WO2020113714A1 - 一种触控屏、显示装置 - Google Patents

一种触控屏、显示装置 Download PDF

Info

Publication number
WO2020113714A1
WO2020113714A1 PCT/CN2018/123797 CN2018123797W WO2020113714A1 WO 2020113714 A1 WO2020113714 A1 WO 2020113714A1 CN 2018123797 W CN2018123797 W CN 2018123797W WO 2020113714 A1 WO2020113714 A1 WO 2020113714A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
control
touch
thin film
channel
Prior art date
Application number
PCT/CN2018/123797
Other languages
English (en)
French (fr)
Inventor
马亚龙
戴其兵
邓义超
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/319,479 priority Critical patent/US20200174640A1/en
Publication of WO2020113714A1 publication Critical patent/WO2020113714A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present application relates to the field of touch technology, in particular to a touch screen and display device.
  • a self-contained touch screen wants to realize multi-touch (such as touch with more than five points)
  • a single-layer matrix touch electrode is required, and each touch electrode needs to correspond to a signal channel .
  • the finger touches it will change the signal amount of the touch electrode in the finger area to judge the touch position; because each touch electrode is independent, it will not interfere with each other, so it can support multi-touch.
  • the number of channels of the matrix touch electrodes is too much, to achieve the same accuracy as the mutual capacitance touch screen, it requires much more than the number of channels of the mutual capacitance touch screen; generally due to the matrix self-capacitive touch
  • the larger number of channels required by the screen makes the IC larger in size, and also leads to more bonding terminals, which increases the difficulty of bonding.
  • the present application provides a touch screen and a display device, which can reduce the number of channels required for a single-layer matrix self-capacitive touch screen, thereby being able to meet the requirements of smaller IC size and greatly reducing the difficulty of binding.
  • This application provides a touch screen, including:
  • a substrate the substrate includes a touch area and a binding area on one side of the touch area, the binding area includes a signal channel and a control channel;
  • Thin-film transistor layer including thin-film transistors distributed at intervals;
  • the touch layer includes touch electrodes distributed in an array
  • Signal traces one end of the signal trace is connected to the sources of at least two of the thin film transistors, and the other end is connected to the signal channel;
  • Control wiring one end of the control wiring is connected to the gates of at least two thin film transistors, and the other end is connected to the control channel;
  • a touch electrode connected to a drain of the thin film transistor
  • the control channel is used to control the turning on or off of the thin film transistor
  • the signal channel is used to send or The capacitive signal of the touch electrode is received to realize touch control.
  • control channel and the signal channel are used to control the touch electrodes in one row/column, respectively.
  • one control channel is correspondingly connected to the gates of the thin film transistors in the same row through one control trace
  • one signal channel is correspondingly connected to the same column through one signal trace
  • one of the thin film transistors is correspondingly connected to the touch electrode.
  • a control channel when a control channel sends a control signal, all of the thin film transistors connected to the control channel are turned on, and the signal channel sends a capacitance signal to the corresponding connection to the control channel.
  • the touch electrode is charged and discharged.
  • control channel sends a control signal to the thin film transistor line by line, and the signal channel simultaneously sends a capacitance signal to the touch electrode.
  • the signal traces and the control traces are located at gaps between the touch electrodes in two adjacent rows/columns, respectively.
  • the signal trace and the control trace are arranged crosswise, and the signal trace and the control trace are insulated from each other.
  • the sum of the number of the control channels and the signal channels is equal to the sum of the number of rows and columns of the touch electrodes distributed in the array.
  • the present application also provides a display device including a display panel and the above-mentioned touch screen, wherein the display panel includes a pixel unit, the touch electrode is a transparent electrode, and the signal trace and the control trace are located A gap position between two adjacent pixel units.
  • this application also provides a touch screen, including:
  • a substrate the substrate includes a touch area and a binding area on one side of the touch area, the binding area includes a signal channel and a control channel;
  • Thin-film transistor layer including thin-film transistors distributed at intervals;
  • the touch layer includes touch electrodes distributed in an array
  • Signal traces one end of the signal trace is connected to the sources of at least two of the thin film transistors, and the other end is connected to the signal channel;
  • Control wiring one end of the control wiring is connected to the gates of at least two thin film transistors, and the other end is connected to the control channel;
  • a touch electrode connected to a drain of the thin film transistor
  • control channel is used to control the turning on or off of the thin film transistor
  • signal channel is used to send or receive the capacitive signal of the touch electrode in time-sharing to realize touch control
  • control channel and the signal channel are used to control the touch electrodes in one row/column, respectively.
  • a control channel is correspondingly connected to the gates of the thin film transistors in the same row through a control trace
  • a signal channel is correspondingly connected to the same column through a signal trace
  • one of the thin film transistors is correspondingly connected to the touch electrode.
  • control channel sends a control signal to the thin film transistor line by line, and the signal channel simultaneously sends a capacitance signal to the touch electrode.
  • the signal traces and the control traces are located at gaps between the touch electrodes in two adjacent rows/columns, respectively.
  • the signal trace and the control trace are arranged crosswise, and the signal trace and the control trace are insulated from each other.
  • the sum of the number of the control channels and the signal channels is equal to the sum of the number of rows and columns of the touch electrodes distributed in the array.
  • the beneficial effects of the present application are: compared with the existing touch screen, the touch screen and display device provided by the present application, by adding a switching signal and controlled by a thin film transistor, allows one channel to be divided into multiple touch electrodes When transmitting and receiving signals, the number of channels required for a single-layer matrix self-capacitive touch screen is reduced, thereby reducing the size of the IC and the number of terminals in the bonding area, which greatly reduces the difficulty of bonding.
  • FIG. 1 is a partial structural schematic diagram of a liquid crystal display panel provided in Example 1 of the present application.
  • FIG. 2 is an enlarged schematic view of area A in FIG. 1.
  • This application is directed to existing touch screens. Due to the large number of channels required for single-layer matrix self-capacitive touch screens, this leads to the increase in IC size, the number of terminals in the bonding area, and the technical problems of greater difficulty in bonding. This embodiment can solve this defect.
  • FIG. 1 it is a schematic structural diagram of a touch screen provided by an embodiment of the present application.
  • the touch screen of this embodiment is a single-layer matrix self-capacitive touch screen.
  • This embodiment only uses 9 touch electrodes distributed in a 3*3 array as an example for description. It can be understood that this implementation Examples include multiple touch electrodes distributed in multiple rows and multiple columns.
  • the touch screen includes: a substrate 1, the substrate 1 includes a touch area 10 and a binding area 11 on one side of the touch area 10, the binding area 11 includes signals distributed at intervals Channel 111 and control channel 112; thin film transistor layer, prepared on the substrate 1, including thin film transistors 2 spaced apart; touch layer, prepared on the thin film transistor layer, including array distribution corresponding to the touch area 10 Touch electrode 3; signal trace 4, one end of the signal trace 4 is connected to the source of at least two of the thin film transistors 2, and the other end is connected to the signal channel 111; the control trace 5 is a One end of the control trace 5 is connected to the gates of at least two thin film transistors 2 and the other end is connected to the control channel 112; in addition, one touch electrode 3 is correspondingly connected to the drain of the thin film transistor 2; wherein The control channel 112 is used to control the turning on or off of the thin film transistor 2, and the signal channel 111 is used to send or receive the capacitive signal of the touch electrode 3 in a time-sharing manner to achieve
  • control channel 112 and the signal channel 111 are used to control the touch electrodes 3 in a row/column, respectively.
  • a control channel 112 is correspondingly connected to the gates of the thin film transistors 2 in the same row through a control trace 5, and a control channel 112 is used to control a row of the thin film transistors 2 Turn on or off.
  • a signal channel 111 is correspondingly connected to the source of the thin film transistor 2 in the same column through a signal trace 4. The signal channel 111 is used to transmit a capacitance signal to the source of the thin film transistor 2 which is correspondingly turned on .
  • One of the thin film transistors 2 is correspondingly connected to the touch electrode 3, specifically, one of the touch electrodes 3 is correspondingly connected to a drain of the thin film transistor 2.
  • control channel 112 When a control channel 112 sends a control signal, all the thin film transistors 2 corresponding to the control channel 112 are turned on, and the signal channel 111 sends a capacitance signal to the touch control corresponding to the control channel 112 The electrode 3 is charged and discharged.
  • the first control channel T1 sends a control signal
  • all the thin-film transistors 2 in the bottom row connected to the first control channel T1 are turned on, and the first signal channel R1 and the second signal channel R2 3.
  • the third signal channel R3 simultaneously sends a capacitance signal to the thin-film transistor 2 in the bottom row, and then transmits the thin-film transistor 2 to the touch electrode 3 in the bottom row for charging and discharging.
  • the control channel 112 sends a control signal to the thin film transistor 2 line by line, and the signal channel 111 simultaneously sends a capacitance signal to the touch electrode 3.
  • the second control channel T2 and the third control channel T3 send control signals in turn to turn on the thin film transistors 2 of the corresponding row in turn according to the above method, and then the first The signal channel R1, the second signal channel R2, and the third signal channel R3 send capacitance signals to the touch electrodes 3 in the corresponding row.
  • the corresponding touch electrode 3 forms a voltage difference, thereby realizing self-capacitive touch.
  • the signal trace 4 and the control trace 5 are located at gaps between the touch electrodes 3 in two adjacent rows/columns, respectively.
  • one control trace 5 is provided between two adjacent rows of touch electrodes 3
  • one signal trace 4 is provided between two adjacent columns of touch electrodes 3.
  • the signal trace 4 and the control trace 5 are arranged crosswise, and the signal trace 4 and the control trace 5 are insulated from each other.
  • the sum of the number of the control channels 112 and the signal channels 111 is smaller than the number of the touch electrodes 3.
  • the number of the control channels 112 is equal to the number of rows of the touch electrodes 3 of the touch screen
  • the number of the signal channels 111 is equal to the number of columns of the touch electrodes 3 of the touch screen. That is, the sum of the number of the control channels 112 and the signal channels 111 is equal to the sum of the number of rows and columns of the touch electrodes 3 distributed in the array.
  • the number of channels of the existing touch screen is often equal to the product of the number of rows and columns of the touch electrodes. Because the number of channels in the bonding area 11 of the present application is small, the number of bonding terminals and chip pins is also small, so it can meet the requirements of small chip size, and the manufacturing process is simple and easy to bond.
  • two control channels can control the opening or closing of the same row of thin film transistors, that is, one control channel is connected to a part of a row of thin film transistors, and the other control channel is connected to the rest of the row of thin film transistors.
  • the two control channels send control signals from both sides to the same row of thin film transistors at the same time, which can avoid signal delay caused by too many thin film transistors.
  • the signal channel may also be designed similar to the control channel.
  • FIG. 2 it is an enlarged schematic view of area A in FIG. 1.
  • the signal trace 4 is connected to the source S of the thin film transistor
  • the control trace 5 is connected to the gate G of the thin film transistor
  • the drain D of the thin film transistor is connected to the Touch electrode 3.
  • the control trace 5 is used to transmit the control signal to control the turning on or off of the thin film transistor
  • the signal trace 4 is used to transmit the capacitance signal to be transmitted through the thin film transistor
  • the touch electrode 3 when a finger touches, a voltage signal is generated between the finger and the touch electrode 3, and the voltage signal is then transmitted to the signal channel through the signal trace 4 for identifying touch .
  • the thin film transistor is used to transfer data signals and scan signals, so as to realize time-sharing transfer of signals.
  • the present application also provides a display device including a display panel and the above-mentioned touch screen, wherein the display panel includes a pixel unit, the touch electrode is a transparent electrode, and the signal trace and the control trace are located A gap position between two adjacent pixel units.
  • the display device may be an external touch or an in-plane touch.
  • the display panel may be a liquid crystal display panel or an OLED display panel.
  • the touch screen and the display device provided by the present application can increase the switching signal and control by the thin film transistor, so that one channel can transmit and receive signals for multiple touch electrodes in a time-sharing manner, thereby reducing the single-layer matrix self-capacitive touch screen
  • the number of required channels further reduces the IC size and the number of terminals in the bonding area, which greatly reduces the difficulty of bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请提供一种触控屏、显示装置,触控屏包括:设于基板上的薄膜晶体管及触控电极,基板包括分时发送或接收触控电极电容信号的信号通道和控制薄膜晶体管打开或关闭的控制通道;至少两薄膜晶体管的源极连接一信号走线至一信号通道;至少两薄膜晶体管的栅极连接一控制走线至一控制通道;一触控电极连接一薄膜晶体管的漏极。

Description

一种触控屏、显示装置 技术领域
本申请涉及触控技术领域,尤其涉及一种触控屏、显示装置。
背景技术
目前,自容式的触控屏如果想要实现多点触控(如五点以上的触控),就需要采用单层矩阵式触控电极,而每一个触控电极都需要对应一个信号通道,手指触摸时会改变手指区域触控电极的信号量,从而判断触摸位置;由于每一个触控电极独立,因不会互相干扰,从而可以支持多点触控。
但是由于矩阵式的触控电极的通道数太多,要达到与互容式触控屏一样的精度,就需要远多于互容式触控屏的通道数;一般由于矩阵式自容触控屏需要的通道数较多,就使得IC的尺寸较大,同时也导致绑定端子数目较多,提高绑定难度。
因此,现有技术存在缺陷,急需改进。
技术问题
本申请提供一种触控屏、显示装置,能够减少单层矩阵式自容触控屏需要的通道数目,从而能够满足IC尺寸较小的需求,大大降低绑定难度。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种触控屏,包括:
基板,所述基板包括触控区以及位于所述触控区一侧的绑定区,所述绑定区包括信号通道和控制通道;
薄膜晶体管层,包括间隔分布的薄膜晶体管;
触控层,包括阵列分布的触控电极;
信号走线,一所述信号走线一端连接至少两所述薄膜晶体管的源极,另一端连接一所述信号通道;
控制走线,一所述控制走线一端连接至少两所述薄膜晶体管的栅极,另一端连接一所述控制通道;
一所述触控电极连接一所述薄膜晶体管的漏极;
其中,所述控制通道与所述信号通道的数量之和小于所述触控电极的数量,所述控制通道用于控制所述薄膜晶体管的打开或关闭,所述信号通道用于分时发送或接收所述触控电极的电容信号,以实现触控。
在本申请的触控屏中,所述控制通道与所述信号通道用于分别控制一行/列的所述触控电极。
在本申请的触控屏中,一所述控制通道通过一所述控制走线对应连接同一行所述薄膜晶体管的栅极,一所述信号通道通过一所述信号走线对应连接同一列所述薄膜晶体管的源极,一所述薄膜晶体管对应连接一所述触控电极。
在本申请的触控屏中,当一所述控制通道发送控制信号时,与所述控制通道对应连接的所述薄膜晶体管全部打开,所述信号通道发送电容信号至对应连接所述控制通道的所述触控电极进行充电、放电。
在本申请的触控屏中,所述控制通道逐行发送控制信号至所述薄膜晶体管,所述信号通道同时发送电容信号至所述触控电极。
在本申请的触控屏中,所述信号走线与所述控制走线分别位于相邻两行/列所述触控电极之间的间隙位置。
在本申请的触控屏中,所述信号走线与所述控制走线交叉设置,并且所述信号走线与所述控制走线相互绝缘。
在本申请的触控屏中,所述控制通道与所述信号通道的数量之和等于阵列分布的所述触控电极的行数目与列数目之和。
本申请还提供一种显示装置,包括显示面板和如上述触控屏,其中,所述显示面板包括像素单元,所述触控电极为透明电极,所述信号走线与所述控制走线位于相邻两所述像素单元之间的间隙位置。
为解决上述问题,本申请还提供一种触控屏,包括:
基板,所述基板包括触控区以及位于所述触控区一侧的绑定区,所述绑定区包括信号通道和控制通道;
薄膜晶体管层,包括间隔分布的薄膜晶体管;
触控层,包括阵列分布的触控电极;
信号走线,一所述信号走线一端连接至少两所述薄膜晶体管的源极,另一端连接一所述信号通道;
控制走线,一所述控制走线一端连接至少两所述薄膜晶体管的栅极,另一端连接一所述控制通道;
一所述触控电极连接一所述薄膜晶体管的漏极;
其中,所述控制通道用于控制所述薄膜晶体管的打开或关闭,所述信号通道用于分时发送或接收所述触控电极的电容信号,以实现触控。
在本申请的触控屏中,所述控制通道与所述信号通道用于分别控制一行/列的所述触控电极。
在本申请的触控屏中,一所述控制通道通过一所述控制走线对应连接同一行所述薄膜晶体管的栅极,一所述信号通道通过一所述信号走线对应连接同一列所述薄膜晶体管的源极,一所述薄膜晶体管对应连接一所述触控电极。
在本申请的触控屏中,当一所述控制通道发送控制信号时,与所述控制通道对应连接的所述薄膜晶体管全部打开,所述信号通道发送电容信号至对应连接所述控制通道的所述触控电极进行充电、放电。
在本申请的触控屏中,所述控制通道逐行发送控制信号至所述薄膜晶体管,所述信号通道同时发送电容信号至所述触控电极。
在本申请的触控屏中,所述信号走线与所述控制走线分别位于相邻两行/列所述触控电极之间的间隙位置。
在本申请的触控屏中,所述信号走线与所述控制走线交叉设置,并且所述信号走线与所述控制走线相互绝缘。
在本申请的触控屏中,所述控制通道与所述信号通道的数量之和等于阵列分布的所述触控电极的行数目与列数目之和。
有益效果
本申请的有益效果为:相较于现有的触控屏,本申请提供的触控屏、显示装置,通过增加开关信号,通过薄膜晶体管的控制,让一个通道可以为多个触控电极分时传输、接收信号,从而减少单层矩阵式自容触控屏需要的通道数目,进而减小IC尺寸、减少绑定区端子数目,大大降低绑定难度。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的液晶显示面板局部结构示意图;
图2为图1中A区域的放大示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请针对现有的触控屏,由于单层矩阵式自容触控屏需要的通道数目较多,从而导致IC尺寸增大、绑定区端子数目增多,绑定难度较大的技术问题,本实施例能够解决该缺陷。
如图1所示,为本申请实施例提供的触控屏的结构示意图。本实施例的所述触控屏为单层矩阵式自容触控屏,本实施例仅以呈3*3阵列式分布的9个触控电极为例进行说明,可以理解的是,本实施例包括多个呈多行多列分布的触控电极。
在图中,所述触控屏包括:基板1,所述基板1包括触控区10以及位于所述触控区10一侧的绑定区11,所述绑定区11包括间隔分布的信号通道111和控制通道112;薄膜晶体管层,制备于所述基板1上,包括间隔分布的薄膜晶体管2;触控层,制备于所述薄膜晶体管层上,包括对应所述触控区10阵列分布的触控电极3;信号走线4,一所述信号走线4的一端连接至少两所述薄膜晶体管2的源极,另一端连接一所述信号通道111;控制走线5,一所述控制走线5的一端连接至少两所述薄膜晶体管2的栅极,另一端连接一所述控制通道112;另外,一所述触控电极3对应连接一所述薄膜晶体管2的漏极;其中,所述控制通道112用于控制所述薄膜晶体管2的打开或关闭,所述信号通道111用于分时发送或接收所述触控电极3的电容信号,以实现触控。
在一种实施例中,所述控制通道112与所述信号通道111用于分别控制一行/列的所述触控电极3。
具体如图中所示,一所述控制通道112通过一所述控制走线5对应连接同一行所述薄膜晶体管2的栅极,一所述控制通道112用于控制一行所述薄膜晶体管2的打开或关闭。一所述信号通道111通过一所述信号走线4对应连接同一列所述薄膜晶体管2的源极,所述信号通道111用于将电容信号传送至相应打开的所述薄膜晶体管2的源极。一所述薄膜晶体管2对应连接一所述触控电极3,具体地,一所述触控电极3对应连接至一所述薄膜晶体管2的漏极。
当一所述控制通道112发送控制信号时,与所述控制通道112对应连接的所述薄膜晶体管2全部打开,所述信号通道111发送电容信号至对应连接所述控制通道112的所述触控电极3进行充电、放电。
具体地,在图中当第一控制通道T1发送控制信号时,与所述第一控制通道T1连接的最下面一行的所述薄膜晶体管2全部打开,第一信号通道R1、第二信号通道R2、第三信号通道R3同时发送电容信号给最下面一行的所述薄膜晶体管2,经所述薄膜晶体管2传送至最下面一行的所述触控电极3进行充电、放电。所述控制通道112逐行发送控制信号至所述薄膜晶体管2,所述信号通道111同时发送电容信号至所述触控电极3。即所述第一控制通道T1完成控制信号发送时,然后按照上述方法依次由第二控制通道T2、第三控制通道T3发送控制信号依次打开相应行的所述薄膜晶体管2,然后所述第一信号通道R1、所述第二信号通道R2、所述第三信号通道R3发送电容信号至相应行的所述触控电极3。当手指触摸时,相应的所述触控电极3形成电压差,从而实现自容式触控。
所述信号走线4与所述控制走线5分别位于相邻两行/列所述触控电极3之间的间隙位置。在图中,相邻两行所述触控电极3之间设置有一条所述控制走线5,相邻两列所述触控电极3之间设置有一条所述信号走线4。所述信号走线4与所述控制走线5交叉设置,并且所述信号走线4与所述控制走线5相互绝缘。
本实施例中,所述控制通道112与所述信号通道111的数量之和小于所述触控电极3的数量。所述控制通道112的数目等于所述触控屏的所述触控电极3的行数,所述信号通道111的数目等于所述触控屏的所述触控电极3的列数。即所述控制通道112与所述信号通道111的数量之和等于阵列分布的所述触控电极3的行数目与列数目之和。而现有的触控屏的通道数往往等于触控电极所呈行数和列数之积。因为本申请的所述绑定区11的通道数较少,因此绑定端子及芯片引脚的数目也较少,因此可以满足芯片小尺寸的需求,且制程简单,易于绑定。
在一种实施例中,可以由两个控制通道控制同一行薄膜晶体管的打开或关闭,即其中一个控制通道连接一行薄膜晶体管中的一部分,另一控制通道连接该行薄膜晶体管中的剩余部分,所述两个控制通道同时从两侧发送控制信号至同一行薄膜晶体管,可以避免因薄膜晶体管数量太多而产生信号延迟现象。所述信号通道也可以与所述控制通道类似的设计。
如图2所示,为图1中A区域的放大示意图。在图中,所述信号走线4连接至所述薄膜晶体管的源极S,所述控制走线5连接至所述薄膜晶体管的栅极G,所述薄膜晶体管的漏极D连接至所述触控电极3。进行触控操作时,所述控制走线5用于传送所述控制信号用以控制所述薄膜晶体管的打开或关闭,所述信号走线4用于传送所述电容信号经所述薄膜晶体管传送至所述触控电极3,当手指触摸时手指与所述触控电极3之间产生电压信号,所述电压信号再经所述信号走线4传送至所述信号通道,用于识别触控。在进行显示操作时,所述薄膜晶体管用于传送数据信号与扫描信号,从而实现分时传送信号。
本申请还提供一种显示装置,包括显示面板和如上述触控屏,其中,所述显示面板包括像素单元,所述触控电极为透明电极,所述信号走线与所述控制走线位于相邻两所述像素单元之间的间隙位置。所述显示装置可以为外挂式触控或者是面内触控。所述显示面板可以为液晶显示面板或者OLED显示面板。所述触控屏具体可参照上述实施例中的描述,此处不再赘述。
本申请提供的触控屏、显示装置,通过增加开关信号,通过薄膜晶体管的控制,让一个通道可以为多个触控电极分时传输、接收信号,从而减少单层矩阵式自容触控屏需要的通道数目,进而减小IC尺寸、减少绑定区端子数目,大大降低绑定难度。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (17)

  1. 一种触控屏,其包括:
    基板,所述基板包括触控区以及位于所述触控区一侧的绑定区,所述绑定区包括信号通道和控制通道;
    薄膜晶体管层,包括间隔分布的薄膜晶体管;
    触控层,包括阵列分布的触控电极;
    信号走线,一所述信号走线一端连接至少两所述薄膜晶体管的源极,另一端连接一所述信号通道;
    控制走线,一所述控制走线一端连接至少两所述薄膜晶体管的栅极,另一端连接一所述控制通道;
    一所述触控电极连接一所述薄膜晶体管的漏极;
    其中,所述控制通道与所述信号通道的数量之和小于所述触控电极的数量,所述控制通道用于控制所述薄膜晶体管的打开或关闭,所述信号通道用于分时发送或接收所述触控电极的电容信号,以实现触控。
  2. 根据权利要求1所述的触控屏,其中,所述控制通道与所述信号通道用于分别控制一行/列的所述触控电极。
  3. 根据权利要求2所述的触控屏,其中,一所述控制通道通过一所述控制走线对应连接同一行所述薄膜晶体管的栅极,一所述信号通道通过一所述信号走线对应连接同一列所述薄膜晶体管的源极,一所述薄膜晶体管对应连接一所述触控电极。
  4. 根据权利要求3所述的触控屏,其中,当一所述控制通道发送控制信号时,与所述控制通道对应连接的所述薄膜晶体管全部打开,所述信号通道发送电容信号至对应连接所述控制通道的所述触控电极进行充电、放电。
  5. 根据权利要求4所述的触控屏,其中,所述控制通道逐行发送控制信号至所述薄膜晶体管,所述信号通道同时发送电容信号至所述触控电极。
  6. 根据权利要求1所述的触控屏,其中,所述信号走线与所述控制走线分别位于相邻两行/列所述触控电极之间的间隙位置。
  7. 根据权利要求6所述的触控屏,其中,所述信号走线与所述控制走线交叉设置,并且所述信号走线与所述控制走线相互绝缘。
  8. 根据权利要求1所述的触控屏,其中,所述控制通道与所述信号通道的数量之和等于阵列分布的所述触控电极的行数目与列数目之和。
  9. 一种显示装置,其包括显示面板和如权利要求1所述的触控屏,其中,所述显示面板包括像素单元,所述触控电极为透明电极,所述信号走线与所述控制走线位于相邻两所述像素单元之间的间隙位置。
  10. 一种触控屏,其包括:
    基板,所述基板包括触控区以及位于所述触控区一侧的绑定区,所述绑定区包括信号通道和控制通道;
    薄膜晶体管层,包括间隔分布的薄膜晶体管;
    触控层,包括阵列分布的触控电极;
    信号走线,一所述信号走线一端连接至少两所述薄膜晶体管的源极,另一端连接一所述信号通道;
    控制走线,一所述控制走线一端连接至少两所述薄膜晶体管的栅极,另一端连接一所述控制通道;
    一所述触控电极连接一所述薄膜晶体管的漏极;
    其中,所述控制通道用于控制所述薄膜晶体管的打开或关闭,所述信号通道用于分时发送或接收所述触控电极的电容信号,以实现触控。
  11. 根据权利要求10所述的触控屏,其中,所述控制通道与所述信号通道用于分别控制一行/列的所述触控电极。
  12. 根据权利要求11所述的触控屏,其中,一所述控制通道通过一所述控制走线对应连接同一行所述薄膜晶体管的栅极,一所述信号通道通过一所述信号走线对应连接同一列所述薄膜晶体管的源极,一所述薄膜晶体管对应连接一所述触控电极。
  13. 根据权利要求12所述的触控屏,其中,当一所述控制通道发送控制信号时,与所述控制通道对应连接的所述薄膜晶体管全部打开,所述信号通道发送电容信号至对应连接所述控制通道的所述触控电极进行充电、放电。
  14. 根据权利要求13所述的触控屏,其中,所述控制通道逐行发送控制信号至所述薄膜晶体管,所述信号通道同时发送电容信号至所述触控电极。
  15. 根据权利要求10所述的触控屏,其中,所述信号走线与所述控制走线分别位于相邻两行/列所述触控电极之间的间隙位置。
  16. 根据权利要求15所述的触控屏,其中,所述信号走线与所述控制走线交叉设置,并且所述信号走线与所述控制走线相互绝缘。
  17. 根据权利要求10所述的触控屏,其中,所述控制通道与所述信号通道的数量之和等于阵列分布的所述触控电极的行数目与列数目之和。
PCT/CN2018/123797 2018-12-03 2018-12-26 一种触控屏、显示装置 WO2020113714A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/319,479 US20200174640A1 (en) 2018-12-03 2018-12-26 Touch screen and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811465106.3A CN109375839B (zh) 2018-12-03 2018-12-03 一种触控屏、显示装置
CN201811465106.3 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020113714A1 true WO2020113714A1 (zh) 2020-06-11

Family

ID=65375504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123797 WO2020113714A1 (zh) 2018-12-03 2018-12-26 一种触控屏、显示装置

Country Status (2)

Country Link
CN (1) CN109375839B (zh)
WO (1) WO2020113714A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703602A (zh) * 2020-05-22 2021-11-26 联咏科技股份有限公司 Oled触控显示芯片及包含其的oled触控显示装置
CN111665995B (zh) * 2020-06-23 2022-01-04 武汉华星光电半导体显示技术有限公司 自容式触控基板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238787A (zh) * 2013-06-08 2014-12-24 深圳市联思精密机器有限公司 一种触控式平板显示器
US20150022484A1 (en) * 2013-07-17 2015-01-22 Chunghwa Picture Tubes, Ltd. In-cell touch display panel
CN106775176A (zh) * 2017-02-14 2017-05-31 京东方科技集团股份有限公司 自容式触摸显示模组、显示驱动方法和触摸显示装置
CN107817915A (zh) * 2016-09-12 2018-03-20 速博思股份有限公司 能触控感应基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903551A1 (en) * 2006-09-25 2008-03-26 TPO Displays Corp. Pixel driving circuit and oled display apparatus and electronic device using the same
CN202649983U (zh) * 2011-07-26 2013-01-02 比亚迪股份有限公司 触控装置和便携式电子设备
CN103593077B (zh) * 2012-08-14 2017-03-08 群康科技(深圳)有限公司 触控感测单元及具有该触控感测单元的面板
CN104777935B (zh) * 2015-04-13 2017-09-19 深圳市华星光电技术有限公司 触控感应面板及其触控感应方法、制作方法
CN106201072B (zh) * 2016-06-30 2019-09-17 厦门天马微电子有限公司 一种触控显示装置
CN108089768A (zh) * 2018-01-25 2018-05-29 武汉华星光电半导体显示技术有限公司 触控面板结构及柔性触控显示器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238787A (zh) * 2013-06-08 2014-12-24 深圳市联思精密机器有限公司 一种触控式平板显示器
US20150022484A1 (en) * 2013-07-17 2015-01-22 Chunghwa Picture Tubes, Ltd. In-cell touch display panel
CN107817915A (zh) * 2016-09-12 2018-03-20 速博思股份有限公司 能触控感应基板
CN106775176A (zh) * 2017-02-14 2017-05-31 京东方科技集团股份有限公司 自容式触摸显示模组、显示驱动方法和触摸显示装置

Also Published As

Publication number Publication date
CN109375839B (zh) 2020-06-30
CN109375839A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
TWI522859B (zh) 畫素矩陣、觸控顯示裝置及其驅動方法
US9886115B2 (en) Touch display substrate
WO2019010860A1 (zh) In-cell型触控显示器
US10268304B2 (en) Touch display panel, manufacturing method for the same, driving method for the same, and display device
US9798404B2 (en) Touch panels and the driving method thereof
JP5748831B2 (ja) タッチスクリーン一体型表示装置及びその駆動方法
US10042490B2 (en) Array substrate, display device and driving method
US9268447B2 (en) Touch display panel, touch display device and driving method thereof
US20190042047A1 (en) Pixel array substrate
WO2017031934A1 (zh) 触控显示面板及其驱动方法和触控显示装置
WO2018119788A1 (zh) 内嵌触摸结构的阵列基板以及显示面板
WO2015039403A1 (zh) 电容式内嵌触摸屏及显示装置
US10303283B2 (en) Touch display panel and control circuit thereof
WO2015096326A1 (zh) 阵列基板、显示装置及其驱动方法
WO2017041341A1 (zh) 阵列基板及触控显示装置
WO2016095504A1 (zh) 触摸显示面板及其驱动方法、触摸显示装置
WO2017008346A1 (zh) 显示面板及薄膜晶体管阵列基板
WO2017045222A1 (zh) 一种触摸面板、阵列基板及其制造方法
WO2020113714A1 (zh) 一种触控屏、显示装置
WO2016187912A1 (zh) 触控显示装置及其控制方法、电路
TW201421136A (zh) 觸控顯示裝置及其驅動方法
US10459298B2 (en) Display device, array substrate and manufacturing method thereof
US20200174640A1 (en) Touch screen and display device
US10101835B2 (en) Embedded touch-screen display panel structure
WO2017124606A1 (zh) 触摸面板以及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942202

Country of ref document: EP

Kind code of ref document: A1