WO2020111839A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2020111839A1
WO2020111839A1 PCT/KR2019/016633 KR2019016633W WO2020111839A1 WO 2020111839 A1 WO2020111839 A1 WO 2020111839A1 KR 2019016633 W KR2019016633 W KR 2019016633W WO 2020111839 A1 WO2020111839 A1 WO 2020111839A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
cell
information
transmission
scheduling
Prior art date
Application number
PCT/KR2019/016633
Other languages
English (en)
French (fr)
Inventor
안준기
양석철
이한울
이선영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020111839A1 publication Critical patent/WO2020111839A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving wireless signals.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently performing a wireless signal transmission and reception process.
  • a method for a device to transmit a signal in a wireless communication system comprising: performing a RACH (Random Access Channel) process; Receiving configuration information related to the device based on the RACH process; And based on the configuration information, transmitting power headroom (PH) information for a second cell through a CG (Configured Grant)-based Physical Uplink Shared Channel (PUSCH) in the first cell.
  • PH information for 2 cells is determined based on actual transmission or reference transmission based on scheduling in a time window, and the end of the time window corresponds to'transmission time of the CG-based PUSCH-PUSCH processing time', and the A method in which PUSCH processing time is a variable based on UE capability is provided.
  • an apparatus used in a wireless communication system comprising: a memory; And a processor, wherein the processor performs a random access channel (RACH) process, receives configuration information related to the device based on the RACH process, and based on the configuration information, It is configured to transmit power headroom (PH) information for a second cell through a CG (Configured Grant)-based Physical Uplink Shared Channel (PUSCH) in the first cell, and the PH information for the second cell is within a time window.
  • RACH random access channel
  • PH power headroom
  • the end of the time window corresponds to'transmission time of the CG-based PUSCH-PUSCH processing time', and the PUSCH processing time is a variable based on UE capability Phosphorus devices are provided.
  • the PUSCH processing time satisfies A*2 -u ,
  • A is a positive number based on the terminal capability
  • u is a value that maximizes the PUSCH processing time among (uDL, uUL)
  • uDL is the The scheduling cell for the CG-based PUSCH is related to subcarrier spacing (SCS)
  • the uUL is related to the SCS applied to the CG-based PUSCH
  • the SCS can satisfy 15*2 u KHz.
  • the uDL may be associated with an SCS of an active DL downlink bandwidth part (BWP) of the scheduling cell.
  • BWP downlink bandwidth part
  • A*2 -u satisfies (N 2 +d 2,1 )(2048+144)*k*2 -u *Tc, and N 2 represents the number of symbols according to PUSCH timing capability, d 2 ,1 represents 0 or 1, k is 64, and Tc may be 1/(480*10 3 *4096).
  • the second cell may be an activated cell.
  • the first cell and the second cell may be different from each other.
  • the start of the time window may be a'PH reporting trigger point'.
  • the device may include at least a terminal, a network, and an autonomous vehicle that can communicate with other autonomous vehicles other than the device.
  • wireless signal transmission and reception can be efficiently performed in a wireless communication system.
  • 3GPP system which is an example of a wireless communication system, and a general signal transmission method using them.
  • FIG. 2 illustrates the structure of a radio frame.
  • 3 illustrates a resource grid of slots.
  • FIG. 4 shows an example in which a physical channel is multiplexed in a slot.
  • FIG. 6 illustrates a PUSCH (Physical Uplink Shared Channel) transmission process.
  • PUSCH Physical Uplink Shared Channel
  • RACH Random Access Channel
  • FIG 10 illustrates PHR Medium Access Control (MAC) Control Element (CE).
  • MAC Medium Access Control
  • CE Control Element
  • 15 to 18 illustrate a communication system 1 and a wireless device applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
  • next-generation communication As more communication devices require a larger communication capacity, a need for an improved mobile broadband communication has emerged compared to a conventional radio access technology (RAT).
  • massive MTC Machine Type Communications
  • massive MTC Machine Type Communications
  • design of a communication system considering services/terminals sensitive to reliability and latency is being discussed.
  • next-generation RAT in consideration of eMBB (enhanced Mobile BroadBand Communication), massive MTC, and Ultra-Reliable and Low Latency Communication (URLLC) is being discussed, and in the present invention, the technology is conveniently used for NR (New Radio or New RAT) It is called.
  • 3GPP NR is mainly described, but the technical spirit of the present invention is not limited thereto.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP NR system and a general signal transmission method using them.
  • an initial cell search operation such as synchronizing with the base station is performed.
  • the terminal receives an SSB (Synchronization Signal Block) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on the PSS/SSS, and acquires information such as cell identity (cell identity).
  • the terminal may acquire intra-cell broadcast information based on the PBCH.
  • the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives the physical downlink control channel (PDCCH) according to the physical downlink control channel (PDCCH) and the physical downlink control channel information in step S102, and more specific System information can be obtained.
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (Random Access Procedure) such as steps S103 to S106 to complete the access to the base station.
  • a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a response message for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. It may be received (S104).
  • PRACH physical random access channel
  • S104 contention resolution procedures
  • contention resolution procedures such as transmission of additional physical random access channels (S105) and physical downlink control channels and corresponding physical downlink shared channel reception (S106) ).
  • the UE that has performed the above-described procedure is a general uplink/downlink signal transmission procedure, and then receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH)/ A physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted by the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), and Rank Indication (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but can be transmitted through PUSCH when control information and traffic data should be simultaneously transmitted. In addition, UCI may be transmitted aperiodically through PUSCH by a request/instruction from the network.
  • each radio frame has a length of 10 ms, and is divided into two 5 ms half-frames (HFs). Each half-frame is divided into five 1ms subframes (Subframe, SF). The subframe is divided into one or more slots, and the number of slots in the subframe depends on SCS (Subcarrier Spacing).
  • Each slot includes 12 or 14 orthogonal frequency division multiplexing (OFDM) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot contains 14 OFDM symbols. When an extended CP is used, each slot includes 12 OFDM symbols.
  • OFDM orthogonal frequency division multiplexing
  • Table 1 exemplifies that when a CP is normally used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • Table 2 illustrates that when an extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
  • OFDM numerology eg, SCS
  • a (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit e.g. a time unit (TU)
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or a Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1, FR2 may be configured as shown in Table 3 below.
  • FR2 may mean millimeter wave (mmW).
  • a slot contains multiple symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • PRBs physical RBs
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a slot has a self-contained structure that may include DL control channels, DL/UL data, UL control channels, and the like.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or the process from the reception mode to the transmission mode. In the slot, some symbols at the time of switching from DL to UL may be set to GP.
  • the PDCCH carries DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on DL-SCH, resource allocation information for upper layer control messages such as random access response transmitted on PDSCH, transmission power control command, activation/release of CS (Configured Scheduling), and the like.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • Table 4 illustrates DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH It can be used to schedule.
  • DCI format 1_0 is used to schedule TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH.
  • DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0/1_1 may be referred to as DL grant DCI or UL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH (PDCCH), which is a PDCCH delivered to UEs defined as one group.
  • PDCH group common PDCCH
  • PDSCH carries downlink data (eg, DL-SCH transport block, DL-SCH TB), and modulation methods such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM are applied. do.
  • a codeword is generated by encoding TB.
  • PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) and is generated as an OFDM symbol signal and transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • UCI Uplink Control Information
  • UCI includes:
  • SR Service Request: Information used to request UL-SCH resources.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-ACK (Acknowledgement): This is a response to a downlink data packet (eg, codeword) on the PDSCH. Indicates whether a downlink data packet has been successfully received.
  • HARQ-ACK 1 bit may be transmitted in response to a single codeword, and HARQ-ACK 2 bits may be transmitted in response to two codewords.
  • HARQ-ACK response includes a positive ACK (simply, ACK), a negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is mixed with HARQ ACK/NACK and ACK/NACK.
  • MIMO-related feedback information includes a RI (Rank Indicator) and a PMI (Precoding Matrix Indicator).
  • PUSCH carries uplink data (eg, UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on a DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) waveform.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE transmits a PUSCH based on the CP-OFDM waveform
  • the terminal is CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by UL grant in DCI, or semi-static based on upper layer (eg, RRC) signaling (and/or Layer 1 (L1) signaling (eg, PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed on a codebook basis or a non-codebook basis.
  • the UE can detect the PDCCH in slot #n.
  • the PDCCH includes downlink scheduling information (eg, DCI formats 1_0 and 1_1), and the PDCCH indicates DL assignment-to-PDSCH offset (K0) and PDSCH-HARQ-ACK reporting offset (K1).
  • DCI formats 1_0 and 1_1 may include the following information.
  • -Frequency domain resource assignment indicates RB set allocated to PDSCH
  • K0 indicating the start position (eg, OFDM symbol index) and length (eg, the number of OFDM symbols) of the PDSCH in the slot
  • -HARQ process number (4 bits): indicates the HARQ process ID (Identity) for data (eg, PDSCH, TB)
  • the UE may transmit UCI through PUCCH in slot #(n+K1).
  • the UCI includes an HARQ-ACK response to the PDSCH.
  • the HARQ-ACK response may be composed of 1-bit.
  • the HARQ-ACK response may consist of 2-bits when spatial bundling is not configured and 1-bits when spatial bundling is configured.
  • the HARQ-ACK transmission time for a plurality of PDSCHs is designated as slot #(n+K1)
  • the UCI transmitted in slot #(n+K1) includes an HARQ-ACK response for a plurality of PDSCHs.
  • the UE can detect the PDCCH in slot #n.
  • the PDCCH includes uplink scheduling information (eg, DCI formats 0_0 and 0_1).
  • DCI formats 0_0 and 0_1 may include the following information.
  • -Frequency domain resource assignment indicates RB set allocated to PUSCH
  • -Time domain resource assignment indicates the slot offset K2, the starting position (eg, symbol index) and length (eg, the number of OFDM symbols) of the PUSCH in the slot.
  • the start symbol and the length may be indicated through SLIV (Start and Length Indicator Value), or may be indicated respectively.
  • the UE may transmit PUSCH in slot #(n+K2) according to the scheduling information of slot #n.
  • PUSCH includes UL-SCH TB.
  • a minimum time interval (hereinafter, PUSCH processing time) from an end point (eg, symbol) at which a UE receives a DCI from a base station and schedules PUSCH transmission to a start point (eg, symbol) for transmitting the corresponding PUSCH.
  • PUSCH processing time is determined in relation to the SCS ⁇ DL of the DL BWP to which the DCI is transmitted and the SCS ⁇ DL of the UL BWP to which the PUSCH will be transmitted.
  • T proc,2 max((N 2 +d 2,1 )(2048+144)*k*2 -u *T c , d 2,2 )
  • max() represents the maximum value function
  • parameter definition is as follows.
  • -N 2 represents the number of symbols corresponding to the PUSCH preparation time. N 2 is defined based on u (see Tables 5-6).
  • corresponds to a value that maximizes T proc,2 among ( ⁇ DL, ⁇ UL).
  • ⁇ DL corresponds to the SCS of the DL (BWP) to which the DCI scheduling PUSCH is transmitted
  • ⁇ UL corresponds to the SCS of the UL (BWP) (or UL channel) to which the PUSCH will be transmitted.
  • -d 2,1 It has a value of 0 or 1.
  • T s /T c 64.
  • d 2,2 Shows the lower limit value of T proc,2 .
  • the terminal may transmit a data packet based on a dynamic grant (FIG. 7(a)) or may be transmitted based on a CG (Configured Grant) (FIG. 7(b)).
  • the base station dynamically allocates UL transmission resources (eg, PUSCH resources) to every UE through the PDCCH (including DCI format 0_0 or DCI format 0_1).
  • the base station pre-allocates UL transmission resources (eg, PUSCH resources) through higher layer (eg, RRC) signaling, and DCI is not involved in UL transmission.
  • CG is defined by the following two types.
  • UL grant is periodically set by higher layer (eg, RRC) signaling, and CG-based UL transmission may be performed without separate first layer signaling.
  • RRC Radio Resource Control
  • -Type 2 The period of the UL grant is set by higher layer (eg, RRC) signaling, and CG activation/deactivation is indicated through first layer signaling (eg, PDCCH).
  • higher layer eg, RRC
  • CG activation/deactivation is indicated through first layer signaling (eg, PDCCH).
  • a plurality of component carriers may be merged.
  • the UE may simultaneously receive or transmit signals from one or more CCs based on UE capabilities. Up to 16 DL CCs and 16 UL CCs may be configured for one UE.
  • the cell may be composed of one DL CC and 0 to 2 UL CCs. The corresponding relationship between the DL CC and the UL CC constituting the cell may be determined based on the System Information Block (SIB)-2 link.
  • SIB System Information Block
  • system information is transmitted, or a PCell (Primary Cell) is set for a special operation such as an initial access attempt and UL control transmission information.
  • PCell is composed of DL PCC (Primary CC) and the corresponding UL PCC.
  • Cells other than PCell are composed of a SCell (Secondary Cell).
  • PCell is always activated, and SCell can be activated/deactivated according to the instructions of the base station.
  • DC Dual Connectivity
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • MCG is composed of PCell and zero or more SCells
  • SCG is composed of Primary SCG Cell (PSCell) and zero or more SCells.
  • the scheduling methods include non-cross carrier scheduling and cross-carrier scheduling modes.
  • non-cross carrier scheduling a DL/UL grant transmitted to a PDCCH region of a DL CC of a cell can be scheduled only for PDSCH/PUSCH of a cell to which the DL CC belongs. That is, the PDCCH search space, which is an area that attempts to detect a DL/UL grant, exists in the PDCCH area of a cell in which a PDSCH/PUSCH, which is a scheduled target, is located.
  • the DL/UL grant in which the scheduling cell (or CC) is set and transmitted in the PDCCH area of the scheduling cell is configured to receive PDSCH/PUSCH of the cell (ie, the scheduled cell) set to be scheduled from the corresponding scheduling cell.
  • Schedule That is, a PDCCH search space for a plurality of CCs exists in the PDCCH area of the scheduling cell.
  • the DL/UL grant of the scheduling cell includes a carrier indicator field (CIF), and the CIF includes cell index information of the scheduled cell.
  • FIG. 8 illustrates the RACH process.
  • signals/information transmitted through each step and specific operations performed in each step are as follows.
  • Msg1 Is transmitted from the terminal to the base station (S710).
  • Each Msg1 may be divided into a time/frequency resource (RACH Occasion, RO) and a preamble index (RA Preamble Index, RAPID) in which a random access (RA) preamble is transmitted.
  • RACH Occasion RO
  • RAPID RA Preamble Index
  • Msg2 (RAR PDSCH): This is a response message for Msg1, and is transmitted from the base station to the terminal (S720).
  • the UE may perform PDCCH monitoring whether there is a RA-RNTI-based PDCCH (eg, CRC of PDCCH is masked with RA-RNTI) within a time window (hereinafter, RAR window) related to Msg1.
  • a RA-RNTI-based PDCCH eg, CRC of PDCCH is masked with RA-RNTI
  • RAR window time window
  • Msg3 transmitted from the terminal to the base station (S730). Msg3 is performed based on UL grant in RAR. Msg3 may include a contention resolution identity (or contention resolution report (BSR) information, RRC connection request, etc.). Retransmission according to the HARQ process may be applied to Msg3 (PUSCH).
  • Msg3 may include a contention resolution identity (or contention resolution report (BSR) information, RRC connection request, etc.).
  • BSR contention resolution report
  • Msg4 (PDSCH): transmitted from the base station to the terminal (S740).
  • Msg4 may include a terminal (global) ID (and/or RRC connection related information) for conflict resolution. Based on Msg4, success/failure of conflict resolution may be determined.
  • the UE can perform the procedure and/or methods of the present specification.
  • the terminal may process the information in the memory and transmit a radio signal based on configuration information obtained in an RRC connection process through RACH, etc., or process the received radio signal and store it in the memory.
  • the radio signal may include at least one of PDCCH, PDSCH, and RS (Reference Signal) for downlink, and at least one of PUCCH, PUSCH, and SRS for uplink.
  • the PHR procedure is used to notify the base station of the amount of remaining transmit power to the terminal in addition to the current transmit power.
  • the base station may adjust the UL resource allocation for the terminal based on the PHR or control the transmission power/resource allocation of the terminal.
  • the terminal may receive the configuration information to the base station (S902).
  • the configuration information may include various configuration information related to PHR, for example, multi-cell configuration information and various parameter information related to PHR.
  • the UE may trigger the PHR procedure (S904).
  • the PHR procedure can be triggered based on various events.
  • the PHR procedure can be triggered based on the following events: (1) After the phr-ProhibitTimer expires, and the latest PHR transmission, in at least one activated serving cell when UL resources for new transmission are allocated.
  • Pathloss changed more than the reference value; (2) phr-PeriodicTimer expiration; (3) configuration/reconfiguration of PHR functions by higher layers (eg, RRC); (4) Activation of SCell in Medium Access Control (MAC) entity with CG set; (5) Addition of PSCell. Thereafter, the UE may determine/calculate the PH for each activated (serving) cell (S906) and transmit the PHR for the activated cell(s) through PUSCH (S908).
  • RRC Radio Resource Control
  • the terminal may provide the following information to the base station.
  • -Type 1 PH the difference between the nominal UE maximum transmit power and the estimated power for UL-SCH transmission per activated Serving Cell
  • -Type 2 PH the difference between the nominal UE maximum transmit power and the estimated power for UL-SCH and PUCCH transmission on SpCell of the other MAC entity (i.e. E-UTRA MAC entity in EN-DC case only)
  • FIG. 10 illustrates a multiple entry PHR MAC Control Element (CE).
  • the PH for the activated (serving) cell can be transmitted through PHR MAC CE.
  • the PHR MAC CE is a variable size, (1) bit map, (2) Type 2 PH field/P CMAX,f,c field for SpCell (Special Cell) of another MAC entity (when reported) , (3) Type 1 PH field/P CMAX,f,c field for PCell (when reported). Whether to include the Type 2 PH field may be set by an upper layer (eg, RRC).
  • the PHR MAC CE may include one or more Type X PH fields/P CMAX,f,c fields (when reported) for the activated SCell. X is 1 or 3.
  • the PH field for the activated SCell is included in ascending order based on the serving cell index (ServCellIndex).
  • -C i Indicates the presence of a PH field for a serving cell with ServCellIndex i.
  • the C i field set to “1” indicates the presence of the PH field for the serving cell with ServCellIndex #i.
  • the C i field set to “0” indicates the absence of the PH field for the serving cell with ServCellIndex #i.
  • -V indicates whether the PH value is based on an actual transmission or a reference format.
  • the reference format means a virtual transmission/format predefined for PH calculation under the assumption that there is no actual transmission.
  • -P CMAX,f,c indicates P CMAX,f,c used in the calculation of the preceding PH field. It represents the nominal UE maximum transmit power of the carrier f of the serving cell c.
  • the PH for an activated (serving) cell may be determined based on an actual transmission or a reference format.
  • the 3GPP 5G NR standard when a UE reports PH on a PUSCH in a slot/symbol (eg, an opportunity to transmit PUSCH), the actual scheduled PUSCH or SRS is considered for other activated serving cells of the corresponding slot/symbol.
  • the criteria for determining whether to report the PH for the actual transmission or to report the PH considering the reference format assuming that there is no actual transmission are defined as follows. For details, refer to 3GPP TS 38.213 V15.3.0 (2018-09), "7.7 Power headroom report".
  • the PH of each cell may be determined based on actual transmission or based on a reference format/transmission in consideration of UL scheduling status (eg, PUSCH or SRS) for the corresponding cell.
  • UL scheduling status eg, PUSCH or SRS
  • the UL scheduling state considering the UL scheduling state, whether there is an actual scheduled PUSCH, PUCCH, or SRS for a corresponding cell, preferably, whether there is an actual scheduled PUSCH, PUCCH, or SRS for a slot/symbol to which a PHR PUSCH is to be transmitted.
  • the UL scheduling state may be determined based on DCI received within a predetermined time window as described in Table 7.
  • PHR PUSCH means a PUSCH for which a PH is reported.
  • the PHR window may be defined as [PDCCH monitoring opportunity of slot #(n+1), slot #(n+6)].
  • [A, B] represents the closed section of A to B.
  • the UE determines/reports the actual transmission PH for the corresponding slot/symbol (eg, PHR PUSCH transmission opportunity) based on scheduling information (eg, DCI) received in the PHR window (for other activated serving cells) Can be.
  • the UE determines/reports the PH based on the reference format can do. Therefore, even if DCI is received in the PHR window, if the DCI does not schedule the corresponding slot/symbol (eg, PHR PUSCH transmission opportunity), the UE can determine/report the PH based on the reference format.
  • the DCI may include scheduling information related to UL transmission (eg, PUSCH, SPS).
  • the UE may determine the Type 1 PH as follows.
  • Pmax represents the UE maximum transmission power value of the carrier f of the serving cell c on which PUSCH transmission is performed. If there is only one UL carrier in the serving cell c, f may be omitted.
  • P_pusch represents a power value based on actual PUSCH transmission power. Power compensation values according to path loss may be reflected in P_pusch.
  • Pmax' denotes the UE maximum transmission power for a reference format (or reference/virtual PUSCH transmission)
  • P_pusch' denotes PUSCH transmission power for a reference format (or reference/virtual PUSCH transmission).
  • the UE can determine the Type 3 PH as follows.
  • Pmax represents the UE maximum transmit power value of the carrier f of the serving cell c on which SRS transmission is performed. If there is only one UL carrier in the serving cell c, f may be omitted.
  • P_srs represents a power value based on actual SRS transmission power. P_srs may reflect power compensation values according to path loss.
  • Pmax' represents UE maximum transmission power for a reference format (or, reference/virtual SRS transmission), and P_srs' represents SRS transmission power for a reference format (or, reference/virtual SRS transmission).
  • the PH reporting operation as shown in FIG. 11 is effective only when the PUSCH for reporting the PH is scheduled through DCI.
  • PUSCH transmission that is transmitted in a semi-persistent manner without DCI, such as PUSCH transmitted through CG (Configured Grant)
  • CG Configured Grant
  • the UE since there is no DCI corresponding to each PUSCH transmission, the UE is connected to the corresponding (activated) cell. It is ambiguous whether to report the actual transport-based PH or the reference format-based PH.
  • 12 illustrates a problem when reporting PH using a CG-based PUSCH. Referring to FIG. 12, since the DCI is not involved in the PHR PUSCH, the end time point of the PHR window is ambiguous.
  • the UE reports whether or not to report the actual transmission-based PH based on the PUSCH timing capability. You can decide whether to report the format-based PH.
  • the UE determines/reports PH based on the actual transmission for (other) cells with UL transmission/scheduling at the PHR PUSCH transmission opportunity, and determines PH based on the reference format for cells without corresponding UL transmission/scheduling/ Can report.
  • UL transmission/scheduling may include semi-persistent/periodic transmission/scheduling (hereinafter, semi-static scheduling) based on a higher layer (eg, RRC) signaling and dynamic scheduling based on DCI.
  • whether there is UL transmission/scheduling in the PHR PUSCH transmission opportunity is CG configuration information about the corresponding cell that the UE has previously received from the base station (eg, before RRC connection process/PHR trigger) ( Yes, PUSCH allocation information), and/or periodic/quasi-persistent SRS configuration information for a corresponding cell.
  • whether there is UL transmission/scheduling in the PHR PUSCH transmission opportunity may be determined based on scheduling information (eg, DCI) received in the PHR window.
  • scheduling information eg, DCI
  • the UE corresponds to the PUSCH timing capability of the UE from (1) when the PHR is triggered, and (2) when the UE transmits a PUSCH to report PH (ie, an opportunity for PUSCH transmission).
  • the PH may be determined/reported based on the actual transmission or based on a reference format based on the received DCI at a previous time point or before the time interval.
  • PUCCH, SRS, PH is determined/reported based on actual transmission, corresponding
  • PH may be determined/reported based on a reference format. For example, PUSCH scheduling/transmission for type 1 PH, PUSCH/PUCCH scheduling/transmission for type 2 PH, and SRS transmission/scheduling for type 3 PH are considered, and PH is determined based on actual transmission or reference format. / Can be reported.
  • the PHR window may be understood as [PHR triggering time, PHR PUSCH transmission (starting) time-PUSCH timing capability-based time interval].
  • [A, B] represents the closed section of A to B.
  • the PHR window may be defined as [PUSCH transmission opportunity of slot #(n+1), slot #(n+9)-PUSCH timing capability-based time interval].
  • the time interval based on the PUSCH timing capability may be defined as follows by borrowing the existing PUSCH processing time.
  • T'proc,2 max((N 2 +d 2,1 )(2048+144)*k*2 -u *T c , d 2,2 )
  • each parameter may refer to the definition of Equation 1.
  • d 2,1 is fixed to one of 0 or 1
  • d 2,2 0.
  • Equation 1 ⁇ is defined as follows: Among “( ⁇ DL, ⁇ UL), T corresponds to a value that maximizes T proc,2 .
  • ⁇ DL is the SCS of the DL BWP where the DCI scheduling PUSCH is transmitted.
  • ⁇ UL corresponds to the SCS of the UL BWP to which the PUSCH will be transmitted”.
  • DL SCS to still convert the terminal PUSCH timing capability.
  • Ambiguity arises over how to determine ⁇ DL.
  • a plurality of DL BWPs may be configured in each cell (or carrier), and DL SCS may be different for each DL BWP. Therefore, in determining the DL SCS, not only ambiguity for the cell but also ambiguity for the BWP occurs. Therefore, in this specification, the following schemes are additionally proposed to determine the DL SCS criteria for determining the actual/reference format PH for PH transmitted on the CG PUSCH.
  • the ⁇ DL value used when determining the UE PUSCH timing capability (see Equation 4)
  • the minimum index set in a specific cell of the UE (eg, index 0)
  • the largest SCS among DL BWPs set in a specific cell may be determined as a ⁇ DL value used when determining UE PUSCH timing capability (see Equation 4).
  • the smallest SCS among DL BWPs set in a specific cell may be determined as a ⁇ DL value used when determining the UE PUSCH timing capability (see Equation 4).
  • the largest SCS among the capabilities supported by the UE may be determined as the ⁇ DL value used when determining the UE PUSCH timing capability (see Equation 4).
  • the smallest SCS supported by the terminal may be determined as a ⁇ DL value used when determining the UE PUSCH timing capability (see Equation 4).
  • the ⁇ DL value used when determining the UE PUSCH timing capability is the first of the BWPs set in a specific cell of the UE ( Alternatively, it may be determined as the SCS of the most recently activated BWP.
  • the most recently activated BWP means active BWP.
  • the UE actually considers processing time allowed to prepare for the PUSCH transmission including the PH report, and transmits scheduled before the actual processing time from the PUSCH transmission including the PH report Terminals can be easily implemented by only reflecting them in the PH report.
  • Method 5 Among the DL BWPs set in a specific cell, the DL BWP in which the RRC message constituting the CG PUSCH is transmitted, or the DCI indicating activation for the RG configured CG PUSCH is based on the SCS of the transmitted DL BWP.
  • the DL BWP for which the RRC message constituting the CG PUSCH to which the PH is transmitted is transmitted Or, it is based on the SCS of the DL BWP in which the DCI indicating activation for the RG configured CG PUSCH is transmitted.
  • the ⁇ DL value used when determining the UE PUSCH timing capability is the same as the SCS of the CG PUSCH to transmit the PH regardless of the SCS of the actual DL BWP. Can be assumed.
  • a specific cell may be preferably determined as a scheduling cell or P(S)Cell configured to schedule a cell/BWP in which CG PUSCH is set.
  • the CG PUSCH may be determined to be the same cell as the UL cell to be transmitted, or a DL cell paired with the corresponding UL cell.
  • a specific cell may be determined as a scheduling cell configured to schedule a cell/BWP in which CG PUSCH is set.
  • the UE can be easily implemented by reflecting only the scheduled transmissions in the PH report.
  • the scheduling cell for the cell/BWP in which the CG PUSCH is set may be set through SIB information (eg, SIB-2).
  • SIB information eg, SIB-2
  • DL BWP refers to a (continuous) frequency band in which a UE actually receives DCI or PDSCH at a time in a cell.
  • only one BWP may be active at a time.
  • FIG. 14 illustrates a PH reporting process according to an example of the present invention.
  • the terminal may perform a network (initial) access process and receive system information and configuration information necessary to perform the procedures and/or methods of the present specification (S1402).
  • the terminal and the base station may perform a subsequent PHR process based on configuration information obtained in a network access process (eg, system information acquisition process, RRC connection process through RACH, etc.).
  • the configuration information may include multi-cell configuration information, various parameter information related to PHR, CG configuration information, configuration information regarding periodic/quasi-persistent SRS, and the like.
  • Configuration information may be received through higher layer (eg, RRC, MAC, etc.) signaling.
  • the UE may perform the PHR process of the present specification.
  • the UE may trigger the PHR process (S1404).
  • the event triggering the PHR process may refer to the description of FIG. 9, for example.
  • the UE may generate a PH for each activated (serving) cell (S1406).
  • the PH for each cell may be generated based on scheduling information in a time window (eg, the PHR window of FIG. 13) after the PHR is triggered. For example, based on the scheduling information in the time window, it determines/reports PH based on actual transmission considering actual scheduled PUSCH or SRS for the activated (serving) cell, or assumes that there is no actual transmission and based on reference format PH can be determined/reported.
  • the UE may transmit the PH of the activated (serving) cell through PUSCH (S1408).
  • the PH is transmitted through MAC CE, and the format of MAC CE can be referred to the description of FIG. 10.
  • the time window of S1304 is determined based on the PUSCH timing capability as shown in FIG. 13.
  • DL SCS ⁇ DL used to determine a time interval (ie, PUSCH processing time) corresponding to the PUSCH timing capability may be determined by schemes 1-6.
  • the PHR PUSCH is based on a dynamic UL grant (ie, PDCCH corresponding to the PHR PUSCH)
  • the time window of S1304 is DCI scheduling the PHR PUSCH as shown in FIG. 11 (eg, DCI format 0_0, 0_1) (Or PDCCH).
  • Table 7 may be modified as follows.
  • a UE determines whether a power headroom report for an activated serving cell is based on an actual transmission or a reference format based on scheduling information, eg, downlink control information the UE received until (the first symbol of) a configured PUSCH transmission minus T'proc ,2 (see, equation 4) since a power headroom report was triggered.
  • the scheduling information means scheduling information about an activated cell that is a target for PH reporting.
  • the scheduling information may include semi-persistent/periodic scheduling information based on upper layer (eg, RRC) signaling.
  • the scheduling information may include CG configuration information (eg, PUSCH allocation information) and/or higher layer (eg, RRC) signaling regarding periodic/quasi-persistent SRS configuration information.
  • the upper layer signaling related to the scheduling of the corresponding cell may be received in advance (eg, before RRC connection process/PHR trigger).
  • the communication system 1 applied to the present invention includes a wireless device, a base station and a network.
  • the wireless device means a device that performs communication using a radio access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication/wireless/5G device.
  • a radio access technology eg, 5G NR (New RAT), Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), Internet of Thing (IoT) devices 100f, and AI devices/servers 400.
  • IoT Internet of Thing
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone).
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • Household appliances may include a TV, a refrigerator, and a washing machine.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also directly communicate (eg, sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (eg, Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200.
  • the wireless communication/connection is various wireless access such as uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR).
  • wireless communication/connections 150a, 150b, 150c wireless devices and base stations/wireless devices, base stations and base stations can transmit/receive radio signals to each other.
  • the wireless communication/connections 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • FIG. 16 illustrates a wireless device that can be applied to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is shown in FIG. 15 ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x), wireless device 100x ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information/signal, and then transmit the wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information/signal through the transceiver 106 and store the information obtained from the signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 is an instruction to perform some or all of the processes controlled by the processor 102, or to perform the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 can be coupled to the processor 102 and can transmit and/or receive wireless signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and/or receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the wireless signal including the fourth information/signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202.
  • the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 can be coupled to the processor 202 and can transmit and/or receive wireless signals through one or more antennas 208.
  • Transceiver 206 may include a transmitter and/or receiver.
  • Transceiver 206 may be mixed with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 and 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methods disclosed herein. , To one or more transceivers 106, 206.
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein Depending on the field, PDU, SDU, message, control information, data or information may be acquired.
  • signals eg, baseband signals
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • the one or more processors 102, 202 can be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202 or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202).
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein can be implemented using firmware or software in the form of code, instructions and/or instructions.
  • the one or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • the one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • the one or more memories 104, 204 may be located inside and/or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals/channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein from one or more other devices. have.
  • one or more transceivers 106, 206 may be connected to one or more processors 102, 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208.
  • the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106 and 206 use the received radio signal/channel and the like in the RF band signal to process the received user data, control information, radio signal/channel, and the like using one or more processors 102 and 202. It can be converted to a baseband signal.
  • the one or more transceivers 106 and 206 may convert user data, control information, and radio signals/channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal. To this end, the one or more transceivers 106, 206 may include (analog) oscillators and/or filters.
  • FIG. 17 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-example/service (see FIG. 15).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 16, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • communication circuit 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG.
  • the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 16.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless/wired interface through the communication unit 110 or externally (eg, through the communication unit 110). Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 15, 100A), vehicles (FIGS. 15, 100B-1, 100B-2), XR devices (FIGS. 15, 100C), portable devices (FIGS. 15, 100D), and home appliances. (Fig. 15, 100e), IoT device (Fig.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It may be implemented in the form of an AI server/device (FIGS. 15, 400), a base station (FIGS. 15, 200), a network node, or the like.
  • the wireless device may be mobile or may be used in a fixed place depending on use-example/service.
  • various elements, components, units/parts, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a portion may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit/unit, and/or module in the wireless devices 100 and 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and/or combinations thereof.
  • Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), ships, and the like.
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion (140d).
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 in FIG. 17, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, road side units, etc.) and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the controller 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, wheels, brakes, and steering devices.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, a tilt sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, and the like.
  • the autonomous driving unit 140d maintains a driving lane, automatically adjusts speed, such as adaptive cruise control, and automatically travels along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to a driving plan (eg, speed/direction adjustment).
  • the communication unit 110 may acquire the latest traffic information data non-periodically from an external server, and may acquire surrounding traffic information data from nearby vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on the information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • the present invention can be used in a terminal, a base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 RACH 과정을 수행하는 단계; 상기 RACH 과정에 기반하여, 상기 장치와 관련된 구성 정보를 수신하는 단계; 및 상기 구성 정보에 기반하여, 제1 셀에서의 CG-기반 PUSCH를 통해 제2 셀에 대한 PH 정보를 전송하는 단계를 포함하고, 상기 제2 셀에 대한 PH 정보는 시간 윈도우 내의 스케줄링에 기반하여 실제 전송 또는 참조 전송에 기반하여 결정되고, 상기 시간 윈도우의 끝은 '상기 CG-기반 PUSCH의 전송 시점 - PUSCH 처리 시간'에 대응하며, 상기 PUSCH 처리 시간은 단말 능력에 기반하는 변수인 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 장치가 신호를 전송하는 방법에 있어서, RACH(Random Access Channel) 과정을 수행하는 단계; 상기 RACH 과정에 기반하여, 상기 장치와 관련된 구성 정보(configuration information)를 수신하는 단계; 및 상기 구성 정보에 기반하여, 제1 셀에서의 CG(Configured Grant)-기반 PUSCH(Physical Uplink Shared Channel)를 통해 제2 셀에 대한 PH(Power Headroom) 정보를 전송하는 단계를 포함하고, 상기 제2 셀에 대한 PH 정보는 시간 윈도우 내의 스케줄링에 기반하여 실제 전송 또는 참조 전송에 기반하여 결정되고, 상기 시간 윈도우의 끝은 '상기 CG-기반 PUSCH의 전송 시점 - PUSCH 처리 시간'에 대응하며, 상기 PUSCH 처리 시간은 단말 능력에 기반하는 변수인 방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에 사용되는 장치에 있어서, 메모리; 및 프로세서를 포함하고, 상기 프로세서는, RACH(Random Access Channel) 과정을 수행하고, 상기 RACH 과정에 기반하여, 상기 장치와 관련된 구성 정보(configuration information)를 수신하며, 및 상기 구성 정보에 기반하여, 제1 셀에서의 CG(Configured Grant)-기반 PUSCH(Physical Uplink Shared Channel)를 통해 제2 셀에 대한 PH(Power Headroom) 정보를 전송하도록 구성되고, 상기 제2 셀에 대한 PH 정보는 시간 윈도우 내의 스케줄링에 기반하여 실제 전송 또는 참조 전송에 기반하여 결정되고, 상기 시간 윈도우의 끝은 '상기 CG-기반 PUSCH의 전송 시점 - PUSCH 처리 시간'에 대응하며, 상기 PUSCH 처리 시간은 단말 능력에 기반하는 변수인 장치가 제공된다.
바람직하게, 상기 PUSCH 처리 시간은 A*2 -u를 만족하고, A는 상기 단말 능력에 기반하는 양수이며, u는 (uDL, uUL) 중 상기 PUSCH 처리 시간을 최대로 하는 값이고, uDL은 상기 CG-기반 PUSCH에 대한 스케줄링 셀의 SCS(Subcarrier Spacing)와 관련되며, uUL은 상기 CG-기반 PUSCH에 적용된 SCS와 관련되고, SCS는 15*2 u KHz를 만족할 수 있다.
바람직하게, 상기 uDL은 상기 스케줄링 셀의 활성(active) DL BWP(Downlink Bandwidth Part)의 SCS와 관련될 수 있다.
바람직하게, A*2 -u는 (N 2+d 2,1)(2048+144)*k*2 -u*Tc를 만족하고, N 2는 PUSCH 타이밍 능력에 따른 심볼 개수를 나타내며, d 2,1은 0 또는 1을 나타내고, k는 64이며, Tc는 1/(480*10 3*4096)일 수 있다.
바람직하게, 상기 제 2셀은 활성화된 셀일 수 있다.
바람직하게, 상기 제1 셀과 상기 제2 셀은 서로 다를 수 있다.
바람직하게, 상기 시간 윈도우의 시작은 'PH 보고 트리거 시점'일 수 있다.
바람직하게, 상기 장치는 적어도 단말, 네트워크 및 상기 장치 외의 다른 자율 주행 차량과 통신할 수 있는 자율 주행 차량을 포함할 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 슬롯 내에 물리 채널이 다중화되는 예를 도시한다.
도 5는 ACK/NACK 전송 과정을 예시한다.
도 6은 PUSCH(Physical Uplink Shared Channel) 전송 과정을 예시한다.
도 7은 상향링크 전송 과정을 예시한다.
도 8은 RACH(Random Access Channel) 과정을 예시한다.
도 9는 PHR(Power Headroom Report) 절차를 예시한다.
도 10은 PHR MAC(Medium Access Control) CE(Control Element)를 예시한다.
도 11~12는 기존의 PHR 절차 및 문제점을 예시한다.
도 13~14는 본 발명의 일 예에 따른 PHR 절차를 예시한다.
도 15~18은 본 발명에 적용되는 통신 시스템(1)과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 3과 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing
FR1 450MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 다중화되는 예를 도시한다. NR 시스템에서 슬롯은 DL 제어 채널, DL/UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 갖는다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 슬롯 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 준-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 5는 ACK/NACK 전송 과정을 예시한다. 도 5를 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0, 슬롯 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서 PDSCH를 수신한 뒤, 슬롯 #(n+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함한다. PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
도 6은 PUSCH 전송 과정을 예시한다. 도 6을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
3GPP 5G NR 시스템에서 단말이 기지국으로부터 DCI를 수신해서 PUSCH 전송을 스케줄 받은 끝 시점(예, 심볼)부터 해당 PUSCH를 전송하는 시작 시점(예, 심볼)까지의 최소 시간 간격(이하, PUSCH 처리 시간)은 단말의 PUSCH 타이밍 능력(timing capability)에 따라 아래와 같이 정의된다. PUSCH 처리 시간은 DCI가 전송된 DL BWP의 SCS μDL과 PUSCH가 전송될 UL BWP의 SCS μDL에 관계되어 결정된다.
[수학식 1]
T proc,2 = max((N 2+d 2,1)(2048+144)*k*2 -u*T c, d 2,2)
여기서, max()는 최대값 함수를 나타내고, 파라미터 정의는 다음과 같다.
- N 2: PUSCH 준비 시간에 대응하는 심볼 개수를 나타낸다. N 2는 u에 기반하여 정의된다(표 5~6 참조). μ는 (μDL, μUL) 중에서 T proc,2를 최대가 되도록 하는 값에 대응한다. μDL은 PUSCH를 스케줄링 하는 DCI가 전송된 DL (BWP)의 SCS에 대응하고, μUL은 PUSCH가 전송될 UL (BWP)(혹은, UL 채널)의 SCS에 대응한다.
- d 2,1: 0 또는 1의 값을 갖는다. 예를 들어, PUSCH 할당의 첫 번째 심볼이 DM-RS로만 구성된 경우, d 2,1=0이고, 그 외의 경우 d 2,1=1일 수 있다.
- k: T s/T c=64. T s=1/(Δf ref*N f,ref), 여기서 Δf ref=15*10 3Hz이고 N f,ref=2048이다.
- T c: 1/(Δf max*N f), 여기서 Δf max=480*10 3Hz이고 N f=4096이다.
- d 2,2: T proc,2의 하한 값을 나타낸다. DCI가 BWP 스위칭을 트리거한 경우 d 2,2는 스위칭과 관련된 시간이고, 그 외의 경우 d 2,2=0일 수 있다.
u (SCS=15*2 u) PUSCH preparation time N2 [symbols]for PUSCH timing capability 1
0 (15KHz) 10
1 (30KHz) 12
2 (60KHz) 23
3 (120KHz) 36
u (SCS=15*2 u) PUSCH preparation time N2 [symbols]for PUSCH timing capability 2
0 (15KHz) 5
1 (30KHz) 5.5
2 (60KHz) 11 for frequency range 1
도 7은 UL 전송을 예시한다. 단말은 데이터 패킷을 동적 그랜트에 기반하여 전송하거나(도 7(a)), CG(Configured Grant)에 기반하여 전송할 수 있다(도 7(b)). 도 7(a)에서 기지국은 (DCI 포맷 0_0 또는 DCI 포맷 0_1을 포함한) PDCCH를 통해 단말에게 매 UL 전송마다 동적으로 UL 전송 자원(예, PUSCH 자원)을 할당한다. 반면, 도 7(b)에서 기지국은 상위 계층(예, RRC) 시그널링을 통해 UL 전송 자원(예, PUSCH 자원)을 미리 할당하며, UL 전송에 DCI는 수반되지 않는다.
CG는 다음의 두 가지 타입으로 정의된다.
- Type 1: 상위 계층(예, RRC) 시그널링에 의해 UL 그랜트가 주기적으로 설정되며, 별도의 제1 계층 시그널링 없이 CG-기반 UL 전송이 수행될 수 있다.
- Type 2: 상위 계층(예, RRC) 시그널링에 의해 UL 그랜트의 주기가 설정되고, 제1 계층 시그널링(예, PDCCH)를 통해 CG 활성화/비활성화가 지시된다.
CA(Carrier Aggregation)에서 복수의 CC(Component Carrier)가 병합될 수 있다. 단말은 UE 능력에 기반하여 하나 이상의 CC에서 동시에 신호를 수신하거나 송신할 수 있다. 하나의 단말에 대해 최대 16개의 DL CC와 16개의 UL CC가 구성될 수 있다. 셀은 하나의 DL CC와 0~2개의 UL CC로 구성될 수 있다. 셀을 구성하는 DL CC와 UL CC의 대응 관계는 SIB(System Information Block)-2 링크에 기반하여 결정될 수 있다. 복수의 셀 중에서 시스템 정보가 전송되거나 초기 접속 시도, UL 제어 전송 정보 등의 특별한 동작을 위해 PCell(Primary Cell)이 설정된다. PCell은 DL PCC(Primary CC)와 이에 대응되는 UL PCC로 구성된다. PCell 이외의 셀은 SCell(Secondary Cell)로 구성된다. PCell은 항상 활성화되고, SCell은 기지국의 지시에 따라 활성화/비활성화 될 수 있다. DC(Dual Connectivity)가 지원되는 경우, MCG(Master Cell Group)와 SCG(Secondary Cell Group)가 구성된다. MCG는 PCell과 0개 이상의 SCell로 구성되고, SCG는 PSCell(Primary SCG Cell)과 0개 이상의 SCell로 구성된다.
CA 상황에서 스케줄링 방법은 논-크로스 캐리어 스케줄링(non-cross carrier scheduling)과 크로스-캐리어 스케줄링(cross-carrier scheduling) 모드가 있다. 논-크로스 캐리어 스케줄링의 경우, 어떤 셀의 DL CC의 PDCCH 영역으로 전송되는 DL/UL 그랜트는 해당 DL CC가 속한 셀의 PDSCH/PUSCH만 스케줄이 가능하다. 즉, DL/UL 그랜트의 검출을 시도하는 영역인 PDCCH 검색 공간은 스케줄 되는 대상인 PDSCH/PUSCH가 위치하는 셀의 PDCCH 영역에 존재한다. 크로스-캐리어 스케줄링의 경우, 스케줄링 셀 (또는, CC)이 설정되고 스케줄링 셀의 PDCCH 영역에서 전송되는 DL/UL 그랜트는 해당 스케줄링 셀로부터 스케줄 받도록 설정된 셀(즉, 스케줄드 셀)의 PDSCH/PUSCH를 스케줄 한다. 즉, 복수의 CC에 대한 PDCCH 검색 공간이 스케줄링 셀의 PDCCH 영역에 존재한다. 스케줄링 셀의 DL/UL 그랜트는 CIF(Carrier Indicator Field)를 포함하며, CIF는 스케줄드 셀의 셀 인덱스 정보를 포함한다.
도 8은 RACH 과정을 예시한다. 도 8을 참조하면, 각 단계를 통해 전송되는 신호/정보 및 각 단계에서 수행되는 구체적인 동작은 다음과 같다.
1) Msg1 (PRACH): 단말로부터 기지국으로 전송된다(S710). 각각의 Msg1은 RA(Random Access) 프리앰블이 전송되는 시간/주파수 자원(RACH Occasion, RO) 및 프리앰블 인덱스(RA Preamble Index, RAPID)로 구분될 수 있다.
2) Msg2 (RAR PDSCH): Msg1에 대한 응답 메세지이며, 기지국으로부터 단말로 전송된다(S720). Msg2 수신을 위해, 단말은 Msg1과 관련된 시간 윈도우(이하, RAR 윈도우) 내에서 RA-RNTI-기반 PDCCH(예, PDCCH의 CRC가 RA-RNTI로 마스킹됨)가 있는지 PDCCH 모니터링을 수행할 수 있다. RA-RNTI로 마스킹된 PDCCH를 수신한 경우, 단말은 RA-RNTI PDCCH에 의해 지시된 PDSCH로부터 RAR을 수신할 수 있다.
3) Msg3 (PUSCH): 단말로부터 기지국으로 전송된다(S730). Msg3은 RAR 내의 UL 그랜트에 기반하여 수행된다. Msg3은 충돌 해결 ID(contention resolution identity) (및/또는 BSR(Buffer Status Report) 정보, RRC 연결 요청, 등)를 포함할 수 있다. Msg3 (PUSCH)에는 HARQ 과정에 따른 재전송이 적용될 수 있다.
4) Msg4 (PDSCH): 기지국으로부터 단말로 전송된다(S740). Msg4는 충돌 해결을 위한 단말 (글로벌) ID (및/또는 RRC 연결 관련 정보)를 포함할 수 있다. Msg4에 기반하여 충돌 해결 성공/실패 여부가 판단될 수 있다.
RACH/RRC 연결 이후, 단말은 기지국은 본 명세서의 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말은 RACH를 통한 RRC 연결 과정 등에서 얻은 구성 정보(configuration information)에 기반해, 메모리의 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다. 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.
도 9는 PHR(Power Headroom Reporting/Report) 절차를 예시한다. PHR 절차는 현재 전송 전력 외에, 단말에게 남은 전송 전력의 양을 기지국에게 알려주는데 사용된다. 기지국은 PHR에 기반하여 단말에 대한 UL 자원 할당량을 조절하거나, 단말의 전송 전력/자원 할당을 제어할 수 있다.
도 9을 참조하면, 단말은 기지국으로 구성 정보를 수신할 수 있다(S902). 여기서, 구성 정보는 PHR과 관련된 다양한 구성 정보, 예를 들어, 멀티-셀 구성 정보, PHR과 관련된 다양한 파라미터 정보 등을 포함할 수 있다. 이후, 단말은 PHR 절차를 트리거링 할 수 있다(S904). PHR 절차는 다양한 이벤트에 기반해 트리거링 될 수 있다. 예를 들어, PHR 절차는 다음 이벤트에 기반하여 트리거링 될 수 있다: (1) phr-ProhibitTimer 만료, 및 최근 PHR 전송 이후로, 신규 전송을 위한 UL 자원이 할당된 때 적어도 하나의 활성화된 서빙 셀에서 경로 손실(pathloss)이 기준 값보다 많이 변경됨; (2) phr-PeriodicTimer 만료; (3) 상위 계층(예, RRC)에 의한 PHR 기능의 구성/재구성; (4) CG가 설정된 MAC(Medium Access Control) 엔터티에서 SCell의 활성화; (5) PSCell의 부가 등. 이후, 단말은 각 활성화된 (서빙) 셀에 대한 PH를 결정/계산하고(S906), 활성화된 셀(들)에 대한 PHR을 PUSCH를 통해 전송할 수 있다(S908).
구체적으로, 단말은 기지국에게 다음 정보를 제공할 수 있다.
- Type 1 PH: the difference between the nominal UE maximum transmit power and the estimated power for UL-SCH transmission per activated Serving Cell
- Type 2 PH: the difference between the nominal UE maximum transmit power and the estimated power for UL-SCH and PUCCH transmission on SpCell of the other MAC entity (i.e. E-UTRA MAC entity in EN-DC case only)
- Type 3 PH: the difference between the nominal UE maximum transmit power and the estimated power for SRS transmission per activated Serving Cell
도 10는 다중 항목(multiple entry) PHR MAC CE(Control Element)를 예시한다. 활성화된 (서빙) 셀에 대한 PH는 PHR MAC CE를 통해 전송될 수 있다.
도 10를 참조하면, PHR MAC CE는 가변 크기이며, (1) 비트 맵, (2) 다른 MAC 엔터티의 SpCell(Special Cell)에 대한 Type 2 PH 필드/P CMAX,f,c 필드 (보고 시), (3) PCell에 대한 Type 1 PH 필드/P CMAX,f,c 필드 (보고 시)를 포함할 수 있다. Type 2 PH 필드의 포함 여부는 상위 계층(예, RRC)에 의해 설정될 수 있다. PHR MAC CE는 활성화된 SCell에 대한 Type X PH 필드/P CMAX,f,c 필드 (보고 시)를 하나 이상 포함할 수 있다. X는 1 또는 3이다. 활성화된 SCell에 대한 PH 필드는 서빙 셀 인덱스(ServCellIndex)에 기반하여 오름차순으로 포함된다.
각 필드는 다음과 같이 정의된다.
- C i: ServCellIndex i를 가진 서빙 셀에 대한 PH 필드의 존재를 나타낸다. "1"로 설정된 C i 필드는 ServCellIndex #i를 갖는 서빙 셀에 대한 PH 필드의 존재를 나타낸다. "0"으로 설정된 C i 필드는 ServCellIndex #i를 갖는 서빙 셀에 대한 PH 필드의 부재를 나타낸다. UL이 설정된 서빙 셀의 가장 높은 서빙 셀 인덱스가 8 미만인 경우 1 옥텟 비트맵이 사용되고, 8 이상인 경우 4 옥텟 비트맵이 사용된다.
- R: 예약(reserved) 비트, "0"으로 설정된다.
- V: PH 값이 실제 전송(actual transmission) 또는 참조 포맷(reference format)을 기반으로 하는지 나타낸다. 참조 포맷은 실제 전송이 없다고 가정 하에 PH 계산을 위해 미리 정의된 가상 전송/포맷을 의미한다. Type 1 PH의 경우, V = 0은 PUSCH에서의 실제 전송을 나타내고 V = 1은 PUSCH 참조 포맷이 사용됨을 나타낸다. Type 2 PH의 경우, V = 0은 PUCCH에서의 실제 전송을 나타내고 V = 1은 PUCCH 참조 포맷이 사용됨을 나타낸다. Type 3 PH의 경우, V = 0은 SRS에서의 실제 전송을 나타내고 V = 1은 SRS 참조 포맷이 사용됨을 나타낸다. 또한, Type 1~3 PH의 경우, V = 0은 연관된 P CMAX,f,c 필드의 존재를 나타내고 V = 1은 연관된 P CMAX,f,c 필드의 부재를 나타낸다.
- PH: PH 레벨을 나타낸다.
- P: 전력 백 오프 적용 여부를 나타낸다.
- P CMAX,f,c: 선행 PH 필드의 계산에 사용된 P CMAX,f,c를 나타낸다. 서빙 셀 c의 캐리어 f의 공칭(nominal) UE 최대 전송 전력을 나타낸다.
실시예: PHR(Power Headroom Report)
도 10을 참조하여 설명한 바와 같이, 활성화된 (서빙) 셀에 대한 PH는 실제 전송(actual transmission) 또는 참조 포맷(reference format)에 기반하여 결정될 수 있다. 이를 위해, 3GPP 5G NR 표준에서는 단말이 슬롯/심볼(예, PUSCH 전송 기회)에서 PUSCH를 통해 PH를 보고할 때, 해당 슬롯/심볼의 다른 활성화된 서빙 셀에 대해서 실제 스케줄된 PUSCH나 SRS를 고려한 실제 전송에 대한 PH를 보고할지, 실제 전송이 없다고 가정하고 참조 포맷을 고려한 PH를 보고할지에 대한 판단 기준을 다음과 같이 정의한다. 자세한 사항은 3GPP TS 38.213 V15.3.0 (2018-09), "7.7 Power headroom report"를 참조할 수 있다.
A UE determines whether a power headroom report for an activated serving cell is based on an actual transmission or a reference format based on the downlink control information the UE received until and including the PDCCH monitoring occasion where the UE detects the first DCI format 0_0 or DCI format 0_1 scheduling an initial transmission of a transport block (= UL grant DCI that schedules a PUSCH used for carrying PHR) since a power headroom report was triggered.
따라서, 각 셀의 PH는 해당 셀에 대한 UL 스케줄링 상태(예, PUSCH나 SRS)를 고려하여, 실제 전송에 기반하거나 참조 포맷/전송에 기반하여 결정될 수 있다. 여기서, UL 스케줄링 상태를 고려하는 것은 해당 셀에 대해 실제 스케줄된 PUSCH, PUCCH나 SRS가 있는지 여부, 바람직하게는 PHR PUSCH가 전송될 슬롯/심볼에 대해 실제 스케줄된 PUSCH, PUCCH나 SRS가 있는지 여부에 기반하여 PH를 결정하는 것을 포함한다. 여기서, UL 스케줄링 상태는 표 7의 기재와 같이 소정의 시간 윈도우 내에서 수신된 DCI에 기반하여 판단될 수 있다. PHR PUSCH는 PH가 보고되는 PUSCH를 의미한다.
도 11은 종래의 PH 보고 과정을 예시한다. 편의상, PHR이 트리거된 이후부터, PH를 보고할 PUSCH를 트리거한 DCI가 수신된 시점까지를 PHR 윈도우라고 지칭한다. 예를 들어, 도 11에서 PHR 윈도우는 [slot #(n+1), slot #(n+6)의 PDCCH 모니터링 기회]로 정의될 수 있다. 여기서, [A, B]는 A~B의 닫힌 구간을 나타낸다. 단말은 (다른 활성화된 서빙 셀에 대해서) PHR 윈도우 내에서 수신된 스케줄링 정보(예, DCI)에 기반하여, 해당 슬롯/심볼(예, PHR PUSCH 전송 기회)에 대한 실제 전송 PH를 결정/보고할 수 있다. 만일, (다른 활성화된 서빙 셀에 대해서) PHR 윈도우 내에서 해당 슬롯/심볼(예, PHR PUSCH 전송 기회)에 대해 스케줄하는 DCI가 수신되지 않은 경우, 단말은 참조 포맷에 기반하여 PH를 결정/보고할 수 있다. 따라서, PHR 윈도우 내에서 DCI가 수신되더라도, 상기 DCI가 해당 슬롯/심볼(예, PHR PUSCH 전송 기회)을 스케줄하지 않으면, 단말은 참조 포맷에 기반해 PH를 결정/보고할 수 있다. 여기서, DCI는 UL 전송(예, PUSCH, SPS)과 관련된 스케줄링 정보를 포함할 수 있다.
예를 들어, 서빙 셀 c의 캐리어 f의 활성 UL BWP b 상의 PUSCH 전송 기회(occasion) i에 대해, 단말은 Type 1 PH를 다음과 결정할 수 있다.
[수학식 2]
- PH type1 = Pmax - P_pusch (실제 전송에 기반한 경우)
- PH type1 = Pmax' - P_pusch' (참조 포맷에 기반한 경우)
여기서, Pmax는 PUSCH 전송이 수행되는 서빙 셀 c의 캐리어 f의 UE 최대 전송 전력 값을 나타낸다. 서빙 셀 c 내에 UL 캐리어가 하나인 경우 f는 생략될 수 있다. P_pusch는 실제 PUSCH 전송 전력에 기반한 전력 값을 나타낸다. P_pusch에는 경로 손실에 따른 전력 보상 값들이 반영될 수 있다. Pmax'는 참조 포맷 (혹은, 참조/가상 PUSCH 전송)을 위한 UE 최대 전송 전력을 나타내고, P_pusch'는 참조 포맷 (혹은, 참조/가상 PUSCH 전송)을 위한 PUSCH 전송 전력을 나타낸다.
유사하게, 서빙 셀 c의 캐리어 f의 활성 UL BWP b 상의 PUSCH 전송 기회(occasion) i에 대해, 단말은 Type 3 PH를 다음과 같이 결정할 수 있다.
[수학식 3]
- PH type3 = Pmax - P_srs (실제 전송에 기반한 경우)
- PH type3 = Pmax' - P_srs' (참조 포맷에 기반한 경우)
여기서, Pmax는 SRS 전송이 수행되는 서빙 셀 c의 캐리어 f의 UE 최대 전송 전력 값을 나타낸다. 서빙 셀 c 내에 UL 캐리어가 하나인 경우 f는 생략될 수 있다. P_srs는 실제 SRS 전송 전력에 기반한 전력 값을 나타낸다. P_srs에는 경로 손실에 따른 전력 보상 값들이 반영될 수 있다. Pmax'는 참조 포맷 (혹은, 참조/가상 SRS 전송)을 위한 UE 최대 전송 전력을 나타내고, P_srs'는 참조 포맷 (혹은, 참조/가상 SRS 전송)을 위한 SRS 전송 전력을 나타낸다.
보다 자세한 사항은 3GPP TS 38.213 V15.3.0 (2018-09), "7.7 Power headroom report"; "7.7.1 Type 1 PH report"; "7.7.3 Type 3 PH report"을 참조할 수 있다.
도 11과 같은 PH 보고 동작은 PH를 보고할 PUSCH가 DCI를 통해서 스케줄링 됐을 경우에만 유효하다. CG(Configured Grant)를 통해 전송되는 PUSCH와 같이, DCI 없이 준-지속적(semi-persist) 방식으로 전송되는 PUSCH 전송의 경우, 각 PUSCH 전송에 대응하는 DCI가 없으므로 단말이 해당 (활성화된) 셀에 대해 실제 전송-기반 PH를 보고할지, 참조 포맷-기반 PH를 보고할지 모호해진다. 도 12은 CG-기반 PUSCH를 이용하여 PH를 보고할 때의 문제점을 예시한다. 도 12을 참조하며, PHR PUSCH에는 DCI가 수반되지 않으므로 PHR 윈도우의 끝 시점이 모호해진다.
상기 문제를 해결하기 위해, PH를 보고할 PUSCH가 DCI를 통해 스케줄링 되지 않은 경우(예, CG-기반 PUSCH), 본 명세서에서 단말은 PUSCH 타이밍 능력에 기반해 실제 전송-기반 PH를 보고할지, 참조 포맷-기반 PH를 보고할지 결정할 수 있다.
도 13는 본 발명의 일 예에 따른 PH 보고 과정을 예시한다. 단말은 PHR PUSCH 전송 기회에 UL 전송/스케줄링이 있는 (다른) 셀에 대해 실제 전송에 기반하여 PH를 결정/보고하고, 해당 UL 전송/스케줄링이 없는 셀에 대해서는 참조 포맷에 기반하여 PH를 결정/보고할 수 있다. UL 전송/스케줄링은 상위 계층(예, RRC) 시그널링 기반의 준-지속적/주기적 전송/스케줄링(이하, 준-정적 스케줄링)과 DCI 기반의 동적 스케줄링을 포함할 수 있다. 일 예로, 준-정적 스케줄링의 경우, PHR PUSCH 전송 기회에 UL 전송/스케줄링이 있는지 여부는 단말이 기지국으로부터 사전에(예, RRC 연결 과정/PHR 트리거 이전) 수신한 해당 셀에 관한 CG 구성 정보(예, PUSCH 할당 정보), 및/또는 해당 셀에 관한 주기적/준-지속적 SRS 구성 정보에 기반하여 결정될 수 있다.
또한, 동적 스케줄링의 경우, PHR PUSCH 전송 기회에 UL 전송/스케줄링이 있는지 여부는 PHR 윈도우 내에서 수신된 스케줄링 정보(예, DCI)에 기반하여 결정될 수 있다. 예를 들어, 도 13를 참조하면, 단말은 (1) PHR이 트리거된 시점부터, (2) 단말이 PH를 보고할 PUSCH를 전송할 시점(즉, PUSCH 전송 기회)으로부터 단말의 PUSCH 타이밍 능력에 해당하는 시간 간격만큼 이전 시점 혹은 그 이전에, 수신된 DCI에 기반하여 PH를 실제 전송에 기반하거나 참조 포맷에 기반하여 결정/보고할 수 있다. 구체적으로, 상기 수신된 DCI에 기반하여, (PHR PUSCH 전송 기회에 대해) 스케줄된 PUSCH, PUCCH, SRS 등의 UL 전송/스케줄링이 있는 셀에 대해서는 실제 전송에 기반해 PH가 결정/보고되고, 해당 UL 전송/스케줄링이 없는 셀에 대해서는 참조 포맷에 기반해 PH가 결정/보고될 수 있다. 예를 들어, type 1 PH에 대해서는 PUSCH 스케줄링/전송, type 2 PH에 대해서는 PUSCH/PUCCH 스케줄링/전송, type 3 PH에 대해서는 SRS 전송/스케줄링을 고려하여, 실제 전송 또는 참조 포맷에 기반하여 PH가 결정/보고될 수 있다.
따라서, PH를 보고할 PUSCH가 CG에 기반한 경우, PHR 윈도우는 [PHR 트리거 시점, PHR PUSCH 전송 (시작) 시점 - PUSCH 타이밍 능력-기반 시간 간격]로 이해될 수 있다. 여기서, [A, B]는 A~B의 닫힌 구간을 나타낸다. 예를 들어, 도 13에서 PHR 윈도우는 [슬롯 #(n+1), 슬롯 #(n+9)의 PUSCH 전송 기회 - PUSCH 타이밍 능력-기반 시간 간격]으로 정의될 수 있다.
여기서, PUSCH 타이밍 능력에 기반한 시간 간격은 기존의 PUSCH 처리 시간을 차용하여 다음과 같이 정의될 수 있다.
[수학식 4]
T' proc,2 = max((N 2+d 2,1)(2048+144)*k*2 -u*T c, d 2,2)
여기서, 각 파라미터는 수학식 1의 정의를 참조할 수 있다. 다만, CG-기반 PUSCH이므로 d 2,1은 0 또는 1 중 하나로 고정되고, d 2,2=0으로 정의될 수 있다.
한편, 수학식 1에서 μ는 다음과 같이 정의된다: "(μDL, μUL) 중에서 T proc,2를 최대가 되도록 하는 값에 대응한다. μDL은 PUSCH를 스케줄링 하는 DCI가 전송된 DL BWP의 SCS에 대응하고, μUL은 PUSCH가 전송될 UL BWP의 SCS에 대응한다".
따라서, 단말 PUSCH 타이밍 능력에 기반하여 보고할 PH 종류(즉, 실제 전송-기반/참조 포맷-기반의 PH)가 결정되더라도, 여전히 단말 PUSCH 타이밍 능력을 환산할 DL SCS μDL을 어떻게 결정하는가에 대한 모호성이 생긴다. 특히, NR 시스템에서는 각 셀 (혹은, 캐리어) 내에도 복수의 DL BWP가 구성될 수 있고, DL BWP별로 DL SCS가 다를 수 있다. 따라서, DL SCS를 정하는 데에는 셀에 대한 모호성뿐 아니라 BWP에 대한 모호성까지 발생한다. 따라서, 본 명세서에서는 CG PUSCH로 전송되는 PH에 대한 실제/참조 포맷 PH 결정을 위한 DL SCS 기준을 정하기 위해 다음 방식들을 추가로 제안한다.
방식 1) 특정 셀에 설정된 DL BWP들 중, 가장 작은 (혹은, 가장 큰) BWP 인덱스를 가지는 DL BWP의 SCS를 기준으로 함
간단한 방법으로, 기지국과 단말 사이에 PH 보고 형식에 대한 불일치를 피하기 위해, UE PUSCH 타이밍 능력을 정할 때에 사용하는 μDL 값을(수학식 4 참조), 단말의 특정 셀에 설정된 최소 인덱스(예, 인덱스 0) 혹은 최대 인덱스에 해당하는 BWP의 SCS로 정할 수 있다.
방식 2) 특정 셀에 설정된 DL BWP들 중, 가장 작은(혹은 가장 큰) SCS를 기준으로 함
공격적으로 PH 보고 시점까지 더 많은 DCI 스케줄링을 반영하기 위해, 특정 셀에 설정된 DL BWP들 중 가장 큰 SCS를 UE PUSCH 타이밍 능력을 정할 때에 사용하는 μDL 값으로 정할 수 있다(수학식 4 참조). 반대로, 단말의 처리 부담을 줄이기 위해, 특정 셀에 설정된 DL BWP들 중 가장 작은 SCS를 UE PUSCH 타이밍 능력을 정할 때에 사용하는 μDL 값으로 정할 수 있다(수학식 4 참조).
방식 3) UE 능력 상의 가장 작은(혹은 가장 큰) SCS를 기준으로 함
공격적으로 PH 보고 시점까지 더 많은 DCI 스케줄링을 반영하기 위해, 단말이 지원하는 능력 중 가장 큰 SCS를 UE PUSCH 타이밍 능력을 정할 때에 사용하는 μDL 값으로 정할 수 있다(수학식 4 참조). 반대로, 단말의 처리 부담을 줄이기 위해, 단말이 지원하는 가장 작은 SCS를 UE PUSCH 타이밍 능력을 정할 때에 사용하는 μDL 값으로 정할 수 있다(수학식 4 참조).
방식 4) 특정 셀에 설정된 DL BWP들 중, 해당 단말에 대하여 가장 최초로 (혹은, 가장 최근) 활성화된 BWP의 SCS를 기준으로 함
간단한 방법으로, 기지국과 단말 사이에 PH 보고 형식에 대한 불일치를 피하기 위해, UE PUSCH 타이밍 능력을 정할 때에 사용하는 μDL 값을(수학식 4 참조), 해당 단말의 특정 셀에 설정된 BWP 중 가장 최초로 (혹은, 가장 최근) 활성화된 BWP의 SCS로 정할 수 있다. 가장 최근 활성화된 BWP는 활성 BWP를 의미한다. 특히, 활성 BWP를 적용할 경우, 단말이 실제로 PH 보고가 포함된 PUSCH 전송을 준비하는 데에 허용되는 처리 시간을 직접적으로 고려하여, PH 보고가 포함된 PUSCH 전송으로부터 실제 처리 시간 이전에 스케줄된 전송들만을 PH 보고에 반영하게 함으로써 단말 구현을 용이하게 할 수 있다.
방식 5) 특정 셀에 설정된 DL BWP들 중, CG PUSCH를 구성하는 RRC 메시지가 전송된 DL BWP, 혹은 RRC 구성된 CG PUSCH에 대하여 활성화를 지시하는 DCI가 전송된 DL BWP의 SCS를 기준으로 함
DCI로 스케줄링 되는 PUSCH에 대한 μDL 값을 해당 DCI가 전송되는 μDL 값을 적용하는 기존 방식과 유사하게, 특정 셀에 설정된 DL BWP들 중 PH가 전송될 CG PUSCH를 구성하는 RRC 메시지가 전송된 DL BWP, 혹은 RRC 구성된 CG PUSCH에 대하여 활성화를 지시하는 DCI가 전송된 DL BWP의 SCS를 기준으로 한다.
방식 6) DL SCS를 해당 CG PUSCH의 SCS와 동일한 것으로 가정
간단한 방법으로, 기지국과 단말 사이에 PH 보고 형식에 대한 불일치를 피하기 위해, UE PUSCH 타이밍 능력을 정할 때에 사용하는 μDL 값을 실제 DL BWP의 SCS와 무관하게, 해당 PH를 전송할 CG PUSCH의 SCS와 동일한 것으로 가정할 수 있다.
방식 1~6에서, 특정 셀은 바람직하게 CG PUSCH가 설정된 셀/BWP를 스케줄링 하도록 설정된 스케줄링 셀 혹은 P(S)Cell로 정해질 수 있다. 혹은, CG PUSCH가 전송되는 UL 셀과 동일 셀, 혹은 해당 UL 셀과 쌍(pair)인 DL 셀로 정해질 수 있다. 보다 바람직하게, 특정 셀은 CG PUSCH가 설정된 셀/BWP를 스케줄링 하도록 설정된 스케줄링 셀로 정해질 수 있다. 이렇게 해당 PUSCH를 스케줄링 하도록 설정된 스케줄링 셀로 정할 경우, 단말이 실제로 PH 보고가 포함된 PUSCH 전송을 준비하는 데에 허용되는 처리 시간을 직접적으로 고려하여, PH 보고가 포함된 PUSCH 전송으로부터 실제 처리 시간 이전에 스케줄된 전송들만을 PH 보고에 반영하게 함으로써 단말 구현을 용이하게 할 수 있다. CG PUSCH가 설정된 셀/BWP에 대한 스케줄링 셀은 SIB 정보(예, SIB-2)를 통해 설정될 수 있다. 또한, 상기 방식들에서, DL BWP는 셀 내에서 단말이 한 시점에 실제로 DCI나 PDSCH를 수신하는 (연속적인) 주파수 대역을 의미한다. 단말에게 복수의 DL BWP가 구성된 경우, 한 시점에는 하나의 BWP만 활성(active) 상태일 수 있다.
도 14은 본 발명의 일 예에 따른 PH 보고 과정을 예시한다.
도 14을 참조하면, 단말은 네트워크 (초기) 접속 과정을 수행하고, 본 명세서의 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신할 수 있다(S1402). 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보에 기반하여, 이후의 PHR 과정을 수행할 수 있다. 예를 들어, 구성 정보는 멀티-셀 구성 정보, PHR과 관련된 다양한 파라미터 정보, CG 구성 정보, 주기적/준-지속적 SRS에 관한 구성 정보 등을 포함할 수 있다. 구성 정보는 상위 계층(예, RRC, MAC 등) 시그널링을 통해 수신될 수 있다. 이후, 상기 구성 정보에 기반하여, 단말은 본 명세서의 PHR 과정을 수행할 수 있다. 먼저, 단말은 PHR 과정을 트리거링 할 수 있다(S1404). PHR 과정을 트리거링 하는 이벤트는 예를 들어 도 9에 관한 설명을 참조할 수 있다. 이후, 단말은 각각의 활성화된 (서빙) 셀에 대한 PH를 생성할 수 있다(S1406). 각 셀에 대한 PH는 PHR이 트리거된 이후부터 시간 윈도우(예, 도 13의 PHR 윈도우) 내의 스케줄링 정보에 기반하여 생성될 수 있다. 예를 들어, 시간 윈도우 내의 스케줄링 정보에 기반하여, 활성화된 (서빙) 셀에 대해서 실제 스케줄된 PUSCH나 SRS를 고려한 실제 전송에 기반한 PH를 결정/보고하거나, 실제 전송이 없다고 가정하고 참조 포맷에 기반한 PH를 결정/보고할수 있다. 이후, 단말은 활성화된 (서빙) 셀에 대한 PH를 PUSCH를 통해 전송할 수 있다(S1408). PH는 MAC CE를 통해 전송되며, MAC CE의 포맷은 도 10에 관한 설명을 참조할 수 있다.
여기서, PH를 전송하는 PUSCH(이하, PHR PUSCH)가 CG (또는, SPS)에 기반하는 경우, S1304의 시간 윈도우는 도 13에 도시한 바와 같이 PUSCH 타이밍 능력에 기반하여 결정된다. 이때, PUSCH 타이밍 능력에 대응되는 시간 간격(즉, PUSCH 처리 시간)을 결정하는데 사용되는 DL SCS μ DL는 방식 1~6에 의해 결정될 수 있다. 반면, PHR PUSCH가 동적 UL 그랜트(즉, PHR PUSCH에 대응하는 PDCCH)에 기반하는 경우, S1304의 시간 윈도우는 도 11에 도시한 바와 같이 PHR PUSCH를 스케줄링 하는 DCI (예, DCI 포맷 0_0, 0_1) (또는 PDCCH)의 수신 시점에 기반하여 결정된다.
본 명세서의 제안에 따라, 표 7은 다음과 같이 변형될 수 있다.
[For PHR PUSCH is based on DCI format 0_0 or DCI format 0_1]A UE determines whether a power headroom report for an activated serving cell is based on an actual transmission or a reference format based on scheduling information, e.g., the downlink control information the UE received until and including the PDCCH monitoring occasion where the UE detects the first DCI format 0_0 or DCI format 0_1 scheduling an initial transmission of a transport block (= UL grant DCI that schedules a PUSCH used for carrying PHR) since a power headroom report was triggered.[For PHR PUSCH is based on CG]A UE determines whether a power headroom report for an activated serving cell is based on an actual transmission or a reference format based on scheduling information, e.g., downlink control information the UE received until (the first symbol of) a configured PUSCH transmission minus T' proc,2 (see, equation 4) since a power headroom report was triggered. u DL is determined based on scheme 1~6.
여기서, 스케줄링 정보는 PH 보고 대상이 되는 활성화된 셀에 관한 스케줄링 정보를 의미한다. 또한, 스케줄링 정보는 상위 계층(예, RRC) 시그널링 기반의 준-지속적/주기적 스케줄링 정보를 포함할 수 있다. 일 예로, 스케줄링 정보는 CG 구성 정보(예, PUSCH 할당 정보), 및/또는 주기적/준-지속적 SRS 구성 정보에 관한 상위계층(예, RRC) 시그널링을 포함할 수 있다. 해당 셀의 스케줄링과 관련된 상위 계층 시그널링은 사전에(예, RRC 연결 과정/PHR 트리거 이전) 수신될 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 15는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 15를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예, V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 16은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 16을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 15의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 17은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 15 참조).
도 17을 참조하면, 무선 기기(100, 200)는 도 16의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 16의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 16의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 15, 100a), 차량(도 15, 100b-1, 100b-2), XR 기기(도 15, 100c), 휴대 기기(도 15, 100d), 가전(도 15, 100e), IoT 기기(도 15, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 15, 400), 기지국(도 15, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 17에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 18는 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 18를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 17의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 장치가 신호를 전송하는 방법에 있어서,
    RACH(Random Access Channel) 과정을 수행하는 단계;
    상기 RACH 과정에 기반하여, 상기 장치와 관련된 구성 정보(configuration information)를 수신하는 단계; 및
    상기 구성 정보에 기반하여, 제1 셀에서의 CG(Configured Grant)-기반 PUSCH(Physical Uplink Shared Channel)를 통해 제2 셀에 대한 PH(Power Headroom) 정보를 전송하는 단계를 포함하고,
    상기 제2 셀에 대한 PH 정보는 시간 윈도우 내의 스케줄링에 기반하여 실제 전송 또는 참조 전송에 기반하여 결정되고, 상기 시간 윈도우의 끝은 '상기 CG-기반 PUSCH의 전송 시점 - PUSCH 처리 시간'에 대응하며,
    상기 PUSCH 처리 시간은 단말 능력에 기반하는 변수인 방법.
  2. 제1항에 있어서,
    상기 PUSCH 처리 시간은 A*2 -u를 만족하고, A는 상기 단말 능력에 기반하는 양수이며, u는 (uDL, uUL) 중 상기 PUSCH 처리 시간을 최대로 하는 값이고,
    uDL은 상기 CG-기반 PUSCH에 대한 스케줄링 셀의 SCS(Subcarrier Spacing)와 관련되며, uUL은 상기 CG-기반 PUSCH에 적용된 SCS와 관련되고,
    SCS는 15*2 u KHz를 만족하는 방법.
  3. 제2항에 있어서,
    상기 uDL은 상기 스케줄링 셀의 활성(active) DL BWP(Downlink Bandwidth Part)의 SCS와 관련되는 방법.
  4. 제2항에 있어서,
    A*2 -u는 (N 2+d 2,1)(2048+144)*k*2 -u*Tc를 만족하고,
    - N 2는 PUSCH 타이밍 능력에 따른 심볼 개수를 나타내며,
    - d 2,1은 0 또는 1을 나타내고,
    - k는 64이며,
    - Tc는 1/(480*10 3*4096)인 방법.
  5. 제1항에 있어서,
    상기 제2 셀은 활성화된 셀인 방법.
  6. 제1항에 있어서,
    상기 제1 셀과 상기 제2 셀은 서로 다른 방법.
  7. 제1항에 있어서,
    상기 시간 윈도우의 시작은 'PH 보고 트리거 시점'인 방법.
  8. 무선 통신 시스템에 사용되는 장치에 있어서,
    메모리; 및
    프로세서를 포함하고, 상기 프로세서는,
    RACH(Random Access Channel) 과정을 수행하고,
    상기 RACH 과정에 기반하여, 상기 장치와 관련된 구성 정보(configuration information)를 수신하며, 및
    상기 구성 정보에 기반하여, 제1 셀에서의 CG(Configured Grant)-기반 PUSCH(Physical Uplink Shared Channel)를 통해 제2 셀에 대한 PH(Power Headroom) 정보를 전송하도록 구성되고,
    상기 제2 셀에 대한 PH 정보는 시간 윈도우 내의 스케줄링에 기반하여 실제 전송 또는 참조 전송에 기반하여 결정되고, 상기 시간 윈도우의 끝은 '상기 CG-기반 PUSCH의 전송 시점 - PUSCH 처리 시간'에 대응하며,
    상기 PUSCH 처리 시간은 단말 능력에 기반하는 변수인 장치.
  9. 제8항에 있어서,
    상기 PUSCH 처리 시간은 A*2 -u를 만족하고, A는 상기 단말 능력에 기반하는 양수이며, u는 (uDL, uUL) 중 상기 PUSCH 처리 시간을 최대로 하는 값이고,
    uDL은 상기 CG-기반 PUSCH에 대한 스케줄링 셀의 SCS(Subcarrier Spacing)와 관련되며, uUL은 상기 CG-기반 PUSCH에 적용된 SCS와 관련되고,
    SCS는 15*2 u KHz를 만족하는 장치.
  10. 제9항에 있어서,
    상기 uDL은 상기 스케줄링 셀의 활성(active) DL BWP(Downlink Bandwidth Part)의 SCS와 관련되는 장치.
  11. 제9항에 있어서,
    A*2 -u는 (N 2+d 2,1)(2048+144)*k*2 -u*Tc를 만족하고,
    - N 2는 PUSCH 타이밍 능력에 따른 심볼 개수를 나타내며,
    - d 2,1은 0 또는 1을 나타내고,
    - k는 64이며,
    - Tc는 1/(480*10 3*4096)인 장치.
  12. 제8항에 있어서,
    상기 제2 셀은 활성화된 셀인 장치.
  13. 제8항에 있어서,
    상기 제1 셀과 상기 제2 셀은 서로 다른 장치.
  14. 제8항에 있어서,
    상기 시간 윈도우의 시작은 'PH 보고 트리거 시점'인 장치.
  15. 제8항에 있어서,
    상기 장치는 적어도 단말, 네트워크 및 상기 장치 외의 다른 자율 주행 차량과 통신할 수 있는 자율 주행 차량을 포함하는 장치.
PCT/KR2019/016633 2018-11-28 2019-11-28 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2020111839A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180150228 2018-11-28
KR10-2018-0150228 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020111839A1 true WO2020111839A1 (ko) 2020-06-04

Family

ID=70853602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016633 WO2020111839A1 (ko) 2018-11-28 2019-11-28 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2020111839A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115883041A (zh) * 2021-09-29 2023-03-31 维沃移动通信有限公司 时间窗的确定方法、装置、终端及存储介质
WO2023077506A1 (en) * 2021-11-08 2023-05-11 Qualcomm Incorporated Power headroom report for multi-pusch repetitions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471312B1 (ko) * 2010-08-17 2014-12-09 모토로라 모빌리티 엘엘씨 다중 반송파 동작 중 전력 헤드룸 보고를 위한 방법 및 장치
US9144038B2 (en) * 2010-11-05 2015-09-22 Samsung Electronics Co., Ltd. Method and apparatus for calculating power headroom in carrier aggregation mobile communication system
US20150327186A1 (en) * 2013-01-25 2015-11-12 Nec Corporation Mobile station, base station, methods for transmitting and receiving power headroom report, and computer readble medium
KR20160100818A (ko) * 2013-12-20 2016-08-24 엘지전자 주식회사 잔여전력 보고 방법 및 이를 위한 장치
WO2017024432A1 (en) * 2015-08-07 2017-02-16 Qualcomm Incorporated Enhanced power headroom reporting for uplink carrier aggregation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471312B1 (ko) * 2010-08-17 2014-12-09 모토로라 모빌리티 엘엘씨 다중 반송파 동작 중 전력 헤드룸 보고를 위한 방법 및 장치
US9144038B2 (en) * 2010-11-05 2015-09-22 Samsung Electronics Co., Ltd. Method and apparatus for calculating power headroom in carrier aggregation mobile communication system
US20150327186A1 (en) * 2013-01-25 2015-11-12 Nec Corporation Mobile station, base station, methods for transmitting and receiving power headroom report, and computer readble medium
KR20160100818A (ko) * 2013-12-20 2016-08-24 엘지전자 주식회사 잔여전력 보고 방법 및 이를 위한 장치
WO2017024432A1 (en) * 2015-08-07 2017-02-16 Qualcomm Incorporated Enhanced power headroom reporting for uplink carrier aggregation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115883041A (zh) * 2021-09-29 2023-03-31 维沃移动通信有限公司 时间窗的确定方法、装置、终端及存储介质
WO2023077506A1 (en) * 2021-11-08 2023-05-11 Qualcomm Incorporated Power headroom report for multi-pusch repetitions

Similar Documents

Publication Publication Date Title
WO2021206422A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020204561A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020145723A1 (ko) Nr v2x에서 pssch 자원을 선택하는 방법 및 장치
WO2022071755A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021230701A1 (ko) 무선 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2021033952A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154637A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020222598A1 (ko) 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치
WO2020167106A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021162526A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022031123A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020145480A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020204560A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020060365A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154393A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020209676A1 (ko) 무선 통신 시스템에서 harq 피드백을 수행하는 방법 및 장치
WO2021096249A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020067831A1 (ko) 무선 통신 시스템에서 사이드링크를 지원하는 단말이 신호를 송신하는 방법 및 이를 위한 단말
WO2020222612A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021040348A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021066507A1 (ko) Nr v2x에서 s-ssb를 전송하는 방법 및 장치
WO2023059094A1 (en) Method and device for transmitting or receiving signal in wireless communication system
WO2020167107A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021010644A1 (ko) Nr v2x에서 우선 순위를 결정하는 방법 및 장치
WO2022031118A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888655

Country of ref document: EP

Kind code of ref document: A1