WO2020113923A1 - 一种电/磁场环境综合发生系统 - Google Patents
一种电/磁场环境综合发生系统 Download PDFInfo
- Publication number
- WO2020113923A1 WO2020113923A1 PCT/CN2019/090468 CN2019090468W WO2020113923A1 WO 2020113923 A1 WO2020113923 A1 WO 2020113923A1 CN 2019090468 W CN2019090468 W CN 2019090468W WO 2020113923 A1 WO2020113923 A1 WO 2020113923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gradient
- coil
- magnetic field
- flat
- electric field
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
Definitions
- the invention relates to the fields of electromagnetic applications and bioengineering and medical engineering, in particular to an integrated generation system of electric/magnetic field environment, which can realize multi-dimensional large-flux screening of the physical field environmental conditions in the case of planar and 3D cultivation, and can be used A device/system for studying biological effects and biological response mechanisms in a multiphysics environment.
- the purpose of the present invention is to solve the biological effects and biological response mechanisms in the multi-physics environment under the two physical field environments of electric field and magnetic field, and realize various levels of magnetic field environment and electric field environment in the field of stable magnetic field. Therefore, the present invention provides an integrated generation system of electric/magnetic field environment.
- the present invention provides an integrated system for generating an electric/magnetic field environment.
- the system includes a host computer, a gradient magnetic field generating device, and an electromagnetic field device.
- the host computer and the gradient magnetic field generating device are connected by a data line.
- the gradient magnetic field generating device and the electromagnetic field device are connected through a power line to provide a stable magnetic field for the electromagnetic field device, and the host computer performs current pulse size and current pulse sequence for the electromagnetic field device through the gradient magnetic field generating device Adjustment;
- the electromagnetic field device includes a first flat gradient coil and a second flat gradient coil arranged in parallel intervals, and a plurality of flat excitations positioned at intervals between the first flat gradient coil and the second flat gradient coil Electric field coils, each of the planar excitation electric field coils and the first flat gradient coils are arranged in parallel; when the gradient magnetic field generating device is controlled by a host computer, the first flat gradient coil and the second flat gradient Each plane of the plane excitation electric field coils between the coils forms a magnetic field with a gradient distribution, and different electric fields are generated in each plane excitation electric field coil.
- the gradient magnetic field generating device includes an electromagnetic shielding cabinet and a digital-to-analog converter, a gradient controller, a gradient power supply, a gradient amplifier, a high-voltage cache capacitor and an analog-to-digital converter located in the electromagnetic shielding cabinet, and the upper computer Connected to the digital-to-analog converter through a data line, the digital-to-analog converter and the gradient controller are connected through a signal line, and the gradient controller is respectively connected to the gradient amplifier and the high-voltage buffer capacitor through the signal line;
- the gradient power supply is electrically connected to the gradient amplifier through a power supply line, the gradient amplifier amplifies the current output by the gradient power supply according to the waveform output by the gradient controller, the gradient amplifier and the high-voltage buffer capacitor and the
- the first flat gradient coil and the second flat gradient coil are electrically connected; the host computer controls the gradient controller to output control signals of various waveforms, and the high-voltage buffer capacitor is controlled according to the control instructions of the gradient controller.
- the electromagnetic field device
- the gradient magnetic field generating device further includes an analog-to-digital converter, which is respectively connected to the electromagnetic field device and the gradient controller through a signal line, and the analog-to-digital converter collects the first flat gradient coil and the second in real time The current signal in the flat gradient coil, and feed back the collected current signal to the gradient controller.
- an analog-to-digital converter which is respectively connected to the electromagnetic field device and the gradient controller through a signal line, and the analog-to-digital converter collects the first flat gradient coil and the second in real time The current signal in the flat gradient coil, and feed back the collected current signal to the gradient controller.
- first flat gradient coil and the second flat gradient coil are further provided with a heat exchange pipeline, and the heat exchange pipeline is connected to an external water cooling device, and is used for the first flat gradient coil and The second flat gradient coil is cooled and cooled.
- the waveform control signal output by the gradient controller is a continuous waveform control signal or a discontinuous waveform control signal, which includes one of a sine wave, a triangular wave, a trapezoidal wave, and a square wave, and the output waveform frequency is 0 to 155 Hz.
- the planar excitation electric field coil is an Archimedes-shaped planar coil.
- the surface of the planar excitation electric field coil is covered with a conductive gel coating, and at least one open-point electrode point I is provided in the outer area thereof, and an open-point electrode point II is provided in the middle of the open-point electrode Point I, open point electrode point II and the conductive gel coating form a closed circuit.
- the first flat gradient coil and the second flat gradient coil are arranged up and down, and a bracket is provided on the second flat gradient coil located below, and each of the flat excitation electric field coils are arranged at parallel intervals on the Described on the bracket.
- the bracket includes at least three pillars.
- the planar excitation electric field coil is provided with a through hole corresponding to the installation position of the pillar.
- the planar excitation electric field coil is sleeved on each of the pillars through the through hole.
- An adjusting tube for adjusting the distance between the two planar excitation electric field coils is sleeved on the pillar between two adjacent planar excitation electric field coils.
- the adjustment tube is an acrylic tube.
- the electromagnetic field device further includes a non-magnetic acrylic transparent sealed cover covering the first flat gradient coil and the second flat gradient coil.
- the present invention provides a first flat gradient coil and a second flat gradient coil in the electromagnetic field device, and a multilayer planar excitation electric field coil that can generate an electric field is provided between the first flat gradient coil and the second flat gradient coil.
- the design of the current pulse size and current pulse sequence of the gradient magnetic field generating device by the host computer forms a linear gradient magnetic field environment with a gradient distribution from the inside of the flat plate to the middle of the distance between the two flat plate gradient coils, and located in different
- the position of the plane excited electric field coil generates different electric fields, which realizes the two physical field environments of electric field and magnetic field, and can be used to carry out research on biological effects and biological response mechanisms in a multi-physics environment.
- the present invention can generate a stable magnetic field on different horizontal planes between two flat gradient coils, or it can generate an induced electric field on the plane excitation electric field coil by applying gradient magnetic field pulses to different horizontal planes, and apply it to the culture, which can be cultured in the same culture. In-plane realizing a large-flux screening of the electric field/physical field environmental conditions in the case of planar 2D and 3D cultivation.
- the planar excitation electric field coil of the present invention uses an Archimedes coil.
- the design of the load current sequence can cause disturbance of the gradient field environment.
- the disturbance of the magnetic field in the coil space will cause the Archimedes coil.
- the magnetic flux changes will further induce the Archimedes coil to generate an exciting electric field.
- the invention can change the coil magnetic flux area by changing the design of the Archimedes coil flux coil winding density, even in the same gradient plane, the degree of electromagnetic field disturbance Consistent, however, due to the different magnetic flux areas of the coils, each coil induces a different excitation electric field.
- the system has the characteristics of high flux, flexible adjustment, and multi-mode, which can simulate multiple magnetic fields and electromagnetic environments in the same space, and is suitable for the exploration of biological effects and biological response mechanisms under complex electric field and magnetic field complex field environments. Sexual research.
- the present invention is a set of integrated electric field/magnetic field generating device.
- the device has a simple structure design and flexible parameter setting. It can be used for large-scale screening of the effective biological effect physical field environment. At the same time, the device can be used as a set for biomedical research and research.
- the standardized teaching equipment can effectively solve the problems that the research methods of the laboratories in the current field of electric field/magnetic field biological effects are not uniform and the results vary greatly.
- FIG. 1 is a schematic diagram of the overall structure of an integrated system for generating an electric/magnetic field environment provided by the present invention
- Figure 2-1 is a side view of the electromagnetic field device
- Figure 2-2 is a top view shown in Figure 2-1;
- Figure 3-1 is the assembly diagram of the bracket structure in Figure 2-1;
- Figure 3-2 is a perspective view of the bracket structure in Figure 3-1;
- Figure 4-1 is an assembled side view of a flat gradient coil
- Figure 4-2 is a top view of Figure 4-1;
- Figure 4-3 is a perspective view of Figure 4-1;
- FIG. 5-1 shows a design sample diagram of one round of Archimedes coils wound by a planar excitation electric field for a two-dimensional culture system of cell tissues in an embodiment of the present invention
- 5-2 shows a design sample diagram of four groups of Archimedes coils wound and wound for one week for a planar excitation electric field used in a two-dimensional culture system of cell tissues in an embodiment of the present invention
- FIG. 5-3 is a sample design drawing of six weeks of winding of four groups of Archimedes coils for planar excitation electric field used in a two-dimensional culture system of cell tissues in an embodiment of the present invention
- FIG. 6 is a plan view of a planar excitation electric field used in a three-dimensional culture system of cell tissue in an embodiment of the present invention.
- 21-electromagnetic shielding cabinet 22-digital-to-analog converter, 23-gradient controller, 24-gradient power supply
- the present invention provides an integrated electric/magnetic field environment generating system, including a host computer 1, a gradient magnetic field generating device 2 and an electromagnetic field device 3, the host computer 1 and the gradient
- the magnetic field generating device 2 is connected through the data line 4, the gradient magnetic field generating device 2 and the electromagnetic field device 3 are connected through the power line 5, which is used to provide a stable magnetic field for the electromagnetic field device 3, and the upper computer 1 performs the current flow for the electromagnetic field device 3 through the gradient magnetic field generating device 2 Adjustment of pulse size and current pulse sequence;
- the electromagnetic field device 3 includes a first flat gradient coil 31 and a second flat gradient coil 32 arranged at parallel intervals, and a position between the first flat gradient coil 31 and the second flat gradient coil 32
- a plurality of plane excitation electric field coils 33 arranged at intervals, each plane excitation electric field coil 33 and the first flat plate gradient coil 31 are arranged in parallel; when the gradient magnetic field generating device 2 works, the first flat plate gradient coil 31 and
- the gradient magnetic field generating device 2 here includes an electromagnetic shielding cabinet 21 and a digital-to-analog converter 22, a gradient controller 23, a gradient power supply 24, a gradient amplifier 25, a high-voltage cache capacitor 26, and an analog-to-digital converter 27 located in the electromagnetic shielding cabinet 21,
- the host computer 1 is connected to the digital-to-analog converter 22 through the data line 4
- the digital-to-analog converter 22 is connected to the gradient controller 23 through the signal line 6
- the gradient controller 23 is connected to the gradient amplifier 25, the high-voltage cache capacitor 26 and the signal line 6 respectively.
- the analog-to-digital converter 27 is connected, and the analog-to-digital converter 27 is connected to the electromagnetic field device 3 through the signal line 6;
- the gradient power supply 24 is electrically connected to the gradient amplifier 25 through the power supply line 5, and the gradient amplifier 25 amplifies the gradient according to the waveform output by the gradient controller 23
- the current output by the power supply 24, the gradient amplifier 25 and the high voltage buffer capacitor 26 are electrically connected to the first flat gradient coil 31 and the second flat gradient coil 32;
- the host computer 1 controls the gradient controller 23 to output control signals of various waveforms, and the high voltage buffer
- the capacitor 26 supplies high-voltage power to the electromagnetic field device 3 according to the control command of the gradient controller 23.
- the gradient controller 23 here is the current sequence information actuator of the host computer 1, which is connected to the gradient amplifier 25 through the signal line 6, and the gradient controller 23 can output control signals of various waveforms, including sine wave, triangle wave, trapezoidal wave, square wave
- the frequency range of the output waveform is 0-155 Hz, and the frequency deviation is 5%; the waveform output can be used as a continuous waveform output, or the waveform output interval can be set.
- the interval between output waveforms is between 0 and 60 seconds Adjustable, the adjustment step is 0.5s. Simultaneous output settings with baseband options.
- the gradient controller 23 is connected to the gradient amplifier 7 through the signal line 6, and the gradient amplifier 25 amplifies the current output by the gradient power supply 24 according to the waveform output by the gradient controller 23 to supply power to the first flat gradient coil 31 and the second flat gradient coil 32.
- the high-voltage buffer capacitor 26 is connected to the first flat gradient coil 31 and the second flat gradient coil 32 through the power line 5.
- the high-voltage buffer capacitor 26 supplies the electromagnetic field device 3 with high voltage according to the control instruction of the gradient controller 23.
- the analog-to-digital converter 27 is connected to the gradient controller 23 and the electromagnetic field device 3 through the signal line 6.
- the analog-to-digital converter 27 collects the current signals of the first flat gradient coil 31 and the second flat gradient coil 32 in real time and feeds them back to the gradient controller 23 To achieve precise control of the electromagnetic field device 3 by the gradient controller 23.
- the cell tissue culture chamber and the planar excitation electric field coil 33 are located inside the first flat gradient coil 31 and the second flat gradient coil 32.
- the cell tissue culture chamber provides an environment for cell culture, and the flat excitation electric field coil 33 generates a stimulation electric field.
- a heat exchange pipe 7 is placed in parallel inside the two flat gradient coils.
- the heat exchange pipe 7 and the external cold water device 8 together form a coil water cooling system, which realizes the temperature control of the coil water cooling system and the control accuracy is ⁇ 1 degree Internally, the water cooling system can avoid the coil from being damaged due to excessive heat generation during the energization process, and can keep the temperature of the coil resistance during the working process consistent.
- the preferred planar excitation electric field coil 33 of the present invention uses an Archimedes-shaped planar coil, and the surface of the planar excitation electric field coil 33 is covered with conductive
- the gel coating 10 is provided with four open-point electrode points I331 with equal high potential in the outer area, and an open-point electrode point II332 with low potential is provided in the middle position, the open-point electrode point I331, the open point A closed circuit is formed between the electrode point II332 and the conductive gel coating 10.
- the biological culture is cultivated on the conductive gel layer, and the gel is used to bind the electric field to the gel layer.
- Figure 5-1 is a design sample of a planar excitation coil wound inside by two groups of Archimedes coils for 1 week.
- the plane excitation electric field coil four open points are set as equal high potential points, and the middle open point is a low potential point.
- the current flows from the surroundings to the center through the conductive gel layer, forming a uniform electric field environment inside the gel.
- Figure 5-2 is a sample design of a planar excitation coil with four groups of Archimedes coils wound inside for 1 week.
- the design and use of the coil is similar to that described in 5-1: that is, four open points are set outside the planar excitation electric field coil as equal high potential points, the middle open point is a low potential point, and the current flows from the surroundings through the conductive gel layer In the center, a uniform electric field environment is formed inside the gel.
- Figure 5-3 is a sample design of a planar excitation coil with four groups of Archimedes coils wound inside for 6 weeks.
- the design and use of the coil is similar to that described in 5-1: that is, four open points are set outside the planar excitation electric field coil as equal high potential points, the middle open point is a low potential point, and the current flows from the surroundings through the conductive gel layer In the center, a uniform electric field environment is formed inside the gel.
- the direction of the magnetic flux change in the two planar excitation coils is the same, and the direction of the current is the same, both clockwise or counterclockwise, so that the open point electrode point II in the middle of one of the coils forms a high potential point
- the open-point electrode point II in the middle of the other coil forms a low-potential point
- a current passes through the conductive gel in the middle of the two coils to form a closed circuit, which applies electric field stimulation to the culture in the gel.
- the diameter design of the gradient coil matches the diameter of the standard cell culture well plate.
- multiple sets of plane excitation coils with different winding turns can be designed.
- a 24-hole plate coil design can be used to wind a 12-plane excitation electric field coil with a number of windings of 0-11.
- the design of the open point of the electric field coil can adopt a variety of open point forms, such as 3 open point type, four open point type, and five open point type. For example, in this scheme, three open points and five open points are shown.
- the culture is placed on a planar excitation electric field coil 33 for cultivation, and the host computer 1 can change the magnetic field pulse generation size and generation mode, affect the excitation electric field generation mode, and realize different modes of electrical stimulation to the culture. Therefore, the first flat gradient coil 31, the second flat gradient coil 32 and the Archimedes planar excitation electric field coil 33 in the present invention together form a complex gradient electric field/magnetic field integrated physical field environment. The electric field and the gradient magnetic field environment are superimposed, so that the biological effect and the biological response mechanism under different magnetic field/electric field environments can be studied in the same space.
- the first flat gradient coil 31 and the second flat gradient coil 32 are arranged up and down, and the second flat gradient coil 32 located below is provided with a bracket 9, and the plane excitation electric field coils 33 are arranged at parallel intervals On the bracket 9, the bracket 9 is used to fix the first flat gradient coil 31 and the second flat gradient coil 32.
- the bracket 9 includes at least three pillars 91 and a frame 93, as shown in FIGS. 3-1 and 3-2, a through hole corresponding to the installation position of the pillar 91 is provided on the planar excitation electric field coil 33, and the planar excitation electric field coil 33 is sleeved on each pillar 91 through the through hole, and an adjustment tube 92 for adjusting the spacing between the two plane excitation electric field coils 33 is sleeved on the pillar 91 between the adjacent two plane excitation electric field coils 33.
- the adjusting tube 92 here is preferably an acrylic tube.
- the electromagnetic field device 3 further includes a non-magnetic acrylic transparent sealed cover 34 which is covered outside the first flat gradient coil 31 and the second flat gradient coil 32 to form a closed cell culture chamber , Leaving carbon dioxide gas holes and water cooling pipes in and out of water holes.
- the brackets are placed inside the two flat gradient coils.
- the plane excitation electric field coils of each layer are used as the cell culture racks of each layer. The spacing between the adjacent two plane excitation electric field coils can be adjusted as needed.
- the hollow acrylic tube is cut into unit lengths and passed The number of acrylic tubes stacked on the pillars is used to adjust the spacing of each culture surface, so that the cultures are cultivated in different magnetic field environments.
- the entire culture room outside the culture cover and the internal culture pillars are made of non-magnetic acrylic transparent materials to avoid the impact on the magnetic field environment. And easy to observe. Given the current pulse mode of the two-plate gradient coil, the magnetic field strength is disturbed, the planar excitation electric field coil generates an excitation electric field between the cultures, the excitation coil design adopts the form of Archimedes coil, and the area enclosed by the coil spiral takes ⁇ as the integral parameter To get the area element:
- the host computer 1 is connected to the digital-to-analog converter 22 through the USB data line 4.
- the digital-to-analog converter 22 receives the digital signal of the host computer 1 and outputs it as an analog signal to the gradient controller 23. Since the magnetic field gradient rise time requires 820us from 0 to 100A, under the condition of two-plate gradient coil current half load, the current pulse application time is set to 500us to 200ms, therefore, the magnetic field pulse frequency can reach up to 2000Hz, the pulse time duty cycle is not More than 5%.
- a flat gradient coil is used to form a stable gradient magnetic field, and additional current pulses are added to interfere with the entire field, inducing the coil in the magnetic field to generate an inductive potential, while keeping the magnetic field basically stable to form an electric/magnetic composite field.
- the current sequence information is further amplified by the gradient amplifier 25 to the operation value, and the gradient power supply is supplied to the flat gradient coil via the gradient power supply 24.
- the gradient current requires transient changes and other requirements.
- the power supply is required to have the characteristics of strong load carrying capacity, fast rise speed, and good consistency.
- the invention uses a 150V, 20A gradient power supply 24 for power supply.
- a high voltage buffer capacitor 26 is used to achieve fast switching of the pulse sequence.
- the gradient amplifier 25 amplifies the current signal to the working value.
- the working current generates a Gz gradient magnetic field inside the coil through the two flat gradient coils arranged up and down. Due to the superimposition effect of the internal magnetic fields of the upper and lower flat gradient coils, a uniform gradient magnetic field is formed inside the coil surroundings.
- the magnetic field environment in the internal space of the gradient magnetic field is reduced from the strong magnetic field to the theoretical zero magnetic environment from the inside of the gradient coil plate to the distance from the center point of the two coils.
- the formed gradient magnetic field space has built-in multilayer planar excitation electric field coils placed along the gradient direction.
- the magnetic field strength in different planar excitation electric field coils is related to the axial position. Place the culture dish containing cells or tissues on the plane of the plane excitation electric field coil, the biological samples on different culture layers perceive different magnetic field strengths, so as to realize the biological effect and biology under different magnetic field environments in the same space Study the response mechanism.
- the technology uses the device to have multiple potential uses in multiple fields.
- the device can be used to stimulate the biological effects of biological cells and tissue models such as tumor cells, nerve cells, epidermal skin cells, etc. Research; In the field of physical intervention therapy, it is used to screen the best parameters of electric field/magnetic field treatment in vitro model; In the field of agriculture, it is used to screen the seed germination experiment parameters in the field of electric field/magnetic field; In the field of materials, it is used in the field of new insulation materials under electric field/magnetic field Physical response; etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
一种电/磁场环境综合发生系统,包括上位机(1)、梯度磁场发生装置(2)和电磁场装置(3),上位机(1)与梯度磁场发生装置(2)通过数据线(4)连接,梯度磁场发生装置(2)与电磁场装置(3)通过电源线(5)连接;电磁场装置(3)包括呈平行间隔设置的第一平板梯度线圈(31)和第二平板梯度线圈(32)、及位于第一平板梯度线圈(31)与第二平板梯度线圈(32)之间的呈间隔设置的多个平面激励电场线圈(33),各个平面激励电场线圈(33)与第一平板梯度线圈(31)呈平行设置;工作时,在第一平板梯度线圈(31)与第二平板梯度线圈(32)之间的各平面激励电场线圈(33)表面形成呈梯度分布的磁场,且位于不同位置的平面激励电场线圈(33)产生不同的电场;系统实现了电场和磁场两种物理场环境,可以用于开展多物理场环境下生物学效应和生物响应机制研究。
Description
本发明涉及电磁应用和生物工程及医学工程术领域,具体涉及一种电/磁场环境综合发生系统,可实现在平面和3D培养情况下多维大通量地对物理场环境条件进行筛选,可以用于多物理场环境下生物学效应和生物响应机制研究的装置/系统。
电工技术发展促进了生活生产中用电设备的快速增多,其相关的电磁场环境对人体及生活环境的影响也越来越受到社会关注和重视。普遍的研究结果表明高频电磁场的热效应对人体有一定的伤害性,日常生活用电频率为50Hz,极低频率电磁场一般指300Hz以下频率的电磁波,与日常生活紧密相关的诸多电磁环境都属于极低频率电磁场环境范围之内。例如,特高压输电,轨道交通,磁悬浮技术等对人体健康的影响受到社会普遍关注,甚至影响了一些大型基础设施建设的规划和决策。
尽管多年以来,对低频电磁环境的生理效应开展了大量的研究,但是迄今尚未形成统一的,明确的研究结论。其原因在于各实验室及研究人员之间实验设备及研究方法的不一致造成实验结果的差异。随着近年来包括电场,磁场,远红外线等多种物理手段开始介入康复医疗及生物医学工程领域,对多种物理场作用下的生物学效应和生物相应机制的研究对规避伤害性物理环境,探索新的有效治疗方法,规范相关领域产品和市场,为制定正确有效的治疗方案提供科学的指导理论。采用一种标准,通用的物理场发生装置会对相关研究工作的开展将起到极大的促进作用。
当前公开报道资料中尚且未有相关设备可以在同一空间内施加电场/磁场综合场,用于多物理场环境下生物学效应和生物响应机制研究地综合 电/磁场环境发生系统。中国专利文献CN 101324552B公开了一种磁场生物学效应实验仪的设计方法和中国专利文献CN 106886001A公开了一种用于生物学研究的可控磁场发生装置,其线圈系统采用亥姆霍兹线圈产生恒定磁场,通过电流脉冲设计来实现磁场扰动,现有对磁场生物学效应的研究多采用类似装置,磁场设计目标为磁场内部空间内可以形成稳定均一磁场,因此置于该类设备空间内的生物样品在磁场稳定区域内只能接受统一水平的磁场环境,即每次实验样品只能做一种强度磁场环境处理。样品处理量小,另外该类系统只能施加磁场环境,不能对生物样品施加电场环境,不能做综合物理场环境影响的分析。
发明内容
因此,本发明目的是解决在电场、磁场两种物理场环境下,开展多物理场环境下生物学效应和生物响应机制研究,在磁场稳定区域内实现多种水平的磁场环境和电场环境,为此,本发明提供了一种电/磁场环境综合发生系统。
所采用的技术方案如下:
一方面,本发明提供了一种电/磁场环境综合发生系统,所述系统包括上位机、梯度磁场发生装置和电磁场装置,所述上位机与所述梯度磁场发生装置通过数据线连接,所述梯度磁场发生装置与所述电磁场装置通过电源线连接,用于为所述电磁场装置提供稳定磁场,所述上位机通过所述梯度磁场发生装置为所述电磁场装置进行电流脉冲大小和电流脉冲序列的调节;所述电磁场装置包括呈平行间隔设置的第一平板梯度线圈和第二平板梯度线圈、及位于所述第一平板梯度线圈与第二平板梯度线圈之间的呈间隔设置的多个平面激励电场线圈,各个所述平面激励电场线圈与所述第一平板梯度线圈呈平行设置;通过上位机控制所述梯度磁场发生装置工作时,在所述第一平板梯度线圈与所述第二平板梯度线圈之间的各所述平面激励电场线圈表面形成呈梯度分布的磁场,且在各所述平面激励电场线圈中产生不同的电场。
进一步地,所述梯度磁场发生装置包括电磁屏蔽机柜和位于所述电磁屏蔽机柜内的数模转换器、梯度控制器、梯度电源、梯度放大器、高压缓存电容和模数转换器,所述上位机通过数据线与所述数模转换器连接,所述数模转换器与所述梯度控制器通过信号线连接,所述梯度控制器通过信号线分别与所述的梯度放大器和高压缓存电容连接;所述梯度电源通过电源线与所述梯度放大器电性连接,所述梯度放大器根据所述梯度控制器输出的波形放大所述梯度电源输出的电流,所述的梯度放大器和高压缓存电容与所述的第一平板梯度线圈和第二平板梯度线圈电性连接;所述上位机控制所述梯度控制器输出多种波形的控制信号,所述高压缓存电容根据所述梯度控制器的控制指令为所述电磁场装置进行高压供电。
进一步地,所述梯度磁场发生装置还包括模数转换器,其通过信号线分别与所述电磁场装置、梯度控制器连接,所述模数转换器实时采集所述第一平板梯度线圈和第二平板梯度线圈中的电流信号,并将所采集的电流信号反馈给所述梯度控制器。
进一步优选地,所述第一平板梯度线圈和第二平板梯度线圈内部还设有换热管路,所述换热管路与外部的水冷装置连接,用于为所述第一平板梯度线圈和第二平板梯度线圈进行冷却降温。
所述梯度控制器输出的波形控制信号为连续波形控制信号或间断波形控制信号,其包括正弦波、三角波、梯形波和方波中的一种,输出波形频率为0~155Hz。
所述平面激励电场线圈为阿基米德形平面线圈。
所述平面激励电场线圈的表面覆盖有导电凝胶涂层,且在其外部区域设有至少一个开放点电极点I,在其中间位置设有一个开放点电极点II,所述的开放点电极点I、开放点电极点II与所述导电凝胶涂层间形成闭合电路。
优选地,所述第一平板梯度线圈与所述第二平板梯度线圈呈上下设置,位于下方的所述第二平板梯度线圈上设有一支架,各所述平面激励电场线圈呈平行间隔设置于所述支架上。
所述支架包括至少三根支柱,所述平面激励电场线圈上设有与所述支 柱安装位置相对应的通孔,所述平面激励电场线圈通过所述通孔套置于各所述支柱上,相邻两所述平面激励电场线圈之间的支柱上套置有用于调节两所述平面激励电场线圈间距的调节管。
优选地,所述调节管为亚克力管。
所述电磁场装置还包括罩于所述第一平板梯度线圈和第二平板梯度线圈外部的无磁亚克力透明密封外罩。
本发明技术方案,具有如下优点:
A.本发明在电磁场装置中设置了第一平板梯度线圈和第二平板梯度线圈,且在第一平板梯度线圈和第二平板梯度线圈之间设置了可以产生电场的多层平面激励电场线圈,通过上位机对梯度磁场发生装置进行电流脉冲大小和电流脉冲序列的设计,在两平板梯度线圈之间形成了由平板内侧至二者间距的中部位置呈梯度分布的线性梯度磁场环境,且位于不同位置的平面激励电场线圈产生不同的电场,实现了电场和磁场两种物理场环境,可以用于开展多物理场环境下生物学效应和生物响应机制研究。
B.本发明可以在两平板梯度线圈之间的不同水平面上产生稳定磁场,也可以通过对不同水平面施加梯度磁场脉冲,位于平面激励电场线圈上产生感应电场,施加给培养物,可在同一培养平面内实现在平面2D和3D培养情况下,对电场/物理场环境条件进行大通量地筛选。采用高生物兼容性天然多聚物导电凝胶作为生物3D材料及体外构建类器官结构的骨架,结合生物3D打印技术实现多维有序结构的可控构建,实现对细胞和组织模型进行模拟,探索电场和磁场综合物理场环境对生理效应的影响,并用于治疗性电场/磁场刺激参数筛选。
C.本发明中的平面激励电场线圈采用阿基米德线圈,在维持梯度磁场期,通过施加负载电流序列的设计可以造成梯度场环境扰动,线圈空间内磁场的扰动会造成阿基米德线圈磁通量变化,磁通量改变会进一步诱发阿基米德线圈产生激励电场,本发明可以通过改变阿基米德线圈磁通线圈缠绕密度的设计改变线圈磁通面积,即使在同一梯度平面内,电磁场扰动程度一致,然而由于线圈的磁通面积的不同,每个线圈诱发不同的激励电场。 通过调整磁场脉冲序列大小,频率,波形发生模式来实验激励电场刺激发生模式,激励电场大小,频率,时长。该系统具有高通量,灵活可调,多模式的特点,可实现同一空间内对多种磁场、电磁环境进行模拟,适用于电场和磁场复杂综合场环境下生物学效应和生物响应机制进行探索性的研究。
D.本发明为一套电场/磁场综合场发生装置,装置结构设计简洁,参数设置灵活,可用于有效生物效应物理场环境的大规模筛选,同时该装置可以作为一套用于生物医学领域研究和教学的标准化设备,可以有效的解决当前电场/磁场生物学效应研究各实验室研究手段不统一、结果差异大的问题。
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明所提供的电/磁场环境综合发生系统整体结构示意图;
图2-1是电磁场装置侧视图;
图2-2是图2-1所示俯视图;
图3-1是图2-1中支架结构装配图;
图3-2是图3-1中支架结构立体图;
图4-1是平板梯度线圈的装配侧视图;
图4-2是图4-1的俯视图;
图4-3是图4-1的立体图;
图5-1所示为本发明实施例中用于细胞组织二维培养系统的平面激励 电场两组阿基米德线圈缠绕一周设计样图;
图5-2所示为本发明实施例中用于细胞组织二维培养系统的平面激励电场四组阿基米德线圈缠缠绕1周设计样图;
图5-3所示为本发明实施例中用于细胞组织二维培养系统的平面激励电场四组阿基米德线圈缠绕6周设计样图;
图6所示为本发明实施例中用于细胞组织三维培养系统的平面激励电场平面图。
图中:
1-上位机
2-梯度磁场发生装置
21-电磁屏蔽机柜,22-数模转换器,23-梯度控制器,24-梯度电源
25-梯度放大器,26-高压缓存电容,27-模数转换器
3-电磁场装置
31-第一平板梯度线圈,32-第二平板梯度线圈
33-平面激励电场线圈,331-开放点电极点I,332-开放点电极点II
34-透明密封外罩
4-数据线;5-电源线;6-信号线;7-换热管路;8-水冷装置
9-支架
91-支柱,92-调节管,93-框架
10-导电凝胶涂层。
下面将结合附图对本发明的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1、图2-1和图2-2所示,本发明提供了一种电/磁场环境综合发生系统,包括上位机1、梯度磁场发生装置2和电磁场装置3,上位机1与梯度磁场发生装置2通过数据线4连接,梯度磁场发生装置2与电磁场装置3通过电源线5连接,用于为电磁场装置3提供稳定磁场,上位机1通过梯度磁场发生装置2为电磁场装置3进行电流脉冲大小和电流脉冲序列的调节;电磁场装置3包括呈平行间隔设置的第一平板梯度线圈31和第二平板梯度线圈32、及位于第一平板梯度线圈31与第二平板梯度线圈32之间的呈间隔设置的多个平面激励电场线圈33,各个平面激励电场线圈33与第一平板梯度线圈31呈平行设置;梯度磁场发生装置2工作时,在第一平板梯度线圈31与所述第二平板梯度线圈32之间的各平面激励电场线圈33表面形成呈梯度分布的磁场。其中的上位机1可以进行梯度磁场发生装置2电流脉冲大小和电流脉冲序列设计,同时可以与梯度磁场发生装置2连接实现各系统电子元件间的通信,实现梯度磁场发生装置2稳定。
这里的梯度磁场发生装置2包括电磁屏蔽机柜21和位于电磁屏蔽机柜21内的数模转换器22、梯度控制器23、梯度电源24、梯度放大器25、高压缓存电容26和模数转换器27,上位机1通过数据线4与数模转换器22连接,数模转换器22与梯度控制器23通过信号线6连接,梯度控制器23通过信号线6分别与梯度放大器25、高压缓存电容26和模数转换器27连接,模数转换器27与电磁场装置3通过信号线6连接;梯度电源24通过电源线5与梯度放大器25电性连接,梯度放大器25根据梯度控制器23输出的波形放大梯度电源24输出的电流,梯度放大器25和高压缓存电容26与第一平板梯度线圈31和第二平板梯度线圈32电性连接;上位机1控制梯度控制器23输出多种波形的控制信号,高压缓存电容26根据梯度控制器23的控制指令为电磁场装置3进行高压供电。
这里的梯度控制器23是上位机1电流序列信息执行器,其通过信号线 6与梯度放大器25相连,梯度控制器23可以输出多种波形的控制信号,包括正弦波、三角波、梯形波、方波等波形,输出波形的频率范围为0-155Hz,频率偏差为5%;波形输出既可以作连续波形输出,也可以设置波形输出间隔,输出波形之间的间隔时间范围0~60秒之间可调,调节的步幅为0.5s。同时输出设置带有基带选项。梯度控制器23通过信号线6与梯度放大器7相连,梯度放大器25根据梯度控制器23输出的波形放大梯度电源24输出的电流,给第一平板梯度线圈31和第二平板梯度线圈32供电。高压缓存电容26通过电源线5与第一平板梯度线圈31和第二平板梯度线圈32相连,高压缓存电容26根据梯度控制器23的控制指令为电磁场装置3通过高压供电。模数转换器27通过信号线6与梯度控制器23和电磁场装置3相连,模数转换器27实时采集第一平板梯度线圈31和第二平板梯度线圈32的电流信号,反馈给梯度控制器23,实现梯度控制器23对电磁场装置3的精确控制。细胞组织培养室与平面激励电场线圈33位于第一平板梯度线圈31和第二平板梯度线圈32的内部,细胞组织培养室提供细胞培养的环境,平面激励电场线圈33产生刺激电场。
为了维持整个电磁场环境的稳定,如图1和图4-1、图4-2和图4-3所示。本发明在两个平板梯度线圈内部平行放置有换热管路7,换热管路7与外置冷水装置8共同构成线圈水冷系统,实现线圈的水冷系统温度可控,控制精度在±1度内,水冷系统可以避免因通电过程中线圈因产热过高损毁,同时可以保持线圈电阻工作过程温度一致。
如图5-1、图5-2、图5-3和图6所示,本发明优选的平面激励电场线圈33采用阿基米德形平面线圈,在平面激励电场线圈33的表面覆盖有导电凝胶涂层10,且在其外部区域均匀设有四个具有等高电势的开放点电极点I331,在其中间位置设置具有低电势的开放点电极点II332,开放点电极点I331、开放点电极点II332与导电凝胶涂层10间形成闭合电路。生物培养物在导电凝胶层上培养,凝胶用于将电场束缚在凝胶层。图5-1为内部由两组阿基米德线圈缠绕1周的平面激励线圈设计样图。中在平面激励电场线圈的外部设置了四个开放点为等高电势点,中间开放点为低电势点,电流经过导电凝胶层由四周流向中心,在凝胶内部形成均匀电场环境。图 5-2为内部由四组阿基米德线圈缠绕1周的平面激励线圈设计样图。线圈设计及使用类似5-1中所描述:即,在平面激励电场线圈的外部设置了四个开放点为等高电势点,中间开放点为低电势点,电流经过导电凝胶层由四周流向中心,在凝胶内部形成均匀电场环境。图5-3为内部由四组阿基米德线圈缠绕6周的平面激励线圈设计样图。线圈设计及使用类似5-1中所描述:即,在平面激励电场线圈的外部设置了四个开放点为等高电势点,中间开放点为低电势点,电流经过导电凝胶层由四周流向中心,在凝胶内部形成均匀电场环境。在图6中的两个平面激励线圈中,两个平面激励线圈内磁通量变化方向一致,电流方向一致,都为顺时针或逆时针,使得其中一个线圈中部的开放点电极点II形成高电势点,另一线圈中部的开放点电极点II形成低电势点,电流通过两线圈中间导电凝胶形成了闭合电路,对凝胶内的培养物施加电场刺激。
梯度线圈直径设计与标准细胞培养孔板直径相互匹配,使用同一类型孔板时,可以设计多组不同缠绕圈数的平面激励线圈。例如24孔板线圈设计,可以进行缠绕圈数为0-11的12平面激励电场线圈。另外为了提高电场均匀度,电场线圈的开放点设计可以采用多种开放点的形式,例如3开放点式、四开放点式、五开放点式。例如本方案中展示三开放点式及五开放点式。同一磁场平面上,由于阿基米德线圈磁通面积大小不同,获得的电感电势的大小不同,可以实现梯度电场设计。将培养物置于平面激励电场线圈33上培养,可以通过上位机1改变磁场脉冲发生大小以及发生模式,影响激励电场发生模式,实现对培养物进行不同模式的电刺激。因此本发明中的第一平板梯度线圈31和第二平板梯度线圈32以及阿基米德平面激励电场线圈33共同组成复杂梯度电场/磁场综合物理场环境。电场与梯度磁场环境叠加,实现在同一空间内对不同强度磁场/电场环境下的生物学效应和生物响应机制进行研究。
如图4-3所示,第一平板梯度线圈31与第二平板梯度线圈32呈上下设置,位于下方的第二平板梯度线圈32上设有一支架9,各平面激励电场线圈33呈平行间隔设置于支架9上,支架9用于固定第一平板梯度线圈31和第二平板梯度线圈32。
同时,支架9包括至少三根支柱91和框架93,如图3-1和图3-2所示,在平面激励电场线圈33上设有与支柱91安装位置相对应的通孔,平面激励电场线圈33通过通孔套置于各支柱91上,相邻两平面激励电场线圈33之间的支柱91上套置有用于调节两平面激励电场线圈33间距的调节管92。这里的调节管92优选为亚克力管。
为了避免外界环境对所形成的电磁场环境造成不利影响,电磁场装置3还包括罩于第一平板梯度线圈31和第二平板梯度线圈32外部的无磁亚克力透明密封外罩34,形成封闭的细胞培养室,留有二氧化碳气孔和水冷管出入水孔。其中的支架置于两平板梯度线圈内部,各层的平面激励电场线圈作为每层细胞培养架,相邻两平面激励电场线圈的间距可以依据需要进行调节,将中空亚克力管截成单位长度,通过支柱上层叠套用亚克力管的数目来调节每层培养面的间距,使培养物处于不同磁场环境培养,整个培养室外部培养罩及内部的培养支柱采用无磁亚克力透明材料,避免对磁场环境的影响且方便观察。给予两平板梯度线圈电流脉冲模式,磁场强度扰动,平面激励电场线圈在培养物间产生激励电场,激励线圈设计采用阿基米德线圈形式,线圈螺线所围成的面积以θ作为积分参变量,得到面积元素:
dA=(aθ)
2/2dθ
A=a
2/2∫[0,2π]θ
2dθ
=4a
2π
3/3
上位机1通过USB数据线4与数模转换器22相连,数模转换器22接收上位机1的数字信号并输出为模拟信号传递给梯度控制器23。由于磁场梯度上升时间从0到100A需要820us,在两平板梯度线圈电流半载条件下,电流的脉冲施加时间设置为500us到200ms,因此,磁场脉冲频率最高能够达到2000Hz,脉冲时间占空比不超过5%。利用平板梯度线圈形成一个稳定的梯度磁场,加额外的各种电流脉冲是为了对整个场形成干扰,诱发磁场中的线圈产生电感电势,同时保留磁场基本稳定,形成一个电/磁综合场。电流序列信息经过梯度放大器25进一步放大到操作数值,经由梯 度电源24给平板梯度线圈供电,梯度电流有瞬间变化等要求,要求电源具备带负载能力强,上升速度快,一致性好等特点。
本发明采用150V,20A梯度电源24供电,另外,使用高压缓存电容26实现脉冲序列的快速切换。梯度放大器25将电流信号放大至工作值,工作电流通过两个上下设置的平板梯度线圈在线圈内部产生Gz梯度磁场,由于上下两块平板梯度线圈内部磁场的叠加效应,线圈内部形成均匀的梯度磁场环境。梯度磁场内部空间内磁场环境自梯度线圈平板内侧至距离两线圈中心点处由强磁场降低为理论零磁环境。所形成的梯度磁场空间内置有沿着梯度方向放置的多层平面激励电场线圈,当施加梯度磁场时,不同的平面激励电场线圈内的磁场强度与轴向位置相关。将含有细胞或组织培养皿置于平面激励电场线圈的平面上培养,不同培养层上的生物样品感知的磁场强弱不同,从而实现在同一空间内对不同强度磁场环境下的生物学效应和生物响应机制进行研究。
该技术使用该设备可以在多个领域内具备多种潜在用途,在生物医疗领域该设备可用于对电场/磁场刺激条件肿瘤细胞,神经细胞,表皮皮肤细胞等生物细胞和组织模型的生物学效应研究;在物理干预治疗领域用于电场/磁场治疗最佳参数体外模型的筛选;在农业领域用于电场/磁场环境下种子萌发实验参数筛选;在材料领域用于新型绝缘材料电场/磁场条件下的物理反应;等等。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
Claims (10)
- 一种电/磁场环境综合发生系统,其特征在于,所述系统包括上位机(1)、梯度磁场发生装置(2)和电磁场装置(3),所述上位机(1)与所述梯度磁场发生装置(2)通过数据线(4)连接,所述梯度磁场发生装置(2)与所述电磁场装置(3)通过电源线(5)连接,用于为所述电磁场装置(3)提供稳定磁场,所述上位机(1)通过所述梯度磁场发生装置(2)为所述电磁场装置(3)进行电流脉冲大小和电流脉冲序列的调节;所述电磁场装置(3)包括呈平行间隔设置的第一平板梯度线圈(31)和第二平板梯度线圈(32)、及位于所述第一平板梯度线圈(31)与第二平板梯度线圈(32)之间的呈间隔设置的多个平面激励电场线圈(33),各个所述平面激励电场线圈(33)与所述第一平板梯度线圈(31)呈平行设置;通过上位机(1)控制所述梯度磁场发生装置(2)工作时,在所述第一平板梯度线圈(31)与所述第二平板梯度线圈(32)之间的各所述平面激励电场线圈(33)表面形成呈梯度分布的磁场,且在各所述平面激励电场线圈(33)中产生不同的电场。
- 根据权利要求1所述的电/磁场环境综合发生系统,其特征在于,所述梯度磁场发生装置(2)包括电磁屏蔽机柜(21)和位于所述电磁屏蔽机柜(21)内的数模转换器(22)、梯度控制器(23)、梯度电源(24)、梯度放大器(25)和高压缓存电容(26),所述上位机(1)通过数据线(4)与所述数模转换器(22)连接,所述数模转换器(22)与所述梯度控制器(23)通过信号线(6)连接,所述梯度控制器(23)通过信号线(6)分别与所述的梯度放大器(25)、高压缓存电容(26)连接;所述梯度电源(24)通过电源线(5)与所述梯度放大器(25)电性连接,所述梯度放大器(25)根据所述梯度控制器(23)输出的波形放大所述梯度电源(24)输出的电流,所述的梯度放大器(25)和高压缓存电容(26)与所述的第一平板梯度线圈(31)和第二平板梯度线圈(32)电性连接;所述上位机(1)控制所述梯度控制器(23)输出多种波形的控制信号,所述高压缓存电容(26)根据所述梯度控制器(23)的控制指令为所述电磁场装置(3)进行高压供电。
- 根据权利要求2所述的电/磁场环境综合发生系统,其特征在于,所述梯度磁场发生装置(2)还包括模数转换器(27),其通过信号线(6)分别与所述电磁场装置(3)、梯度控制器(23)连接,所述模数转换器(27)实时采集所述第一平板梯度线圈(31)和第二平板梯度线圈(32)中的电流信号,并将所采集的电流信号反馈给所述梯度控制器(23)。
- 根据权利要求3所述电/磁场环境综合发生系统,其特征在于,所述第一平板梯度线圈(31)和第二平板梯度线圈(32)内部还设有换热管路(7),所述换热管路(7)与外部的水冷装置(8)连接,用于为所述第一平板梯度线圈(31)和第二平板梯度线圈(32)进行冷却降温。
- 根据权利要求4所述的电/磁场环境综合发生系统,其特征在于,所述梯度控制器(23)输出的波形控制信号为连续波形控制信号或间断波形控制信号,其包括正弦波、三角波、梯形波和方波中的一种,输出波形频率为0~155Hz。
- 根据权利要求1-5任一所述的电/磁场环境综合发生系统,其特征在于,所述平面激励电场线圈(33)为阿基米德形平面线圈。
- 根据权利要求6所述的电/磁场环境综合发生系统,其特征在于,所述平面激励电场线圈(33)的表面覆盖有导电凝胶涂层(10),且在其外部区域设有至少一个开放点电极点I(331),在其中间位置设有一个开放点电极点II(332),所述的开放点电极点I(331)、开放点电极点II(332)与所述导电凝胶涂层(10)间形成闭合电路。
- 根据权利要求7所述的电/磁场环境综合发生系统,其特征在于,所述第一平板梯度线圈(31)与所述第二平板梯度线圈(32)呈上下设置,位于下方的所述第二平板梯度线圈(32)上设有一支架(9),各所述平面激励电场线圈(33)呈平行间隔设置于所述支架(9)上。
- 根据权利要求8所述电/磁场环境综合发生系统,其特征在于,所述支架(9)包括至少三根支柱(91),所述平面激励电场线圈(33)上设有与所述支柱(91)安装位置相对应的通孔,所述平面激励电场线圈(33)通过所述通孔套置于各所述支柱(91)上,相邻两所述平面激励电场线圈 (33)之间的支柱(91)上套置有用于调节两所述平面激励电场线圈(33)间距的调节管(92);所述调节管(92)为亚克力管。
- 根据权利要求1所述电/磁场环境综合发生系统,其特征在于,所述电磁场装置(3)还包括罩于所述第一平板梯度线圈(31)和第二平板梯度线圈(32)外部的无磁亚克力透明密封外罩(34)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811499405.9 | 2018-12-08 | ||
CN201811499405.9A CN109596670B (zh) | 2018-12-08 | 2018-12-08 | 一种电/磁场环境综合发生系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020113923A1 true WO2020113923A1 (zh) | 2020-06-11 |
Family
ID=65961536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/090468 WO2020113923A1 (zh) | 2018-12-08 | 2019-06-10 | 一种电/磁场环境综合发生系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109596670B (zh) |
WO (1) | WO2020113923A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114276409A (zh) * | 2021-12-24 | 2022-04-05 | 上海天能生命科学有限公司 | 一种电磁复合生物大分子分离技术以及设备 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109596670B (zh) * | 2018-12-08 | 2023-07-25 | 北京理工大学 | 一种电/磁场环境综合发生系统 |
CN110614365A (zh) * | 2019-09-26 | 2019-12-27 | 成都雍熙聚材科技有限公司 | 一种电场-磁场耦合控制增材制造金属零件凝固组织的方法及装置 |
CN111019822A (zh) * | 2019-12-06 | 2020-04-17 | 周口师范学院 | 一种多功能电磁生物培养箱 |
CN116952123B (zh) * | 2023-06-13 | 2024-07-19 | 重庆理工大学 | 一种基于多场耦合的绝对式时栅角位移传感器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010257633A (ja) * | 2009-04-22 | 2010-11-11 | Mitsubishi Electric Corp | 磁場発生装置及びシンクロトロン |
CN206103126U (zh) * | 2016-07-12 | 2017-04-19 | 北京微朗世纪科技有限公司 | 一种生物共振设备 |
CN107102217A (zh) * | 2017-04-25 | 2017-08-29 | 广东电网有限责任公司电力科学研究院 | 一种工频电磁场动物实验系统 |
CN107192970A (zh) * | 2017-05-05 | 2017-09-22 | 中国科学院电工研究所 | 一种磁共振成像系统的阵列梯度线圈驱动装置 |
CN108761369A (zh) * | 2018-05-25 | 2018-11-06 | 国网湖北省电力有限公司电力科学研究院 | 一种用于模拟变电站现场的工频电磁场发生平台 |
CN109596670A (zh) * | 2018-12-08 | 2019-04-09 | 北京理工大学 | 一种电/磁场环境综合发生系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004290180A (ja) * | 2003-03-10 | 2004-10-21 | Japan Science & Technology Agency | 磁場刺激装置及びその磁場刺激装置を用いた生体細胞若しくは生体組織の成長促進又は抑制方法 |
CN202047072U (zh) * | 2011-04-20 | 2011-11-23 | 四川大学 | 一种细胞静磁场加载装置 |
CN103087911A (zh) * | 2013-02-07 | 2013-05-08 | 华东师范大学 | 一种为工频弱磁场生物效应实验提供稳定均匀磁场环境的方法 |
CN103245928B (zh) * | 2013-05-23 | 2015-09-16 | 中国科学院上海微系统与信息技术研究所 | 方向可调的均匀磁场和均匀一阶梯度磁场的方法及装置 |
CN103361270B (zh) * | 2013-07-17 | 2015-10-28 | 华南理工大学 | 多场耦合体外细胞实验装置及方法 |
CN203874283U (zh) * | 2014-05-27 | 2014-10-15 | 中国人民解放军第四军医大学 | 基于HelmHolz 线圈的多波形电磁场发生器 |
CN204564506U (zh) * | 2015-02-04 | 2015-08-19 | 上海天慈生物谷生物工程有限公司 | 一种磁靶向筛药装置 |
CN205042464U (zh) * | 2015-05-13 | 2016-02-24 | 中国科学院城市环境研究所 | 一种适用于生物学效应研究的高强度电磁环境模拟装置 |
CN104941069B (zh) * | 2015-07-16 | 2017-11-14 | 重庆大学 | 一种基于阿基米德螺旋线圈的高强度均匀感应电场发生器 |
CN105717186B (zh) * | 2016-02-01 | 2018-06-29 | 常熟理工学院 | 回转式介电电泳微流控分析装置 |
-
2018
- 2018-12-08 CN CN201811499405.9A patent/CN109596670B/zh active Active
-
2019
- 2019-06-10 WO PCT/CN2019/090468 patent/WO2020113923A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010257633A (ja) * | 2009-04-22 | 2010-11-11 | Mitsubishi Electric Corp | 磁場発生装置及びシンクロトロン |
CN206103126U (zh) * | 2016-07-12 | 2017-04-19 | 北京微朗世纪科技有限公司 | 一种生物共振设备 |
CN107102217A (zh) * | 2017-04-25 | 2017-08-29 | 广东电网有限责任公司电力科学研究院 | 一种工频电磁场动物实验系统 |
CN107192970A (zh) * | 2017-05-05 | 2017-09-22 | 中国科学院电工研究所 | 一种磁共振成像系统的阵列梯度线圈驱动装置 |
CN108761369A (zh) * | 2018-05-25 | 2018-11-06 | 国网湖北省电力有限公司电力科学研究院 | 一种用于模拟变电站现场的工频电磁场发生平台 |
CN109596670A (zh) * | 2018-12-08 | 2019-04-09 | 北京理工大学 | 一种电/磁场环境综合发生系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114276409A (zh) * | 2021-12-24 | 2022-04-05 | 上海天能生命科学有限公司 | 一种电磁复合生物大分子分离技术以及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109596670B (zh) | 2023-07-25 |
CN109596670A (zh) | 2019-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020113923A1 (zh) | 一种电/磁场环境综合发生系统 | |
Nadeem et al. | Computation of electric and magnetic stimulation in human head using the 3-D impedance method | |
US5224922A (en) | Quasistatic biological cell and tissue modifier | |
Flack et al. | Mutual inductance of air-cored coils: Effect on design of radio-frequency coupled implants | |
AU2009213096B2 (en) | Apparatus and method for treatment with magnetic fields | |
CN101596341A (zh) | 一种超低频经颅磁刺激用装置及其制备方法 | |
CN104726332A (zh) | 一种类脑组织体外打印培养系统及方法 | |
CN105301536A (zh) | 一种磁共振成像系统的梯度磁场产生方法及其装置 | |
Muehsam et al. | The sensitivity of cells and tissues to exogenous fields: effects of target system initial state | |
CN103087911A (zh) | 一种为工频弱磁场生物效应实验提供稳定均匀磁场环境的方法 | |
CN203874283U (zh) | 基于HelmHolz 线圈的多波形电磁场发生器 | |
CN109166688A (zh) | 用于电磁场生物学效应研究的复合磁场发生装置 | |
CN103361270B (zh) | 多场耦合体外细胞实验装置及方法 | |
CN216091890U (zh) | 三维磁环治疗设备及其帽子或头盔或治疗床 | |
CN106886001A (zh) | 一种用于生物学研究的可控磁场发生装置 | |
CN101574556A (zh) | 基于变异的亥母核磁线圈的骨质疏松治疗系统 | |
CN102626539A (zh) | 便携式理疗仪 | |
Ke et al. | Research on magnetic field uniformity of compensated Helmholtz coil | |
CN204582306U (zh) | 冻伤低频脉冲电磁治疗仪 | |
CN103212159A (zh) | 一种人体生物声磁能量发生仪 | |
CN206173355U (zh) | 用于微生物培养测试的电磁环境发生器 | |
KR200243812Y1 (ko) | 저주파 자기장 노출장치 | |
Ravazzani et al. | Frequency-related effects in the optimization of coils for the magnetic stimulation of the nervous system | |
CN106399090A (zh) | 用于微生物培养测试的电磁环境发生器及实验方法 | |
CN202569208U (zh) | 一种磁刺激装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19893885 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19893885 Country of ref document: EP Kind code of ref document: A1 |