WO2020113586A1 - 一种倾斜仪 - Google Patents

一种倾斜仪 Download PDF

Info

Publication number
WO2020113586A1
WO2020113586A1 PCT/CN2018/119926 CN2018119926W WO2020113586A1 WO 2020113586 A1 WO2020113586 A1 WO 2020113586A1 CN 2018119926 W CN2018119926 W CN 2018119926W WO 2020113586 A1 WO2020113586 A1 WO 2020113586A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
liquid
inclinometer
level sensor
level sensors
Prior art date
Application number
PCT/CN2018/119926
Other languages
English (en)
French (fr)
Inventor
陈昌林
吕欣怀
Original Assignee
江苏弘开传感科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏弘开传感科技有限公司 filed Critical 江苏弘开传感科技有限公司
Priority to PCT/CN2018/119926 priority Critical patent/WO2020113586A1/zh
Publication of WO2020113586A1 publication Critical patent/WO2020113586A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels

Definitions

  • the present application relates to measurement technology, in particular to an inclinometer for measuring tilt angle.
  • the inclinometer has different designs according to different measuring principles.
  • the commonly used inclinometers are mostly based on the principles of microelectromechanical systems (MEMS, Microelectromechanical Systems), insertion resistance, static level, Bragg grating (FBG, Fiber Bragging) and vibrating wire.
  • MEMS microelectromechanical systems
  • FBG Bragg grating
  • vibrating wire a wire that vibrates the inclinometer.
  • the inclinometer designed based on the above measurement principle has at least the following disadvantages: complex structure, low accuracy, and high manufacturing cost.
  • an embodiment of the present application provides an inclinometer.
  • An inclinometer provided by an embodiment of the present application includes: at least one liquid level sensor; the body of each liquid level sensor includes a liquid area and a gas area, the gas area is located above the liquid area, and each liquid level sensor body The liquid areas inside are kept in communication, and the gas areas in the body of each liquid level sensor are kept in communication; where,
  • the liquid level sensor includes a first reflection point and a second reflection point, the position of the first reflection point is fixed, and the liquid surface of the liquid area or a floating object on the liquid surface serves as the second reflection point, the The distance between the first reflection point and the second reflection point is the length of the resonant cavity; when the tilt angle of the inclinometer changes, the liquid level sensor rotates and moves, and the liquid surface is under the action of gravity Moving in the main body of the liquid level sensor, causing the resonant cavity length of the liquid level sensor to change, and determining the tilt angle based on the amount of change in the resonant cavity length;
  • the liquid level sensor includes a positive feedback loop, and the positive feedback loop includes a first reflection point and a second reflection point, the position of the first reflection point is fixed, and the liquid surface or the liquid surface of the liquid area
  • the floating object serves as the second reflection point, and the distance between the first reflection point and the second reflection point is the length of the resonant cavity; or, the positive feedback loop includes only one reflection point, and the liquid area
  • the liquid surface or floating objects on the liquid surface serve as the reflection point; wherein, when the tilt angle of the inclinometer changes, the liquid level sensor rotates and moves, and the liquid surface is under the influence of gravity
  • the body of the liquid level sensor moves, and when the positive feedback loop includes the first reflection point and the second reflection point, the length of the resonant cavity changes, which is determined based on the amount of change in the length of the resonant cavity
  • the tilt angle; when the positive feedback loop includes only one reflection point, the circumference of the positive feedback loop changes, and the tilt angle is determined based on the amount of change in
  • liquid level sensor when the liquid level sensor includes the first reflection point and the second reflection point:
  • the first reflection point is fixed at any position within the envelope range of the outer shell and inner rod of the liquid level sensor; or,
  • connection point of the radio frequency coaxial cable adapter in the liquid level sensor, the housing and the inner rod is used as the first reflection point.
  • the liquid level sensor includes a cavity length measuring device, and the cavity length measuring device includes: a microwave resonance cavity and a demodulation device; wherein,
  • the microwave resonant cavity includes a hollow coaxial cable-Fabry Perot cavity and a reflection point located inside the hollow coaxial cable-Fabry Perot cavity;
  • the first end of the hollow coaxial cable-Fabry Perot cavity is connected to a radio frequency coaxial cable adapter, and the radio frequency coaxial cable adapter is connected to the demodulation device through a coaxial cable; or
  • the first end of the hollow coaxial cable-Fabry Perot cavity is connected to a circuit board as a demodulation device.
  • the hollow coaxial cable-Fabry Perot when the total reflectivity of the reflection points inside the hollow coaxial cable-Fabry Perot cavity is greater than or equal to a threshold, the hollow coaxial cable-Fabry Perot There is no energy dissipation system at the second end of the resonant cavity, or a load resistance or coaxial load for energy dissipation is connected between the shell and the inner rod of the second end of the hollow coaxial cable-Fabry-Perot resonant cavity ;
  • the outer end of the hollow coaxial cable-Fabry-Perot cavity is between the outer shell and the inner rod Connect a load resistor or coaxial load for energy dissipation.
  • the cavity length measuring device is a reflective cavity length measuring device, or a transmissive cavity length measuring device, or a positive feedback loop type cavity length measuring device;
  • the liquid level sensor is a reflective liquid level sensor, or a transmissive liquid level sensor, or a positive feedback loop type liquid level sensor; when the liquid level sensor is a transmissive liquid level sensor or a positive feedback loop type In the case of a liquid level sensor, the liquid level sensor has at least the following modes: no loop mode, positive feedback loop mode; wherein,
  • the loop-free mode means that the liquid level sensor is transmissive and does not include a positive feedback loop
  • the positive feedback loop mode means that the liquid level sensor includes a positive feedback loop.
  • the positive feedback loop adopts a loop with two reflection points or a loop with one reflection point; among them,
  • the positive feedback loop When the positive feedback loop has two reflection points, the positive feedback loop includes the first reflection point and the second reflection point, between the first reflection point and the second reflection point The distance is the length of the resonant cavity, and the demodulation device is used to measure the length of the resonant cavity of the positive feedback loop;
  • the liquid surface or floating objects on the liquid surface serve as the reflection point, and the demodulation device is used to measure the circumference of the positive feedback loop.
  • the liquid area in the body of each liquid level sensor is realized in the following way All are kept connected, and the gas area in the body of each liquid level sensor is kept connected:
  • each liquid level sensor-the first end of the Fabry-Perot cavity is at the top:
  • the second end of each liquid level sensor is an open structure, and each open structure uses a communication container to communicate or Submerged into the liquid area of the same closed container, or the second end of each liquid level sensor is a closed structure, opening on the shell wall corresponding to the liquid area inside each liquid level sensor, using a communication container between each opening Connected or submerged into the liquid area of the same closed container; opening in the shell wall corresponding to the gas area above the liquid level in each level sensor, using a vent pipe to connect between each opening or open to the gas area of the same closed container ;
  • each liquid level sensor-the first end of the Fabry-Perot resonant cavity is at the bottom: the second end of each liquid level sensor is an open structure, and each open structure uses a vent tube to communicate, Or, the second end of each liquid level sensor is a closed structure, and the opening of the shell wall corresponding to the gas area above the liquid level inside each liquid level sensor is connected with a vent tube between each opening;
  • the liquid area inside the position sensor corresponds to an opening on the wall of the housing, and a communication container is used for communication between each opening.
  • each liquid level sensor body in the case where a load resistance or a coaxial load for energy dissipation is connected between the outer shell and the inner rod of the second end of the hollow coaxial cable-Fabry Perot cavity ,
  • the liquid area in each liquid level sensor body is kept in communication in the following way, and the gas area in each liquid level sensor body is kept in communication:
  • the hollow coaxial cable of each level sensor-the first end of the Fabry-Perot resonant cavity is at the top: open on the shell wall corresponding to the liquid area inside each level sensor, used between each opening
  • the communication container is connected or submerged into the liquid area of the same closed container; the shell wall corresponding to the gas area above the liquid level inside each liquid level sensor is opened, and a ventilation tube is used to communicate between each opening or open in the same closed container Gas area
  • the hollow coaxial cable of each level sensor-the first end of the Fabry-Perot resonant cavity is at the bottom: open on the wall of the housing corresponding to the liquid area inside each level sensor, used between each opening Communicate with the communication container; open the shell wall corresponding to the gas area above the liquid level in each liquid level sensor, and use a vent pipe to communicate between each opening.
  • the inclinometer includes a liquid level sensor, the inclinometer is a unidirectional inclinometer, and the hollow coaxial cable of the liquid level sensor-the first part of the Fabry-Perot resonant cavity One end is at the top, where:
  • the hollow coaxial cable of the liquid level sensor-the second end of the Fabry-Perot resonant cavity is an open structure, the open structure is connected to a U-shaped tube, and the liquid level sensor communicates with the liquid area in the U-shaped tube, The liquid level sensor and the gas area above the liquid surface of the U-shaped tube are communicated through a vent tube, which is used to eliminate the difference in air pressure between the liquid level sensor and the gas area of the U-shaped tube;
  • the inclinometer is fixed to the measured object, the first reflection point is located above the second reflection point; when the tilt angle of the inclinometer is on the plane formed by the axis of the liquid level sensor and the U-shaped tube
  • the liquid level in the liquid level sensor changes, causing the length of the resonant cavity between the first reflection point and the second reflection point to change, and the liquid level of the liquid and the The angle between the axis of the liquid level sensor changes, wherein the liquid level of the liquid is maintained on a horizontal plane; the inclination angle can be determined by measuring the change in the length of the resonant cavity and then performing temperature compensation.
  • the inclinometer includes two liquid level sensors.
  • the inclinometer is a unidirectional inclinometer that does not require temperature compensation and rotates with the measured object.
  • the hollowness of the two liquid level sensors The first end of the coaxial cable-Fabry Perot cavity is located at the top, where:
  • Two liquid level sensors are placed in parallel and vertically, the liquid areas inside the two liquid level sensors are communicated using a communication container, and the gas areas above the liquid level of the two liquid level sensors are communicated using a vent tube for Eliminate the pressure difference between the gas areas above the liquid level inside the two liquid level sensors;
  • the inclinometer includes two liquid level sensors.
  • the inclinometer is a unidirectional inclinometer that does not require temperature compensation and rotates with the measured object.
  • the hollowness of the two liquid level sensors The first end of the coaxial cable-Fabry Perot cavity is at the bottom, where:
  • the two liquid level sensors are placed in parallel and vertically.
  • a sealing plug is placed in the body of the two liquid level sensors to ensure that the liquid is above the sealing plug.
  • the top of the sealing plug or the bottom surface of the liquid serves as the first A reflection point, the top surface of the liquid is used as the second reflection point, the top surface of the liquid is always lower than the top of the housing and the inner rod;
  • the opening on the wall of the housing corresponding to the liquid area inside the two liquid level sensors, the The opening on the wall of the housing is located below the liquid surface and above the sealing plug, and the communication area through the two openings can communicate with the liquid area inside the two liquid level sensors;
  • the gas area above the liquid level of the two liquid level sensors Use a vent tube for communication to eliminate the pressure difference between the gas areas above the liquid level inside the two liquid level sensors;
  • the inclinometer includes two liquid level sensors.
  • the inclinometer is a unidirectional inclinometer without temperature compensation. When the inclination angle of the inclinometer changes, the two liquids The position sensor does not rotate.
  • the first end of the hollow coaxial cable-Fabry-Perot resonant cavity of the two level sensors is on the top, where:
  • Two liquid level sensors are placed in parallel, and the two liquid level sensors are respectively fixed to the substrate through a rotating shaft, so that the two liquid level sensors can rotate around the rotating shaft, and the rotating shaft is below the second reflection point,
  • the rotating shaft is located on the axis of the liquid level sensor, and the connecting line of the rotating shafts of the two liquid level sensors is perpendicular to the axis of the two liquid level sensors;
  • a weight is added to the bottom of each liquid level sensor, It is used to ensure that when the tilt angle of the inclinometer changes and the substrate is rotated, the axis of the liquid level sensor is always vertical;
  • the liquid areas inside the two liquid level sensors are communicated using a communication container, and the gas areas above the liquid level of the two liquid level sensors are communicated using a vent tube to eliminate the liquid level inside the two liquid level sensors
  • the bottom of the closed container is filled with liquid, and a part of the outer shell and inner rod of the two liquid level sensors are always submerged in the liquid at the bottom of the closed container.
  • the liquid area inside the two liquid level sensors and the closed communicates, and the gas areas of the two liquid level sensors communicate with the gas above the liquid level of the sealed container to eliminate the pressure difference between the gas areas above the liquid level inside the two liquid level sensors ;
  • the inclinometer includes two liquid level sensors.
  • the inclinometer is a unidirectional inclinometer without temperature compensation. When the inclination angle of the inclinometer changes, the two liquids The position sensor does not rotate.
  • the first end of the hollow coaxial cable-Fabry-Perot resonant cavity of the two level sensors is on the top, where:
  • the inclinometer includes an airtight container.
  • the top plate of the airtight container is fixed with two flexible ropes or two groups of equal length flexible ropes.
  • Each flexible rope or each group of flexible ropes hangs a liquid level sensor, wherein the liquid
  • the demodulation device of the level sensor is on the top of the hollow coaxial cable-Fabry Perot cavity and suspended under the flexible rope, the axis of the suspended liquid level sensor is vertical; the bottom of the closed container It is filled with liquid, and the casing and inner rod of the two liquid level sensors are always submerged in the liquid at the bottom of the closed container, and the liquid area inside the two liquid level sensors communicates with the liquid at the bottom of the closed container,
  • a gas hole is provided on the wall of the casing corresponding to the gas area of the two liquid level sensors or at the first end, so that the gas area inside the liquid level sensor communicates with the gas above the liquid level of the sealed container, for eliminating the two liquids Pressure difference between gas areas above the liquid level inside the level sensor;
  • the inclinometer is fixed to the measured object, the first reflection point is located above the second reflection point; the initial cavity lengths of the two liquid level sensors are L 1 and L 2 respectively , and the two flexible cords
  • the distance between the fixed points on the top plate is L; when the inclination angle of the inclinometer changes on the plane formed by the axes of the two liquid level sensors, the axes of the two liquid level sensors act on gravity
  • the bottom is always vertical, and the liquid level in the two liquid level sensors changes, resulting in a change in the length of the resonant cavity between the first reflection point and the second reflection point of the two liquid level sensors.
  • the inclination can be determined by the difference ⁇ L 2 - ⁇ L 1 between the changes in the resonant cavity length of the two liquid level sensors and the distance L between the fixed points of the two flexible ropes on the top plate
  • the angle change amount ⁇ arcsin[( ⁇ L 2 - ⁇ L 1 )/L].
  • the inclinometer includes two liquid level sensors.
  • the inclinometer is a unidirectional inclinometer that does not require temperature compensation and rotates with the measured object.
  • the hollowness of the two liquid level sensors The first end of the coaxial cable-Fabry Perot cavity is located at the top, where:
  • the inclinometer includes a closed container, the two liquid level sensors are placed in parallel, and are rigidly fixed to the top plate, bottom plate, or side of the closed container; the bottom of the closed container is filled with liquid, and the two liquid levels A part of the outer shell and inner rod of the sensor are always submerged in the liquid at the bottom of the closed container, the liquid area inside the two liquid level sensors communicates with the liquid at the bottom of the closed container, the gas area of the two liquid level sensors Corresponding housing wall or first end has a vent hole to connect the gas area inside the liquid level sensor with the gas above the liquid level of the sealed container, for eliminating the gas area above the liquid level inside the two liquid level sensors Air pressure difference between
  • the inclinometer includes three liquid level sensors.
  • the inclinometer is a bidirectional inclinometer that does not require temperature compensation and rotates with the measured object.
  • the hollowness of the three liquid level sensors is the same.
  • the first end of the axis cable-Fabry-Perot cavity is at the top, where:
  • the three liquid level sensors are placed parallel and vertically, and the intersections of the axes of the three liquid level sensors and the horizontal plane are not on a straight line; the liquid areas inside the three liquid level sensors are communicated using a communication container; The gas area above the liquid level inside the three liquid level sensors, the first liquid level sensor and the second liquid level sensor communicate through the first air pipe, and the third liquid level sensor and the second liquid level sensor pass through the Two ventilation tubes are connected, the first ventilation tube and the second ventilation tube are located above the liquid level, and are used to eliminate the pressure difference between the gas areas above the liquid level inside the three liquid level sensors;
  • the first reflection points of the three liquid level sensors are all above the second reflection point;
  • the initial cavity lengths of the three liquid level sensors are L 1 and L 2 respectively
  • L 3 when the intersections of the axes of the three liquid level sensors and the horizontal plane form a right triangle, the two right sides are the X axis and the Y axis of the oblique direction;
  • the first liquid level sensor and the first The parallel spacing of the two liquid level sensing axes is d 1
  • the parallel spacing of the axis between the second liquid level sensor and the third liquid level sensor is d 2 ;
  • the length of the resonant cavity between the first reflection point and the second reflection point of the second liquid level sensor and the third liquid level sensor also changes, the amount of change is ⁇ L 2 and ⁇ L 3 , respectively, through the two liquid level sensors
  • the inclinometer includes three liquid level sensors.
  • the inclinometer is a bidirectional inclinometer without temperature compensation. When the inclination angle of the inclinometer changes, the three liquid levels The sensor does not rotate, and the first ends of the hollow coaxial cable-Fabry-Perot resonant cavity of the three liquid level sensors are at the top, where:
  • the inclinometer includes an airtight container, and the top plate of the airtight container is fixed with three flexible ropes or three groups of equal-length flexible ropes, and a liquid level sensor is suspended under each flexible rope or each group of flexible ropes, wherein the liquid level
  • the demodulation device of the sensor is on the top of the hollow coaxial cable-Fabry Perot cavity and suspended under the flexible rope, the axis of the suspended liquid level sensor is vertical; the three liquid level sensors The three intersections of the axis of and the horizontal plane are not in a straight line; the bottom of the closed container is filled with liquid, and part of the outer shell and inner rod of the three liquid level sensors are always submerged in the liquid at the bottom of the closed container.
  • the liquid areas inside the three liquid level sensors communicate with the liquid at the bottom of the sealed container.
  • the gas areas of the three liquid level sensors have vent holes on the wall of the housing or at the first end, so that the gas area inside the liquid level sensor is
  • the gas communication above the liquid level of the sealed container is used to eliminate the pressure difference between the gas areas above the liquid level inside the three liquid level sensors;
  • the inclinometer is fixed to the measured object, the first reflection point is above the second reflection point; the initial cavity lengths of the three liquid level sensors are L 1 , L 2 and L 3 respectively , when the When the intersections of the axes of the three liquid level sensors and the horizontal plane form a right triangle, the two right sides are the X axis and the Y axis of the tilt direction; the first liquid level sensor and the second liquid level sensor axis The parallel spacing is d 1 , and the parallel spacing of the axis between the second level sensor and the third level sensor is d; when the inclinometer is tilted around both the X and Y axes, the first level The length of the resonant cavity between the first reflection point and the second reflection point of the sensor and the second liquid level sensor changes by ⁇ L 1 and ⁇ L 2 respectively.
  • the length of the resonant cavity between the first reflection point and the second reflection point of the sensor and the third liquid level sensor also changes, and the changes are ⁇ L 2 and ⁇ L 3 , respectively.
  • the inclinometer includes three liquid level sensors.
  • the inclinometer is a bidirectional inclinometer that does not require temperature compensation and rotates with the measured object.
  • the hollowness of the three liquid level sensors is the same.
  • the first end of the axis cable-Fabry-Perot cavity is at the top, where:
  • the inclinometer includes a closed container, the three liquid level sensors are placed in parallel, and are rigidly fixed to the top plate or the bottom plate or the side of the closed container, and the intersection points of the axes of the three liquid level sensors and the horizontal plane are not On a straight line; the bottom of the closed container is filled with liquid, and part of the outer shell and inner rod of the three liquid level sensors are always submerged in the liquid at the bottom of the closed container, the liquid area inside the three liquid level sensors It is in communication with the liquid at the bottom of the closed container, and there are vent holes on the wall of the housing or the first end corresponding to the gas areas of the three liquid level sensors, so that the gas area inside the liquid level sensor and the gas above the liquid level of the closed container Connected to eliminate the pressure difference between the gas areas above the liquid level in the three liquid level sensors;
  • the inclinometer is fixed to the measured object, the first reflection point is above the second reflection point; the initial cavity lengths of the three liquid level sensors are L 1 , L 2 and L 3 respectively , when the When the intersections of the axes of the three liquid level sensors and the horizontal plane form a right triangle, the two right sides are the X axis and the Y axis of the tilt direction; the first liquid level sensor and the second liquid level sensor axis
  • the parallel spacing is d 1
  • the parallel spacing of the axis between the second liquid level sensor and the third liquid level sensor is d 2 ; when the inclinometer is tilted around both the X and Y axes, the first liquid
  • the length of the resonant cavity between the first reflection point and the second reflection point of the level sensor and the second liquid level sensor changes by ⁇ L 1 and ⁇ L 2 , respectively.
  • the length of the resonant cavity between the first reflection point and the second reflection point of the level sensor and the third liquid level sensor also changes by ⁇ L 2 and ⁇ L 3 respectively, and the length of the resonant cavity changes through the two level sensors
  • the three intersections of the axes of the three liquid level sensors and the horizontal plane are not on a straight line, and at least include:
  • the three intersections of the axes of the three liquid level sensors and the horizontal plane form a right-angled triangle, and the two right-angle sides are the X and Y rotation axes in the oblique direction, respectively.
  • the inclinometer when the inclinometer includes N liquid level sensors, N is an integer greater than or equal to 4, and the intersections of the axes of the N liquid level sensors and the horizontal plane are not on a straight line, Then, the inclinometer can be used as a bidirectional inclinometer without temperature compensation.
  • FIG. 1 is a schematic diagram of a hollow coaxial cable-Fabry Perot cavity according to an embodiment of the present application
  • Fig. 2(a) is a schematic diagram of the structure of a hollow coaxial cable-Fabry-Perot resonator without an inner rod;
  • 2(b) is a schematic diagram of the structure of a hollow coaxial cable-Fabry-Perot resonant cavity including an inner rod;
  • FIG. 3 is a reflection amplitude spectrum and a transmission amplitude spectrum of a hollow coaxial cable-Fabry Perot cavity of an embodiment of the present application;
  • Figure 4 is a commonly used cross-sectional view of the housing
  • Figure 5 is a commonly used cross-sectional view of the inner rod
  • Figure 6 is a cross-sectional view of commonly used reflection points
  • FIG. 7 is a schematic diagram of the connection between the outer shell and the outer shell, or the inner rod and the inner rod;
  • FIG. 8(a) is a schematic structural diagram of a reflective cavity length measuring device with a coaxial cable and a demodulation device according to an embodiment of the present application;
  • FIG. 8(b) is a schematic structural diagram of a cavity length measuring device with a reflective and demodulation device directly connected to a sensor according to an embodiment of the present application;
  • FIG. 9(a) is a schematic diagram of the loop structure of the first transmission or positive feedback loop-type cavity length measuring device according to an embodiment of the present application.
  • 9(b) is a schematic diagram of a loop structure of a second transmission or positive feedback loop type cavity length measuring device according to an embodiment of the present application.
  • 9(c) is a schematic diagram of a loop structure of a third transmission or positive feedback loop-type cavity length measuring device according to an embodiment of the present application.
  • 9(d) is a schematic diagram of a loop structure of a fourth transmission or positive feedback loop type cavity length measuring device according to an embodiment of the present application.
  • FIG. 10(a) is a schematic structural diagram of a cavity length measuring device according to an embodiment of the present application.
  • FIG. 10(b) is a schematic structural diagram of a liquid level sensor when the liquid surface of the embodiment of the present application is used as the second reflective surface and there is no energy dissipation system at the end of the housing and the inner rod;
  • FIG. 10(c) is a schematic diagram of the structure of a liquid level sensor when a floating object on the liquid surface of the embodiment of the present application is used as the second reflective surface and there is no energy dissipation system at the end of the housing and the inner rod;
  • 10(d) is a schematic structural diagram of a cavity length measuring device for connecting a coaxial load to an end of an outer rod and an inner rod of an embodiment of the present application;
  • FIG. 10(e) is a schematic structural diagram of a liquid level sensor according to an embodiment of the present application with a liquid surface as a second reflection and an end connected to a coaxial load;
  • 10(f) is a schematic structural diagram of a cavity length measuring device connected to a load resistor at an end of an outer casing and an inner rod according to an embodiment of the present application;
  • FIG. 10(g) is a schematic structural diagram of a liquid level sensor according to an embodiment of the present application with a liquid surface as a second reflection and a load resistance connected to an end;
  • FIG. 11 is a schematic view of the structure of an inclinometer made of a liquid level sensor and a U-shaped tube in an embodiment of the present application;
  • FIG. 12(a) is a schematic structural diagram of a first inclinometer based on a liquid level difference in an embodiment of the present application
  • FIG. 12(b) is a schematic structural diagram of a first inclinometer based on a liquid level difference and having load resistances at the ends of two liquid level sensors in an embodiment of the present application;
  • 12(c) is a schematic structural diagram of a first inclinometer based on a liquid level difference and having two coaxial load at the ends of two liquid level sensors in an embodiment of the present application;
  • FIG. 12(d) is a schematic structural diagram of a first inclinometer based on a liquid level difference and using the upper and lower surfaces of a liquid as two reflection points in an embodiment of the present application;
  • FIG. 13(a) is a schematic diagram of a second type of inclinometer based on a liquid level difference in which an end of a liquid level sensor is open or connected to a load resistance and the axis of the liquid level sensor is always kept in an upright state based on a liquid level difference;
  • FIG. 13(b) is a schematic diagram of a second inclinometer based on a liquid level difference, the end of the liquid level sensor is sealed or connected with a coaxial load, and the axis of the liquid level sensor is always kept in a vertical state;
  • 14(a) is a schematic diagram of a third inclinometer based on the liquid level difference, the end of the suspended liquid level sensor is open or connected to the load resistance, and the axis of the liquid level sensor is always maintained in a vertical state;
  • FIG. 14(b) is a schematic diagram of a third inclinometer based on the liquid level difference, the end of the suspended liquid level sensor is sealed or connected to the coaxial load, and the axis of the liquid level sensor is always maintained in a vertical state;
  • 15(a) is a schematic diagram of the structure of a bidirectional inclinometer based on a liquid level difference and having three liquid level sensor ends open or with a load resistance in an embodiment of the present application;
  • 15(b) is a schematic structural view of a bidirectional inclinometer based on a liquid level difference and having three liquid level sensor ends open or with a coaxial load in an embodiment of the present application;
  • 16(a) is a top view of a two-way inclinometer made of three liquid level sensors according to an embodiment of the present application;
  • 16(b) is a top view of a two-way inclinometer made of four liquid level sensors according to an embodiment of the present application;
  • 17(a) is a schematic structural view of a bidirectional inclinometer made of three suspended liquid level sensors and using the principle of energy dissipation at the end of a load resistor according to an embodiment of the present application;
  • 17(b) is a schematic diagram of a bidirectional inclinometer made of three suspended liquid level sensors and using the principle of coaxial end energy dissipation according to an embodiment of the present application;
  • 1- outer shell which can be a hollow tube, rod, spring, or other continuous conductor
  • 2- inner rod which can be hollow, solid, or a spring or other continuous conductor
  • 3- first reflection point which can be The conductor or insulator can be connected to the outer shell or the inner rod, or it can be unconnected.
  • the end device of the inner rod 2 can be a conductor, an insulator, a closed or non-closed structure, or a coaxial load or load resistance as an end; 16-RF coaxial cable adapter; 22 -Load resistance; 23-coaxial load; 30-liquid container, can be of various shapes, including tubular; 31-liquid; 32-vent tube, or vent hole
  • the embodiment of the present application provides a novel cavity length measuring device of a microwave resonant cavity, wherein the microwave resonant cavity is specifically a hollow coaxial cable-Fabry-Perot resonant cavity.
  • the cavity length measuring device of the embodiment of the present application can The cavity length of the hollow coaxial cable-Fabry Perot cavity is measured.
  • the embodiment of the present application combines the cavity length measuring device and the auxiliary mechanical design, and the cavity length measuring device can be converted into a liquid level sensor, and the inclinometer of the embodiment of the present application is designed based on the liquid level sensor.
  • the liquid level sensor can measure the liquid level with high precision based on the mechanical transmission structure.
  • the measuring principle is based on the principle of the hollow coaxial cable-Fabry-Perot resonant cavity.
  • the hollow Axis cable-Fabry-Perot resonant cavity includes: a shell, an inner rod (optional), a resonant cavity and two reflection points, the structure of the resonant cavity is easy to make, using the movement of the reflection point in the resonant cavity, It can measure the liquid level under static and dynamic forces.
  • the temperature compensation of the inclinometer designed based on the liquid level sensor is very convenient and is not affected by factors such as electromagnetics.
  • the inclinometer designed in the embodiment of the present application has the advantages of high precision, strong anti-interference ability and strong durability, and has a wide range of application prospects, and is particularly suitable for high-precision measurement of the inclination angle under static and dynamic structures. Due to the stable material performance of the inclinometer, it is easy to work between minus sixty degrees and hundreds of degrees above zero, and it can work in a wider temperature range by changing the production materials. In a word, the inclinometer of the embodiment of the present application is not disturbed by any electromagnetic signal, the temperature has little influence on it, and temperature compensation is very easy to implement.
  • the hollow coaxial cable-Fabry-Perot resonant cavity in the embodiment of the present application is similar to the traditional optical Fabry-Perot resonant cavity, and unlike the optical Fabry-Perot resonant cavity, the hollow coaxial cable- Fabry-Perot resonant cavity is based on radio frequency coaxial cable and is a sensor based on microwave principle.
  • the two reflection points are high reflection points.
  • the reflectance of the high reflection point is generally higher than 50%, and in a few cases less than 50%, but not lower than 20%, because each reflection
  • the reflectivity of the dots is high, so it is not suitable for distributed sensors.
  • the Fabry-Perot resonant cavity is a resonance phenomenon caused by multi-path interference, and has the characteristics of high demodulation accuracy, high signal-to-noise ratio, and high cost performance of the demodulation device.
  • a brand-new self-processed hollow coaxial cable-Fabry Perot cavity platform is proposed.
  • the internal insulator of the hollow coaxial cable-Fabry Perot cavity is generally air, special Can be filled with liquid during application.
  • FIG. 1 is a schematic diagram of a hollow coaxial cable-Fabry Perot cavity according to an embodiment of the present application.
  • two reflection points with high reflectivity are provided in a hollow coaxial cable-Fabry-Perot cavity 5 inside, wherein the first reflection point 3 is provided at a first position inside the hollow coaxial cable-Fabry-Perot cavity 5, and the second reflection point 4 is provided at the hollow At the second position inside the axis cable-Fabry Perot cavity 5, the distance between the two reflection points generally exceeds 1 cm.
  • the hollow coaxial cable-Fabry Perot cavity is mostly composed of an outer conductor (that is, the outer shell) and an inner conductor (that is, the inner rod).
  • the shell 1 and the inner rod 2 are continuous conductors
  • the continuous conductor is formed by connecting a single conductive part or multiple conductive parts. In one embodiment, there may be only the outer shell 1 and no inner rod 2. In another embodiment, it is possible to have both the housing 1 and the inner rod 2.
  • the medium in the resonant cavity between the housing 1 and the inner rod 2 is one of the following: vacuum, gas, liquid, solid; wherein, when the medium is solid, the solid is filled beyond the range of movement of the reflection point .
  • the electromagnetic waves traveling in the hollow coaxial cable-Fabry Perot cavity are mainly reflected at the first reflection point, part of the energy is reflected, and the remaining part of the remaining energy will be transmitted through and reach the second reflection point. At the second reflection point, a small part of the electromagnetic wave is reflected again, and the round trip is repeated multiple times (the number of round trips is determined by the reflectivity of the reflection point).
  • the reflection point may be caused by the impedance deviation of the coaxial cable, or by the short circuit or the open circuit of the inner and outer conductors.
  • Two reflection points can produce a microwave phase delay ⁇ , the calculation formula is as follows:
  • f is the microwave frequency
  • ⁇ r is the dielectric constant of the material inside the coaxial cable (air is 1)
  • d is the frequency of the resonant cavity
  • c is the speed of light in vacuum.
  • FIG. 3 is a reflection amplitude spectrum and a transmission amplitude spectrum of a hollow coaxial cable-Fabry Perot cavity of an embodiment of the present application.
  • multiple resonance frequencies can be observed, including fundamental and harmonics.
  • Many small ripples can be observed in (a) and (b) in Figure 3, which is caused by the reflection caused by the impedance mismatch between the instrument interface and the coaxial cable.
  • the basic idea of using hollow coaxial cable-Fabry-Perot resonant cavity to make a sensor is based on accurately calculating the distance between two reflection points from the reflection amplitude spectrum or the transmission amplitude spectrum.
  • the cavity length measuring device of the microwave resonant cavity of the embodiment of the present application will be described in detail below with reference to the specific structure.
  • the cavity length measuring device of the embodiment of the present application includes: a microwave resonant cavity and a demodulation device, wherein the microwave resonant cavity refers to Shown hollow coaxial cable-Fabry-Perot resonant cavity.
  • the microwave resonant cavity refers to Shown hollow coaxial cable-Fabry-Perot resonant cavity.
  • the housing 1/inner rod 2 can be a conductor part or multiple conductor parts connected together (to ensure the conductivity of the connection), it can be seen that the housing 1/inner rod 2 is a continuous conductor.
  • a conductor part drawn in all drawings may not necessarily represent a simple conductor part, but may also represent a composite conductor part composed of multiple conductor parts through different connection methods.
  • the second reflection point can be moved separately, or the second reflection point can be fixed to the outer shell and/or inner rod, and then the outer shell and/or inner rod and the second reflection can be moved together Point to achieve the movement of the second reflection point.
  • the outer shell and/or inner rod and the second reflection point are fixed as a whole, moving the second reflection point will cause part of the outer shell and/or inner rod to move, and the outer shell and/or inner rod must ensure conductive connectivity Therefore, the outer shell and/or the inner rod should use a nested structure, a spring structure or a bellows structure, etc., which can adapt to a large tensile or compression structure and can maintain conductive continuity.
  • the liquid level sensor mentioned in the embodiments of the application may use such a structure.
  • the second reflection point can be moved alone, or the second reflection point can be fixed with the casing, and then the casing and the second reflection point can be moved together to realize the movement of the second reflection point.
  • moving the second reflection point will cause part of the shell to move, and the shell must ensure conductive connectivity. Therefore, the shell should use a nested structure, a spring structure or a bellows
  • the structure and the like can be adapted to a larger stretch or compression and can maintain the conductivity continuity.
  • the measured length is the equivalent distance between the two reflection points; or there can be only one reflection point, and the measured length is the positive feedback loop Perimeter.
  • Embodiment 1 Device for measuring cavity length of microwave resonant cavity
  • the cavity length measuring device includes: a microwave resonant cavity and a demodulation device; wherein, the microwave resonant cavity includes a hollow coaxial cable-Fabry-Perot resonant cavity, a first reflection point, and a second reflection point, wherein, the first reflection The point is set at a first position inside the hollow coaxial cable-Fabry-Perot cavity, and the second reflection point is set at a second position inside the hollow coaxial cable-Fabry-Perot cavity At the position, the first position and/or the second position can move; the total reflectance of the first reflection point and the second reflection point is greater than or equal to a preset threshold; the demodulation device and the The microwave resonant cavity is connected to analyze the microwave signal in the microwave resonant cavity to obtain the cavity length of the microwave resonant cavity, wherein the cavity length of the microwave resonant cavity is the first reflection point and the The distance between the second reflection points.
  • the microwave resonator includes a positive feedback loop, and the positive feedback loop may have two reflection points, one reflection point, or no reflection point.
  • the demodulation device is used to measure the circumference of the positive feedback loop.
  • Reflective cavity length measuring device in the reflective cavity length measuring device:
  • One end of the hollow coaxial cable-Fabry-Perot resonant cavity is connected to a radio frequency coaxial cable adapter, and the radio frequency coaxial cable adapter is connected to the demodulation device through the coaxial cable;
  • One end is directly connected to a demodulation device, wherein the demodulation device 9 is: a vector network analyzer, or a microwave generation source plus scalar network analyzer, or a microwave time domain reflectometer, or a demodulation circuit (such as a demodulation function) Circuit board);
  • the other end of the hollow coaxial cable-Fabry Perot cavity is an open structure, or a sealed structure, or an energy dissipation structure such as a coaxial load or load resistance.
  • the first end of the hollow coaxial cable-Fabry-Perot resonant cavity is connected to the first radio frequency coaxial cable adapter, and the outer shell wall of the hollow coaxial cable-Fabry-Perot resonant cavity is connected to the second A radio frequency coaxial cable adapter, the first radio frequency coaxial cable adapter and the second radio frequency coaxial cable adapter are connected to the demodulation device through a coaxial cable; the first end of the resonant cavity can also be connected
  • the outer casing and inner rod are directly connected to the demodulation device, without the need for radio frequency coaxial cables to transmit signals.
  • the cavity length measuring device has at least the following modes: positive feedback loop mode, no loop mode; wherein,
  • the demodulation device includes: a directional coupler, a waveform amplifier, a frequency counter/spectrometer; in addition, in the positive feedback loop mode, there may be two reflection points, also There can be only one reflection point or no reflection point; when there is only one reflection point or no reflection point, the measured cavity length is the circumference of the loop.
  • the demodulation device 9 is a vector network analyzer, or a scalar microwave analyzer, or a demodulation circuit.
  • the positive feedback loop mode includes: a microwave positive feedback loop, a positive feedback loop based on an optical oscillator; wherein,
  • the microwave positive feedback loop includes: coaxial cable loop, microwave directional coupler, microwave amplifier or microwave power splitter, frequency counter/spectrometer and other components;
  • the positive feedback loop based on the photoelectric oscillator includes: high-speed photoelectric demodulator, laser or light emitting diode light source, fiber loop, fiber coupler, microwave amplifier or optical amplifier, microwave directional coupler or microwave power separation Device, frequency counter/spectrometer, and the devices in the demodulation device are connected by an optical fiber loop.
  • each core device is as follows: housing 1, inner rod 2, first reflection point 3, second reflection point 4, resonant cavity 5, RF coaxial cable adapters 6 and 16, vector network analyzer or Scalar microwave analyzer, or circuit 9 for measuring and demodulating spectrum, load resistance 22, coaxial load 23, where:
  • Shell 1 refers to a continuous conductor connected to the outer ring of the RF coaxial cable adapter.
  • the conductor can be a tube, a semi-circular tube, a spring, a rod, or multiple conductors through a conductive connection Combined connected conductor.
  • Figure 4 lists the commonly used cross-sectional view of the housing.
  • Figure 7 lists the common connection methods between different sections of the casing when multiple parts form the casing.
  • the inner rod 2 is also a continuous conductor. Like the outer shell 1, the inner rod 2 can also be of different geometric shapes.
  • the cross-sectional shape can be circular, rectangular or semi-circular, etc. It can be a straight rod, a curved rod such as a spring, etc. It may be a connector in which multiple conductors are connected together.
  • the cavity length measuring device can be used without an inner rod, and the required parameters can still be measured by demodulating the signal through the demodulation device.
  • Figure 5 lists the commonly used cross-sectional view of the inner rod.
  • Figure 7 lists the common connection methods between different sections of the inner rod when multiple parts form the inner rod.
  • the first reflection point 3 and the second reflection point 4 refer to some objects within the envelope of the outer shell and the inner rod, which can be various shapes, different sizes, different materials, or multiple parts combination. As long as it can play a reflective role. If the reflection point is a conductor connecting the outer shell and the inner rod, then the reflectivity at this point will be high. If it is not the outer shell and the inner rod conductor, the reflectance will be lower.
  • Figure 6 lists the commonly used cross-sectional views of the reflection points. The shaded parts in the figure are the reflection points.
  • the resonant cavity 5 refers to the resonant cavity between the first reflection point and the second reflection point, and between the housing and the inner rod.
  • the medium in the resonant cavity is vacuum, gas, liquid, or solid. If it is solid, then Solids cannot be filled into the movement range of the reflection point, so as not to affect the movement of the reflection point.
  • the RF coaxial cable adapter 6 generally uses an SMA connector, or other connectors.
  • the outer ring of the RF coaxial cable adapter 6 is connected to the housing 1, and the center signal pin 7 of the RF coaxial cable adapter is connected to the inner rod 2.
  • the RF coaxial cable adapter 16 is generally a male or female male connector.
  • the interface between the demodulation device and the microwave resonant cavity is not limited to the commonly used SMA connectors or male and female male connectors, but can also be other forms of radio frequency coaxial cable adapters.
  • the vector network analyzer or scalar microwave analyzer, or the circuit 9 for measuring and demodulating the spectrum is a device for measuring the reflection amplitude spectrum or the transmission amplitude spectrum of the hollow coaxial cable-Fabry-Perot cavity.
  • 9 also refers to the circuit that can be used to measure and demodulate the spectrum.
  • the 15 generally refers to the end devices of the housing 1 and the inner rod 2, which may be conductors, insulators, closed or non-closed structures, or a coaxial load or load resistance as the ends of the housing and the inner rod.
  • the load resistor 22 or the coaxial load 23 connected to the end of the housing and the inner rod is for energy dissipation, that is, energy that has not been reflected back through the second reflection point is eliminated, so that the end of the sensor does not reflect.
  • demodulation system 50 is a demodulation system, which refers to the general name of instruments that demodulate the resonant cavity length, including all demodulation instruments based on reflection, transmission, or loop.
  • the demodulation system 50 with various mechanical structures of this patent is to simplify the connection of components with different principles under the same mechanical structure.
  • FIG. 1 is the core original component of a hollow coaxial cable-Fabry-Perot resonant cavity, including a housing 1, an inner rod 2, a first reflection point 3, a second reflection point 4, and a resonance cavity 5.
  • Fig. 2(a) and Fig. 2(b) respectively show two cases where the hollow coaxial cable-Fabry-Perot cavity does not include the inner rod and includes the inner rod, wherein the outer shell and the inner rod may have various shapes, It may be a connection structure of multiple conductors, and the two reflection points only need to be within the envelope of the outer shell 1 and the inner rod 2.
  • FIG. 4 shows a cross-sectional view of a commonly used housing 1, which can be a ring, a box, or various irregular shapes.
  • the housing can even be a spring or a round bar. It can also be divided into a combination of multiple conductors connected together, as long as the continuous conductor is satisfied.
  • the inner rod 2 may be hollow or solid.
  • the cross-section may be of various styles. Commonly used cross-sections are round, rectangular and regular polygons.
  • the inner rod 2 may be a spatial curve structure such as a spring.
  • the inner rod 2 can also be divided into a combination of multiple conductors connected together, as long as the continuous conductor is satisfied.
  • Fig. 6 is a cross-sectional view of commonly used reflection points 3 or 4, which can be of various shapes.
  • the reflection point may be a conductor or an insulator, as long as there is a portion within the envelope of the outer shell 1 and the inner rod 2; the reflection point may or may not contact the outer shell and/or inner rod.
  • the reflection point may be a cylinder or a ring filled between the outer shell 1 and the inner rod 2, or it may be a cover part of the outer shell 1
  • FIG. 7 is a schematic diagram of the connection between the outer shell and the inner rod, or the connection between the inner rod and the inner rod after the outer shell 1 or the inner rod 2 is connected in sections.
  • Figure 7 shows the commonly used connection methods, including overlapping, misalignment, nesting, or connecting with a rotating shaft, and connecting with conductor bellows. In short, it occurs between different sections of the segmented shell 1 or inner rod 2 When relatively moving or rotating, the conductive continuity of the outer shell 1 or the inner rod 2 may be satisfied.
  • FIGS. 8 and 9 the common structure of the cavity length measuring device is shown in FIGS. 8 and 9.
  • FIGS. 8(a) and (b) are schematic structural diagrams of a reflective cavity length measuring device according to an embodiment of the present application.
  • the outer shell 1 When there is no inner rod 2, the outer shell 1 is connected to the RF coaxial cable adapter 6.
  • both the outer shell 1 and the inner rod 2 are connected to the RF coaxial cable adapter 6.
  • 3 and 4 are the first reflection point and the second reflection point, respectively. If the casing 1 and the inner rod 2 are connected to the RF coaxial cable adapter 6, the connection point already has a certain reflectivity, you can use this connection point as the first A reflection point.
  • the vector network analyzer or scalar microwave analyzer, or the circuit 9 for measuring and demodulating the spectrum is used to transmit and receive microwave signals to demodulate the length of the resonant cavity 5, that is, between the first reflection point 3 and the second reflection point 4 Effective distance.
  • coaxial cable for transmission as shown in Figure 8 (a); if the demodulation device is placed directly at the end of the sensor, there is no need for coaxial cable transmission, as shown in Figure 8 (b).
  • FIG. 9 is a schematic diagram of the loop structure of the transmission or positive feedback loop based on the loop. It means that the RF coaxial cable adapter 6 is connected to the housing 1 and the inner rod 2 at the left end of the housing 1 and the inner rod 2, and the other RF coaxial cable adapter 16 is connected to the wall of the housing, not at the right end. When there is no inner rod 2, it means that the RF coaxial cable adapter 6 is connected to the housing 1 at the left end of the housing 1, and the other RF coaxial cable adapter 16 is connected to the wall of the housing, rather than at the right end. When there are two reflection points 3 and 4, the length of the resonant cavity between the two reflection points is measured. When there is only one reflection point 4, the circumference of the loop is measured.
  • FIG. 9(a) is a schematic diagram of the loop structure of the first transmission or positive feedback loop type cavity length measuring device.
  • the demodulation device 9 is connected to the left-end coaxial cable adapter 6 and the pipe wall through two coaxial cables 8 Fig. 9(b) is a schematic diagram of the loop structure of the second transmission or positive feedback loop type cavity length measuring device.
  • the demodulation device 9 is welded at one end to the wall of the casing tube.
  • FIG. 9(c) is the loop structure of the third transmission or positive feedback loop type cavity length measuring device Schematic diagram, one end of the demodulation device 9 is welded to the ends of the housing 1 and the inner rod 2, and the other end is connected to the coaxial cable adapter 16 on the pipe wall through the coaxial cable 8;
  • FIG. 9(d) is the fourth transmission or A schematic diagram of the loop structure of the positive feedback loop type cavity length measuring device.
  • the demodulation device 9 is welded to the ends of the housing 1 and the inner rod 2 at one end, and is welded to the RF coaxial cable adapter 16 connected to the wall of the housing .
  • the liquid level sensor includes the cavity length measuring device described in the first embodiment, wherein, in the case of two reflection points, one reflection point is a fixed point, and the other reflection point is a liquid surface or a floating object on the liquid surface (the The reflection point may move), the change in the cavity length of the microwave resonant cavity characterizes the change in the distance of the second reflection point relative to the first reflection point, that is, the change in the liquid level. In the case of only one reflection point, the size of the liquid level is obtained by measuring the circumference of the positive feedback loop.
  • the liquid level sensor is the basis of the inclinometer.
  • the inclinometer is a combination of the liquid level sensor through some mechanical structure.
  • a printed circuit board (Printed Circuit Board, PCB) for measuring and demodulating microwave signals is connected to one end of the housing 1 and the inner rod 2 of the liquid level sensor, hereinafter referred to as the circuit board 9, and the other end of the circuit board 9 is a wiring terminal,
  • the measured spectrum, resonant cavity length, and other required information can be transmitted through wires or wirelessly.
  • FIG. 9(d) is a schematic diagram of the liquid level sensor of the coaxial cable 8 that does not transmit signals in this application.
  • the distance between the two reflection points 3 and 4 is the cavity length of the resonant cavity 5 (that is, the length of the resonant cavity).
  • the fixed reflection point can also be the end of the housing 1 and the inner rod 2, the other reflection point is the liquid surface, so after the liquid level changes, the distance between the two reflection points changes, by measuring the two reflection points The amount of change in the distance between them can get the amount of change in the liquid level.
  • the obtained signal is directly subjected to spectrum analysis through a demodulation device such as a demodulation circuit.
  • the ends of the outer shell and the inner rod can be sealed, and a load resistance or coaxial load can also be connected in order to eliminate the reflection at the end.
  • the end of the outer shell and the inner rod Due to the different reflectivity of different liquid surfaces, if the reflectivity is low, the end of the outer shell and the inner rod will form a high reflection, affecting the signal and accuracy. Therefore, the end of the outer shell and the inner rod needs to consider whether to dissipate energy. Normally, the reflectivity of conductive liquid is high, and the reflectivity of insulating liquid is low.
  • FIG. 10(a) is the overall structure of the liquid level sensor according to an embodiment of the present application, including two reflection points 3 and 4, and a demodulation system 50.
  • the end parts 15 of the outer shell 1 and the inner rod 2 may be conductors, insulators, closed or non-closed structures, or coaxial loads or load resistances as ends.
  • Fig. 10(b) is a structural diagram of a liquid level sensor with a liquid surface as a second reflection point.
  • the liquid level serves as the second reflection point 4, and the ends of the housing 1 and the inner rod 2 are open.
  • the reflectivity of the liquid surface is high, and it is not easy to form high reflection at the end, so the end can adopt an open structure.
  • FIG. 10(c) is a structural diagram of a liquid level sensor in which a liquid float is used as a second reflection point.
  • the liquid floats serve as the second reflection point 4, and the ends of the outer shell 1 and the inner rod 2 are open.
  • the reflectivity of the floating object is high, and the end is not easy to form a reflection, so the end can adopt an open structure.
  • Fig. 10(d) is a schematic diagram of a sensor with a coaxial load connected to the ends of the housing and the inner rod.
  • the ends of the housing 1 and the inner rod 2 are connected with a coaxial load.
  • the total reflectance of the two reflection points is still not high enough to achieve total reflection. If the end is open, it is easy to form high reflection, affecting the signal and accuracy, so the end of the shell 1 and the inner rod 2 are connected
  • the end surface of the housing and inner rod where the coaxial load is located can be sealed or unsealed.
  • Fig. 10(e) is a structural diagram of a liquid level sensor with a liquid surface as a second reflection point and a coaxial load at the end.
  • the liquid surface serves as the second reflection point 4, and the ends of the housing 1 and the inner rod 2 are connected with a coaxial load.
  • the total reflectivity of the first reflection point and the liquid surface (second reflection point) is low. If the ends are open, it is easy to form high reflections, which affects the signal and accuracy. Therefore, the ends of the housing 1 and the inner rod 2 It is connected with a coaxial load to dissipate energy, reduce end reflection, and improve the accuracy of the sensor.
  • the end surface of the housing and inner rod where the coaxial load is located can be sealed or unsealed, and it does not affect the flow of liquid when not sealed.
  • Fig. 10(f) is a schematic diagram of the structure of a sensor with a load resistance connected to the ends of the casing and the inner rod.
  • the other parts are the same as those in Fig. 10(d), except that the coaxial load at the end is replaced by the load resistance.
  • the function is the same as that for connecting the coaxial load, and it is to eliminate the reflection at the end.
  • FIG. 10(g) is a structural diagram of a liquid level sensor with a liquid surface as a second reflection point and a load resistor connected to the end.
  • the other parts are the same as those in Fig. 10(e), except that the coaxial load at the end is replaced with a load resistance.
  • the function is the same as that for connecting the coaxial load, all for eliminating reflection at the end.
  • Embodiment 3 The structural principle of unidirectional inclinometer
  • the difference between the inclinometer and the liquid level sensor is to change one of its reflection points to a point that can move relative to a fixed reflection point under the influence of tilt.
  • the liquid surface serves as a moving reflection point.
  • the tilt angle is measured by the feature that the position of the liquid surface moves relative to the fixed reflection point after tilting.
  • the more preferred solution is to use two liquid level sensors to make the difference, which can eliminate the influence of thermal expansion and other factors caused by temperature.
  • the demodulation system can use reflective, transmissive or loop structure.
  • the end of the liquid level sensor housing 1 is connected to a U-shaped tube 40 containing liquid 31, and the ends of the liquid level sensor housing 1 and the inner rod 2 are submerged in liquid, the U-shaped tube 40 and the liquid level A vent pipe 32 is connected between the gas areas of the sensor to eliminate the pressure difference.
  • the inclinometer composed of the liquid level sensor and the U-shaped tube 40 is fixed to the object to be measured, and a point above the liquid surface serves as the first reflection point 3, and the liquid surface serves as the second reflection point 4.
  • the liquid level in the liquid level sensor will change, that is, the length of the resonant cavity between the first reflection point 3 and the second reflection point 4 occurs At the same time, the angle between the liquid level (second reflection point 4) and the axis of the liquid level sensor will also change.
  • the size of the tilt angle can be determined.
  • the load sensor 22 or the coaxial load 23 is used for energy dissipation at the end of the liquid level sensor housing and the inner rod.
  • liquid level sensors are used as a unidirectional inclinometer that does not require temperature compensation and rotates with the measured object.
  • the outer shell and inner rod end of the liquid level sensor have no energy dissipation system, or use When the load resistance or load resistance dissipates energy:
  • two parallel liquid level sensors are placed vertically with the demodulation device at the top.
  • the liquid areas inside the two liquid level sensors need to be connected.
  • the figure is used at the bottom of the two liquid level sensors
  • One U-shaped tube 40 communicates, and the ends of the two liquid level sensors may be connected to the same container, or the liquid areas of the two liquid level sensors may be connected by a tube.
  • the communication container 40 it is collectively referred to as the communication container 40.
  • Both the housing 1 of the two liquid level sensors and the ends of the inner rod 2 are submerged in the liquid 31, and the liquid 31 is also in the communication container 40, that is, the liquid areas inside the two liquid level sensors are connected; the liquid of the two liquid level sensors
  • a gas pipe 32 is connected between the gas areas above the surface, which can eliminate the pressure difference between the two liquid level sensor housings.
  • An inclinometer composed of a liquid level sensor and a communication container is fixed to the object to be measured. Two liquid level sensors, a fixed point 3 in the gas area above the liquid level serves as a first reflection point, and the liquid level serves as a second reflection point 4.
  • the entire system is fixed to the measured object.
  • the initial cavity length of the two liquid level sensors is L 1 and L 2 , and the parallel spacing of the axes is d.
  • the liquid level in the two liquid level sensors will change, that is, between the first reflection point and the second reflection point of the two liquid level sensors.
  • the length of the resonant cavity changes, the changes are ⁇ L 1 and ⁇ L 2 respectively, and the change in the tilt angle can be obtained by the difference ⁇ L 2 - ⁇ L 1 of the change in the length of the resonant cavity of the two liquid level sensors and the parallel distance d
  • the amount ⁇ arctan[( ⁇ L 2 - ⁇ L 1 )/d]. Since the two liquid level sensors are made of the same material and have the same liquid inside, the change in cavity length has eliminated the effect of temperature on the cavity length when making a difference, and no temperature compensation is required.
  • the coaxial load 23 may also be used for energy dissipation, so that End reflections are greatly reduced.
  • the liquid level sensor is close to the coaxial load 23 and the length of the housing 1 serves as a container for containing liquid.
  • the fixed first reflection point is above the liquid
  • the liquid is above the coaxial load
  • the liquid surface serves as the second reflection point.
  • the liquid areas inside the two liquid level sensors are communicated with a communication container 40, and the liquid 31 is also in the communication container, that is, the liquid areas inside the two liquid level sensors are connected; then above the liquid level of the two liquid level sensors
  • the gas area is connected to a vent pipe 32, which can eliminate the pressure difference.
  • the calculation method of the inclination angle is the same as that in Fig. 12(a).
  • a vent pipe 32 is used on the top of the two liquid level sensors to communicate.
  • the liquid level sensor is placed near the demodulation device with a sealing plug 39 to ensure that the liquid is above the sealing plug.
  • the top of the sealing plug 39 or the bottom surface of the liquid serves as the first reflection point 3; the top surface of the liquid is always lower than the top of the housing and the inner rod, and the liquid surface serves as the second reflection point 4 of the two liquid level sensors.
  • a communication container 40 is used to communicate the liquid areas inside the two liquid level sensors, and the same liquid is also in the communication container, that is, the two liquid level sensors
  • the liquid areas are connected. Since the upper and lower surfaces of the liquid are selected as the two reflection points, the selected liquid must have a certain transmittance and a certain reflectivity.
  • the ends of the outer shell and inner rod are usually dissipated using coaxial loads or load resistors. The calculation method of the inclination angle is the same as that in Fig. 12(a).
  • liquid level sensors as a one-way inclinometer that does not require temperature compensation and does not rotate with the measured object.
  • the two liquid level sensors are fixed by a rotating shaft.
  • the liquid level sensor is equipped with a weight, no matter how the tilt angle changes,
  • the axis of the liquid level sensor is always vertical, and the schematic diagram of the structure is shown in FIG. 13.
  • two liquid level sensors are used as a one-way inclinometer without temperature compensation, and the axis of the liquid level sensor is always vertical, that is, when the tilt angle changes, the liquid level sensor does not rotate, specifically:
  • the demodulation system 50 is at the top, and the two liquid level sensors are respectively fixed to the base plate 35 through a rotating shaft 33, that is, the liquid level sensor can rotate around the rotating shaft 33, but cannot move.
  • the rotating shaft 33 is usually below the second reflection point 4 of the liquid level sensor, that is, below the liquid surface 4, and the connecting line of the rotating shaft 33 of the two liquid level sensors is perpendicular to the axis of the two liquid level sensors, that is, the two The shaft has the same height.
  • a weight 38 is added to the bottom of each liquid level sensor to ensure that the axis of the liquid level sensor is always vertical no matter how the substrate rotates after the tilt angle changes.
  • a hose 34 is used to connect the two liquid level sensors.
  • the hose can be protected by a housing 41, which is fixed to the two turning points 33.
  • the ends of the two liquid level sensor housings 1 and the inner rod 2 are both submerged in the liquid 31, and the liquid is also in the hose 33, that is, the liquid areas inside the two liquid level sensors are connected; one is connected between the two liquid level meters
  • the ventilation hose 36 can eliminate the air pressure difference and will not drive the liquid level sensor to rotate.
  • a fixed point in the gas area above the liquid level serves as the first reflection point 3, and the liquid level serves as the second reflection point 4.
  • the bottom of the closed container is filled with liquid, and the outer part of the shell and inner rod of the two liquid level sensors Always submerged in the liquid at the bottom of the closed container, the liquid areas inside the two liquid level sensors communicate with the liquid at the bottom of the closed container, and the gas areas of the two liquid level sensors are above the liquid level of the closed container Is used to eliminate the gas pressure difference between the gas areas above the liquid level inside the two liquid level sensors.
  • the entire substrate 35 is fixed to the object to be measured.
  • the initial cavity lengths of the two liquid level sensors are L 1 and L 2 , and the distance L between the two rotating shafts.
  • the axes of the two liquid level sensors are always vertical, the liquid level in the liquid level sensor will change, and the liquid level is always perpendicular to the liquid level sensor
  • the axis that is, the length of the resonant cavity between the first reflection point and the second reflection point of the two liquid level sensors changes by ⁇ L 1 and ⁇ L 2 , respectively.
  • two liquid level sensors are used as a one-way inclinometer without temperature compensation, and the axis of the liquid level sensor is always vertical, that is, the liquid level sensor does not rotate when the tilt angle changes.
  • the coaxial load 23 is used for energy dissipation and sealing treatment is performed there.
  • a length of the liquid level sensor close to the coaxial load serves as a container for holding liquid.
  • Two parallel liquid level sensors are placed vertically with the demodulation system 50 at the top and the bottom of the two liquid level sensors, ie the ends of the housing and inner rod, using a coaxial load 23 for energy dissipation and where Sealed.
  • a length of the liquid level sensor near the coaxial load 23 serves as a container for holding liquid.
  • the fixed first reflection point 3 is above the liquid
  • the liquid is above the coaxial load 23, and the liquid surface serves as the second reflection point 4.
  • the two liquid level sensors are respectively fixed to the base plate 35 through a rotating shaft 33, that is, the liquid level sensor can rotate around the rotating shaft, but cannot move.
  • the rotating shaft 33 can be at any point on the axis of the liquid level sensor.
  • the rotating shaft 33 can be placed at the intersection of the axis of the liquid area communication hose 36 and the axis of the liquid level sensor, and the connecting line of the rotating shaft 33 of the two liquid level sensors is vertical It is the same height as the axis of the two liquid level sensors, that is, the two rotating shafts.
  • a weight 38 is added to the bottom of each liquid level sensor to ensure that the axis of the liquid level sensor is always vertical no matter how the substrate rotates after the tilt angle changes. Then, the liquid area between the two liquid level sensors is connected by a hose 36 for communication, and the liquid is also in the hose 36, that is, the liquid areas in the two liquid level sensors are connected, and the rigidity of the hose is as small as possible.
  • two liquid level sensors are used as a one-way inclinometer without temperature compensation, and the axis of the liquid level sensor is always vertical, that is, the liquid level sensor does not rotate when the tilt angle changes.
  • a closed container 30 is adopted, and two flexible ropes 43 are fixed on the top plate of the container, and a liquid level sensor is hung under each flexible rope, wherein the demodulation system 50 of the liquid level sensor is suspended on the top of the sensor and under the flexible rope 43.
  • the center of gravity of the liquid level sensor coincides with the axis and is on the extension of the flexible rope 43. This ensures that the axis of the suspended level sensor is vertical.
  • Each liquid level sensor can also be fixed to the top plate with a set of flexible ropes of equal length, that is, the number of flexible ropes corresponding to each liquid level sensor is greater than or equal to two, which can prevent the liquid level sensor from rotating around the axis.
  • These equal-length flexible ropes are usually placed vertically and in parallel.
  • the entire container 30 is fixed to the object to be measured, the initial cavity lengths of the two liquid level sensors are L 1 and L 2 , and the distance L between the two rotating shafts.
  • the axes of the two liquid level sensors are always vertical, the liquid level in the liquid level sensor will change, and the liquid level 4 is always perpendicular to the liquid level
  • the axis of the sensor that is, the length of the resonant cavity between the first reflection point and the second reflection point of the two liquid level sensors changes by ⁇ L 1 and ⁇ L 2 respectively, and the length of the resonant cavity changes through the two liquid level sensors
  • any position of the liquid level sensor can also be fixedly connected to the top of the closed container
  • the surface, bottom surface or side surface only needs to play a role of fixing the liquid level sensor and sealing.
  • the mechanism and calculation formula of the inclinometer are the same as those in Fig. 12(b), except that the container has changed a form. Two liquid level sensors are placed inside the closed container, and only the bottom of the container has liquid.
  • two liquid level sensors are used as a one-way inclinometer without temperature compensation, and the axis of the liquid level sensor is always vertical, that is, when the tilt angle changes, the liquid level sensor does not rotate, specifically:
  • the coaxial load 23 is used for energy dissipation and sealing treatment is performed there.
  • a length of the liquid level sensor close to the coaxial load serves as a container for holding liquid.
  • a closed container is used and the top plate of the container is fixed.
  • Two flexible ropes 43, a liquid level sensor is suspended under each flexible rope, wherein the demodulation system 50 of the liquid level sensor is on the top of the sensor and suspended under the flexible rope 43, the center of gravity of the entire liquid level sensor coincides with the axis, and On the extension of the flexible rope 43. This ensures that the axis 43 of the suspended level sensor is vertical.
  • Each liquid level sensor can also be fixed to the top plate with a set of flexible ropes of equal length, that is, the number of flexible ropes corresponding to each liquid level sensor is greater than or equal to two, which can prevent the liquid level sensor from rotating around the axis.
  • These equal-length flexible ropes are usually placed vertically and in parallel.
  • any position of the liquid level sensor can also be fixedly connected to the top of the closed container
  • the surface, bottom surface or side surface only needs to play a role of fixing the liquid level sensor and sealing.
  • the mechanism and calculation formula of the inclinometer are the same as in Fig. 12(c), but the container has changed a form. Two liquid level sensors are placed inside the closed container, and only the bottom of the container has liquid.
  • Embodiment 4 Structural principle of dual inclinometer
  • the difference between a two-way inclinometer and a one-way is that three or more liquid level sensors are used, and all intersections of the axis of all liquid level sensors and the horizontal plane are not on a straight line.
  • liquid level sensors are used as a two-way inclinometer that does not require temperature compensation and rotates with the measured object.
  • "Two liquid level sensors rotate with the measured object
  • the method of Figure 12 in the "inclinometer” the difference is the use of three or more liquid level sensors to achieve bidirectional tilt measurement:
  • Three liquid level sensors 61, 62 and 63 are used.
  • the three liquid level sensors are placed vertically, as long as the three points projected on the horizontal plane are not on a straight line, bidirectional tilt can be measured.
  • the first reflection points of the three liquid level sensors are all above the second reflection point;
  • the initial cavity lengths of the three liquid level sensors are L 1 and L 2 respectively
  • L 3 when the axis of the three liquid level sensors and the three intersections of the horizontal plane form a right triangle, the two right sides are the X axis and the Y axis of the tilt direction;
  • the parallel spacing of the liquid level sensing axis is d 1
  • the bottoms of the three liquid level sensors are connected to a communication container 30, that is, the cavity of the three liquid level sensors and the communication container are all connected spaces, and the liquid in the three liquid level sensors is Connected.
  • the container and part of the housing and inner rod of the three level sensors are always submerged in the liquid 31.
  • a vent pipe 32 is connected between the first liquid level sensor and the third liquid level sensor and the second liquid level sensor, and the communication area is located above the liquid surface (second reflection point 4).
  • the gas area is also connected, which can eliminate the pressure difference in the gas area between the three liquid level sensors.
  • the liquid level sensor is close to the coaxial load 23 for a length of the housing 1 as a container for holding liquid.
  • the fixed first reflection point is above the liquid
  • the liquid is above the coaxial load
  • the liquid surface serves as the second reflection point.
  • the first liquid level sensor, the third liquid level sensor and the second liquid level sensor are respectively communicated with a communication container 40, and the liquid 31 is also in the communication container, that is, the liquid area inside the three liquid level sensors It is connected; then in the gas area above the liquid level of the three liquid level sensors, the first liquid level sensor and the third liquid level sensor are connected to the second liquid level sensor through a vent tube, which can eliminate the air pressure difference.
  • the inclinometer composed of three liquid level sensors and communication container to the measured object.
  • the three liquid level sensors all use a fixed point in the gas area above the liquid surface as the first reflection point 3 and the liquid surface as the second Reflection point 4.
  • the entire system is fixed to the measured object.
  • the initial cavity lengths of the three liquid level sensors are L 1 , L 2 and L 3.
  • the intersections of the axes of the three liquid level sensors and the horizontal plane form an isosceles right-angled triangle
  • the two right-angle sides are the X and Y rotation axes in the oblique direction.
  • the calculation method corresponding to Fig. 15 (a) and (b) the parallel distance between the axes of the first level sensor and the second level sensor is d 1 , the second level sensor and the third level
  • the parallel spacing of the axes between the sensors is d 2 .
  • the length of the resonant cavity between the first reflection point and the second reflection point of the first liquid level sensor 61 and the second liquid level sensor 62 changes by ⁇ L 1 and ⁇ L 2 , respectively.
  • the length of the resonant cavity between the first reflection point and the second reflection point of the second liquid level sensor 62 and the third liquid level sensor 63 also changes, and the amount of change is ⁇ L 2 and ⁇ L 3 , respectively.
  • d 1 d 2 .
  • the three liquid level sensors are fixed to the top plate with a flexible rope, the outer shell of the liquid level sensor and the end of the inner rod or no energy dissipation system; or use load resistance energy dissipation, as shown in Figure 17 (a ); or use coaxial load energy dissipation, as shown in Figure 17(b), the liquid level measurement mechanism is the same as that in Example 3, working condition four, "inclinometer based on flexible sling to keep the two liquid level sensors always in a vertical state".
  • the difference between the methods of 14(a) and 14(b) is that three or more liquid level sensors are used to achieve bidirectional tilt measurement.
  • each liquid level sensor can also be fixed to the top plate with a set of flexible ropes of equal length, that is, the number of flexible ropes corresponding to each liquid level sensor is greater than or equal to two, which can prevent the liquid level sensor from rotating around the axis.
  • These equal-length flexible ropes are usually placed vertically and in parallel.
  • a sealed container 30 is used, and three flexible ropes 43 are fixed on the top plate of the container, and a liquid level sensor is hung under each flexible rope.
  • the demodulation system 50 is on top of the sensor and suspended under the flexible rope 43, the center of gravity of the entire liquid level sensor coincides with the axis, and is on the extension of the flexible rope 43. This ensures that the axis of the suspended level sensor is vertical.
  • a closed container is used, and three flexible ropes 43 are fixed on the top plate of the container, and a liquid level sensor is hung under each flexible rope.
  • the demodulation system 50 is on top of the sensor and suspended under the flexible rope 43, the center of gravity of the entire liquid level sensor coincides with the axis, and is on the extension of the flexible rope 43. This ensures that the axis 43 of the suspended level sensor is vertical.
  • a fixed point in the gas area above the liquid level serves as the first reflection point 3, and the liquid level serves as the second reflection point 4.
  • the calculation method of the inclination angle is the same as that in Fig. 15.
  • the low level view of the liquid level sensor is shown in FIG. 16(a).
  • the first reflection point of the first liquid level sensor 61 and the second liquid level sensor 62 and The length of the resonant cavity between the second reflection points changes by ⁇ L 1 and ⁇ L 2 respectively.
  • the tilt angle change amount of the inclinometer around the X axis ⁇ 1 arcsin[( ⁇ L 2 - ⁇ L 1 )/d 1 ] can be obtained.
  • the length of the resonant cavity between the first reflection point and the second reflection point of the second liquid level sensor 62 and the third liquid level sensor 63 also changes, and the amount of change is ⁇ L 2 and ⁇ L 3 , respectively.
  • d 1 d 2 .
  • any position of the liquid level sensor can also be fixedly connected to the sealed
  • the top surface, bottom surface or side surface in the container only needs to play a role of fixing the liquid level sensor and sealing.
  • the mechanism of the inclinometer is the same as that shown in Fig. 15, except that the container has changed a form.
  • Three liquid level sensors are placed inside the closed container, and only the bottom of the container has liquid. The calculation method is the same as that in Fig. 15 (a) and (b).
  • the inclination in both directions can be measured. It is only through calculation that the inclination angle value to X and Y as the rotation axis can be obtained.
  • the conversion matrix used for calculation is related to the X and Y values of the coordinates of the intersection points of the axis of several liquid level sensors in the horizontal plane, and also which A level sensor to calculate the relevant.
  • the three intersections of the axis of the three liquid level sensors and the horizontal plane form an isosceles right-angled triangle, and the two right-angle sides are the X and Y rotation axes of the inclined direction, as shown in FIG. 16(a).
  • liquid level sensors can be used. As shown in FIG. 16(b), the liquid level difference between the liquid level sensors 61 and 62 and the distance between the two axes determine X as the inclination of the rotating shaft; the liquid level sensor 63 and The liquid level difference of 64 and the distance between the two axes determine Y as the amount of tilt of the rotating shaft.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

一种倾斜仪,包括:至少一个液位传感器(61、62、63、64);每个液位传感器(61、62、63、64)的主体内均包括液体区域和气体区域,气体区域位于液体区域以上,每个液位传感器(61、62、63、64)主体内的液体区域均保持连通,每个液位传感器(61、62、63、64)主体内的气体区域均保持连通;其中,液位传感器(61、62、63、64)包括第一反射点(3)和第二反射点(4)的情况下,基于不同液位传感器(61、62、63、64)的谐振腔长变化量和轴线之间的距离确定倾斜角度;常用的,利用两个液位传感器可做出单向倾斜仪,利用三个以上液位传感器(61、62、63)可做出双向倾斜仪。

Description

一种倾斜仪 技术领域
本申请涉及测量技术,尤其涉及一种用于测量倾斜角度的倾斜仪。
背景技术
倾斜仪依据不同的测量原理有不同的设计,常用的倾斜仪大多基于微机电系统(MEMS,Microelectro Mechanical Systems)、插阻、静力水准、布拉格光栅(FBG,Fiber Bragg Grating)和振弦等原理。然而,基于上述测量原理设计的倾斜仪至少具有如下缺点:结构复杂,精度低,制作成本较高。
申请内容
为解决上述技术问题,本申请实施例提供出了一种倾斜仪。
本申请实施例提供的倾斜仪,包括:至少一个液位传感器;每个液位传感器的主体内均包括液体区域和气体区域,所述气体区域位于所述液体区域以上,每个液位传感器主体内的液体区域均保持连通,每个液位传感器主体内的气体区域均保持连通;其中,
所述液位传感器包括第一反射点和第二反射点,所述第一反射点的位置固定,所述液体区域的液面或液面上的漂浮物作为所述第二反射点,所述第一反射点和所述第二反射点之间的距离为谐振腔长;当所述倾斜仪的倾斜角度发生变化时,所述液位传感器发生转动和移动,所述液面在重力作用下在所述液位传感器的主体中移动,导致所述液位传感器的谐振腔长发生变化,基于所述谐振腔长的变化量确定所述倾斜角度;
或者,
所述液位传感器包括正反馈环路,所述正反馈环路包括第一反射点和第二反射点,所述第一反射点的位置固定,所述液体区域的液面或液面上的漂浮物作为所述第二反射点,所述第一反射点和所述第二反射点之间的距离为谐振腔长;或者,所述正反馈环路仅包括一个反射点,所述液体区域的液面或液面上的漂浮物作为所述反射点;其中,当所述倾斜仪的倾斜角度发生变化时,所述液位传感器发生转动和移动,所述液面在重力作用下在所述液位传感器的主体中移动,当所述正反馈环路包括所述第一反射点和所述第二反射点时,导致所述谐振腔长发生变化,基于所述谐振腔长的变化量确定所述倾斜角度;当所述正反馈环路仅包括一个反射点时,导致所述正反馈环路的周长发生变化,基于所述正反馈环路的周长变化量确定所述倾斜角度。
在本申请的一种实施方式中,所述液位传感器包括所述第一反射点和所述第二反射点的情况下:
所述第一反射点固定在所述液位传感器的外壳和内杆包络范围内的任一位置;或者,
将所述液位传感器中的射频同轴电缆转接头与外壳和内杆连接处作为所述第一反射点。
在本申请的一种实施方式中,所述液位传感器包括腔长测量装置,所述腔长测量装置包括:微波谐振腔、解调装置;其中,
所述微波谐振腔包括空心同轴电缆-法布里珀罗谐振腔,以及位于所述空心同轴电缆-法布里珀罗谐振腔内部的反射点;
所述空心同轴电缆-法布里珀罗谐振腔的第一端连接至射频同轴电缆转接头,所述射频同轴电缆转接头通过同轴电缆连接至所述解调装置;或者,所述空心同轴电缆-法布里珀罗谐振腔的第一端连接到作为解调装置的电路板上。
在本申请的一种实施方式中,当所述空心同轴电缆-法布里珀罗谐振腔内部的反射点的总反射率大于等于阈值时,所述空心同轴电缆-法布里珀罗谐振腔的第二端无消能系统,或者,所述空心同轴电缆-法布里珀罗谐振腔的第二端的外壳和内杆之间连接一个用于消能的负载电阻或同轴负载;
当所述空心同轴电缆-法布里珀罗谐振腔内部的反射点的总反射率小于阈值时,所述空心同轴电缆-法布里珀罗谐振腔的第二端的外壳和内杆之间连接一个用于消能的负载电阻或同轴负载。
在本申请的一种实施方式中,所述腔长测量装置为反射式腔长测量装置、或者透射式腔长测量装置、或者正反馈环路式腔长测量装置;
相应地,所述液位传感器为反射式液位传感器、或者透射式液位传感器、或者正反馈环路式液位传感器;当所述液位传感器为透射式液位传感器或正反馈环路式液位传感器时,所述液位传感器至少具有以下模式:无环路模式、正反馈环路模式;其中,
所述无环路模式是指所述液位传感器是透射式的,不包括正反馈环路;
所述正反馈环路模式是指所述液位传感器包括正反馈环路。
在本申请的一种实施方式中,当所述液位传感器包括所述正反馈环路时,所述正反馈环路采用具有两个反射点的环路、或者具有一个反射点的环路;其中,
当所述正反馈环路有两个反射点时,所述正反馈环路包括所述第一反射点和所述第二反射点,所述第一反射点和所述第二反射点之间的距离为谐振腔长,所述解调装置用于测量所述正反馈环路的谐振腔长;
当所述正反馈环路只有一个反射点时,所述液面或所述液面上的漂浮物作为所述反射点,所述解调装置用于测量所述正反馈环路的周长。
在本申请的一种实施方式中,所述空心同轴电缆-法布里珀罗谐振腔的第二端无消能系统的情况下,通过以下方式实现每个液位传感器主体内的液体区域均保持连通,每个液位传感器主体内的气体区域均保持连通:
每个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端在顶部的情况:每个液位传感器的第二端为开放结构,每个开放结构使用连通容器进行连通或者没入到同一封闭容器的液体区域,或者,每个液位传感器的第二端为封闭结构,在每个液位传感器内部的液体区域对应的外壳壁上开口,每个开口之间使用连通容器进行连通或者没入到同一封闭容器的液体区域;在每个液位传感器内部 液面以上的气体区域对应的外壳壁上开口,每个开口之间使用通气管进行连通或者开放于同一封闭容器的气体区域;
每个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端在底部的情况:每个液位传感器的第二端为开放结构,每个开放结构使用通气管进行连通,或者,在每个液位传感器的第二端为封闭结构,每个液位传感器内部液面以上的气体区域对应的外壳壁上开口,每个开口之间使用通气管进行连通;在每个液位传感器内部的液体区域对应的外壳壁上开口,每个开口之间使用连通容器进行连通。
在本申请的一种实施方式中,所述空心同轴电缆-法布里珀罗谐振腔的第二端的外壳和内杆之间连接一个用于消能的负载电阻或同轴负载的情况下,通过以下方式实现每个液位传感器主体内的液体区域均保持连通,每个液位传感器主体内的气体区域均保持连通:
每个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端在顶部的情况:在每个液位传感器内部的液体区域对应的外壳壁上开口,每个开口之间使用连通容器进行连通或者没入到同一封闭容器的液体区域;在每个液位传感器内部液面以上的气体区域对应的外壳壁上开口,每个开口之间使用通气管进行连通或者开放于同一封闭容器的气体区域;
每个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端在底部的情况:在每个液位传感器内部的液体区域对应的外壳壁上开口,每个开口之间使用连通容器进行连通;在每个液位传感器内部液面以上的气体区域对应的外壳壁上开口,每个开口之间使用通气管进行连通。
在本申请的一种实施方式中,所述倾斜仪包括一个液位传感器,所述倾斜仪为单向倾斜仪,所述液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端位于顶部,其中:
所述液位传感器的空心同轴电缆-法布里珀罗谐振腔的第二端为开放结构,该开放结构连接U型管,所述液位传感器与所述U型管内的液体区域连通,所述液位传感器与所述U型管的液面以上的气体区域通过通气管连通,用于消除所述液位传感器与所述U型管的气体区域之间的气压差;
其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;当所述倾斜仪的倾斜角度在所述液位传感器和所述U型管的轴线构成的平面上发生变化时,所述液位传感器中的液位发生改变,导致所述第一反射点和所述第二反射点之间的谐振腔长发生变化,且所述液体的液面和所述液位传感器轴线之间的夹角发生变化,其中,所述液体的液面维持在水平面上;通过测量所述谐振腔长的变化量再进行温度补偿可确定所述倾斜角度。
在本申请的一种实施方式中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的单向倾斜仪,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
两个液位传感器平行且竖直放置,所述两个液位传感器内部的液体区域使用连通容器进行连通,所述两个液位传感器的液面以上的气体区域使用通气管进行连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
其中,将所述倾斜仪固定到被测物体上,所述两个液位传感器的第一反射点均位于第二反射点 上方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两个液位传感器的轴线的平行间距为d;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器中的液位发生改变,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和所述平行间距d的大小,可确定出倾斜角度的变化量为Δθ=arctan[(ΔL 2-ΔL 1)/d]。
在本申请的一种实施方式中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的单向倾斜仪,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于底部,其中:
两个液位传感器平行且竖直放置,所述两个液位传感器的主体内均放置一密封塞,用于确保液体在所述密封塞上方,所述密封塞的顶部或者液体的底面作为第一反射点,液体的顶面作为第二反射点,所述液体的顶面始终低于外壳和内杆的顶部;在所述两个液位传感器内部的液体区域对应的外壳壁上开口,该外壳壁上开口位于液面以下且密封塞以上,通过两个开口与连通容器连通能够使得所述两个液位传感器内部的液体区域连通;所述两个液位传感器的液面以上的气体区域使用通气管进行连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
其中,将所述倾斜仪固定到被测物体上,所述两个液位传感器的第一反射点均位于第二反射点下方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两个液位传感器的轴线的平行间距为d;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器中的液位发生改变,液体的底面位置不变,液体的顶面的位置发生变化,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和所述平行间距d的大小,可确定出倾斜角度变化量为Δθ=arctan[(ΔL 2-ΔL 1)/d]。
在本申请的一种实施方式中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿的单向倾斜仪,所述倾斜仪的倾斜角度变化时,所述两个液位传感器不发生转动,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
两个液位传感器平行放置,所述两个液位传感器分别通过一个转轴固定到基板上,使得所述两个液位传感器可绕所述转轴转动,所述转轴在第二反射点的下方,所述转轴位于所述液位传感器的轴线上,且所述两个液位传感器的转轴的连线垂直于所述两个液位传感器的轴线;每个液位传感器的底部加上重锤,用于确保所述倾斜仪的倾斜角度变化后带动基板转动时,所述液位传感器的轴线始终竖直;
所述两个液位传感器内部的液体区域使用连通容器进行连通,所述两个液位传感器的液面以上的气体区域使用通气管进行连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;其中,所述连通容器和所述通气管均采用软管,以确保不带动所述液位传感器发生转动;或者,将整个系统放入一个密闭容器中,所述密闭容器的底部装有液体,所述两个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述两个液位传感器内部的液体区域与所述 密闭容器底部的液体连通,所述两个液位传感器的气体区域与所述密闭容器液面以上的气体连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
其中,将所述倾斜仪固定到被测物体上,所述两个液位传感器的第一反射点均位于第二反射点上方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两个液位传感器对应的两个转轴之间距离为L;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器的轴线在所述重锤的作用下始终竖直,所述两个液位传感器中的液位发生改变,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和基板上的所述两个转轴之间距离L的大小,可确定出倾斜角度变化量Δθ=arcsin[(ΔL 2-ΔL 1)/L]。
在本申请的一种实施方式中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿的单向倾斜仪,所述倾斜仪的倾斜角度变化时,所述两个液位传感器不发生转动,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
所述倾斜仪包括一个密闭容器,所述密闭容器的顶板固定两根柔性绳或两组等长的柔性绳,每根柔性绳或每组柔性绳下方悬挂一个液位传感器,其中,所述液位传感器的解调装置在空心同轴电缆-法布里珀罗谐振腔的顶部并悬挂在柔性绳的下方,悬挂起来的所述液位传感器的轴线为竖直方向;所述密闭容器的底部装有液体,所述两个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述两个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述两个液位传感器的气体区域对应的外壳壁上或第一端有通气孔,使液位传感器内部气体区域与所述密闭容器液面以上的气体连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两根柔性绳在顶板上的固定点之间距离为L;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器的轴线在重力作用下始终竖直,所述两个液位传感器中的液位发生改变,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和两根柔性绳在顶板上的固定点之间距离L的大小,可确定出倾斜角度变化量Δθ=arcsin[(ΔL 2-ΔL 1)/L]。
在本申请的一种实施方式中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的单向倾斜仪,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
所述倾斜仪包括一个密闭容器,所述两个液位传感器平行放置,且刚性固定到所述密闭容器的顶板或底板或侧面;所述密闭容器的底部装有液体,所述两个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述两个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述两个液位传感器的气体区域对应的外壳壁上或第一端有通气孔,使液位传感器内部气体区域与所述密闭容器液面以上的气体连通,用于消除所述两个液位传感器内部液面以上的气体区 域之间的气压差;
其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两个液位传感器的轴线的平行间距为d;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器跟随所述倾斜仪发送转动和移动,所述两个液位传感器中的液位发生改变,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和所述轴线的平行间距d的大小,可确定出倾斜角度变化量Δθ=arctan[(ΔL 2-ΔL 1)/d]。
在本申请的一种实施方式中,所述倾斜仪包括三个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的双向倾斜仪,三个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
三个液位传感器平行且竖直放置,所述三个液位传感器的轴线与水平面的三个交点不在一条直线上;所述三个液位传感器内部的液体区域使用连通容器进行连通;对于所述三个液位传感器内部液面以上的气体区域,第一个液位传感器与第二个液位传感器通过第一通气管进行连通,第三个液位传感器与第二个液位传感器通过第二通气管进行连通,所述第一通气管和所述第二通气管位于液面以上,用于消除所述三个液位传感器内部液面以上的气体区域之间的气压差;
将所述倾斜仪固定到被测物体上,所述三个液位传感器的第一反射点均位于第二反射点上方;所述三个液位传感器的初始腔长分别为L 1、L 2和L 3,当所述三个液位传感器的轴线与水平面的三个交点构成一个直角三角形时,两个直角边分别是倾斜方向的X轴和Y轴;第一个液位传感和第二个液位传感轴线的平行间距为d 1,第二个液位传感器和第三个液位传感器之间轴线的平行间距为d 2;当倾斜仪绕着X轴和Y轴均发生倾斜后,第一个液位传感器和第二个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d 1的大小,可确定出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arctan[(ΔL 2-ΔL 1)/d 1];第二液位传感器和第三个液位传感器的第一反射点和第二反射点之间的谐振腔长也发生变化,变化量分别为ΔL 2和ΔL 3,通过两个液位传感器的谐振腔长变化量的差值ΔL 3-ΔL 2和平行间距d 2的大小,可确定出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arctan[(ΔL 3-ΔL 2)/d 2]。
在本申请的一种实施方式中,所述倾斜仪包括三个液位传感器,所述倾斜仪为无需温度补偿的双向倾斜仪,所述倾斜仪的倾斜角度变化时,所述三个液位传感器不发生转动,三个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
所述倾斜仪包括一个密闭容器,所述密闭容器的顶板固定三根柔性绳或三组等长的柔性绳,每根柔性绳或每组柔性绳下方悬挂一个液位传感器,其中,所述液位传感器的解调装置在空心同轴电缆-法布里珀罗谐振腔的顶部并悬挂在柔性绳的下方,悬挂起来的所述液位传感器的轴线为竖直方向;所述三个液位传感器的轴线与水平面的三个交点不在一条直线上;所述密闭容器的底部装有液体,所述三个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述三个液位传 感器内部的液体区域与所述密闭容器底部的液体连通,所述三个液位传感器的气体区域对应的外壳壁上或第一端有通气孔,使液位传感器内部气体区域与所述密闭容器液面以上的气体连通,用于消除所述三个液位传感器内部液面以上的气体区域之间的气压差;
其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;所述三个液位传感器的初始腔长分别为L 1、L 2和L 3,当所述三个液位传感器的轴线与水平面的三个交点构成一个直角三角形时,两个直角边分别是倾斜方向的X轴和Y轴;第一个液位传感和第二个液位传感轴线的平行间距为d 1,第二个液位传感和第三个液位传感器之间轴线的平行间距为d;当倾斜仪绕着X轴和Y轴均发生倾斜后,第一个液位传感器和第二个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d 1的大小,可确定出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arcsin[(ΔL 2-ΔL 1)/d 1];第二个液位传感器和第三个液位传感器的第一反射点和第二反射点之间的谐振腔长也发生变化,变化量分别为ΔL 2和ΔL 3,通过两个液位传感器的谐振腔长变化量的差值ΔL 3-ΔL 2和平行间距d 2的大小,可确定出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arcsin[(ΔL 3-ΔL 2)/d 2]。
在本申请的一种实施方式中,所述倾斜仪包括三个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的双向倾斜仪,三个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
所述倾斜仪包括一个密闭容器,所述三个液位传感器平行放置,且刚性固定到所述密闭容器的顶板或底板或侧面,所述三个液位传感器的轴线与水平面的三个交点不在一条直线上;所述密闭容器的底部装有液体,所述三个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述三个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述三个液位传感器的气体区域对应的外壳壁上或第一端有通气孔,使液位传感器内部气体区域与所述密闭容器液面以上的气体连通,用于消除所述三个液位传感器内部液面以上的气体区域之间的气压差;
其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;所述三个液位传感器的初始腔长分别为L 1、L 2和L 3,当所述三个液位传感器的轴线与水平面的三个交点构成一个直角三角形时,两个直角边分别是倾斜方向的X轴和Y轴;第一个液位传感和第二个液位传感轴线的平行间距为d 1,第二个液位传感和第三个液位传感器之间轴线的平行间距为d 2;当倾斜仪绕着X轴和Y轴均发生倾斜后,第一个液位传感器和第二个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d 1的大小,可确定出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arctan[(ΔL 2-ΔL 1)/d 1];第二个液位传感器和第三个液位传感器的第一反射点和第二反射点之间的谐振腔长也发生变化,变化量分别为ΔL 2和ΔL 3,通过两个液位传感器的谐振腔长变化量的差值ΔL 3-ΔL 2和平行间距d 2的大小,可确定出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arctan[(ΔL 3-ΔL 2)/d 2]。
在本申请的一种实施方式中,所述三个液位传感器的轴线与水平面的三个交点不在一条直线上,至少包括:
所述三个液位传感器的轴线与水平面的三个交点构成一个直角三角形,两个直角边分别是倾斜方向的X和Y转轴。
在本申请的一种实施方式中,当所述三个液位传感器的轴线与水平面的三个交点构成一个等腰直角三角形时,d 1=d 2
在本申请的一种实施方式中,所述倾斜仪包括N个液位传感器时,N为大于等于4的整数,所述N个液位传感器的轴线与水平面的N个交点不在一条直线上,则所述倾斜仪均可作为无需温度补偿的双向倾斜仪。
附图说明
图1为本申请实施例的空心同轴电缆-法布里珀罗谐振腔的示意图;
图2(a)为空心同轴电缆-法布里珀罗谐振腔不包括内杆的结构示意图;
图2(b)为空心同轴电缆-法布里珀罗谐振腔包括内杆的结构示意图;
图3为本申请实施例的空心同轴电缆-法布里珀罗谐振腔的反射振幅谱和透射振幅谱;
图4为外壳常用的断面图;
图5为内杆常用的断面图;
图6为常用的反射点的断面图;
图7为外壳与外壳,或者内杆与内杆连接处的示意图;
图8(a)为本申请实施例的反射式带有同轴电缆和解调装置的腔长测量装置的结构示意图;
图8(b)为本申请实施例的反射式且解调装置直接连接传感器的腔长测量装置的结构示意图;
图9(a)为本申请实施例的第一种透射或正反馈环路式腔长测量装置的环路结构示意图;
图9(b)为本申请实施例的第二种透射或正反馈环路式腔长测量装置的环路结构示意图;
图9(c)为本申请实施例的第三种透射或正反馈环路式腔长测量装置的环路结构示意图;
图9(d)为本申请实施例的第四种透射或正反馈环路式腔长测量装置的环路结构示意图;
图10(a)为本申请实施例的腔长测量装置的结构示意图;
图10(b)为本申请实施例液面作为第二反射面且外壳和内杆端部无消能系统时的液位传感器结构示意图;
图10(c)为本申请实施例的液面上的一个漂浮物作为第二反射面且外壳和内杆端部无消能系统时的液位传感器结构示意图;
图10(d)为本申请实施例外壳和内杆端部连接同轴负载的腔长测量装置的结构示意图;
图10(e)为本申请实施例液面作为第二反射且端部连接同轴负载的液位传感器的结构示意图;
图10(f)为本申请实施例外壳和内杆端部连接负载电阻的腔长测量装置的结构示意图;
图10(g)为本申请实施例液面作为第二反射且端部连接负载电阻的液位传感器的结构示意图;
图11为本申请实施例中使用一个液位传感器和U型管做成的倾斜仪结构示意图;
图12(a)为本申请实施例中第一种基于液位差的倾斜仪结构示意图;
图12(b)为本申请实施例中第一种基于液位差且两个液位传感器端部带有负载电阻的倾斜仪结构示意图;
图12(c)为本申请实施例中第一种基于液位差且两个液位传感器端部带有同轴负载的倾斜仪结构示意图;
图12(d)为本申请实施例中第一种基于液位差且液体的上下表面作为两个反射点的倾斜仪结构示意图;
图13(a)为本申请实施例中第二种基于液位差,液位传感器端部敞开或连接负载电阻且液位传感器轴线始终保持竖直状态的倾斜仪结构示意图;
图13(b)为本申请实施例中第二种基于液位差,液位传感器端部密封或连接同轴负载且液位传感器轴线始终保持竖直状态的倾斜仪结构示意图;
图14(a)为本申请实施例中第三种基于液位差,悬挂式液位传感器端部敞开或连接负载电阻且液位传感器轴线始终保持竖直状态的倾斜仪结构示意图;
图14(b)为本申请实施例中第三种基于液位差,悬挂式液位传感器端部密封或连接同轴负载且液位传感器轴线始终保持竖直状态的倾斜仪结构示意图;
图15(a)为本申请实施例中基于液位差且三个液位传感器端部敞开或带有负载电阻的双向倾斜仪结构示意图;
图15(b)为本申请实施例中基于液位差且三个液位传感器端部敞开或带有同轴负载的双向倾斜仪结构示意图;
图16(a)为本申请实施例采用三个液位传感器做成的双向倾斜仪的俯瞰图;
图16(b)为本申请实施例采用四个液位传感器做成的双向倾斜仪的俯瞰图;
图17(a)为本申请实施例采用三个悬挂的液位传感器并采用负载电阻端部消能原理做成的双向倾斜仪结构示意图;
图17(b)为本申请实施例采用三个悬挂的液位传感器并采用同轴负载端部消能原理做成的双向倾斜仪结构示意图;
附图标记说明:
1-外壳,可以是空心管,杆,弹簧或者其他形状的连续导体;2-内杆,可以是空心、实心,也可以是弹簧或者其他形状的连续导体;3-第一反射点,可以是导体或者绝缘体,可以与外壳或者内杆连接,也可以不连接,可以是任意形状或者多个零件的组合体;4-第二反射点,属性同第一反射点;5-谐振腔,内部可以是气体或者液体;6-射频同轴电缆转接头;7-同轴电缆转接头的中心信号针;8-传输用的同轴电缆;9-解调装置,包括矢网分析仪,或标量微波分析仪,或测量和解调频谱的电路;11-左端管或杆对接零件;12-右端管或杆对接零件;13-导体做的转轴;14-导体波纹管,多用金属;15-外壳1和内杆2的端部装置,可以是导体,可以是绝缘体,可以是闭合或者非闭合结构,也可以是作为端部的同轴负载或是负载电阻;16-射频同轴电缆转接头;22-负载电阻;23-同轴负载;30-盛放 液体的容器,可以是各种形状,包括管状;31-液体;32-通气管、或通气孔(传感器外壳壁上的开口);33-将传感器固定到待测物体上的转轴,限制了液位传感器的移动,不限制液位传感器绕改轴的转动;34-装液体的软材料,例如软管;35-固定转轴33的被测物体主体或是固定倾斜仪的基板;36-软管;37-将重锤固定到液位传感器上的连接装置;38-重锤;39-用来隔离液体的密封塞,材料可以选用绝缘体或电阻率较大的导体;40-连通液体的容器,即连通容器;41-软管外壳;42-外壳液体区域连通外界液体的接头,可以是外壳壁上的一个孔;43-柔性绳或刚性杆;50-解调系统,表示解调谐振腔长的仪器的统称,包括所有基于反射、或透射、或环路的解调仪器和电路板,以及传感器连接到解调仪器的传输同轴电缆;51-单个液位传感器,包括传感器主体和解调系统;52-顶板;61-第一个液位传感器;62-第二个液位传感器;63-第三个液位传感器;64-第四个液位传感器。
具体实施方式
本申请实施例提供了一种新型的微波谐振腔的腔长测量装置,其中,微波谐振腔具体为空心同轴电缆-法布里珀罗谐振腔,通过本申请实施例的腔长测量装置能够对空心同轴电缆-法布里珀罗谐振腔的腔长进行测量。本申请实施例结合腔长测量装置以及辅助的机械设计,可以将腔长测量装置改装成液位传感器,基于液位传感器设计出本申请实施例的倾斜仪。
本申请实施例的技术方案中,液位传感器基于机械传动结构能够高精度的测出液位大小,测量的原理是基于空心同轴电缆-法布里珀罗谐振腔的原理,这里,空心同轴电缆-法布里珀罗谐振腔包括:一个外壳、一个内杆(可有可无)、一个谐振腔和两个反射点,谐振腔的结构方便制作,利用谐振腔内反射点的移动,可以测量静力和动力作用下的液位。此外,基于液位传感器设计出的倾斜仪的温度补偿非常方便,并且不受电磁等因素的影响。本申请的倾斜仪大多不需要温度补偿,需要温度补偿的情况下,通过温度计可进行温度补偿,可以实现倾斜角度与温度的共同监测。本申请实施例设计的倾斜仪,具有精度高、抗干扰能力强和耐久性强等优点,具有广泛的应用前景,特别适用于高精度测量结构静力和动力作用下的倾斜角度。由于倾斜仪采用的材料性能稳定,可以轻易实现在零下六十度到零上数百度之间工作,通过更换制作材料可在更大的温度范围内工作。总而言之,本申请实施例的倾斜仪不受任何电磁信号的干扰,温度对其影响也极小,并且温度补偿非常容易实现。
本申请实施例中的空心同轴电缆-法布里珀罗谐振腔,类似于传统的光学法布里珀罗谐振腔,与光学法布里珀罗谐振腔不同的是,空心同轴电缆-法布里珀罗谐振腔基于射频同轴电缆而制作,是基于微波原理的传感器。
在本申请实施例中,两个反射点为高反射点,这里,高反射点的反射率一般都高于50%,少数情况下小于50%,但是不会低于20%,由于每个反射点的反射率较高,因此不适合做成分布式传感器。法布里珀罗谐振腔属于多路干涉造成的谐振现象,具有解调精度高,信噪比高,解调装置性价比高等特点。
在本申请实施例中,提出了一种全新的自加工的空心同轴电缆-法布里珀罗谐振腔平台,空心同轴电缆-法布里珀罗谐振腔的内部绝缘体一般为空气,特殊应用时可以填充液体。
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
图1为本申请实施例的空心同轴电缆-法布里珀罗谐振腔的示意图。如图1所示,两个具有高反射率的反射点(两个反射点分为称为第一反射点3和第二反射点4)设置在空心同轴电缆-法布里珀罗谐振腔5的内部,其中,所述第一反射点3设置在所述空心同轴电缆-法布里珀罗谐振腔5内部的第一位置处,所述第二反射点4设置在所述空心同轴电缆-法布里珀罗谐振腔5内部的第二位置处,两个反射点之间的距离一般超过1cm。
这里,空心同轴电缆-法布里珀罗谐振腔大多由外导体(也即外壳)和内导体(也即内杆)构成,如图1所示,外壳1和内杆2均为连续导体,所述连续导体为:单个导电零件、或者多个导电零件连接而成。在一实施方式中,可以仅有外壳1,没有内杆2。在另一实施方式中,可以同时具有外壳1和内杆2。
外壳1和内杆2之间的谐振腔内的介质为以下之一:真空、气体、液体、固体;其中,当所述介质为固体时,所述固体填充到所述反射点移动的范围以外。在空心同轴电缆-法布里珀罗谐振腔内行进的电磁波主要反射在第一反射点上,一部分能量发生反射,其余部分的剩余能量会透射过去,并且到达第二反射点。在第二反射点处,再次有一小部分的电磁波被反射,并多次重复往返(往返次数由反射点的反射率决定)。两个反射点的反射率越高,往返次数就会越多,此时谐振腔的反射振幅谱或透射振幅谱的质量因数就会越高。上述方案中,反射点可以由同轴电缆的阻抗偏差产生,或者由内外导体短路或断路产生。两个反射点可以产生一个微波的相位延迟δ,其计算公式如下:
Figure PCTCN2018119926-appb-000001
其中,f为微波频率,ε r为同轴电缆内部材料的介电常数(空气为1),d为谐振腔的频率,c为真空中的光速。
一个空心同轴电缆-法布里珀罗谐振腔反射电场和透射电场的振幅谱由以下公式表示:
Figure PCTCN2018119926-appb-000002
Figure PCTCN2018119926-appb-000003
其中,r为反射振幅谱,t为透射振幅谱。R为反射点的反射率,公式(2)假设两个反射点的反射率相同并且法布里珀罗谐振腔的插入损耗为零。
图3为本申请实施例的空心同轴电缆-法布里珀罗谐振腔的反射振幅谱和透射振幅谱。如图3所示,可以观察到多个谐振频率,包括基波和谐波。在图3中的(a)和(b)中可以观察到许多小的波纹,这是由于仪器接口和同轴电缆之间的阻抗不完全匹配引起反射造成。使用空心同轴电缆-法布里珀罗谐振腔制作传感器的基本思想是基于从反射振幅谱或透射振幅谱可以精确计算出两个反射点 的距离。
以下结合具体结构对本申请实施例的微波谐振腔的腔长测量装置进行详细描述,本申请实施例的腔长测量装置包括:微波谐振腔、解调装置,其中,微波谐振腔是指图1所示的空心同轴电缆-法布里珀罗谐振腔。在本申请的全部实施例中:
1)外壳1/内杆2可以是一个导体零件,也可以是多个导体零件连接在一起(确保连接处的导电性),可见,外壳1/内杆2是一个连续导体。全部图中画的一个导体零件未必代表一个简单的导体零件,也可以代表多个导体零件通过不同连接方式组成的复合导体零件。
2)关于第二反射点的移动:
2.1)当既有外壳又有内杆时,可以是单独移动第二反射点,也可以将第二反射点与外壳和/或内杆固定,然后共同移动外壳和/或内杆以及第二反射点来实现第二反射点的移动。当外壳和/或内杆和第二反射点固定成一个整体时,移动第二反射点会导致部分外壳和/或内杆都要发生移动,而外壳和/或内杆必须保证导电的连通性,因此,外壳和/或内杆要用到嵌套结构、弹簧结构或者波纹管结构等可以适应较大拉伸或压缩且能保持导电连续性的结构。在申请实施例中提到的液位传感器可使用这样的结构。
2.2)当有外壳没有内杆时,可以是单独移动第二反射点,也可以将第二反射点与外壳固定,然后共同移动外壳以及第二反射点来实现第二反射点的移动。当外壳和第二反射点固定成一个整体时,移动第二反射点会导致部分外壳要发生移动,而外壳必须保证导电的连通性,因此,外壳要用到嵌套结构、弹簧结构或者波纹管结构等可以适应较大拉伸或压缩且能保持导电连续性的结构。
3)采用正反馈环路结构时,可以用两个反射点,测出的长度为两个反射点之间的等效距离;也可以只有一个反射点,测出的长度即为正反馈环路的周长。
实施例一:微波谐振腔的腔长测量装置
腔长测量装置包括:微波谐振腔、解调装置;其中,微波谐振腔包括空心同轴电缆-法布里珀罗谐振腔、第一反射点、第二反射点,其中,所述第一反射点设置在所述空心同轴电缆-法布里珀罗谐振腔内部的第一位置处,所述第二反射点设置在所述空心同轴电缆-法布里珀罗谐振腔内部的第二位置处,所述第一位置和/或所述第二位置能够发生移动;所述第一反射点和所述第二反射点的总反射率大于等于预设阈值;所述解调装置与所述微波谐振腔相连,用于对所述微波谐振腔内的微波信号进行分析,得到所述微波谐振腔的腔长,其中,所述微波谐振腔的腔长为所述第一反射点与所述第二反射点之间的距离。或者,所述微波谐振腔包括正反馈环路,正反馈环路可以有两个反射点、一个反射点或没有反射点。当在所述正反馈环路中仅有一个反射点或者没有反射点,所述解调装置用于测量所述正反馈环路的周长。
本实施例中的腔长测量装置分为以下三种类型:
1)反射式腔长测量装置,在所述反射式腔长测量装置中:
所述空心同轴电缆-法布里珀罗谐振腔的一端连接至射频同轴电缆转接头,所述射频同轴电缆转接头通过同轴电缆连接至所述解调装置;也可以谐振腔的一端直接连接解调装置,其中,所述解调 装置9为:矢量网络分析仪、或微波发生源加标量网络分析仪、或微波时域反射仪、或解调电路(如具有解调功能的电路板);所述空心同轴电缆-法布里珀罗谐振腔的另一端为开放结构、或者密封结构、或者连接同轴负载或负载电阻等消能结构。
2)透射式腔长测量装置,在所述透射式腔长测量装置中:
所述空心同轴电缆-法布里珀罗谐振腔的第一端连接至第一射频同轴电缆转接头,所述空心同轴电缆-法布里珀罗谐振腔的外壳壁连接至第二射频同轴电缆转接头,所述第一射频同轴电缆转接头与所述第二射频同轴电缆转接头之间通过同轴电缆连接所述解调装置;也可以将谐振腔的第一端的外壳和内杆直接连接到解调装置,无需传输信号的射频同轴电缆。
这里,所述腔长测量装置至少具有以下模式:正反馈环路模式、无环路模式;其中,
所述正反馈环路模式中,所述解调装置包括:定向耦合器、波形放大器、计频器/频谱仪;此外,在所述正反馈环路模式中,可以有两个反射点,也可以只有一个反射点,还可以没有反射点;当只有一个反射点或者没有反射点时,测量的腔长是环路的周长。
在所述无环路模式中,所述解调装置9为矢量网络分析仪、或标量微波分析仪、或解调电路。
进一步,所述正反馈环路模式包括:微波正反馈环路、基于光电振荡器的正反馈环路;其中,
在所述微波正反馈环路中,包括:同轴电缆环路、微波定向耦合器、微波放大器或者微波功率分离器、计频器/频谱仪等元器件;
在所述基于光电振荡器的正反馈环路中,包括:高速光电解调器、激光或发光二极管光源、光纤环路、光纤耦合器、微波放大器或者光学放大器、微波定向耦合器或者微波功率分离器、计频器/频谱仪,所述解调装置中的各器件通过光纤环路连接。
本实施例中,各个核心器件的标号如下:外壳1、内杆2、第一反射点3、第二反射点4、谐振腔5、射频同轴电缆转接头6和16、矢量网络分析仪或标量微波分析仪,或测量和解调频谱的电路9,负载电阻22,同轴负载23,其中:
外壳1是指连接到射频同轴电缆转接头外圈的连续导体,该导体可以是管,可以是半圆管,可以是弹簧,可以是一根杆,也可以是多个导体通过导电的连接件连接而成的组合导体。例如:两个或多个嵌套的导体管,两个或多个通过金属连接件连通的导体管,等等。图4列举了外壳常用的断面图。图7列举了多个零件构成外壳时,不同段外壳之间常用的连接方式。
内杆2也是连续导体,与外壳1同样,内杆2也可以是不同几何形状,断面形状可以是圆形、矩形或者半圆形等等,可以是直杆,可以是弹簧等曲线杆,也可以是多个导体连接在一起的连接件。特殊情况下,腔长测量装置可以不用内杆,通过解调装置对信号解调仍然可以测出需要的参数。图5列举了内杆常用的断面图。图7列举了多个零件构成内杆时,不同段内杆之间常用的连接方式。
第一反射点3和第二反射点4指的是在外壳和内杆的包络范围之内的一些物体,可以是各种形状,可以是不同大小,不同材料,也可以是多个零件的组合。只要能起到反射作用即可。如果反射点是连通外壳和内杆的导体,那么这一点的反射率就会很高,如果不是连通外壳和内杆导体,反射率会低一些。图6列举了反射点常用的断面图,图中阴影部分为反射点。
谐振腔5指的是第一反射点和第二反射点之间,同时在外壳和内杆之间的谐振腔,一般谐振腔内的介质为真空、气体、液体或者固体,如果是固体,那么固体不可以填充到反射点的移动范围内,这样才不会影响反射点的移动。
射频同轴电缆转接头6一般采用SMA接头,也可以是其他接头,射频同轴电缆转接头6的外圈连接外壳1,射频同轴电缆转接头的中心信号针7连接内杆2。此外,射频同轴电缆转接头16一般是公转母接头或者公转公接头。解调装置与微波谐振腔之间的接口不局限于常用的SMA接头或公转公、公转母接头,还可以是其他形式的射频同轴电缆转接头。
矢量网络分析仪或标量微波分析仪,或测量和解调频谱的电路9是测量空心同轴电缆-法布里珀罗谐振腔的反射振幅谱或透射振幅谱的设备。同样,9也表示可以泛指用来测量和解调频谱的电路。
15泛指外壳1和内杆2的端部装置,可以是导体,可以是绝缘体,可以是闭合或者非闭合结构,也可以是作为外壳和内杆端部的同轴负载或是负载电阻。
外壳和内杆端部连接的负载电阻22或同轴负载23是为了消能,即消去通过第二反射点还没有反射回来的能量,使传感器的端部不发生反射。
50是解调系统,表示解调谐振腔长的仪器的统称,包括所有基于反射、透射或环路的解调仪器。本专利各种机械结构搭配的解调系统50,是为了简化同一种机械结构下,不同原理的元器件连接方式。
图1是空心同轴电缆-法布里珀罗谐振腔的核心原件,包括外壳1、内杆2、第一反射点3、第二反射点4和谐振腔5。
图2(a)和图2(b)分别表示空心同轴电缆-法布里珀罗谐振腔不包括内杆和包括内杆的两种情况,其中,外壳和内杆可以是多种形状,可以是多种导体的连接结构,两个反射点只要在外壳1和内杆2的包络范围内即可。
图4表示常用的外壳1的断面图,可以是圆环、方框或者各种不规则形状,外壳甚至可以是弹簧或者一个圆杆。也可以分成多个导体连接在一起的组合,只要满足连续导体即可。
图5表示常用内杆2的断面图,内杆可以是空心的,也可以实心的,断面可以是多种样式,常用的断面有圆形、矩形和正多边形。内杆2可以是弹簧等空间曲线结构。内杆2也可以分成多个导体连接在一起的组合,只要满足连续导体即可。
图6是常用的反射点3或4的断面图,可以是各种形状。反射点可以是导体,也可以是绝缘体,只要有一分部在外壳1和内杆2的包络范围内即可;反射点可以与外壳和/或内杆接触,也可以不接触。以常用的外壳1是圆筒和内杆是圆杆的情况为例,反射点可以是填充在外壳1和内杆2之间的圆筒体或圆环体,也可以是一个遮盖部分外壳1和内杆2之间气体区域的物体,比如图6中的第3、4和5幅图所示的一个小圆杆或者多孔圆片等等。
图7是外壳1或内杆2分段连接以后,外壳与外壳连接,或者内杆与内杆连接处的示意图。图7中画出了常用的是连接方式,包括搭接、错位、嵌套、或者用转轴连接,以及用导体波纹管连接,总之当分段的外壳1或内杆2的不同段之间发生相对移动或转动时,满足外壳1或内杆2的导电连 续性即可。
在此基础上,腔长测量装置的常用构造如图8和图9所示。
图8(a)和(b)为本申请实施例的反射式腔长测量装置的结构示意图。当没有内杆2时,外壳1与射频同轴电缆转接头6连接。当有内杆2时,外壳1和内杆2都要和射频同轴电缆转接头6连接。3和4分别为第一反射点和第二反射点,如果外壳1和内杆2与射频同轴电缆转接头6连接时,连接处已经带有一定的反射性,可以把这个连接处作为第一反射点。矢量网络分析仪或标量微波分析仪,或测量和解调频谱的电路9用来发射和接收微波信号从而解调谐振腔5的长度,也就是第一反射点3和第二反射点4之间的有效距离。当使用同轴电缆做传输时,如图8(a)所示;如果直接将解调装置放在传感器端部,则无需同轴电缆传输,如图8(b)所示。
图9是基于环路的透射或正反馈环路的环路结构示意图。指的是射频同轴电缆转接头6在外壳1和内杆2的左端与外壳1和内杆2连接,另一个射频同轴电缆转接头16接到外壳的壁上,而非在右端部。当没有内杆2时,指的就是射频同轴电缆转接头6在外壳1的左端与外壳1连接,另一个射频同轴电缆转接头16接到外壳的壁上,而非在右端部。当有两个反射点3和4时,测量的是两个反射点之间的谐振腔长。当只有一个反射点4时,测量的是环路周长。
图9(a)是第一种透射或正反馈环路式腔长测量装置的环路结构示意图,解调装置9通过两根同轴电缆8连接到左端同轴电缆转接头6和管壁上的射频同轴电缆转接头16上;图9(b)是第二种透射或正反馈环路式腔长测量装置的环路结构示意图,解调装置9一端焊接在外壳管壁上连接的射频同轴电缆转接头16上,另一端用同轴电缆8连接到左端同轴电缆转接头6上;图9(c)是第三种透射或正反馈环路式腔长测量装置的环路结构示意图,解调装置9一端焊接在外壳1和内杆2的端部,另一端通过同轴电缆8连接到管壁上同轴电缆转接头16上;图9(d)是第四种透射或正反馈环路式腔长测量装置的环路结构示意图,解调装置9一端焊接在外壳1和内杆2的端部,另一端焊接在外壳管壁上连接的射频同轴电缆转接头16上。
实施例二:液位传感器
液位传感器包括实施例一所述的腔长测量装置,其中,在有两个反射点的情况下,一个反射点是固定点,另一个反射点是液面或液面上的漂浮物(该反射点可以发生移动),所述微波谐振腔的腔长变化量表征所述第二反射点相对于所述第一反射点的距离变化量,即液位变化量。在只有一个反射点的情况下,通过测量正反馈环路的周长来得出液位量的大小。液位传感器是倾斜仪的基础,倾斜仪是液位传感器通过一些机械结构组合而成的。
1)没有传输信号的同轴电缆的液位传感器
液位传感器的外壳1和内杆2的一端连接有测量和解调微波信号的印制电路板(Printed Circuit Board,PCB),以下简称为电路板9,电路板9的另一端是接线端子,可以通过电线或无线传输测出的频谱、谐振腔长以及其他需要的信息。
图9(d)为本申请没有传输信号的同轴电缆8的液位传感器的示意图。两个反射点3和4之间 的距离为谐振腔5的腔长(即谐振腔长),一般情况下,两个反射点,一个反射点是固定点,可以是在传感器上某个位置添加的固定反射点,也可以是外壳1和内杆2的端部,另一个反射点是液面,所以液位发生变化以后,两个反射点之间的距离发生变化,通过测量两个反射点之间距离的变化量,可以得到液位的变化量。得到的信号直接通过解调电路等解调装置进行频谱分析。外壳和内杆的端部可以密封,也可以连接负载电阻或同轴负载,以便于消除端部的反射。
2)液位传感器的几种结构
由于不同液体液面的反射率不同,如果反射率较低,外壳和内杆的端部会形成高反射,影响信号和精度。因此外壳和内杆的端部需要考虑是否消能的问题。通常情况下,导电液体的反射率较高,绝缘液体的反射率较低。
图10(a)为本申请实施例的液位传感器的整体结构,包括两个反射点3和4,以及解调系统50。外壳1和内杆2的端部零件15,可以是导体,也可以是绝缘体,可以是闭合或者非闭合结构,也可以是作为端部的同轴负载或是负载电阻。
图10(b)是液面作为第二反射点的液位传感器结构图。液位作为第二反射点4,外壳1和内杆2的端部是敞开的。一般这种情况下,液面的反射率较高,端部不容易形成高反射,所以端部可以采用敞开式结构。
图10(c)是液面漂浮物作为第二反射点的液位传感器结构图。液面漂浮物作为第二反射点4,外壳1和内杆2的端部是敞开的。一般这种情况下,漂浮物的反射率较高,端部不容易形成反射,所以端部可以采用敞开式结构。
图10(d)是外壳和内杆端部接有同轴负载的传感器结构示意图。外壳1和内杆2的端部是接有同轴负载的。一般这种情况下,两个反射点的总反射率仍然不高,达不到全反射,端部如果敞开,容易形成高反射,影响信号和精度,所以外壳1和内杆2的端部连接有同轴负载进行消能,降低端部反射,提高传感器精度,同轴负载所在的外壳和内杆端面,端面可以密封,也可以不密封。
图10(e)是液面作为第二反射点且端部接有同轴负载的液位传感器结构图。液面作为第二反射点4,外壳1和内杆2的端部是接有同轴负载的。一般这种情况下,第一反射点和液面(第二反射点)的总反射率较低,端部如果敞开,容易形成高反射,影响信号和精度,所以外壳1和内杆2的端部连接有同轴负载进行消能,降低端部反射,提高传感器精度,同轴负载所在的外壳和内杆端面,端面可以密封,也可以不密封,不密封时不影响液体的流动即可。
图10(f)是外壳和内杆端部接有负载电阻的传感器结构示意图。其他部分同图10(d),只是将端部的同轴负载换成负载电阻,作用与连接同轴负载是一样的,都是为了消除端部的反射。
图10(g)是液面作为第二反射点且端部接有负载电阻的液位传感器结构图。其他部分同图10(e),只是将端部的同轴负载换成负载电阻,作用与连接同轴负载是一样的,都是为了消除端部的反射。
实施例三:单向倾斜仪的结构原理
倾斜仪和液位传感器的区别,就是将其一个反射点变成受到倾斜影响可以相对固定反射点发生移动的点。一般液面作为移动的反射点。利用倾斜以后液面的位置相对固定反射点发生移动的特点来测量倾斜角度。比较优选的方案是采用两只液位传感器做差,这样可以消除温度产生的热膨胀等因素的影响。解调系统可以采用反射式、透射式或环路结构。
1)单个液位传感器的倾斜仪
如图11所示,液位传感器外壳1的端部连接一个U型管40,管内装有液体31,且液位传感器外壳1和内杆2的端部没入液体,U型管40和液位传感器的气体区域之间连通一个通气管32,可以消除气压差。将液位传感器和U型管40构成的倾斜仪固定到被测物体上,液面上方的一点作为第一反射点3,液面作为第二反射点4。当倾斜角度在液位传感器和U型管的轴线构成的平面上发生变化时,液位传感器中液位会发生改变,即第一反射点3和第二反射点4之间的谐振腔长发生变化,同时液面(第二反射点4)和液位传感器轴线之间的夹角也会发生变化。通过测量不同倾斜角度下谐振腔长的变化量,再进行温度补偿,即可确定倾斜角度的大小。当液体31液面反射率较低时,液位传感器外壳和内杆端部采用负载电阻22或同轴负载23用来消能。
2)两个液位传感器随着被测物体发生转动的倾斜仪
如图12所示,使用两个液位传感器作为一种无需温度补偿且随着被测物体发生转动的单向倾斜仪,当液位传感器的外壳和内杆端部无消能系统,或采用负载电阻或负载电阻消能时:
如图12(a)所示,采用两个平行的液位传感器竖直放置,解调装置在顶部,在两个液位传感器内部的液体区域需要连通,图中在两个液位传感器底部使用一个U型管40进行连通,也可以将两个液位传感器的端部连接到同一个容器上,或者用管连通两支液位传感器的液体区域。总之,只要起到连通两个液位传感器液体区域的作用即可,统称连通容器40。两个液位传感器的外壳1和内杆2的端部均没入液体31中,连通容器40内也是该液体31,即两个液位传感器内部的液体区域是连通的;两个液位传感器液面以上的气体区域之间连通一个通气管32,可以消除两个液位传感器外壳内部的气压差。将液位传感器和连通容器构成的倾斜仪固定到被测物体上,两个液位传感器,液面上方气体区域中的一固定点3作为第一反射点,液面作为第二反射点4。
将整个系统固定到被测物体上,两个液位传感器的初始腔长为L 1和L 2,轴线的平行间距为d。当倾斜角度在两个液位传感器的轴线构成的平面上发生变化时,两个液位传感器中液位会发生改变,即两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d的大小,即可求出倾斜角度变化量Δθ=arctan[(ΔL 2-ΔL 1)/d]。由于两个液位传感器材料相同,且内部有相同的液体,所以腔长改变量在做差时已经消除了温度对腔长的影响,无需温度补偿。
如图12(b)所示,当液面的反射率较低时,为了防止外壳1和内杆2的端部形成高反射影响信号和精度,外壳和内杆的端部采用负载电阻22进行消能,使得端部反射大大降低。倾斜角度的计算方式同图12(a)的工况。
如图12(c)所示,当液面的反射率较低时,为了防止外壳1和内杆2的端部形成高反射影响信 号和精度,还可以采用同轴负载23进行消能,使得端部反射大大降低。此时,液位传感器靠近同轴负载23的一段长度的外壳1内部作为盛放液体的容器。固定的第一反射点在液体的上方,液体在同轴负载的上方,液面作为第二反射点。在两个液位传感器内部的液体区域用一个连通容器40进行连通,连通容器内也是该液体31,即两个液位传感器内部的液体区域是连通的;再在两个液位传感器液面以上的气体区域连通一个通气管32,可以消除气压差。将液位传感器和连通容器构成的倾斜仪固定到被测物体上。倾斜角度的计算方式同图12(a)的工况。
如图12(d)所示,当液面的反射率较低且液位传感器的第一端和解调装置放在底部时,在两个液位传感器的顶部使用一个通气管32连通。液位传感器靠近解调装置处放置一密封塞39,确保液体在密封塞上方。此时,密封塞39的顶部或者液体的底面作为第一反射点3;液体的顶面也始终低于外壳和内杆的顶部,该液面作为两个液位传感器的第二反射点4。在所述两个液位传感器内部的液体区域对应的外壳壁上开口,用一个连通容器40连通两个液位传感器内部的液体区域,连通容器内也是相同液体,即两个液位传感器内部的液体区域是连通的。由于选择了液体的上下面作为两个反射点,所以选用的液体要有一定的透射率和一定的反射率。外壳和内杆的端部通常使用同轴负载或负载电阻进行消能。倾斜角度的计算方式同图12(a)的工况。
3)基于转轴和重物使得两个液位传感器始终保持竖直状态的倾斜仪
使用两个液位传感器作为一种无需温度补偿且不随着被测物体发生转动的单向倾斜仪,采用转轴固定两个液位传感器,液位传感器下方配有重锤,无论倾斜角度怎么变化,液位传感器的轴线始终竖直,结构示意图如图13所示。当液位传感器的外壳和内杆端部无消能系统或采用负载电阻来消能时:
如图13(a)所示,使用两个液位传感器作为一种无需温度补偿的单向倾斜仪,且液位传感器的轴线始终竖直,即倾斜角度变化时,液位传感器不发生转动,具体地:
当第一反射点3和第二反射点4(液体液面)的总反射率较低时,由于外壳和内杆内部的的液体区域通过软管连通,没有空间连接同轴负载23,所以液位传感器外壳1和内杆2的端部采用负载电阻22来消能。
采用两个平行的液位传感器,解调系统50在顶部,将两个液位传感器分别通过一个转轴33固定到基板35上,即液位传感器可以绕着转轴33转动,但是不能发生移动。转轴33通常在液位传感器第二反射点4的下方,即在液面4的下方,且所述两个液位传感器的转轴33的连线垂直于两个液位传感器的轴线,即两个转轴等高。每个液位传感器底部加上重锤38,确保无论倾斜角度变化后带动基板怎么转动,液位传感器的轴线都始终竖直。再在两个液位传感器的底部用一个软管34连通两个液位传感器,软管可以通过一个外壳41进行保护,该外壳固定到两个转动点33上。两个液位传感器外壳1和内杆2的端部均没入液体31,软管33内也是该液体,即两个液位传感器内部的液体区域是连通的;两个液位仪之间连通一个通气软管36,可以消除气压差,且不会带动液位传感器发生转动。两个液位传感器,液面上方气体区域中的一固定点作为第一反射点3,液面作为第二反射点4。
为了避免液体和气体区域的连通软管带来的阻力,或将整个系统放入一个密闭容器中,所述密 闭容器的底部装有液体,所述两个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述两个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述两个液位传感器的气体区域与所述密闭容器液面以上的气体连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差。
将整个基板35固定到被测物体上,两个液位传感器的初始腔长为L 1和L 2,两个转轴之间距离L。当倾斜角度在两个液位传感器的轴线构成的平面上发生变化时,两个液位传感器的轴线始终竖直,液位传感器中的液位会发生改变,且液面始终垂直于液位传感器的轴线,即两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和基板上两个转轴之间距离L的大小,即可求出倾斜角度变化量Δθ=arcsin[(ΔL 2-ΔL 1)/L]。由于两个液位传感器材料相同,且内部有相同的液体,所以腔长改变量在做差时已经消除了温度对腔长的影响,无需温度补偿。
如图13(b)所示,使用两个液位传感器作为一种无需温度补偿的单向倾斜仪,且液位传感器的轴线始终竖直,即倾斜角度变化时,液位传感器不发生转动,具体地:
当液体液面4反射率较低时,在两个液位传感器的底部,即外壳和内杆的端部,使用同轴负载23进行消能并在该处进行密封处理。此时,液位传感器靠近同轴负载的一段长度作为盛放液体的容器。
采用两个平行的液位传感器竖直放置,解调系统50在顶部,在两个液位传感器的底部,即外壳和内杆的端部,使用同轴负载23进行消能并在该处进行密封处理。此时,液位传感器靠近同轴负载23的一段长度作为盛放液体的容器。固定的第一反射点3在液体的上方,液体在同轴负载23的上方,液面作为第二反射点4。将两个液位传感器分别通过一个转轴33固定到基板35上,即液位传感器可以绕着转轴转动,但是不能发生移动。转轴33可以在液位传感器轴线上的任意一点,转轴33可以放在液体区域连通软管36的轴线与液位传感器轴线的交点处,且所述两个液位传感器的转轴33的连线垂直于两个液位传感器的轴线,即两个转轴等高。每个液位传感器底部加上重锤38,确保无论倾斜角度变化后带动基板怎么转动,液位传感器的轴线都始终竖直。再在两个液位传感器中间的液体区域用一个软管36连通进行连通,软管36内也是该液体,即两个液位传感器内部的液体区域是连通的,该软管的刚度尽量小。再在两个液位传感器液面以上的气体区域连通一个软通气管36,可以消除气压差,该软管36的刚度也尽量小。倾斜角度的计算方式同图13(a)的工况。
4)基于柔性吊绳使得两个液位传感器始终保持竖直状态的倾斜仪
使用两个液位传感器作为一种无需温度补偿且不随着被测物体发生转动的单向倾斜仪,采用柔性绳吊起两个液位传感器,无论倾斜角度怎么变化,液位传感器的轴线始终竖直,结构示意图如图14所示。当液位传感器的外壳和内杆端部无消能系统或采用负载电阻来消能时:
如图14(a)所示,使用两个液位传感器作为一种无需温度补偿的单向倾斜仪,且液位传感器的轴线始终竖直,即倾斜角度变化时,液位传感器不发生转动,具体地:
当液体液面反射率较低时,由于外壳内部与容器内的液体在外壳的底部开口处连通,没有空间 连接同轴负载23,所以液位传感器外壳和内杆的端部采用负载电阻22来消能。
采用一个密闭容器30,容器的顶板固定两根柔性绳43,每根柔性绳下方悬挂一个液位传感器,其中液位传感器的解调系统50在传感器的顶部并悬挂在柔性绳43的下方,整个液位传感器的重心与轴线重合,且在柔性绳43的延长线上。这样确保悬挂起来的液位传感器的轴线是竖直方向的。也可以将每个液位传感器用一组等长的柔性绳固定到顶板,即每个液位传感器对应的柔性绳数量大于等于两根,这样可以防止液位传感器绕着轴线转动。这些等长柔性绳通常都是竖直平行放置。在密闭容器内部放入一定量的液体31,确保两个液位传感器始终有一段外壳1和内杆2是没入液体31的,两个液位传感器的液体也自然保持连通性。每个液位传感器的气体区域内各有一个通气孔32,使得每个液位传感器的气体区域与密闭容器内没有液体的气体区域是连通的,可以消除气压差。两个液位传感器,液面上方气体区域中的一固定点作为第一反射点3,液面作为第二反射点4。
将整个容器30固定到被测物体上,两个液位传感器的初始腔长为L 1和L 2,两个转轴之间距离L。当倾斜角度在两个液位传感器的轴线构成的平面上发生变化时,两个液位传感器的轴线始终竖直,液位传感器中的液位会发生改变,且液面4始终垂直于液位传感器的轴线,即两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和两根柔性绳在顶板上的固定点之间距离L的大小,即可求出倾斜角度变化量Δθ=arctan[(ΔL 2-ΔL 1)/L]。由于两个液位传感器材料相同,且内部有相同的液体,所以腔长改变量在做差时已经消除了温度对腔长的影响,无需温度补偿。
此时,如果将图14(a)的柔性绳43换成刚性杆,即两个液位传感器固定连接到密闭容器的顶部,也可以将液位传感器的任意位置固定连接到密闭容器内的顶面、底面或侧面,只要起到固定液位传感器和密闭容易的作用即可。此时倾斜仪的机理和计算公式与图12(b)是相同的,只是容器换了一种形式,两个液位传感器放在密闭容器的内部,容器内只有底部有液体。
如图14(b)所示,使用两个液位传感器作为一种无需温度补偿的单向倾斜仪,且液位传感器的轴线始终竖直,即倾斜角度变化时,液位传感器不发生转动,具体地:
当液体液面反射率较低时,在两个液位传感器的底部,即外壳1和内杆2的端部,使用同轴负载23进行消能并在该处进行密封处理。此时,液位传感器靠近同轴负载的一段长度作为盛放液体的容器。
采用一个密闭容器,容器的顶板固定。两根柔性绳43,每根柔性绳下方悬挂一个液位传感器,其中液位传感器的解调系统50在传感器的顶部并悬挂在柔性绳43的下方,整个液位传感器的重心与轴线重合,且在柔性绳43的延长线上。这样确保悬挂起来的液位传感器的轴线43是竖直方向的。也可以将每个液位传感器用一组等长的柔性绳固定到顶板,即每个液位传感器对应的柔性绳数量大于等于两根,这样可以防止液位传感器绕着轴线转动。这些等长柔性绳通常都是竖直平行放置。在密闭容器内部放入一定量的液体31,确保两个液位传感器始终有一段外壳和内杆是没入液体31的,由于两个液位传感器的底部用同轴负载23或密封零件,所以需要在两个液位传感器靠近外壳底部的位置分别开口42,这两个开口42始终没入液体中,这样就保证了两个液位传感器外壳内部液体与外 部液体的连通性,两个液位传感器的液体也自然保持连通性。每个液位传感器的气体区域内各有一个通气孔32,使得每个液位传感器的气体区域与密闭容器内没有液体的气体区域是连通的,可以消除气压差。两个液位传感器,液面上方气体区域中的一固定点作为第一反射点3,液面作为第二反射点4。倾斜角度的计算方式同图14(a)的工况。
此时,如果将图14(b)的柔性绳43换成刚性杆,即两个液位传感器固定连接到密闭容器的顶部,也可以将液位传感器的任意位置固定连接到密闭容器内的顶面、底面或侧面,只要起到固定液位传感器和密闭容易的作用即可。此时倾斜仪的机理与计算公式与图12(c)是相同的,只是容器换了一种形式,两个液位传感器放在密闭容器的内部,容器内只有底部有液体。
实施例四:双倾斜仪的结构原理
双向倾斜仪和单向的区别,就是采用三个或三个以上液位传感器,且所有液位传感器的轴线与水平面的所有交点不在一条直线上。
1)三个液位传感器随着被测物体发生转动的倾斜仪
如图15所示,使用三个液位传感器作为一种无需温度补偿且随着被测物体发生转动的双向倾斜仪,液位传感器的外壳和内杆端部或无消能系统;或采用负载电阻消能,如图15(a);或采用同轴负载消能,如图15(b),液位测量机理同实施例3工况二“两个液位传感器随着被测物体发生转动的倾斜仪”中图12的方法,区别是采用三个或更多的液位传感器来实现双向倾斜的测量:
采用三个液位传感器61、62和63,三个液位传感器竖直放置时,只要在水平面投影的三个点不在一条直线上,均可测量双向倾斜。将所述倾斜仪固定到被测物体上,所述三个液位传感器的第一反射点均位于第二反射点上方;所述三个液位传感器的初始腔长分别为L 1、L 2和L 3,当三个液位传感器的轴线与水平面的三个交点构成一个直角三角形时,两个直角边分别是倾斜方向的X轴和Y轴;第一个液位传感和第二个液位传感轴线的平行间距为d 1,第二个液位传感器和第三个液位传感器之间轴线的平行间距为d 2;优选的,当三个液位传感器的轴线与水平面的三个交点构成一个等腰直角三角形时,d 1=d 2
图15(a)中,三个液位传感器的底部连接接到一个连通容器30上,即三个液位传感器的腔体和连通容器都是连通的空间,三个液位传感器内的液体是连通的。容器和三个液位传感器的部分外壳和内杆始终没入液体31中。第一个液位传感器和第三个液位传感器分别与第二个液位传感器之间连通一个通气管32,连通区域位于液面(第二反射点4)以上,三个液位传感器内的气体区域区域也是连通的,可以消除三个液位传感器之间气体区域内的气压差。
图15(b)中,液位传感器靠近同轴负载23的一段长度的外壳1内部作为盛放液体的容器。固定的第一反射点在液体的上方,液体在同轴负载的上方,液面作为第二反射点。第一个液位传感器和第三个液位传感器分别与第二个液位传感器之间各用一个连通容器40进行连通,连通容器内也是该液体31,即三个液位传感器内部的液体区域是连通的;再在三个液位传感器液面以上的气体区域内,第一个液位传感器和第三个液位传感器分别与第二个液位传感器之间连通一个通气管,可以消除气压差。将液位传感器和连通容器构成的倾斜仪固定到被测物体上。
将三个液位传感器和连通容器构成的倾斜仪固定到被测物体上,三个液位传感器,均采用液面上方气体区域中的一固定点作为第一反射点3,液面作为第二反射点4。
将整个系统固定到被测物体上,三个液位传感器的初始腔长为L 1、L 2和L 3,当三个液位传感器的轴线与水平面的三个交点构成一个等腰直角三角形时,俯瞰图如图16(a)所示,两个直角边分别是倾斜方向的X和Y转轴。此时,图15(a)和(b)对应的计算方法,第一个液位传感器和第二个液位传感器轴线的平行间距为d 1,第二个液位传感器和第三个液位传感器之间轴线的平行间距为d 2。当倾斜仪绕着X轴和Y轴均发生倾斜后,正负号按照右手准则判断。第一个液位传感器61和第二个液位传感器62的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d 1的大小,即可求出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arctan[(ΔL 2-ΔL 1)/d 1]。第二个液位传感器62和第三个液位传感器63的第一反射点和第二反射点之间的谐振腔长也发生变化,变化量分别为ΔL 2和ΔL 3,通过两个液位传感器的谐振腔长变化量的差值ΔL 3-ΔL 2和平行间距d 2的大小,即可求出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arctan[(ΔL 3-ΔL 2)/d 2]。优选的,当三个液位传感器的轴线与水平面的三个交点构成一个等腰直角三角形时,d 1=d 2
2)基于柔性吊绳使得两个液位传感器始终保持竖直状态的倾斜仪
如图17所示,三个液位传感器分别用一根柔性绳固定到顶板上,液位传感器的外壳和内杆端部或无消能系统;或采用负载电阻消能,如图17(a);或采用同轴负载消能,如图17(b),液位测量机理同实施例3工况四“基于柔性吊绳使得两个液位传感器始终保持竖直状态的倾斜仪”中图14(a)和图14(b)的方法,区别是采用三个或更多的液位传感器来实现双向倾斜的测量。同样,也可以将每个液位传感器用一组等长的柔性绳固定到顶板,即每个液位传感器对应的柔性绳数量大于等于两根,这样可以防止液位传感器绕着轴线转动。这些等长柔性绳通常都是竖直平行放置。
图17(a)中,基于无消能结构或负载电阻消能结构,采用一个密闭容器30,容器的顶板固定三根柔性绳43,每根柔性绳下方悬挂一个液位传感器,其中液位传感器的解调系统50在传感器的顶部并悬挂在柔性绳43的下方,整个液位传感器的重心与轴线重合,且在柔性绳43的延长线上。这样确保悬挂起来的液位传感器的轴线是竖直方向的。将外面的密闭容器内部放入一定量的液体31,确保三个液位传感器61、62和63始终有一段外壳1和内杆2是没入液体的,三个液位传感器的液体也自然保持连通性。每个液位传感器的气体区域内各有一个通气孔32,使得每个液位传感器的气体区域与密闭容器内没有液体的气体区域是连通的,可以消除气压差。三个液位传感器,液面上方气体区域中的一固定点作为第一反射点3,液面作为第二反射点4。倾斜角度的计算方式同图15的工况。
图17(b)中,基于无消能结构或同轴负载消能结构,采用一个密闭容器,容器的顶板固定三根柔性绳43,每根柔性绳下方悬挂一个液位传感器,其中液位传感器的解调系统50在传感器的顶部并悬挂在柔性绳43的下方,整个液位传感器的重心与轴线重合,且在柔性绳43的延长线上。这样确保悬挂起来的液位传感器的轴线43是竖直方向的。将外面的密闭容器内部放入一定量的液体31,确 保三个液位传感61、62和63器始终有一段外壳和内杆是没入液体31的,由于三个液位传感器的底部用同轴负载23或密封零件,所以需要在三个液位传感器靠近外壳底部的位置分别开口42,这三个开口42始终没入液体中,这样就保证了三个液位传感器外壳内部液体与外部液体的连通性,三个液位传感器的液体也自然保持连通性。每个液位传感器的气体区域内各有一个通气孔32,使得每个液位传感器的气体区域与密闭容器内没有液体的气体区域是连通的,可以消除气压差。三个液位传感器,液面上方气体区域中的一固定点作为第一反射点3,液面作为第二反射点4。倾斜角度的计算方式同图15的工况。对于图17(a)和(b)的工况,液位传感器低俯瞰图如图16(a)所示,第一个液位传感器61和第二个液位传感器62的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d 1的大小,即可求出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arcsin[(ΔL 2-ΔL 1)/d 1]。第二个液位传感器62和第三个液位传感器63的第一反射点和第二反射点之间的谐振腔长也发生变化,变化量分别为ΔL 2和ΔL 3,通过两个液位传感器的谐振腔长变化量的差值ΔL 3-ΔL 2和平行间距d 2的大小,即可求出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arcsin[(ΔL 3-ΔL 2)/d 2]。优选的,当三个液位传感器的轴线与水平面的三个交点构成一个等腰直角三角形时,d 1=d 2
此时,如果将图17(a)和(b)的柔性绳43换成刚性杆,即三个液位传感器固定连接到密闭容器的顶部,也可以将液位传感器的任意位置固定连接到密闭容器内的顶面、底面或侧面,只要起到固定液位传感器和密闭容易的作用即可。此时倾斜仪的机理与图15是相同的,只是容器换了一种形式,三个液位传感器放在密闭容器的内部,容器内只有底部有液体。计算方法同图15(a)和(b)的工况。即可求出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arctan[(ΔL 2-ΔL 1)/d 1],即可求出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arctan[(ΔL 3-ΔL 2)/d 2]。优选的,当三个液位传感器的轴线与水平面的三个交点构成一个等腰直角三角形时,d 1=d 2
3)3个及以上液位传感器随着被测物体发生转动的倾斜仪
对于双向倾斜仪,只要确保液位传感器的数量不小于三个,且保证这些液位传感器的轴线与水平面的所有交点不在一条直线上,均可测量两个方向的倾斜量。只是要通过计算,均可求出到X和Y为转轴的倾斜角度值,计算使用的转换矩阵与几个液位传感器的轴线在水平面交点的坐标的X和Y值有关,也与选择哪几个液位传感器来计算有关。常用的,三个液位传感器的轴线与水平面的三个交点构成一个等腰直角三角形,两个直角边分别是倾斜方向的X和Y转轴,如图16(a)所示。
此外,可以使用四个液位传感器,如图16(b)所示,液位传感器61和62的液位差以及两者轴线之间的距离确定X为转轴的倾斜量;液位传感器63和64的液位差以及两者轴线之间的距离确定Y为转轴的倾斜量。当然,也可以使用4个以上的液位传感器来测量双向倾斜值,主要确保几个液位传感器的轴线与水平面的所有交点不在一条直线上即可。
需要说明的是,本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范 围之内。

Claims (20)

  1. 一种倾斜仪,所述倾斜仪包括:至少一个液位传感器;每个液位传感器的主体内均包括液体区域和气体区域,所述气体区域位于所述液体区域以上,每个液位传感器主体内的液体区域均保持连通,每个液位传感器主体内的气体区域均保持连通;其中,
    所述液位传感器包括第一反射点和第二反射点,所述第一反射点的位置固定,所述液体区域的液面或液面上的漂浮物作为所述第二反射点,所述第一反射点和所述第二反射点之间的距离为谐振腔长;当所述倾斜仪的倾斜角度发生变化时,所述液位传感器发生转动和移动,所述液面在重力作用下在所述液位传感器的主体中移动,导致所述液位传感器的谐振腔长发生变化,基于所述谐振腔长的变化量确定所述倾斜角度;
    或者,
    所述液位传感器包括正反馈环路,所述正反馈环路包括第一反射点和第二反射点,所述第一反射点的位置固定,所述液体区域的液面或液面上的漂浮物作为所述第二反射点,所述第一反射点和所述第二反射点之间的距离为谐振腔长;或者,所述正反馈环路仅包括一个反射点,所述液体区域的液面或液面上的漂浮物作为所述反射点;其中,当所述倾斜仪的倾斜角度发生变化时,所述液位传感器发生转动和移动,所述液面在重力作用下在所述液位传感器的主体中移动,当所述正反馈环路包括所述第一反射点和所述第二反射点时,导致所述谐振腔长发生变化,基于所述谐振腔长的变化量确定所述倾斜角度;当所述正反馈环路仅包括一个反射点时,导致所述正反馈环路的周长发生变化,基于所述正反馈环路的周长变化量确定所述倾斜角度。
  2. 根据权利要求1所述的倾斜仪,其中,所述液位传感器包括所述第一反射点和所述第二反射点的情况下:
    所述第一反射点固定在所述液位传感器的外壳和内杆包络范围内的任一位置;或者,
    将所述液位传感器中的射频同轴电缆转接头与外壳和内杆连接处作为所述第一反射点。
  3. 根据权利要求1或2所述的倾斜仪,其中,所述液位传感器包括腔长测量装置,所述腔长测量装置包括:微波谐振腔、解调装置;其中,
    所述微波谐振腔包括空心同轴电缆-法布里珀罗谐振腔,以及位于所述空心同轴电缆-法布里珀罗谐振腔内部的反射点;
    所述空心同轴电缆-法布里珀罗谐振腔的第一端连接至射频同轴电缆转接头,所述射频同轴电缆转接头通过同轴电缆连接至所述解调装置;或者,所述空心同轴电缆-法布里珀罗谐振腔的第一端连接到作为解调装置的电路板上。
  4. 根据权利要求3所述的倾斜仪,其中,
    当所述空心同轴电缆-法布里珀罗谐振腔内部的反射点的总反射率大于等于阈值时,所述空心同轴电缆-法布里珀罗谐振腔的第二端无消能系统,或者,所述空心同轴电缆-法布里珀罗谐振腔的第二端的外壳和内杆之间连接一个用于消能的负载电阻或同轴负载;
    当所述空心同轴电缆-法布里珀罗谐振腔内部的反射点的总反射率小于阈值时,所述空心同轴电缆-法布里珀罗谐振腔的第二端的外壳和内杆之间连接一个用于消能的负载电阻或同轴负载。
  5. 根据权利要求3所述的倾斜仪,其中,所述腔长测量装置为反射式腔长测量装置、或者透射式腔长测量装置、或者正反馈环路式腔长测量装置;
    相应地,所述液位传感器为反射式液位传感器、或者透射式液位传感器、或者正反馈环路式液位传感器;当所述液位传感器为透射式液位传感器或正反馈环路式液位传感器时,所述液位传感器至少具有以下模式:无环路模式、正反馈环路模式;其中,
    所述无环路模式是指所述液位传感器是透射式的,不包括正反馈环路;
    所述正反馈环路模式是指所述液位传感器包括正反馈环路。
  6. 根据权利要求5所述的倾斜仪,其中,当所述液位传感器包括所述正反馈环路时,所述正反馈环路采用具有两个反射点的环路、或者具有一个反射点的环路;其中,
    当所述正反馈环路有两个反射点时,所述正反馈环路包括所述第一反射点和所述第二反射点,所述第一反射点和所述第二反射点之间的距离为谐振腔长,所述解调装置用于测量所述正反馈环路的谐振腔长;
    当所述正反馈环路只有一个反射点时,所述液面或所述液面上的漂浮物作为所述反射点,所述解调装置用于测量所述正反馈环路的周长。
  7. 根据权利要求3至6任一项所述的倾斜仪,其中,所述空心同轴电缆-法布里珀罗谐振腔的第二端无消能系统的情况下,通过以下方式实现每个液位传感器主体内的液体区域均保持连通,每个液位传感器主体内的气体区域均保持连通:
    每个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端在顶部的情况:每个液位传感器的第二端为开放结构,每个开放结构使用连通容器进行连通或者没入到同一封闭容器的液体区域,或者,每个液位传感器的第二端为封闭结构,在每个液位传感器内部的液体区域对应的外壳壁上开口,每个开口之间使用连通容器进行连通或者没入到同一封闭容器的液体区域;在每个液位传感器内部液面以上的气体区域对应的外壳壁上开口,每个开口之间使用通气管进行连通或者开放于同一封闭容器的气体区域;
    每个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端在底部的情况:每个液位传感器的第二端为开放结构,每个开放结构使用通气管进行连通,或者,每个液位传感器的第二端为封闭结构,在每个液位传感器内部液面以上的气体区域对应的外壳壁上开口,每个开口之间使用通气管进行连通;每个液位传感器内部的液体区域对应的外壳壁上开口,每个开口之间使用连通容器进行连通。
  8. 根据权利要求3至6任一项所述的倾斜仪,其中,所述空心同轴电缆-法布里珀罗谐振腔的第二端的外壳和内杆之间连接一个用于消能的负载电阻或同轴负载的情况下,通过以下方式实现每个液位传感器主体内的液体区域均保持连通,每个液位传感器主体内的气体区域均保持连通:
    每个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端在顶部的情况:在每个液位传感器 内部的液体区域对应的外壳壁上开口,每个开口之间使用连通容器进行连通或者没入到同一封闭容器的液体区域;在每个液位传感器内部液面以上的气体区域对应的外壳壁上开口,每个开口之间使用通气管进行连通或者开放于同一封闭容器的气体区域;
    每个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端在底部的情况:在每个液位传感器内部的液体区域对应的外壳壁上开口,每个开口之间使用连通容器进行连通;在每个液位传感器内部液面以上的气体区域对应的外壳壁上开口,每个开口之间使用通气管进行连通。
  9. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括一个液位传感器,所述倾斜仪为单向倾斜仪,所述液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端位于顶部,其中:
    所述液位传感器的空心同轴电缆-法布里珀罗谐振腔的第二端为开放结构,该开放结构连接U型管,所述液位传感器与所述U型管内的液体区域连通,所述液位传感器与所述U型管的液面以上的气体区域通过通气管连通,用于消除所述液位传感器与所述U型管的气体区域之间的气压差;
    其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;当所述倾斜仪的倾斜角度在所述液位传感器和所述U型管的轴线构成的平面上发生变化时,所述液位传感器中的液位发生改变,导致所述第一反射点和所述第二反射点之间的谐振腔长发生变化,且所述液体的液面和所述液位传感器轴线之间的夹角发生变化,其中,所述液体的液面维持在水平面上;通过测量所述谐振腔长的变化量再进行温度补偿可确定所述倾斜角度。
  10. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的单向倾斜仪,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
    两个液位传感器平行且竖直放置,所述两个液位传感器内部的液体区域使用连通容器进行连通,所述两个液位传感器的液面以上的气体区域使用通气管进行连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
    其中,将所述倾斜仪固定到被测物体上,所述两个液位传感器的第一反射点均位于第二反射点上方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两个液位传感器的轴线的平行间距为d;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器中的液位发生改变,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和所述平行间距d的大小,可确定出倾斜角度的变化量为Δθ=arctan[(ΔL 2-ΔL 1)/d]。
  11. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的单向倾斜仪,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于底部,其中:
    两个液位传感器平行且竖直放置,所述两个液位传感器的主体内均放置一密封塞,用于确保液体在所述密封塞上方,所述密封塞的顶部或者液体的底面作为第一反射点,液体的顶面作为第二反射点,所述液体的顶面始终低于外壳和内杆的顶部;在所述两个液位传感器内部的液体区域对应的 外壳壁上开口,该外壳壁上的开口位于液面以下且密封塞以上,通过两个开口与连通容器连通能够使得所述两个液位传感器内部的液体区域连通;所述两个液位传感器的液面以上的气体区域使用通气管进行连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
    其中,将所述倾斜仪固定到被测物体上,所述两个液位传感器的第一反射点均位于第二反射点下方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两个液位传感器的轴线的平行间距为d;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器中的液位发生改变,液体的底面位置不变,液体的顶面的位置发生变化,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和所述平行间距d的大小,可确定出倾斜角度变化量为Δθ=arctan[(ΔL 2-ΔL 1)/d]。
  12. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿的单向倾斜仪,所述倾斜仪的倾斜角度变化时,所述两个液位传感器不发生转动,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
    两个液位传感器平行放置,所述两个液位传感器分别通过一个转轴固定到基板上,使得所述两个液位传感器可绕所述转轴转动,所述转轴在第二反射点的下方,所述转轴位于所述液位传感器的轴线上,且所述两个液位传感器的转轴的连线垂直于所述两个液位传感器的轴线;每个液位传感器的底部加上重锤,用于确保所述倾斜仪的倾斜角度变化后带动基板转动时,所述液位传感器的轴线始终竖直;
    所述两个液位传感器内部的液体区域使用连通容器进行连通,所述两个液位传感器的液面以上的气体区域使用通气管进行连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;其中,所述连通容器和所述通气管均采用软管,以确保不带动所述液位传感器发生转动;或者,将整个系统放入一个密闭容器中,所述密闭容器的底部装有液体,所述两个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述两个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述两个液位传感器的气体区域与所述密闭容器液面以上的气体连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
    其中,将所述倾斜仪固定到被测物体上,所述两个液位传感器的第一反射点均位于第二反射点上方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两个液位传感器对应的两个转轴之间距离为L;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器的轴线在所述重锤的作用下始终竖直,所述两个液位传感器中的液位发生改变,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和基板上的所述两个转轴之间距离L的大小,可确定出倾斜角度变化量Δθ=arcsin[(ΔL 2-ΔL 1)/L]。
  13. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿的单向倾斜仪,所述倾斜仪的倾斜角度变化时,所述两个液位传感器不发生 转动,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
    所述倾斜仪包括一个密闭容器,所述密闭容器的顶板固定两根柔性绳或两组等长的柔性绳,每根柔性绳或每组柔性绳下方悬挂一个液位传感器,其中,所述液位传感器的解调装置在空心同轴电缆-法布里珀罗谐振腔的顶部并悬挂在柔性绳的下方,悬挂起来的所述液位传感器的轴线为竖直方向;所述密闭容器的底部装有液体,所述两个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述两个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述两个液位传感器的气体区域对应的外壳壁上或第一端有通气孔,使液位传感器内部气体区域与所述密闭容器液面以上的气体连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
    其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两根柔性绳在顶板上的固定点之间距离为L;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器的轴线在重力作用下始终竖直,所述两个液位传感器中的液位发生改变,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和两根柔性绳在顶板上的固定点之间距离L的大小,可确定出倾斜角度变化量Δθ=arcsin[(ΔL 2-ΔL 1)/L]。
  14. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括两个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的单向倾斜仪,两个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
    所述倾斜仪包括一个密闭容器,所述两个液位传感器平行放置,且刚性固定到所述密闭容器的顶板或底板或侧面;所述密闭容器的底部装有液体,所述两个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述两个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述两个液位传感器的气体区域对应的外壳壁上或第一端有通气孔,使液位传感器内部气体区域与所述密闭容器液面以上的气体连通,用于消除所述两个液位传感器内部液面以上的气体区域之间的气压差;
    其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;所述两个液位传感器的初始腔长分别为L 1和L 2,所述两个液位传感器的轴线的平行间距为d;当所述倾斜仪的倾斜角度在所述两个液位传感器的轴线构成的平面上发生变化时,所述两个液位传感器跟随所述倾斜仪发送转动和移动,所述两个液位传感器中的液位发生改变,导致所述两个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2;通过所述两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和所述轴线的平行间距d的大小,可确定出倾斜角度变化量Δθ=arctan[(ΔL 2-ΔL 1)/d]。
  15. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括三个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的双向倾斜仪,三个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
    三个液位传感器平行且竖直放置,所述三个液位传感器的轴线与水平面的三个交点不在一条直线上;所述三个液位传感器内部的液体区域使用连通容器进行连通;对于所述三个液位传感器内部液面以上的气体区域,第一个液位传感器与第二个液位传感器通过第一通气管进行连通,第三个液位传感器与第二个液位传感器通过第二通气管进行连通,所述第一通气管和所述第二通气管位于液面以上,用于消除所述三个液位传感器内部液面以上的气体区域之间的气压差;
    将所述倾斜仪固定到被测物体上,所述三个液位传感器的第一反射点均位于第二反射点上方;所述三个液位传感器的初始腔长分别为L 1、L 2和L 3,当所述三个液位传感器的轴线与水平面的三个交点构成一个直角三角形时,两个直角边分别是倾斜方向的X轴和Y轴;第一个液位传感和第二个液位传感轴线的平行间距为d 1,第二个液位传感器和第三个液位传感器之间轴线的平行间距为d 2;当倾斜仪绕着X轴和Y轴均发生倾斜后,第一个液位传感器和第二个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d 1的大小,可确定出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arctan[(ΔL 2-ΔL 1)/d 1];第二液位传感器和第三个液位传感器的第一反射点和第二反射点之间的谐振腔长也发生变化,变化量分别为ΔL 2和ΔL 3,通过两个液位传感器的谐振腔长变化量的差值ΔL 3-ΔL 2和平行间距d 2的大小,可确定出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arctan[(ΔL 3-ΔL 2)/d 2]。
  16. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括三个液位传感器,所述倾斜仪为无需温度补偿的双向倾斜仪,所述倾斜仪的倾斜角度变化时,所述三个液位传感器不发生转动,三个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
    所述倾斜仪包括一个密闭容器,所述密闭容器的顶板固定三根柔性绳或三组等长的柔性绳,每根柔性绳或每组柔性绳下方悬挂一个液位传感器,其中,所述液位传感器的解调装置在空心同轴电缆-法布里珀罗谐振腔的顶部并悬挂在柔性绳的下方,悬挂起来的所述液位传感器的轴线为竖直方向;所述三个液位传感器的轴线与水平面的三个交点不在一条直线上;所述密闭容器的底部装有液体,所述三个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述三个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述三个液位传感器的气体区域对应的外壳壁上或第一端有通气孔,使液位传感器内部气体区域与所述密闭容器液面以上的气体连通,用于消除所述三个液位传感器内部液面以上的气体区域之间的气压差;
    其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;所述三个液位传感器的初始腔长分别为L 1、L 2和L 3,当所述三个液位传感器的轴线与水平面的三个交点构成一个直角三角形时,两个直角边分别是倾斜方向的X轴和Y轴;第一个液位传感和第二个液位传感轴线的平行间距为d 1,第二个液位传感和第三个液位传感器之间轴线的平行间距为d;当倾斜仪绕着X轴和Y轴均发生倾斜后,第一个液位传感器和第二个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d 1的大小,可确定出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arcsin[(ΔL 2-ΔL 1)/d 1];第二个液位传感器和第三个液位传感器的第一反射点和第二反射点之间的谐振腔长也发生变化,变化量分别为 ΔL 2和ΔL 3,通过两个液位传感器的谐振腔长变化量的差值ΔL 3-ΔL 2和平行间距d 2的大小,可确定出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arcsin[(ΔL 3-ΔL 2)/d 2]。
  17. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括三个液位传感器,所述倾斜仪为无需温度补偿且随着被测物体发生转动的双向倾斜仪,三个液位传感器的空心同轴电缆-法布里珀罗谐振腔的第一端均位于顶部,其中:
    所述倾斜仪包括一个密闭容器,所述三个液位传感器平行放置,且刚性固定到所述密闭容器的顶板或底板或侧面,所述三个液位传感器的轴线与水平面的三个交点不在一条直线上;所述密闭容器的底部装有液体,所述三个液位传感器的外壳和内杆的一部分始终没入所述密闭容器底部的液体中,所述三个液位传感器内部的液体区域与所述密闭容器底部的液体连通,所述三个液位传感器的气体区域对应的外壳壁上或第一端有通气孔,使液位传感器内部气体区域与所述密闭容器液面以上的气体连通,用于消除所述三个液位传感器内部液面以上的气体区域之间的气压差;
    其中,将所述倾斜仪固定到被测物体上,第一反射点位于第二反射点上方;所述三个液位传感器的初始腔长分别为L 1、L 2和L 3,当所述三个液位传感器的轴线与水平面的三个交点构成一个直角三角形时,两个直角边分别是倾斜方向的X轴和Y轴;第一个液位传感和第二个液位传感轴线的平行间距为d 1,第二个液位传感和第三个液位传感器之间轴线的平行间距为d 2;当倾斜仪绕着X轴和Y轴均发生倾斜后,第一个液位传感器和第二个液位传感器的第一反射点和第二反射点之间的谐振腔长发生变化,变化量分别为ΔL 1和ΔL 2,通过两个液位传感器的谐振腔长变化量的差值ΔL 2-ΔL 1和平行间距d 1的大小,可确定出倾斜仪绕X轴的倾斜角度变化量Δθ 1=arctan[(ΔL 2-ΔL 1)/d 1];第二个液位传感器和第三个液位传感器的第一反射点和第二反射点之间的谐振腔长也发生变化,变化量分别为ΔL 2和ΔL 3,通过两个液位传感器的谐振腔长变化量的差值ΔL 3-ΔL 2和平行间距d 2的大小,可确定出倾斜仪绕Y轴倾斜角度变化量Δθ 2=arctan[(ΔL 3-ΔL 2)/d 2]。
  18. 根据权利要求15至17任一项所述的倾斜仪,其中,所述三个液位传感器的轴线与水平面的三个交点不在一条直线上,至少包括:
    所述三个液位传感器的轴线与水平面的三个交点构成一个直角三角形,两个直角边分别是倾斜方向的X和Y转轴。
  19. 根据权利要求15至18任一项所述的倾斜仪,其中,当所述三个液位传感器的轴线与水平面的三个交点构成一个等腰直角三角形时,d 1=d 2
  20. 根据权利要求3至8任一项所述的倾斜仪,其中,所述倾斜仪包括N个液位传感器时,N为大于等于4的整数,所述N个液位传感器的轴线与水平面的N个交点不在一条直线上,则所述倾斜仪均可作为无需温度补偿的双向倾斜仪。
PCT/CN2018/119926 2018-12-07 2018-12-07 一种倾斜仪 WO2020113586A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119926 WO2020113586A1 (zh) 2018-12-07 2018-12-07 一种倾斜仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119926 WO2020113586A1 (zh) 2018-12-07 2018-12-07 一种倾斜仪

Publications (1)

Publication Number Publication Date
WO2020113586A1 true WO2020113586A1 (zh) 2020-06-11

Family

ID=70974114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119926 WO2020113586A1 (zh) 2018-12-07 2018-12-07 一种倾斜仪

Country Status (1)

Country Link
WO (1) WO2020113586A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199869A (en) * 1978-12-18 1980-04-29 Applied Technologies Associates Mapping apparatus employing two input axis gyroscopic means
CN2442228Y (zh) * 2000-09-13 2001-08-08 长江水利委员会长江科学院 平衡锤式测斜仪
CN105737798A (zh) * 2016-02-01 2016-07-06 苏州弘开传感科技有限公司 一种基于法布里珀罗原理的传感器
CN107655453A (zh) * 2017-09-18 2018-02-02 东南大学 一种全量程多方向硅微谐振式倾角传感器
CN207600488U (zh) * 2017-08-08 2018-07-10 苏州弘开传感科技有限公司 一种微波谐振腔的腔长测量装置、传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199869A (en) * 1978-12-18 1980-04-29 Applied Technologies Associates Mapping apparatus employing two input axis gyroscopic means
CN2442228Y (zh) * 2000-09-13 2001-08-08 长江水利委员会长江科学院 平衡锤式测斜仪
CN105737798A (zh) * 2016-02-01 2016-07-06 苏州弘开传感科技有限公司 一种基于法布里珀罗原理的传感器
CN207600488U (zh) * 2017-08-08 2018-07-10 苏州弘开传感科技有限公司 一种微波谐振腔的腔长测量装置、传感器
CN107655453A (zh) * 2017-09-18 2018-02-02 东南大学 一种全量程多方向硅微谐振式倾角传感器

Similar Documents

Publication Publication Date Title
CN207600488U (zh) 一种微波谐振腔的腔长测量装置、传感器
WO2019029193A1 (zh) 一种微波谐振腔的腔长测量装置、传感器
CN209927131U (zh) 一种倾斜仪
CN111288966A (zh) 一种倾斜仪
CN108020167A (zh) 一种基于光纤光栅的固定式测斜仪器
WO2020113586A1 (zh) 一种倾斜仪
CN111322966A (zh) 一种基于两个等强度双臂梁的光纤Bragg光栅倾角传感器
TWI712211B (zh) 使用高介電質共振器的介電質耦合透鏡
CN209927073U (zh) 一种电介质腔的腔长测量装置
CN109387309B (zh) 一种压强传感器
CN109945774B (zh) 一种电介质腔的腔长测量装置
CN113607103A (zh) 折棍式测量绳、沉管定位系统及测量定位方法
WO2019173944A1 (zh) 一种倾斜仪
CN218411430U (zh) 一种基于光纤光栅的三维振动传感器
CN207395932U (zh) 一种压强传感器
JPS6225268A (ja) オプテイカル風速計
CN200993584Y (zh) 插入式光纤涡轮流量计
WO2020186402A1 (zh) 一种电介质腔的腔长测量装置
CN206905845U (zh) 一种基于扫频激光器解调的光纤干涉水位传感装置
CN111913050B (zh) 适用于非平面天线罩的接触式电厚度反射测量探头及方法
CN207163633U (zh) 一种大气压强测量装置
JPH11201841A (ja) 圧力変化計測装置
Horestani et al. A compact and lightweight microwave tilt sensor based on an SRR-loaded microstrip line
CN211317265U (zh) 用于测量平面倾角的设备
CN211576155U (zh) 用于测量三维倾角的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942146

Country of ref document: EP

Kind code of ref document: A1