WO2020113927A1 - 一种自适应抵消无源互调信号的装置及其方法 - Google Patents

一种自适应抵消无源互调信号的装置及其方法 Download PDF

Info

Publication number
WO2020113927A1
WO2020113927A1 PCT/CN2019/090976 CN2019090976W WO2020113927A1 WO 2020113927 A1 WO2020113927 A1 WO 2020113927A1 CN 2019090976 W CN2019090976 W CN 2019090976W WO 2020113927 A1 WO2020113927 A1 WO 2020113927A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
passive intermodulation
intermodulation
amplitude
frequency
Prior art date
Application number
PCT/CN2019/090976
Other languages
English (en)
French (fr)
Inventor
孟庆南
Original Assignee
香港梵行科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201822014238.6U external-priority patent/CN210041824U/zh
Application filed by 香港梵行科技有限公司 filed Critical 香港梵行科技有限公司
Publication of WO2020113927A1 publication Critical patent/WO2020113927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the invention relates to the field of wireless communication. Specifically, the present invention relates to an apparatus and method for adaptively canceling passive intermodulation signals.
  • wireless transceiver devices In communication systems, a large number of wireless transceiver devices are used.
  • the wireless transceiver equipment itself contains devices that generate passive intermodulation signals, such as RF duplexers, filters, combiners, etc.; the link from the antenna port of the wireless transceiver equipment to the antenna also contains many passive intermodulation signals.
  • Devices such as couplers, RF cables, tower-mounted amplifiers, etc.
  • the passive intermodulation signal level generated by the transmitting channel is as low as possible when the wireless transceiver equipment is working, so as to prevent the passive intermodulation signal from falling into the receiving channel and causing intermodulation interference to the receiving channel.
  • the current passive intermodulation cancellation technology generally has two ways:
  • Comparative document CN100490307C discloses an invention patent titled: "Signal Processing Circuit, Base Station and Method for Eliminating Intermodulation Products".
  • This patent divides the original carrier of the input non-linear unit into two channels, and inputs two branches respectively.
  • One original carrier passes through the non-linear unit to generate a processing signal containing the first set of intermodulation products
  • the second original carrier passes through the splitter, frequency multiplier, mixer and adjustment circuit.
  • Generate a control signal containing the second set of higher-order intermodulation products and finally superimpose the two signals. It uses the second set of high-order intermodulation and the first set of intermodulation products to have the same frequency, close to the same amplitude, and opposite phase to cancel the intermodulation signal.
  • the technical solution has the following shortcomings: 1.
  • the technical solution is not applicable to passive devices, it does not consider the difference of intermodulation values at different positions inside the nonlinear unit, this difference is very obvious for passive devices, in passive circuits
  • the amplitude attenuation and phase change of the transmitted signal are very large.
  • the intermodulation signal generated at the front end of the circuit will be greatly attenuated during signal transmission.
  • the intermodulation signal output by the circuit only contains the intermodulation signal generated at the end of the circuit. Therefore, for the duplexer In other words, if the signal is taken from the front end of the non-linear unit, the generated intermodulation cancellation signal cannot be canceled with the antenna port intermodulation signal; 2.
  • the intermodulation cancellation signal generated by this technical solution is the second group of high-order intermodulation
  • the product is limited to a fixed-order intermodulation product, which can only eliminate the intermodulation signal of the nonlinear unit in the corresponding frequency band, which has limitations.
  • Comparative document 201310048951.1 discloses an invention patent entitled "An Intermodulation Cancellation Device for Passive Devices". This patent directly couples the emission signal containing high-order intermodulation products from the output of the passive device. After the adjustment of the source regulator is transmitted to the end of the RF link with the intermodulation signal generator, it is adjusted again by the passive regulator to obtain the same frequency, level and opposite phase as the intermodulation signal transmitted by the passive device. The cancellation signal of the signal is superimposed on the output signal of the passive nonlinear unit through the coupler to achieve intermodulation cancellation.
  • the technical solution has the following disadvantages: 1.
  • the technical solution uses a passive regulator, amplitude adjustment and phase adjustment are passive devices, if you want to achieve amplitude adjustment and phase adjustment, you need to drive the passive regulator with the help of external force, such as using a motor drive , Or directly driven by manual, these methods will make the actual application cost high, and it is not easy to commercialize; 2. Because there is no feedback detection circuit for passive intermodulation cancellation results, the cancellation results cannot be monitored and adjusted in real time.
  • One of the objectives of the present invention is to overcome the above-mentioned deficiencies in the background technology, and to provide a digitally adaptive device for canceling passive intermodulation signals in a wireless transceiver system so that it can connect wireless transceiver equipment and the antenna port of the equipment Passive intermodulation signals generated by other devices or components on the link to the antenna cancel the components falling into the receiving frequency band.
  • the present invention provides an apparatus for adaptively canceling passive intermodulation signals, characterized in that it includes a first coupler, a canceller circuit, a second coupler, a passive intermodulation detection circuit, a digital processing unit, and duplex Transmitter, transmitter circuit unit, antenna feeder assembly, antenna; one main access port of the first coupler is connected to the antenna port of the duplexer, and the other main access port is connected to the antenna feeder assembly on the antenna link, The coupling port of the first coupler is connected to a radio frequency port of the canceller circuit; one main channel port of the second coupler is connected to the receiving port of the duplexer, and the other main channel port is connected to the passive intermodulation detection circuit, the second The coupling port of the coupler is connected to another RF port of the canceller circuit; the output end of the passive intermodulation detection circuit is electrically connected to the input end of the digital processing unit, and the digital processing unit is electrically connected to the transmission circuit unit via the transmission signal frequency discrimination circuit The output end of the digital processing unit is electrically
  • the first coupler couples a radio frequency signal from the link of the antenna port of the duplexer to the canceller circuit;
  • the radio frequency signal includes a transmission signal, a passive intermodulation signal, and a reception signal; and the first coupler
  • One main channel port is connected to the antenna port of the duplexer, another main channel port is connected to the antenna feeder component on the antenna link, the coupling port of the first coupler and a radio frequency port of the canceller circuit are connected;
  • the second coupler superimposes the intermodulation cancellation signal generated by the canceller circuit on the link behind the receiving port of the duplexer.
  • the digital processing unit calculates the detected amplitude of the passive intermodulation signal according to the frequency information of the transmitted signal and compares it with the preset value of the passive intermodulation; according to the comparison result between the detected amplitude and the preset value,
  • the canceller circuit selects whether to generate an intermodulation cancellation signal; the digital processing unit is connected to the canceller circuit through a multi-channel digital-to-analog converter, and transfers the control amounts of amplitude and phase to the canceller circuit.
  • the requirements for amplitude adjustment accuracy and phase adjustment accuracy mainly come from the requirement of passive intermodulation signal cancellation capability.
  • the duplexer in the device represents a passive device in a wireless transceiver device; the antenna feed component and antenna represent a passive device in an antenna link of a wireless transceiver system, and the antenna feed component represents A combination of single or multiple passive devices in an antenna link.
  • passive devices include but are not limited to cables, connectors, couplers, and combiners.
  • the transmission signal input into the radio frequency signal of the canceller circuit is processed by the radio frequency switch, the amplitude modulation circuit, the circulator and the intermodulation signal generator to produce the same frequency and different amplitude as the passive intermodulation signal
  • the passive intermodulation signal generated by the duplexer and its antenna link falls into a single third-order component, or a single fifth-order component, or a single higher-order component, or multiple third-frequency components at different frequency points , Or 5th-order components of multiple different frequency points, or higher-order components of multiple different frequency points, or there are amplitude relationships and phase relationships between 3
  • the amplitude of the intermodulation signal generated by the power of the received signal and the passive intermodulation signal in the radio frequency signal coupled to the canceller circuit on the intermodulation signal generator is much smaller than the amplitude of the passive intermodulation signal, Does not affect the passive intermodulation cancellation results;
  • the direct filtering integration method refers to directly digitally filtering and integrating the amplitude based on the bandwidth of the passive intermodulation signal, at which time the frequency interval between each order component of the passive intermodulation signal falling into the receiving frequency band and the receiving signal To be greater than or equal to the passive intermodulation signal in the digital filtering algorithm of the digital filter passband to stopband transition band bandwidth, this frequency interval is the basis of the direct filter integration method;
  • the second main path port of the second coupler is connected to the RF input end of the passive intermodulation detection circuit, and the coupling port of the second coupler Connect a canceller circuit; the insertion loss of the first coupler is less than 0.2dB; the coupling degree of the first coupler ranges from 25dB to 45dB; the coupling port of the first coupler is a forward coupling port relative to the transmitted signal; The load power of the first coupler must be greater than the maximum transmit power peak of the device.
  • the bandwidth of the first coupler must include the transmit frequency band.
  • the passive intermodulation detection circuit includes a low-noise amplifier, a down-conversion module, and a high-speed analog-to-digital converter.
  • the input terminal of the noise amplifier is electrically connected to the receiving port of the duplexer, and the output terminal of the noise amplifier passes through the down-conversion module. It is electrically connected to the input end of the high-speed analog-to-digital converter, and the output end of the high-speed analog-to-digital converter is electrically connected to the input end of the digital processing unit;
  • one end of the amplitude modulation circuit in the canceller circuit is directly connected to the coupling port of the first coupler, or is connected to the coupling port of the first coupler through an RF switch; the other end is connected to an intermodulation signal generator through a circulator;
  • the intermodulation signal generator is connected to the amplitude modulation phase modulator through a circulator, one end of the filter is connected to the amplitude modulation phase modulator, and the other end is connected to the coupling port of the second coupler.
  • the passive intermodulation detection circuit includes at least a low noise amplifier, a down conversion module, and a high-speed analog-to-digital converter; the passive intermodulation detection circuit is connected to the digital processing unit through a high-speed analog-to-digital converter ;
  • the invention provides a wireless transceiver device, comprising the device for adaptively canceling passive intermodulation signals, and the duplexer of the device for adaptively canceling passive intermodulation signals is the duplex of the wireless transceiver device
  • the passive intermodulation detection circuit of the device for adaptively canceling passive intermodulation signals described in this apparatus multiplexes the components or units of the receive link of the wireless transceiver equipment, or adds passives to the wireless transceiver equipment Intermodulation detection circuit;
  • the transmission circuit unit of the device for adaptively canceling passive intermodulation signals multiplexes the components or units of the transmission link of the wireless transceiver equipment;
  • the device of the device for adaptively canceling passive intermodulation signals The digital processing unit multiplexes the components or units of the digital processing unit of the wireless transceiver device, or adds a digital processing unit to the wireless transceiver device, and the digital processing unit will be integrated into the overall program of the wireless transceiver device;
  • One main channel port is connected to the duplexer receiving port of the wireless transceiver equipment and the distance needs to be controlled within the range of 0 to 1 meter.
  • the specific length is offset by passive intermodulation
  • the best effect determines that the coupling port of the second coupler is a reverse coupling port relative to the signal received by the wireless transceiver device; the canceler circuit of the device for adaptively canceling passive intermodulation signals needs to be transmitted and received in the wireless Newly added in the device, and one RF input port is directly connected to the coupling port of the first coupler, and the other RF output port is directly connected to the coupling port of the second coupler.
  • the invention provides a method for adaptively canceling passive intermodulation signals in a wireless transceiver system, characterized in that the method includes the following steps,
  • S1 Obtain the transmitted signal bandwidth and frequency band, the received signal bandwidth and frequency band, the order and frequency band information of the main interference components in the passive intermodulation signal, the expected passive intermodulation preset value and the time-varying through the digital processing unit The initial empirical data of the curve, amplitude and phase, the maximum number of cancellations and other information, and converted into the corresponding configuration parameters;
  • step S2 According to the configuration parameters of the transmitted signal in step S1, the digital processing unit obtains the frequency point of the passive intermodulation signal and converts it into the corresponding digital filtering parameter and stores it in the parameter configuration table;
  • the digital processing unit samples the passive intermodulation detection circuit according to the configuration parameters of the received signal, the configuration parameters of the passive intermodulation signal in step S1, and the digital filtering parameters of the passive intermodulation signal obtained in step S2
  • the signal is digitally filtered to filter out other signal components except the passive intermodulation signal, and the amplitude value of the passive intermodulation signal that falls into the receiving frequency band is obtained;
  • the algorithm for determining the amplitude value includes but is not limited to segmented integration Method, direct integration method based on signal bandwidth;
  • step S6 If the judgment result in step S5-1 is "Yes", the canceller circuit continues to maintain the high isolation state of the link between the intermodulation signal generator and the first coupler; and returns to step S2;
  • step S5-2 Compare the amplitude value of the passive intermodulation signal obtained in step S3 with the preset value of the passive intermodulation signal in step S1 to determine whether the amplitude of the passive intermodulation signal is less than or equal to the preset value of passive intermodulation; If the judgment result of step S5-2 is "Yes”, then maintain the state and return to step S2; if the judgment result of step S5-2 is "No", then execute step S8;
  • FIG. 5 is a flowchart of a method for adaptively canceling passive intermodulation signals in a wireless transceiver system according to an embodiment of the present invention.
  • Table 1 is a passive intermodulation cancellation test record of the device of the embodiment of the present invention.
  • FIG. 7 is a diagram of the cancellation effect of the fifth-order component after the cancellation of the third-order component of the device of the embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a wireless transceiver device having an adaptive cancellation passive intermodulation signal function according to an embodiment of the present invention.
  • FIG. 13 is an ACPR test result diagram of a high-frequency point signal in a dual-carrier transmission signal when the passive intermodulation cancellation function is turned on after the wireless transceiver device is used in an embodiment of the present invention.
  • FIG. 15 is an EVM test result diagram of a high-frequency point signal when the passive intermodulation cancellation function is not enabled after the wireless transceiver device according to an embodiment of the present invention is used, and then the received signal is looped back to the transmit link.
  • 17 is an EVM test result diagram of a high-frequency point signal when the passive intermodulation cancellation function is turned on after the wireless transceiver device is used in the embodiment of the present invention, and then the received signal is looped back to the transmit link.
  • FIG. 18 is a schematic structural diagram of a wireless repeater capable of adaptively canceling passive intermodulation signals according to an embodiment of the present invention.
  • 19 is a schematic diagram of one example of use of a wireless transceiver device and multiple transceiver links in an embodiment of the present invention.
  • 20 is a schematic diagram of one example of use of a wireless transceiver device having multiple transceiver links in an embodiment of the present invention.
  • the present invention relates to an apparatus for adaptively canceling passive intermodulation signals, which includes a first coupler A, a canceller circuit B, a second coupler B5, a passive intermodulation detection circuit D, and a digital Processing unit E, duplexer A0, transmitting circuit unit F, antenna feeder A2, antenna A1; duplexer A0 in the device represents a passive device in the wireless transceiver equipment; antenna feeder A2 and antenna A1 Represents passive devices in the antenna link of the wireless transceiver system, and the antenna feed component A2 represents a combination of single or multiple passive devices in the antenna link.
  • These passive devices include but are not limited to cables, connectors, couplers ,Combiner.
  • the transmission signal of the transmission circuit unit F greater than a certain radio frequency power value causes the duplexer A0 and its antenna link to generate a passive intermodulation signal; the transmission signal is composed of a multi-tone signal or a multi-carrier modulation signal Pose.
  • the signal of the transmitting circuit unit F greater than 40 dBm causes the duplexer A0 and the antenna feed component A2 and antenna A1 on the antenna link to generate a passive intermodulation signal, and the passive intermodulation There are components in the signal that fall into the receiving band of the duplexer A0 and have a certain frequency interval from the received signal.
  • the components of the passive intermodulation signal that fall into the receiving band of the duplexer A0 include A single third-order component, or a single fifth-order component, or even a single higher-order component, or multiple different-frequency third-order components, or multiple different-frequency fifth-order components, or even multiple multiple-frequency higher-order components Or, there are 3rd-order components, 5th-order components and even higher-order components at the same time; in this embodiment, the transmission frequency band is 925MHz to 960MHz, and the reception frequency band is 880MHz to 915MHz;
  • the first coupler A couples a radio frequency signal from the link of the antenna port of the duplexer A0 to the canceller circuit B;
  • the radio frequency signal includes a transmission signal, a passive intermodulation signal, and a reception signal;
  • the first One main channel port of a coupler A is directly connected to the antenna port of the duplexer A0, another main channel port is connected to the antenna feed component A2 on the antenna link, the coupling port of the first coupler A and the canceller A radio frequency port of circuit B is connected;
  • the second coupler B5 superimposes the intermodulation cancellation signal generated by the canceller circuit B on the link behind the receiving port of the duplexer A0, and a main path port of the second coupler B5 It is directly connected to the receiving port of duplexer A0, and the distance needs to be controlled within the range of 0 to 1 meter.
  • the distance is 0 meters, and the specific length is determined by the best effect of passive intermodulation cancellation.
  • the main path port is a first main path port, another main path port is connected to the passive intermodulation detection circuit D as a second main path port, the coupling port of the second coupler B5 and another radio frequency port of the canceller circuit B connection.
  • the duplexer A0 or the antenna feeder A2 or the antenna A1 When the duplexer A0 or the antenna feeder A2 or the antenna A1 generates a single or multiple passive devices simultaneously and superimposes the passive intermodulation signal with a certain frequency interval from the received signal, there will be only a single 3 Order, or a single 5th order or a higher order component falls into the receiving band of the duplexer A0 and causes the passive intermodulation index tested from the receiving port of the duplexer A0 to fail to meet the preset value requirements, so that all The passive intermodulation value of the second main path port of the second coupler B5 after the receiving port of the duplexer A0 satisfies the preset value requirement and makes the cancellation capability of the device greater than 20dB:
  • the canceller circuit B uses the transmission signal in the obtained radio frequency signal to generate an intermodulation signal generator B2 in the canceller circuit B with the same frequency, different amplitude and different phase as the passive intermodulation signal.
  • Modulation signal; and the amplitude of the intermodulation signal generated by the power of the received signal and the passive intermodulation signal in the radio frequency signal on the intermodulation signal generator B2 is much smaller than the amplitude of the above-mentioned passive intermodulation signal, wrong Passive intermodulation cancellation results have an effect; after being reflected, the intermodulation signal passes through the amplitude adjustment and phase adjustment of the amplitude modulation phase modulator B1 in the canceller circuit B, and is coupled out to the main path of the second coupler B5, forming a An intermodulation cancellation signal in the passive intermodulation signal that falls into the receiving frequency band and has a certain frequency interval from the received signal and has the same frequency, the same amplitude and the opposite phase, the intermodulation cancellation signal and the passive intermodulation signal
  • the canceled passive intermodulation signal is less than or equal to the preset value of passive intermodulation; at the same time, the transmitted and received signals in duplexer A0 and its antenna link are in duplexer A0 And its antenna link is operating normally; in addition, the maximum amplitude of the intermodulation cancellation signal that can be generated by the intermodulation signal generator B2 is greater than the passive mutual interaction of the duplexer A0 and its antenna link The amplitude of a single component of the modulated signal that falls into the corresponding frequency of the receiving frequency band;
  • the duplexer A0 or the antenna feeder A2 or the antenna A1 When the duplexer A0 or the antenna feeder A2 or the antenna A1 generates a single or multiple passive devices simultaneously and superimposes the passive intermodulation signal with a certain frequency interval from the received signal, there are only a few different The 3rd order frequency, or 5th order or more higher order components of different frequencies fall into the receiving band of the duplexer A0 and cause the passive intermodulation index tested from the receiving port of the duplexer A0 to reach When the preset value is not met, in order to make the passive intermodulation value after the second main path port of the second coupler B5 after the receiving port of the duplexer A0 meet the preset value requirement and make the device's cancellation capability Greater than 20dB.
  • the transmission signal input to the RF signal of the canceller circuit B is processed by the RF switch B3, the amplitude modulation circuit 3, the circulator 4 and the intermodulation signal generator B2 to produce the same frequency and different amplitude as the passive intermodulation signal
  • the passive intermodulation signal generated by the duplexer A0 and its antenna link falls into a single 3rd-order component, or a single 5th-order component, or a single higher-order component of the receiving frequency band, or a third-order of multiple different frequency points Components, or 5th-order components at multiple different frequency points, or higher-order components at multiple
  • the canceled passive intermodulation signal is less than or equal to the preset value of passive intermodulation; at the same time, the transmitted and received signals in duplexer A0 and its antenna link are in the duplexer A0 and its antenna link are operating normally; in addition, the maximum amplitude of the intermodulation cancellation signal corresponding to the frequency of the passive intermodulation component that can be generated by the intermodulation signal generator B2 is greater than that of the duplexer A0 The amplitude of multiple corresponding frequency components that fall into the receiving frequency band in the passive intermodulation signal of its antenna link.
  • the intermodulation signal generator B2 when actually selecting the specific device that constitutes the intermodulation signal generator B2, the intermodulation signal generator B2 should generate the same frequency and different amplitude as the passive intermodulation signal in the radio frequency signal.
  • the passive intermodulation signal generated by the duplexer A0 and its antenna link falls into a single 3rd-order component, or a single 5th-order component, or a single higher-order component of the receiving frequency band, or a third-order of multiple different frequency points Components, or 5th-order components at multiple different frequency points, or higher-order components at multiple different frequency points, or there
  • the first coupler A has a second position: the first coupler A is serially connected to the transmitting circuit unit F of the device, and one of the main path port and the duplexer A0 transmit Port connection; at this time, the first coupler A directly couples the transmitted signal output to the canceler circuit B;
  • the amplitude adjustment and phase adjustment of the AM phase modulator B1 are realized by the amplitude and phase control parameters calculated by the digital processing unit E; and the calculation of the amplitude and phase control parameters of the digital processing unit E requires Sampling signal of passive intermodulation detection circuit D;
  • the attenuation of the radio frequency switch B3 in the canceler circuit B at the amplitude modulation circuit 3 can prevent the intermodulation signal generator B2 from generating the intermodulation signal that can affect the passive intermodulation performance of the duplexer A0, and can be omitted;
  • the filter 5 in the canceller circuit B may be located between the circulator 4 and the AM phase modulator B1, or between the AM phase modulator B1 and the second coupler B5;
  • the passive intermodulation detection circuit D is used to amplify the RF signal after the receiving port of the duplexer A0 through a gain-adjustable control, down-convert, and finally convert it into a digital signal and input it to the digital processing unit E.
  • the radio frequency port of the passive intermodulation detection circuit D is directly connected to the second main path port of the second coupler B5 after the receiving port of the duplexer A0.
  • the radio frequency signal obtained by the circuit includes the received signal and the passive intermodulation signal.
  • the passive intermodulation detection circuit D passes the high-speed mode
  • the digital converter is connected to the digital processing unit E, and the sampling rate of the high-speed analog-to-digital converter is greater than or equal to 2 times the duplexer A0 receiving band bandwidth.
  • the digital processing unit E When the radio frequency signal in the passive intermodulation detection circuit D is too large and the link is blocked, the digital processing unit E will reduce the link gain of the passive intermodulation detection circuit D to process the received signal normally and stop detecting the passive intermodulation signal Amplitude; when the passive intermodulation detection circuit D is not blocked, the digital processing unit E needs to process the signal from the passive intermodulation detection circuit D in the process of calculating the passive intermodulation amplitude
  • the passive intermodulation signal and the received signal and there is a certain frequency interval between the passive intermodulation signal and the received signal; the method of calculating the amplitude of the passive intermodulation signal is: the digital processing unit E first calculates the Relevant frequency information of passive intermodulation signal, then according to the received signal frequency, bandwidth information and passive intermodulation signal frequency, bandwidth information to find the frequency interval between them, and select an appropriate algorithm to calculate the passive according to the frequency interval
  • the amplitude of the intermodulation signal; the algorithm for calculating the amplitude of the passive intermodulation signal
  • the frequency interval between each order component of the passive intermodulation signal falling into the receiving frequency band and the received signal should be greater than or equal to the digital filter algorithm of the passive intermodulation signal.
  • the bandwidth of the transition band to the stop band, this frequency interval is the basis of the direct filter integration method; the segmented filter integration method refers to dividing the passive intermodulation signal bandwidth into several sub-bandwidths, and performing digital filtering according to each sub-bandwidth Integrate to find the amplitude, and then accumulate the amplitudes corresponding to all sub-bandwidths to obtain the entire signal amplitude.
  • the frequency interval between each order component and the received signal should be greater than or equal to the number of the side subband signals of each order component
  • the bandwidth of the transition band from the pass band of the filter to the stop band, and this frequency interval is the basis of the segmented filtering integration method.
  • the digital processing unit E first calculates the frequency information of the passive intermodulation signal related to it based on the frequency information of the transmitted signal, and converts it into the filtering parameter of the passive intermodulation signal, and then based on the received signal frequency and bandwidth information Obtain the frequency interval between them with the frequency and bandwidth information of the passive intermodulation signal, and then select the corresponding digital filtering method and integration method to finally realize the amplitude detection of the passive intermodulation signal; and then the passive intermodulation signal
  • the detected amplitude of the modulated signal is compared with the preset value of passive intermodulation: when the detected amplitude is less than or equal to the preset value, the canceller circuit B does not generate an intermodulation cancellation signal, and the duplex A0 and the passive intermodulation index of its antenna link have an impact; when the detected amplitude is greater than the preset value, the cancellation circuit B is controlled to adjust its amplitude and phase
  • the passive intermodulation signals with the same frequency, the same amplitude and the opposite phase of the passive intermodulation
  • One method for the digital processing unit E to obtain the transmitted signal frequency information and the received signal frequency information is to use the transmitted signal discriminator circuit E1 to obtain the transmitted signal from the transmitting circuit unit F of the device, convert it into a digital signal, and input
  • the digital processing unit E performs frequency discrimination processing to obtain relevant transmission signal frequency information, and estimates the corresponding reception signal frequency information from the duplex frequency interval between the transmission signal and the reception signal; acquiring the transmission signal frequency information and the reception signal frequency information
  • Another method is to obtain directly from the input information of the device through the information interaction interface in the digital processing unit E.
  • the first coupler A has a second position, as shown in FIG. 2: the first coupler A is serially connected to the transmitting circuit unit F of the device, and one of the main path ports and the duplex The transmission port of the device A0 is connected, and the other main path port is connected to the radio frequency output port of the power amplifier in the transmission circuit unit F; at this time, the first coupler A directly couples the transmission signal and outputs it to the canceler circuit B;
  • the device can be applied to digital wireless transceiver equipment and its antenna link in order to offset the unqualified passive intermodulation generated by the passive device, so that the passive intermodulation index of the wireless transceiver equipment and its antenna link meets the passive intermodulation preset Value; and when multiple wireless transceiver devices are used at the same time and the antenna link of each device is connected through the combiner to connect the antenna, the device corresponding to each antenna link can also cancel the
  • the unqualified passive intermodulation generated by the source device enables the passive intermodulation index of the wireless transceiver device and its antenna link to meet the preset value of passive intermodulation;
  • the digital wireless transceiver device includes but is not limited to a remote radio unit,
  • the antenna link includes but is not limited to cables, connectors, couplers, combiners, and antennas.
  • the signal of the passive intermodulation signal generated by the duplexer A0 and its antenna link and the signal that excites the intermodulation signal generator B2 to generate the intermodulation signal are the same source, and both originate from the transmission signal of the transmission circuit unit F , So the passive intermodulation signal generated by the passive device and the intermodulation signal generated by the intermodulation signal generator B2 have the same frequency and the same bandwidth;
  • the antenna link is the link from the antenna port of the duplexer A0 to the antenna A1 Circuit, the antenna feed component A2 represents a combination of single or multiple passive devices in the antenna link, and these passive devices include but are not limited to cables, connectors, couplers, and combiners;
  • the signal consists of or consists of multi-carrier modulated signals;
  • the duplexer A0 or the antenna feeder A2 or the antenna A1 When the duplexer A0 or the antenna feeder A2 or the antenna A1 generates a single or multiple passive devices simultaneously and superimposes the passive intermodulation signal with a certain frequency interval from the received signal, there will be only a single 3 Order, or a single 5th order or a higher order component falls into the receiving band of the duplexer A0 and causes the passive intermodulation index tested from the receiving port of the duplexer A0 to fail to meet the preset value requirements, so that all The passive intermodulation value after the second main path port of the second coupler B5 after the receiving port of the duplexer A0 meets the preset value requirement and makes the cancellation capability of the device greater than 20dB: the intermodulation signal generator B2
  • the maximum amplitude of the intermodulation cancellation signal that can be generated is greater than the amplitude of a single component of the passive intermodulation signal of the duplexer A0 and its antenna link that falls into the corresponding frequency of the receiving frequency band;
  • the duplexer A0 or the antenna feeder A2 or the antenna A1 When the duplexer A0 or the antenna feeder A2 or the antenna A1 generates a single or multiple passive devices simultaneously and superimposes the passive intermodulation signal with a certain frequency interval from the received signal, there are only a few different The 3rd order frequency, or 5th order or more higher order components of different frequencies fall into the receiving band of the duplexer A0 and cause the passive intermodulation index tested from the receiving port of the duplexer A0 to reach When the preset value is not met, in order to make the passive intermodulation value after the second main path port of the second coupler B5 after the receiving port of the duplexer A0 meet the preset value requirement and make the device's cancellation capability Greater than 20dB: the maximum amplitude of the intermodulation cancellation signal corresponding to the frequency of the passive intermodulation component that can be generated by the intermodulation signal generator B2 is greater than the passive intermodulation signal of the duplexer A0 and its antenna link The amplitudes of multiple
  • the duplexer A0 or the antenna feeder A2 or the antenna A1 When the duplexer A0 or the antenna feeder A2 or the antenna A1 generates a single or multiple passive devices simultaneously and superimposes the passive intermodulation signal with a certain frequency interval from the received signal, there are 3rd order, When the 5th order or higher order component falls into the receiving frequency band of the duplexer A0 and all causes the passive intermodulation index tested from the receiving port of the duplexer A0 to fail to meet the preset value requirements, the duplexer The passive intermodulation value after the second main channel port of the second coupler B5 of the second coupler B5 after the receiving port meets the preset value requirements and makes the cancellation capability of the device greater than 20dB: what the intermodulation signal generator B2 can produce The maximum amplitude of the intermodulation cancellation signal corresponding to the frequency of the passive intermodulation component is greater than that of the multiple corresponding frequency components that fall into the receiving frequency band in the passive intermodulation signal of the duplexer A0 and its antenna link Amplitude
  • the above technical solution can reduce the passive intermodulation index requirements for the duplexer A0 or the antenna feed component A2 and the antenna A1 on the antenna link of the device, so that it can be maintained by the passive intermodulation cancellation function of the device.
  • the passive intermodulation index of the device satisfies the preset value, and even when the device has surplus offset capability, the passive intermodulation index of the device is better to improve or enhance the receiver sensitivity due to the deterioration of passive intermodulation .
  • the passive intermodulation index of the device in order to improve or enhance the receiver sensitivity caused by the deterioration of passive intermodulation; furthermore, in the device, the duplexer A0 or the antenna link of the antenna feed component A2 1.
  • the passive intermodulation index of the antenna A1 needs to be better, increase the passive intermodulation index value of the device, so as to further improve the receiver sensitivity due to insufficient passive intermodulation.
  • One port of the canceler circuit B is directly connected to the antenna port of the duplexer A0 through the first coupler A, or directly connected to the transmitting port of the duplexer A0 through the first coupler A;
  • One port is connected to the link after the receiving port of the duplexer A0 through the second coupler B5; the first main path port of the second coupler B5 is connected to the receiving port of the duplexer A0 and the connection distance needs to be controlled from 0 to Within 1 meter, in this embodiment, the direct connection means a distance of 0 meters.
  • the second main path port of the second coupler B5 is connected to the radio frequency input end of the passive intermodulation detection circuit D, and the coupling port of the second coupler B5 is connected to the canceler circuit B; the insertion loss of the first coupler A is less than 0.2 dB; the coupling degree range of the first coupler A is 25dB to 45dB, in this embodiment, about 30dB is selected.
  • the coupling port of the first coupler A is a forward coupling port with respect to the transmitted signal; the carrying power of the first coupler A needs to be greater than the maximum transmit power peak of the device. In this embodiment, the average power carried by the first coupler A is greater than 100 watts and carrying peak power greater than 1000 watts.
  • the bandwidth of the first coupler A needs to include the transmission frequency band.
  • the gain fluctuation in the first coupler A's frequency band is related to the transmission frequency band and needs to be within a certain threshold; the passive intermodulation index of the first coupler A is- 117d Bm/Hz; the insertion loss of the second coupler B5 is less than 0.2dB; the coupling degree of the second coupler B5 ranges from 20dB to 40dB, and the coupling degree of the second coupler B5 in this embodiment is Around 25dB.
  • the coupling port of the second coupler B5 is a reverse coupling port relative to the received signal; the bandwidth of the second coupler B5 needs to include the receiving frequency band, and the gain fluctuation in the second coupler B5's frequency band is related to the receiving frequency band and needs to be within a certain gate Within the limits; the load-carrying power threshold of the canceller circuit B needs to be greater than or equal to the difference between the power threshold of the first coupler A and the coupling degree of the first coupler A, that is, the canceler circuit B
  • the average power threshold of the load is greater than or equal to 20dBm and the peak power threshold of the load is greater than or equal to 30dBm.
  • the minimum value of the power of the transmission signal loaded on the canceller circuit B must be greater than 10 watts;
  • the radio frequency port of the passive intermodulation detection circuit D is connected to the second main path port of the second coupler B5 after the receiving port of the duplexer A0, so as to obtain the components of the received signal and the passive intermodulation signal falling into the receiving frequency band
  • the receiving dynamic range of the passive intermodulation detection circuit D is greater than the difference between the maximum power value of the received signal and the power value corresponding to the preset value of the passive intermodulation.
  • the reception dynamic range of the passive intermodulation detection circuit D is greater than 70dB; the passive intermodulation detection circuit D is connected to the digital processing unit E through a high-speed analog-to-digital converter, and the sampling rate of the high-speed analog-to-digital converter is greater than or equal to 2 times The duplexer A0 receiving band bandwidth;
  • the digital processing unit E is connected to the canceler circuit B through a multi-channel digital-to-analog converter, and transfers the controlled amounts of amplitude and phase to the canceler circuit B.
  • the amplitude adjustment accuracy and phase adjustment accuracy requirements of the canceler circuit B Mainly comes from the need for passive intermodulation signal cancellation capabilities.
  • the number of digits of the digital-to-analog converter in the digital processing unit E ranges from 10 to 18 bits, and there are at least three digital-to-analog converters.
  • the amplitude adjustment accuracy of the canceler circuit B in this embodiment is less than 0.1 dB and the phase adjustment accuracy is less than 1 degree.
  • the bus includes but is not limited to I2C bus and SPI bus;
  • the transmission signal frequency discrimination circuit E1 When the digital processing unit E obtains the transmitted signal frequency information and the received signal frequency information by using the transmitted signal frequency discriminating circuit E1, the radio frequency port of the transmitting signal frequency discriminating circuit E1 and the transmitting circuit unit F transmit Connected somewhere on the link, the transmission signal frequency discrimination circuit E1 is connected to the digital processing unit E through a high-speed analog-to-digital converter; at the same time, there is an interface between the digital processing unit E and the transmission signal frequency discrimination circuit E1.
  • the parameters of the transmission signal frequency discrimination circuit E1 are configured through a bus, such as local oscillator frequency, link gain, etc.
  • the bus includes but is not limited to an I2C bus and an SPI bus.
  • the digital processing unit E includes at least a digital signal processing function
  • the logic processing and arithmetic processing devices are used for digital signal reception, algorithm processing, digital signal output, control and configuration signal output, etc.
  • the logic processing and arithmetic processing devices include but are not limited to field programmable gate array devices, Central processor, digital signal processor.
  • the digital processing unit E is equipped with at least one information interaction interface, and its functions include but are not limited to program download, configuration information input, remote alarm and maintenance;
  • the configuration information to be input includes the transmission signal bandwidth and frequency band of the device and the reception signal bandwidth and Frequency band, the order and frequency band information of the main interference components in the passive intermodulation signal, the preset value of the passive intermodulation signal and the time-varying curve, the maximum number of cancellations;
  • the digital processing unit E can be obtained through the information interaction interface Frequency information of the transmitted signal and frequency information of the received signal;
  • the information interaction interface can also perform data interaction with Internet background resources: upload the passive intermodulation value during the operation of the device, and the experience of the passive intermodulation value changing with time Curve, and the status information of each module circuit in the passive intermodulation signal adaptive cancellation device; or download the integrated optimized passive intermodulation signal preset value and the curve that changes with time.
  • One end of the amplitude modulation circuit 3 in the canceler circuit B is directly connected to the coupling port of the first coupler A, or is connected to the coupling port of the first coupler A through the RF switch B3; the other end is connected to the intermodulation signal generator through the circulator 4 B2; from the intermodulation signal generator B2 to the second coupler B5 in the canceler circuit B.
  • the link of the coupling port has two structures: the first is that the intermodulation signal generator B2 is connected to the filter 5 through the circulator 4, then the amplitude modulation phase modulator B1 is connected to the filter 5 at one end, and the other end is connected to the second coupler B5 Coupling port; the second is that the intermodulation signal generator B2 is connected to the AM phase modulator B1 through the circulator 4, and then one end of the filter 5 is connected to the AM phase modulator B1, and the other end is connected to the coupling port of the second coupler B5;
  • the amplitude modulation phase modulator B1 is composed of an amplitude modulation circuit 1 and a phase modulation circuit 2; the amplitude modulation circuit 1 includes at least one adjustable attenuator; the phase modulation circuit 2 includes at least two adjustable phase shifters; the amplitude modulation circuit 3 is composed of a fixed attenuator Or a controllable attenuator; the frequency bandwidth of the circulator 4 includes the transmission frequency band and the reception frequency band of the du
  • the gain fluctuation in the frequency band of the AM phase modulator B1 is related to the receiving frequency band and needs to be within a certain threshold range;
  • the filter The passband frequency band of 5 is the receiving frequency band of the duplexer A0, and the out-of-band suppression index requirements of the filter 5 are the out-of-band suppression index of the receiving band of the duplexer A0, the coupling degree of the first coupler A, and the second coupler B5 coupling degree, link loss between the coupling end of the first coupler A in the canceler circuit B and the coupling end of the second coupler B5, etc.;
  • the carrying power of the amplitude modulation circuit 3 in the canceler circuit B is greater than or equal to claim 5
  • the threshold value of the carrying power of the canceller circuit B in In this embodiment, the average power threshold carried by the amplitude modulation circuit 3 in the canceler circuit B is greater than or equal to 20 dBm and the peak power threshold carried is greater than or equal to 30 dBm;
  • the transmission signal input to the canceler circuit B is input to the amplitude modulation circuit 3 through the radio frequency switch B3 or directly input to the amplitude modulation circuit 3, and then after being adjusted by the power of the amplitude modulation circuit 3, it is input to the intermodulation signal through the circulator 4 to occur B2, the intermodulation signal generator B2 generates an intermodulation signal with the same frequency, different amplitude and different phase as the passive intermodulation signal, and the intermodulation signal falls into a single third-order component of the receiving frequency band, or A single 5th order component, or a single higher order component, or a 3rd order component at multiple different frequencies, or a 5th order component at multiple different frequencies, or a higher order component at multiple different frequencies, or at the same time There is a single third-order component that falls into the receiving frequency band in the passive intermodulation signal generated by the duplexer A0 and its antenna link with the amplitude relationship and phase relationship between the third-order component, the fifth-order component, and even higher-order components Component
  • the intermodulation signal generator B2 in the canceller circuit B includes, but is not limited to, a single diode, a single transistor, or a plurality of diodes in parallel; the specific model of the diode or the specific model of the transistor and the third order, fifth order, or more
  • the amplitude characteristics of high-order intermodulation signals are related to the phase characteristics.
  • the requirements for the amplitude characteristics and phase characteristics are the requirements for the intermodulation signal generator B2; when multiple diodes of the same type are connected in parallel, the intermodulation signal will be enhanced Strength; the carrier power of the intermodulation signal generator B2 is greater than or equal to the difference between the carrier power threshold of the canceler circuit B and the link loss from the radio frequency input port of the canceler circuit B to the intermodulation signal generator B2. In this embodiment, the carrier power of the intermodulation signal generator B2 is greater than or equal to 20 dBm.
  • the passive intermodulation detection circuit D includes at least a low-noise amplifier, a down-conversion module, and a high-speed analog-to-digital converter; the noise factor of the low-noise amplifier is less than 1 dB; the down-conversion module can convert the received radio frequency signal into an intermediate frequency signal; The sampling dynamic range of the high-speed analog-to-digital converter must be greater than the difference between the maximum power value of the received signal and the power value corresponding to the preset value of passive intermodulation.
  • the sampling dynamic range of the high-speed analog-to-digital converter needs to be greater than 70 dB, the number of digits of the analog-to-digital converter is 14 bits, and the sampling rate is greater than or equal to 2 times the bandwidth of the receiving band of the duplexer A0.
  • the minimum power that the passive intermodulation detection circuit D can sample is less than or equal to the passive intermodulation power value corresponding to a preset value. In this embodiment, the minimum power that the passive intermodulation detection circuit D can sample is less than or equal to -115dBm .
  • the circuit can adjust the link gain according to the amplitude of the total power of the received RF signal to avoid link blocking caused by the received signal or other signals;
  • the gain of the passive intermodulation detection circuit D is determined by the required passive intermodulation
  • the preset value, the minimum sampling power of the high-speed analog-to-digital converter in the passive intermodulation detection circuit D, the link noise figure, etc. are determined;
  • the maximum value of the received signal power of the passive intermodulation detection circuit D is greater than or equal to the actual value of the device The maximum received signal power specified by the corresponding communication standard.
  • the maximum value of the received signal power of the passive intermodulation detection circuit D is greater than or equal to -50 dBm.
  • the passive intermodulation detection circuit D may adopt a receiving superheterodyne structure as shown in FIG. 3 to convert the radio frequency signal into an intermediate frequency signal and then perform analog-to-digital conversion.
  • the passive intermodulation detection circuit D is composed of a low noise amplifier D1 , RF filtering and small signal amplification unit D2, mixer D3, local oscillator D4, intermediate frequency filter D5, intermediate frequency amplifier D6, analog-to-digital converter D7, in which the filtering components in the RF filtering and small signal amplification unit D2
  • the band frequency band is the receiving frequency band of the duplexer A0; the passive intermodulation detection circuit D may adopt a receiving zero-IF structure as shown in FIG.
  • the source intermodulation detection circuit D is composed of a low-noise amplifier D1, a radio frequency filtering and small-signal amplification unit D2, a down-conversion and analog-to-digital conversion unit D8, wherein the passband frequency band of the filtering component in the radio frequency filtering and small-signal amplification unit D2 is double
  • the receiving frequency band of the tool A0, the function of the down-conversion and analog-to-digital conversion unit D8 is to directly convert the radio frequency signal to a zero-IF signal and perform analog-to-digital conversion.
  • the digital processing unit E includes at least a logic processing and arithmetic processing device with digital signal processing function, which is used for digital signal reception, algorithm processing, digital signal output, control and configuration signal output, etc.
  • the logic processing and arithmetic processing devices include but are not limited to field programmable gate array devices, central processors, and digital signal processors;
  • the hardware configuration of the information interaction interface of the digital processing unit E includes but is not limited to Ethernet interface, R -485 bus interface;
  • the number of digits of the digital-to-analog converter in the digital processing unit E is the number of digits of the digital-to-analog converter in the digital processing unit E is between 10 and 18 bits, in this embodiment is 12
  • a method for adaptively canceling passive intermodulation signals in a wireless transceiver system characterized in that the method includes the following steps,
  • S1 Obtain the transmitted signal bandwidth and frequency band, the received signal bandwidth and frequency band, the order and frequency band information of the main interference components in the passive intermodulation signal through the digital processing unit E, the expected preset value of the passive intermodulation and the change with time The initial empirical data of the curve, amplitude and phase, the maximum number of cancellations and other information, and converted into the corresponding configuration parameters;
  • step S2 According to the configuration parameters of the transmitted signal in step S1, the digital processing unit E obtains the frequency point of the passive intermodulation signal and converts it into the corresponding digital filtering parameter and stores it in the parameter configuration table;
  • step S3 According to the configuration parameters related to the received signal in step S1, the configuration parameters of the passive intermodulation signal, and the digital filtering parameters of the passive intermodulation signal obtained in step S2, the digital processing unit E controls the passive intermodulation detection circuit D Digitally filter the sampled signal of the system to filter out other signal components except passive intermodulation signals, and obtain the amplitude value of the passive intermodulation signal that falls into the receiving frequency band; the algorithm for obtaining the amplitude value includes but is not limited to Segment integration method, direct integration method based on signal bandwidth;
  • step S4 determine the current working state; the default value of the state identification of the working state is: "initial working mode”; if the state identification value of the working state is "initial working mode", continue to step S5-1, otherwise continue to step S5-2 ;
  • step S5-1 Compare the passive intermodulation signal amplitude value obtained in step S3 with the passive intermodulation preset value in step S1 to determine whether the passive intermodulation signal amplitude is less than or equal to the passive intermodulation preset value;
  • step S6 If the judgment result in step S5-1 is "Yes", the canceller circuit B continues to maintain the high isolation state of the link between the intermodulation signal generator and the first coupler A; and returns to step S2;
  • step S7 If the judgment result of step S5-1 is "No", the canceller circuit B switches to the low isolation state of the link between the intermodulation signal generator and the first coupler A; and the state identification value of the working state And set to "offset working state"; continue to step S8;
  • step S5-2 Compare the amplitude value of the passive intermodulation signal obtained in step S3 with the preset value of the passive intermodulation signal in step S1 to determine whether the amplitude of the passive intermodulation signal is less than or equal to the preset value of passive intermodulation; If the judgment result of step S5-2 is "Yes”, then maintain the state and return to step S2; if the judgment result of step S5-2 is "No", then execute step S8;
  • step S8 Calculate the amplitude and phase adjustment values of the canceller circuit according to the amplitude value of the passive intermodulation signal in step S3; and distribute to the amplitude modulator and phase modulator in the canceller circuit to implement cancellation; after completing the current round of cancellation processing After that, it will continue to return to step S2 to continue the next round of cancellation processing; the algorithm for determining the amplitude and phase adjustment values includes but is not limited to a two-dimensional minimum variance algorithm.
  • Table 1 There are two 43 dBm single-tone signals in the transmitting circuit unit F to form a 46 dBm double-tone signal, which causes the duplexer A0 and its antenna link to generate The passive intermodulation signal is detected, and the amplitude of the third-order component in the passive intermodulation actually tested at the duplexer A0 receiving port is -95.5dBm, and the fifth-order component is -125.4dBm.
  • the seventh-order component is hot in the spectrum analyzer.
  • the component of the passive intermodulation signal of the duplexer A0 and its antenna link that falls into the receiving frequency band is less than or equal to the preset value of -112dBm, so it is mainly optimized for poor third-order passive intermodulation, while 3
  • the amplitude difference between the first-order signal and the fifth-order signal is 29.9dB
  • the test value of the intermodulation signal generated by the specific diode selected at the receiving port of the duplexer A0 at this time is: the amplitude of the third-order component is -75.1dBm, and the fifth-order component -105.6dBm, the 7th-order component is under the thermal noise of the spectrum analyzer, the amplitude difference between the 3rd-order signal and the 5th-order signal is 30.5dB; when the passive intermodulation cancellation function is turned on, at the receiving port of the duplexer A0
  • the measured amplitude of the third-order component in passive intermodulation is shown in Figure 6 as -117.4dBm, and
  • the duplexer A0 of the device is the duplexer A0 of the wireless transceiver device;
  • the passive intermodulation detection circuit D of the device is complex Use the components or units of the receiving link of the wireless transceiver device, or add a passive intermodulation detection circuit D in the wireless transceiver device, and adjust accordingly according to the receiving frequency band of the wireless transceiver device.
  • the transmission circuit unit F of the device multiplexes the components or units of the transmission link of the wireless transceiver device, and adjusts accordingly according to the transmission frequency band of the wireless transceiver device; the digital processing unit E of the device multiplexes the digital processing unit of the wireless transceiver device Components or units; or a new digital processing unit E is added to the wireless transceiver device, and the program corresponding to "a method for adaptively canceling passive intermodulation signals in the wireless transceiver system" in the digital processing unit E will be integrated in In the whole program of wireless transceiver equipment.
  • the first coupler A of the device is connected to a main path port of the duplexer A0 antenna port of the wireless transceiver device, or a main path port of the device is connected to the duplexer A0 transmission port of the wireless transceiver device.
  • the coupling port of the first coupler A is a forward coupling port with respect to the signal transmitted by the wireless transceiver device.
  • the second coupler B5 of this device needs to be newly added in the wireless transceiver device.
  • One main path port of the second coupler B5 of the device is directly connected to the receiving port of the duplexer A0 of the wireless transceiver device, and the coupling port of the second coupler B5 is a reverse coupling port relative to the signal received by the wireless transceiver device;
  • One RF input port of the canceler circuit B of the device is directly connected to the coupling port of the first coupler A, the other RF output port is directly connected to the coupling port of the second coupler B5, and the amplitude adjustment and phase adjustment of the canceler circuit B It is realized by the amplitude and phase control parameters calculated by the digital processing unit E.
  • the wireless transceiver device is a radio frequency remote device with a transmission frequency band of 1805MHz to 1880MHz, a reception frequency band of 1710MHz to 1785MHz, and an FDD LTE system.
  • the transmission signal 1 is set to 1820MHz/43dBm, and the transmission signal 2 is 1860MHz/43dBm.
  • the signal causes the passive intermodulation signal of the duplexer A0 and its antenna link, as shown in Figure 9:
  • the amplitude of the third-order component in the passive intermodulation tested at the receiving port of the duplexer A0 is -107.6dBm/ 1780MHz, and the 5th and 7th order components are under the thermal noise of the spectrometer; the components of the passive intermodulation signal of the duplexer A0 and its antenna link that fall into the receiving frequency band are less than or equal to the preset value of -110dBm Therefore, the third-order passive intermodulation components are mainly optimized; when the passive intermodulation cancellation function is turned on, the third-order components in the passive intermodulation tested at the receiving port of the duplexer A0 at this time are shown in Fig.
  • the amplitude It is -128.1dBm; the third-order component of the equipment with poor passive intermodulation is optimized by 20.5dB; then the RF remote equipment and the device work under FDD and LTE dual carrier, and the transmitted signal 1 is 1820MHz/44dBmPeak/signal peak average
  • the ACPR adjacent channel power corresponding to 1 is 49.7dBc/60.4dBc as shown in FIG.
  • the ACPR adjacent channel power corresponding to the transmitted signal 2 is 47.9dBc/60.4dBc as shown in FIG. 11, for example.
  • the RSSI reported value of the receiving link is detected at this time
  • the strength indication of the received signal is -60.59dBfs; after the passive intermodulation cancellation function of this device is turned on, the ACPR adjacent channel power corresponding to the transmitted signal 1 is 50.2dBc/60.5dBc as shown in FIG. 12, and the ACPR adjacent corresponding to the transmitted signal 2
  • the channel power is 48.5dBc/60.3dBc as shown in Fig. 13, for example.
  • the RSSI reported value of the received link is -60.69dBfs.
  • the frequency of the received signal 1 corresponding to the transmitted signal 1 is 1725Mhz.
  • the IBW is 20MHz
  • the frequency of the received signal 2 corresponding to the transmitted signal 2 is 1765Mhz
  • the IBW is 20MHz
  • the received signal is looped back to the transmitting link and the EVM is tested, and the signal 1 is received when the passive intermodulation cancellation function of the device is not turned on
  • the EVM of Figure 1 is about 3.1% as shown in Figure 14, and the EVM of received signal 2 is about 3.06% as shown in Figure 15.
  • the EVM of received signal 1 is shown in Figure 16. It is about 3.1%, and the EVM of the received signal 2 is about 3.06% as shown in FIG.
  • the wireless repeater station includes a first coupler A-1, a first coupler A-2, and a second coupler B5-1, second coupler B5-2, canceler circuit B-1, canceler circuit B-2, receiving circuit unit D-1, receiving circuit unit D-2, digital processing unit E, duplexer A0- 1.
  • the device constitutes two sets of devices with passive intermodulation cancellation function.
  • the device with passive intermodulation cancellation function can fall into the passive intermodulation signal generated in the corresponding duplexer and its antenna link.
  • Component cancellation in the receiving frequency band; the device with passive intermodulation cancellation function composed of the duplexer A0-1 as the passive intermodulation index optimization object is simply referred to as the first device, and the duplexer A0-2 as passive intermodulation
  • the device with passive intermodulation cancellation function composed of index optimization objects is simply referred to as the second device;
  • the description of the first device is: the duplexer A0 of the device is the duplexer A0-1 of the wireless repeater; the device The passive intermodulation detection circuit D multiplexes the components or units of the receiving link of the wireless repeater station to form the passive intermodulation detection circuit D-1; the transmitting circuit unit F of the device multiplexes the transmitting circuit of the wireless repeater station Unit F-1; the digital processing unit E of the device multiplexes the digital processing unit E of the wireless repeater, and the digital processing unit E corresponds to "a method for
  • the coupling port of the first coupler A-1 is connected to a radio frequency input port of the canceller circuit B-1.
  • the first The coupling port of the coupler A-1 is a forward coupling port relative to the transmitted signal of the duplexer A0-1; the second coupler B5 of the device needs to be newly added in the wireless repeater and added to the first device It is called the second coupler B5-1 in the figure.
  • One main channel port is directly connected to the receiving port of the duplexer A0-1, and the other main channel port is connected to the RF input port of the passive intermodulation detection circuit D-1.
  • the coupling port of the second coupler B5-1 is connected to another RF output port of the canceller circuit B-1.
  • the coupling port of the second coupler B5-1 relative to the received signal of the duplexer A0-1 is Reverse coupling port; the canceler circuit B of the device needs to be newly added to the wireless repeater and constitute a canceler circuit B-1, and the amplitude adjustment and phase adjustment of the canceler circuit B-1 are calculated and output by the digital processing unit E
  • the amplitude and phase control parameters of the device are realized; the antenna feed component A2 and antenna A1 of this device are the corresponding components A2-1 and antenna A1-1 on the antenna link of the wireless repeater; the description of the second device is :
  • the duplexer A0 is the duplexer A0-2 of the wireless repeater station; the passive intermodulation detection circuit D of the device multiplexes the components or units of the receiving link of the wireless repeater station to form the passive intermodulation detection circuit D -2; the transmission circuit unit F of the device multiplexes the transmission circuit unit F-2 of the wireless repeater; the digital processing unit E of the device multiplexes the digital
  • the coupling port of -2 is a reverse coupling port with respect to the received signal of the duplexer A0-2; the canceler circuit B of this device needs to be newly added in the wireless repeater and constitute the canceler circuit B-2,
  • the amplitude adjustment and phase adjustment of the canceller circuit B-2 are realized by the amplitude and phase control parameters calculated by the digital processing unit E; the antenna feed component A2 and the antenna A1 of the device are on the antenna link of the wireless repeater The corresponding component A2-2 and antenna A1-2; at this time, the connection between the first device and the second device in the wireless repeater is the same as the device described in the present invention, between the first device and the second device Through the digital processing unit E united as one.
  • a first coupling is required after each antenna port of the duplexer in each transceiver link A, second coupler B5 and canceller circuit B;
  • the device described in this embodiment is applied to a wireless transceiver device, and a schematic diagram of one example of the use of multiple radio frequency links is shown in FIG. 19 of the specification: the entire link includes multiple wireless transceiver devices, and the multiple radio frequency system combiner H , Antenna A1 and antenna feed component A2, etc.; and each branch has a passive intermodulation cancellation device connected to a single transceiver link of the wireless transceiver equipment, and the duplexer A0, antenna A1, antenna feed on each branch link.
  • the passive intermodulation generated by component A2 and the like and the passive intermodulation generated by the combiner H of the multi-radio frequency system falling into the receiving frequency band can be cancelled within a certain range;
  • the entire link includes the wireless transceiver device , Multiple antennas A1-1, A1-2, ..., and multiple antenna feed components A2-1, A2-2, ...; wireless transceiver equipment, each transceiver link has a passive intermodulation cancellation device connected The components of passive intermodulation generated by duplexers, antenna feed components, antennas, etc. on each branch link falling into the receiving frequency band can be cancelled within a certain range;

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开了一种自适应抵消无源互调信号的装置,耦合器的一个主通路端口与所述双工器的天线口连接,另一个主通路端口与天线链路上的天馈组件连接,耦合器的耦合端口和抵消器电路的射频端口电连接;所述无源互调检测电路的输入端与双工器接收端口电连接,无源互调检测电路的输出端与数字处理单元的输入端电连接;数字处理单元经发射信号鉴频电路与发射电路单元电连接,数字处理单元的输出端分别与无源互调检测电路、发射电路单元和抵消器电路的输入端电连接;发射电路单元的输出端与所述双工器的输入端电连接。本发明能将无线收发设备以及该设备天线口至天线这一段链路上其他设备或组件产生的无源互调信号落入到接收频段的分量抵消。

Description

一种自适应抵消无源互调信号的装置及其方法 技术领域
本发明涉及无线通信领域。具体地说,本发明涉及一种自适应抵消无源互调信号的装置及其方法。
背景技术
在通信系统中,大量应用无线收发设备。无线收发设备本身包含有产生无源互调信号的器件,比如射频双工器、滤波器、合路器等;从无线收发设备天线口到天线的链路上也包含很多产生无源互调信号的器件,比如耦合器、射频电缆、塔顶放大器等。对于无线收发系统而言,如何抑制由无线收发系统中发射信号引起的对无线收发设备的接收机产生的互调干扰,一直是该类系统的关键问题。因此,要求无线收发设备在工作时,发射通道产生的无源互调信号电平尽可能低,以免无源互调信号落入接收通道,对接收通道造成互调干扰。当前无源互调抵消技术一般有两种方式:
对比文献CN100490307C公开了一种名称为:“信号处理电路、基站和消除互调产物的方法”发明专利,该专利将输入非线性单元的原载波分为两路,分别输入两只支路,第一路原载波经过非线性单元产生包含有第一组互调产物的处理信号,第二路原载波经过分路器、倍频器、混合器以及调节电路。产生含有第二组高次互调产物的控制信号,最后将两路信号叠加。它利用第二组高次互调与第一组互调产物的频率相同,幅度接近相同,相位相反,抵消互调信号。
该技术方案在以下不足:1、该技术方案不适用无源器件,它没有考虑非线性单元内部不同位置的互调值差异,对于无源器件这种差异是很明显的,在无源电路中,传输信号的幅度衰减和相位变化程度非常大。在多个位置产生互调的情况下,电路前端产生的互调信号会在信号传输过程中大幅度衰减,电路输出的互调信号只含有电路末端产生的互调信号,因此,对于双工器来说,若从非线性单元的前端取信号,所产生的互调抵消信号无法与天线端口的互调信号相抵消;2、该技术方案产生的互调抵消信号即第二组高次互调产物,被限定为固定阶次得互调产物,只能消除对应频段内的非线性单元的互调信号,存在局限性。
对比文献201310048951.1公开了一种名称为:“一种用于无源器件的互调抵消装置”发明专利,该专利从无源器件输出端直接耦合包含有高次互调产物的发射信号,通过无源调节器的调整传输至带有互调信号发生器的射频链路末端反射后,再次通过无源调节器的调整,获得与前述无源器件发射信号的互调信号相同频率、电平和相反相位的抵消信号,该信号通过耦合器与无源非线性单元输出端发射信号叠加,实现互调抵消。
该技术方案在以下不足:1、该技术方案采用无源调节器,幅度调节、相位调节均是无源器件,如果要实现幅度调节、相位调节需要借助外力驱动无源调节器,比如使用电机驱动,或者直接靠人工驱动,这些方式会使得实际应用成本高,且不便于产品化;2、由于没有无源互调抵消结果的反馈检测电路,抵消结果不能实时监控和调整。
除此之外,现有其它的降低无源互调信号电平的方法主要集中在结构和工艺上,这些方法往往需要增加额外的成本,而且加厚金属镀层的电镀工艺往往会增加污染。
发明内容
本发明的目的之一是为了克服上述背景技术不足,提供一种数字自适应的,用于抵消无线收发系统中的无源互调信号的装置,使其能将无线收发设备以及该设备天线口至天线这一段链路上其他设备或组件产生的无源互调信号落入到接收频段的分量抵消。
本发明提供了一种自适应抵消无源互调信号的装置,其特征在于:它包括第一耦合器,抵消器电路,第二耦合器,无源互调检测电路,数字处理单元,双工器,发射电路单元,天馈组件,天线;所述第一耦合器的一个主通路端口与所述双工器的天线口连接,另一个主通路端口与天线链路上的天馈组件连接,第一耦合器的耦合端口和抵消器电路的一个射频端口连接;第二耦合器的一个主通路端口与双工器接收端口连接,另一个主通路端口与无源互调检测电路连接,第二耦合器的耦合端口和抵消器电路的另一个射频端口连接;无源互调检测电路的输出端与数字处理单元的输入端电连接,数字处理单元经发射信号鉴频电路与发射电路单元电连接,数字处理单元的输出端分别与无源互调检测电路、发射电路单元和抵消器电路的输入端电连接;发射电路单元的输出端与所述双工器的输入端电连接;
所述发射电路单元的大于某一射频功率值的信号使所述双工器及其天线链路产生无源互调信号,并且该无源互调信号中有落入到双工器接收频段的且与接收信号有一定频率间隔的分量;
所述第一耦合器从双工器的天线口的链路上耦合射频信号输出给抵消器电路;所述射频信号中包含发射信号、无源互调信号和接收信号;所述第一耦合器的一个主通路端口与所述双工器的天线口连接、另一个主通路端口与天线链路上的天馈组件连接、第一耦合器的耦合端口和抵消器电路的一个射频端口连接;所述第二耦合器将抵消器电路产生的互调抵消信号叠加在双工器接收端口后的链路上,第二耦合器的一个主通路端口与双工器接收端口连接,且距离需控制在0到1米范围内,具体长度由无源互调抵消最佳效果确定,该主通路端口为第一主通路端口,另一个主通路端口与无源互调检测电路连接为第二主通路端口,第二耦合器的耦合端口和抵消器电路的另一个射频端口连接;
耦合到抵消器电路的射频信号中的接收信号和无源互调信号的功率在抵消器电路上产生的互调信号,经幅度调整和相位调整,耦合输出至第二耦合器的主通路,形成与所述无源互调信号中落入接收频段的且与接收信号有一定频率间隔的分量频率相同、幅度相同和相位相反的互调抵消信号,
所述无源互调检测电路的射频端口与双工器接收端口后的第二耦合器的第二主通路端口连接以获取接收信号和无源互调信号落入接收频段的分量,所述无源互调检测电路的接收动态范围大于接收信号的最大功率值和无源互调预设值所对应的功率值之间的差值;无源互调检测电路通过高速模数转换器与所述数字处理单元连接,高速模数转换器的采样速率大于等于2倍的双工器接收频段带宽;
所述数字处理单元依据发射信号频率信息计算得出无源互调信号的检测幅值并与无源互调预设值进行对比;根据当所述检测幅值与所述预设值对比结果,所述抵消器电路选择是否产生互调抵消信号;所述数字处理单元通过多路数模转换器与抵消器电路连接,将幅度、相位的控制量传递给抵消器电路,所述抵消器电路的幅度调整精度和相位调整精度的要求主要来源于无源互调信号抵消能力需求。
上述技术方案中,所述装置中的双工器代表无线收发设备中的无源器件;所述天馈组件和天线代表无线收发系统的天线链路中的无源器件,所述天馈组件代表天线链路中单个或多个无源器件的组合,这些无源器件包括但不限于电缆、连接器、耦合器、合路器。
上述技术方案中,输入至所述抵消器电路射频信号中的发射信号经射频开关,调幅电路,环行器和互调信号发生器处理后产生出与所述无源互调信号频率相同、幅度不同和相位不同的互调信号,且该互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅度关系和相位关系与所述双工器及其天线链路产生的无源互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅值关系和相位关系基本一致;
而耦合到抵消器电路的射频信号中的接收信号和无源互调信号的功率在所述互调信号发生器上产生的互调信号的幅值远小于上述无源互调信号的幅值,不对无源互调抵消结果产生影响;
所述互调信号反射后再次通过环行器,经滤波器,并经调幅调相1的幅度调整和相位调整,耦合输出至第二耦合器的主通路,形成与所述无源互调信号中落入接收频段的且与接收信号有一定频率间隔的分量频率相同、幅度相同和相位相反的互调抵消信号,该互调抵消信号与所述无源互调信号中落入接收频段的分量进行抵消,抵消后的无源互调信号小于等于无源互调预设值;同时双工器及其天线链路中的发射信号和接收信号在双工器及其天线链路中正常运作。
上述技术方案中,所述数字处理单元依据发射信号频率信息计算方法如下:
所述数字处理单元首先依据发射信号频率信息,计算出与之相关的无源互调信号的频率信息,并将其转换为无源互调信号的滤波参数,然后依据接收信号频率、带宽信息与无源互调信号频率、带宽信息求得它们之间的频率间隔,再选择相应的数字滤波方式和积分方式,最终实现对无源互调信号的幅值检测;然后将所述无源互调信号的检测幅值与无源互调预设值进行对比;
当所述检测幅值小于等于所述预设值时,所述抵消器电路不产生互调抵消信号,不对所述双工器及其天线链路的无源互调指标产生影响;
当所述检测幅值大于所述预设值时,控制所述抵消器电路对其幅度和相位的调整产生出与所述双工器及其天线链路的无源互调信号频率相同、幅度相同和相位相反的互调抵消信号与所述射频信号中的无源互调信号进行抵消,并保持这种依据无源互调信号的幅值检测结果实时调控所述抵消器电路幅度和相位使无源互调信号抵消结果小于等于所述预设值的工作状态。
上述技术方案中,所述数字处理单元通过发射信号鉴频电路从所述装置的发射电路单元上获取发射信号,转换为数字信号,输入数字处理单元进行鉴频处理,获取相关发射信号频率信息,并由发射信号和接收信号之间的双工频率间隔推算相应接收信号频率信息;或通过数字处理单元中的信息交互接口直接从该装置的输入信息中获取;所述数字处理单元产生触发信号输出至发射电路单元从而触发发射电路单元产生射频信号。
上述技术方案中,激励所述双工器及其天线链路产生无源互调信号的信号和激励所述互调信号发生器产生互调信号的信号是同源的,均来源于发射电路单元的发射信号,所以无源器件产生的无源互调信号和互调信号发生器产生的互调信号的频率相同、带宽相同;所述天线链路是从双工器天线口到天线这段链路,所述天馈组件代表天线链路中单个或多个无源器件的组合,这些无源器件包括但不限于电缆、连接器、耦合器、合路器;所述发射信号由多音信号构成或者由多载波调制信号构成。
上述技术方案中,当所述双工器或天馈组件或天线单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中仅会有单个3阶、或单个5阶或单个更高阶次分量落入双工器的接收频带且造成从双工器接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器接收端口后的第二耦合器的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器所能产生的所述互调抵消信号的最大幅值要大于所述双工器及其天线链路的无源互调信号中落入到接收频段对应频率的单个分量的幅值;
当所述双工器或天馈组件或天线单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中仅有多个不同频率的3阶、或多个不同频率的5阶或多个不同频率的更高阶次分量落入双工器的接收频带且造成从双工器接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器接收端口后的第二耦合器的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器所能产生的对应无源互调分量频率的互调抵消信号的最大幅值要大于所述双工器及其天线链路的无源互调信号中落入到接收频段的多个对应频率分量的幅值;所述互调信号发生器上产生的互调信号中多个特定阶次分量之间的相位关系与所述双工器及其天线链路产生的无源互调信号中多个特定阶次分量之间的相位关系基本一致;
当所述双工器或天馈组件或天线单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中同时有3阶、5阶或更高阶次分量落入双工器的接收频带且都造成从双工器接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器接收端口后的第二耦合器的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器所能产生的对应无源互调分量频率的所述互调抵消信号的最大幅值要大于所述双工器及其天线链路的无源互调信号中落入到接收频段的多个对应频率分量的幅值;所述互调信号发生器2上产生的互调信号中多个特定阶次分量之间的幅度关系和相位关系与所述双工器及其天线链路产生的无源互调信号中多个特定阶次分量之间的幅值关系和相位关系基本一致。
上述技术方案中,当无源互调检测电路中的射频信号过大造成链路阻塞时,数字处理单元将减小无源互调检测电路的链路增益以便正常处理接收信号并停止检测无源互调信号幅值;当无源互调检测电路没有阻塞时,所述数字处理单元在进行无源互调幅值计算过程中,需要处理的来源于无源互调检测电路的信号中包含有无源互调信号和接收信号且无源互调信号和接收信号之间有一定频率间隔。
上述技术方案中,所述数字处理单元计算无源互调信号幅值的方法为:
数字处理单元首先依据发射信号频率信息计算出与之相关的无源互调信号的频率信息,然后依据接收信号频率、带宽信息与无源互调信号频率、带宽信息求得它们之间的频 率间隔,并依据该频率间隔选择合适的算法计算无源互调信号幅值;
所述计算无源互调信号幅值的算法包含但不限于直接滤波积分法和分段滤波积分法:
所述直接滤波积分法是指依据无源互调信号带宽直接数字滤波并积分求幅度,此时所述无源互调信号落入到接收频段的各阶次分量与接收信号之间的频率间隔要大于等于无源互调信号的数字滤波算法中数字滤波器通带到阻带的过渡带带宽,此频率间隔即是采用直接滤波积分法的依据;
所述分段滤波积分法是指将无源互调信号带宽分成数个子带宽,依据每个子带宽进行数字滤波并积分求幅度,再将所有子带宽对应的幅度进行累加获得整个信号幅值,此时所述各阶次分量与接收信号之间的频率间隔要大于等于各阶次分量边子带信号的数字滤波器通带到阻带的过渡带带宽,此频率间隔即是采用分段滤波积分法的依据。
上述技术方案中,所述抵消器电路的一个端口通过第一耦合器与双工器天线口后的天线链路连接,或者通过第一耦合器与双工器发射端口前的发射链路连接;所述抵消器电路的另一个端口通过第二耦合器与双工器接收端口后的链路连接;所述第二耦合器的第一主通路端口与双工器接收端口连接且连接距离需控制在0到1米范围内,具体长度由无源互调抵消最佳效果确定,第二耦合器第二主通路端口和无源互调检测电路的射频输入端连接,第二耦合器的耦合端口连接抵消器电路;所述第一耦合器的插入损耗小于0.2dB;所述第一耦合器的耦合度范围为25dB到45dB;第一耦合器的耦合端口相对于发射信号为正向耦合端口;第一耦合器的承载功率需大于该装置的最大发射功率峰值,第一耦合器的带宽需包含发射频段,第一耦合器的频带内增益波动与发射频段相关且需在一定的门限值范围内;第一耦合器的无源互调指标符合对天馈组件的无源互调指标要求;所述第二耦合器的插入损耗小于0.2dB;所述第二耦合器的耦合度范围为20dB到40dB;第二耦合器的耦合端口相对于接收信号为反向耦合端口;第二耦合器的带宽需包含接收频段,第二耦合器的频带内增益波动与接收频段相关且需在一定的门限值范围内;所述抵消器电路的承载功率门限值需大于等于第一耦合器的功率门限值与第一耦合器的耦合度之差值;为使抵消器电路中互调信号发生器能产生无源互调抵消信号,加载在所述抵消器电路的发射信号功率的最小值需大于一定的功率门限值。
上述技术方案中,无源互调检测电路包括低噪声放大器、下变频模块、高速模数转换器,噪声放大器的输入端与双工器的接收端口电连接,噪声放大器的输出端经下变频模块与高速模数转换器的输入端电连接,高速模数转换器的输出端与数字处理单元的输入端电连接;
所述无源互调检测电路的增益由需求的无源互调预设值、无源互调检测电路中高速模数转换器的最小采样功率、链路噪声系数等确定;所述无源互调检测电路的接收信号功率的最大值大于等于该装置实际对应的通信标准所规定的最大接收信号功率。
上述技术方案中,所述数字处理单元具备至少一个信息交互接口,其作用包含但不限于程序下载,配置信息输入,远程告警和维护;其中需要输入的配置信息包括本装置发射信号带宽和频段、接收信号带宽和频段、无源互调信号中的主要干扰分量的阶次和频段信息、无源互调信号预设值以及随时间变化的曲线、最大抵消次数;所述数字处理单元可以通过信息交互接口获取发射信号频率信息和接收信号频率信息;所述的信息交互接口还可以与互联网后台资源进行数据交互:上传所述设备运行过程中的无源互调值,无源互调值 随时间变化的经验曲线,以及无源互调信号自适应抵消装置中各模块电路的状态信息;或者下载综合优化后的无源互调信号预设值以及随时间变化的曲线;
所述数字处理单元与无源互调检测电路之间至少存在两个接口:一个接口作用是获取无源互调检测电路中高速模数转换器的采样信号,从而进行无源互调信号的数字滤波和幅度计算;另一个接口的作用是通过总线配置无源互调检测电路的参数;
当所述数字处理单元获取所述发射信号频率信息和接收信号频率信息的方法是利用发射信号鉴频电路时,则发射信号鉴频电路的射频端口与所述发射电路单元中发射链路上的某处连接,发射信号鉴频电路通过高速模数转换器与所述数字处理单元连接;同时数字处理单元与发射信号鉴频电路之间还有一个接口,作用是通过总线配置发射信号鉴频电路的参数,例如本振频率、链路增益等,所述总线包括但不限于I2C总线、SPI总线;
所述数字处理单元具备至少一个信息交互接口,其作用包含但不限于程序下载,配置信息输入,远程告警和维护;其中需要输入的配置信息包括本装置发射信号带宽和频段、接收信号带宽和频段、无源互调信号中的主要干扰分量的阶次和频段信息、无源互调信号预设值以及随时间变化的曲线、最大抵消次数;所述数字处理单元可以通过信息交互接口获取发射信号频率信息和接收信号频率信息;所述的信息交互接口还可以与互联网后台资源进行数据交互:上传所述设备运行过程中的无源互调值,无源互调值随时间变化的经验曲线,以及无源互调信号自适应抵消装置中各模块电路的状态信息;或者下载综合优化后的无源互调信号预设值以及随时间变化的;
所述数字处理单元至少包含具备数字信号处理功能的逻辑处理与运算处理器件,用于数字信号的接收、算法处理、数字信号的输出、控制和配置信号的输出等,所述逻辑处理与运算处理器件包含但不限于现场可编程门阵列器件,中央处理器,数字信号处理器;所述数字处理单元的信息交互接口的硬件构成包括但不限于以太网接口、光纤接口、RS-485总线接口;所述数字处理单元中的数模转换器的位数范围在10~18位之间,且至少有3个数模转换器。
上述技术方案中,所述抵消器电路中的调幅电路一端直接连接第一耦合器的耦合端口,或者通过射频开关连接第一耦合器的耦合端口;另一端通过环行器连接互调信号发生器;互调信号发生器通过环行器连接滤波器,调幅调相器一端连接滤波器5,另一端连接第二耦合器的耦合端口。
上述技术方案中,所述抵消器电路中的调幅电路一端直接连接第一耦合器的耦合端口,或者通过射频开关连接第一耦合器的耦合端口;另一端通过环行器连接互调信号发生器;互调信号发生器通过环行器连接调幅调相器,滤波器的一端连接调幅调相器,另一端连接第二耦合器的耦合端口。
上述技术方案中,所述调幅调相器由调幅电路和调相电路构成;调幅电路至少包含1个可调控衰减器;调相电路至少包含2个可调控移相器;调幅电路由固定衰减器或可调控衰减器构成;所述环行器的频率带宽包括所述双工器的发射频段和接收频段;所述调幅调相器的幅度调整范围大于30,相位调整范围大于180度;所述调幅调相器的工作频段包含所述双工器的接收频段,调幅调相器的频带内增益波动与接收频段相关且需在一定的门限值范围内;所述滤波器的通带频段为双工器的接收频段,且滤波器的带外抑制指标要求是由双工器接收频段的带外抑制指标、第一耦合器耦合度、第二耦合器耦合度、抵消器电 路中第一耦合器耦合端到第二耦合器耦合端之间链路损耗等决定;所述抵消器电路中调幅电路的承载功率大于等于所述抵消器电路的承载功率门限值;
所述互调信号发生器包含但不限于单个二极管、单个三极管或多个二极管的并联构成;二极管具体型号或者三极管具体型号与产生互调信号3阶、5阶或更高阶互调信号的幅值特性和相位特性相关,所述幅值特性和相位特性的需求为对互调信号发生器的要求;采用多个同型号二极管并联结构时,将增强互调信号强度;互调信号发生器的承载功率大于等于所述抵消器电路承载功率门限值与从抵消器电路射频输入口到互调信号发生器的链路损耗的差值。
上述技术方案中,所述无源互调检测电路至少包括低噪声放大器、下变频模块、高速模数转换器;所述无源互调检测电路通过高速模数转换器与所述数字处理单元连接;
下变频模块可以将接收的射频信号转换成中频信号,或者将接收的射频信号转换成零中频信号;高速模数转换器的采样动态范围需大于接收信号的最大功率值和无源互调预设值对应的功率值之间的差值;
所述无源互调检测电路能够采样的最小功率小于等于预设值对应的无源互调功率值,同时该电路可以根据所接收的射频信号总功率的幅值调整链路增益从而避免接收信号或其他信号造成的链路阻塞;所述无源互调检测电路的增益由需求的无源互调预设值、无源互调检测电路中高速模数转换器的最小采样功率、链路噪声系数确定;所述无源互调检测电路的接收信号功率的最大值大于等于该装置实际对应的通信标准所规定的最大接收信号功率。
上述技术方案中,无源互调检测电路包括依次电连接的低噪声放大器、射频滤波及小信号放大单元、混频器、中频滤波器、中频放大器、模数转换器,本振器与混频器电连接;低噪声放大器的输入端与双工器的输出端电连接;模数转换器的输出端与数字处理单元的输入端电连接。
上述技术方案中,无源互调检测电路包括依次电连接的低噪声放大器、射频滤波及小信号放大单元和下变频及模数转换单元;低噪声放大器的输入端与双工器的输出端电连接;下变频及模数转换单元的输出端与数字处理单元的输入端电连接。
本发明提供了一种无线收发设备,包括所述的自适应抵消无源互调信号的装置,所述的自适应抵消无源互调信号的装置的双工器即是无线收发设备的双工器;本装置所述的自适应抵消无源互调信号的装置的无源互调检测电路复用无线收发设备的接收链路的组件或单元,或者在所述无线收发设备内新增无源互调检测电路;所述的自适应抵消无源互调信号的装置的发射电路单元复用无线收发设备的发射链路的组件或单元;所述的自适应抵消无源互调信号的装置的数字处理单元复用无线收发设备的数字处理单元的组件或单元,或者在所述无线收发设备内新增数字处理单元,所述数字处理单元将集成于无线收发设备的整机程序中;所述的自适应抵消无源互调信号的装置的第一耦合器需在所述无线收发设备内新增,且其一个主通路端口和无线收发设备的双工器天线口连接,或者其一个主通路端口和无线收发设备的双工器发射端口连接,第一耦合器的耦合端口相对于所述无线收发设备发射信号为正向耦合端口;所述的自适应抵消无源互调信号的装置的第二耦合器需在所述无线收发设备内新增,其一个主通路端口和无线收发设备的双工器接收端口连接且距离需控制在0到1米范围内,具体长度由无源互调抵消最佳效果确定,第二耦合器的耦合 端口相对于所述无线收发设备接收信号为反向耦合端口;所述的自适应抵消无源互调信号的装置的抵消器电路需在所述无线收发设备内新增,且其一个射频输入端口和第一耦合器的耦合端口直接连接,其另一个射频输出端口和第二耦合器的耦合端口直接连接,抵消器电路的幅度调整和相位调整由数字处理单元运算输出的幅度、相位控制参数实现;所述的自适应抵消无源互调信号的装置的天馈组件和天线即为所述无线收发设备的天线链路上的对应组件和天线;
当无线收发设备有多个收发链路时,所述每一收发链路中双工器均需配一套第一耦合器、第二耦合器以及抵消器电路。
本发明提供了一种自适应抵消无线收发系统中无源互调信号的方法,其特征在于:该方法包括以下步骤,
S1:通过数字处理单元获取发射信号带宽和频段、接收信号带宽和频段、无源互调信号中的主要干扰分量的阶次和频段信息、期望的无源互调预设值以及随时间变化的曲线、幅度和相位的初始经验数据、最大抵消次数等信息,并转换成相应的配置参数;
S2:依据步骤S1中有关发射信号的配置参数,数字处理单元求得无源互调信号的频点并转换成相应数字滤波参数存储入参量配置表中;
S3:依据步骤S1中有关接收信号的配置参数、无源互调信号的配置参数以及由步骤S2中获取的无源互调信号的数字滤波参数,数字处理单元对无源互调检测电路的采样信号进行数字滤波,滤除除无源互调信号以外的其他信号分量,求得落入到接收频段的无源互调信号的幅度值;所述求幅度值的算法包括但不限于分段积分法、依据信号带宽的直接积分法;
S4:判断当前工作状态;所述工作状态的状态标识默认值是:“初始工作模式”;如果工作状态的状态标识值是“初始工作模式”则继续步骤S5-1,否则继续步骤S5-2;
S5-1:将步骤S3获取的无源互调信号幅度值与步骤S1中的无源互调预设值进行对比以判断无源互调信号幅度是否小于等于的无源互调预设值;
S6:如果步骤S5-1的判断结果为“是”,则抵消器电路继续保持互调信号发生器与第一耦合器之间链路高隔离度状态;并返回步骤S2;
S7:如果步骤S5-1的判断结果为“否”,则抵消器电路切换到互调信号发生器与第一耦合器之间链路低隔离度状态;且将工作状态的状态标识值并设置为“抵消工作状态”;继续执行步骤S8;
S5-2:将步骤S3获取的无源互调信号幅度值与步骤S1中的无源互调预设值进行对比以判断无源互调信号幅度是否小于等于的无源互调预设值;如果步骤S5-2的判断结果为“是”,则保持状态,并返回步骤S2;如果步骤S5-2的判断结果为“否”,则执行步骤S8;
S8:依据步骤S3的无源互调信号的幅度值推算抵消器电路的幅度、相位调整值;并配送给抵消器电路中的调幅器、调相器,实施抵消;在完成当前一轮抵消处理后,将继续回到步骤S2继续下一轮的抵消处理;所述求幅度、相位调整值的算法包括但不限于二维最小方差演算法。
本发明能将无线收发设备产生的无源互调信号以及无线收发设备天线口之后链路中任何一个设备或组件产生的无源互调信号落入到接收频段的分量在无线收发设备中的射频链路上抵消,并且在所述无源器件的接收端口获得优于预定的无源互调要求指标的结果。 本发明在保持系统无源互调指标不变情况下,可以降低对无线收发系统中各个器件的无源互调指标要求,从而降低各个无源器件的制造成本。本发明也可以用来消除由于双工器或其天线链路上所述组件或天线随工作时间增长而出现的无源互调指标恶化的影响,从而延长该无线收发系统的生命周期。本发明还可以在所述系统需要更好无源互调指标时,提升该指标到预设值以上。当进行无线收发设备的双工器及其天线链路的无源互调抵消并在所述双工器接收端口获得优于预定的无源互调要求指标的结果时,本发明不会对发射信号线性性能和接收信号线性性能产生不良影响。由于本发明采用了有源互调抵消电路,使得信号相位、幅度的调可以量化,提高了调整精度和准度。由于本发明采用了无源互调信号抵消效果的反馈链路,使得无源互调信号抵消效果可以被实时监测并自适应的动态调整,以便当通过所述无源器件或后续链路上的信号的功率等级、工作频率发生变化时,以及环境温度等发生变化时,可以动态、实时响应,使无源互调信号抵消结果满足预期目标值。
附图说明
图1是本发明实施例第一种自适应抵消无源互调信号的装置的结构示意图。
图2是本发明实施例装置中第一耦合器A的第二种位置的结构示意图。
图3是本发明实施例中无源互调检测电路D的超外差结构示意图。
图4是本发明实施例中无源互调检测电路D的接收零中频结构示意图。
图5本发明实施例中一种自适应抵消无线收发系统中无源互调信号的方法的流程图。
表1是本发明实施例装置的一个无源互调抵消测试记录。
图6是本发明实施例装置3阶分量的抵消效果图。
图7是本发明实施例装置在3阶分量抵消后的5阶分量的抵消效果图。
图8是本发明实施例一种具有自适应抵消无源互调信号功能的无线收发设备的结构示意图。
图9是本发明实施例应用于无线收发设备后的3阶分量的抵消效果图。
图10是本发明实施例用于无线收发设备后未开启无源互调抵消功能时的双载波发射信号中低频点信号ACPR测试结果图。
图11是本发明实施例用于无线收发设备后未开启无源互调抵消功能时的双载波发射信号中高频点信号ACPR测试结果图。
图12是本发明实施例用于无线收发设备后开启无源互调抵消功能时的双载波发射信号中低频点信号ACPR测试结果图。
图13是本发明实施例用于无线收发设备后开启无源互调抵消功能时的双载波发射信号中高频点信号ACPR测试结果图。
图14是本发明实施例用于无线收发设备后未开启无源互调抵消功能时,再将接收信号环回到发射链路时的低频点信号EVM测试结果图。
图15是本发明实施例用于无线收发设备后未开启无源互调抵消功能时,再将接收信号环回到发射链路时的高频点信号EVM测试结果图。
图16是本发明实施例用于无线收发设备后开启无源互调抵消功能时,再将接收信号环回到发射链路时的低频点信号EVM测试结果图。
图17是本发明实施例用于无线收发设备后开启无源互调抵消功能时,再将接收信号 环回到发射链路时的高频点信号EVM测试结果图。
图18是本发明实施例一种能自适应抵消无源互调信号的无线直放站的结构示意图。
图19是本发明实施例中无线收发设备与多个收发链路使用实例之一的示意图。
图20是本发明实施例中无线收发设备具有多个收发链路使用实例之一的示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明,便于清楚地了解本发明,但它们不对本发明构成限定。
如图1所示,本发明涉及一种自适应抵消无源互调信号的装置,它包括第一耦合器A,抵消器电路B,第二耦合器B5,无源互调检测电路D,数字处理单元E,双工器A0,发射电路单元F,天馈组件A2,天线A1;所述装置中的双工器A0代表无线收发设备中的无源器件;所述天馈组件A2和天线A1代表无线收发系统的天线链路中的无源器件,所述天馈组件A2代表天线链路中单个或多个无源器件的组合,这些无源器件包括但不限于电缆、连接器、耦合器、合路器。
所述发射电路单元F的大于某一射频功率值的发射信号使所述双工器A0及其天线链路产生无源互调信号;所述发射信号由多音信号构成或者由多载波调制信号构成。本实施例中,所述发射电路单元F的大于40dBm的信号使所述双工器A0及其天线链路上的天馈组件A2和天线A1产生无源互调信号,并且该无源互调信号中有落入到双工器A0接收频段的且与接收信号有一定频率间隔的分量,依据发射信号的不同配置可以使所述无源互调信号落入双工器A0接收频段的分量包含单个3阶分量、或单个5阶分量、甚至或单个更高阶次分量、或多个不同频率3阶分量、或多个不同频率5阶分量、甚至或多个不同频率的更高阶次分量、或同时有3阶分量和5阶分量甚至高阶次分量;本实施例中,发射频段为925MHz到960MHz,接收频段为880MHz到915MHz;
所述第一耦合器A从双工器A0的天线口的链路上耦合射频信号输出给抵消器电路B;所述射频信号中包含发射信号、无源互调信号和接收信号;所述第一耦合器A的一个主通路端口与所述双工器A0的天线口直接连接、另一个主通路端口与天线链路上的天馈组件A2连接、第一耦合器A的耦合端口和抵消器电路B的一个射频端口连接;所述第二耦合器B5将抵消器电路B产生的互调抵消信号叠加在双工器A0接收端口后的链路上,第二耦合器B5的一个主通路端口与双工器A0接收端口直接连接,且距离需控制在0到1米范围内,本实施例中距离为0米,具体长度由无源互调抵消最佳效果确定。该主通路端口为第一主通路端口,另一个主通路端口与无源互调检测电路D连接为第二主通路端口,第二耦合器B5的耦合端口和抵消器电路B的另一个射频端口连接。
当所述双工器A0或天馈组件A2或天线A1单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中仅会有单个3阶、或单个5阶或单个更高阶次分量落入双工器A0的接收频带且造成从双工器A0接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器A0接收端口后的第二耦合器B5的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:
所述抵消器电路B利用所获得的射频信号中的发射信号在抵消器电路B中的互调信号发生器B2上产生出与所述无源互调信号频率相同、幅度不同和相位不同的互调信号; 而该射频信号中的接收信号和无源互调信号的功率在所述互调信号发生器B2上产生的互调信号的幅值远小于上述无源互调信号的幅值,不对无源互调抵消结果产生影响;所述互调信号反射后通过抵消器电路B中的调幅调相器B1的幅度调整和相位调整,并耦合输出至第二耦合器B5的主通路,形成与所述无源互调信号中落入接收频段的且与接收信号有一定频率间隔的分量频率相同、幅度相同和相位相反的互调抵消信号,该互调抵消信号与所述无源互调信号中落入接收频段的分量进行抵消,抵消后的无源互调信号小于等于无源互调预设值;同时双工器A0及其天线链路中的发射信号和接收信号在双工器A0及其天线链路中正常运作;此外,所述互调信号发生器B2所能产生的所述互调抵消信号的最大幅值要大于所述双工器A0及其天线链路的无源互调信号中落入到接收频段对应频率的单个分量的幅值;
当所述双工器A0或天馈组件A2或天线A1单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中仅有多个不同频率的3阶、或多个不同频率的5阶或多个不同频率的更高阶次分量落入双工器A0的接收频带且造成从双工器A0接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器A0接收端口后的第二耦合器B5的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB。
输入至所述抵消器电路B射频信号中的发射信号经射频开关B3,调幅电路3,环行器4和互调信号发生器B2处理后产生出与所述无源互调信号频率相同、幅度不同和相位不同的互调信号,且该互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅度关系和相位关系与所述双工器A0及其天线链路产生的无源互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅值关系和相位关系基本一致;而该射频信号中的接收信号和无源互调信号的功率在所述互调信号发生器B2上产生的互调信号的幅值远小于上述无源互调信号的幅值,不对无源互调抵消结果产生影响;所述互调信号反射后通过抵消器电路B中的调幅调相器B1的幅度调整和相位调整,并耦合输出至第二耦合器B5的主通路,形成与所述无源互调信号中落入接收频段的且与接收信号有一定频率间隔的分量频率相同、幅度相同和相位相反的互调抵消信号,该互调抵消信号与所述无源互调信号中落入接收频段的分量进行抵消,抵消后的无源互调信号小于等于无源互调预设值;同时双工器A0及其天线链路中的发射信号和接收信号在双工器A0及其天线链路中正常运作;此外,所述互调信号发生器B2所能产生的对应无源互调分量频率的所述互调抵消信号的最大幅值要大于所述双工器A0及其天线链路的无源互调信号中落入到接收频段的多个对应频率分量的幅值。
对于上述三种情况,实际选择构成互调信号发生器B2的具体器件时,应使所述互调信号发生器B2上产生出与所述射频信号中的无源互调信号频率相同、幅度不同和相位不同的互调信号,且该互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同 频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅度关系和相位关系与所述双工器A0及其天线链路产生的无源互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅值关系和相位关系基本一致;而且所述互调信号发生器B2所能产生的对应无源互调分量频率的所述互调抵消信号的最大幅值要大于所述双工器A0及其天线链路的无源互调信号中落入到接收频段的多个对应频率分量的幅值;
对于上述三种情况,所述第一耦合器A有第二种位置:所述第一耦合器A串接于该装置的发射电路单元F中,其中一个主通路端口与双工器A0的发射端口连接;此时第一耦合器A直接耦合发射信号输出到抵消器电路B;
在上述三种情况中,所述调幅调相器B1的幅度调整和相位调整通过数字处理单元E运算输出的幅度、相位控制参数实现;而数字处理单元E的幅度、相位控制参数的计算又需要无源互调检测电路D的采样信号;
所述抵消器电路B中的射频开关B3在调幅电路3的衰减量可以使互调信号发生器B2不产生能够影响双工器A0无源互调性能的所述互调信号时,可以不用;所述抵消器电路B中的滤波器5可以位于环行器4和调幅调相器B1之间,或者位于调幅调相器B1和第二耦合器B5之间;
所述无源互调检测电路D,作用是将所述双工器A0接收端口后的射频信号经过增益可调控的放大,下变频,最终转换成数字信号并输入到数字处理单元E,所述无源互调检测电路D的射频端口直接与双工器A0接收端口后的第二耦合器B5的第二主通路端口连接,该电路获得的射频信号包含接收信号和无源互调信号中落入接收频段的分量,且该电路的接收动态范围大于接收信号的最大功率值和无源互调预设值对应的功率值之间的差值;所述无源互调检测电路D通过高速模数转换器与所述数字处理单元E连接,高速模数转换器的采样速率大于等于2倍的双工器A0接收频段带宽。
当无源互调检测电路D中的射频信号过大造成链路阻塞时,数字处理单元E将缩小无源互调检测电路D的链路增益以便正常处理接收信号并停止检测无源互调信号幅值;当无源互调检测电路D没有阻塞时,所述数字处理单元E在进行无源互调幅值计算过程中,需要处理的来源于无源互调检测电路D的信号中包含有无源互调信号和接收信号且无源互调信号和接收信号之间有一定频率间隔;计算无源互调信号幅值的方法为:数字处理单元E首先依据发射信号频率信息计算出与之相关的无源互调信号的频率信息,然后依据接收信号频率、带宽信息与无源互调信号频率、带宽信息求得它们之间的频率间隔,并依据该频率间隔选择合适的算法计算无源互调信号幅值;所述计算无源互调信号幅值的算法包含但不限于直接滤波积分法和分段滤波积分法:所述直接滤波积分法是指依据无源互调信号带宽直接数字滤波并积分求幅度,此时所述无源互调信号落入到接收频段的各阶次分量与接收信号之间的频率间隔要大于等于无源互调信号的数字滤波算法中数字滤波器通带到阻带的过渡带带宽,此频率间隔即是采用直接滤波积分法的依据;所述分段滤波积分法是指将无源互调信号带宽分成数个子带宽,依据每个子带宽进行数字滤波并积分求幅度,再将所有子带宽对应的幅度进行累加获得整个信号幅值,此时所述各阶次分量与接收信号之间的频率间隔要大于等于各阶次分量边子带信号的数字滤波器通带到阻带的过渡带带 宽,此频率间隔即是采用分段滤波积分法的依据。
所述数字处理单元E首先依据发射信号频率信息,计算出与之相关的无源互调信号的频率信息,并将其转换为无源互调信号的滤波参数,然后依据接收信号频率、带宽信息与无源互调信号频率、带宽信息求得它们之间的频率间隔,再选择相应的数字滤波方式和积分方式,最终实现对无源互调信号的幅值检测;然后将所述无源互调信号的检测幅值与无源互调预设值进行对比:当所述检测幅值小于等于所述预设值时,所述抵消器电路B不产生互调抵消信号,不对所述双工器A0及其天线链路的无源互调指标产生影响;当所述检测幅值大于所述预设值时,控制所述抵消器电路B对其幅度和相位的调整产生出与所述双工器A0及其天线链路的无源互调信号频率相同、幅度相同和相位相反的互调抵消信号与所述射频信号中的无源互调信号进行抵消,并保持这种依据无源互调信号的幅值检测结果实时调控所述抵消器电路B幅度和相位使无源互调信号抵消结果小于等于所述预设值的工作状态。
所述数字处理单元E获取所述发射信号频率信息和接收信号频率信息的一种方法是利用发射信号鉴频电路E1从所述装置的发射电路单元F上获取发射信号,转换为数字信号,输入数字处理单元E进行鉴频处理,获取相关发射信号频率信息,并由发射信号和接收信号之间的双工频率间隔推算相应接收信号频率信息;获取所述发射信号频率信息和接收信号频率信息的另一种方法是通过数字处理单元E中的信息交互接口直接从该装置的输入信息中获取。
本实施例中所述第一耦合器A有第二种位置,如图2所示:所述第一耦合器A串接于该装置的发射电路单元F中,其中一个主通路端口与双工器A0的发射端口连接,另一个主通路端口与发射电路单元F中功率放大器的射频输出口连接;此时第一耦合器A直接耦合发射信号输出到抵消器电路B;
本装置可以应用于数字无线收发设备及其天线链路以便抵消无源器件产生的不合格的无源互调使无线收发设备及其天线链路的无源互调指标满足无源互调预设值;并且当多个无线收发设备同时使用且每个设备的天线链路通过合路器合路后连接天线时,对应于每条天线链路的本装置也可以抵消该天线链路上的无源器件产生的不合格的无源互调使无线收发设备及其天线链路的无源互调指标满足无源互调预设值;所述数字无线收发设备包括但不限于射频拉远单元、直放站、无线电台等设备,所述天线链路包含但不限于电缆、连接器、耦合器、合路器、天线。
所述双工器A0及其天线链路产生无源互调信号的信号和激励所述互调信号发生器B2产生互调信号的信号是同源的,均来源于发射电路单元F的发射信号,所以无源器件产生的无源互调信号和互调信号发生器B2产生的互调信号的频率相同、带宽相同;所述天线链路是从双工器A0天线口到天线A1这段链路,所述天馈组件A2代表天线链路中单个或多个无源器件的组合,这些无源器件包括但不限于电缆、连接器、耦合器、合路器;所述发射信号由多音信号构成或者由多载波调制信号构成;
当所述双工器A0或天馈组件A2或天线A1单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中仅会有单个3阶、或单个5阶或单个更高阶次分量落入双工器A0的接收频带且造成从双工器A0接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器A0接收端口后的第二耦合器B5的第二主通 路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器B2所能产生的所述互调抵消信号的最大幅值要大于所述双工器A0及其天线链路的无源互调信号中落入到接收频段对应频率的单个分量的幅值;
当所述双工器A0或天馈组件A2或天线A1单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中仅有多个不同频率的3阶、或多个不同频率的5阶或多个不同频率的更高阶次分量落入双工器A0的接收频带且造成从双工器A0接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器A0接收端口后的第二耦合器B5的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器B2所能产生的对应无源互调分量频率的互调抵消信号的最大幅值要大于所述双工器A0及其天线链路的无源互调信号中落入到接收频段的多个对应频率分量的幅值;所述互调信号发生器B2上产生的互调信号中多个特定阶次分量之间的相位关系与所述双工器A0及其天线链路产生的无源互调信号中多个特定阶次分量之间的相位关系基本一致;
当所述双工器A0或天馈组件A2或天线A1单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中同时有3阶、5阶或更高阶次分量落入双工器A0的接收频带且都造成从双工器A0接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器A0接收端口后的第二耦合器B5的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器B2所能产生的对应无源互调分量频率的所述互调抵消信号的最大幅值要大于所述双工器A0及其天线链路的无源互调信号中落入到接收频段的多个对应频率分量的幅值;所述互调信号发生器B2上产生的互调信号中多个特定阶次分量之间的幅度关系和相位关系与所述双工器A0及其天线链路产生的无源互调信号中多个特定阶次分量之间的幅值关系和相位关系基本一致。
上述技术方案中可以降低对该装置中双工器A0或其天线链路上所述天馈组件A2、天线A1的无源互调指标要求,这样可以通过该装置的无源互调抵消功能保持该装置的无源互调指标满足预设值,甚至在本装置有富余抵消能力的时候使该装置的无源互调指标更好,以便改善或提升由于无源互调恶化引起的接收机灵敏度。同时可以消除由于该装置中双工器A0或其天线链路上所述天馈组件A2或天线A1随工作时间增长而出现的无源互调指标恶化的影响,甚至在本装置有富余抵消能力的时候使该装置的无源互调指标更好,以便改善或提升由于无源互调恶化引起的接收机灵敏度;再者可以在该装置中双工器A0或其天线链路上天馈组件A2、天线A1的无源互调指标需要更好时,提升所述装置的无源互调指标值,以便进一步提升由于无源互调不足引起的接收机灵敏度。
所述抵消器电路B的一个端口通过第一耦合器A与双工器A0天线口直接连接,或者通过第一耦合器A与双工器A0发射端口直接连接;所述抵消器电路B的另一个端口通过第二耦合器B5与双工器A0接收端口后的链路连接;所述第二耦合器B5的第一主通路端口与双工器A0接收端口连接且连接距离需控制在0到1米范围内,本实施例中直接连接即距离为0米。第二耦合器B5第二主通路端口和无源互调检测电路D的射频输入端连接,第二耦合器B5的耦合端口连接抵消器电路B;所述第一耦合器A的插入损耗小于0.2dB;所述第一耦合器A的耦合度范围为25dB到45dB,本实施例选择30dB左右。第一耦合器 A的耦合端口相对于发射信号为正向耦合端口;第一耦合器A的承载功率需大于该装置的最大发射功率峰值,本实施例中第一耦合器A承载的平均功率大于100瓦特且承载的峰值功率大于1000瓦特。第一耦合器A的带宽需包含发射频段,第一耦合器A的频带内增益波动与发射频段相关且需在一定的门限值范围内;第一耦合器A的无源互调指标为-117d Bm/Hz;所述第二耦合器B5的插入损耗小于0.2dB;所述第二耦合器B5的耦合度范围为20dB到40dB,本实施例中所述第二耦合器B5的耦合度为25dB左右。第二耦合器B5的耦合端口相对于接收信号为反向耦合端口;第二耦合器B5的带宽需包含接收频段,第二耦合器B5的频带内增益波动与接收频段相关且需在一定的门限值范围内;所述抵消器电路B的承载功率门限值需大于等于第一耦合器A的功率门限值与第一耦合器A的耦合度之差值,即所述抵消器电路B承载的平均功率门限值大于等于20dBm且承载的峰值功率门限值大于等于30dBm。为使抵消器电路B中互调信号发生器B2能产生无源互调抵消信号,加载在所述抵消器电路B的发射信号功率的最小值需大于10瓦特;
所述无源互调检测电路D的射频端口与双工器A0接收端口后的第二耦合器B5的第二主通路端口连接,以便获取接收信号和无源互调信号落入接收频段的分量,所述无源互调检测电路D的接收动态范围大于接收信号的最大功率值和无源互调预设值所对应的功率值之间的差值。所述无源互调检测电路D的接收动态范围大于70dB;无源互调检测电路D通过高速模数转换器与所述数字处理单元E连接,高速模数转换器的采样速率大于等于2倍的双工器A0接收频段带宽;
所述数字处理单元E通过多路数模转换器与抵消器电路B连接,将幅度、相位的控制量传递给抵消器电路B,所述抵消器电路B的幅度调整精度和相位调整精度的要求主要来源于无源互调信号抵消能力需求。所述数字处理单元E中的数模转换器的位数范围在10~18位之间,且至少有3个数模转换器。本实施例中所述抵消器电路B的幅度调整精度小于0.1dB和相位调整精度小于1度。
所述数字处理单元E与无源互调检测电路D之间至少存在两个接口:一个接口作用是获取无源互调检测电路D中高速模数转换器的采样信号,从而进行无源互调信号的数字滤波和幅度计算;另一个接口的作用是通过总线配置无源互调检测电路D的参数,例如本振频率,放大器增益等,所述总线包括但不限于I2C总线、SPI总线;
当所述数字处理单元E获取所述发射信号频率信息和接收信号频率信息的方法是利用发射信号鉴频电路E1时,则发射信号鉴频电路E1的射频端口与所述发射电路单元F中发射链路上的某处连接,发射信号鉴频电路E1通过高速模数转换器与所述数字处理单元E连接;同时数字处理单元E与发射信号鉴频电路E1之间还有一个接口,作用是通过总线配置发射信号鉴频电路E1的参数,例如本振频率、链路增益等,所述总线包括但不限于I2C总线、SPI总线。
为了满足对上述抵消器电路B,无源互调检测电路D,或者发射信号鉴频电路E1,甚至发射电路单元F等配置需求和监控需求,所述数字处理单元E至少包含具备数字信号处理功能的逻辑处理与运算处理器件,用于数字信号的接收、算法处理、数字信号的输出、控制和配置信号的输出等,所述逻辑处理与运算处理器件包含但不限于现场可编程门阵列器件,中央处理器,数字信号处理器。
所述数字处理单元E具备至少一个信息交互接口,其作用包含但不限于程序下载,配 置信息输入,远程告警和维护;其中需要输入的配置信息包括本装置发射信号带宽和频段、接收信号带宽和频段、无源互调信号中的主要干扰分量的阶次和频段信息、无源互调信号预设值以及随时间变化的曲线、最大抵消次数;所述数字处理单元E可以通过信息交互接口获取发射信号频率信息和接收信号频率信息;所述的信息交互接口还可以与互联网后台资源进行数据交互:上传所述设备运行过程中的无源互调值,无源互调值随时间变化的经验曲线,以及无源互调信号自适应抵消装置中各模块电路的状态信息;或者下载综合优化后的无源互调信号预设值以及随时间变化的曲线。
所述抵消器电路B中的调幅电路3一端直接连接第一耦合器A的耦合端口,或者通过射频开关B3连接第一耦合器A的耦合端口;另一端通过环行器4连接互调信号发生器B2;所述抵消器电路B中从互调信号发生器B2到第二耦合器B5。耦合端口的链路有两种结构:第一种是互调信号发生器B2通过环行器4连接滤波器5,然后调幅调相器B1一端连接滤波器5,另一端连接第二耦合器B5的耦合端口;第二种是互调信号发生器B2通过环行器4连接调幅调相器B1,然后滤波器5的一端连接调幅调相器B1,另一端连接第二耦合器B5的耦合端口;所述调幅调相器B1由调幅电路1和调相电路2构成;调幅电路1至少包含1个可调控衰减器;调相电路2至少包含2个可调控移相器;调幅电路3由固定衰减器或可调控衰减器构成;所述环行器4的频率带宽包括所述双工器A0的发射频段和接收频段;所述调幅调相器B1的幅度调整范围大于30dB,相位调整范围大于180度;所述调幅调相器B1的工作频段包含所述双工器A0的接收频段,调幅调相器B1的频带内增益波动与接收频段相关且需在一定的门限值范围内;所述滤波器5的通带频段为双工器A0的接收频段,且滤波器5的带外抑制指标要求是由双工器A0接收频段的带外抑制指标、第一耦合器A耦合度、第二耦合器B5耦合度、抵消器电路B中第一耦合器A耦合端到第二耦合器B5耦合端之间链路损耗等决定;所述抵消器电路B中调幅电路3的承载功率大于等于权利要求5中所述抵消器电路B的承载功率门限值。本实施例中所述抵消器电路B中调幅电路3承载的平均功率门限值大于等于20dBm且承载的峰值功率门限值大于等于30dBm;
进一步地,输入至所述抵消器电路B的发射信号经射频开关B3输入到调幅电路3或者直接输入到调幅电路3,再经调幅电路3的功率调整后通过环行器4输入到互调信号发生器B2,使互调信号发生器B2产生出与所述无源互调信号频率相同、幅度不同和相位不同的互调信号,且该互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅度关系和相位关系与所述双工器A0及其天线链路产生的无源互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅值关系和相位关系基本一致;所述互调信号反射后再次通过环行器4,经滤波器5,并经调幅调相器B1的幅度调整和相位调整,耦合输出至第二耦合器B5的主通路,形成与所述无源互调信号中落入接收频段的且与接收信号有一定频率间隔的分量频率相同、幅度相同和相位相反的互调抵消信号,该互调抵消信号与所述无源互调信号中落入接收频段的分量进行抵消,抵消后的无源互调信号小于等于无源互调预设值; 同时双工器A0及其天线链路中的发射信号和接收信号在双工器A0及其天线链路中正常运作;所述抵消器电路B中的射频开关B3在调幅电路3的衰减量可以使互调信号发生器B2不产生能够影响双工器A0无源互调性能的所述互调信号时,可以不用;所述抵消器电路B中的滤波器5可以位于环行器4和调幅调相器B1之间,或者位于调幅调相器B1和第二耦合器B5之间。
所述抵消器电路B中的互调信号发生器B2包含但不限于单个二极管、单个三极管或多个二极管的并联构成;二极管具体型号或者三极管具体型号与产生互调信号3阶、5阶或更高阶互调信号的幅值特性和相位特性相关,所述幅值特性和相位特性的需求为对互调信号发生器B2的要求;采用多个同型号二极管并联结构时,将增强互调信号强度;互调信号发生器B2的承载功率大于等于所述抵消器电路B承载功率门限值与从抵消器电路B射频输入口到互调信号发生器B2的链路损耗的差值。本实施例中互调信号发生器B2的承载功率大于等于20dBm。
所述无源互调检测电路D至少包括低噪声放大器、下变频模块、高速模数转换器;所述低噪声放大器的噪声系数小于1dB;下变频模块可以将接收的射频信号转换成中频信号;高速模数转换器的采样动态范围需大于接收信号的最大功率值和无源互调预设值对应的功率值之间的差值。本实施例中高速模数转换器的采样动态范围需大于70dB,模数转换器的位数为14位,采样速率大于等于2倍的双工器A0接收频段带宽。所述无源互调检测电路D能够采样的最小功率小于等于预设值对应的无源互调功率值,本实施例中所述无源互调检测电路D能够采样的最小功率小于等于-115dBm。同时该电路可以根据所接收的射频信号总功率的幅值调整链路增益从而避免接收信号或其他信号造成的链路阻塞;所述无源互调检测电路D的增益由需求的无源互调预设值、无源互调检测电路D中高速模数转换器的最小采样功率、链路噪声系数等确定;所述无源互调检测电路D的接收信号功率的最大值大于等于该装置实际对应的通信标准所规定的最大接收信号功率。本实施例中所述无源互调检测电路D的接收信号功率的最大值大于等于-50dBm。
所述无源互调检测电路D的可以采用如图3所示的接收超外差结构将射频信号转换为中频信号再进行模数转换,此时无源互调检测电路D由低噪声放大器D1、射频滤波及小信号放大单元D2、混频器D3、本振D4、中频滤波器D5、中频放大器D6、模数转换器D7构成,其中射频滤波及小信号放大单元D2中的滤波组件的通带频段为双工器A0的接收频段;所述无源互调检测电路D或者可以采用如图4所示的接收零中频结构将射频信号转换为零中频信号再进行模数转换,此时无源互调检测电路D由低噪声放大器D1、射频滤波及小信号放大单元D2、下变频及模数转换单元D8构成,其中射频滤波及小信号放大单元D2中的滤波组件的通带频段为双工器A0的接收频段,下变频及模数转换单元D8作用是将射频信号直接转换为零中频信号并进行模数转换。
本实施例中,所述数字处理单元E至少包含具备数字信号处理功能的逻辑处理与运算处理器件,用于数字信号的接收、算法处理、数字信号的输出、控制和配置信号的输出等,所述逻辑处理与运算处理器件包含但不限于现场可编程门阵列器件,中央处理器,数字信号处理器;所述数字处理单元E的信息交互接口的硬件构成包括但不限于以太网接口、R S-485总线接口;所述数字处理单元E中的数模转换器的位数为所述数字处理单元E中的数模转换器的位数范围在10~18位之间,本实施例为12位之间,且至少有3个数模转换 器;所述数字处理单元E中运行对应“一种自适应抵消无线收发系统中无源互调信号的方法”的程序,该方法的流程图参见图5。
一种自适应抵消无线收发系统中无源互调信号的方法,其特征在于:该方法包括以下步骤,
S1:通过数字处理单元E获取发射信号带宽和频段、接收信号带宽和频段、无源互调信号中的主要干扰分量的阶次和频段信息、期望的无源互调预设值以及随时间变化的曲线、幅度和相位的初始经验数据、最大抵消次数等信息,并转换成相应的配置参数;
S2:依据步骤S1中有关发射信号的配置参数,数字处理单元E求得无源互调信号的频点并转换成相应数字滤波参数存储入参量配置表中;
S3:依据步骤S1中有关接收信号的配置参数、无源互调信号的配置参数以及由步骤S2中获取的无源互调信号的数字滤波参数,数字处理单元E对无源互调检测电路D的采样信号进行数字滤波,滤除除无源互调信号以外的其他信号分量,求得落入到接收频段的无源互调信号的幅度值;所述求幅度值的算法包括但不限于分段积分法、依据信号带宽的直接积分法;
S4:判断当前工作状态;所述工作状态的状态标识默认值是:“初始工作模式”;如果工作状态的状态标识值是“初始工作模式”则继续步骤S5-1,否则继续步骤S5-2;
S5-1:将步骤S3获取的无源互调信号幅度值与步骤S1中的无源互调预设值进行对比以判断无源互调信号幅度是否小于等于的无源互调预设值;
S6:如果步骤S5-1的判断结果为“是”,则抵消器电路B继续保持互调信号发生器与第一耦合器A之间链路高隔离度状态;并返回步骤S2;
S7:如果步骤S5-1的判断结果为“否”,则抵消器电路B切换到互调信号发生器与第一耦合器A之间链路低隔离度状态;且将工作状态的状态标识值并设置为“抵消工作状态”;继续执行步骤S8;
S5-2:将步骤S3获取的无源互调信号幅度值与步骤S1中的无源互调预设值进行对比以判断无源互调信号幅度是否小于等于的无源互调预设值;如果步骤S5-2的判断结果为“是”,则保持状态,并返回步骤S2;如果步骤S5-2的判断结果为“否”,则执行步骤S8;
S8:依据步骤S3的无源互调信号的幅度值推算抵消器电路的幅度、相位调整值;并配送给抵消器电路中的调幅器、调相器,实施抵消;在完成当前一轮抵消处理后,将继续回到步骤S2继续下一轮的抵消处理;所述求幅度、相位调整值的算法包括但不限于二维最小方差演算法。
本实施例中,如表1所示:所述发射电路单元F中有两个43dBm的单音信号构成了一个46dBm的双音信号,该双音信号使双工器A0及其天线链路产生了无源互调信号,并且实际在双工器A0接收端口测试到的无源互调中3阶分量幅值为-95.5dBm,且5阶分量为-125.4dBm,7阶分量在频谱仪热噪声之下;所述双工器A0及其天线链路的无源互调信号中落入接收频段的分量小于等于-112dBm的预设值,所以主要优化3阶无源互调不良,同时3阶信号和5阶信号幅值相差29.9dB;此时选用的特定二极管所产生的互调信号在双工器A0接收端口的测试值是:3阶分量幅值为-75.1dBm,且5阶分量为-105.6dBm,7阶分量在频谱仪热噪声之下,此时3阶信号和5阶信号幅值相差30.5dB;当无源互调抵消功能开启后,此时在双工器A0接收端口测试到的无源互调中3阶分量幅值如图6所示,为- 117.4dBm,且5阶分量如图7所示,为-131.4dBm,7阶分量在频谱仪热噪声之下;可以看出造成装置无源互调不良的3阶分量优化了21.9dB,且5阶分量也同步被优化。此时,所述无源互调信号落入到接收频段的各阶次分量与接收信号之间的频率间隔大于等于200KHz;
本实施例装置实际应用于无线收发设备的一个实例如图8所示:此时本装置的双工器A0即是无线收发设备的双工器A0;本装置的无源互调检测电路D复用无线收发设备的接收链路的组件或单元,或者在所述无线收发设备内新增无源互调检测电路D,并依据无线收发设备的接收频段进行相应调整。本装置的发射电路单元F复用无线收发设备的发射链路的组件或单元,并依据无线收发设备的发射频段进行相应调整;本装置的数字处理单元E复用无线收发设备的数字处理单元的组件或单元;或者在所述无线收发设备内新增数字处理单元E,所述数字处理单元E中对应“一种自适应抵消无线收发系统中无源互调信号的方法”的程序将集成于无线收发设备的整机程序中。本装置的第一耦合器A一个主通路端口和无线收发设备的双工器A0天线口连接,或者其一个主通路端口和无线收发设备的双工器A0发射端口连接。第一耦合器A的耦合端口相对于所述无线收发设备发射信号为正向耦合端口。本装置的第二耦合器B5需在所述无线收发设备内新增。本装置的第二耦合器B5一个主通路端口和无线收发设备的双工器A0接收端口直接连接,第二耦合器B5的耦合端口相对于所述无线收发设备接收信号为反向耦合端口;本装置的抵消器电路B的一个射频输入端口和第一耦合器A的耦合端口直接连接,另一个射频输出端口和第二耦合器B5的耦合端口直接连接,抵消器电路B的幅度调整和相位调整由数字处理单元E运算输出的幅度、相位控制参数实现。
所述无线收发设备是一个发射频段为1805MHz~1880MHz、接收频段为1710MHz~1785MHz、FDD LTE制式的射频拉远设备,设置发射信号1为1820MHz/43dBm、发射信号2为1860MHz/43dBm,该双音信号使双工器A0及其天线链路产生了无源互调信号,如图9所示:在双工器A0接收端口测试到的无源互调中3阶分量幅值为-107.6dBm/1780MHz,且5阶分量和7阶分量在频谱仪热噪声之下;所述双工器A0及其天线链路的无源互调信号中落入接收频段的分量小于等于-110dBm的预设值,所以主要优化3阶无源互调分量;当无源互调抵消功能开启后,此时在双工器A0接收端口测试到的无源互调中3阶分量如图9所示,幅值为-128.1dBm;设备无源互调不良的3阶分量优化了20.5dB;再使射频拉远设备和本装置工作于FDD LTE双载波下,此时发射信号1为1820MHz/44dBmPeak/信号峰均比为7dB/IBW=20MHz、发射信号2为1860MHz/44dBmPeak/信号峰均比为7dB/IBW=20MHz,在设备加载该双载波信号后,未开启本装置的无源互调抵消功能时发射信号1对应的ACPR邻信道功率比如图10所示为49.7dBc/60.4dBc,发射信号2对应的ACPR邻信道功率比如图11所示为47.9dBc/60.4dBc,此时检测接收链路的RSSI上报值接收信号的强度指示为-60.59dBfs;开启本装置的无源互调抵消功能后,发射信号1对应的ACPR邻信道功率比如图12所示为50.2dBc/60.5dBc,发射信号2对应的ACPR邻信道功率比如图13所示为48.5dBc/60.3dBc,此时检测接收链路的RSSI上报值接收信号的强度指示为-60.69dBfs;另外,对应发射信号1的接收信号1的频点为1725Mhz,IBW为20MHz,对应发射信号2的接收信号2的频点为1765Mhz,IBW为20MHz,将接收信号环回到发射链路并测试EVM,未开启本装置的无源互调抵消功能时接收信号1的EVM如图1 4所示为3.1%左右,接收信号2的EVM如图15所示为3.06%左右;开启本装置的无源互调抵消功能后,接收信号1的EVM如图16所示为3.1%左右,接收信号2的EVM如图17所示为3.06%左右;对于本装置无源互调抵消功能开启前和开启后,由相同频点信号的ACPR值的对比以及接收链路相关指标对比可知,所述装置的无源互调抵消功能基本没有对发射信号线性性能和接收性能产生不良影响。
此外,本实施例所述装置应用在无线直放站的一个实例如图18所示:所述无线直放站包括第一耦合器A-1,第一耦合器A-2,第二耦合器B5-1,第二耦合器B5-2,抵消器电路B-1,抵消器电路B-2,接收电路单元D-1,接收电路单元D-2,数字处理单元E,双工器A0-1,双工器A0-2,发射电路单元F-1,发射电路单元F-2;以双工器A0-1和双工器A0-2为无源互调指标优化对象并围绕此双工器构成了两套具有无源互调抵消功能的装置,所述具有无源互调抵消功能的装置可以将相应的双工器及其天线链路中产生的无源互调信号中落入到接收频段的分量抵消;以双工器A0-1为无源互调指标优化对象构成的具有无源互调抵消功能的装置简称为第一装置,以双工器A0-2为无源互调指标优化对象构成的具有无源互调抵消功能的装置简称为第二装置;对于第一装置的说明为:本装置的双工器A0为无线直放站的双工器A0-1;本装置的无源互调检测电路D复用无线直放站的接收链路的组件或单元,构成无源互调检测电路D-1;本装置的发射电路单元F复用无线直放站的发射电路单元F-1;本装置的数字处理单元E复用无线直放站的数字处理单元E,所述数字处理单元E中对应“一种自适应抵消无线收发系统中无源互调信号的方法”的程序将集成于无线直放站的整机程序中;本装置的第一耦合器A需在所述无线直放站内新增并在第一装置中称为第一耦合器A-1,且其一个主通路端口和无线直放站的双工器A0-1天线口直接连接,所述第一耦合器A-1的耦合口与抵消器电路B-1的一个射频输入端口连接,第一耦合器A-1的耦合端口相对于所述双工器A0-1的发射信号为正向耦合端口;本装置的第二耦合器B5需在所述无线直放站内新增并在第一装置中称为第二耦合器B5-1,其一个主通路端口与双工器A0-1接收端口直接连接,另一主通路端口与无源互调检测电路D-1的射频输入口连接,所述第二耦合器B5-1的耦合口与抵消器电路B-1的另一个射频输出端口连接,第二耦合器B5-1的耦合端口相对于所述双工器A0-1的接收信号为反向耦合端口;本装置的抵消器电路B需在所述无线直放站内新增并构成抵消器电路B-1,抵消器电路B-1的幅度调整和相位调整由数字处理单元E运算输出的幅度、相位控制参数实现;本装置的天馈组件A2和天线A1即为所述无线直放站的天线链路上的对应组件A2-1和天线A1-1;对于第二装置的说明为:本装置的双工器A0为无线直放站的双工器A0-2;本装置的无源互调检测电路D复用无线直放站的接收链路的组件或单元,构成无源互调检测电路D-2;本装置的发射电路单元F复用无线直放站的发射电路单元F-2;本装置的数字处理单元E复用无线直放站的数字处理单元E,所述数字处理单元E中对应“一种自适应抵消无线收发系统中无源互调信号的方法”的程序将集成于无线直放站的整机程序中;本装置的第一耦合器A需在所述无线直放站内新增并在第二装置中称为第一耦合器A-2,且其一个主通路端口和无线直放站的双工器A0-2天线口直接连接,所述第一耦合器A-2的耦合口与抵消器电路B-2的一个射频输入端口连接,第一耦合器A-2的耦合端口相对于所述双工器A0-2的发射信号为正向耦合端口;本装置的第二耦合器B5需在所述无线直放站内新增并在第二装置中称为第二耦合器B5-2,其一个主通路端口与双工器A0-2接收端 口直接连接,另一主通路端口与无源互调检测电路D-2的射频输入口连接,所述第二耦合器B5-2的耦合口与抵消器电路B-2的另一个射频输出端口连接,第二耦合器B5-2的耦合端口相对于所述双工器A0-2的接收信号为反向耦合端口;本装置的抵消器电路B需在所述无线直放站内新增并构成抵消器电路B-2,抵消器电路B-2的幅度调整和相位调整由数字处理单元E运算输出的幅度、相位控制参数实现;本装置的天馈组件A2和天线A1即为所述无线直放站的天线链路上的对应组件A2-2和天线A1-2;此时所述无线直放站中第一装置和第二装置的连接方式与本发明中描述的本装置相同,第一装置和第二装置之间通过数字处理单元E联合为一体。
此外,本实施例所述装置应用在无线收发设备且无线收发设备有多个收发链路时:所述每一收发链路中双工器的每个天线口后均需配一套第一耦合器A、第二耦合器B5以及抵消器电路B;
此外,本实施例所述装置应用在无线收发设备,在多射频链路使用实例之一的示意图如说明书附图19所示:整个链路包括多个无线收发设备,多射频系统合路器H,天线A1以及天馈组件A2等;且每个支路均有一个无源互调抵消装置与的无线收发设备单一收发链路连接,各个分支链路上双工器A0、天线A1、天馈组件A2等产生的无源互调以及多射频系统合路器H产生的无源互调落入到接收频段的分量均可在一定范围内被抵消;
此外,本实施例所述装置应用在无线收发设备,且所述的无线收发设备有多个收发链路时,使用实例之一的示意图如说明书附图20所示:整个链路包括无线收发设备,多根天线A1-1,A1-2,……,以及多个天馈组件A2-1,A2-2,……;无线收发设备每个收发链路均有一个无源互调抵消装置连接,各个分支链路上双工器、天馈组件、天线等产生的无源互调落入到接收频段的分量均可在一定范围内被抵消;
应用本发明设计完成的装置安装于无线收发系统后,在链路无源互调信号落入接收频段的分量为-90dBm/Hz到-95dBm/Hz时,所述装置可以使无源互调信号抵消结果大于20dB,在链路无源互调信号落入接收频段的分量优于-95dBm/Hz时,所述装置可以使无源互调信号抵消结果至少优于-115dBm/Hz。
应当理解的是,以上仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (20)

  1. 一种自适应抵消无源互调信号的装置,其特征在于:它包括第一耦合器(A),抵消器电路(B),第二耦合器(B5),无源互调检测电路(D),数字处理单元(E),双工器(A0),发射电路单元(F),天馈组件(A2),天线(A1);
    所述发射电路单元(F)的大于某一射频功率值的信号使所述双工器(A0)及其天线链路产生无源互调信号,并且该无源互调信号中有落入到双工器(A0)接收频段的且与接收信号有一定频率间隔的分量;
    所述第一耦合器(A)从双工器(A0)的天线口的链路上耦合射频信号输出给抵消器电路(B);所述射频信号中包含发射信号、无源互调信号和接收信号;所述第一耦合器(A)的一个主通路端口与所述双工器(A0)的天线口连接、另一个主通路端口与天线链路上的天馈组件(A2)连接、第一耦合器(A)的耦合端口和抵消器电路(B)的一个射频端口连接;所述第二耦合器(B5)将抵消器电路(B)产生的互调抵消信号叠加在双工器(A0)接收端口后的链路上,第二耦合器(B5)的一个主通路端口与双工器(A0)接收端口连接,且距离需控制在0到1米范围内,具体长度由无源互调抵消最佳效果确定,该主通路端口为第一主通路端口,另一个主通路端口与无源互调检测电路(D)连接为第二主通路端口,第二耦合器(B5)的耦合端口和抵消器电路(B)的另一个射频端口连接;
    耦合到抵消器电路(B)的射频信号中的接收信号和无源互调信号的功率在抵消器电路(B)上产生的互调信号,经幅度调整和相位调整,耦合输出至第二耦合器(B5)的主通路,形成与所述无源互调信号中落入接收频段的且与接收信号有一定频率间隔的分量频率相同、幅度相同和相位相反的互调抵消信号,
    所述无源互调检测电路(D)的射频端口与双工器(A0)接收端口后的第二耦合器(B5)的第二主通路端口连接以获取接收信号和无源互调信号落入接收频段的分量,所述无源互调检测电路(D)的接收动态范围大于接收信号的最大功率值和无源互调预设值所对应的功率值之间的差值;无源互调检测电路(D)通过高速模数转换器与所述数字处理单元(E)连接,高速模数转换器的采样速率大于等于2倍的双工器(A0)接收频段带宽;
    所述数字处理单元(E)依据发射信号频率信息计算得出无源互调信号的检测幅值并与无源互调预设值进行对比;根据当所述检测幅值与所述预设值对比结果,所述抵消器电路(B)选择是否产生互调抵消信号;所述数字处理单元(E)通过多路数模转换器与抵消器电路(B)连接,将幅度、相位的控制量传递给抵消器电路(B),所述抵消器电路(B)的幅度调整精度和相位调整精度的要求主要来源于无源互调信号抵消能力需求。
  2. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:所述装置中的双工器(A0)代表无线收发设备中的无源器件;所述天馈组件(A2)和天线(A1)代表无线收发系统的天线链路中的无源器件,所述天馈组件A2代表天线链路中单个或多个无源器件的组合,这些无源器件包括但不限于电缆、连接器、耦合器、合路器。
  3. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:输入至所述抵消器电路(B)射频信号中的发射信号经射频开关(B3),调幅电路(3),环行器(4)和互调信号发生器(B2)处理后产生出与所述无源互调信号频率相同、幅度不同和相位不同 的互调信号,且该互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅度关系和相位关系与所述双工器(A0)及其天线链路产生的无源互调信号中落入接收频段的单个3阶分量、或单个5阶分量、或单个更高阶次分量,或者多个不同频点的3阶分量、或多个不同频点的5阶分量、或多个不同频点的更高阶次分量,或者同时有3阶分量、5阶分量甚至更高阶次分量之间的幅值关系和相位关系基本一致;
    而耦合到抵消器电路(B)的射频信号中的接收信号和无源互调信号的功率在所述互调信号发生器(B2)上产生的互调信号的幅值远小于上述无源互调信号的幅值,不对无源互调抵消结果产生影响;
    所述互调信号反射后再次通过环行器(4),经滤波器(5),并经调幅调相器(B1)的幅度调整和相位调整,耦合输出至第二耦合器(B5)的主通路,形成与所述无源互调信号中落入接收频段的且与接收信号有一定频率间隔的分量频率相同、幅度相同和相位相反的互调抵消信号,该互调抵消信号与所述无源互调信号中落入接收频段的分量进行抵消,抵消后的无源互调信号小于等于无源互调预设值;同时双工器(A0)及其天线链路中的发射信号和接收信号在双工器(A0)及其天线链路中正常运作。
  4. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:所述数字处理单元(E)依据发射信号频率信息计算方法如下:
    所述数字处理单元(E)首先依据发射信号频率信息,计算出与之相关的无源互调信号的频率信息,并将其转换为无源互调信号的滤波参数,然后依据接收信号频率、带宽信息与无源互调信号频率、带宽信息求得它们之间的频率间隔,再选择相应的数字滤波方式和积分方式,最终实现对无源互调信号的幅值检测;然后将所述无源互调信号的检测幅值与无源互调预设值进行对比;
    当所述检测幅值小于等于所述预设值时,所述抵消器电路(B)不产生互调抵消信号,不对所述双工器(A0)及其天线链路的无源互调指标产生影响;
    当所述检测幅值大于所述预设值时,控制所述抵消器电路(B)对其幅度和相位的调整产生出与所述双工器(A0)及其天线链路的无源互调信号频率相同、幅度相同和相位相反的互调抵消信号与所述射频信号中的无源互调信号进行抵消,并保持这种依据无源互调信号的幅值检测结果实时调控所述抵消器电路(B)幅度和相位使无源互调信号抵消结果小于等于所述预设值的工作状态。
  5. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:所述数字处理单元(E)通过发射信号鉴频电路(E1)从所述装置的发射电路单元(F)上获取发射信号,转换为数字信号,输入数字处理单元(E)进行鉴频处理,获取相关发射信号频率信息,并由发射信号和接收信号之间的双工频率间隔推算相应接收信号频率信息;或通过数字处理单元(E)中的信息交互接口直接从该装置的输入信息中获取;所述数字处理单元(E)产生触发信号输出至发射电路单元(F)从而触发发射电路单元(F)产生射频信号。
  6. 根据权利要求3所述的自适应抵消无源互调信号的装置,其特征在于:激励所述双工器(A0)及其天线链路产生无源互调信号的信号和激励所述互调信号发生器(B2)产生互调信号的信号是同源的,均来源于发射电路单元(F)的发射信号,所以无源器件产生的无源互调信号和互调信号发生器(B2)产生的互调信号的频率相同、带宽相同;所述天线链路是从双工器(A0)天线口到天线(A1)这段链路,所述天馈组件(A2)代表天线链路中单个或多个无源器件的组合,这些无源器件包括但不限于电缆、连接器、耦合器、合路器;所述发射信号由多音信号构成或者由多载波调制信号构成。
  7. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:当所述双工器(A0)或天馈组件(A2)或天线(A1)单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中仅会有单个3阶、或单个5阶或单个更高阶次分量落入双工器(A0)的接收频带且造成从双工器(A0)接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器(A0)接收端口后的第二耦合器(B5)的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器(B2)所能产生的所述互调抵消信号的最大幅值要大于所述双工器(A0)及其天线链路的无源互调信号中落入到接收频段对应频率的单个分量的幅值;
    当所述双工器(A0)或天馈组件(A2)或天线(A1)单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中仅有多个不同频率的3阶、或多个不同频率的5阶或多个不同频率的更高阶次分量落入双工器(A0)的接收频带且造成从双工器(A0)接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器(A0)接收端口后的第二耦合器(B5)的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器(B2)所能产生的对应无源互调分量频率的互调抵消信号的最大幅值要大于所述双工器(A0)及其天线链路的无源互调信号中落入到接收频段的多个对应频率分量的幅值;所述互调信号发生器(B2)上产生的互调信号中多个特定阶次分量之间的相位关系与所述双工器(A0)及其天线链路产生的无源互调信号中多个特定阶次分量之间的相位关系基本一致;
    当所述双工器(A0)或天馈组件(A2)或天线(A1)单个产生的或多个无源器件同时产生并叠加而成的与接收信号有一定频率间隔的无源互调信号中同时有3阶、5阶或更高阶次分量落入双工器(A0)的接收频带且都造成从双工器(A0)接收端口测试的无源互调指标达不到预设值要求时,为使所述双工器(A0)接收端口后的第二耦合器(B5)的第二主通路端口后的无源互调值满足预设值要求且使本装置的抵消能力大于20dB:所述互调信号发生器(B2)所能产生的对应无源互调分量频率的所述互调抵消信号的最大幅值要大于所述双工器(A0)及其天线链路的无源互调信号中落入到接收频段的多个对应频率分量的幅值;所述互调信号发生器(B2)上产生的互调信号中多个特定阶次分量之间的幅度关系和相位关系与所述双工器(A0)及其天线链路产生的无源互调信号中多个特定阶次分量之间的幅值关系和相位关系基本一致。
  8. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:当无源互 调检测电路(D)中的射频信号过大造成链路阻塞时,数字处理单元(E)将减小无源互调检测电路(D)的链路增益以便正常处理接收信号并停止检测无源互调信号幅值;当无源互调检测电路(D)没有阻塞时,所述数字处理单元(E)在进行无源互调幅值计算过程中,需要处理的来源于无源互调检测电路(D)的信号中包含有无源互调信号和接收信号且无源互调信号和接收信号之间有一定频率间隔。
  9. 根据权利要求4所述的自适应抵消无源互调信号的装置,其特征在于:所述数字处理单元(E)计算无源互调信号幅值的方法为:
    数字处理单元(E)首先依据发射信号频率信息计算出与之相关的无源互调信号的频率信息,然后依据接收信号频率、带宽信息与无源互调信号频率、带宽信息求得它们之间的频率间隔,并依据该频率间隔选择合适的算法计算无源互调信号幅值;
    所述计算无源互调信号幅值的算法包含但不限于直接滤波积分法和分段滤波积分法:
    所述直接滤波积分法是指依据无源互调信号带宽直接数字滤波并积分求幅度,此时所述无源互调信号落入到接收频段的各阶次分量与接收信号之间的频率间隔要大于等于无源互调信号的数字滤波算法中数字滤波器通带到阻带的过渡带带宽,此频率间隔即是采用直接滤波积分法的依据;
    所述分段滤波积分法是指将无源互调信号带宽分成数个子带宽,依据每个子带宽进行数字滤波并积分求幅度,再将所有子带宽对应的幅度进行累加获得整个信号幅值,此时所述各阶次分量与接收信号之间的频率间隔要大于等于各阶次分量边子带信号的数字滤波器通带到阻带的过渡带带宽,此频率间隔即是采用分段滤波积分法的依据。
  10. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:
    所述抵消器电路(B)的一个端口通过第一耦合器(A)与双工器(A0)天线口后的天线链路连接,或者通过第一耦合器(A)与双工器(A0)发射端口前的发射链路连接;所述抵消器电路(B)的另一个端口通过第二耦合器(B5)与双工器(A0)接收端口后的链路连接;所述第二耦合器(B5)的第一主通路端口与双工器(A0)接收端口连接且连接距离需控制在0到1米范围内,具体长度由无源互调抵消最佳效果确定,第二耦合器(B5)第二主通路端口和无源互调检测电路(D)的射频输入端连接,第二耦合器(B5)的耦合端口连接抵消器电路(B);所述第一耦合器(A)的插入损耗小于0.2dB;所述第一耦合器(A)的耦合度范围为25dB到45dB;第一耦合器(A)的耦合端口相对于发射信号为正向耦合端口;第一耦合器(A)的承载功率需大于该装置的最大发射功率峰值,第一耦合器(A)的带宽需包含发射频段,第一耦合器(A)的频带内增益波动与发射频段相关且需在一定的门限值范围内;第一耦合器(A)的无源互调指标符合权利要求2中对天馈组件(A2)的无源互调指标要求;所述第二耦合器(B5)的插入损耗小于0.2dB;所述第二耦合器(B5)的耦合度范围为20dB到40dB;第二耦合器(B5)的耦合端口相对于接收信号为反向耦合端口;第二耦合器(B5)的带宽需包含接收频段,第二耦合器(B5)的频带内增益波动与接收频段相关且需在一定的门限值范围内;所述抵消器电路(B)的承载功率门限值需大于等于第一耦合器(A)的功率门限值与第一耦合器(A)的耦合度之差值;为使抵消器电路(B)中互调信号发生器(B2)能产生无源互调抵消信号,加载在所述抵消器电路(B)的发射信号功 率的最小值需大于一定的功率门限值。
  11. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:
    无源互调检测电路(D)包括低噪声放大器、下变频模块、高速模数转换器,噪声放大器的输入端与双工器(A0)的接收端口电连接,噪声放大器的输出端经下变频模块与高速模数转换器的输入端电连接,高速模数转换器的输出端与数字处理单元(E)的输入端电连接;
    所述无源互调检测电路(D)的增益由需求的无源互调预设值、无源互调检测电路(D)中高速模数转换器的最小采样功率、链路噪声系数等确定;所述无源互调检测电路(D)的接收信号功率的最大值大于等于该装置实际对应的通信标准所规定的最大接收信号功率。
  12. 根据权利要求5所述的自适应抵消无源互调信号的装置,其特征在于:所述数字处理单元(E)具备至少一个信息交互接口,其作用包含但不限于程序下载,配置信息输入,远程告警和维护;其中需要输入的配置信息包括本装置发射信号带宽和频段、接收信号带宽和频段、无源互调信号中的主要干扰分量的阶次和频段信息、无源互调信号预设值以及随时间变化的曲线、最大抵消次数;所述数字处理单元(E)可以通过信息交互接口获取发射信号频率信息和接收信号频率信息;所述的信息交互接口还可以与互联网后台资源进行数据交互:上传所述设备运行过程中的无源互调值,无源互调值随时间变化的经验曲线,以及无源互调信号自适应抵消装置中各模块电路的状态信息;或者下载综合优化后的无源互调信号预设值以及随时间变化的曲线;
    所述数字处理单元(E)与无源互调检测电路(D)之间至少存在两个接口:一个接口作用是获取无源互调检测电路(D)中高速模数转换器的采样信号,从而进行无源互调信号的数字滤波和幅度计算;另一个接口的作用是通过总线配置无源互调检测电路(D)的参数;
    当所述数字处理单元(E)获取所述发射信号频率信息和接收信号频率信息的方法是利用发射信号鉴频电路(E1)时,则发射信号鉴频电路(E1)的射频端口与所述发射电路单元(F)中发射链路上的某处连接,发射信号鉴频电路(E1)通过高速模数转换器与所述数字处理单元(E)连接;同时数字处理单元(E)与发射信号鉴频电路(E1)之间还有一个接口,作用是通过总线配置发射信号鉴频电路(E1)的参数,例如本振频率、链路增益等,所述总线包括但不限于I2C总线、SPI总线;
    所述数字处理单元(E)具备至少一个信息交互接口,其作用包含但不限于程序下载,配置信息输入,远程告警和维护;其中需要输入的配置信息包括本装置发射信号带宽和频段、接收信号带宽和频段、无源互调信号中的主要干扰分量的阶次和频段信息、无源互调信号预设值以及随时间变化的曲线、最大抵消次数;所述数字处理单元(E)可以通过信息交互接口获取发射信号频率信息和接收信号频率信息;所述的信息交互接口还可以与互联网后台资源进行数据交互:上传所述设备运行过程中的无源互调值,无源互调值随时间变化的经验曲线,以及无源互调信号自适应抵消装置中各模块电路的状态信息;或者下载综合优化后的无源互调信号预设值以及随时间变化的;
    所述数字处理单元(E)至少包含具备数字信号处理功能的逻辑处理与运算处理器件,用于数字信号的接收、算法处理、数字信号的输出、控制和配置信号的输出等,所述逻辑处理与运算处理器件包含但不限于现场可编程门阵列器件,中央处理器,数字信号处理器;所述数字处理单元(E)的信息交互接口的硬件构成包括但不限于以太网接口、光纤接口、RS-485总线接口;所述数字处理单元(E)中的数模转换器的位数范围在10~18位之间,且至少有3个数模转换器。
  13. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:所述抵消器电路(B)中的调幅电路(3)一端直接连接第一耦合器(A)的耦合端口,或者通过射频开关(B3)连接第一耦合器(A)的耦合端口;另一端通过环行器(4)连接互调信号发生器(B2);互调信号发生器(B2)通过环行器(4)连接滤波器(5),调幅调相器(B1)一端连接滤波器(5),另一端连接第二耦合器(B5)的耦合端口。
  14. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:所述抵消器电路(B)中的调幅电路(3)一端直接连接第一耦合器(A)的耦合端口,或者通过射频开关(B3)连接第一耦合器(A)的耦合端口;另一端通过环行器(4)连接互调信号发生器(B2);互调信号发生器(B2)通过环行器(4)连接调幅调相器(B1),滤波器(5)的一端连接调幅调相器(B1),另一端连接第二耦合器(B5)的耦合端口。
  15. 根据权利要求13所述的自适应抵消无源互调信号的装置,其特征在于:
    所述调幅调相器(B1)由调幅电路(1)和调相电路(2)构成;调幅电路(1)至少包含1个可调控衰减器;调相电路(2)至少包含2个可调控移相器;调幅电路(3)由固定衰减器或可调控衰减器构成;所述环行器(4)的频率带宽包括所述双工器(A0)的发射频段和接收频段;所述调幅调相器(B1)的幅度调整范围大于30dB,相位调整范围大于180度;所述调幅调相器(B1)的工作频段包含所述双工器(A0)的接收频段,调幅调相器(B1)的频带内增益波动与接收频段相关且需在一定的门限值范围内;所述滤波器(5)的通带频段为双工器(A0)的接收频段,且滤波器(5)的带外抑制指标要求是由双工器(A0)接收频段的带外抑制指标、第一耦合器(A)耦合度、第二耦合器(B5)耦合度、抵消器电路(B)中第一耦合器(A)耦合端到第二耦合器(B5)耦合端之间链路损耗等决定;所述抵消器电路(B)中调幅电路(3)的承载功率大于等于所述抵消器电路(B)的承载功率门限值;
    所述互调信号发生器(B2)包含但不限于单个二极管、单个三极管或多个二极管的并联构成;二极管具体型号或者三极管具体型号与产生互调信号3阶、5阶或更高阶互调信号的幅值特性和相位特性相关,所述幅值特性和相位特性的需求为权利要求2中对互调信号发生器(B2)的要求;采用多个同型号二极管并联结构时,将增强互调信号强度;互调信号发生器(B2)的承载功率大于等于所述抵消器电路(B)承载功率门限值与从抵消器电路(B)射频输入口到互调信号发生器(B2)的链路损耗的差值。
  16. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于:所述无源互调检测电路(D)至少包括低噪声放大器、下变频模块、高速模数转换器;所述无源互 调检测电路(D)通过高速模数转换器与所述数字处理单元(E)连接;
    下变频模块可以将接收的射频信号转换成中频信号,或者将接收的射频信号转换成零中频信号;高速模数转换器的采样动态范围需大于接收信号的最大功率值和无源互调预设值对应的功率值之间的差值;
    所述无源互调检测电路(D)能够采样的最小功率小于等于预设值对应的无源互调功率值,同时该电路可以根据所接收的射频信号总功率的幅值调整链路增益从而避免接收信号或其他信号造成的链路阻塞;所述无源互调检测电路(D)的增益由需求的无源互调预设值、无源互调检测电路(D)中高速模数转换器的最小采样功率、链路噪声系数确定;所述无源互调检测电路(D)的接收信号功率的最大值大于等于该装置实际对应的通信标准所规定的最大接收信号功率。
  17. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于无源互调检测电路(D)包括依次电连接的低噪声放大器(D1)、射频滤波及小信号放大单元(D2)、混频器(D3)、中频滤波器(D5)、中频放大器(D6)、模数转换器(D7),本振器(D4)与混频器(D3)电连接;低噪声放大器(D1)的输入端与双工器(A0)的输出端电连接;模数转换器(D7)的输出端与数字处理单元(E)的输入端电连接。
  18. 根据权利要求1所述的自适应抵消无源互调信号的装置,其特征在于无源互调检测电路(D)包括依次电连接的低噪声放大器(D1)、射频滤波及小信号放大单元(D2)和下变频及模数转换单元(D8);低噪声放大器(D1)的输入端与双工器(A0)的输出端电连接;下变频及模数转换单元(D8)的输出端与数字处理单元(E)的输入端电连接。
  19. 一种无线收发设备,其特征在于,包括上述权利要求1-18所述的自适应抵消无源互调信号的装置,所述的自适应抵消无源互调信号的装置的双工器(A0)即是无线收发设备的双工器(A0);本装置所述的自适应抵消无源互调信号的装置的无源互调检测电路(D)复用无线收发设备的接收链路的组件或单元,或者在所述无线收发设备内新增无源互调检测电路(D);所述的自适应抵消无源互调信号的装置的发射电路单元(F)复用无线收发设备的发射链路的组件或单元;所述的自适应抵消无源互调信号的装置的数字处理单元(E)复用无线收发设备的数字处理单元的组件或单元,或者在所述无线收发设备内新增数字处理单元(E),所述数字处理单元(E)将集成于无线收发设备的整机程序中;所述的自适应抵消无源互调信号的装置的第一耦合器(A)需在所述无线收发设备内新增,且其一个主通路端口和无线收发设备的双工器(A0)天线口连接,或者其一个主通路端口和无线收发设备的双工器(A0)发射端口连接,第一耦合器(A)的耦合端口相对于所述无线收发设备发射信号为正向耦合端口;所述的自适应抵消无源互调信号的装置的第二耦合器(B5)需在所述无线收发设备内新增,其一个主通路端口和无线收发设备的双工器(A0)接收端口连接且距离需控制在0到1米范围内,具体长度由无源互调抵消最佳效果确定,第二耦合器(B5)的耦合端口相对于所述无线收发设备接收信号为反向耦合端口;所述的自适应抵消无源互调信号的装置的抵消器电路(B)需在所述无线收发设备内新增,且其一个射频输入端口和第一耦合器(A)的耦合端口直接连接,其另一个射频输出端口和第二耦合 器(B5)的耦合端口直接连接,抵消器电路(B)的幅度调整和相位调整由数字处理单元(E)运算输出的幅度、相位控制参数实现;所述的自适应抵消无源互调信号的装置的天馈组件(A2)和天线(A1)即为所述无线收发设备的天线链路上的对应组件和天线;
    当无线收发设备有多个收发链路时,所述每一收发链路中双工器均需配一套第一耦合器(A)、第二耦合器(B5)以及抵消器电路(B)。
  20. 一种自适应抵消无线收发系统中无源互调信号的方法,其特征在于:该方法包括以下步骤,
    S1:通过数字处理单元(E)获取发射信号带宽和频段、接收信号带宽和频段、无源互调信号中的主要干扰分量的阶次和频段信息、期望的无源互调预设值以及随时间变化的曲线、幅度和相位的初始经验数据、最大抵消次数等信息,并转换成相应的配置参数;
    S2:依据步骤S1中有关发射信号的配置参数,数字处理单元(E)求得无源互调信号的频点并转换成相应数字滤波参数存储入参量配置表中;
    S3:依据步骤S1中有关接收信号的配置参数、无源互调信号的配置参数以及由步骤S2中获取的无源互调信号的数字滤波参数,数字处理单元(E)对无源互调检测电路(D)的采样信号进行数字滤波,滤除除无源互调信号以外的其他信号分量,求得落入到接收频段的无源互调信号的幅度值;所述求幅度值的算法包括但不限于分段积分法、依据信号带宽的直接积分法;
    S4:判断当前工作状态;所述工作状态的状态标识默认值是:“初始工作模式”;如果工作状态的状态标识值是“初始工作模式”则继续步骤S5-1,否则继续步骤S5-2;
    S5-1:将步骤S3获取的无源互调信号幅度值与步骤S1中的无源互调预设值进行对比以判断无源互调信号幅度是否小于等于的无源互调预设值;
    S6:如果步骤S5-1的判断结果为“是”,则抵消器电路(B)继续保持互调信号发生器与第一耦合器(A)之间链路高隔离度状态;并返回步骤S2;
    S7:如果步骤S5-1的判断结果为“否”,则抵消器电路(B)切换到互调信号发生器与第一耦合器(A)之间链路低隔离度状态;且将工作状态的状态标识值并设置为“抵消工作状态”;继续执行步骤S8;
    S5-2:将步骤S3获取的无源互调信号幅度值与步骤S1中的无源互调预设值进行对比以判断无源互调信号幅度是否小于等于的无源互调预设值;如果步骤S5-2的判断结果为“是”,则保持状态,并返回步骤S2;如果步骤S5-2的判断结果为“否”,则执行步骤S8;
    S8:依据步骤S3的无源互调信号的幅度值推算抵消器电路的幅度、相位调整值;并配送给抵消器电路中的调幅器、调相器,实施抵消;在完成当前一轮抵消处理后,将继续回到步骤S2继续下一轮的抵消处理;所述求幅度、相位调整值的算法包括但不限于二维最小方差演算法。
PCT/CN2019/090976 2018-09-29 2019-06-12 一种自适应抵消无源互调信号的装置及其方法 WO2020113927A1 (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201811148089 2018-09-29
CN201822014238.6U CN210041824U (zh) 2018-09-29 2018-12-03 一种自适应抵消无源互调信号的装置
CN201811467208.9 2018-12-03
CN201811467208.9A CN109995394B (zh) 2018-09-29 2018-12-03 一种自适应抵消无源互调信号的装置及其方法
CN201822014238.6 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020113927A1 true WO2020113927A1 (zh) 2020-06-11

Family

ID=67128664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090976 WO2020113927A1 (zh) 2018-09-29 2019-06-12 一种自适应抵消无源互调信号的装置及其方法

Country Status (2)

Country Link
CN (1) CN109995394B (zh)
WO (1) WO2020113927A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517861A (zh) * 2021-07-20 2021-10-19 香港中文大学(深圳) 一种阻塞信号抵消低噪声放大器系统
CN115021885A (zh) * 2022-05-19 2022-09-06 中国电子科技集团公司第三十六研究所 一种带内全双工系统及其干扰信号抵消方法
CN116318238A (zh) * 2023-03-27 2023-06-23 北京航空航天大学 一种针对微型无源神经接口中无线链路的频率选择分析方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200812A (zh) * 2020-12-16 2023-12-08 Oppo广东移动通信有限公司 射频PA Mid器件、射频收发系统和通信设备
CN116388779A (zh) * 2021-12-23 2023-07-04 深圳市中兴微电子技术有限公司 一种信号处理电路、芯片、电路板组件和射频收发器
CN114499558B (zh) * 2022-02-16 2024-01-16 成都市联洲国际技术有限公司 同频干扰抵消装置
CN116032315A (zh) * 2022-12-02 2023-04-28 珠海笛思科技有限公司 一种无源互调干扰信号处理方法及装置
CN116633465B (zh) * 2023-07-24 2023-10-13 四川恒湾科技有限公司 一种实时基于资源块为单位的无源交调检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767413B1 (ko) * 2006-06-07 2007-10-18 한국과학기술원 송신 누설 신호 제거기를 가진 레이더 장치
CN108365863A (zh) * 2018-02-09 2018-08-03 妙原科技有限公司 一种具有自适应抵消无线收发系统中接收带外干扰的装置及抵消方法
CN108429556A (zh) * 2018-02-14 2018-08-21 妙原科技有限公司 一种具有自适应抵消无线收发系统中接收带内干扰的装置及抵消方法
CN108777585A (zh) * 2018-02-09 2018-11-09 香港梵行科技有限公司 一种自适应抵消无线收发系统中无源互调信号的装置及方法
CN109495124A (zh) * 2018-09-27 2019-03-19 香港梵行科技有限公司 一种自适应抵消无源互调信号的方法、装置及应用设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580720B (zh) * 2013-11-20 2015-07-08 东南大学 一种同频全双工自干扰抵消装置
CN106849970B (zh) * 2016-12-29 2019-10-18 上海华为技术有限公司 一种无源互调抑制方法以及无源互调抑制系统
CN109495127B (zh) * 2018-09-27 2021-09-03 香港梵行科技有限公司 自适应抵消无源互调信号的装置、方法及应用设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767413B1 (ko) * 2006-06-07 2007-10-18 한국과학기술원 송신 누설 신호 제거기를 가진 레이더 장치
CN108365863A (zh) * 2018-02-09 2018-08-03 妙原科技有限公司 一种具有自适应抵消无线收发系统中接收带外干扰的装置及抵消方法
CN108777585A (zh) * 2018-02-09 2018-11-09 香港梵行科技有限公司 一种自适应抵消无线收发系统中无源互调信号的装置及方法
CN108429556A (zh) * 2018-02-14 2018-08-21 妙原科技有限公司 一种具有自适应抵消无线收发系统中接收带内干扰的装置及抵消方法
CN109495124A (zh) * 2018-09-27 2019-03-19 香港梵行科技有限公司 一种自适应抵消无源互调信号的方法、装置及应用设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517861A (zh) * 2021-07-20 2021-10-19 香港中文大学(深圳) 一种阻塞信号抵消低噪声放大器系统
CN113517861B (zh) * 2021-07-20 2023-05-12 香港中文大学(深圳) 一种阻塞信号抵消低噪声放大器系统
CN115021885A (zh) * 2022-05-19 2022-09-06 中国电子科技集团公司第三十六研究所 一种带内全双工系统及其干扰信号抵消方法
CN115021885B (zh) * 2022-05-19 2024-03-12 中国电子科技集团公司第三十六研究所 一种带内全双工系统及其干扰信号抵消方法
CN116318238A (zh) * 2023-03-27 2023-06-23 北京航空航天大学 一种针对微型无源神经接口中无线链路的频率选择分析方法

Also Published As

Publication number Publication date
CN109995394A (zh) 2019-07-09
CN109995394B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2020113927A1 (zh) 一种自适应抵消无源互调信号的装置及其方法
WO2020103434A1 (zh) 自适应抵消无源互调信号的装置、方法及应用设备
US8615207B2 (en) Power amplifier linearization feedback methods and systems
CN109495124B (zh) 一种自适应抵消无源互调信号的方法、装置及应用设备
US8358170B2 (en) Power amplifier linearization using cancellation-based feed forward methods and systems
JP6197104B2 (ja) 無線通信システムの信号相殺方法および装置
TWI651940B (zh) 干擾抑制系統及方法
WO2019153959A1 (zh) 一种自适应抵消无线收发系统中无源互调信号的装置及方法
CN103477576B (zh) 产生干扰信号的方法以及执行这样方法的设备
Omer et al. A PA-noise cancellation technique for next generation highly integrated RF front-ends
EP1652294A1 (en) Cartesian loop transmitter and method of adjusting an output level of such transmitter
Gheidi et al. Digital cancellation technique to mitigate receiver desensitization in cellular handsets operating in carrier aggregation mode with multiple uplinks and multiple downlinks
WO2020113928A1 (zh) 自适应抵消无源互调信号的装置及其方法
CN109995385B (zh) 自适应抵消无源互调信号的装置及其方法
WO2021047504A1 (zh) 光纤直放站及其无源互调信号的检测方法、系统
CN210041824U (zh) 一种自适应抵消无源互调信号的装置
WO2020103433A1 (zh) 一种自适应抵消无源互调信号的方法、装置及应用设备
US11223377B2 (en) Front-end circuit
Habibi et al. Suppression of constant modulus interference in multimode transceivers by closed-loop tuning of a nonlinear circuit
CN110912519A (zh) 数字预失真处理电路和信号处理设备
CN110912845A (zh) 模拟预失真处理电路和信号处理设备
CN107547145B (zh) 一种本振泄漏信号的检测方法及装置
WO2018196429A1 (zh) 分布式天线系统的接入装置
CN210693867U (zh) 数字预失真处理电路和信号处理设备
Eero et al. Small size receiver band self-interference cancellation amplifier for 4G transceivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892442

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19892442

Country of ref document: EP

Kind code of ref document: A1