WO2020114082A1 - 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法 - Google Patents

多重连续雷电流分量作用下碳纤维复合材料损伤计算方法 Download PDF

Info

Publication number
WO2020114082A1
WO2020114082A1 PCT/CN2019/110584 CN2019110584W WO2020114082A1 WO 2020114082 A1 WO2020114082 A1 WO 2020114082A1 CN 2019110584 W CN2019110584 W CN 2019110584W WO 2020114082 A1 WO2020114082 A1 WO 2020114082A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber composite
lightning current
lightning
composite material
Prior art date
Application number
PCT/CN2019/110584
Other languages
English (en)
French (fr)
Inventor
孙晋茹
姚学玲
陈景亮
许雯珺
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2020114082A1 publication Critical patent/WO2020114082A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/28Provision in measuring instruments for reference values, e.g. standard voltage, standard waveform
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Definitions

  • the invention belongs to a simulation calculation method of carbon fiber composite material lightning damage, and relates to a carbon fiber composite material damage calculation method under the action of multiple continuous lightning current components.
  • Carbon fiber composite materials not only have the characteristics of low density, high strength, high modulus, high temperature resistance and chemical corrosion resistance, but also have the soft processability of textile fibers. They are widely used in various fields such as aerospace, military and civil industries. With the improvement of aircraft design and the advancement of carbon fiber composite technology, the use of carbon fiber reinforced polymer composite CFRP (Carbon, Fiber, Reinforced Polymers) in large civil aircraft, military aircraft, drones and stealth aircraft has continued to increase, from 1960 The CFRP consumption of McDonnell Douglas DC-9 aircraft was less than 1% in the year. By the end of 2011, 50% of the main wing, tail, fuselage, floor and other structures of the Boeing B787 used CFRP materials, and the CFRP materials on the Airbus A350XWA accounted for The proportion reached 53%.
  • CFRP Carbon, Fiber, Reinforced Polymers
  • CFRP Compared with the aluminum, steel and titanium alloy materials traditionally used in aircraft, CFRP has poor electrical conductivity.
  • the resistivity of the CFRP laminate in the warp direction is in the order of 10 -5 ⁇ m
  • the resistivity in the transverse plane direction is in the order of 10 -1 ⁇ m
  • the resistivity in the depth/thickness direction is greater. This makes CFRP laminates unable to have the ability to quickly transfer or diffuse the accumulated charge in a short time like metal materials under lightning strikes. This part of the accumulated energy in the form of Joule heat makes the temperature of CFRP rise sharply, resulting in CFRP Severe damage such as fiber breakage, resin pyrolysis, and deep layering.
  • Table 1 the test modules for the direct effects of lightning in different attachment areas of aerospace vehicles are shown in Table 1.
  • the first lightning current component is A
  • the second component is B
  • the third component is C*
  • the fourth The lightning current component is H.
  • the lightning current components and timing of other model tests are similar to this.
  • thermoelectric coupling model is generally established based on the temperature threshold or the change of impedance with the degree of pyrolysis, and the initial condition of the thermoelectric coupling model is the conductivity of the carbon fiber composite material under static (DC) small current, completely The significant difference between the electrical conductivity of the carbon fiber composite material and the small static DC current under the lightning current, and the nonlinear characteristics of the carbon fiber composite material under the lightning current are ignored.
  • the lightning current component of multiple continuous uninterrupted time series in the actual lightning strike process is not considered, so that the results of the simulation calculation and the actual lightning damage under the lightning strike are significantly different.
  • the invention patent ZL2015104538855 discloses "measurement method and measuring device for impedance characteristics of carbon fiber composite materials under non-destructive lightning current", and the research results of related literature also indicate that carbon fiber composite materials are subject to lightning current due to their structure and process characteristics. The conductivity exhibits obvious nonlinear characteristics.
  • the object of the present invention is to provide a method for calculating damage of carbon fiber composite materials under the action of multiple continuous lightning current components, to accurately obtain the parameters between the lightning damage and the parameters of the lightning current components of the carbon fiber composite materials under the action of multiple continuous uninterrupted sequential lightning current components
  • the relationship provides a theoretical basis for the research and application of carbon fiber composite formulations and processes.
  • the present invention adopts the following scheme:
  • the damage calculation method of carbon fiber composite materials under the action of multiple continuous lightning current components includes the following steps:
  • the lightning current component test platform includes a lightning current component generating circuit, the high voltage end of the lightning current component generating circuit is electrically connected to the upper surface of the carbon fiber sample being tested, and the low voltage end of the lightning current component generating circuit is electrically connected to the lower surface of the carbon fiber sample being tested And ground;
  • It also includes a pulse voltage sampling unit for acquiring the upper surface voltage of the carbon fiber sample to be measured and a lightning current sampling unit for acquiring the lower surface current of the carbon fiber sample to be tested.
  • the pulse voltage sampling unit and the lightning current sampling unit are connected to the computer measurement and control analysis unit.
  • the lightning current component generating circuit is composed of an RLC circuit, a CROWBA circuit, or an L-C multi-chain network loop.
  • the lightning current component test platform includes a controllable DC charging power supply and an energy storage capacitor unit connected in parallel to the controllable DC charging power supply, and the high-voltage terminal connected between the controllable DC charging power supply and the energy storage capacitor unit is connected in series with a discharge switch and a waveform adjustment resistance in sequence It is electrically connected to the waveform adjustment inductance.
  • the waveform adjustment inductance is electrically connected to the upper surface of the carbon fiber sample to be tested.
  • the low-voltage end of the energy storage capacitor unit is electrically connected to the lower surface of the carbon fiber sample to be tested and is grounded.
  • the waveform adjusts the parameters of the inductor to obtain the lightning current component.
  • the peak current range of the lightning current component test platform is several A to several tens of A or several thousand A.
  • the method for calculating the damage of carbon fiber composite materials under the action of multiple continuous lightning current components of the present invention incorporates the boundary conditions of the dynamic impedance of carbon fiber composite materials, that is, each lightning current component (A , B, C, D, H components), the dynamic impedance curve of the carbon fiber composite material is extrapolated to obtain the anisotropic conductivity of the carbon fiber composite material under the specified lightning current component parameters under the pre-designed lightning damage simulation conditions, as
  • the initial conditions of the electrical conductivity of the material in the thermoelectric coupling model of carbon fiber composite materials can better simulate the real lightning effect of carbon fiber composite materials, and more accurately obtain the lightning damage of carbon fiber composite materials, including lightning damage area and damage depth and lightning current component parameters
  • the correlation between them to explore the mechanism of carbon fiber composite materials and lightning damage, lay a theoretical foundation for the research of carbon fiber composite materials formula, process and performance improvement and engineering applications.
  • FIG. 1 is a block diagram of the lightning current component test platform of the present invention
  • FIG. 2 is a schematic diagram of the RLC circuit
  • FIG. 3 is a schematic diagram of the CROWBAR circuit
  • Figure 4 is a schematic diagram of the L-C multi-chain network loop element
  • Fig. 6 is a simulation calculation flow chart of the lightning damage of the carbon fiber composite material under the effect of multiple continuous uninterrupted lightning current components.
  • the inventive lightning current component test platform includes a controllable DC charging power supply 1, an energy storage capacitor unit 2, a discharge switch 3, a waveform adjustment resistance 4, a waveform adjustment inductance 5, a carbon fiber sample to be tested 6, a lightning current Sampling unit 7, pulse voltage sampling unit 8 and computer measurement and control analysis unit 9.
  • the energy storage capacitor unit 2 is connected in parallel to the controllable DC charging power supply 1.
  • the high voltage terminal connected between the controllable DC charging power supply 1 and the energy storage capacitor unit 2 is connected in series with a discharge switch 3, a waveform adjustment resistor 4 and a waveform adjustment inductance 5 in sequence, and the controllable DC
  • the charging power supply 1, the energy storage capacitor unit 2, the discharge switch 3, the waveform adjustment resistor 4 and the waveform adjustment inductance 5 constitute a lightning current component generating circuit, and the high voltage end of the lightning current component generating circuit is electrically connected to the upper surface of the carbon fiber sample 6 under test.
  • the low-voltage end of the current component generating circuit is electrically connected to the lower surface of the carbon fiber sample 6 to be tested and grounded.
  • It also includes a pulse voltage sampling unit 8 for acquiring the upper surface voltage of the carbon fiber sample 6 under test and a lightning current sampling unit 7 for acquiring the lower surface current of the carbon fiber sample 6 under test, the pulse voltage sampling unit 8 and the lightning current sampling unit 7 and computer measurement and control
  • the analysis unit 9 is connected.
  • lightning current A component uses the lightning current A component as an example to explain the adjustment method of the loop parameters.
  • Other lightning current component loops can refer to this process to select the loop parameters.
  • the rise time T 1 and half-peak time T 2 of the lightning current A component are calculated as follows:
  • the lightning current A component can be generated by using the RLC circuit shown in FIG. 2 or the CROWBAR circuit shown in FIG.
  • the loop parameter selection is as follows:
  • C is the energy storage capacitor unit 2
  • L is the waveform adjustment resistance 4
  • R is the waveform adjustment inductance 5
  • U 0 is the charging voltage across the energy storage capacitor
  • T 1 is the wavefront time of the lightning current component
  • i m is the peak output current loop
  • is the damping coefficient of the circuit of Figure 2
  • T 1 * is the normalized coefficient wavefront time
  • i m * is the normalized peak factor.
  • equation (1) contains 4 unknowns. Therefore, equation (1) has infinite sets of solutions. Under the condition of assuming the capacity of the storage capacitor, the parameters can be selected according to Table 1:
  • the controllable DC charging power supply 1 is composed of a voltage regulator Tr, a transformer Tt, a rectifier diode D, and a charging resistor R 1 ; a switch S and a resistor R 2 form an energy storage capacitor safety discharge circuit.
  • the lightning current A component of the present invention can also be generated by the circuit shown in FIG. 3.
  • the lightning current component generating circuit in FIG. 3 includes an energy storage capacitor 21, a main discharge switch 31, a CROWBAR switch 32, and a waveform forming inductance 51.
  • the LC multi-chain network loop can generate the B or C component waveform of the lightning current.
  • the number of chains of the general LC multi-chain square wave loop should be greater than 8, and FIG. 4 is A square wave lightning current generating loop with an LC chain number of 12.
  • the test platform is established according to the parameters of Table 1 and the circuit of FIG. 1, and the carbon fiber sample 6 to be tested is connected in series in the circuit of FIG. 1.
  • the upper surface of the carbon fiber sample 6 to be tested is electrically connected to the high-voltage end of the lightning current generating circuit
  • the lower surface of the tested carbon fiber sample 6 is electrically connected to the low-voltage end of the lightning current generating circuit.
  • patent ZL2015104538855 the quasi-dynamic volt-ampere characteristic curve of the carbon fiber composite material under the lightning current is obtained.
  • the simulation calculation method of the lightning damage of the carbon fiber composite material of the present invention is as follows:
  • thermoelectric coupling model of the carbon fiber composite material Divide the simulation calculation grid of the thermoelectric coupling model of the carbon fiber composite material, set the parameters of the injected multiple continuous uninterrupted lightning current components, and simulate the calculation of the parameters of the multiple continuous uninterrupted lightning current components and the process of the carbon fiber composite material. Existing thermoelectric effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

一种多重连续雷电流分量作用下碳纤维复合材料损伤计算方法,利用非破坏雷电流作用下得到的多重连续不间断时序中各个雷电流分量作用下碳纤维复合材料的动态阻抗曲线,外推得到预先设计的雷电损伤仿真条件下碳纤维复合材料在规定各雷电流分量参数下的各向异性电导率,作为碳纤维复合材料热电耦合模型中材料电导率的初始条件,更好地模拟碳纤维复合材料的真实雷电效应,更为准确地得到碳纤维复合材料的雷击损伤,包括雷电损伤面积和损伤深度与雷电流分量参数之间的相关关系,探究碳纤维复合材料的雷电损伤机理,为碳纤维复合材料配方、工艺的研究及其性能提升和工程应用提供理论基础。

Description

多重连续雷电流分量作用下碳纤维复合材料损伤计算方法 技术领域
本发明属于碳纤维复合材料雷电损伤的仿真计算方法,涉及一种多重连续雷电流分量作用下碳纤维复合材料损伤计算方法。
背景技术
碳纤维复合材料既具有低密度、高强度、高模量、耐高温、耐化学腐蚀等特性,又具有纺织纤维的柔软可加工性,广泛应用于航空航天、军事及民用工业等各个领域。随着飞机设计的改进和碳纤维复合材料技术的进步,碳纤维增强型聚合物复合材料CFRP(Carbon Fiber Reinforced Polymers)在大型民用飞机、军用飞机、无人机及隐形飞机上的用量不断增长,从1960年麦道公司DC-9机型上CFRP的用量不足1%,到2011年末波音B787的主翼、尾翼、机体、地板等结构的50%用的是CFRP材料,空客A350XWA上CFRP材料所占的比例达到53%。
相比较飞机中传统使用的铝、钢和钛合金材料,CFRP的电传导性能差。一般来讲,CFRP层合板经向方向的电阻率为10 -5Ω·m量级、横向平面方向的电阻率为10 -1Ω·m量级、深度/厚度方向的电阻率更大。这就使得CFRP层合板在雷击情况下无法像金属材料那样具有短时间使积累的电荷迅速转移或扩散的能力,这部分积聚的能量以焦耳热的形式使得CFRP温度急剧升高,从而导致CFRP的纤维断裂、树脂热解、深度分层等严重损伤。
欧盟和美军标规定了航空器雷电直接的试验要求和雷电流分量,其中雷电分量包括分量A(首次雷电回击分量)或Ah(首次雷电回击的过渡分量)、B(中 间电流分量)、C/C*(持续电流分量)和D(后续回击分量)电流波,其中雷电流分量A、Ah和D波均为峰值高(分别为200kA、150kA、100kA)、上升速率快的雷电流分量;雷电流分量B可以是平均电流2kA、上升时间短、持续时间为几个毫秒的双指数波,也可以是上升较为缓慢的方波电流;雷电流分量C为上升时间缓慢、持续时间几百毫秒的电流波。而针对不同的雷电分区,航空航天器不同附着区雷电直接效应的试验模组如表1所示。
表1:航空航天器不同附着区雷电直接效应的试验
雷电流分区 雷电流波形
1A区 A,B,C*,H
1B区 A,B,C,D,H
1C区 Ah,B,C*,D,H
2A区 D,B,C*,H
2B区 D,B,C,H
3区(附着) A/5,B,C*
3区(传导) A,B,C,D,H
表1中,雷电1A分区的多重连续不间断雷电直接效应试验中有四个雷电流分量,第一个雷电流分量为A,第二个分量为B,第三个分量为C*,第四个雷电流分量为H。其它模式试验的雷电流分量及时序与此相类似。
自CFRP问世以来,诸多学者就将研究热点集中在其机械特性的研究方面,得出了机械冲击参量与CFRP的抗拉伸强度、抗压缩强度及损伤区域和损伤深度之间的关系规律。目前而言,关于碳纤维复合材料雷电损伤的研究获得了越来越广泛的关注,许多研究者在实验手段缺乏的情况下,通过建立单一雷电流A分量作用下碳纤维复合材料雷电损伤的热电耦合模型,通过仿真计算初步获得了碳纤维复合材料雷电损伤面积、损伤深度的影响规律。但是,此仿真模型一般是以温度的临界值或者阻抗随热解度变化的规律而建立的,且热电耦合模型的初始条件均是静态(直流)小电流情况下碳纤维复合材料的电导率,完全忽略了雷电流作用下碳纤维复合材料电导率与静态直流小电流的显著差异,以及 碳纤维复合材料雷电流作用下的非线性特征。同时,也没有考虑实际雷击过程的多重连续不间断时序的雷电流分量,使得仿真计算的结果与实际雷击下的雷电损伤存在较大差异。发明专利ZL 2015104538855公开了“碳纤维复合材料非破坏性雷电流作用下阻抗特性测量方法及测量装置”,相关文献的研究结果也表明:碳纤维复合材料由于其结构、工艺特性,在雷电流作用下其电导率呈现明显的非线性特性。
发明内容
本发明的目的在于提供一种多重连续雷电流分量作用下碳纤维复合材料损伤计算方法,准确地得到碳纤维复合材料在多重连续不间断时序雷电流分量作用下的雷击损伤与雷电流分量参数之间的关系,为碳纤维复合材料配方、工艺的研究及应用提供理论依据。
为实现上述目的本发明采用如下方案:
多重连续雷电流分量作用下碳纤维复合材料损伤计算方法,包括如下步骤:
(1)、建立多重连续不间断雷电效应试验的各个雷电流分量试验平台,测试获得碳纤维复合材料在各雷电流分量作用下的准动态伏安特性曲线;
(2)、对得到的碳纤维复合材料非破坏各个雷电流分量作用下的伏安特性曲线进行数值拟合,获得碳纤维复合材料阻抗或电导率与波形参数之间的数学表达式;
(3)、按照预先设计的碳纤维复合材料雷电损伤仿真条件,将碳纤维复合材料的电导率按照上述步骤(3)获得的数学表达式进行外推,计算碳纤维复合材料在规定雷电流峰值的各个多重连续不间断时序雷电流A分量、Ah分量、B分量、C分量、C*分量、D分量、H分量作用下的各向异性电导率,将雷电流 峰值的外推范围为几百A至200kA,作为多重连续雷电流作用下碳纤维复合材料热电耦合模型中材料电导率的初始条件;
(4)、设置拟建模仿真的碳纤维复合材料层合板的铺层结构,材料的密度、比热、热导率及机械强度参数;
(5)、设置碳纤维复合材料雷电损伤的仿真模型边界条件,包括环境温度、临界温度,雷击作用过程中碳纤维复合材料与周围环境的热传导及辐射系数;
(6)、划分碳纤维复合材料热电耦合模型的仿真计算网格,设定注入的多重连续不间断时序雷电流分量参数,仿真计算雷电流分量与碳纤维复合材料作用过程中存在的热电效应;
(7)、当碳纤维复合材料的温度升高到临界值之后,碳纤维复合材料内部树脂出现热解,随着材料热解度的增加,碳纤维复合材料的导电特性、导热特性及机械性能均会发生巨大变化,其导电特性由原来的绝缘或高阻状态转变为良导体;
(8)、根据仿真计算得到的碳纤维复合材料在多重连续不间断雷电流分量作用下的温度及热解度分布,对其雷电损伤面积和损伤深度进行分析。
进一步,雷电流分量试验平台包括雷电流分量发生电路,雷电流分量发生电路高压端与被测碳纤维试样上表面电气连接,雷电流分量发生电路低压端与被测碳纤维试样的下表面电气连接并接地;
还包括获取被测碳纤维试样上表面电压的脉冲电压取样单元和获取被测碳纤维试样下表面电流的雷电流取样单元,脉冲电压取样单元和雷电流取样单元与计算机测控分析单元相连。
进一步,所述雷电流分量发生电路由RLC电路、CROWBA电路或L-C多 链网络回路构成。
进一步,雷电流分量试验平台包括可控直流充电电源及并联在可控直流充电电源上的储能电容单元,可控直流充电电源和储能电容单元连接的高压端依次串联放电开关、波形调整电阻和波形调整电感,波形调整电感与被测碳纤维试样上表面电气连接,储能电容单元低压端与被测碳纤维试样的下表面电气连接并接地,通过控制储能电容单元、波形调整电阻和波形调整电感的参数获得雷电流分量。
进一步,雷电流分量试验平台电流峰值范围为几A到几十A或者几千A。
本发明的多重连续雷电流分量作用下碳纤维复合材料损伤计算方法,加入了碳纤维复合材料动态阻抗的边界条件,即利用非破坏雷电流作用下得到的多重连续不间断时序中各个雷电流分量(A、B、C、D、H分量)作用下碳纤维复合材料的动态阻抗曲线,外推得到预先设计的雷电损伤仿真条件下碳纤维复合材料在规定各雷电流分量参数下的各向异性电导率,作为碳纤维复合材料热电耦合模型中材料电导率的初始条件,更好地模拟碳纤维复合材料的真实雷电效应,更为准确地得到碳纤维复合材料的雷击损伤,包括雷电损伤面积和损伤深度与雷电流分量参数之间的相关关系,探究碳纤维复合材料与的雷电损伤机理,为碳纤维复合材料配方、工艺的研究及其性能提升和工程应用奠定理论基础。
附图说明
图1是是本发明雷电流分量试验平台原理框图;
图2是RLC电路原理图;
图3是CROWBAR电路原理图;
图4是L-C多链网络回路元原理图;
图5是雷电流分量作用下碳纤维复合材料动态电导率的测试流程图;
图6是多重连续不间断时序雷电流分量作用下碳纤维复合材料雷电损伤的仿真计算流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
参见图1,本发明的发明雷电流分量试验平台包括可控直流充电电源1、储能电容单元2、放电开关3、波形调整电阻4、波形调整电感5,被测碳纤维试样6、雷电流取样单元7、脉冲电压取样单元8和计算机测控分析单元9。
储能电容单元2并联在可控直流充电电源1上,可控直流充电电源1和储能电容单元2连接的高压端依次串联放电开关3、波形调整电阻4和波形调整电感5,可控直流充电电源1、储能电容单元2、放电开关3、波形调整电阻4和波形调整电感5构成雷电流分量发生电路,雷电流分量发生电路高压端与被测碳纤维试样6上表面电气连接,雷电流分量发生电路低压端与被测碳纤维试样6的下表面电气连接并接地,通过控制储能电容单元2、波形调整电阻4和波形调整电感5的参数,可以获得雷电流A、Ah、D和H分量。
还包括获取被测碳纤维试样6上表面电压的脉冲电压取样单元8和获取被测碳纤维试样6下表面电流的雷电流取样单元7,脉冲电压取样单元8和雷电流取样单元7与计算机测控分析单元9相连。
下面以雷电流A分量为例,来说明回路参数的调整方法,其他雷电流分量回路可以参照此过程进行回路参数的选择。
雷电流A分量的满足以下表达式为:
i(t)=I 0(e -αt-e -βt),其中:α=11354s -1,=647265s -1
由此计算得到雷电流A分量的上升时间T 1和半峰值时间T 2分别为:
T 1=3.56μs T 2=69μs
参见图2、3,雷电流A分量可以采用图2所示的RLC电路或图3所示的CROWBAR电路产生。
如果选用图2所示的RLC电路产生雷电流A分量波形,其回路参数选择按照如下步骤:
依据下面的公式(1):
Figure PCTCN2019110584-appb-000001
Figure PCTCN2019110584-appb-000002
Figure PCTCN2019110584-appb-000003
公式(1)中,C为储能电容单元2,L为波形调整电阻4,R为波形调整电感5;U 0为储能电容两端的充电电压,T 1为雷电流分量的波前时间,i m为回路输出电流的峰值,ξ为图2电路的阻尼系数;T 1 *为波前时间的归一化系数,i m *为归一化的峰值系数。
公式(1)所说的3个方程中含有4个未知数,因此,方程(1)有无穷多组解。在假定储能电容容量的条件下,可以按照表1选择参数:
表1:雷电流A分量回路参数的选择
序号 电容C 电阻R 电感L
1 100 0.9 1.4
2 50 1.8 2.8
3 25 3.6 4.2
…… …… …… ……
图2中,可控直流充电电源1由调压器Tr、变压器Tt、整流二极管D、充 电电阻R 1组成;开关S与电阻R 2组成储能电容安全泄放回路。
本发明的雷电流A分量也可以用图3所示电路产生。图3中的雷电流分量发生回路中,包含储能电容21,主放电开关31,CROWBAR开关32,波形形成电感51。
参见图4,L-C多链网络回路可以产生雷电流B或C分量波形,为了确保方波电流持续时间内峰值电流的稳定性,一般L-C多链方波回路的链数应大于8,图4就是LC链数为12的方波雷电流发生回路。
参见图5,按照表1参数和图1电路建立试验平台,将被测碳纤维试样6串接在图1回路中,被测碳纤维试样6的上表面与雷电流发生回路的高压端电气连接,被测碳纤维试样6的下表面与雷电流发生回路的低压端电气连接。按照发明专利ZL 2015104538855的测量方法,获得碳纤维复合材料雷电流作用下的准动态伏安特性曲线。对得到的碳纤维复合材料非破坏雷击作用下的伏安特性曲线进行数值拟合,获得雷电流A、Ah、D、H分量作用下碳纤维复合材料阻抗或电导率与波形参数之间的数学表达式。
同理,也可以得到了雷电流B、C分量作用下碳纤维复合材料阻抗或电导率与波形参数之间的数学表达式。
参见图6,本发明的碳纤维复合材料雷电损伤的仿真计算方法如下:
1)、按照预先设计的碳纤维复合材料多重连续不间断时序雷电损伤仿真条件,仿真计算碳纤维复合材料在规定参数(电流峰值)的多重连续不间断时序雷电流分量(包含雷电流A或Ah、B、C或C*、D、H分量)作用下的各向异性电导率,作为碳纤维复合材料热电耦合模型中材料电导率的初始条件。
2)、根据实际情况设置碳纤维复合材料层合板的铺层结构,材料的密度、 比热、热导率及机械强度等参数;
3)、设置碳纤维复合材料雷电损伤的仿真模型边界条件,包括环境温度,雷击作用过程中碳纤维复合材料与周围环境的热传导及辐射系数等。
4)、划分碳纤维复合材料热电耦合模型的仿真计算网格,设定注入的多重连续不间断雷电流分量的参数,仿真计算多重连续不间断时序的各个雷电流分量参数与碳纤维复合材料作用过程中存在的热电效应。
5)、当碳纤维复合材料的温度升高到临界值之后,碳纤维复合材料内部树脂出现热解。随着材料热解度的增加,碳纤维复合材料的导电特性、导热特性及机械性能均会发生巨大变化,其导电特性由原来的绝缘或高阻状态转变为良导体。
6)、根据仿真计算得到的碳纤维复合材料在多重连续不间断时序雷电流分量作用下的温度及热解度分布,对其雷电损伤面积和损伤深度进行分析和评估。
最后应该说明的是:以上实施例仅用于说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。

Claims (5)

  1. 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法,其特征在于包括如下步骤:
    (1)、建立多重连续不间断雷电效应试验的各个雷电流分量试验平台,测试获得碳纤维复合材料在各雷电流分量作用下的准动态伏安特性曲线;
    (2)、对得到的碳纤维复合材料非破坏各个雷电流分量作用下的伏安特性曲线进行数值拟合,获得碳纤维复合材料阻抗或电导率与波形参数之间的数学表达式;
    (3)、按照预先设计的碳纤维复合材料雷电损伤仿真条件,将碳纤维复合材料的电导率按照上述步骤(3)获得的数学表达式进行外推,计算碳纤维复合材料在规定雷电流峰值的各个多重连续不间断时序雷电流A分量、Ah分量、B分量、C分量、C*分量、D分量、H分量作用下的各向异性电导率,将雷电流峰值的外推范围为几百A至200kA,作为多重连续雷电流作用下碳纤维复合材料热电耦合模型中材料电导率的初始条件;
    (4)、设置拟建模仿真的碳纤维复合材料层合板的铺层结构,材料的密度、比热、热导率及机械强度参数;
    (5)、设置碳纤维复合材料雷电损伤的仿真模型边界条件,包括环境温度、临界温度,雷击作用过程中碳纤维复合材料与周围环境的热传导及辐射系数;
    (6)、划分碳纤维复合材料热电耦合模型的仿真计算网格,设定注入的多重连续不间断时序雷电流分量参数,仿真计算雷电流分量与碳纤维复合材料作用过程中存在的热电效应;
    (7)、当碳纤维复合材料的温度升高到临界值之后,碳纤维复合材料内部树脂出现热解,随着材料热解度的增加,碳纤维复合材料的导电特性、导热特 性及机械性能均会发生巨大变化,其导电特性由原来的绝缘或高阻状态转变为良导体;
    (8)、根据仿真计算得到的碳纤维复合材料在多重连续不间断雷电流分量作用下的温度及热解度分布,对其雷电损伤面积和损伤深度进行分析。
  2. 根据权利要求1所述的方法,其特征在于:雷电流分量试验平台包括雷电流分量发生电路,雷电流分量发生电路高压端与被测碳纤维试样(6)上表面电气连接,雷电流分量发生电路低压端与被测碳纤维试样(6)的下表面电气连接并接地;
    还包括获取被测碳纤维试样(6)上表面电压的脉冲电压取样单元(8)和获取被测碳纤维试样(6)下表面电流的雷电流取样单元(7),脉冲电压取样单元(8)和雷电流取样单元(7)与计算机测控分析单元(9)相连。
  3. 根据权利要求2所述的方法,其特征在于:所述雷电流分量发生电路由RLC电路、CROWBA电路或L-C多链网络回路构成。
  4. 根据权利要求3所述的方法,其特征在于:雷电流分量试验平台包括可控直流充电电源(1)及并联在可控直流充电电源(1)上的储能电容单元(2),可控直流充电电源(1)和储能电容单元(2)连接的高压端依次串联放电开关(3)、波形调整电阻(4)和波形调整电感(5),波形调整电感(5)与被测碳纤维试样(6)上表面电气连接,储能电容单元(2)低压端与被测碳纤维试样(6)的下表面电气连接并接地,通过控制储能电容单元(2)、波形调整电阻(4)和波形调整电感(5)的参数获得雷电流分量。
  5. 根据权利要求1-4任一项所述的方法,其特征在于:雷电流分量试验平台电流峰值范围为几A到几十A或者几千A。
PCT/CN2019/110584 2018-12-06 2019-10-11 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法 WO2020114082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811489506.8 2018-12-06
CN201811489506.8A CN109738489B (zh) 2018-12-06 2018-12-06 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法

Publications (1)

Publication Number Publication Date
WO2020114082A1 true WO2020114082A1 (zh) 2020-06-11

Family

ID=66359209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110584 WO2020114082A1 (zh) 2018-12-06 2019-10-11 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法

Country Status (2)

Country Link
CN (1) CN109738489B (zh)
WO (1) WO2020114082A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210215629A1 (en) * 2018-12-06 2021-07-15 X1' An Jiaotong University Lightning damage assessment method for carbon fiber reinforced polymer material considering non-linear impedance characteristic
CN115219792A (zh) * 2022-07-29 2022-10-21 北京宇航系统工程研究所 一种碳纤维复合材料非线性电导率测量装置和方法
CN117290908A (zh) * 2023-11-27 2023-12-26 西安爱邦电磁技术有限责任公司 雷电流连续组合分量的电热仿真方法
CN115219792B (zh) * 2022-07-29 2024-06-11 北京宇航系统工程研究所 一种碳纤维复合材料非线性电导率测量装置和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109783849B (zh) * 2018-12-06 2021-11-23 西安交通大学 单一快上升雷电流分量作用下碳纤维复合材料损伤计算方法
CN109738489B (zh) * 2018-12-06 2023-12-29 西安交通大学 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法
CN112287572B (zh) * 2019-07-09 2023-10-31 中国航发商用航空发动机有限责任公司 复杂系统及其雷击直接效应防护优化与验证方法和装置
CN110887876B (zh) * 2019-11-15 2021-07-27 上海交通大学 碳纤维复合材料层合板雷击损伤的检测方法
CN111651952B (zh) * 2020-03-16 2022-12-13 西安交通大学 一种抱杆通信系统雷电流特性的计算方法
CN111400910B (zh) * 2020-03-16 2022-06-07 西安交通大学 四角塔通信基站系统的雷电流分流特性计算方法
CN111579870B (zh) * 2020-04-23 2022-07-26 南京邮电大学 结构件损伤监测与累积程度的诊断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137885A (zh) * 2015-09-17 2015-12-09 西安交通大学 一种多开关、多回路协同工作的控制系统和控制方法
CN105158572A (zh) * 2015-07-28 2015-12-16 西安交通大学 碳纤维复合材料非破坏性雷电流作用下阻抗特性测量方法及测量装置
CN105403778A (zh) * 2015-09-17 2016-03-16 西安交通大学 一种多回路时序工作的测量方法和系统
GB2545494A (en) * 2015-12-18 2017-06-21 Airbus Operations Ltd A structure formed from composite material
CN107271866A (zh) * 2017-06-23 2017-10-20 西安交通大学 光纤复合架空地线四重连续时序雷击直接效应的试验装置及方法
CN109738489A (zh) * 2018-12-06 2019-05-10 西安交通大学 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158572A (zh) * 2015-07-28 2015-12-16 西安交通大学 碳纤维复合材料非破坏性雷电流作用下阻抗特性测量方法及测量装置
CN105137885A (zh) * 2015-09-17 2015-12-09 西安交通大学 一种多开关、多回路协同工作的控制系统和控制方法
CN105403778A (zh) * 2015-09-17 2016-03-16 西安交通大学 一种多回路时序工作的测量方法和系统
GB2545494A (en) * 2015-12-18 2017-06-21 Airbus Operations Ltd A structure formed from composite material
CN107271866A (zh) * 2017-06-23 2017-10-20 西安交通大学 光纤复合架空地线四重连续时序雷击直接效应的试验装置及方法
CN109738489A (zh) * 2018-12-06 2019-05-10 西安交通大学 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TING HU ET AL: "Thermoelectric Coupling Simulation of the Lightning Damage of Aircraft Composite", 2016 7TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING (ICMAE), 20 July 2016 (2016-07-20), pages 35 - 40, XP032949628, DOI: 10.1109/ICMAE.2016.7549504 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210215629A1 (en) * 2018-12-06 2021-07-15 X1' An Jiaotong University Lightning damage assessment method for carbon fiber reinforced polymer material considering non-linear impedance characteristic
CN115219792A (zh) * 2022-07-29 2022-10-21 北京宇航系统工程研究所 一种碳纤维复合材料非线性电导率测量装置和方法
CN115219792B (zh) * 2022-07-29 2024-06-11 北京宇航系统工程研究所 一种碳纤维复合材料非线性电导率测量装置和方法
CN117290908A (zh) * 2023-11-27 2023-12-26 西安爱邦电磁技术有限责任公司 雷电流连续组合分量的电热仿真方法
CN117290908B (zh) * 2023-11-27 2024-03-26 西安爱邦电磁技术有限责任公司 雷电流连续组合分量的电热仿真方法

Also Published As

Publication number Publication date
CN109738489B (zh) 2023-12-29
CN109738489A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
WO2020114082A1 (zh) 多重连续雷电流分量作用下碳纤维复合材料损伤计算方法
WO2020114079A1 (zh) 单一快上升雷电流分量作用下碳纤维复合材料损伤计算方法
Wang et al. Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike
Foster et al. Understanding how arc attachment behaviour influences the prediction of composite specimen thermal loading during an artificial lightning strike test
CN109492330B (zh) 单一雷电流分量作用下碳纤维复合材料损伤仿真计算方法
Hirano et al. Artificial lightning testing on graphite/epoxy composite laminate
Dong et al. Influencing factor analysis based on electrical–thermal-pyrolytic simulation of carbon fiber composites lightning damage
WO2020114080A1 (zh) 考虑非线性阻抗特征的碳纤维复合材料雷电损伤评估方法
Lee et al. Coupled thermal electrical and mechanical lightning damage predictions to carbon/epoxy composites during arc channel shape expansion
CN103018645B (zh) 一种碳纤维复合材料的人工雷击损伤测试装置和测试方法
CN103048381B (zh) 一种纤维复合材料抗雷击损伤性能的测试装置和测试方法
Wang et al. Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh
CN109783848B (zh) 单一缓上升雷电流分量作用下碳纤维复合材料损伤计算方法
Yin et al. Experimental and numerical simulation analysis of typical carbon woven fabric/epoxy laminates subjected to lightning strike
Gharghabi et al. Development of an experimental setup to analyze carbon/epoxy composite subjected to current impulses
CN109765268B (zh) 单一雷电流分量作用下碳纤维复合材料雷电损伤多因素评估方法
CN203037808U (zh) 一种碳纤维复合材料的人工雷击损伤测试装置
CN107122538A (zh) 一种特高压直流换流站接头端子的温升优化方法及系统
CN203037807U (zh) 一种碳纤维复合材料的抗人工雷击损伤性能的测试装置
CN109781786B (zh) 考虑碳纤维复合材料非线性阻抗的多重连续雷电流分量作用下雷电损伤的多因素评估方法
CN109783847B (zh) 多重连续雷电流分量作用下碳纤维复合材料损伤多影响因素的评估方法
Fu et al. Investigation on temperature behavior of CFRP during lightning strike using experiment and simulation
CN109781777B (zh) 非破坏雷电流分量作用下碳纤维复合材料温度特性测量、校准方法和测试系统
Gharghabi et al. Development of an experimental setup to study carbon/epoxy composite subjected to simulated lightning current
Sontakkey et al. Characterisation of the lightning strike damage mechanics onto composite materials and discussion on its numerical modelling techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894249

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19894249

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19894249

Country of ref document: EP

Kind code of ref document: A1