vibration system, or a model of all components of the vibration system, or a model of some components of the vibration system and the components connected thereto, or all components of the vibration system and The model of the part connected to it.
- the motion process analysis method further includes the step of simplifying the geometric model, and the three-dimensional drawing software is used to simplify the geometric model and then imported into the finite element analysis software, or using finite element software (such as COMSOL Multiphysics) to simplify the geometric model.
- the three-dimensional drawing software is used to simplify the geometric model and then imported into the finite element analysis software, or using finite element software (such as COMSOL Multiphysics) to simplify the geometric model.
- the main steps of the motion process analysis method include:
- A. Import of the speaker vibration system geometric model import the three-dimensional geometric model or two-dimensional axisymmetric model of some or all parts of the speaker vibration system and their related connecting components into the finite element analysis software;
- Specified displacement Add the specified displacement along the direction of the voice coil motion on the voice coil.
- the voice coil is not modeled, you can also add a specified displacement along the motion direction of the voice coil on the moving parts such as the cone body or the positioning support;
- the material parameters to be set include Young's modulus, density, Poisson's ratio, and isotropic tangent modulus;
- [M] is the mass matrix
- [C] is the damping matrix
- [K] is the static stiffness matrix
- Is the node acceleration vector Is the nodal velocity vector
- ⁇ X ⁇ is the nodal displacement vector
- ⁇ F ⁇ is the excitation load vector
- Post-processing Through post-processing, the results obtained by solving the finite element model can be image-processed or displayed in a list.
- the available results mainly include: 1) the shape of each component of the speaker vibration system at different voice coil displacements; 2 ) Stress magnitude and distribution diagram on the speaker vibration system at different voice coil displacements; 3) Elastic strain and distribution diagram on the speaker vibration system at different voice coil displacements.
- the finite element analysis software is preferably COMSOL Multiphysics, whose main functions include the establishment of geometric models, meshing, multiphysics setting and solving, and graphical display of results.
- the motion process analysis method specifically includes the following steps:
- the step S2 further includes:
- step S21 Import the geometric model established in step S1 into the finite element analysis software, and clean up unnecessary points, lines, and areas in the geometric model;
- the step S3 further includes:
- At least one of the following is obtained through post-processing: the cross-sectional shape and stress distribution diagram of the dust ring when the voice coil moves upward to the maximum displacement; the structural stress of the vibration system when the voice coil moves upward to the maximum displacement Distribution diagram; the strain distribution diagram of the vibration system when the voice coil moves upward to the maximum displacement; the animation of the vibration system moving up and down with the voice coil.
- the present invention adopts the above scheme, and has the following advantages over the prior art:
- the finite element method is used to analyze the motion of the vibration system at different voice coil displacements, overcoming the dependence on samples during traditional speaker design, reducing the number of speaker sample preparations during the research and development process, reducing the hardware requirements for research and development, and improving the design Efficiency, saving R&D costs.
- FIG. 1 is a flowchart of a motion process analysis method according to an embodiment of the present invention
- Figure 2 is a three-dimensional geometric model of a coaxial speaker
- FIG. 3 is a simplified geometric model cross-sectional view of the coaxial speaker vibration system of FIG. 2;
- Figure 4 is the simulation model of vibration system deformation
- Figure 5 is a schematic diagram of fixed constraint settings
- Figure 6 is a schematic diagram of adding a specified displacement
- Figure 7 is the finite element mesh model of vibration system deformation simulation
- Figure 8 is the cross-sectional shape and stress distribution diagram (2D) of the dust ring when the vibration system moves up to the maximum displacement of the voice coil;
- Figure 9 is the stress distribution diagram (3D) of the structure of the vibration system when the voice coil moves upward to the maximum displacement
- Figure 10 is the strain distribution diagram (3D) of the structure of the vibration system when the voice coil moves upward to the maximum displacement
- FIG. 1 shows a flowchart of a method for analyzing a transportation process according to the present invention, and the specific steps are as follows:
- Figure 2 is a three-dimensional geometric model of a coaxial speaker.
- Fig. 3 is a simplified three-dimensional geometric model cross-sectional view composed of a cone vertebral body 1, a dust ring 2, and a cockpit 3.
- a cone vertebral body 1 a cone vertebral body 1
- a dust ring 2 a dust ring 2
- a cockpit 3 a cockpit 3.
- Chinese patent application CN2018208056189 for the specific structure of this coaxial speaker, please refer to Chinese patent application CN2018208056189.
- the geometric model includes only the cone vertebral body 1, the dustproof 2 and the cockpit 3, as shown in FIG. 4.
- the modeling process is as follows:
- the displacement setting refers to the amplitude of the actual speaker during operation.
- the displacement setting is from -9mm to 9mm, and the step length is 1mm.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种扬声器振动系统的运动过程分析方法,采用数值仿真分析方法对扬声器振动系统运动状态进行分析,计算得到动圈式扬声器在不同音圈位移处振动系统的变形情况,以修改仿真模型代替反复制样,能节省较多的资源和时间。一种扬声器振动系统的运动过程分析方法,提供扬声器振动系统的几何模型,根据所述几何模型建立扬声器振动系统的有限元模型,所述有限元模型进行求解,通过后处理得到扬声器振动系统的运动过程参数。
Description
相关申请的交叉引用
本申请要求2018年12月7日提交的申请号为CN 201811494056.1的中国专利申请的优先权,其全部内容通过引用的方式并入本发明中。
本发明属于扬声器领域,涉及一种扬声器振动系统的运动过程分析方法。
动圈式扬声器,又称电动式扬声器,其原理是:变化的电流流过线圈产生变化的磁场,线圈在外加磁场中受力带动扬声器振膜振动,从而发出声音。扬声器工作过程中,振动系统随着音圈往复运动,纸盆折环、定位支片、防尘圈(尤其是同轴扬声器的防尘圈)等软性部件发生周期性的变形,这种变形通常是弹性形变。在扬声器开发阶段,有时受到结构的限制,需要控制折环、防尘圈或是定位支片的变形量,从而避免软性部件变形后与其他部件发生碰撞产生异音。纯音检听是检测扬声器异音的常见方式之一,由于纯音检听只能在制作出扬声器样品后进行,所以在整个产品的研发周期中需要反复制样。因此,目前的纯音检听的方式存在以下缺陷:1)纯音检听必须要在制作出扬声器样品后才能进行,研发过程中需要反复制样,存在的耗时长、成本高的问题;2)试制样品需要专业的开模机器,对研发环境的硬件要求较高的问题;3)纯音检听只能检测扬声器工作时是否存在异音,不能准确分析得到振动系统的形变及其上应力、应变的空间分布情况。
发明内容
针对上述问题,本发明提供一种扬声器振动系统的运动过程分析方法,采用数值仿真分析方法对扬声器振动系统运动状态进行分析,通过建立有限元仿真分析模型,可计算得到动圈式扬声器在不同音圈位移处振动系统的变形情况,进而确定振动系统变形后是否会与其他部件发生碰撞产生异音;在研发周期内,以修改仿真模型代替反复制样,能节省较多的资源和时间。
为达到上述目的,本发明采用的技术方案为:
一种扬声器振动系统的运动过程分析方法,提供扬声器振动系统的几何模型,根据所述几何模型建立扬声器振动系统的有限元模型,对所述有限元模型进行求解,通过后处理得到扬声器振动系统的运动过程参数;
其中,采用稳态分析方法对所述有限元模型进行求解,求解的理论方程如下:
在一实施例中,所述扬声器振动系统的运动过程参数包括振动系统的形变或应力、应变的空间分布。
优选地,通过后处理得到的所述运动过程参数以图像显示或列表显示,所述运动过程参数包括:不同音圈位移处振动系统的部件的形状;不同音圈位移处扬声器振动系统上应力大小或应力分布图;不同音圈位移处扬声器振动系统上弹性应变量或弹性应变量分布图。
在一实施例中,根据所述几何模型建立扬声器振动系统的有限元模型包括如下步骤:
S21、将扬声器振动系统及与其连接的几何模型导入有限元分析软件;
S22、设置物理场及材料模型;
S23、定义固定边界条件和指定位移;
S24、定义材料属性;
S25、划分网格。
优选地,步骤21中,所述几何模型为三维几何模型或二维轴对称模型,将所述几何模型导入有限元分析软件后,清除多余的点、线、面或体。
优选地,步骤S22中,选择固体力学物理场仿真扬声器振动系统的变形情况,将材料模型设置为线弹性模型。
优选地,步骤S23中,将振动系统中不参与运动的面设置为固定约束,在音圈或振动系 统的其他部件上沿音圈运动方向添加指定位移。
优选地,步骤S24中,材料属性包括杨氏模量、密度、泊松比、各向同性切线模量。
在一实施例中,所述扬声器振动系统的几何模型包括:振动系统部分部件的模型,或振动系统全部部件的模型,或振动系统部分部件及与其连接的部件的模型,或振动系统全部部件及与其连接的部件的模型。
在一实施例中,所述运动过程分析方法还包括对所述几何模型进行简化的步骤,采用三维绘图软件对所述几何模型简化后导入有限元分析软件中,或采用有限元软件(如COMSOL Multiphysics)的“几何”相关功能来实现对所述几何模型进行简化。
在一实施例中,所述运动过程分析方法的主要步骤包括:
(1)建立有限元模型
1)建立扬声器振动系统运动过程仿真的几何模型。该模型包括扬声器振动系统部分或全部零件及其相关连接部件,具体建模步骤如下:
A.扬声器振动系统几何模型导入:将扬声器振动系统部分或全部零件及其相关连接部件的三维几何模型或者二维轴对称模型导入有限元分析软件;
B.几何清理:导入几何模型后,采用几何清理功能清除模型中多余的点、线、面和体,提高网格质量,以避免在有限元模型构建过程中,几何模型中多余的点、线、面和体对网格质量造成的影响;
2)设置物理场及材料模型,详细步骤如下:
A.设置物理场:选择“固体力学”物理场来仿真分析扬声器振动系统的变形情况;
B.设置材料模型:因为振动系统在扬声器工作过程中仅发生弹性形变,故设置为线弹性模型;
3)定义固定边界条件和指定位移,详细步骤如下:
A.固定边界条件:按照扬声器振动系统各零部件实际装配关系,将振动系统中不参与运动的面设置为固定约束;
B.指定位移:在音圈上沿音圈运动方向添加指定位移。在简化模型中,若音圈未建模,也可在纸盆椎体或者定位支片等运动部件上沿音圈运动方向添加指定位移;
4)定义材料属性:需设置的材料参数包括杨氏模量、密度、泊松比、各向同性切线模量;
5)划分网格:指定网格单元类型及网格大小生成有限元网格单元;
(2)求解及后处理
1)求解:采用有限元法对上述步骤所建立的有限元模型进行求解,其基于的理论方程如下:
2)后处理:通过后处理可对求解有限元模型得到的结果进行图像化处理或列表显示,可得到的结果主要包括:1)不同音圈位移处,扬声器振动系统的各部件的形状;2)不同音圈位移处,扬声器振动系统上应力大小及分布图;3)不同音圈位移处,扬声器振动系统上弹性应变量及分布图。
所述的有限元分析软件优选为COMSOL Multiphysics,主要功能包括建立几何模型、网格划分、多物理场设置与求解、结果图像化显示。
在一具体且优选的实施例中,所述运动过程分析方法具体包括如下步骤:
S1、建立同轴扬声器的防尘圈及与其相连的纸盆椎体和座舱的几何模型;
S2、建立有限元模型;及
S3、求解及后处理;
所述步骤S2进一步包括:
S21、将步骤S1建立的所述几何模型导入有限元分析软件,并清理几何模型中多余的点、 线和面;
S22、在“固体力学”物理场下将纸盆椎体、防尘圈和座舱设置为线弹性材料;
S23、在“固体力学”物理场下,将防尘圈与座舱胶合处设置为固定约束,在纸盆椎体上沿音圈运动方向添加指定位移;
S24、设置纸盆椎体、防尘圈及座舱的材料的密度、杨氏模量及泊松比;
S25、指定网格类型为自由三角形网格,设置网格尺寸为极细化,划分网格;
所述步骤S3进一步包括:
S31、对指定位移添加参数化扫描;
S32、采用稳态分析方法对所述有限元模型进行求解;
S33、通过后处理得到如下中的至少一种:在音圈向上运动至位移最大时,防尘圈截面形状及应力分布图;振动系统在音圈向上运动至位移最大时,其结构上的应力分布图;振动系统在音圈向上运动至位移最大时,其结构上的应变分布图;振动系统随音圈上下运动的动画。
本发明采用以上方案,相比现有技术具有如下优点:
将有限元法运用于分析在不同音圈位移处振动系统的运动情况,克服传统扬声器设计时对样品的依赖,减少研发过程中的扬声器样品的制样次数,降低对研发硬件的要求,提高设计效率,节约研发成本。
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明实施例的一种运动过程分析方法的流程图;
图2为一款同轴扬声器的三维几何模型;
图3为图2中同轴扬声器的振动系统简化几何模型剖面图;
图4为振动系统形变的仿真模型;
图5为固定约束设置示意图;
图6为指定位移添加示意图;
图7为振动系统形变仿真有限元网格模型;
图8为振动系统在音圈向上运动至位移最大时,防尘圈截面形状及应力分布图(2D);
图9为振动系统在音圈向上运动至位移最大时,其结构上的应力分布图(3D);
图10为振动系统在音圈向上运动至位移最大时,其结构上的应变分布图(3D);
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
本发明以一款同轴扬声器为例,用数值仿真方法分析其防尘圈运动情况。图1示出了根据本发明的运送过程分析方法的流程图,具体步骤如下:
(1)准备
图2是一款同轴扬声器的三维几何模型图。图3为由纸盆椎体1、防尘圈2、座舱3组成的简化三维几何模型剖面图。该同轴扬声器的具体结构参见中国专利申请CN2018208056189。
(2)建立有限元模型
1)添加空间维度、物理场接口和研究类型。打开COMSOL Multiphysics软件,设置空间维度为“二维轴对称”,选择物理场接口为“固体力学”,选择研究类型为“稳态”。
2)建立振动系统几何模型。本实施例中主要研究防尘圈的变形情况,几何模型仅包括纸盆椎体1、防尘2和座舱3,如图4所示。建模过程如下:
A.导入几何模型:采用“几何”相关的操作,导入简化二维几何模型。
B.几何清理:在“几何”操作下采用几何清理功能,清理模型中多余的点、线和面。
3)设置材料模型。本实施例中分析对象在扬声器工作过程中仅发生弹性形变,故在“固体力学”物理场下将纸盆椎体1、防尘圈2和座舱3设置为线弹性材料。
4)设置边界条件和指定位移。在“固体力学”物理场下分别设置固定约束和指定位移,详细设置步骤如下:
A.固定约束:将防尘圈2与座舱3胶合处设置为固定约束,如图5所示。
B.指定位移:因为音圈未建模,故在纸盆椎体1上沿音圈运动方向添加指定位移,如图6所示。
5)定义材料属性。采用“材料”相关的操作可分别对各模型域的材料参数进行设置,本例中定义的扬声器各部件材料参数如表1所示。
表1
纸盆椎体 | 防尘圈 | 座舱 | |
密度(kg/m 3) | 750 | 1150 | 1220 |
杨氏模量(pa) | 3.7e9 | 8e7 | 2.2e9 |
泊松比 | 0.33 | 0.47 | 0.33 |
6)划分网格。图7为本例中采用的有限元网格模型,该网格划分步骤如下:
指定网格类型为自由三角形网格,设置网格尺寸为“极细化”。
(3)求解及后处理
1)稳态研究。
A.对指定位移添加参数化扫描,位移设置参考实际扬声器工作时的振幅大小,本实施例中位移设置从-9mm到9mm,步长1mm。
2)后处理。通过后处理可查看的结果如下:
A.添加“二维绘图组”,采用“表面”绘图,输入表达式solid.mises,添加“变形”,“比例因子”设置为1,绘制可得振动系统在音圈向上运动至位移最大时,防尘圈截面形状及应力分布图(2D)如图8所示。由图8可知,当音圈向上移动到位移最大处,防尘圈变形后未与座舱、纸盆椎体发生接触,也未因变形产生自我接触。
B.添加“三维绘图组”,采用“表面”绘图,输入表达式solid.mises,添加“变形”,“比例因子”设置为1,绘制可得振动系统在音圈向上运动至位移最大时,其结构上的应力分布图(3D)如图9所示。
C.添加“三维绘图组”,采用“表面”绘图,输入表达式solid.evol,添加“变形”,“比例因子”设置为1,绘制可得振动系统在音圈向上运动至位移最大时,其结构上的应变分布图(3D)如图10所示。
D.在“导出”模块添加“动画”,场景使用上述应力绘图,还可以导出振动系统随音圈上下运动的动画。
上述结果用于为扬声器设计和制造提供参考。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限定本发明的保护范围。凡根据本发明的精神实质所作的等效变换或修饰,都应涵盖在本发明的保护范围之内。
Claims (11)
- 根据权利要求1所述的运动过程分析方法,其特征在于,所述扬声器振动系统的运动过程参数包括振动系统的形变或应力、应变的空间分布。
- 根据权利要求2所述的运动过程分析方法,其特征在于,通过后处理得到的所述运动过程参数以图像显示或列表显示,所述运动过程参数包括:不同音圈位移处振动系统的部件的形状;和/或,不同音圈位移处扬声器振动系统上应力大小或应力分布图;和/或,不同音圈位移处扬声器振动系统上弹性应变量或弹性应变量分布图。
- 根据权利要求1所述的运动过程分析方法,其特征在于,根据所述几何模型建立扬声器振动系统的有限元模型包括如下步骤:S21、将扬声器振动系统及与其连接的几何模型导入有限元分析软件;S22、设置物理场及材料模型;S23、定义固定边界条件和指定位移;S24、定义材料属性;S25、划分网格。
- 根据权利要求4所述的运动过程分析方法,其特征在于,步骤21中,所述几何模型为三维几何模型或二维轴对称模型,将所述几何模型导入有限元分析软件后,清除多余的点、 线、面或体。
- 根据权利要求4所述的运动过程分析方法,其特征在于,步骤S22中,选择固体力学物理场仿真扬声器振动系统的变形情况,将材料模型设置为线弹性模型。
- 根据权利要求4所述的运动过程分析方法,其特征在于,步骤S23中,将振动系统中不参与运动的面设置为固定约束,在音圈或振动系统的其他部件上沿音圈运动方向添加指定位移。
- 根据权利要求4所述的运动过程分析方法,其特征在于,步骤S24中,材料属性包括杨氏模量、密度、泊松比、各向同性切线模量。
- 根据权利要求1所述的运动过程分析方法,其特征在于,所述扬声器振动系统的几何模型包括:振动系统部分部件的模型,或振动系统全部部件的模型,或振动系统部分部件及与其连接的部件的模型,或振动系统全部部件及与其连接的部件的模型。
- 根据权利要求1所述的运动过程分析方法,其特征在于,所述运动过程分析方法还包括对所述几何模型进行简化的步骤,采用三维绘图软件对所述几何模型简化后导入有限元分析软件中,或采用有限元软件对所述几何模型进行简化。
- 根据权利要求1所述的运动过程分析方法,其特征在于,具体包括如下步骤:S1、建立同轴扬声器的防尘圈及与其相连的纸盆椎体和座舱的几何模型;S2、建立有限元模型;及S3、求解及后处理;所述步骤S2进一步包括:S21、将步骤S1建立的所述几何模型导入有限元分析软件,并清理几何模型中多余的点、线和面;S22、在“固体力学”物理场下将纸盆椎体、防尘圈和座舱设置为线弹性材料;S23、在“固体力学”物理场下,将防尘圈与座舱胶合处设置为固定约束,在纸盆椎体上沿音圈运动方向添加指定位移;S24、设置纸盆椎体、防尘圈及座舱的材料的密度、杨氏模量及泊松比;S25、指定网格类型为自由三角形网格,设置网格尺寸为极细化,划分网格;所述步骤S3进一步包括:S31、对指定位移添加参数化扫描;S32、采用稳态分析方法对所述有限元模型进行求解;S33、通过后处理得到如下中的至少一种:在音圈向上运动至位移最大时,防尘圈截面形状及应力分布图;振动系统在音圈向上运动至位移最大时,其结构上的应力分布图;振动系统在音圈向上运动至位移最大时,其结构上的应变分布图;振动系统随音圈上下运动的动画。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811494056.1 | 2018-12-07 | ||
CN201811494056.1A CN109684683B (zh) | 2018-12-07 | 2018-12-07 | 一种扬声器振动系统的运动过程分析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020114088A1 true WO2020114088A1 (zh) | 2020-06-11 |
Family
ID=66187048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/111141 WO2020114088A1 (zh) | 2018-12-07 | 2019-10-15 | 一种扬声器振动系统的运动过程分析方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109684683B (zh) |
WO (1) | WO2020114088A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113987880A (zh) * | 2021-10-28 | 2022-01-28 | 中国石油大学(华东) | 一种基于波有限元法的预应力波导结构分析方法及系统 |
CN114842876A (zh) * | 2022-04-27 | 2022-08-02 | 厦门大学 | 一种基于振动声学的琵琶音色品质评价方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109684683B (zh) * | 2018-12-07 | 2024-03-01 | 苏州上声电子股份有限公司 | 一种扬声器振动系统的运动过程分析方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102004823A (zh) * | 2010-11-11 | 2011-04-06 | 浙江中科电声研发中心 | 一种扬声器振动和声学特性的数值模拟方法 |
CN102769817A (zh) * | 2012-07-27 | 2012-11-07 | 广州长嘉电子有限公司 | 一种基于平板扬声器的性能优化方法 |
KR20140107081A (ko) * | 2013-02-27 | 2014-09-04 | 브이피코리아 주식회사 | Bsr 검출과 소음 재현의 장치 및 방법 |
CN104252559A (zh) * | 2014-08-29 | 2014-12-31 | 浙江中科电声研发中心 | 一种扬声器多场耦合的数值仿真分析方法 |
CN109684683A (zh) * | 2018-12-07 | 2019-04-26 | 苏州上声电子股份有限公司 | 一种扬声器振动系统的运动过程分析方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103310052B (zh) * | 2013-06-09 | 2015-12-09 | 嘉善恩益迪电声技术服务有限公司 | 一种扬声器定心支片劲度系数非线性特性的数值仿真分析方法 |
CN105872914A (zh) * | 2016-03-31 | 2016-08-17 | 歌尔声学股份有限公司 | 音圈及设有该音圈的微型扬声器 |
CN107515972B (zh) * | 2017-08-10 | 2020-06-23 | 苏州上声电子股份有限公司 | 一种扬声器跌落过程的数值仿真分析方法 |
-
2018
- 2018-12-07 CN CN201811494056.1A patent/CN109684683B/zh active Active
-
2019
- 2019-10-15 WO PCT/CN2019/111141 patent/WO2020114088A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102004823A (zh) * | 2010-11-11 | 2011-04-06 | 浙江中科电声研发中心 | 一种扬声器振动和声学特性的数值模拟方法 |
CN102769817A (zh) * | 2012-07-27 | 2012-11-07 | 广州长嘉电子有限公司 | 一种基于平板扬声器的性能优化方法 |
KR20140107081A (ko) * | 2013-02-27 | 2014-09-04 | 브이피코리아 주식회사 | Bsr 검출과 소음 재현의 장치 및 방법 |
CN104252559A (zh) * | 2014-08-29 | 2014-12-31 | 浙江中科电声研发中心 | 一种扬声器多场耦合的数值仿真分析方法 |
CN109684683A (zh) * | 2018-12-07 | 2019-04-26 | 苏州上声电子股份有限公司 | 一种扬声器振动系统的运动过程分析方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113987880A (zh) * | 2021-10-28 | 2022-01-28 | 中国石油大学(华东) | 一种基于波有限元法的预应力波导结构分析方法及系统 |
CN114842876A (zh) * | 2022-04-27 | 2022-08-02 | 厦门大学 | 一种基于振动声学的琵琶音色品质评价方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109684683B (zh) | 2024-03-01 |
CN109684683A (zh) | 2019-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020114088A1 (zh) | 一种扬声器振动系统的运动过程分析方法 | |
CN107515972B (zh) | 一种扬声器跌落过程的数值仿真分析方法 | |
CN110442907B (zh) | 压电式mems扬声器基本特性的数值仿真分析方法 | |
WO2020063802A1 (zh) | 扬声器盆架在螺钉安装过程中的强度仿真分析方法 | |
CN110427650B (zh) | 动铁式扬声器基本特性的数值仿真分析方法 | |
CN102004823B (zh) | 一种扬声器振动和声学特性的数值模拟方法 | |
CN109362020B (zh) | 一种扬声器盆架动刚度的数值仿真分析方法 | |
CN109063343B (zh) | 一种基于有限元法的扬声器网罩设计方法 | |
CN109145514A (zh) | 一种扬声器失真的数值仿真分析方法 | |
CN113901617A (zh) | 微型扬声器多悬吊结构顺性的数值仿真分析方法 | |
CN108460204B (zh) | 一种通过扬声器振动部件的受力和位移反推其材料动态力学参数的方法 | |
CN103310052A (zh) | 一种扬声器定心支片劲度系数非线性特性的数值仿真分析方法 | |
Hu et al. | Effects of the Cone and Edge on the Acoustic Characteristics of a Cone Loudspeaker | |
CN112487679A (zh) | 一种音箱声学特性的数值仿真方法、系统、终端及介质 | |
CN110334459B (zh) | 一种输电塔塔线体系快速精细化建模系统及方法 | |
CN105138746B (zh) | 通过扬声器振动部件的劲度系数反推其杨氏模量的方法 | |
CN105022890B (zh) | 通过扬声器振动部件的共振频率反推其杨氏模量的方法 | |
CN108520110A (zh) | 电容式微加工超声传感器三类薄膜模型的有限元分析方法 | |
CN1863411B (zh) | 弯曲振动型薄板扬声器附加质量位置的优化方法 | |
Huang et al. | A large-diaphragm piezoelectric panel loudspeaker and its acoustic frequency response simulation method | |
CN112541276B (zh) | 一种基于缩比模型的动态响应预测等效方法 | |
CN112738692B (zh) | 滤波器设计方法、装置、耳机、电子设备和存储介质 | |
WO2020248460A1 (zh) | 一种行人警示扬声器的减震分析方法 | |
Andersen et al. | Vibro-acoustic shape optimization for radiation problems: Application to compact loudspeakers | |
Cardenas et al. | Loudspeaker rocking modes (part 1: Modeling) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19893738 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19893738 Country of ref document: EP Kind code of ref document: A1 |