WO2020111677A1 - Fire-extinguishing encapsulation device - Google Patents

Fire-extinguishing encapsulation device Download PDF

Info

Publication number
WO2020111677A1
WO2020111677A1 PCT/KR2019/016187 KR2019016187W WO2020111677A1 WO 2020111677 A1 WO2020111677 A1 WO 2020111677A1 KR 2019016187 W KR2019016187 W KR 2019016187W WO 2020111677 A1 WO2020111677 A1 WO 2020111677A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
microcapsule
phase change
fire
encapsulation device
Prior art date
Application number
PCT/KR2019/016187
Other languages
French (fr)
Korean (ko)
Inventor
강태영
박상기
Original Assignee
(주) 비에이에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 비에이에너지 filed Critical (주) 비에이에너지
Publication of WO2020111677A1 publication Critical patent/WO2020111677A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0007Solid extinguishing substances
    • A62D1/0021Microcapsules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/10Containers destroyed or opened by flames or heat
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0064Gels; Film-forming compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an encapsulation device for extinguishing a fire, and more particularly, to an encapsulation device for extinguishing a fire that can extinguish a fire more quickly when a fire occurs.
  • ESS Electronic Storage System
  • ESS Electronic Storage System
  • large-scale ESS devices have been constructed in small sizes to accommodate general customers such as buildings, factories, and homes. In many cases, it is used for blackout preparation or peak power reduction.
  • the battery rack that stores energy in the battery rack of the ESS, the BMS that manages the battery, and the PCS that converts power are accommodated, and the battery rack is accommodated in a basement or a certain space such as outdoors. To be operated.
  • ESS has a high risk of fire due to the generation of a lot of heat, but fire fighting equipment is not properly equipped for each battery rack unit.
  • Korean Patent No. 10-1229411 relates to a battery pack for oxidation and fire prevention and a method for manufacturing the same, and the battery pack case includes an upper case, a lower case, and a plurality of side wall cases.
  • One of the side wall cases is provided with a gas supply port and a gas discharge port for filling the gas for oxidation and fire protection into the interior space.
  • each of the side wall cases is formed with a coupling portion that engages the adjacent side wall cases.
  • the coupling portion extends at both ends of the side wall case at an angle.
  • the coupling portion forms a coupling surface that mutually couples adjacent side wall cases.
  • O-rings are installed in the vertical direction on the coupling surface.
  • Gaskets are respectively installed on the upper and lower surfaces of the combined sidewall cases, and are characterized by being combined with the upper and lower cases.
  • Korean Patent No. 10-1706717 relates to a battery pack fire prevention device of an energy storage system, which is built in a container, and is formed so that one side is opened to enter the battery module, and a plurality of battery modules are stacked up and down. It is arranged toward the trays arranged and the battery modules stacked on the tray, and measures the temperatures of the plurality of battery modules and receives the signals output from the heat sensing means and the heat sensing means for outputting signals to the control unit when an abnormality occurs.
  • a control unit for outputting a control signal to cut off the power supplied to the battery module and a power supply unit for selectively supplying power to each battery module according to the control signal of the control unit and the other side of the tray, a plurality of It is formed up and down so that the blocking plates are spaced apart from each other, and when the fire occurs in the plurality of battery modules, the ends of each blocking plate enter the inside of the tray by the movement force of the actuator operated by the controller, and the stacked plurality of battery modules And an actuator disposed on the other side of the blocking block to partition the block, and an actuator having a rod that moves the blocking block to the tray side when a signal from the control unit is applied.
  • the blocking block is formed on one side.
  • a plurality of blocking plates are formed to be spaced apart so as to correspond to the separation distance of the battery modules arranged in the tray, and a plurality of blocking plates respectively coupled to insertion holes formed on the other side of the tray so that the end can enter the inside of the tray, and on one side the It characterized in that the end of the blocking plate is connected and is configured as a support plate that is connected to the other side to be interlocked with the rod.
  • Patent Document 0001 Korean Registered Patent No. 10-1229411 (20130129)
  • Patent Document 0002 Korean Registered Patent No. 10-1706717 (20170208)
  • One embodiment of the present invention is to provide an encapsulation device for fire extinguishing, including a heat shock destructive microcapsule that emits an extinguishing material in the event of a fire.
  • One embodiment of the present invention is to provide an encapsulation device for fire extinguishing that includes a phase change microcapsule having excellent heat storage function.
  • One embodiment of the present invention is to provide an encapsulation device for fire extinguishing that can quickly extinguish a fire in the event of a fire in the device by applying a film layer including a heat shock-destructive microcapsule and a phase change microcapsule.
  • the encapsulation device for fire extinguishing includes first and second film layers including a phase change microcapsule, a heat shock fracture type microcapsule, the phase change microcapsule, and the heat shock fracture type microcapsule therein. do.
  • phase change microcapsule and the heat shock fracture type microcapsule are characterized in that they are distributed between the first and second film layers at a specific density so as not to concentrate more than a certain criterion on any one part.
  • phase change microcapsule and the heat shock fracture type microcapsule are characterized in that they are arranged in a ratio of (1 cm 2 ) 1 or more and 100 or less: 1 per unit area.
  • the thermal shock breaking type microcapsule includes an external protective film that cracks at a specific temperature or higher.
  • it is characterized in that it contains a fire-extinguishing type microcapsule filled in the inside, and the extinguishing material released to the outside according to the occurrence of the crack.
  • phase change microcapsules are 1-dodecanol, paraffin oil, formalinic acid, lactic acid, methyl palmitate, phenylone, dokasil bromide, caprylone, phenol, heptadecanone, 1-cyclohexyloctadecane, 4-heptade Canon, P-zolidine, cyanamide, methyl eicosanate, 3-heptadecanone, 2-heptadecanone, hydrocinnamic acid, cetyl alcohol, A-neptylamine, camphor, O-nitro Aniline, 9-heptadecanone, thymol, methyl behenate, diphenyl amine, P-dichloro benzene, oxoleate, hypoic acid, O-xylene dichloride, B-chloroic acid, chloroacetic acid, nitronaphthalene, trimiristin, Heptowndecyl Acid, A-Chloroic Acid, Bee Wax, Gly
  • the encapsulation device for fire extinguishing is characterized in that it is used to wrap a battery rack containing a battery therein.
  • the disclosed technology can have the following effects. However, since the specific embodiment does not mean that all of the following effects should be included or only the following effects are included, the scope of rights of the disclosed technology should not be understood as being limited thereby.
  • An encapsulation device for extinguishing a fire may include a heat shock-destructive microcapsule that releases an extinguishing material in the event of a fire.
  • the encapsulation device for fire extinguishing may include a phase change microcapsule having excellent heat storage function.
  • the encapsulation device for extinguishing a fire can quickly extinguish a fire in the event of a fire in the device by applying a film layer including a thermal shock breaking type microcapsule and a phase change microcapsule.
  • FIG. 1 is a view schematically showing the configuration of an encapsulation device for extinguishing a fire according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a film layer included in an encapsulation device for extinguishing a fire according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the thermal shock fracture type microcapsule in FIG. 2.
  • battery cell 202 first film layer
  • second film layer 310 outer protective film
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the identification code (for example, a, b, c, etc.) is used for convenience of explanation.
  • the identification code does not describe the order of each step, and each step clearly identifies a specific order in context. Unless stated, it may occur in a different order than specified. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • FIG. 1 is a view schematically showing the configuration of an encapsulation device for extinguishing a fire according to an embodiment of the present invention.
  • the encapsulation device 100 for fire extinguishing may include a film layer 110 including a phase change microcapsule 110a and a thermal shock breaking microcapsule 110b on an inner wall.
  • the encapsulation device 100 for fire extinguishing may be used to wrap a battery rack of an ESS (Energy Storage System).
  • ESS Electronicgy Storage System
  • the ESS is a device that can store surplus-produced electricity or make use of renewable energy to use the produced electricity at the required time. It stores idle power at times when electricity demand is low and supplies electricity in times of high demand. It is a system that wants to use power stably.
  • the encapsulation device 100 for fire extinguishing in the ESS has been described as an example, but one embodiment of the present invention is not limited to this, and the air conditioning system for heat management and the fire extinguishing system capable of extinguishing in the event of a fire due to spatial constraints It can be applied in a small enclosure that is difficult to install.
  • the encapsulation device 100 for fire extinguishing may include a plurality of battery cells 120.
  • the plurality of battery cells 120 may be disposed adjacent to each other in a horizontal direction in the encapsulation device 100 for fire extinguishing.
  • the plurality of battery cells 120 may be arranged to be stacked in the vertical direction in the encapsulation device 100 for fire extinguishing.
  • the intervals between the battery cells 120 may be the same or may be arranged at different intervals.
  • the film layer 110 of the encapsulation device 100 for fire extinguishing includes a phase change microcapsule 110a.
  • the phase change microcapsule 110a is made of phase changing materials (PCM).
  • the phase change microcapsule 110a including the phase change material temporarily absorbs the corresponding heat when the external temperature rises above the first temperature in a high temperature environment. On the other hand, when the external temperature falls below the second temperature in a low temperature environment, the absorbed heat is released temporarily.
  • the phase change material of the phase change microcapsule 110a temporarily absorbs external heat, thereby encapsulating the fire.
  • the temperature in the migration device 100 may be lowered.
  • the phase change material of the phase change microcapsule 110a has a temperature in the encapsulation device 100 for fire extinguishing more than the first temperature.
  • the temperature in the encapsulation device 100 for fire extinguishing may be increased by releasing heat that was temporarily absorbed when the temperature rises.
  • the temperature in the encapsulation device 100 for fire extinguishing can be kept constant by the heat storage and heat generation function of the phase change microcapsule 110a reacting according to the external temperature, and accordingly, the encapsulation device for fire extinguishing ( 100) can improve the insulation effect.
  • the film layer 110 of the encapsulation device 100 for fire extinguishing includes a thermal shock breaking type microcapsule 110b.
  • the thermal shock breaking type microcapsule 110b includes an external protective film that cracks and heat deforms at a specific temperature or higher.
  • an extinguishing material discharged to the outside according to cracks and thermal deformation of the external protective film is filled therein.
  • a crack or heat deformation is generated in an external protective film when a battery fire occurs over a certain temperature, and when the crack or heat deformation occurs, the extinguishing material filled therein is released to the outside.
  • Carbon dioxide (CO2), water (H2O), and oxides are generated as pyrolysis occurs as the extinguishing material is released to the outside to prevent the propagation of the flame or to prevent the propagation of the fire by preventing the propagation of the flame by forming a fire-prevention film on the surface in contact with the flame I can do it. That is, when a fire occurs in the encapsulation device 100 for fire extinguishing, it is possible to rapidly extinguish the fire while the extinguishing material in the heat shock destructive microcapsule 110b is released.
  • FIG. 2 is a cross-sectional view schematically showing a film layer included in an encapsulation device for extinguishing a fire according to an embodiment of the present invention, provided on an inner wall of an encapsulation device for extinguishing a fire ('100' in FIG. 1)
  • the functional film layer ('110' in FIG. 1) is shown in more detail.
  • the film layer 200 includes a first film layer 202 and a second film layer 204.
  • the first film layer 202 and the second film layer 204 include a phase change microcapsule 200a and a thermal shock breaking type microcapsule 200b.
  • the phase change microcapsule 200a is filled with a phase change material (PCM phase change material).
  • PCM phase change material phase change material
  • paraffin (CnH2n+2) having 13 to 28 carbon atoms, fatty acid (CH 3 (CH 2 )2nCOOH), or a mixture thereof may be used, or one or more selected from the phase change material. good.
  • the melting point of octadecane is 28°C, which can be selected as a phase change material that reacts near room temperature.
  • tetradecan has a melting point of 55°C
  • pentadecan has 10°C
  • octacosan has a melting point of 61°C, so it is possible to select a phase change material at various temperatures. Can be used.
  • phase change material may control heat by absorbing or releasing heat while changing the phase from a specific temperature to a solid and a liquid.
  • This phase change material is generally used in a form encapsulated in a capsule to maintain the shape according to the phase change.
  • Phase change materials include 1-dodecanol, paraffin oil, formalinic acid, lactic acid, methyl palmitate, phenylone, dokasyl bromide, caprylone, phenol, heptadecanone, 1-cyclohexyloctadecane, 4-heptadecanone, P-zolidine, cyanamide, methyl eicosanate, 3-heptadecanone, 2-heptadecanone, hydrocinnamic acid, cetyl alcohol, A-neptylamine, kampen, O-nitroaniline, 9-heptadecanone, thymol, methyl behenate, diphenyl amine, P-dichlorobenzene, oxoleate, hypoic acid, O-xylene dichloride, B-chloroic acid, chloroacetic acid, nitronaphthalene, trimiristin, heptown Decyl acid, A-chloro acid, bee wax, glycolic acid, P-
  • the phase change microcapsule 200a may additionally include a surface protective film (not shown) surrounding the edge. Since the phase change material inside the phase change microcapsule 200a is sensitive to temperature changes and may change from a solid to a liquid when the temperature rises, the surface protective film surrounding the surface of the phase change microcapsule 200a can be selected from various polymers. The material that can secure thermal stability can be selected to safely collect the phase change material. When the thickness of the surface protective film (not shown) is thinner than 50 nm, the capsule cannot be stabilized, and when the thickness of the surface protective film (not shown) is thicker than 500 nm, heat transferred by the surface protective film (not shown) is phase-transfered in the capsule. Since the time to reach the material becomes longer, the thickness of the surface protective film (not shown) is preferably 50 to 500 nm.
  • the surface protective film (not shown) surrounding the phase change microcapsule 200a is polyurethane, polyurea, polycarbonate, epoxy, polystyrene, polyethylene, polypropylene, polyester, polyether, polyvinyl alcohol, acrylic resin, polyamide , Polymethylmethacrylate, ethylene/vinyl acetate copolymer, melamine resin, cellulose, isobornyl methacrylate and (meth)acrylic acid copolymer, nylon, gelatin, formaldehyde, melanin and their (co)polymers Etc. may include one or more mixtures.
  • phase transition microcapsule 200a having a size of 1 to 100 ⁇ m.
  • the size of the phase change microcapsule 200a is smaller than 1 ⁇ m, the size of the microcapsule is small, so it is difficult to maximize the dispersion effect when coating the surface protective film (not shown).
  • the size of the phase change microcapsule 200a is greater than 100 ⁇ m, the phase change may affect the stability and polymer properties of the microcapsule 200a.
  • the phase change material of the phase change microcapsule 200a temporarily absorbs external heat, The temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1) may be lowered.
  • the temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1) may be lowered.
  • phase change material of the phase change microcapsule 200a is an encapsulation device for fire extinguishing (' When the temperature in the 100') rises to a high temperature above the first temperature, the heat absorbed temporarily can be released to increase the temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1).
  • the temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1) can be kept constant by the heat storage and heat generation function of the phase change microcapsule 200a that reacts according to the external temperature, and accordingly, for fire extinguishing It is possible to improve the thermal insulation effect in the encapsulation device ('100' in FIG. 1).
  • the encapsulation device for fire extinguishing includes a thermal shock breaking type microcapsule 200b.
  • the thermal shock breaking type microcapsule 200b includes an external protective film that cracks and thermally deforms at a specific temperature or higher.
  • an extinguishing material discharged to the outside according to cracks and thermal deformation of the external protective film is filled therein.
  • the thermal shock breaking type microcapsule 200b is cracked or thermally deformed on an external protective film when a battery fire occurs over a certain temperature, and when the crack or thermally deformed, the extinguishing material filled therein is released to the outside.
  • the configuration of the thermal shock breaking type microcapsule is as follows.
  • FIG 3 is a cross-sectional view schematically showing a microcapsule of thermal shock destruction included in an encapsulation device for extinguishing a fire according to an embodiment of the present invention.
  • the thermal shock breaking type microcapsule 300 includes an outer protective layer 310 surrounding the rim.
  • the temperature in the encapsulation device for fire extinguishing (FIG. 1 '100') exceeds a certain temperature, a crack or heat deformation occurs.
  • the extinguishing material 320 is filled in the outer protective layer 310 of the thermal shock breaking type microcapsule 300.
  • the extinguishing material 320 penetrates the outer protective layer 310 and is discharged to the outside.
  • the shape of the heat shock-destructive microcapsule 300 containing the extinguishing material 320 is shown in the example formed in a spherical shape in FIGS. 1 to 3, but is not limited thereto and may have various shapes, preferably spherical, It may be oval, cylindrical, or polygonal.
  • the size of the thermal shock breaking type microcapsule 300 may be about 001 to 10 ⁇ m, more preferably about 01 to 5 ⁇ m.
  • the thermal shock destruction type microcapsule 300 containing the extinguishing material 320 is destroyed when the outer protective film 310 of the thermal shock destruction type microcapsule 300 is destroyed when the external temperature rises above a certain temperature.
  • the external protective film 310 can control the temperature at which the external protective film 310 is dissolved or melted according to the type of the polymer constituting the external protective film 310, and controls the thickness and size of the external protective film 310. By doing so, the rate of discharge of the extinguishing material can also be controlled.
  • the synthetic resin and the thickness and size of the outer protective film 310 of the thermal shock-destructive microcapsule 300 containing the extinguishing material 320 are the method of using and the environment of the thermal shock-destructive microcapsule 300 Can be adjusted accordingly.
  • the outer protective film 310 serves to protect the surface of the thermal shock-destructive microcapsule 300 at normal times, but when a fire occurs and the ambient temperature rises above a certain temperature, the extinguishing material inside the outer protective film 310 (320) ) Is released to the outside, acting as a barrier between the flame and the combustible material, thereby extinguishing the fire early or preventing the fire from spreading.
  • the extinguishing material 320 filled in the thermal shock breaking type microcapsule 300 may be HFC-based materials such as trifluoromethane (HFC-23), trifluoroethane (HFC-125), heptafluoropropane (GFC-227ea), or Any combination of these may be included.
  • the HFC-based material is one of gas-based extinguishing agents, and is an alternative material in which hydrogen is added to the FC-based material. Since it does not contain bromine (Br) and chlorine (Cl), the ozone depletion index (ODP) is close to 0, has low toxicity, and has physical extinguishing.
  • the fire extinguishing material 320 when the crack and heat deformation occurs on the outer protective film 310 is discharged to the outside to extinguish the fire by blocking the air in the encapsulation device for fire extinguishing ('100' in Figure 1) I can do it.
  • the extinguishing material 320 may be a self-extinguishing property, and the extinguishing material 320 has a property that the flame naturally extinguishes due to chemical and physical changes when it comes into contact with a fire. Specifically, when a fire occurs and the extinguishing material 320 is in contact with the flame, the extinguishing material 320 is thermally decomposed to generate carbon dioxide (CO 2 ), water (H 2 O), and oxide to prevent the propagation of the flame or contact the flame. By forming a fire-prevention film on the surface, it is possible to extinguish the fire by interfering with the spread of the flame.
  • the extinguishing material 320 may include a reaction product of ammonium phosphate ((NH4)3PO4), sodium hydrogen carbonate, potassium hydrogen carbonate, and potassium hydrogen carbonate.
  • NH43PO4 ammonium phosphate
  • sodium hydrogen carbonate sodium hydrogen carbonate
  • potassium hydrogen carbonate potassium hydrogen carbonate
  • potassium hydrogen carbonate potassium hydrogen carbonate
  • some extinguishing materials may cause the following reaction in the event of a fire.
  • the thermal decomposition reaction of the extinguishing material 320 provides a smothering effect, a cooling effect, and other extinguishing effects to directly extinguish the surrounding fire.
  • the film layer coated with the heat shock-destructive microcapsule 300 including the extinguishing material 320 is applied, it is possible to obtain an effect of self-extinguishing without propagation to the surroundings even if a fire occurs.
  • the first film layer 202 and the second film layer at a specific density so that the phase change microcapsule 200a and the heat shock fracture type microcapsule 200b are not concentrated over a specific criterion in any one part (204).
  • it may be distributed at a ratio of 1 or more and 100 or less: 1 per unit area (1 cm 2 ).
  • the phase change microcapsules 200a and the thermal shock breaking type microcapsules 200b are uniformly distributed so as to be properly mixed with each other. It may be distributed alternately as shown in Figure 2, but is not necessarily limited to this.
  • the first film layer 202 and the second film layer 204 may be formed of the same material, or may be formed of different materials.
  • a method for filling the phase change microcapsules 200a and the thermal shock fracture type microcapsules 200b inside the first film layer 202 and the second film layer 204 is as follows.
  • the first film layer 202 is formed. Then, the phase change microcapsule 200a and the heat shock fracture type microcapsule 200b are sprayed to fix the phase change microcapsule 200a and the heat shock fracture type microcapsule 200b on top of the first film layer 202. .
  • the phase change microcapsule 200a and the thermal shock fracture type microcapsule 200b have a specific density distribution so as not to concentrate more than a specific criterion on any one part.
  • the phase change microcapsules 200a and the heat shock fracture type microcapsules 200b are preferably uniformly distributed so as to be properly mixed with each other, and may be alternately distributed as shown in FIG. 2.
  • the phase change microcapsule 200a and the thermal shock breaking type microcapsule 200b may be sprayed sequentially or simultaneously. In the case of sequentially spraying, the order of spraying is not limited.
  • a second film layer 204 is formed on the first film layer 202 to which the phase change microcapsule 200a and the heat shock fracture type microcapsule 200b are fixed.
  • the second film layer 204 is integrally combined with the first film layer 202 and consequently, the phase change microcapsules 200a and the thermal shock breaking type micro within the first film layer 202 and the second film layer 204 are formed.
  • the capsule 200b is made to be filled.
  • the post-treatment process may be further performed so that the first film layer 202 and the second film layer 204 are completely in close contact.
  • One embodiment of the present invention is not limited to this, and after the first film layer 202 and the second film layer 204 are sequentially formed, the phase transition within the first film layer 202 and the second film layer 204 is performed. It can also be formed by a method of injecting the microcapsule 200a and the thermal shock breaking type microcapsule 200b. At this time, the first film layer 202 and the second film layer 204 are not sequentially formed, but only one film layer is formed, and then the phase change microcapsules 200a and the thermal shock fracture microcapsules 200b are injected. You can also proceed in the same way.
  • the encapsulation device for fire extinguishing may improve heat storage and heat insulation performance during normal use according to a phase change microcapsule, thereby facilitating thermal management of a battery included in a battery rack.
  • the encapsulation device for fire extinguishing has improved the functions of air blocking, non-flammable, flame retardant, heat reflection, and moisture blocking by applying the heat shock-destructive microcapsules, which may result in fire caused by the batteries in the battery rack. When the air is blocked, it is possible to quickly extinguish the fire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention relates to a fire-extinguishing encapsulation device comprising phase-transition microcapsules, thermal shock fracture-type microcapsules, and first and second film layers comprising therein the phase-transition microcapsules and the thermal shock fracture-type microcapsules. Thus, according to the present invention, when a fire occurs, the fire can be extinguished more rapidly.

Description

화재 소화용 인캡슐레이션 장치Encapsulation device for fire extinguishing
본 발명은 화재 소화용 인캡슐레이션 장비에 관한 것으로, 보다 상세하게는 화재 발생 시 보다 신속하게 화재를 소화시킬 수 있는 화재 소화용 인캡슐레이션 장치에 관한 것이다.The present invention relates to an encapsulation device for extinguishing a fire, and more particularly, to an encapsulation device for extinguishing a fire that can extinguish a fire more quickly when a fire occurs.
일반적으로 ESS(Energy Storage System)는 발전소에서 과잉 생산된 전력을 저장해 두었다가 일시적으로 전력이 부족할 때 송전해주는 저장장치를 말하며, 최근 들어서는 대규모 ESS 장치를 소형으로 구성하여 빌딩, 공장, 가정 등의 일반 수용가에서 정전 대비용 또는 피크 전력 감축용으로 사용하는 경우가 늘고 있다.In general, ESS (Energy Storage System) refers to a storage device that stores excess power generated by a power plant and transmits it temporarily when power is insufficient. In recent years, large-scale ESS devices have been constructed in small sizes to accommodate general customers such as buildings, factories, and homes. In many cases, it is used for blackout preparation or peak power reduction.
최근에는 전력 수급 불균형 등으로 인해 신재생 에너지에 대한 관심이 급격하게 증가하면서, ESS를 통해 신재생 에너지를 활용해 생산된 전기를 저장하고 필요한 시간대에 활용하도록 하는 기술에 대한 개발이 지속적으로 이루어지고 있다.Recently, as interest in new and renewable energy has rapidly increased due to the imbalance in power supply and demand, development of technologies that utilize the new and renewable energy through ESS to store the generated electricity and utilize it at the required time has been continuously developed. have.
특히, 최근 들어 신축되는 공공건물에 대한 ESS의 설치가 의무화되고, 민간건물 등에도 에너지 절감 차원에서 ESS의 설치가 증가함에 따라 ESS 시장은 그 성장을 계속하고 있다.In particular, the ESS market continues to grow in recent years as the installation of ESS is mandatory in public buildings that are newly built, and the installation of ESS in energy savings is also increasing in private buildings.
건물 등에 ESS를 설치하는 경우에는 ESS의 배터리 랙에 에너지를 저장하는 배터리, 배터리를 관리하는 BMS, 전력을 변환하는 PCS 등을 수용하도록 하고, 이러한 배터리 랙을 지하실 또는 옥외 등의 일정 공간에 수용하여 운용토록 하고 있다.When installing an ESS in a building, etc., the battery rack that stores energy in the battery rack of the ESS, the BMS that manages the battery, and the PCS that converts power are accommodated, and the battery rack is accommodated in a basement or a certain space such as outdoors. To be operated.
이때, 외부 온도가 높은 여름철에는 ESS의 배터리 등에서 발생하는 많은 열에 의해 ESS의 온도가 과도하게 상승하게 되고, 이에 따라 화재 발생의 위험이 높으며 ESS의 오류를 발생시키게 되고, 배터리의 성능을 저하시킨다. 그러나 현재에는 ESS가 수용된 공간 전체에 대한 냉난방만이 실시되고 있어, 배터리 랙에 수용된 배터리 각각에 대한 냉각과 보온이 제대로 이루어지지 못하여 효율적이고 안정적인 ESS의 운영이 어려운 실정이다.At this time, in the summer when the external temperature is high, the temperature of the ESS is excessively increased due to a lot of heat generated from the battery of the ESS, thereby increasing the risk of fire, causing an ESS error, and deteriorating the performance of the battery. However, at present, only heating and cooling of the entire space in which the ESS is accommodated is performed, so it is difficult to efficiently and stably operate the ESS because cooling and heat retention for each of the batteries accommodated in the battery rack are not properly performed.
ESS는 많은 열의 발생으로 화재 발생의 위험이 높으나 이에 대한 소방설비가 배터리 랙 단위별로 제대로 갖추어져 있지 않아 화재가 발생할 경우 막대한 재산적 피해 및 대형 화재가 발생할 위험이 매우 높은 상황이다.ESS has a high risk of fire due to the generation of a lot of heat, but fire fighting equipment is not properly equipped for each battery rack unit.
또한, 공간적 제약으로 인해 열관리를 위한 공조 시스템 및 소방 설비의 설치가 어려운 장치에 대해서도 화재를 예방할 수 있는 제품을 요구하고 있는 상황이다.In addition, it is a situation in which a product capable of preventing fire is required for a device that is difficult to install an air conditioning system for heat management and a fire fighting facility due to spatial constraints.
한국특허 10-1229411호는 산화 및 화재 방지용 배터리 팩 및 그 제조 방법에 관한 것으로, 배터리 팩 케이스는 상부 케이스와, 하부 케이스 및 복수개의 측벽 케이스들을 포함한다. 측벽 케이스들 어느 하나에는 내부 공간으로 산화 및 화재 방지용 가스를 충진하기 위한 가스 공급 포트 및 가스 배출 포트가 제공된다. 또 측벽 케이스들 각각은 상호 인접하는 측벽 케이스와 결합하는 결합부가 형성된다. 결합부는 측벽 케이스의 양단이 일정 각도 경사지게 연장된다. 결합부는 인접하는 측벽 케이스들을 상호 결합되는 결합면을 형성한다. 결합면에는 오링이 상하 방향으로 설치된다. 결합된 측벽 케이스들의 상부면과 하부면 각각에는 가스켓이 각각 설치되어 상부 및 하부 케이스와 결합된 것을 특징으로 한다.Korean Patent No. 10-1229411 relates to a battery pack for oxidation and fire prevention and a method for manufacturing the same, and the battery pack case includes an upper case, a lower case, and a plurality of side wall cases. One of the side wall cases is provided with a gas supply port and a gas discharge port for filling the gas for oxidation and fire protection into the interior space. In addition, each of the side wall cases is formed with a coupling portion that engages the adjacent side wall cases. The coupling portion extends at both ends of the side wall case at an angle. The coupling portion forms a coupling surface that mutually couples adjacent side wall cases. O-rings are installed in the vertical direction on the coupling surface. Gaskets are respectively installed on the upper and lower surfaces of the combined sidewall cases, and are characterized by being combined with the upper and lower cases.
한국특허 10-1706717호는 에너지 저장시스템의 배터리팩 화재예방장치에 관한 것으로, 컨테이너의 내부에 내장되고, 일측이 배터리모듈의 진입을 위해 개구되도록 형성되며, 상,하로 복수의 배터리모듈이 적층되도록 배열되는 트레이와 상기 트레이에 적층된 배터리모듈을 향해 배치되며, 상기 복수의 배터리모듈의 온도를 계측하고, 이상 발생시 제어부측으로 신호를 출력하는 열감지수단과 상기 열 감지수단으로부터 출력된 신호를 인가받아 해당되는 배터리모듈로 공급되는 전원을 차단하는 제어신호를 출력하는 제어부와 상기 제어부의 제어신호에 따라 각각의 배터리모듈에 전원을 선택적으로 공급하는 전원공급부와 상기 트레이의 타측에 배치되고, 일측에 복수의 차단판이 서로 이격되도록 상,하로 형성되며, 상기 복수의 배터리모듈에 화재 발생시 제어부에 의해 동작되는 액튜에이터의 이동력에 의해 각 차단판의 단부가 상기 트레이의 내부로 진입되면서 상기 적층된 복수의 배터리모듈을 구획되게 차단하는 차단블록 및 상기 차단블록의 타측에 배치되고, 상기 제어부의 신호가 인가됨에 따라 상기 차단블록을 트레이측으로 이동시키는 로드를 갖는 액튜에이터;를 포함하고, 상기 차단블록은 일측에 형성되고 상기 트레이에 배열되는 배터리모듈들의 이격거리에 대응되도록 이격되게 형성되고 단부가 상기 트레이의 내부로 진입 가능하게 상기 트레이의 타측면에 형성된 삽입공에 각각 결합되는 복수의 차단판과, 일측면에 상기 차단판의 단부들이 연결되고 타측면에 상기 로드와 연동되도록 연결되는 지지플레이트로 구성된 것을 특징으로 한다.Korean Patent No. 10-1706717 relates to a battery pack fire prevention device of an energy storage system, which is built in a container, and is formed so that one side is opened to enter the battery module, and a plurality of battery modules are stacked up and down. It is arranged toward the trays arranged and the battery modules stacked on the tray, and measures the temperatures of the plurality of battery modules and receives the signals output from the heat sensing means and the heat sensing means for outputting signals to the control unit when an abnormality occurs. A control unit for outputting a control signal to cut off the power supplied to the battery module and a power supply unit for selectively supplying power to each battery module according to the control signal of the control unit and the other side of the tray, a plurality of It is formed up and down so that the blocking plates are spaced apart from each other, and when the fire occurs in the plurality of battery modules, the ends of each blocking plate enter the inside of the tray by the movement force of the actuator operated by the controller, and the stacked plurality of battery modules And an actuator disposed on the other side of the blocking block to partition the block, and an actuator having a rod that moves the blocking block to the tray side when a signal from the control unit is applied. The blocking block is formed on one side. A plurality of blocking plates are formed to be spaced apart so as to correspond to the separation distance of the battery modules arranged in the tray, and a plurality of blocking plates respectively coupled to insertion holes formed on the other side of the tray so that the end can enter the inside of the tray, and on one side the It characterized in that the end of the blocking plate is connected and is configured as a support plate that is connected to the other side to be interlocked with the rod.
[선행기술문헌][Advanced technical literature]
[특허문헌][Patent Document]
(특허문헌 0001) 한국등록특허 제10-1229411(20130129)호(Patent Document 0001) Korean Registered Patent No. 10-1229411 (20130129)
(특허문헌 0002) 한국등록특허 제10-1706717(20170208)호(Patent Document 0002) Korean Registered Patent No. 10-1706717 (20170208)
본 발명의 일 실시예는 화재 발생 시 소화성 물질을 방출하는 열 충격 파괴형 마이크로 캡슐을 포함하는 화재 소화용 인캡슐레이션 장치를 제공하고자 한다.One embodiment of the present invention is to provide an encapsulation device for fire extinguishing, including a heat shock destructive microcapsule that emits an extinguishing material in the event of a fire.
본 발명의 일 실시예는 축열 기능이 우수한 상전이 마이크로 캡슐을 포함하는 화재 소화용 인캡슐레이션 장치를 제공하고자 한다.One embodiment of the present invention is to provide an encapsulation device for fire extinguishing that includes a phase change microcapsule having excellent heat storage function.
본 발명의 일 실시예는 열 충격 파괴형 마이크로 캡슐과 상전이 마이크로 캡슐을 포함하는 필름층을 적용하여 장치 내 화재 발생 시 신속하게 화재를 소화시킬 수 있는 화재 소화용 인캡슐레이션 장치를 제공하고자 한다.One embodiment of the present invention is to provide an encapsulation device for fire extinguishing that can quickly extinguish a fire in the event of a fire in the device by applying a film layer including a heat shock-destructive microcapsule and a phase change microcapsule.
실시예들 중에서, 화재 소화용 인캡슐레이션 장치는 상전이 마이크로 캡슐, 열 충격 파괴형 마이크로 캡슐, 상기 상전이 마이크로 캡슐 및 상기 열 충격 파괴형 마이크로 캡슐을 내부에 포함하는 제1 및 제2 필름층들을 포함한다.Among the embodiments, the encapsulation device for fire extinguishing includes first and second film layers including a phase change microcapsule, a heat shock fracture type microcapsule, the phase change microcapsule, and the heat shock fracture type microcapsule therein. do.
상기 상전이 마이크로 캡슐 및 상기 열 충격 파괴형 마이크로 캡슐은 어느 한 부분에 특정 기준 이상 집중되지 않도록 특정 밀도로 상기 제1 및 제2 필름층들 사이에 분포되는 것을 특징으로 한다.The phase change microcapsule and the heat shock fracture type microcapsule are characterized in that they are distributed between the first and second film layers at a specific density so as not to concentrate more than a certain criterion on any one part.
상기 상전이 마이크로 캡슐 및 상기 열 충격 파괴형 마이크로 캡슐은 단위 면적당 (1cm 2) 1 이상 100 이하 : 1의 비율로 배치되는 것을 특징으로 한다.The phase change microcapsule and the heat shock fracture type microcapsule are characterized in that they are arranged in a ratio of (1 cm 2 ) 1 or more and 100 or less: 1 per unit area.
상기 열 충격 파괴형 마이크로 캡슐은 특정 온도 이상에서 크랙(Crack)이 발생하는 외부 보호막을 포함한다. 또한, 열 충격 파괴형 마이크로 캡슐내부에 충진되고, 상기 크랙의 발생에 따라 외부에 방출되는 소화성 물질을 포함하는 것을 특징으로 한다.The thermal shock breaking type microcapsule includes an external protective film that cracks at a specific temperature or higher. In addition, it is characterized in that it contains a fire-extinguishing type microcapsule filled in the inside, and the extinguishing material released to the outside according to the occurrence of the crack.
상기 상전이 마이크로 캡슐은 1-도데카놀, 파라핀 오일, 포르말린산, 락트산, 메틸 팔미테이트, 페닐론,도카실 브로마이드, 카프릴론, 페놀, 헵타데카논, 1-시클로헥실옥타데칸, 4-헵타데카논, P-졸뤼딘(Joluidine), 시안 아미드, 메틸 에이코사네이트(eicosanate), 3-헵타데카논, 2-헵타데카논, 히드로신남산, 세틸 알코올, A-넵틸아민, 캄펜, O-니트로 아닐린, 9-헵타데카논, 티몰, 메틸 베헤 네이트, 디페닐 아민, P-디클로로 벤젠, 옥솔레이트, 하이포산, O-크실렌 디 클로라이드, B-클로로산, 클로로 아세트산, 니트로 나프탈렌, 트리미리스틴, 헵타운데실산, A-클로로산, 꿀벌 왁스, 글리콜산, P-브로모 페놀, 아조벤젠, 아크릴산, 딘토 톨루엔(2,4), 페닐 아세트산, 티오시나민, 브로캄포(Bromcamphor), 듀렌, 벤질, 메틸 브롬브레조에이트, 알파 나프톨, 글루타르산, p-크실렌 디 클로라이드, 카테콜, 퀴논, 아세트 아닐리드, 숙신산 무수물, 벤조산, 스티벤 또는 이들의 유도체 중 선택된 어느 하나로 형성되며, 제1 온도 이상으로 외부 온도가 올라가면 일시적으로 해당 열을 흡수하고, 제2 온도 이하로 상기 외부 온도가 떨어지면 상기 일시적으로 흡수한 열을 방출하는 것을 특징으로 한다.The phase change microcapsules are 1-dodecanol, paraffin oil, formalinic acid, lactic acid, methyl palmitate, phenylone, dokasil bromide, caprylone, phenol, heptadecanone, 1-cyclohexyloctadecane, 4-heptade Canon, P-zolidine, cyanamide, methyl eicosanate, 3-heptadecanone, 2-heptadecanone, hydrocinnamic acid, cetyl alcohol, A-neptylamine, camphor, O-nitro Aniline, 9-heptadecanone, thymol, methyl behenate, diphenyl amine, P-dichloro benzene, oxoleate, hypoic acid, O-xylene dichloride, B-chloroic acid, chloroacetic acid, nitronaphthalene, trimiristin, Heptowndecyl Acid, A-Chloroic Acid, Bee Wax, Glycolic Acid, P-Bromo Phenolic, Azobenzene, Acrylic Acid, Dinto Toluene (2,4), Phenyl Acetic Acid, Thiosinamine, Brocamphor, Duren, Benzyl , Methyl bromide, alpha naphthol, glutaric acid, p-xylene dichloride, catechol, quinone, acetanilide, succinic anhydride, benzoic acid, styrene, or derivatives thereof. It is characterized in that when the external temperature rises, the corresponding heat is temporarily absorbed, and when the external temperature falls below a second temperature, the temporarily absorbed heat is released.
상기 화재 소화용 인캡슐레이션 장치는 내부에 배터리를 포함하는 배터리 랙을 감싸는데 사용되는 것을 특징으로 한다.The encapsulation device for fire extinguishing is characterized in that it is used to wrap a battery rack containing a battery therein.
개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.The disclosed technology can have the following effects. However, since the specific embodiment does not mean that all of the following effects should be included or only the following effects are included, the scope of rights of the disclosed technology should not be understood as being limited thereby.
본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치는 화재발생 시 소화성 물질을 방출하는 열 충격 파괴형 마이크로 캡슐을 포함할 수 있다.An encapsulation device for extinguishing a fire according to an embodiment of the present invention may include a heat shock-destructive microcapsule that releases an extinguishing material in the event of a fire.
본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치는 축열기능이 우수한 상전이 마이크로 캡슐을 포함할 수 있다.The encapsulation device for fire extinguishing according to an embodiment of the present invention may include a phase change microcapsule having excellent heat storage function.
본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치는 열충격 파괴형 마이크로 캡슐과 상전이 마이크로 캡슐을 포함하는 필름층을 적용하여 장치 내 화재 발생 시 신속하게 화재를 소화시킬 수 있다.The encapsulation device for extinguishing a fire according to an embodiment of the present invention can quickly extinguish a fire in the event of a fire in the device by applying a film layer including a thermal shock breaking type microcapsule and a phase change microcapsule.
도 1은 본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치의 구성을 개략적으로 도시한 도면이다.1 is a view schematically showing the configuration of an encapsulation device for extinguishing a fire according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치에 포함된 필름층을 개략적으로 도시한 단면도이다.2 is a cross-sectional view schematically showing a film layer included in an encapsulation device for extinguishing a fire according to an embodiment of the present invention.
도 3은 도 2에 있는 열 충격 파괴형 마이크로 캡슐을 개략적으로 도시한 단면도이다.FIG. 3 is a cross-sectional view schematically showing the thermal shock fracture type microcapsule in FIG. 2.
[부호의 설명][Description of codes]
100 : 화재 소화용 인캡슐레이션 장치 110, 200 :필름층100: fire extinguishing encapsulation device 110, 200: film layer
110a, 200a : 상전이 마이크로 캡슐110a, 200a: phase transition microcapsules
110b, 200b, 300 : 열 충격 파괴형 마이크로 캡슐110b, 200b, 300: heat shock fracture type micro capsule
120 : 배터리 셀 202 : 제1 필름층120: battery cell 202: first film layer
204 : 제2 필름층 310 : 외부 보호막204: second film layer 310: outer protective film
320 : 소화성 물질320: extinguishing material
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.Since the description of the present invention is merely an example for structural or functional description, the scope of the present invention should not be interpreted as being limited by the examples described in the text. That is, since the embodiments can be variously changed and have various forms, it should be understood that the scope of the present invention includes equivalents capable of realizing technical ideas. In addition, the purpose or effect presented in the present invention does not mean that a specific embodiment should include all of them or only such an effect, and the scope of the present invention should not be understood as being limited thereby.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.Meanwhile, the meaning of terms described in the present application should be understood as follows.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다.Terms such as "first" and "second" are for distinguishing one component from other components, and the scope of rights should not be limited by these terms.
예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.For example, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
어떤 구성요소가 다른 구성요소에 "연결되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is said to be "connected" to another component, it may be understood that other components may exist in the middle, although they may be directly connected to the other component. On the other hand, when a component is said to be "directly connected" to another component, it should be understood that no other component exists in the middle. On the other hand, other expressions describing the relationship between the components, that is, "between" and "immediately between" or "neighboring to" and "directly neighboring to" should be interpreted similarly.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다"또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions are to be understood as including plural expressions unless the context clearly indicates otherwise, and terms such as “comprises” or “have” are used features, numbers, steps, actions, components, parts or the like. It is to be understood that a combination is intended to indicate the existence, and does not preclude the existence or addition possibility of one or more other features or numbers, steps, operations, components, parts or combinations thereof.
각 단계들에 있어 식별부호(예를 들어, a, b, c 등)는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In each step, the identification code (for example, a, b, c, etc.) is used for convenience of explanation. The identification code does not describe the order of each step, and each step clearly identifies a specific order in context. Unless stated, it may occur in a different order than specified. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein have the same meaning as generally understood by a person skilled in the art to which the present invention pertains, unless otherwise defined. The terms defined in the commonly used dictionary should be interpreted as being consistent with the meanings in the context of the related art, and cannot be interpreted as having ideal or excessively formal meanings unless explicitly defined in the present application.
도 1은 본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치의 구성을 개략적으로 도시한 도면이다.1 is a view schematically showing the configuration of an encapsulation device for extinguishing a fire according to an embodiment of the present invention.
도 1을 참조하면, 화재 소화용 인캡슐레이션 장치(100)는 내벽에 상전이 마이크로 캡슐(110a) 및 열 충격 파괴형 마이크로 캡슐(110b)을 포함하는 필름층(110)을 포함할 수 있다.Referring to FIG. 1, the encapsulation device 100 for fire extinguishing may include a film layer 110 including a phase change microcapsule 110a and a thermal shock breaking microcapsule 110b on an inner wall.
일 실시예에서, 화재 소화용 인캡슐레이션 장치(100)는 ESS(Energy Storage System, 에너지 저장 시스템)의 배터리 랙을 감싸는데 사용될 수 있다.In one embodiment, the encapsulation device 100 for fire extinguishing may be used to wrap a battery rack of an ESS (Energy Storage System).
ESS는 잉여 생산된 전기를 저장하거나 신 재생 에너지를 활용해서 생산된 전기를 필요한 시간대에 사용 가능하도록 할 수 있는 장치로서, 전기수요가 적은 시간에 유휴전력을 저장해두었다가 수요가 많은 시간대에 전기를 공급하여 안정적으로 전력을 활용하고자 하는 시스템이다. 여기서는 ESS 에서의 화재 소화용 인캡슐레이션장치(100)를 예를 들어 설명하였으나, 본 발명의 일 실시예는 이에 한정되지 않고, 공간적 제약으로 인해 열 관리를 위한 공조 시스템 및 화재 발생시 소화 가능한 소방 설비의 설치가 어려운 소형 함체 내에 적용할 수도 있다.ESS is a device that can store surplus-produced electricity or make use of renewable energy to use the produced electricity at the required time. It stores idle power at times when electricity demand is low and supplies electricity in times of high demand. It is a system that wants to use power stably. Here, the encapsulation device 100 for fire extinguishing in the ESS has been described as an example, but one embodiment of the present invention is not limited to this, and the air conditioning system for heat management and the fire extinguishing system capable of extinguishing in the event of a fire due to spatial constraints It can be applied in a small enclosure that is difficult to install.
화재 소화용 인캡슐레이션 장치(100)는 다수의 배터리 셀(120)을 포함할 수 있다. 다수의 배터리 셀(120)은 화재 소화용 인캡슐레이션 장치(100) 내에서 좌우 방향으로 나란하게 이웃하여 배치될 수 있다. 또한, 도시되지는 않았지만, 다수의 배터리 셀(120)은 화재 소화용 인캡슐레이션 장치(100) 내에서 상하 방향으로 적층되어 배치될 수 있다. 여기에서, 배터리 셀(120) 간의 간격은 동일할 수 도 있고, 서로 다른 간격으로 배치될 수도 있다.The encapsulation device 100 for fire extinguishing may include a plurality of battery cells 120. The plurality of battery cells 120 may be disposed adjacent to each other in a horizontal direction in the encapsulation device 100 for fire extinguishing. In addition, although not shown, the plurality of battery cells 120 may be arranged to be stacked in the vertical direction in the encapsulation device 100 for fire extinguishing. Here, the intervals between the battery cells 120 may be the same or may be arranged at different intervals.
화재 소화용 인캡슐레이션 장치(100)의 필름층(110)은 상전이 마이크로 캡슐(110a)을 포함한다. 여기에서, 상전이 마이크로 캡슐(110a)은 상전이 물질(PCM: Phase Changing Materials)으로 구성된다.The film layer 110 of the encapsulation device 100 for fire extinguishing includes a phase change microcapsule 110a. Here, the phase change microcapsule 110a is made of phase changing materials (PCM).
상전이 물질을 포함하는 상전이 마이크로 캡슐(110a)은 고온의 환경에서 제1 온도 이상으로 외부 온도가 올라가면 일시적으로 해당 열을 흡수한다. 한편, 저온의 환경에서 제2 온도 이하로 외부 온도가 떨어지면 일시적으로 흡수한 열을 방출한다.The phase change microcapsule 110a including the phase change material temporarily absorbs the corresponding heat when the external temperature rises above the first temperature in a high temperature environment. On the other hand, when the external temperature falls below the second temperature in a low temperature environment, the absorbed heat is released temporarily.
더욱 구체적으로 설명하면, 화재 소화용 인캡슐레이션 장치(100) 내의 온도가 제1 온도 이상의 고온으로 올라가면 상전이 마이크로 캡슐(110a)의 상전이 물질은 일시적으로 외부의 열을 흡수하여, 화재 소화용 인캡슐레이션 장치(100)내의 온도를 하강시킬 수 있다. 또한, 화재 소화용 인캡슐레이션 장치(100) 내의 온도가 제2 온도 이하의 저온으로 떨어지면 상전이 마이크로 캡슐(110a)의 상전이 물질은 화재 소화용 인캡슐레이션 장치(100) 내의 온도가 제1 온도 이상의 고온으로 올라갔을 때 일시적으로 흡수하였던 열을 방출하여 화재 소화용 인캡슐레이션장치(100) 내의 온도를 상승시킬 수 있다.More specifically, when the temperature in the encapsulation device 100 for fire extinguishing rises to a higher temperature than the first temperature, the phase change material of the phase change microcapsule 110a temporarily absorbs external heat, thereby encapsulating the fire. The temperature in the migration device 100 may be lowered. In addition, when the temperature in the encapsulation device 100 for fire extinguishing falls to a low temperature below the second temperature, the phase change material of the phase change microcapsule 110a has a temperature in the encapsulation device 100 for fire extinguishing more than the first temperature. The temperature in the encapsulation device 100 for fire extinguishing may be increased by releasing heat that was temporarily absorbed when the temperature rises.
따라서, 외부 온도에 따라 반응하는 상전이 마이크로 캡슐(110a)의 축열 및 발열 기능으로 화재 소화용 인캡슐레이션 장치(100) 내의 온도를 일정하게 유지시킬 수 있으며, 이에 따라 화재 소화용 인캡슐레이션 장치(100) 내의 단열효과를 향상시킬 수 있다.Therefore, the temperature in the encapsulation device 100 for fire extinguishing can be kept constant by the heat storage and heat generation function of the phase change microcapsule 110a reacting according to the external temperature, and accordingly, the encapsulation device for fire extinguishing ( 100) can improve the insulation effect.
또한, 화재 소화용 인캡슐레이션 장치(100)의 필름층(110)은 열 충격 파괴형 마이크로 캡슐(110b)을 포함한다. 열 충격 파괴형 마이크로 캡슐(110b)은 특정 온도 이상에서 크랙(Crack) 및 열 변형이 발생하는 외부 보호막을 포함한다. 그리고, 상기 외부 보호막의 크랙 및 열 변형에 따라 외부로 방출되는 소화성물질이 내부에 충진되어 있다.In addition, the film layer 110 of the encapsulation device 100 for fire extinguishing includes a thermal shock breaking type microcapsule 110b. The thermal shock breaking type microcapsule 110b includes an external protective film that cracks and heat deforms at a specific temperature or higher. In addition, an extinguishing material discharged to the outside according to cracks and thermal deformation of the external protective film is filled therein.
열 충격 파괴형 마이크로 캡슐(110b)은 특정 온도 이상 예컨대, 배터리 화재 발생 시 외부 보호막에 크랙이나 열변형이 발생되고, 상기 크랙이나 열변형이 발생하면 내부에 충진된 소화성 물질이 외부로 방출된다. 소화성 물질이 외부로 방출됨에 따라 열분해 되면서 이산화탄소(CO2), 물(H2O) 및 산화물이 발생하여 화염의 전파를 방해하거나 화염에 접하는 표면에 화재 전파 방지막을 형성하여 화염의 전파를 방해하여 화재를 소화시킬 수 있다. 즉, 화재 소화용 인캡슐레이션 장치(100) 내에 화재가 발생하면 열 충격 파괴형 마이크로 캡슐(110b) 내의 소화성 물질이 방출되면서 신속한 화재 소화가 가능하다.In the heat shock-destructive microcapsule 110b, a crack or heat deformation is generated in an external protective film when a battery fire occurs over a certain temperature, and when the crack or heat deformation occurs, the extinguishing material filled therein is released to the outside. Carbon dioxide (CO2), water (H2O), and oxides are generated as pyrolysis occurs as the extinguishing material is released to the outside to prevent the propagation of the flame or to prevent the propagation of the fire by preventing the propagation of the flame by forming a fire-prevention film on the surface in contact with the flame I can do it. That is, when a fire occurs in the encapsulation device 100 for fire extinguishing, it is possible to rapidly extinguish the fire while the extinguishing material in the heat shock destructive microcapsule 110b is released.
도 2는 본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치에 포함된 필름층을 개략적으로 도시한 단면도로서, 화재 소화용 인캡슐레이션 장치(도1의 '100')의 내벽에 구비된 기능성 필름층(도 1의 '110')을 보다 구체적으로 도시한 도면이다.2 is a cross-sectional view schematically showing a film layer included in an encapsulation device for extinguishing a fire according to an embodiment of the present invention, provided on an inner wall of an encapsulation device for extinguishing a fire ('100' in FIG. 1) The functional film layer ('110' in FIG. 1) is shown in more detail.
도 2를 참조하면, 필름층(200)은 제1 필름층(202) 및 제2 필름층(204)을 포함한다.Referring to FIG. 2, the film layer 200 includes a first film layer 202 and a second film layer 204.
제1 필름층(202) 및 제2 필름층(204)은 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)를 포함한다. 상전이 마이크로 캡슐(200a)은 상전이물질(PCM phase change material)로 충진된다. 상전이 물질은 탄소수가 13 ~ 28개인 파라핀(CnH2n+2), 지방산(CH 3(CH 2)2nCOOH) 또는 이들의 혼합물에서 선택되는 어느 하나 이상인 것을 사용할 수 있는데 상전이 물질의 사용 용도에 따라 선택하는 것이 좋다. 예를 들어 옥타데칸(octadecane)의 녹는점은 28 ℃로 상온부근에서 반응하는 상전이 물질로 선택할 수 있다. 이외 테트라데칸(tetradecan)은 55 ℃, 펜타데칸 (pentadecan)은 10 ℃, 옥타코산 (octacosan)은 61℃의 녹는점을 가지고 있어 다양한 온도의 상전이 물질을 선택할 수 있으며 두 가지 이상의 상전이 물질을 혼합하여 사용할 수 있다.The first film layer 202 and the second film layer 204 include a phase change microcapsule 200a and a thermal shock breaking type microcapsule 200b. The phase change microcapsule 200a is filled with a phase change material (PCM phase change material). As the phase change material, paraffin (CnH2n+2) having 13 to 28 carbon atoms, fatty acid (CH 3 (CH 2 )2nCOOH), or a mixture thereof may be used, or one or more selected from the phase change material. good. For example, the melting point of octadecane is 28°C, which can be selected as a phase change material that reacts near room temperature. Besides, tetradecan has a melting point of 55°C, pentadecan has 10°C, and octacosan has a melting point of 61°C, so it is possible to select a phase change material at various temperatures. Can be used.
또한, 상기 상전이 물질은 특정 온도에서 고체와 액체로 상을 변화시키면서 열을 흡수하거나 방출하여 열을 제어할 수 있다. 이러한 상전이 물질은 상 변화에 따른 형태 유지를 위해 일반적으로 캡슐 안에 포집된 형태로 사용한다.In addition, the phase change material may control heat by absorbing or releasing heat while changing the phase from a specific temperature to a solid and a liquid. This phase change material is generally used in a form encapsulated in a capsule to maintain the shape according to the phase change.
상전이 물질은 1-도데카놀, 파라핀 오일, 포르말린산, 락트산, 메틸팔미테이트, 페닐론,도카실 브로마이드, 카프릴론, 페놀, 헵타데카논, 1-시클로헥실옥타데칸, 4-헵타데카논, P-졸뤼딘(Joluidine), 시안 아미드, 메틸 에이코사네이트(eicosanate), 3-헵타데카논, 2-헵타데카논, 히드로신남산, 세틸 알코올, A-넵틸아민, 캄펜, O-니트로 아닐린, 9-헵타데카논, 티몰, 메틸 베헤 네이트, 디페닐 아민, P-디클로로 벤젠, 옥솔레이트, 하이포산, O-크실렌 디 클로라이드, B-클로로산, 클로로 아세트산, 니트로 나프탈렌, 트리미리스틴, 헵타운데실산, A-클로로산, 꿀벌 왁스, 글리콜산, P-브로모 페놀, 아조벤젠, 아크릴산, 딘토 톨루엔(2,4), 페닐 아세트산, 티오시나민, 브로캄포(Bromcamphor), 듀렌, 벤질, 메틸 브롬브레조에이트, 알파 나프톨, 글루타르산, p-크실렌 디 클로라이드, 카테콜, 퀴논, 아세트 아닐리드, 숙신산 무수물, 벤조산, 스티벤 또는 이들의 유도체 중 선택된 어느 하나로 형성될 수 있다.Phase change materials include 1-dodecanol, paraffin oil, formalinic acid, lactic acid, methyl palmitate, phenylone, dokasyl bromide, caprylone, phenol, heptadecanone, 1-cyclohexyloctadecane, 4-heptadecanone, P-zolidine, cyanamide, methyl eicosanate, 3-heptadecanone, 2-heptadecanone, hydrocinnamic acid, cetyl alcohol, A-neptylamine, kampen, O-nitroaniline, 9-heptadecanone, thymol, methyl behenate, diphenyl amine, P-dichlorobenzene, oxoleate, hypoic acid, O-xylene dichloride, B-chloroic acid, chloroacetic acid, nitronaphthalene, trimiristin, heptown Decyl acid, A-chloro acid, bee wax, glycolic acid, P-bromo phenol, azobenzene, acrylic acid, ditotoluene (2,4), phenyl acetic acid, thiocinamine, bromcamphor, duren, benzyl, methyl It can be formed of any one selected from brombrezoate, alpha naphthol, glutaric acid, p-xylene dichloride, catechol, quinone, acetanilide, succinic anhydride, benzoic acid, stiven or derivatives thereof.
상전이 마이크로 캡슐(200a)은 테두리를 둘러싸는 표면 보호막(미도시)을 추가적으로 포함할 수 있다. 상전이 마이크로 캡슐(200a) 내부에 있는 상전이 물질은 온도변화에 민감하여 온도 상승 시 고체에서 액체로 변화될 수 있으므로 상전이 마이크로 캡슐(200a) 표면을 둘러싸는 표면 보호막은 다양한 고분자로 선정할 수 있는데 복합재 제조에서 열적인 안정성을 확보할 수 있는 물질을 선정하여 상전이 물질을 안전하게 포집시킬 수 있다. 상기 표면 보호막(미도시)의 두께가 50nm 보다 얇으면 캡슐을 안정화시킬 수 없고 상기 표면 보호막(미도시)의 두께가 500 nm 보다 두꺼우면 상기 표면 보호막(미도시)에 의해 전해진 열이 캡슐 안의 상전이 물질까지 도달하는 시간이 길어지게 되므로, 표면 보호막(미도시)의 두께는 50 ~ 500 nm 인 것이 바람직하다.The phase change microcapsule 200a may additionally include a surface protective film (not shown) surrounding the edge. Since the phase change material inside the phase change microcapsule 200a is sensitive to temperature changes and may change from a solid to a liquid when the temperature rises, the surface protective film surrounding the surface of the phase change microcapsule 200a can be selected from various polymers. The material that can secure thermal stability can be selected to safely collect the phase change material. When the thickness of the surface protective film (not shown) is thinner than 50 nm, the capsule cannot be stabilized, and when the thickness of the surface protective film (not shown) is thicker than 500 nm, heat transferred by the surface protective film (not shown) is phase-transfered in the capsule. Since the time to reach the material becomes longer, the thickness of the surface protective film (not shown) is preferably 50 to 500 nm.
상전이 마이크로 캡슐(200a)을 둘러싸는 상기 표면 보호막(미도시)은 폴리 우레탄, 폴리우레아, 폴리카보네이트, 에폭시, 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리에테르, 폴리비닐 알콜, 아크릴 수지, 폴리아마이드, 폴리메틸메타크릴레이트, 에틸렌/비닐 아세테이트 공중합체, 멜라민 수지, 셀롤로오스, 아이소보르닐 메타크릴레이트와 (메트)아크릴산 공중합체, 나일론, 젤라틴, 포름알데하이드, 멜라닌 및 이들의 (공)중합체 등으로부터 하나 또는 둘 이상의 혼합물질을 포함할 수 있다.The surface protective film (not shown) surrounding the phase change microcapsule 200a is polyurethane, polyurea, polycarbonate, epoxy, polystyrene, polyethylene, polypropylene, polyester, polyether, polyvinyl alcohol, acrylic resin, polyamide , Polymethylmethacrylate, ethylene/vinyl acetate copolymer, melamine resin, cellulose, isobornyl methacrylate and (meth)acrylic acid copolymer, nylon, gelatin, formaldehyde, melanin and their (co)polymers Etc. may include one or more mixtures.
상전이 마이크로 캡슐(200a)은 크기가 1 ~ 100 μm 인 것을 사용하는 것이 좋다. 이때 상전이 마이크로 캡슐(200a)의 크기가 1μm 보다 작으면 마이크로 캡슐의 크기가 작아 상기 표면 보호막(미도시) 코팅 시 분산효과를 극대화하기 어렵다. 반면 상전이 마이크로 캡슐(200a)의 크기가 100 μm 보다 커지면 상전이 마이크로 캡슐(200a)의 안정성과 고분자 물성에 영향을 줄 수 있다.It is preferable to use a phase transition microcapsule 200a having a size of 1 to 100 μm. At this time, if the size of the phase change microcapsule 200a is smaller than 1 μm, the size of the microcapsule is small, so it is difficult to maximize the dispersion effect when coating the surface protective film (not shown). On the other hand, if the size of the phase change microcapsule 200a is greater than 100 μm, the phase change may affect the stability and polymer properties of the microcapsule 200a.
더욱 구체적으로 설명하면, 화재 소화용 인캡슐레이션 장치(도 1의 '100') 내의 온도가 제1 온도 이상의 고온으로 올라가면 상전이 마이크로 캡슐(200a)의 상전이 물질은 일시적으로 외부의 열을 흡수하여, 화재 소화용 인캡슐레이션 장치(도 1의 '100') 내의 온도를 하강시킬 수 있다. 또한, 화재 소화용 인캡슐레이션 장치(도 1의 '100') 내의 온도가 제2 온도 이하의 저온으로 떨어지면 상전이 마이크로 캡슐(200a)의 상전이 물질은 화재 소화용 인캡슐레이션 장치(도 1의 '100') 내의 온도가 제1 온도 이상의 고온으로 올라갔을 때 일시적으로 흡수하였던 열을 방출하여 화재 소화용 인캡슐레이션 장치(도 1의 '100') 내의 온도를 상승시킬 수 있다.More specifically, when the temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1) rises to a higher temperature than the first temperature, the phase change material of the phase change microcapsule 200a temporarily absorbs external heat, The temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1) may be lowered. In addition, when the temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1) falls to a lower temperature than the second temperature, the phase change material of the phase change microcapsule 200a is an encapsulation device for fire extinguishing (' When the temperature in the 100') rises to a high temperature above the first temperature, the heat absorbed temporarily can be released to increase the temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1).
따라서, 외부 온도에 따라 반응하는 상전이 마이크로 캡슐(200a)의 축열 및 발열 기능으로 화재 소화용 인캡슐레이션 장치(도 1의 '100') 내의 온도를 일정하게 유지시킬 수 있으며, 이에 따라 화재 소화용 인캡슐레이션 장치(도 1의 '100') 내의 단열 효과를 향상시킬 수 있다.Therefore, the temperature in the encapsulation device for fire extinguishing ('100' in FIG. 1) can be kept constant by the heat storage and heat generation function of the phase change microcapsule 200a that reacts according to the external temperature, and accordingly, for fire extinguishing It is possible to improve the thermal insulation effect in the encapsulation device ('100' in FIG. 1).
또한, 본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치는 열 충격 파괴형 마이크로 캡슐(200b)을 포함한다. 열 충격 파괴형 마이크로 캡슐(200b)은 특정 온도 이상에서 크랙(Crack) 및 열 변형이 발생하는 외부 보호막을 포함한다. 그리고, 상기 외부 보호막의 크랙 및 열 변형에 따라 외부로 방출되는 소화성 물질이 내부에 충진되어 있다. 열 충격 파괴형 마이크로 캡슐(200b)은 특정온도 이상 예컨대, 배터리 화재 발생 시 외부 보호막에 크랙이나 열 변형이 발생되고, 상기 크랙이나 열 변형이 발생하면 내부에 충진된 소화성 물질이 외부로 방출된다.In addition, the encapsulation device for fire extinguishing according to an embodiment of the present invention includes a thermal shock breaking type microcapsule 200b. The thermal shock breaking type microcapsule 200b includes an external protective film that cracks and thermally deforms at a specific temperature or higher. In addition, an extinguishing material discharged to the outside according to cracks and thermal deformation of the external protective film is filled therein. The thermal shock breaking type microcapsule 200b is cracked or thermally deformed on an external protective film when a battery fire occurs over a certain temperature, and when the crack or thermally deformed, the extinguishing material filled therein is released to the outside.
구체적으로, 아래의 도 3을 참조하여 열 충격 파괴형 마이크로 캡슐의 구성을 설명하면 다음과 같다.Specifically, referring to FIG. 3 below, the configuration of the thermal shock breaking type microcapsule is as follows.
도 3은 본 발명의 일 실시예에 따른 화재 소화용 인캡슐레이션 장치에 포함된 열 충격 파괴형 마이크로 캡슐을 개략적으로 도시한 단면도이다.3 is a cross-sectional view schematically showing a microcapsule of thermal shock destruction included in an encapsulation device for extinguishing a fire according to an embodiment of the present invention.
도 3을 참조하면, 열 충격 파괴형 마이크로 캡슐(300)은 테두리를 둘러싸는 외부 보호막(310)을 포함한다. 외부 보호막(310)은 화재 소화용 인캡슐레이션 장치(도 1 '100') 내의 온도가 특정 온도 이상이 될 때 크랙(Crack)이나 열변형이 발생한다. 그리고, 열 충격 파괴형 마이크로 캡슐(300) 의 외부 보호막(310) 내에는 소화성 물질(320)이 충진되어 있다. 소화성 물질(320)은 특정 온도 이상에서 외부 보호막(310)에 크랙이나 열 변형이 발생되면, 외부 보호막(310)을 뚫고 외부로 방출된다.Referring to FIG. 3, the thermal shock breaking type microcapsule 300 includes an outer protective layer 310 surrounding the rim. When the temperature in the encapsulation device for fire extinguishing (FIG. 1 '100') exceeds a certain temperature, a crack or heat deformation occurs. In addition, the extinguishing material 320 is filled in the outer protective layer 310 of the thermal shock breaking type microcapsule 300. When a crack or heat deformation occurs in the outer protective layer 310 at a specific temperature or higher, the extinguishing material 320 penetrates the outer protective layer 310 and is discharged to the outside.
소화성 물질(320)이 포함된 열 충격 파괴형 마이크로 캡슐(300)의 형태는 도 1 내지 도 3에서 구형으로 형성된 예를 제시하였으나, 이에 한정되지 않고 다양한 형태를 가질 수 있으며, 바람직하게는 구형, 타원형, 원기둥형, 또는 다각기둥 형태일 수 있다. 열 충격 파괴형 마이크로 캡슐(300)의 크기는 약 001 ~ 10㎛, 보다 바람직하게는 약 01 ~ 5㎛ 크기일 수 있다.The shape of the heat shock-destructive microcapsule 300 containing the extinguishing material 320 is shown in the example formed in a spherical shape in FIGS. 1 to 3, but is not limited thereto and may have various shapes, preferably spherical, It may be oval, cylindrical, or polygonal. The size of the thermal shock breaking type microcapsule 300 may be about 001 to 10 μm, more preferably about 01 to 5 μm.
소화성 물질(320)이 포함된 열 충격 파괴형 마이크로 캡슐(300)은 외부 온도가 특정 온도 이상으로 상승하게 되면 열 충격 파괴형 마이크로 캡슐(300)의 외부 보호막(310)이 파괴되면서 내부의 소화성 물질(320)이 외부로 방출되는 것으로서, 외부 보호막(310)을 이루고 있는 고분자의 종류에 따라 외부 보호막(310)이 와해되거나 녹는 온도를 제어할 수 있으며, 외부 보호막(310)의 두께 및 크기를 제어함으로써, 소화물질의 방출 속도도 제어할 수 있다. 따라서, 소화성 물질(320)이 포함된 열 충격 파괴형 마이크로 캡슐(300)의 외부 보호막(310)의 이루고 있는 합성 수지 및 두께, 크기는 열 충격 파괴형 마이크로 캡슐(300)이 사용방법, 사용환경에 따라 적절하게 조절될 수 있다.The thermal shock destruction type microcapsule 300 containing the extinguishing material 320 is destroyed when the outer protective film 310 of the thermal shock destruction type microcapsule 300 is destroyed when the external temperature rises above a certain temperature. As the 320 is released to the outside, the external protective film 310 can control the temperature at which the external protective film 310 is dissolved or melted according to the type of the polymer constituting the external protective film 310, and controls the thickness and size of the external protective film 310. By doing so, the rate of discharge of the extinguishing material can also be controlled. Therefore, the synthetic resin and the thickness and size of the outer protective film 310 of the thermal shock-destructive microcapsule 300 containing the extinguishing material 320 are the method of using and the environment of the thermal shock-destructive microcapsule 300 Can be adjusted accordingly.
외부 보호막(310)은 평상시에는 열 충격 파괴형 마이크로 캡슐(300) 표면을 보호하는 역할을 하다가, 화재가 발생되어 특정 온도 이상으로 주변 온도가 상승하게 되면 외부 보호막(310) 내부의 소화성 물질(320)이 외부로 방출됨으로써 불꽃과 가연물 사이의 방벽 역할을 하여 초기에 화재를 진압하거나 화재가 번지는 것을 예방할 수 있다.The outer protective film 310 serves to protect the surface of the thermal shock-destructive microcapsule 300 at normal times, but when a fire occurs and the ambient temperature rises above a certain temperature, the extinguishing material inside the outer protective film 310 (320) ) Is released to the outside, acting as a barrier between the flame and the combustible material, thereby extinguishing the fire early or preventing the fire from spreading.
열 충격 파괴형 마이크로 캡슐(300)의 외부 보호막(310)은 규소계 갤=알콕시실란(alkoxysliane)의 가수분해(hydrolysis) 생성물, 젤라틴 또는 그 유도체, 요소수지, 레조르시놀 수지, 멜라민 수지, 페놀 수지 및 폴리비닐아세탈, 폴리비닐 알코올, 폴리 아세트산 비닐, 에폭시 계열, 라텍스, 아크릴, 아키드, 글리프 탈수지, 알콕시실란의 겔 화합물, 그 가수분해 축합물, 폴리우레아, 폴리우레탄 또는 이들의 조합 중 선택된 어느 하나를 포함한다.The outer protective film 310 of the thermal shock breaking type microcapsule 300 is a hydrolysis product of silicon-based gal=alkoxysilane, gelatin or a derivative thereof, urea resin, resorcinol resin, melamine resin, phenol Resin and polyvinyl acetal, polyvinyl alcohol, polyvinyl acetate, epoxy-based, latex, acrylic, archide, glycemic resin, gel compound of alkoxysilane, hydrolysis condensate, polyurea, polyurethane or combinations thereof It includes any one selected.
열 충격 파괴형 마이크로 캡슐(300) 내에 충진된 소화성 물질(320)은 HFC 계열의 물질인 트리플루오르메탄(HFC-23), 트리플루오르에탄(HFC-125), 헵타플루오르프로판(GFC-227ea) 또는 이들의 조합 중 선택된 어느 하나를 포함할 수 있다. 상기 HFC 계열 물질은 가스계 소화약제 중 하나이며, FC 계열 물질에 수소가 첨가된 대체 물질이다. 브롬(Br)과 염소(Cl)를 함유하지 않아 오존층 파괴 지수(ODP)가 0에 가까우며, 독성이 낮고, 물리적 소화 기능을 발휘하는 특징을 가지고 있다.The extinguishing material 320 filled in the thermal shock breaking type microcapsule 300 may be HFC-based materials such as trifluoromethane (HFC-23), trifluoroethane (HFC-125), heptafluoropropane (GFC-227ea), or Any combination of these may be included. The HFC-based material is one of gas-based extinguishing agents, and is an alternative material in which hydrogen is added to the FC-based material. Since it does not contain bromine (Br) and chlorine (Cl), the ozone depletion index (ODP) is close to 0, has low toxicity, and has physical extinguishing.
또한, 소화성 물질(320)은 외부 보호막(310)에 크랙 및 열 변형이 발생하게 되면, 외부로 방출되어 화재 소화용 인캡슐레이션 장치(도 1의 '100') 내의 공기 차단을 통해 화재를 소화시킬 수 있다.In addition, the fire extinguishing material 320 when the crack and heat deformation occurs on the outer protective film 310 is discharged to the outside to extinguish the fire by blocking the air in the encapsulation device for fire extinguishing ('100' in Figure 1) I can do it.
소화성 물질(320)은 자기 소화성(Self-extinguishing Property) 물질일 수 있으며, 소화성 물질(320)은 화재 발생 시 화염에 접하면 화학적, 물리적변화에 의해 화염이 자연히 소화하는 성질을 가지고 있다. 구체적으로 화재가 발생하여 소화성 물질(320)이 화염에 접하는 경우 소화성 물질(320)이 열분해 되면서 이산화탄소(CO 2), 물(H 2O) 및 산화물이 발생하여 화염의 전파를 방해하거나 화염에 접하는 표면에 화재 전파 방지막을 형성하여 화염의 전파를 방해하여 화재를 소화시킬 수 있다.The extinguishing material 320 may be a self-extinguishing property, and the extinguishing material 320 has a property that the flame naturally extinguishes due to chemical and physical changes when it comes into contact with a fire. Specifically, when a fire occurs and the extinguishing material 320 is in contact with the flame, the extinguishing material 320 is thermally decomposed to generate carbon dioxide (CO 2 ), water (H 2 O), and oxide to prevent the propagation of the flame or contact the flame. By forming a fire-prevention film on the surface, it is possible to extinguish the fire by interfering with the spread of the flame.
소화성 물질(320)은 함불소 케톤: 드데카후르오로2-메틸 펜탄(methylpentane)-3-온, CF3CF2C(O)CF(CF3)2, (CF3)2CFC(O)CF(CF3)2, 퍼플루오로시클로헥사논, 브롬화 알칸(CnH2n+2-xBrx, n= 1~3의 정수, x=2 또는 3) : 디브로모 메탄, 1,1,2,2-tetrafluordibromethane, 1,1,2-triftortrichlorethane, 2-iodo-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorodibromoethane, 1,1,2-트리플루오로트리클로로에탄, 2-요요드-1,1,1,2,3,3,3-헵타플로로프로판, 1,1,2,2-테트라플루오로에탄, 1,1-difluoro-2,2,2-trichloroethane, 1,2-difluorotrichloroethane, 1,1-difluoro-1,2-dichloroethane, 1,2-difluoro-1,1-dichloroethane, 1,1-difluoro-1-chloroethane, 1-fluoro-1,1-dichloroethane , 1-fluoro-2-chloroethane, 펜타플루오로클로로에탄 , 1,1-difluorotetrachloroethane, 1,2-difluorotetrachloroethane 또는 이들의 조합 중 선택된 어느 하나를 포함할 수 있다 Digestible material 320 is a fluorine-containing ketone: dedecafuro 2-methylpentane-3-one, CF3CF2C(O)CF(CF3)2, (CF3)2CFC(O)CF(CF3)2, purple Luorocyclohexanone, brominated alkanes (CnH2n+2-xBrx, n=1 to 3, x=2 or 3): dibromomethane, 1,1,2,2-tetrafluordibromethane, 1,1,2 -triftortrichlorethane, 2-iodo-1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluorodibromoethane, 1,1,2-trifluorotrichloroethane, 2-iodine -1,1,1,2,3,3,3-heptafluoropropane, 1,1,2,2-tetrafluoroethane, 1,1-difluoro-2,2,2-trichloroethane, 1,2 -difluorotrichloroethane, 1,1-difluoro-1,2-dichloroethane, 1,2-difluoro-1,1-dichloroethane, 1,1-difluoro-1-chloroethane, 1-fluoro-1,1-dichloroethane, 1-fluoro -2-chloroethane, pentafluorochloroethane, 1,1-difluorotetrachloroethane, 1,2-difluorotetrachloroethane, or a combination thereof.
또한, 소화성 물질(320)은 인산암모늄 ((NH4)3PO4), 탄산수소나트륨, 탄산수소칼륨, 탄산수소칼륨 요소의 반응생성물을 포함할 수 있다.In addition, the extinguishing material 320 may include a reaction product of ammonium phosphate ((NH4)3PO4), sodium hydrogen carbonate, potassium hydrogen carbonate, and potassium hydrogen carbonate.
구체적으로, 몇몇의 소화성 물질은 화재 발생 시에 하기와 같은 반응을 일으킬 수 있다.Specifically, some extinguishing materials may cause the following reaction in the event of a fire.
(1) 2NaHCO 3 → Na2CO 3 + CO 2 + H2O (100℃ 이하)(1) 2NaHCO 3 → Na2CO 3 + CO 2 + H2O (100℃ or less)
(2) CaCO 3 → CaO+ CO 2 (700℃ 내지 800℃)(2) CaCO 3 → CaO+ CO 2 (700°C to 800°C)
(3) 2KHCO 3 → K2CO 3 + CO 2 + H 2O (100℃ 내지 120℃)(3) 2KHCO 3 → K2CO 3 + CO 2 + H 2 O (100°C to 120°C)
(4) NH 44H 2PO 4 → HPO 3 + NH 3 + H 2O (150℃)(4) NH 4 4H 2 PO 4 → HPO 3 + NH 3 + H 2 O (150℃)
(5) 2H 3PO 4 → H 4P 2O 7 + H 2O (215℃)(5) 2H 3 PO 4 → H 4 P 2 O 7 + H 2 O (215℃)
(6) H 4P 2O 7 → 2HPO 4 + H 2O (300℃)(6) H 4 P 2 O 7 → 2HPO 4 + H 2 O (300℃)
(7) Mg(OH) 2 → MgO + H 2O (300℃)(7) Mg(OH) 2 → MgO + H 2 O (300℃)
소화성 물질(320)의 열분해 반응은 질식효과(smothering effect), 냉각효과(cooling effect) 및 기타 소화 효과를 제공하여 주변의 화재를 직접 소화시킨다. 이러한 소화성 물질(320)을 포함하는 열 충격 파괴형 마이크로 캡슐(300)이 도포된 필름층을 적용하면 화재가 발생하더라도 주위로 전파되지 않고 자체 진화되는 효과를 얻을 수 있다.The thermal decomposition reaction of the extinguishing material 320 provides a smothering effect, a cooling effect, and other extinguishing effects to directly extinguish the surrounding fire. When the film layer coated with the heat shock-destructive microcapsule 300 including the extinguishing material 320 is applied, it is possible to obtain an effect of self-extinguishing without propagation to the surroundings even if a fire occurs.
다시 도 2를 참조하면, 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)은 어느 한 부분에 특정 기준 이상 집중되지 않도록 특정 밀도로 상기 제1 필름층(202) 및 제2 필름층(204)들 사이에 분포된다. 예컨대, 단위 면적(1cm 2) 당 1 이상 100 이하 : 1의 비율로 분포될 수 있다. 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)은 서로 적절히 섞이도록 균일하게 분포하는 것이 바람직하다. 도 2와 같이 교번으로 분포될 수도 있으나, 반드시 이에 한정하지는 않는다.Referring to FIG. 2 again, the first film layer 202 and the second film layer at a specific density so that the phase change microcapsule 200a and the heat shock fracture type microcapsule 200b are not concentrated over a specific criterion in any one part (204). For example, it may be distributed at a ratio of 1 or more and 100 or less: 1 per unit area (1 cm 2 ). It is preferable that the phase change microcapsules 200a and the thermal shock breaking type microcapsules 200b are uniformly distributed so as to be properly mixed with each other. It may be distributed alternately as shown in Figure 2, but is not necessarily limited to this.
여기서, 제1 필름층(202) 및 제2 필름층(204)은 동일한 물질로 형성될 수 있고, 서로 다른 물질로 형성될 수 있다. 이때, 제1 필름층(202) 및 제2 필름층(204) 내부에 상전이 마이크로 캡슐(200a)및 열 충격 파괴형 마이크로 캡슐(200b)를 충진하기 위한 방법은 다음과 같다.Here, the first film layer 202 and the second film layer 204 may be formed of the same material, or may be formed of different materials. At this time, a method for filling the phase change microcapsules 200a and the thermal shock fracture type microcapsules 200b inside the first film layer 202 and the second film layer 204 is as follows.
먼저, 제1 필름층(202)을 형성한다. 그 다음, 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)을 분사하여 제1 필름층(202) 상부에 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)을 고착시킨다.First, the first film layer 202 is formed. Then, the phase change microcapsule 200a and the heat shock fracture type microcapsule 200b are sprayed to fix the phase change microcapsule 200a and the heat shock fracture type microcapsule 200b on top of the first film layer 202. .
상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)은 어느 한 부분에 특정 기준 이상 집중되지 않도록 특정 밀도 분포되도록 한다. 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)은 서로 적절히 섞이도록 균일하게 분포하는 것이 바람직하며, 도 2와 같이 교번으로 분포될 수 도 있다. 이때, 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)은 순차적으로 분사될 수 도 있고, 동시에 분사될 수 도 있다. 순차적으로 분사되는 경우, 분사되는 순서는 한정하지 않는다.The phase change microcapsule 200a and the thermal shock fracture type microcapsule 200b have a specific density distribution so as not to concentrate more than a specific criterion on any one part. The phase change microcapsules 200a and the heat shock fracture type microcapsules 200b are preferably uniformly distributed so as to be properly mixed with each other, and may be alternately distributed as shown in FIG. 2. At this time, the phase change microcapsule 200a and the thermal shock breaking type microcapsule 200b may be sprayed sequentially or simultaneously. In the case of sequentially spraying, the order of spraying is not limited.
이후, 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)이 고착된 제1 필름층(202) 상부에 제2 필름층(204)을 형성한다. 제2 필름층(204)은 제1 필름층(202)과 일체형으로 결합되어 결과적으로 제1 필름층(202) 및 제2 필름층(204) 내에 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)이 충진된 형태가 되도록 한다. 이때, 제1 필름층(202)과 제2 필름층(204)이 완전히 밀착되도록 후 처리 과정을 더 진행할 수도 있다.Thereafter, a second film layer 204 is formed on the first film layer 202 to which the phase change microcapsule 200a and the heat shock fracture type microcapsule 200b are fixed. The second film layer 204 is integrally combined with the first film layer 202 and consequently, the phase change microcapsules 200a and the thermal shock breaking type micro within the first film layer 202 and the second film layer 204 are formed. The capsule 200b is made to be filled. At this time, the post-treatment process may be further performed so that the first film layer 202 and the second film layer 204 are completely in close contact.
본 발명의 일 실시예는 이에 한정되지 않고, 제1 필름층(202) 및 제2 필름층(204)을 순차적으로 형성한 후 제1 필름층(202)과 제2 필름층(204) 내에 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)을 주입하는 방법으로도 형성할 수 있다. 이때, 제1 필름층(202) 및 제2 필름층(204)을 순차적으로 형성하지 않고, 하나의 필름층만 형성한 후 상전이 마이크로 캡슐(200a) 및 열 충격 파괴형 마이크로 캡슐(200b)을 주입하는 방법으로도 진행할 수도 있다.One embodiment of the present invention is not limited to this, and after the first film layer 202 and the second film layer 204 are sequentially formed, the phase transition within the first film layer 202 and the second film layer 204 is performed. It can also be formed by a method of injecting the microcapsule 200a and the thermal shock breaking type microcapsule 200b. At this time, the first film layer 202 and the second film layer 204 are not sequentially formed, but only one film layer is formed, and then the phase change microcapsules 200a and the thermal shock fracture microcapsules 200b are injected. You can also proceed in the same way.
상술한 본 발명의 실시 예에 따른 화재 소화용 인캡슐레이션 장치는 상전이 마이크로 캡슐 적용에 따라 평상시에는 축열 및 단열 성능이 향상되어 배터리 랙에 포함된 배터리의 열관리를 용이하게 할 수 있다. 또한, 화재 소화용 인캡슐레이션 장치는 열 충격 파괴형 마이크로 캡슐을 적용함에 따라 공기 차단, 불연, 난연, 열반사, 수분 차단등의 기능이 향상되어 배터리 랙에 포함된 배터리에 의한 화재가 발생했을 시 공기 차단을 통해 신속한 화재 소화가 가능하도록 할 수 있다.The encapsulation device for fire extinguishing according to the above-described exemplary embodiment of the present invention may improve heat storage and heat insulation performance during normal use according to a phase change microcapsule, thereby facilitating thermal management of a battery included in a battery rack. In addition, the encapsulation device for fire extinguishing has improved the functions of air blocking, non-flammable, flame retardant, heat reflection, and moisture blocking by applying the heat shock-destructive microcapsules, which may result in fire caused by the batteries in the battery rack. When the air is blocked, it is possible to quickly extinguish the fire.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to preferred embodiments of the present invention, those skilled in the art variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You can understand that you can.

Claims (6)

  1. 상전이 마이크로 캡슐;Phase change microcapsules;
    열 충격 파괴형 마이크로 캡슐; 및Heat shock fracture microcapsules; And
    상기 상전이 마이크로 캡슐 및 상기 열 충격 파괴형 마이크로 캡슐을 내부에 포함하는 제1 및 제2 필름층들을 포함하는 화재 소화용 인캡슐레이션 장치.An encapsulation device for fire extinguishing, comprising first and second film layers including the phase change microcapsule and the heat shock destructive microcapsule therein.
  2. 제1항에 있어서, According to claim 1,
    상기 상전이 마이크로 캡슐 및 상기 열 충격 파괴형 마이크로 캡슐은 어느 한 부분에 특정 기준 이상 집중되지 않도록 특정 밀도로 상기 제1 및 제2 필름층들 사이에 분포되는 것을 특징으로 하는 인캡슐레이션 장치.The phase change microcapsule and the heat shock fracture type microcapsule is an encapsulation device characterized in that it is distributed between the first and second film layers at a specific density so as not to concentrate more than a certain standard on any part.
  3. 제2항에 있어서, According to claim 2,
    상기 상전이 마이크로 캡슐 및 상기 열 충격 파괴형 마이크로 캡슐은 단위 면적당 (1cm 2) 1 이상 100 이하 : 1의 비율인 것을 특징으로 하는 화재 소화용 인캡슐레이션 장치.Encapsulation device for fire extinguishing, characterized in that the phase change microcapsule and the heat shock destructive microcapsule are in a ratio of (1 cm 2 ) 1 or more and 100 or less: 1 per unit area.
  4. 제1항에 있어서, According to claim 1,
    상기 열 충격 파괴형 마이크로 캡슐은 특정 온도 이상에서 크랙(Crack)이 발생하는 외부 보호막; 및 내부에 충진되고, 상기 크랙의 발생에 따라 외부에 방출되는 소화성 물질을 포함하는 것을 특징으로 하는 화재 소화용 인캡슐레이션 장치.The thermal shock breaking type microcapsule has an external protective film that cracks at a certain temperature or higher; And an extinguishing material filled inside and released to the outside upon occurrence of the crack.
  5. 제1항에 있어서, According to claim 1,
    상기 상전이 마이크로 캡슐은 1-도데카놀, 파라핀 오일, 포르말린산, 락트산, 메틸 팔미테이트, 페닐론, 도카실 브로마이드, 카프릴론, 페놀, 헵타데카논, 1-시클로헥실옥타데칸, 4-헵타데카논, P-졸뤼딘(Joluidine), 시안 아미드, 메틸 에이코사네이트(eicosanate), 3-헵타데카논, 2-헵타데카논, 히드로신남산, 세틸 알코올, A-넵틸아민, 캄펜, O-니트로아닐린, 9-헵타데카논, 티몰, 메틸 베헤 네이트, 디페닐 아민, P-디클로로 벤젠, 옥솔레이트, 하이포산, O-크실렌 디 클로라이드, B-클로로산, 클로로 아세트산, 니트로 나프탈렌, 트리미리스틴, 헵타운데실산, A-클로로산, 꿀벌 왁스, 글리콜산, P-브로모 페놀, 아조벤젠, 아크릴산, 딘토 톨루엔(2,4), 페닐 아세트산, 티오시나민, 브로캄포(Bromcamphor), 듀렌, 벤질, 메틸 브롬브레조에이트, 알파 나프톨, 글루타르산, p-크실렌 디 클로라이드, 카테콜, 퀴논, 아세트 아닐리드, 숙신산 무수물, 벤조산, 스티벤 또는 이들의 유도체 중 선택된 어느 하나로 형성되며, 제1 온도 이상으로 외부 온도가 올라가면 일시적으로 해당 열을 흡수하고, 제2 온도 이하로 상기 외부 온도가 떨어지면 상기 일시적으로 흡수한 열을 방출하는 것을 특징으로 하는 화재 소화용 인캡슐레이션 장치.The phase change microcapsules are 1-dodecanol, paraffin oil, formalinic acid, lactic acid, methyl palmitate, phenylone, dokasil bromide, caprylone, phenol, heptadecanone, 1-cyclohexyloctadecane, 4-heptade Canon, P-zolidine, cyanamide, methyl eicosanate, 3-heptadecanone, 2-heptadecanone, hydrocinnamic acid, cetyl alcohol, A-neptylamine, camphor, O-nitro Aniline, 9-heptadecanone, thymol, methyl behenate, diphenyl amine, P-dichloro benzene, oxoleate, hypoic acid, O-xylene dichloride, B-chloroic acid, chloroacetic acid, nitronaphthalene, trimiristin, Heptowndecyl Acid, A-Chloroic Acid, Bee Wax, Glycolic Acid, P-Bromo Phenolic, Azobenzene, Acrylic Acid, Dinto Toluene (2,4), Phenyl Acetic Acid, Thiosinamine, Brocamphor, Duren, Benzyl , Methyl bromide, alpha naphthol, glutaric acid, p-xylene dichloride, catechol, quinone, acetanilide, succinic anhydride, benzoic acid, styrenic or derivatives thereof, and formed at any one temperature or higher Encapsulation device for fire extinguishing, characterized in that when the external temperature rises, the corresponding heat is temporarily absorbed, and when the external temperature falls below a second temperature, the temporarily absorbed heat is released.
  6. 제1항에 있어서, According to claim 1,
    상기 화재 소화용 인캡슐레이션 장치는 내부에 배터리를 포함하는 배터리 랙을 감싸는데 사용되는 것을 특징으로 하는 화재 소화용 인캡슐레이션 장치.The encapsulation device for fire extinguishing is used to wrap a battery rack containing a battery therein.
PCT/KR2019/016187 2018-11-26 2019-11-22 Fire-extinguishing encapsulation device WO2020111677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0147538 2018-11-26
KR1020180147538A KR102123819B1 (en) 2018-11-26 2018-11-26 Device for fire extinguishing

Publications (1)

Publication Number Publication Date
WO2020111677A1 true WO2020111677A1 (en) 2020-06-04

Family

ID=70852897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016187 WO2020111677A1 (en) 2018-11-26 2019-11-22 Fire-extinguishing encapsulation device

Country Status (2)

Country Link
KR (1) KR102123819B1 (en)
WO (1) WO2020111677A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220168918A (en) * 2021-06-17 2022-12-26 주식회사 엘지에너지솔루션 Battery module with improved venting performance
CN113707971B (en) * 2021-08-26 2023-05-09 中国第一汽车股份有限公司 Preparation method of high-safety battery and battery
KR102386534B1 (en) * 2021-10-27 2022-04-15 주식회사 서연이화 Vehicle battery module with improved thermal runaway
KR102556107B1 (en) * 2023-03-08 2023-07-18 주식회사 루나볼트 Battery modules equipped with fire extinguishing films
KR102556108B1 (en) * 2023-03-08 2023-07-18 주식회사 루나볼트 Hard case Battery module system equipped with fire extinguishing films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070008087A (en) * 2005-07-13 2007-01-17 주식회사 엘지화학 Lithium secondary battery containing thermally degradable capsule containing additives for overcharge protection
KR20090026648A (en) * 2007-09-10 2009-03-13 삼성에스디아이 주식회사 Battery pack
KR20120112177A (en) * 2011-03-30 2012-10-11 전자부품연구원 Micro capsule containing fire extinguishing compositions and lithium secondary battery with the same
KR20170108156A (en) * 2015-02-04 2017-09-26 글로벌 웹 호라이즌스 엘엘씨 Systems, structures and materials for electrochemical device thermal management

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229411B1 (en) 2012-01-16 2013-02-06 (주)미섬시스텍 Battery pack for preventing fire, oxidation and method for manufacturing thereof
KR101706717B1 (en) 2016-11-04 2017-03-09 주식회사 아하정보통신 Fire preventing device for battery pack of energy storage system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070008087A (en) * 2005-07-13 2007-01-17 주식회사 엘지화학 Lithium secondary battery containing thermally degradable capsule containing additives for overcharge protection
KR20090026648A (en) * 2007-09-10 2009-03-13 삼성에스디아이 주식회사 Battery pack
KR20120112177A (en) * 2011-03-30 2012-10-11 전자부품연구원 Micro capsule containing fire extinguishing compositions and lithium secondary battery with the same
KR20170108156A (en) * 2015-02-04 2017-09-26 글로벌 웹 호라이즌스 엘엘씨 Systems, structures and materials for electrochemical device thermal management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Development of automotive battery heat management technology using PCM", ELECTRIC-TECH.TISTORY.COM/, 27 July 2015 (2015-07-27), XP055711775, Retrieved from the Internet <URL:https://electric-tech.tistory.com/entry/PCM%EC%9D%84-%EC%9D%B4%EC%9A%A9%ED%95%9C-%EC%9E%90%EB%8F%99%EC%B0%A8-%EB%B0%B0%ED%84%B0%EB%A6%AC-%EC%97%B4%EA%B4%80%EB%A6%AC-%EA%B8%B0%EC%88%A0-%EA%B0%9C%EB%B0%9C> *

Also Published As

Publication number Publication date
KR102123819B1 (en) 2020-06-18
KR20200061814A (en) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2020111677A1 (en) Fire-extinguishing encapsulation device
CN110433419B (en) Lithium battery thermal runaway fire suppression capsule and lithium ion battery
KR102127684B1 (en) Extinguisher Sheet Having Multi-Layer Structure
CN104919623B (en) Method for the accumulator of portable dam and for manufacturing the accumulator for portable dam
WO2017209386A1 (en) Protrusion-type fireproof structure for fire protection of cable tray
KR101985076B1 (en) Capsule type fire extinguisher based on internet of things
CN106469794B (en) A kind of method of high specific energy batteries packet internal ignition resistant cooling
WO2017209385A1 (en) Protrusion-type fireproof structure for fire protection of wire tubing and cables
KR102152823B1 (en) Fire extinguishing control system based on fire extinguishing products utilizing fire extinguishing micro capsule
WO2022139222A1 (en) Self-adhesive fire-extinguishing tape comprising fire-extinguishing microcapsules, and fire-extinguishing product using same
KR101944942B1 (en) Fire extinguisher sheet having self extinguisher function and high flexibility and producing method thereof
KR20200118280A (en) Fire suppression system for ess
CN112201862A (en) Safety protection device of lithium battery energy storage system
US20240108928A1 (en) Fire extinguishing capsule and capsule-type fire extinguishing device including same
CN215195151U (en) Distributed energy storage fire-fighting system
CN112853760B (en) Fireproof heat insulation felt, preparation method thereof, battery module and battery pack
CN110707260A (en) Energy storage device
KR102152565B1 (en) Fire extinguishing method and fire extinguishing system for energy storage device
WO2023200095A1 (en) Foaming flame-retardant water-based paint composition for wood, having incipient fire extinguishing function
KR102189631B1 (en) Wallpaper for fire extinguishing including microcapsules for fire extinguishing, and preparation method thereof
US4232742A (en) Flame-guard for electrical installations
KR102070190B1 (en) Small fire extinguishing module comprising a fire fighting microcapsule
KR102235143B1 (en) Tape with self extinguishing material
WO2022265425A1 (en) Fire extinguishing cover module using smothering extinguishment
CN210778745U (en) Energy storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890465

Country of ref document: EP

Kind code of ref document: A1