WO2020111669A1 - Device for cleaning surface by using electrowetting element and method for controlling same - Google Patents

Device for cleaning surface by using electrowetting element and method for controlling same Download PDF

Info

Publication number
WO2020111669A1
WO2020111669A1 PCT/KR2019/016129 KR2019016129W WO2020111669A1 WO 2020111669 A1 WO2020111669 A1 WO 2020111669A1 KR 2019016129 W KR2019016129 W KR 2019016129W WO 2020111669 A1 WO2020111669 A1 WO 2020111669A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
voltage
droplet
power
frequency
Prior art date
Application number
PCT/KR2019/016129
Other languages
French (fr)
Korean (ko)
Inventor
김원수
지석만
오상훈
홍삼열
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020111669A1 publication Critical patent/WO2020111669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present application relates to an electrowetting device, and more particularly, to an apparatus configured to clean the surface of an object using the electrowetting device.
  • Liquid droplets i.e., liquid droplets
  • the direction of movement of the droplets can also be controlled by controlling the direction of the applied electric field. Accordingly, an electrowetting element that is configured to generate an electrowetting effect has been developed, and has been applied to various fields.
  • electrowetting devices have been applied in biotechnology to move, combine, and divide various liquid biomaterials including blood for the purpose of experimentation and analysis.
  • electrowetting devices have been applied to the development of new types of displays. Since such an electrowetting device has the ability to manipulate fine droplets even with a relatively simple structure, it can be applied to fields different from the aforementioned fields.
  • An object of the present application is to provide an apparatus configured to clean the surface of an object using an electrowetting effect.
  • the present application provides a substrate provided on the surface of a predetermined object; An electrode provided on the substrate and including first and second electrodes respectively disposed in different planes; An insulating layer provided on the substrate and configured to cover the electrode; And a control device configured to supply AC power to the electrode, the control device having a predetermined first frequency to generate vibrations on the droplets on the object surface by periodic changes in the electrostatic force generated by the electrodes. And a first alternating current power source having a predetermined first voltage, provided to the electrode for a first time, and wherein the first frequency is set to a resonant frequency of the droplet.
  • the control device may be configured to detect the resonance frequency of the droplet while providing AC power to the electrode before supplying the first AC power. More specifically, while detecting the resonance frequency, the control device sequentially sweeps frequencies in a predetermined range of the provided AC power; Sensing the resonance of the droplet during the sweep; It may be configured to set the frequency at which the resonance occurs to the first frequency.
  • control device may be configured to gradually increase the frequency of the AC power source, starting from a predetermined frequency and until resonance occurs in the droplet.
  • control device can be configured to sweep frequencies of 10 Hz-150 Hz.
  • the control device acquires an image of the droplet using a sensor; It may be configured to analyze the acquired image to detect a sharp increase in the vibration of the droplet. If the resonance of the droplet is detected at a plurality of frequencies, the control device may be configured to set the highest frequency of the frequencies as the first frequency of the AC power.
  • the first frequency may be 30 Hz or 100 Hz, and the first voltage may have a range of 50V-150V.
  • control device may be configured to provide a second AC power having a second voltage greater than the first voltage to the electrode for a second time after providing the first AC power during the first time.
  • the second voltage may have a range of 150V-200V.
  • the control device may be configured to increase the first voltage of the first AC power having the first frequency to the second voltage. Further, while providing the second AC power, the control device: reduces the second voltage to a third voltage smaller than the second voltage; It may be further configured to repeat the increase from the third voltage to the second voltage and the decrease from the second voltage to the third voltage. Also, the first time and the second time may be set at a ratio of 8:2.
  • the first electrode may be disposed on the substrate, and the second electrode may be disposed above the first electrode.
  • the first electrode is spaced apart from each other at a predetermined interval, and includes a plurality of first sub-electrodes disposed within the same plane, and the second electrode is spaced apart from each other at a predetermined distance, and a plurality of second sub-electrodes disposed within the same plane It may include. More specifically, the first and second sub-electrodes may be alternately arranged.
  • the electrode may include a predetermined first gap formed between the side of the first sub-electrode and the side of the second sub-electrode adjacent thereto, and the first gap may be 5 ⁇ m.
  • the electrode may include a second gap formed in a vertical direction between the first electrode and the second electrode, and the second gap may be set to be the same as the first gap.
  • the insulating layer includes: a first insulating layer disposed on the substrate and configured to cover the first electrode; And a second insulating layer disposed on the first insulating layer and configured to cover the second electrode.
  • control device While providing the first AC power, the control device may be configured to alternately supply the first AC power to the first and second electrodes.
  • the surface cleaning apparatus and control method according to the present application may generate resonance in droplets on the object surface by controlling the frequency of the AC power supplied. That is, the surface cleaning device and the control method may be configured to detect a resonance frequency and supply AC power having the detected resonance frequency. Thus, the droplets can be removed by moving quickly and smoothly out of the object surface while resonating.
  • the surface cleaning apparatus and control method according to the present application can also excite fine droplets on the object surface by additionally controlling the voltage of the supplied AC power. That is, the surface cleaning apparatus and the control method can expand the range of electrodes generated to excite fine droplets by increasing the voltage of the supplied AC power. Thus, microdroplets can also be properly excited and vibrated and removed from the object surface.
  • the surface cleaning device and control method according to the present application can effectively vibrate and quickly and efficiently remove all droplets on the object surface by optimally controlling the frequency and voltage of the supplied AC power.
  • FIG. 1 is a schematic view showing a surface cleaning apparatus using an electrowetting device according to the present application.
  • FIG. 2 is a plan view showing the structure of an electrode in an electrowetting device.
  • FIG 3 is a perspective view showing a surface cleaning device applied to an imaging device.
  • FIG. 4 is a flowchart showing a method of controlling a surface cleaning device using an electrowetting device according to the present application.
  • FIG. 5 is a flowchart illustrating in detail the step of detecting the resonance frequency in the control method of the present application.
  • FIG. 6 is a flowchart illustrating in detail the steps of providing a second AC power having a different voltage from the voltage of the first AC power in the control method of the present application.
  • FIG. 7 is a graph showing the behavior of droplets when AC power is supplied to the electrowetting device.
  • FIG. 8 is a schematic diagram showing the behavior of droplets when AC power having different frequencies is supplied, respectively.
  • FIG. 9 is a plan view showing droplets removed by a control method according to the present application.
  • 10 is a schematic diagram showing the correlation between the range of an electric field and the size of droplets that can be excite.
  • 11 is a schematic diagram showing fine droplets excited by an extended electric field due to increased voltage.
  • FIG. 12 is an exploded perspective view showing a modified example of an electrowetting device in the surface cleaning apparatus according to the present application.
  • FIG. 13 is a schematic view showing a surface cleaning device using a modified example of an electrowetting device.
  • FIG. 14 is a plan view showing an electrode in a modified example of the electrowetting device.
  • 15 is a plan view showing a modified example of an electrode in a modified example of the electrowetting element.
  • 16 is a schematic diagram showing a correlation between the range of an electric field and the size of droplets that can be excite in a modified example of the electrowetting device.
  • 17 is a schematic diagram showing fine droplets excited by an extended electric field due to an increased voltage in a modification of the electrowetting device.
  • FIG. 18 is a flowchart illustrating in detail the steps of providing a first AC power source having a resonance frequency and a first voltage in a control method of the present application.
  • Embodiments described herein relate to apparatus and methods for cleaning the surface of an object. However, it will be readily apparent to those skilled in the art that the principles and configurations of the described embodiments can be equally applied to devices having different purposes and uses than surface cleaning without modification.
  • FIG. 1 is a schematic view showing a surface cleaning apparatus using an electrowetting device according to the present application
  • FIG. 2 is a plan view showing the structure of an electrode in the electrowetting device of FIG. 1.
  • Figure 3 is a perspective view showing a surface cleaning device applied to the imaging device.
  • the surface cleaning apparatus of the present application may be configured to clean the surface of the object (O) by removing liquid droplets (D) existing on the surface of the object (O).
  • the droplet D on the object O can be moved on the surface of the object O to be removed, and the electrowetting effect can be applied as described above for the movement of the droplet D.
  • the surface cleaning apparatus of the present application may include the electrowetting element 100 that is basically configured to generate movement of the droplet D.
  • the electrowetting element 100 is shown in a cross-section differently from other components in order to better show its internal structure.
  • the electrowetting device 100 of FIGS. 1 and 2 is a basic example or basic embodiment).
  • the electrowetting device 100 may include a substrate 110.
  • the substrate 110 may be disposed on the surface of the object O to be cleaned.
  • the electrowetting device 100 may also include an electrode 120 provided on the substrate 110. More specifically, the electrode 120 may be disposed on the surface of the substrate 110.
  • the electrode 120 may be configured to form an electric field of a predetermined size by receiving power/power or voltage. As illustrated, a plurality of electrodes 120 may be disposed spaced apart from each other at a predetermined distance over the entire surface of the substrate 110. Accordingly, the electrodes 120 may uniformly form an electric field on the entire surface of the electrowetting device 100 and, further, the object O to be cleaned.
  • the electrode 120 may be achieved in various ways, and as an example, the pattern of FIG. 2 may be applied to the electrowetting device 100.
  • the electrode 120 may include common electrodes 120a and 120c disposed to face each other.
  • a plurality of sub-electrodes 120b and 120d may be extended from the common electrodes 120a and 120c. These sub-electrodes 120b and 120d may be alternately arranged while being spaced apart from each other at predetermined intervals.
  • these sub-electrodes 120b and 120d may be arranged side by side in the same plane or layer on the substrate 100. .
  • the sub-electrodes 120b and 120d may form a uniform electric field across the electrowetting device 100.
  • the electrode 120 shown in FIGS. 1 and other drawings in relation to the basic example of the electrowetting device 100 corresponds to the sub-electrodes 120b and 120d of FIG. 2.
  • the electrode 120 may be made of various materials, for example, may be made of indium tin oxide (ITO).
  • the electrowetting device 100 may generate the intended electrowetting effect, that is, the motion of the droplet D, even with the substrate 110 and the electrode 120 alone. However, when the droplet D is in direct contact with the electrode 120, the droplet D may be electrolyzed before being moved under a relatively high power or voltage. Accordingly, the electrowetting device 100 may include an insulating layer 130 configured to cover the electrode 120. The insulating layer 130 is disposed on the substrate 110 and the electrode 120 in more detail, and covers not only the electrode 120 but also the surface of the substrate 110 exposed between the electrodes 120. Can be configured. That is, the electrodes 120 may be isolated from the outside by being exposed by the insulating layer 130.
  • the droplet D may not be electrolyzed by the electrode 120, but may be exposed only to the electric field generated by the electrode 120.
  • the insulating layer 130 may be made of various materials, for example, made of silicon nitride.
  • the electrowetting device 100 may further include a hydrophobic layer 140 provided on the insulating layer 130. More specifically, the hydrophobic layer 140 may be disposed over the entire surface of the insulating layer 130. The hydrophobic layer 140 may help the droplet D to move smoothly due to its repel property.
  • the contact angle of the droplet D is changed by the electric field.
  • the droplet D is pulled toward the surface of the electrode 120, that is, the device 100, and the contact angle of the droplet D with respect to the surface can be reduced. Therefore, the droplet D can be moved toward the portion where the contact angle is reduced.
  • the droplet D may be maneuvered to move in a desired direction by selectively applying power or voltage to a portion of the electrode 120, that is, the sub-electrodes 120b and 120d. .
  • the movement of the droplet D can be controlled.
  • an AC power or an AC voltage is applied to the electrode 120, the electric field and the electrostatic force applied thereto may also periodically fluctuate according to a frequency that alternates periodically. do.
  • the droplet D may be excited by the variable electrostatic force, and may vibrate as illustrated in FIG. 7 to be described later. More specifically, the droplet (D) is the energy obtained by the excitation, as shown in FIG. 1, while vibrating on the surfaces of the electrowetting device 100 and the object O, it can move itself out of the surface. , As a result, can be removed from the surface.
  • the random movement of the droplet D using the excitation and vibration effectively removes the droplet D while powering the electrode 120 as in the maneuvering of the droplet D described above. No detailed control of supply is required. Also, for the same reason, by using an excitation by the electrode 120, when AC power or voltage is simultaneously applied to the electrode 120, that is, all the sub-electrodes 120b and 120d, the object O is present on the surface. All droplets D to be vibrated and moved at the same time. Since the removal of the droplet D requires not merely elaborate manipulation of the droplet D, but merely the movement of the predetermined object O to the outside of the surface, the excitation and vibration of the droplet D described above is necessary for the removal of the droplet D. It can be more efficient and effective. Therefore, the surface cleaning device of the present application, in particular, the electrowetting element 100 may be configured to generate vibrations in the droplet D.
  • FIGS. 12-15 The basic example of the electrowetting device 100 shown in FIGS. 1 and 2 may be modified in various forms to more effectively and effectively remove the droplet D.
  • FIGS. 12-15 is shown in FIGS. 12-15 as an example.
  • 12 is an exploded perspective view showing a modification of the electrowetting device in the surface cleaning device according to the present application
  • FIG. 13 is a schematic view showing the surface cleaning device using the modification of the electrowetting device.
  • 14 is a plan view showing an electrode in a modification of the electrowetting device
  • FIG. 15 is a plan view showing a modification of the electrode in a modification of the electrowetting device. 13 shows a cross-section of a modification of the electrowetting device 100 obtained along line I-I in FIG. 12 in practice.
  • a modified example of the electrowetting element 100 is described in detail below.
  • the electrode 120 is provided on the substrate 110, as shown in the previous basic example, and the first and second electrodes 121 and 122 separated from each other are shown. It can contain.
  • the first and second electrodes 121 and 122 may be respectively disposed in different planes or layers. More specifically, the first electrode 121 may be disposed on the substrate 110 as an example, and the second electrode 122 may be disposed above the first electrode 121. have.
  • the second electrode 122 may be spaced apart from the first electrode 121. That is, the second electrode 122 is at a predetermined distance from the first electrode 121 in the direction perpendicular to the substrate 110 (or the plane formed thereby) in the vertical direction in the electrowetting element 100, and precisely. Can be separated.
  • the first and second electrodes 121 and 122 may prevent electrical interference that may be caused by contact of the electrodes.
  • the spaced second electrode 122 may be oriented parallel to the substrate 110 or the first electrode 121 on the substrate 100. That is, the first and second electrodes 121 and 122 may be arranged or oriented parallel to each other.
  • the parallel orientation is advantageous for the formation of uniform electric fields in which the first and second electrodes 121 and 122 cover the entire electrowetting element 100 and the object O. Due to such parallel orientation and separation, the first and second electrodes 121 and 122 can form a uniform electric field without basically interfering with each other.
  • the first electrode 121 may include a plurality of first sub-electrodes 121a extending to a predetermined length.
  • each of the first sub-electrodes 121a may be formed of a narrow plate-like member elongated as shown, that is, a strip.
  • the first sub-electrodes 121a are spaced apart from each other at predetermined intervals, and may be disposed in the same plane.
  • the first sub-electrodes 121a may be connected to each other by a single first common electrode 121b so that a predetermined power or voltage can be supplied at once.
  • the second electrode 122 may also include a plurality of second sub-electrodes 122a extending to a predetermined length.
  • each of the second sub-electrodes 122a may also be formed of a narrow plate-shaped member that extends long, that is, a strip.
  • the second sub-electrodes 122a may be spaced apart from each other at a predetermined distance, and may be disposed in the same plane, and may be connected to each other by a single second common electrode 122b for application of power or voltage.
  • the first and second sub-electrodes 121a and 122a are also disposed in different planes or layers, respectively, and the first sub-electrode While the fields 121a are disposed on the substrate 110, the second sub-electrodes 122a may be disposed above the first sub-electrodes 121a. Furthermore, the second sub-electrodes 122a may be spaced apart from the first sub-electrodes 121a at a predetermined interval in a vertical direction, and the first and second sub-electrodes 121a and 122a are oriented parallel to each other. Can be.
  • the first and second sub-electrodes 121a and 122a may be alternately disposed along the substrate 110. That is, any one of the second sub-electrodes 122a may be positioned between a pair of first sub-electrodes 121a adjacent to each other. On the other hand, any one of the first sub-electrodes 121a may be positioned between a pair of second sub-electrodes 122a adjacent to each other. By this alternating arrangement, the second sub-electrodes 122a may form an electric field of a predetermined size between the spaced first sub-electrodes 121a and their electric fields.
  • the first sub-electrodes 121a may also form an electric field of a predetermined size between the spaced second sub-electrodes 122a and the electric fields by them.
  • the first and second sub-electrodes 121a and 122a are spaced apart from each other in the vertical direction, so that their side parts are configured to be as close as possible to each other in the horizontal direction without electrical interference. Can be.
  • the first and second sub-electrodes 121a and 122a configured as described above are connected to each other and may form electric fields covering the entire surface of the object O.
  • the electric fields Fa and Fb formed to be connected to each other by the first and second electrodes 121 and 122 of the modified example of the electrowetting device 100 are of any size.
  • the microdroplets (D2) can also be wrapped, so that the microdroplets (D2) can always be excited and vibrated to be removed.
  • the first and second sub-electrodes 121a and 122a alternate with each other in different planes. Since it is disposed, a predetermined interval C1 may be formed in a horizontal direction between any one of the first sub-electrodes 121a and the second sub-electrodes 122a adjacent thereto. More precisely, the electrode 120 may include a first clearance C1 formed between the side of the first sub-electrode 121a and the side of the second sub-electrode 122a adjacent thereto.
  • the first and second sub-electrodes 121a and 122a may be disposed as close as possible to each other, so the first distance C1 is also small in size, for example For example, it can be set to 5 ⁇ m.
  • the electrode 120 is positioned in a vertical direction between the first and second electrodes 121 and 122.
  • a second gap C2 formed accordingly may be included.
  • the second interval C2 may be appropriately set to exclude electrical interference between the first and second electrodes 121 and 122, and accordingly, may be set equal to the first interval C1.
  • the second interval C2 may be set to 5 ⁇ m in the same manner as the first interval C1. Since the first and second electrodes 121 and 122 include the first and second sub-electrodes 121a and 122a, the second gap C2 is between the first and second sub-electrodes 121a and 122b. It can also be described as the interval formed along the vertical direction. Further, referring to FIG. 14, each of the first and second sub-electrodes 121a and 122a may have a first width W1 and a second width W2, respectively. The widths W1 and W2 can be set equally for the formation of electric fields having a uniform distribution. For example, the first and second widths W1 and W2 may be set to 50 ⁇ m.
  • the electrode 120 may be further modified to form more uniform electric fields.
  • the second sub-electrode 122a may be formed to have the same width in the third interval C3 between adjacent first sub-electrodes 121a.
  • the first sub-electrode 121a may be formed to have the same width as an interval between adjacent second sub-electrodes 121a. Therefore, no gap may be formed in the horizontal direction between the first sub-electrode 121a and the second sub-electrode 122a.
  • FIG. 15(a) the second sub-electrode 122a may be formed to have the same width in the third interval C3 between adjacent first sub-electrodes 121a.
  • the first sub-electrode 121a may be formed to have the same width as an interval between adjacent second sub-electrodes 121a. Therefore, no gap may be formed in the horizontal direction between the first sub-electrode 121a and the second sub-electrode 122a.
  • the second sub-electrode 122a may be formed to have a width greater than a third gap C3 between adjacent first sub-electrodes 121a.
  • the first sub-electrode 121a may be formed to have a width greater than the distance between adjacent second sub-electrodes 122a. Accordingly, the second sub-electrode 122a may overlap the first sub-electrode 121a or the first sub-electrode 121a may overlap the second sub-electrode 122a.
  • electric fields generated in the first and second sub-electrodes 121a and 122a may be closer to each other or overlap with each other, and thus electrowetting. More uniform electric fields may be formed throughout the device 100 or the object O.
  • the insulating layer 130 may be configured to cover the electrode 120 according to the above-described modification, in order to prevent electrolysis of the droplet D and stable operation of the electrowetting device 100.
  • the insulating layer 130 may include a first insulating layer 131 disposed on the substrate 110 and configured to cover the first electrode 121.
  • the first insulating layer 131 may be configured to cover not only the first electrode 121 but also the surface of the substrate 110 exposed between the first sub-electrodes 121a.
  • the insulating layer 130 may be disposed on the first insulating layer 131 and may include a second insulating layer 132 configured to cover the second electrode 122.
  • the second insulating layer 132 may be configured to cover the surface of the first insulating layer 131 exposed between the second electrode 122 as well as the second sub-electrodes 122a thereof, as shown. .
  • the second gap C2 needs to be formed in the vertical direction between the first and second electrodes 121 and 122. Therefore, as illustrated, in order to secure the second gap C2, the first insulating layer 131 may be interposed between the first and second electrodes 121 and 122.
  • the second electrode 122 may be disposed on the interposed first insulating layer 131.
  • the electrode 120 that is, the first and second electrodes 121 and 122 may be isolated from being exposed to the outside, and stably for the movement and removal of the droplet D An electric field can be formed.
  • the insulating layer 130 is configured to cover the first and second electrodes 121 and 122 as a whole, it is formed to have a sufficient thickness, thereby ensuring sufficient electrical stability of the first and second electrodes 121 and 122. have.
  • the substrate 110 and the hydrophobic layer 140 are the same as the substrate 110 and the hydrophobic layer 140 of its basic example described with reference to FIGS. 1 and 2, Therefore, additional description is omitted in the following.
  • the characteristics of the electrode 120 and the insulating layer 130 of the basic example can be equally applied to the electrode 120 and the insulating layer 130 of the modified example, except that described above. Since the basic example and the modified example of the electrowetting element 100 are distinguished only in a detailed structure and share the same principle and concept, in the following description, the electrowetting element 100 is a basic example and modified example thereof unless otherwise specified. It can mean both.
  • the substrate 110, the electrode 120, the insulating layer 130, and the hydrophobic layer 140 may cover all the corresponding components of the basic example and the modified example, unless otherwise described.
  • the surface cleaning device is configured to supply AC power to the electrowetting device 100 to generate a change in electrostatic force for excitation of the droplet D
  • Power source 200 may be included. 1 and 13, the power supply 200 is connected to the electrowetting device 100, and to the electrode 120 thereof, and may apply AC power and AC voltage to the electrode 120. .
  • the behavior of the droplet D needs to be monitored. For example, when AC power is supplied to the electrode 120 by the power source 200, it is necessary to check whether or not vibration of the droplet D is actually generated.
  • the surface cleaning device may include a sensing device 300 configured to detect the behavior of the droplet D during operation of the surface cleaning device.
  • the behavior of the droplet D in the sensing device 300 can be recognized in various ways, for example, ultrasonic waves, infrared sensors, and the like can be applied to grasp the state of the droplet D.
  • the sensing device 300 may consist of an imaging device configured to acquire an image of the droplets D on the surface of the object O. Accordingly, the sensing device 300 may continuously acquire the images of the droplets D during operation of the surface cleaning device for precise and detailed control for the removal of the droplets D.
  • the sensing device 300 may be disposed at any position capable of securing the entire image of the droplets D.
  • FIGS. 1 and 13 show a sensing device 300 disposed above the object O such that the surface of the object O to be cleaned is entirely contained within a field of view (FOV).
  • the surface cleaning device may include a control device 400 configured to control its operation.
  • the control device 400 may be composed of a processor and related electronic components, and as shown, components of the surface cleaning device, that is, the electrowetting element 100, the power source 200, and the sensing device 300 and the electrical Can be connected to. Therefore, the control device 400 can control the entire surface cleaning device for the intended operation.
  • control device 400 may control the power source 200 to supply the required AC power or voltage to the electrowetting device 100.
  • control device 400 may monitor the behavior of the droplet D on the surface of the object O using the sensing device 300 in real time during operation of the surface cleaning device. More specific operation of the control device 300 will be described in more detail in the control method described below.
  • the surface cleaning device including the basic and modified examples of the wetting element 100 described above can be applied to various objects O and devices for cleaning.
  • the surface cleaning device may be applied to an imaging device, as shown in FIG. 3.
  • the imaging device is generally configured to acquire an image using light incident through the lens. Therefore, when a foreign substance such as a droplet D exists in the lens, the foreign substance interferes with the incident light and thus an accurate image cannot be obtained.
  • droplets (D) that obstruct the strokes of the correct image may be attached to the lens surface due to various causes including climatic factors such as snow, rain, and humidity.
  • the surface cleaning apparatus according to the present application may be installed in the camera 10 as an imaging device as an example, as shown in FIG. 3.
  • the camera 10 includes a lens unit, and such a lens unit may be formed of a body 11 and a lens 12 installed in the body 11. Further, the camera 10 may include an image sensor 13 that acquires an image from light incident through the lens 12, and the image sensor 13 is, for example, a charged-coupled device (CCD). It can be done.
  • the surface cleaning device precisely the electrowetting element 100 (including the basic example and the modification example) may be installed on the surface of the lens 12 which is the object O to be cleaned. Further, the electrowetting device 100 may be integrally formed with the lens 12 (integrated as one body). That is, the electrowetting element 100 may be configured to have the same curvature as the surface to be in close contact with the surface of the lens 12.
  • the electrowetting element 100 forms one body with the lens 12 and may be regarded as the lens 12 itself as a single module or assembly. Furthermore, the electrowetting device 100 may be implanted or embedded in the body of the lens 12, and the device 100 may be integrally formed with the lens 12 even by such a device. Since the electric field is not affected by the intervening medium, such an embedded device 100 can still apply the electrostatic force due to the electric field to the surface of the lens 12, and accordingly the surface of the lens 12 surface It is possible to retain the ability to vibrate and remove the droplet D. In addition, the electrowetting element 100 applied to the lens 12 should not prevent light from entering. Therefore, the electrowetting device 100 may be configured to be transparent as a whole.
  • the substrate 110, the electrode 120, the insulating layer 130, and the hydrophobic layer 140 may be entirely made of a transparent material.
  • the transparent electrowetting device 100 passes light incident to the lens 12 and simultaneously removes foreign matter such as droplets D.
  • the camera 10 may include a separate cover installed on the body 11 to protect the lens 12, and instead of the lens 12, such a cover may be exposed outside the camera 10. .
  • the electrowetting element 100 of the surface cleaning device may be attached to the lens cover to be integrated therewith.
  • the lens cover itself may be made of an electrowetting element (100).
  • the internal power of the camera 10 may be used as the power source 200 of the surface cleaning device, and if necessary, a separate power source 200 may be connected to the electrowetting element 100 provided in the camera 10.
  • the control device of the camera 10 may be connected to the electrowetting element 100 to function as the control device 400.
  • the image sensor 13 of the camera 10 acquires an image through the lens 12, it is also possible to acquire an image of a foreign material, that is, a droplet D on the lens 12. Therefore, when the surface cleaning device is applied to the camera 10, the image sensor 13 may replace the sensing device 300.
  • the control device AC power or voltage may be supplied to the device 100 by the 400, and the droplet D may be excited by the electrostatic force generated by the electrode 130. Subsequently, referring to FIG. 3(c), the droplet D may move out of the lens 12 while vibrating as indicated by the arrow, and the lens 12 is cleaned by the removal of such droplet D Can be. Therefore, the camera 10 can acquire an accurate and good image by cleaning the lens 12.
  • the surface cleaning device is particularly effective in cleaning the lens 12 of the outdoor camera 10. Can be.
  • the surface cleaning device has the basic ability to clean the desired object surface by vibrating the droplet D, but the intended cleaning function can be maximized through more optimized control of the surface cleaning device. have.
  • an optimized control method for the surface cleaning apparatus according to FIGS. 1 to 3 and 12 to 15 has been devised and will be described with reference to additionally related drawings. 1 to 3, 12 to 15, and descriptions thereof are basically included and referenced in the following descriptions of control methods and drawings.
  • FIG. 4 is a flow chart showing a method of controlling a surface cleaning device using an electrowetting device according to the present application
  • FIG. 5 is a flow chart showing in detail a step of detecting a resonance frequency in the control method of the present application
  • FIG. 6 is a flow chart It is a flow chart showing in detail the step of providing a second AC power having a voltage different from the voltage of the first AC power in the control method of the application.
  • 7 is a graph showing the behavior of droplets when AC power is supplied to the electrowetting device
  • FIG. 8 is a schematic diagram showing the behavior of droplets when AC power having different frequencies is supplied.
  • control devices 400 that is, the processor may be referred to by various names such as a controller and a control unit, and may control all components of the surface cleaning device to perform operations according to the control method. have. Accordingly, the control device 400 substantially controls all the methods and modes described in the present application, so that all steps to be described later can be characteristic of the control device 400.
  • control device 400 Although not described as being performed by the control device 400, the following steps and their detailed features can all be understood as features of the control device 400.
  • structural features and operations thereof are all referred to in FIGS. 1-3 and 12-15, and thus detailed descriptions thereof are omitted.
  • the features of the respective steps apply equally to both the basic example and the modified example of the electrowetting element 100, unless a specifically opposed disclosure is described. That is, both the basic and modified examples of the electrowetting element 100 and the surface cleaning apparatus including them can be basically driven by the features of the following steps.
  • the predetermined object O may be exposed to the external environment during use, and foreign substances such as droplets D may adhere to the surface of the object O due to various reasons.
  • the electrowetting element 100 of the surface cleaning device since the electrowetting element 100 of the surface cleaning device is disposed on the surface of the object O to be cleaned, the droplet D may be attached on the electrowetting element 100.
  • the droplet D on the surface of the electrowetting device 100 is an object O surface It can be considered as a droplet.
  • the object O may actually correspond to a predetermined device 10 or a part thereof.
  • the surface cleaning device (hereinafter simply referred to as "cleaning device"), that is, the control device 400 thereof, may first detect at least one droplet D, which is a foreign material disposed on the surface of the object O (S10) ). That is, the control device 400 may detect or determine whether a droplet D exists on the surface of the object O.
  • the sensing step S10 may be performed by various methods, for example, attachment of the droplet D may be detected from an image acquired by the sensing device 300.
  • the resistance of the entire surface of the object O that is, the electrowetting device 100 may also change due to the resistance of the droplet D itself.
  • the change in resistance can result in a change in impedance in the electrowetting device 100, and more precisely the electrode 120. Accordingly, when a change in impedance is sensed, the control device 400 may detect and determine that the droplet D is attached to the surface of the object O. The detection of the droplet D based on the impedance can be performed using only the basic configuration of the electrowetting element 100 without an additional device, thereby simplifying the cleaning device and accurately detecting the droplet D.
  • the electrostatic force which fluctuates periodically, may be applied to the droplet D due to periodic alteration of the frequency. have.
  • Such an electrostatic force may excite the droplet D, and the droplet D may begin to vibrate due to the excitation.
  • the vibration amount of the droplet D in the drawing, the height of the deformed droplet D
  • the vibration amount of the droplet D may gradually increase, and the movement of the droplet D may increase. Sufficient vibration can be generated.
  • the control method of the present application can be configured to provide an AC power source having a resonance frequency for more efficient and effective removal of the droplet D.
  • the control device 400 may be configured to detect the resonance frequency of the droplet D first (S20). That is, when the droplet D is detected through the sensing step S10, the control device 400 may perform a series of steps for detecting the resonance frequency of the droplet D immediately attached.
  • the resonance frequency can be specified through various methods.
  • the droplet D that is actually attached may have various sizes, and accordingly, the resonance frequency may be slightly changed by not only the size of the droplet D, but also various other factors. Therefore, in order to accurately specify the resonant frequency, the resonant frequency needs to be detected whenever the droplet D is detected. For this reason, during the detection step S20, the control device 400 may be configured to search the resonance frequency in real time while continuously supplying AC power to the electrowetting element 100.
  • the control device 400 may sequentially sweep frequencies in a predetermined range while supplying AC power to the element 100 (S21). . That is, in the detection step S20, the control device 400 may supply AC power having one different frequency at a time to the electrode 120 of the device 100 in order to find the resonance frequency. In other words, the control device 400 may change the frequency of the AC power supplied in stages while supplying AC power of a constant voltage. More specifically, in the sweep step (S21), the control device 400 may gradually increase the frequency of the AC power supplied starting from a predetermined frequency (S21a). This increasing step S21a may be continuously performed until resonance occurs in the droplet D.
  • the vibration behavior of the droplet D according to the frequency can be considered.
  • the droplet D may vibrate at a low cycle and show large deformation.
  • a large displacement increases the contact surface and friction between the surface of the droplet D and the object O, as shown, which may be disadvantageous for smooth movement of the droplet D.
  • the droplet can vibrate at a high period without significant deformation. Therefore, the contact surface between the droplet D and the surface of the object O is relatively reduced, and the frictional force can also be relatively reduced by the reduced contact surface. Under reduced friction, high periodic fluctuations can promote droplet D to start moving from its initial position. Therefore, vibration and resonance at a relatively high frequency may be advantageous for smooth movement and removal of the droplet D. For this reason, the sweeped frequency range can be set to start with a relatively low frequency, but include relatively high frequencies, for example, 10 Hz-150 Hz. In this case, in the increasing step (S21a ), the control device 400 may gradually increase the frequency of the AC power supplied from a predetermined frequency of 10 Hz to a relatively high frequency of 150 Hz.
  • the control device 400 may detect the resonance of the droplet D generated at a specific frequency (S22).
  • the control device 400 may detect the resonance of the droplets using the sensing device 300, and various methods may be applied thereto, for example, ultrasonic waves, infrared sensors, and the like. .
  • a sensing device 300 made of an imaging device may be used to accurately determine the state of the droplet D, so that the resonance of the droplet D is obtained by the sensing device 300 It can be detected through. More specifically, as shown in FIG.
  • the control device 400 uses the sensor, that is, the sensing device 300 to perform the sweep of the frequency while the droplet D is performed.
  • the image may be continuously acquired (S22a).
  • an image sensor 13 embedded in the camera 10 may be used to acquire an image of the droplet D. If resonance occurs in the droplet D, the vibration of the droplet D increases rapidly, and this increase can be clearly confirmed through an image.
  • the control device 400 may analyze the acquired image and determine a sudden increase in vibration of the droplet D from the analyzed image (S22b). When the sudden increase in vibration is determined or sensed as described above, the control device 400 may detect that resonance is generated in the droplet D.
  • the control device 400 may set the frequency of the AC power supplied to the resonance frequency when such resonance is sensed (S23). In addition, the control device 400 may set the frequency at which the resonance is sensed in the sensing step S22 as the frequency of the AC power to be supplied to the electrowetting device 100 in the future. In most cases, a rapid increase in vibration occurs in a plurality of droplets D on the surface of the object O, so that detection of resonance and setting of the resonance frequency can be performed relatively easily. Nevertheless, for more consistent and objective detection of resonance and setting of the resonance frequency, the control device 400 may detect or determine that sudden vibration has occurred in at least one of the droplets D on the surface of the object O. At this time, it may be sensed or determined that resonance has occurred, and for this reason, the frequency at this time may be set as the resonance frequency.
  • the resonance frequency of the droplets D may be slightly changed due to various factors. However, practically in most cases, the size of the attached droplets D is limited to a range of approximately 2-3 micrometers. Therefore, the resonance of the droplet D is also generally generated at 30 Hz. Also, the resonance of the droplet D is additionally generated at a higher frequency, 100 Hz. Therefore, in the setting step (S23), the control device 400 sets 30 Hz and 100 Hz as the first and second resonant frequencies, respectively, and any one of them is an AC power to be supplied to the electrowetting device 100. Can be set as frequency. Furthermore, as discussed above with respect to FIG. 8, the droplet D can be moved more smoothly and quickly by vibration and resonance at a relatively high frequency.
  • the control device 400 may select a higher frequency as the actually detected resonance frequency. That is, the control device 400 may set the highest frequency among the plurality of resonance frequencies to the frequency of the AC power to be supplied. For example, the control device 400 may set the second resonant frequency 100 Hz, which is relatively higher than the first resonant frequency 30 Hz, as the frequency of the AC power to be supplied, for effective removal of the droplet D.
  • a single resonant frequency is sensed or one of a plurality of resonant frequencies sensed is selected through the detection step S20, and accordingly, a specific resonant frequency is an AC power source.
  • the control device 400 may provide or supply the first AC power having the set resonance frequency, that is, the first frequency, to the electrowetting device 100 for vibration of the droplet D and removal thereof. (S30).
  • the first AC power supplied may have a predetermined first voltage.
  • the first voltage may be appropriately set according to the characteristics of the first AC power source or a voltage required in a device equipped with a cleaning device, and may have, for example, a range of 50 V-150 V. In addition, for the same reason, the AC power may have the same first voltage even during the detection step S20 described above.
  • the first AC power may be provided to the electrowetting device 100 for a predetermined first time period, and the first time is appropriately set to generate sufficient movement and removal of the droplet D. Can be. More specifically, the control device 400 may use the sensing device 300 to check the state of the droplet D on the surface of the object O, and the droplet D may be sufficiently removed from the surface. Until the supply of the first AC power can be continued.
  • FIG. 9 is a plan view showing droplets removed by a control method according to the present application, and the operation of the cleaning device applied to the camera 10 according to FIG. 3 is illustrated as an example.
  • a plurality of droplets D may be attached as a foreign material to the surface of the lens 12 during use of the camera 10.
  • the cleaning device that is, the control device 400 may detect the presence of the droplets D through the sensing step S10.
  • the control device 400 may detect the resonance frequency by performing the detection step S20 and supply the first AC power having the detected resonance frequency to the electrowetting device 100. Due to this first AC power, as shown in FIG. 9(b), resonance occurs in the droplets D on the surface of the lens 12, and the droplets D may be excited by maximum energy. have. As shown, the droplets D can quickly move out of the surface of the lens 12, as shown by the arrows by the energy obtained while vibrating greatly by resonance. In addition, since the droplets D are greatly vibrated by the generated resonance, the droplets D adjacent to each other may be combined with each other to form a droplet D of an increased size. Furthermore, the droplet D of an increased size may have a larger size while absorbing other droplets D as it moves.
  • the large droplet D generated by the resonance may vibrate larger due to the increased size and mass, and thus can move more quickly and smoothly out of the surface of the lens 12, that is, a certain object O. .
  • the supply of the AC power having the resonant frequency may not only amplify the vibration of the droplet D, but also may have an effect of promoting the movement of the droplet D as described above.
  • the droplet D can be removed from the surface by moving out of the surface of the lens 12, that is, the object O, so that the surface can be cleaned.
  • FIG. 10 is a schematic diagram showing the correlation between the range of an electric field and the size of droplets that can be excite. 10 shows, for example, a basic example of the electrowetting element 100 described above. 10, adjacent electrodes 120 are spaced apart from each other by a predetermined distance.
  • the electric field F generated under a constant first voltage of the first AC power may also have a certain range as shown. have. Therefore, a certain region in which an electric field F is not formed may exist between the electrodes 120 spaced apart from each other. For this reason, droplets D1 of a relatively large size may be included and excited within the generated adjacent electric fields F, whereas fine droplets D2 may not be disposed and excited outside the electric fields F. . Therefore, the fine droplet D2 cannot be properly vibrated and may remain on the surface of the object O (ie, the lens 12), as shown in FIG. 9(c).
  • the range of the electric field F is expanded, such a fine droplet D2 may also be included in the expanded electric field F and vibrate and vibrate.
  • the control device 400 is operated A second AC power having a second voltage greater than 1 voltage may be provided or supplied to the electrowetting device 100 (S40).
  • the supply step S40 is performed without interruption following the preceding supply step S30.
  • the control device 400 may increase only the first voltage from the first AC power currently being supplied to the second voltage, as shown in FIG. 6 ( S41).
  • the control device 400 actually provides a second AC power different from the first AC power.
  • only the voltage is changed for the expansion of the electric field F, and the second AC power provided for continuous excitation may have the same second frequency as the first frequency of the first AC power, that is, the resonance frequency.
  • the second frequency (that is, the resonance frequency) of the supplied second AC power may be continuously maintained during the entire supplying step S40.
  • the second voltage may be appropriately set to be greater than at least the first voltage, and may have a range of 150 V-200 V, for example.
  • the electric field F may be expanded by supplying the second AC power (ie, the second voltage), and the relationship between the extended electric field and the fine droplet D2 is well illustrated in FIG. 11.
  • the electrode 120 may form an electric field F1 larger than the electric field F under the existing first voltage by the supplied second voltage. Fine droplets D2 may also be included in this extended electric field F1, and may be sufficiently excited and vibrated to be removed.
  • the control device 400 may reduce the second voltage of the second AC power source to the third voltage during the supplying step S40 (S42). That is, the control device 400 may supply the second AC power having the third voltage smaller than the second voltage to the electrowetting device 100. As illustrated in FIG. 11, a reduced electric field F2 may be formed rather than the electric field F1 at the second voltage by supplying the second AC power having the third voltage. However, even in this case, in order to continuously excite the fine droplet D2, the electric field F2 at the third voltage must be formed to include at least the fine droplet D2. Therefore, in order to form such an electric field F2, the third voltage may be set smaller than the second voltage but at least larger than the first voltage.
  • the control device 400 may increase the third voltage of the second AC power to the second voltage and reduce the second voltage to the third voltage again, and repeatedly increase and decrease the voltage. Yes (S43). That is, the control device 400 may repeatedly supply the second AC power having the second voltage and the second AC power having the third voltage. Because of its small size and mass, the fine droplets D2 may not be easy to sufficiently excite even if they are included in the electric fields F1 and F2. However, as shown in FIG. 11, different ranges of electric fields F1, F2 alternately and alternately fine droplets D2 by alternate supply of different second and third voltages. It is applied, and thus an additional excitation force may be applied to the fine droplet D2. Therefore, the fine droplets D2 can also be vibrated appropriately, and the surface of the object O can be completely cleaned due to the removal of the fine droplets D2.
  • a second AC power having various voltages may be provided to the electrowetting device 100 for a predetermined second time period, the second time being a fine droplet D2 It can be appropriately set to cause a sufficient movement and removal of. More specifically, the control device 400 may monitor the surface of the object O using the sensing device 300, and even the second droplet AC power until the fine droplets D2 are completely removed from the surface. Can maintain the supply.
  • the supply step (S30) is configured to remove most of the droplets (D1), while the supply step (S40) can be configured to remove only the remaining fine droplets (D2). Therefore, the first time in which the supplying step S30 is performed may be set longer than the second time in which the supplying step S40 is performed, for example, the ratio of the first time and the second time is 8:2. Can be set to
  • FIG. 16 is a schematic diagram showing the correlation between the range of the electric field and the size of droplets that can be excite in a modification of the electrowetting device
  • FIG. 17 is expanded due to the increased voltage in the modification of the electrowetting device It is a schematic diagram showing fine droplets excited by an electric field.
  • the first and second sub-electrodes 121a and 122a are electric fields.
  • Fa,Fb can be formed (see FIG. 16).
  • the formed electric fields Fa and Fb are connected to each other to connect the object O to the It is possible to form a uniform electric field covering the entire surface.
  • the modified example of the electrowetting device 100 can effectively remove all the droplets D1 and D2 of any size only by the step of supplying the first AC power (S30).
  • the above-described second AC power supply step (S40) may be additionally performed in a cleaning device including a modification of the electrowetting device 100. Accordingly, as illustrated in FIG.
  • the first and second sub-electrodes 121a and 122a may be formed by alternately alternating electric fields F1 and F2 in different ranges, and accordingly, the microdroplets D2 ) Can be removed more effectively.
  • the same supply steps (S40: S41-S43) described above with reference to FIG. 6 are applied, and further description thereof will be omitted in the following.
  • the control method of the present application may be partially modified based on the modification example.
  • the first AC power supply step (S30) may be modified when a modified example of the electrowetting device 100 is applied, and FIG. 18 shows the resonance frequency and the first voltage in the control method of the present application. It is a flow chart showing in detail the steps of providing the first AC power having.
  • the control device 140 may first supply the first AC power only to the first electrode 121, that is, its first sub-electrodes 121a for a predetermined time ( S31). Thereafter, the control device 140 may continuously supply the first AC power only to the second electrode 122, that is, the second sub-electrodes 122a thereof for a predetermined time (S32 ). In addition, the control device 140 may repeatedly perform these supply steps (S31, S32). That is, the control device 140 may be configured to alternately supply the first AC power to the first and second electrodes 121 and 122. As previously described in detail in the supply step (S30), the first AC power supplied may have a resonance frequency and a first voltage.
  • the first and second electrodes 121 and 122 form electric fields covering the entire object surface, even the smallest microdroplets are formed by any one of the supply steps S31 and S32. It can be included in the electric field and can be vibrated appropriately. Rather, these alternating supply steps and the repetitions (S31-S33) thereof can periodically change the formation positions of the electric field, so that the microdroplets can be more effectively excited and removed.
  • the control device 400 may orient the object O and the electrowetting element 100 installed thereon in an inclined manner (S50).
  • the camera 10 may include a predetermined driving device 14.
  • the control device 400 may generate a displacement in the camera 10 using the driving device 14 and incline the object O to be cleaned, that is, the lens 12 and the electrowetting element 100.
  • the driving device 14 may be formed of a device capable of generating a rotational force, and as shown by an arrow in FIG.
  • the alignment step S50 may be performed before or after the supply steps S40 and S50, and may be performed at any time during the supply steps S40 and S50. By such an alignment step (S50), the droplet (D) can be moved in a more smoothly inclined direction by gravity while vibrating, and can be more easily removed from the surface of the object (O).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

The present application provides a device for effectively removing alien substances from the surface of an object and a method for controlling same. The present application may provide an object surface cleaning device comprising: a substrate provided on the surface of a predetermined object; an electrode provided on the substrate and comprising first and second electrodes disposed in different planes, respectively; a dielectric layer provided on the substrate and configured to cover the electrode; and a control device configured to supply AC power to the electrode. The control device may be configured to provide the electrode with first AC power having a predetermined first frequency and a predetermined first voltage for one hour, in order to cause droplets on the surface of the object to vibrate by means of a periodic change in electrostatic force produced by the electrode. The first frequency may be configured as the resonant frequency of the droplets.

Description

전기습윤소자를 이용한 표면세정장치 및 이의 제어방법Surface cleaning device using electrowetting element and control method therefor
본 출원은 전기습윤소자에 관한 것이며, 보다 상세하게는, 상기 전기습윤소자를 이용하여 물체의 표면을 세정하도록 구성되는 장치에 관한 것이다.The present application relates to an electrowetting device, and more particularly, to an apparatus configured to clean the surface of an object using the electrowetting device.
일반적으로, 고체상에 위치된 액체(liquid), 특히 방울형태(droplet)의 액체에 전기장이 가해지면, 고체에 대한 유체의 접촉각 및 표면장력이 변화된다. 이러한 거동은 전기습윤효과 또는 현상(electrowetting effect or phenomenon)으로 정의된다. 전기습윤효과에 따른 접촉각 및 접촉면적의 변화를 이용하여 액체방울, 즉 액적(liquid droplet)은 이동될 수 있으며, 가해지는 전기장의 방향을 제어함으로써 액적의 이동방향도 제어될 수 있다. 따라서, 전기습윤효과를 발생시키도록 구성되는 전기습윤소자(electrowetting element)가 개발되었으며, 다양한 분야에 적용되고 있다. In general, when an electric field is applied to a liquid placed in a solid phase, especially a droplet, the contact angle and surface tension of the fluid to the solid change. This behavior is defined as the electrowetting effect or phenomenon. Liquid droplets, i.e., liquid droplets, can be moved using a change in the contact angle and contact area according to the electrowetting effect, and the direction of movement of the droplets can also be controlled by controlling the direction of the applied electric field. Accordingly, an electrowetting element that is configured to generate an electrowetting effect has been developed, and has been applied to various fields.
보다 상세하게는, 전기습윤소자는 생명공학에서 실험 및 분석의 목적으로 혈액을 포함하는 다양한 액상의 생체물질을 이동, 결합, 분할하는데 적용되어오고 있다. 또한, 전기습윤소자는 새로운 형태의 디스플레이의 개발에 적용되고 있다. 이와 같은 전기습윤소자는 비교적 단순한 구조만으로도 미세한 액적을 조작하는 능력을 가지고 있으므로, 앞서 언급된 분야들과는 다른 여러분야들에 적용될 수 있다. More specifically, electrowetting devices have been applied in biotechnology to move, combine, and divide various liquid biomaterials including blood for the purpose of experimentation and analysis. In addition, electrowetting devices have been applied to the development of new types of displays. Since such an electrowetting device has the ability to manipulate fine droplets even with a relatively simple structure, it can be applied to fields different from the aforementioned fields.
본 출원의 목적은 전기습윤효과를 이용하여 물체의 표면을 세정하도록 구성되는 장치를 제공하는 것이다. An object of the present application is to provide an apparatus configured to clean the surface of an object using an electrowetting effect.
상술된 목적을 달성하기 위해, 본 출원은 소정 물체의 표면상에 제공되는 기판; 상기 기판에 제공되며, 서로 다른 평면들내에 각각 배치되는 제 1 및 제 2 전극들을 포함하는 전극; 상기 기판에 제공되며, 상기 전극을 덮도록 구성되는 절연층(dielectric layer); 및 상기 전극에 교류전원을 공급하도록 구성되는 제어장치를 포함하며, 상기 제어장치는 상기 전극에서 발생되는 정전기력의 주기적인 변화에 의해 상기 물체표면상의 액적에 진동을 발생시키기 위해, 소정의 제 1 주파수 및 소정의 제 1 전압을 갖는 제 1 교류전원을 제 1 시간동안 상기 전극에 제공하도록 구성되며, 상기 제 1 주파수는 상기 액적의 공진주파수로 설정되는 물체표면 세정장치를 제공할 수 있다. In order to achieve the above object, the present application provides a substrate provided on the surface of a predetermined object; An electrode provided on the substrate and including first and second electrodes respectively disposed in different planes; An insulating layer provided on the substrate and configured to cover the electrode; And a control device configured to supply AC power to the electrode, the control device having a predetermined first frequency to generate vibrations on the droplets on the object surface by periodic changes in the electrostatic force generated by the electrodes. And a first alternating current power source having a predetermined first voltage, provided to the electrode for a first time, and wherein the first frequency is set to a resonant frequency of the droplet.
상기 제어장치는 상기 제 1 교류전원을 공급하기 이전에, 상기 전극에 교류전원을 제공하면서 상기 액적의 공진 주파수를 검출하도록 구성될 수 있다. 보다 상세하게는, 상기 공진 주파수를 검출하는 동안, 상기 제어장치는: 상기 제공되는 교류전원의 소정 범위의 주파수들을 순차적으로 스윕(sweep)하며; 상기 스윕동안 상기 액적의 공진을 감지하며; 상기 공진이 발생된 주파수를 상기 제 1 주파수로 설정하도록 구성될 수 있다. The control device may be configured to detect the resonance frequency of the droplet while providing AC power to the electrode before supplying the first AC power. More specifically, while detecting the resonance frequency, the control device sequentially sweeps frequencies in a predetermined range of the provided AC power; Sensing the resonance of the droplet during the sweep; It may be configured to set the frequency at which the resonance occurs to the first frequency.
보다 상세하게는, 상기 소정범위의 주파수들을 스윕하는 동안, 상기 제어장치는 소정의 주파수부터 시작하여 상기 액적에 공진이 발생할 때까지 상기 교류전원의 주파수를 점차적으로 증가시키도록 구성될 수 있다. 예를 들어, 상기 제어장치는 10Hz-150Hz의 주파수들을 스윕하도록 구성될 수 있다. More specifically, while sweeping the frequencies in the predetermined range, the control device may be configured to gradually increase the frequency of the AC power source, starting from a predetermined frequency and until resonance occurs in the droplet. For example, the control device can be configured to sweep frequencies of 10 Hz-150 Hz.
또한, 상기 액적의 공진을 감지하기 위해, 상기 제어장치는: 센서를 이용하여 상기 액적의 영상을 획득하며; 상기 액적의 진동의 급격한 증가를 감지하기 위해 상기 획득된 영상을 분석하도록 구성될 수 있다. 만일 상기 액적의 공진이 다수개의 주파수들에서 감지되는 경우, 상기 제어장치는 상기 주파수들중 가장 높은 주파수를 상기 교류전원의 제 1 주파수로 설정하도록 구성될 수 있다. 예를 들어, 상기 제 1 주파수는 30 Hz 또는 100 Hz가 될 수 있으며, 상기 제 1 전압은 50V-150V의 범위를 가질 수 있다. Further, in order to sense the resonance of the droplet, the control device: acquires an image of the droplet using a sensor; It may be configured to analyze the acquired image to detect a sharp increase in the vibration of the droplet. If the resonance of the droplet is detected at a plurality of frequencies, the control device may be configured to set the highest frequency of the frequencies as the first frequency of the AC power. For example, the first frequency may be 30 Hz or 100 Hz, and the first voltage may have a range of 50V-150V.
한편, 상기 제어장치는 상기 제 1 시간동안의 제 1 교류전원의 제공 이후에, 상기 제 1 전압보다 큰 제 2 전압을 갖는 제 2 교류전원을 제 2 시간동안 상기 전극에 제공하도록 구성될 수 있다. 예를 들어, 상기 제 2 전압은 150V-200V의 범위를 가질 수 있다. Meanwhile, the control device may be configured to provide a second AC power having a second voltage greater than the first voltage to the electrode for a second time after providing the first AC power during the first time. . For example, the second voltage may have a range of 150V-200V.
보다 상세하게는, 상기 제 2 교류전원을 공급하기 위해, 상기 제어장치는 상기 제 1 주파수를 갖는 제 1 교류전원의 제 1 전압을 상기 제 2 전압으로 증가시키도록 구성될 수 있다. 또한, 상기 제 2 교류전원을 제공하는 동안, 상기 제어장치는: 상기 제 2 전압을 상기 제 2 전압보다 작은 제 3 전압으로 감소시키고; 상기 제 3 전압에서 상기 제 2 전압으로의 증가 및 상기 제 2 전압에서 상기 제 3 전압으로의 감소를 반복하도록 더 구성될 수 있다. 또한, 상기 제 1 시간과 제 2 시간은 8:2의 비율로 설정될 수 있다. More specifically, in order to supply the second AC power, the control device may be configured to increase the first voltage of the first AC power having the first frequency to the second voltage. Further, while providing the second AC power, the control device: reduces the second voltage to a third voltage smaller than the second voltage; It may be further configured to repeat the increase from the third voltage to the second voltage and the decrease from the second voltage to the third voltage. Also, the first time and the second time may be set at a ratio of 8:2.
한편, 상기 제 1 전극은 상기 기판상에 배치되며, 상기 제 2 전극은 상기 제 1 전극 위쪽(above)에 배치될 수 있다. 상기 제 1 전극은 서로 소정간격으로 이격되며, 동일평면내에 배치되는 다수개의 제 1 서브전극들을 포함하며, 상기 제 2 전극은 서로 소정 간격으로 이격되며, 동일평면내에 배치되는 다수개의 제 2 서브전극들을 포함할 수 있다. 보다 상세하게는, 상기 제 1 및 제 2 서브전극들은 서로 번갈아가며 배치될 수 있다. Meanwhile, the first electrode may be disposed on the substrate, and the second electrode may be disposed above the first electrode. The first electrode is spaced apart from each other at a predetermined interval, and includes a plurality of first sub-electrodes disposed within the same plane, and the second electrode is spaced apart from each other at a predetermined distance, and a plurality of second sub-electrodes disposed within the same plane It may include. More specifically, the first and second sub-electrodes may be alternately arranged.
또한, 상기 전극은 상기 제 1 서브전극의 측부와 이에 인접하는 상기 제 2 서브전극의 측부사이에 형성되는 소정의 제 1 간격을 포함할 수 있으며, 상기 제 1 간격은 5 ㎛이 될 수 있다. 또한, 상기 전극은 상기 제 1 전극과 상기 제 2 전극사이에 수직방향을 따라 형성되는 제 2 간격을 포함할 수 있으며, 상기 제 2 간격은 상기 제 1 간격과 동일하게 설정될 수 있다. In addition, the electrode may include a predetermined first gap formed between the side of the first sub-electrode and the side of the second sub-electrode adjacent thereto, and the first gap may be 5 μm. Further, the electrode may include a second gap formed in a vertical direction between the first electrode and the second electrode, and the second gap may be set to be the same as the first gap.
상기 절연층은: 상기 기판상에 배치되며 상기 제 1 전극을 덮도록 구성되는 제 1 절연층; 및 상기 제 1 절연층상에 배치되며, 상기 제 2 전극을 덮도록 구성되는 제 2 절연층을 포함할 수 있다. The insulating layer includes: a first insulating layer disposed on the substrate and configured to cover the first electrode; And a second insulating layer disposed on the first insulating layer and configured to cover the second electrode.
상기 제 1 교류전원을 제공하는 동안, 상기 제어장치는 상기 제 1 및 제 2 전극들에 번갈아가며 상기 제 1 교류전원을 공급하도록 구성될 수 있다 While providing the first AC power, the control device may be configured to alternately supply the first AC power to the first and second electrodes.
본 출원에 따른 표면세정장치 및 제어방법은 공급되는 교류전원의 주파수를 제어함으로써 물체표면상의 액적에 공진을 발생시킬 수 있다. 즉, 상기 표면세정장치 및 제어방법은 공진주파수를 검출하고 검출된 공진 주파수를 갖는 교류전원을 공급하도록 구성될 수 있다. 따라서, 액적은 공진되면서 신속하고 원활하게 물체표면 외부로 이동됨으로써 제거될 수 있다. The surface cleaning apparatus and control method according to the present application may generate resonance in droplets on the object surface by controlling the frequency of the AC power supplied. That is, the surface cleaning device and the control method may be configured to detect a resonance frequency and supply AC power having the detected resonance frequency. Thus, the droplets can be removed by moving quickly and smoothly out of the object surface while resonating.
또한, 본 출원에 따른 표면세정장치 및 제어방법은 공급되는 교류전원의 전압을 추가적으로 제어함으로써 물체표면상의 미세액적도 가진할 수 있다. 즉, 상기 표면세정장치 및 제어방법은 공급되는 교류전원의 전압을 증가시켜 미세 액적도 가진하도록 발생되는 전극의 범위를 확장시킬 수 있다. 따라서, 미세액적들도 적절하게 가진 및 진동되어 물체 표면으로부터 제거될 수 있다. In addition, the surface cleaning apparatus and control method according to the present application can also excite fine droplets on the object surface by additionally controlling the voltage of the supplied AC power. That is, the surface cleaning apparatus and the control method can expand the range of electrodes generated to excite fine droplets by increasing the voltage of the supplied AC power. Thus, microdroplets can also be properly excited and vibrated and removed from the object surface.
따라서, 본 출원에 따른 표면세적장치 및 제어방법은 공급되는 교류전원의 주파수 및 전압을 최적으로 제어함으로써 물체표면상의 모든 액적들을 효과적으로 진동시키고 신속하고 효율적으로 제거할 수 있다. Therefore, the surface cleaning device and control method according to the present application can effectively vibrate and quickly and efficiently remove all droplets on the object surface by optimally controlling the frequency and voltage of the supplied AC power.
도 1은 본 출원에 따른 전기습윤소자를 이용한 표면세정장치를 나타내는 개략도이다. 1 is a schematic view showing a surface cleaning apparatus using an electrowetting device according to the present application.
도 2는 전기습윤소자에서 전극의 구조를 나타내는 평면도이다. 2 is a plan view showing the structure of an electrode in an electrowetting device.
도 3은 영상장치에 적용된 표면세정장치를 나타내는 사시도이다. 3 is a perspective view showing a surface cleaning device applied to an imaging device.
도 4는 본 출원에 따른 전기습윤소자를 이용한 표면세정장치를 제어하는 방법을 나타내는 순서도이다. 4 is a flowchart showing a method of controlling a surface cleaning device using an electrowetting device according to the present application.
도 5는 본 출원의 제어방법에서 공진주파수를 검출하는 단계를 상세하게 나타내는 순서도이다. 5 is a flowchart illustrating in detail the step of detecting the resonance frequency in the control method of the present application.
도 6은 본 출원의 제어방법에서 제 1 교류전원의 전압과는 다른 전압을 갖는 제 2 교류전원을 제공하는 단계를 상세하게 나타내는 순서도이다. 6 is a flowchart illustrating in detail the steps of providing a second AC power having a different voltage from the voltage of the first AC power in the control method of the present application.
도 7은 전기습윤소자에 교류전원이 공급될 때, 액적의 거동을 나타내는 그래프이다. 7 is a graph showing the behavior of droplets when AC power is supplied to the electrowetting device.
도 8은 서로 다른 주파수들을 갖는 교류전원이 공급되는 경우 액적의 거동들을 각각 보여주는 개략도이다. 8 is a schematic diagram showing the behavior of droplets when AC power having different frequencies is supplied, respectively.
도 9는 본 출원에 따른 제어방법에 의해 제거되는 액적을 보여주는 평면도이다. 9 is a plan view showing droplets removed by a control method according to the present application.
도 10은 전기장의 범위와 가진될(excite) 수 있는 액적의 크기사이의 상관관계를 보여두는 개략도이다. 10 is a schematic diagram showing the correlation between the range of an electric field and the size of droplets that can be excite.
도 11은 증가된 전압으로 인해 확장된 전기장에 의해 가진되는 미세 액적을 보여주는 개략도이다. 11 is a schematic diagram showing fine droplets excited by an extended electric field due to increased voltage.
도 12는 본 출원에 따른 표면세정장치에서 전기습윤소자의 변형예(modified example)를 나타내는 분해사시도이다. 12 is an exploded perspective view showing a modified example of an electrowetting device in the surface cleaning apparatus according to the present application.
도 13은 전기습윤소자의 변형예를 이용한 표면세정장치를 나타내는 개략도이다. 13 is a schematic view showing a surface cleaning device using a modified example of an electrowetting device.
도 14는 전기습윤소자의 변형예에서 전극을 나타내는 평면도이다. 14 is a plan view showing an electrode in a modified example of the electrowetting device.
도 15는 전기습윤소자의 변형예에서 전극의 변형예를 나타내는 평면도들이다. 15 is a plan view showing a modified example of an electrode in a modified example of the electrowetting element.
도 16은 전기습윤소자의 변형예에서 전기장의 범위와 가진될(excite) 수 있는 액적의 크기사이의 상관관계를 보여두는 개략도이다. 16 is a schematic diagram showing a correlation between the range of an electric field and the size of droplets that can be excite in a modified example of the electrowetting device.
도 17은 전기습윤소자의 변형예에서 증가된 전압으로 인해 확장된 전기장에 의해 가진되는 미세 액적을 보여주는 개략도이다. 17 is a schematic diagram showing fine droplets excited by an extended electric field due to an increased voltage in a modification of the electrowetting device.
도 18은 본 출원의 제어방법에서, 공진주파수 및 제 1 전압을 갖는 제 1 교류전원을 제공하는 단계를 상세하게 나타내는 순서도이다.18 is a flowchart illustrating in detail the steps of providing a first AC power source having a resonance frequency and a first voltage in a control method of the present application.
첨부된 도면을 참조하여 본 출원에 따른 표면세정장치 및 제어방법의 실시예들이 다음에서 상세히 설명된다. Embodiments of the surface cleaning apparatus and the control method according to the present application will be described in detail below with reference to the accompanying drawings.
실시예들의 설명에 있어서, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 출원의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. In the description of the embodiments, the same or similar elements are assigned the same reference numbers regardless of the reference numerals, and redundant descriptions thereof will be omitted. The suffixes "modules" and "parts" for components used in the following description are given or mixed only considering the ease of writing the specification, and do not have meanings or roles distinguished from each other in themselves. In addition, in describing the embodiments disclosed in this specification, detailed descriptions of related known technologies are omitted when it is determined that the gist of the embodiments disclosed in this specification may be obscured. In addition, the accompanying drawings are only for easy understanding of the embodiments disclosed in the present specification, and the technical spirit disclosed in the specification is not limited by the accompanying drawings, and all modifications included in the spirit and technical scope of the present application , It should be understood to include equivalents or substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When an element is said to be "connected" or "connected" to another component, it is understood that other components may be directly connected to or connected to the other component, but there may be other components in between. It should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서,"이루어진다(comprise)", "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 같은 이유에서, 본 출원은 개시된 기술적 목적 및 효과에서 벗어나지 않는 한 앞선 언급된 용어를 사용하여 설명된 관련 특징, 숫자, 단계, 동작, 구성요소, 부품의 조합으로부터도 일부 특징, 숫자, 단계, 동작, 구성요소, 부품등이 생략된 조합도 포괄하고 있음도 이해되어야 한다. In the present application, the terms "comprise", "comprises" or "have" are intended to indicate that there are features, numbers, steps, actions, components, parts or combinations thereof described in the specification. It should be understood that the existence or addition possibilities of one or more other features or numbers, steps, operations, components, parts or combinations thereof are not excluded in advance. In addition, for the same reason, this application does not depart from the disclosed technical purposes and effects, and some features, numbers, steps, even from combinations of related features, numbers, steps, actions, components, parts described using the terms mentioned above. It should also be understood that combinations of omissions, operations, components, and parts are also included.
본 명세서에서 설명되는 실시예들은 물체의 표면을 세정하는 장치 및 방법에 관한 것이다. 그러나, 설명된 실시예들의 원리 및 구성(configuration)은 표면세정과는 다른 목적 및 용도를 갖는 장치들에도 변형없이 동일하게 적용될 수 있음을 해당 기술분야의 당업자라면 쉽게 알 수 있을 것이다. Embodiments described herein relate to apparatus and methods for cleaning the surface of an object. However, it will be readily apparent to those skilled in the art that the principles and configurations of the described embodiments can be equally applied to devices having different purposes and uses than surface cleaning without modification.
도 1은 본 출원에 따른 전기습윤소자를 이용한 표면세정장치를 나타내는 개략도이며, 도 2는 도 1의 전기습윤소자에서 전극의 구조를 나타내는 평면도이다. 또한, 도 3은 영상장치에 적용된 표면세정장치를 나타내는 사시도이다. 이들 도면들을 참조하여, 본 출원에 따른 전기습윤소자를 이용한 표면세정장치가 다음에서 설명된다. 1 is a schematic view showing a surface cleaning apparatus using an electrowetting device according to the present application, and FIG. 2 is a plan view showing the structure of an electrode in the electrowetting device of FIG. 1. In addition, Figure 3 is a perspective view showing a surface cleaning device applied to the imaging device. With reference to these drawings, a surface cleaning apparatus using an electrowetting element according to the present application is described below.
본 출원의 표면세정장치는 소정 물체(O)의 표면상에 존재하는 액적들(liquid droplet)(D)을 제거함으로써 상기 물체(O)의 표면을 세정하도록 구성될 수 있다. 상기 물체(O)상의 액적(D)은 제거되기 위해 물체(O)표면상에서 이동될 수 있으며, 이러한 액적(D)의 이동을 위해 앞서 언급된 바와 같이 전기습윤효과가 적용될 수 있다. 따라서, 본 출원의 표면세정장치는 기본적으로 액적(D)의 이동을 발생시키도록 구성되는 전기습윤소자(100)를 포함할 수 있다. 도 1에서, 전기습윤소자(100)는 이의 내부구조를 잘 보여주기 위해, 다른 구성요소와는 다르게 단면으로 도시된다. 이러한 도 1 및 도 2의 전기습윤소자(100)는 후술되는 도 12-도 15의 전기습윤소자(100)의 변형예(modification, modified example, or modified embodiment)을 고려할 때, 기본예(basic example or basic embodiment)에 해당할 수 있다. The surface cleaning apparatus of the present application may be configured to clean the surface of the object (O) by removing liquid droplets (D) existing on the surface of the object (O). The droplet D on the object O can be moved on the surface of the object O to be removed, and the electrowetting effect can be applied as described above for the movement of the droplet D. Accordingly, the surface cleaning apparatus of the present application may include the electrowetting element 100 that is basically configured to generate movement of the droplet D. In FIG. 1, the electrowetting element 100 is shown in a cross-section differently from other components in order to better show its internal structure. When considering the modification (modification, modified example, or modified embodiment) of the electrowetting device 100 of FIGS. 12 to 15 to be described later, the electrowetting device 100 of FIGS. 1 and 2 is a basic example or basic embodiment).
도 1을 참조하면, 전기습윤소자(100)는 기판(110)을 포함할 수 있다. 이러한 기판(110)은 세정될 물체(O)의 표면상에 배치될 수 있다. 전기습윤소자(100)는 또한 기판(110)에 제공되는 전극(120)을 포함할 수 있다. 보다 상세하게는, 전극(120)은 기판(110)의 표면상에 배치될 수 있다. 전극(120)은 전원/전력(power) 또는 전압(voltage)을 공급받아 소정크기의 전기장을 형성하도록 구성될 수 있다. 도시된 바와 같이, 다수개의 전극(120)이 기판(110)의 전체 표면에 걸쳐 서로 소정 간격으로 이격되면서 배치될 수 있다. 따라서, 전극들(120)은 전기습윤소자(100), 더 나아가 세정될 물체(O)의 표면 전체에 전기장을 균일하게 형성할 수 있다. 이와 같은 전극(120)의 배열은 다양한 방식으로 달성될 수 있으며, 일 예로서 도 2의 패턴이 전기습윤소자(100)에 적용될 수 있다. 도 2를 참조하면, 전극(120)은 서로 대향되게 배치되는 공통전극들(120a,120c)을 포함할 수 있다. 또한, 공통전극들(120a,120c)로부터 다수개의 서브전극들(sub-electrode)(120b,120d)이 연장될 수 있다. 이들 서브전극들(120b,120d)은 서로 소정간격으로 이격되면서 번갈아가며 배치될 수 있다. 또한, 도 1의 전기습윤소자(100)의 단면에서 나타나는 바와 같이, 이들 서브전극들(120b,120d)은 기판(100)상의 동일한 평면 또는 레이어(plane or layer)내에 서로 나란하게 배치될 수 있다. 따라서, 이와 같은 패턴에 따라 서브전극(120b,120d)은 전기습윤소자(100) 전체에 걸쳐서 균일한 전기장을 형성할 수 있다. 실제적으로, 전기습윤소자(100)의 기본예와 관련하여 도 1 및 다른 도면들에서 보여지는 전극(120)은 도 2의 서브전극들(120b,120d)에 해당된다. 이와 같은 전극(120)은 다양한 재질로 이루어질 수 있으며, 예를 들어 인듐주석산화물 (ITO: Indium tin oxide)로 제조될 수 있다. Referring to FIG. 1, the electrowetting device 100 may include a substrate 110. The substrate 110 may be disposed on the surface of the object O to be cleaned. The electrowetting device 100 may also include an electrode 120 provided on the substrate 110. More specifically, the electrode 120 may be disposed on the surface of the substrate 110. The electrode 120 may be configured to form an electric field of a predetermined size by receiving power/power or voltage. As illustrated, a plurality of electrodes 120 may be disposed spaced apart from each other at a predetermined distance over the entire surface of the substrate 110. Accordingly, the electrodes 120 may uniformly form an electric field on the entire surface of the electrowetting device 100 and, further, the object O to be cleaned. The arrangement of the electrode 120 may be achieved in various ways, and as an example, the pattern of FIG. 2 may be applied to the electrowetting device 100. Referring to FIG. 2, the electrode 120 may include common electrodes 120a and 120c disposed to face each other. Also, a plurality of sub-electrodes 120b and 120d may be extended from the common electrodes 120a and 120c. These sub-electrodes 120b and 120d may be alternately arranged while being spaced apart from each other at predetermined intervals. In addition, as shown in the cross section of the electrowetting device 100 of FIG. 1, these sub-electrodes 120b and 120d may be arranged side by side in the same plane or layer on the substrate 100. . Accordingly, according to this pattern, the sub-electrodes 120b and 120d may form a uniform electric field across the electrowetting device 100. In practice, the electrode 120 shown in FIGS. 1 and other drawings in relation to the basic example of the electrowetting device 100 corresponds to the sub-electrodes 120b and 120d of FIG. 2. The electrode 120 may be made of various materials, for example, may be made of indium tin oxide (ITO).
전기습윤소자(100)는 기판(110) 및 전극(120)만으로도 의도된 전기습윤효과, 즉 액적(D)의 운동을 발생시킬 수 있다. 그러나, 액적(D)이 전극(120)과 직접 접촉하는 경우, 상대적으로 높은 전원 또는 전압하에서 액적(D)은 이동되기 이전에 전기분해될 수 있다. 따라서, 전기습윤소자(100)은 전극(120)을 덮도록 구성되는 절연층(dielectric layer)(130)을 포함할 수 있다. 절연층(130)은 보다 상세하게는, 기판(110) 및 전극(120)상에 배치되며, 전극(120) 뿐만 아니라 상기 전극들(120)사이에 노출되는 기판(110)의 표면도 덮도록 구성될 수 있다. 즉, 절연층(130)에 의해 전극들(120)은 외부로 노출되지 않게 격리(isolate)될 수 있다. 따라서, 절연층(130)의 개재(interposition)로 인해, 액적(D)은 전극(120)에 의해 전기분해되지 않으면서, 전극(120)에서 발생되는 전기장에만 노출될 수 있다. 이러한 절연층(130)은 다양한 재질로 이루어질 수 있으며, 예를 들어 질화 규소로 만들어질 수 있다. 또한, 전기습윤소자(100)는 절연층(130)에 제공되는 소수성층(hydrophobic layer)(140)을 더 포함할 수 있다. 보다 상세하게는, 소수성층(140)은 절연층(130)의 표면 전체에 걸쳐 배치될 수 있다. 소수성층(140)은 그 자신의 액체를 밀어내는(repel) 성질로 인해 액적(D)이 원활하게 이동하도록 도와줄 수 있다. The electrowetting device 100 may generate the intended electrowetting effect, that is, the motion of the droplet D, even with the substrate 110 and the electrode 120 alone. However, when the droplet D is in direct contact with the electrode 120, the droplet D may be electrolyzed before being moved under a relatively high power or voltage. Accordingly, the electrowetting device 100 may include an insulating layer 130 configured to cover the electrode 120. The insulating layer 130 is disposed on the substrate 110 and the electrode 120 in more detail, and covers not only the electrode 120 but also the surface of the substrate 110 exposed between the electrodes 120. Can be configured. That is, the electrodes 120 may be isolated from the outside by being exposed by the insulating layer 130. Therefore, due to the interposition of the insulating layer 130, the droplet D may not be electrolyzed by the electrode 120, but may be exposed only to the electric field generated by the electrode 120. The insulating layer 130 may be made of various materials, for example, made of silicon nitride. In addition, the electrowetting device 100 may further include a hydrophobic layer 140 provided on the insulating layer 130. More specifically, the hydrophobic layer 140 may be disposed over the entire surface of the insulating layer 130. The hydrophobic layer 140 may help the droplet D to move smoothly due to its repel property.
이와 같은 전기습윤소자(100)에서, 액적(D)에 인접하게 배치된 어느 하나의 전극(120)에 전원 또는 전압을 인가해 전기장이 발생되면, 상기 전기장에 의해 액적(D)의 접촉각이 변화될 수 있다. 보다 상세하게는, 전기장의 영향하에서 액적(D)은 전극(120), 즉 소자(100)의 표면쪽으로 당겨지며, 상기 표면에 대한 액적(D)의 접촉각은 감소될 수 있다. 따라서, 이러한 접촉각이 감소된 부위쪽으로 액적(D)은 이동될 수 있다. 이와 같은 원리를 이용하여, 전극(120)의 일부, 즉, 서브전극들(120b,120d)에 선택적으로 전원 또는 전압을 인가함으로써 원하는 방향으로 이동되도록 액적(D)은 조종(maneuver)될 수 있다. 즉, 전극(120)에 대한 전원공급을 제어함으로써 액적(D)은 이동은 제어될 수 있다. 한편, 만일 전극(120)에 교류전원(AC power) 또는 교류전압이 가해지면, 교류전원의 주기적으로 변동하는(alternate) 주파수에 따라 전기장 및 이에 의해 가해지는 정전기력(electrostatic force)도 주기적으로 변동하게 된다. 이러한 변동되는 정전기력에 의해 액적(D)은 가진(excite)될 수 있으며, 후술되는 도 7에 도시된 바와 같이 진동할 수 있다. 보다 상세하게는, 액적(D)은 가진에 의해 얻어진 에너지로 도 1에 도시된 바와 같이 전기습윤소자(100) 및 물체(O)의 표면위를 진동하면서 상기 표면외부로 자체적으로 이동해 나갈 수 있으며, 결과적으로 상기 표면으로부터 제거될 수 있다. 이와 같은 가진 및 진동을 이용한 액적(D)의 임의적 이동(random movement)은 액적(D)을 효과적으로 제거하면서도, 앞서 설명된 액적(D)의 조종(maneuvering)에서와 같은 전극(120)으로의 전원공급의 세부적인 제어를 요구하지 않는다. 또한, 같은 이유로, 전극(120)에 의한 가진을 이용함으로써, 상기 전극(120), 즉 모든 서브전극들(120b,120d)에 동시에 교류전원 또는 전압이 가해지면, 물체(O) 표면상에 존재하는 모든 액적들(D)이 동시에 진동되고 이동될 수 있다. 액적(D)의 제거는 액적(D)의 정교한 조종이 아닌 단순히 소정물체(O)의 표면외부로의 이동만을 요구하므로, 상술된 액적(D)의 가진 및 진동은 액적(D)의 제거에 있어 보다 효율적이고 효과적일 수 있다. 따라서, 본 출원의 표면세정장치, 상세하게는 전기습윤소자(100)는 액적(D)에 진동을 발생시키도록 구성될 수 있다. In such an electrowetting device 100, when an electric field is generated by applying power or voltage to any one electrode 120 disposed adjacent to the droplet D, the contact angle of the droplet D is changed by the electric field. Can be. More specifically, under the influence of the electric field, the droplet D is pulled toward the surface of the electrode 120, that is, the device 100, and the contact angle of the droplet D with respect to the surface can be reduced. Therefore, the droplet D can be moved toward the portion where the contact angle is reduced. Using this principle, the droplet D may be maneuvered to move in a desired direction by selectively applying power or voltage to a portion of the electrode 120, that is, the sub-electrodes 120b and 120d. . That is, by controlling the power supply to the electrode 120, the movement of the droplet D can be controlled. On the other hand, if an AC power or an AC voltage is applied to the electrode 120, the electric field and the electrostatic force applied thereto may also periodically fluctuate according to a frequency that alternates periodically. do. The droplet D may be excited by the variable electrostatic force, and may vibrate as illustrated in FIG. 7 to be described later. More specifically, the droplet (D) is the energy obtained by the excitation, as shown in FIG. 1, while vibrating on the surfaces of the electrowetting device 100 and the object O, it can move itself out of the surface. , As a result, can be removed from the surface. The random movement of the droplet D using the excitation and vibration effectively removes the droplet D while powering the electrode 120 as in the maneuvering of the droplet D described above. No detailed control of supply is required. Also, for the same reason, by using an excitation by the electrode 120, when AC power or voltage is simultaneously applied to the electrode 120, that is, all the sub-electrodes 120b and 120d, the object O is present on the surface. All droplets D to be vibrated and moved at the same time. Since the removal of the droplet D requires not merely elaborate manipulation of the droplet D, but merely the movement of the predetermined object O to the outside of the surface, the excitation and vibration of the droplet D described above is necessary for the removal of the droplet D. It can be more efficient and effective. Therefore, the surface cleaning device of the present application, in particular, the electrowetting element 100 may be configured to generate vibrations in the droplet D.
이와 같은 도 1 및 도 2에 도시된 전기습윤소자(100)의 기본예는 보다 효율적이고 효과적으로 액적(D)을 제거할 수 있도록 다양한 형태들로 변형될 수 있다. 이러한 변형들중 하나가 일 예로서, 도 12-도 15에 도시된다. 도 12는 본 출원에 따른 표면세정장치에서 전기습윤소자의 변형예를 나타내는 분해사시도이며, 도 13은 전기습윤소자의 변형예를 이용한 표면세정장치를 나타내는 개략도이다. 또한, 도 14는 전기습윤소자의 변형예에서 전극을 나타내는 평면도이며, 도 15는 전기습윤소자의 변형예에서 전극의 변형예를 나타내는 평면도들이다. 도 13은 실제적으로 도 12의 I-I선을 따라 얻어진 전기습윤소자(100)의 변형예의 단면을 보여준다. 이들 도면들을 참조하여, 전기습윤소자(100)의 변형예가 다음에서 상세하게 설명된다. The basic example of the electrowetting device 100 shown in FIGS. 1 and 2 may be modified in various forms to more effectively and effectively remove the droplet D. One of these variations is shown in FIGS. 12-15 as an example. 12 is an exploded perspective view showing a modification of the electrowetting device in the surface cleaning device according to the present application, and FIG. 13 is a schematic view showing the surface cleaning device using the modification of the electrowetting device. 14 is a plan view showing an electrode in a modification of the electrowetting device, and FIG. 15 is a plan view showing a modification of the electrode in a modification of the electrowetting device. 13 shows a cross-section of a modification of the electrowetting device 100 obtained along line I-I in FIG. 12 in practice. With reference to these drawings, a modified example of the electrowetting element 100 is described in detail below.
전기습윤소자(100)의 변형예에서, 전극(120)은 도시된 바와 같이, 앞선 기본예와 마찬가지로, 기판(110)상에 제공되며, 서로 분리된 제 1 및 제 2 전극들(121,122)을 포함할 수 있다. 제 1 및 제 2 전극들(121,122)은 서로 다른 평면들 또는 레이어(plane or layer) 내에 각각 배치될 수 있다. 보다 상세하게는, 제 1 전극(121)은 일 예로서, 기판(110)상에 배치될 수 있으며, 제 2 전극(122)은 상기 제 1 전극(121)의 위쪽(above)에 배치될 수 있다. 제 2 전극(122)은 제 1 전극(121)으로부터 이격될 수 있다. 즉, 제 2 전극(122)은 전기습윤소자(100)에서 수직방향으로, 정확하게는 기판(110)(또는 이에 의해 형성되는 평면)에 대해 수직한 방향으로 제 1 전극(121)으로부터 소정 간격으로 이격될 수 있다. 이러한 이격에 의해, 제 1 및 제 2 전극(121,122)은 전극들의 접촉에 의해 발생될 수도 있는 전기적 간섭을 방지할 수 있다. 또한, 이격된 제 2 전극(122)은 기판(110) 또는 상기 기판(100)상의 제 1 전극(121)에 평행하게 배향(orient)될 수 있다. 즉, 제 1 및 제 2 전극들(121,122)은 서로 평행하게 배치 또는 배향될 수 있다. 평행한 배향은 제 1 및 제 2 전극(121,122)이 전기습윤소자(100) 및 물체(O) 전체를 커버하는 균일한 전기장들의 형성에 유리하다. 이와 같은 서로 평행한 배향 및 이격으로 인해, 제 1 및 제 2 전극들(121,122)는 기본적으로 서로 전기적으로 간섭하지 않으면서도, 균일한 전기장을 형성할 수 있다. In a modification of the electrowetting device 100, the electrode 120 is provided on the substrate 110, as shown in the previous basic example, and the first and second electrodes 121 and 122 separated from each other are shown. It can contain. The first and second electrodes 121 and 122 may be respectively disposed in different planes or layers. More specifically, the first electrode 121 may be disposed on the substrate 110 as an example, and the second electrode 122 may be disposed above the first electrode 121. have. The second electrode 122 may be spaced apart from the first electrode 121. That is, the second electrode 122 is at a predetermined distance from the first electrode 121 in the direction perpendicular to the substrate 110 (or the plane formed thereby) in the vertical direction in the electrowetting element 100, and precisely. Can be separated. By this separation, the first and second electrodes 121 and 122 may prevent electrical interference that may be caused by contact of the electrodes. Further, the spaced second electrode 122 may be oriented parallel to the substrate 110 or the first electrode 121 on the substrate 100. That is, the first and second electrodes 121 and 122 may be arranged or oriented parallel to each other. The parallel orientation is advantageous for the formation of uniform electric fields in which the first and second electrodes 121 and 122 cover the entire electrowetting element 100 and the object O. Due to such parallel orientation and separation, the first and second electrodes 121 and 122 can form a uniform electric field without basically interfering with each other.
보다 상세하게는, 제 1 전극(121)은 소정길이로 연장되는(extend) 다수개의 제 1 서브전극들(121a)을 포함할 수 있다. 예를 들어, 각각의 제 1 서브전극(121a)은 도시된 바와 같이 길게 연장되는(elongated) 좁은 판형부재, 즉 스트립(strip)으로 이루어질 수 있다. 이러한 제 1 서브전극들(121a)은 서로 소정간격으로 이격되며, 동일한 평면내에 배치될 수 있다. 또한, 제 1 서브전극들(121a)은 소정의 전원 또는 전압을 한번에 공급받을 수 있도록 단일의 제 1 공통전극(121b)에 의해 서로 연결될 수 있다. 제 1 전극(121)과 유사하게, 제 2 전극(122)도 소정길이로 연장되는 다수개의 제 2 서브전극들(122a)을 포함할 수 있다. 예를 들어, 각각 제 2 서브전극(122a)도 길게 연장되는 좁은 판형부재, 즉 스트립으로 이루어질 수 있다. 이러한 제 2 서브전극들(122a)은 서로 소정간격으로 이격되며, 동일한 평면내에 배치될 수 있으며, 전원 또는 전압의 인가를 위해 단일의 제 2 공통전극(122b)에 의해 서로 연결될 수 있다. 또한, 앞서 언급된 제 1 및 제 2 전극(121,122)의 배치 및 배향로 인해, 제 1 및 제 2 서브전극들(121a,122a)도 서로 다른 평면들 또는 레이어내에 각각 배치되며, 제 1 서브전극들(121a)가 기판(110)상에 배치되는 반면, 제 2 서브전극들(122a)은 상기 제 1 서브전극들(121a)의 위쪽에 배치될 수 있다. 더 나아가, 제 2 서브전극들(122a)은 제 1 서브전극들(121a)로부터 수직방향으로 소정간격으로 이격될 수 있으며, 제 1 및 제 2 서브전극들(121a,122a)은 서로 평행하게 배향될 수 있다. More specifically, the first electrode 121 may include a plurality of first sub-electrodes 121a extending to a predetermined length. For example, each of the first sub-electrodes 121a may be formed of a narrow plate-like member elongated as shown, that is, a strip. The first sub-electrodes 121a are spaced apart from each other at predetermined intervals, and may be disposed in the same plane. Further, the first sub-electrodes 121a may be connected to each other by a single first common electrode 121b so that a predetermined power or voltage can be supplied at once. Similar to the first electrode 121, the second electrode 122 may also include a plurality of second sub-electrodes 122a extending to a predetermined length. For example, each of the second sub-electrodes 122a may also be formed of a narrow plate-shaped member that extends long, that is, a strip. The second sub-electrodes 122a may be spaced apart from each other at a predetermined distance, and may be disposed in the same plane, and may be connected to each other by a single second common electrode 122b for application of power or voltage. In addition, due to the arrangement and orientation of the aforementioned first and second electrodes 121 and 122, the first and second sub-electrodes 121a and 122a are also disposed in different planes or layers, respectively, and the first sub-electrode While the fields 121a are disposed on the substrate 110, the second sub-electrodes 122a may be disposed above the first sub-electrodes 121a. Furthermore, the second sub-electrodes 122a may be spaced apart from the first sub-electrodes 121a at a predetermined interval in a vertical direction, and the first and second sub-electrodes 121a and 122a are oriented parallel to each other. Can be.
또한, 도 13 및 도 14에 잘 도시된 바와 같이, 상기 제 1 및 제 2 서브전극들(121a,122a)은 기판(110)을 따라 서로 번갈아가며(alternately) 배치될 수 있다. 즉, 어느 하나의 제 2 서브전극(122a)은 서로 인접하는 한 쌍의 제 1 서브전극들(121a) 사이에 위치될 수 있다. 다른 한편(alternatively), 어느 하나의 제 1 서브전극(121a)은 서로 인접하는 한 쌍의 제 2 서브전극들(122a)사이에 위치될 수 있다. 이러한 교번배열에 의해, 제 2 서브전극들(122a)은 이격된 제 1 서브전극들(121a) 및 이들의 전기장들사이에서 소정크기의 전기장을 형성할 수 있다. 다른 한편으로 제 1 서브전극들(121a)도 이격된 제 2 서브전극들(122a) 및 이들에 의한 전기장들사이에서 소정크기의 전기장을 형성할 수 있다. 일반적으로 서브전극들(121a,122b)이 서로 동일평면내에서 수평방향으로 서로 너무 가까워지면, 이들 전극들(121a,122b), 정확하게는 이들의 인접한 측부들사이에는 전기적 간섭이 발생될 수 있으며, 전기장이 효과적으로 생성되지 않을 수 있다. 그러나, 앞서 설명된 바와 같이, 제 1 및 제 2 서브전극들(121a,122a)은 서로 수직방향으로 이격되어 있으므로, 전기적 간섭없이 수평방향으로 이들의 측부들이 서로 가능한한 가까워지도록 구성될(configure) 수 있다. 따라서, 이와 같이 구성된 제 1 및 제 2 서브전극들(121a,122a)은 서로 연결되며 물체(O)의 표면 전체를 커버하는 전기장들을 형성할 수 있다. 이러한 이유로, 후술되는 도 16에 도시된 바와 같이, 전기습윤소자(100)의 변형예의 제 1 및 제 2 전극들(121,122)에 의해 서로 연결되게 형성되는 전기장들(Fa,Fb)은 어떠한 크기의 미세액적(D2)도 감쌀 수 있으며, 이에 따라 상기 미세액적(D2)을 제거되도록 항상 가진 및 진동시킬 수 있다. In addition, as well illustrated in FIGS. 13 and 14, the first and second sub-electrodes 121a and 122a may be alternately disposed along the substrate 110. That is, any one of the second sub-electrodes 122a may be positioned between a pair of first sub-electrodes 121a adjacent to each other. On the other hand, any one of the first sub-electrodes 121a may be positioned between a pair of second sub-electrodes 122a adjacent to each other. By this alternating arrangement, the second sub-electrodes 122a may form an electric field of a predetermined size between the spaced first sub-electrodes 121a and their electric fields. On the other hand, the first sub-electrodes 121a may also form an electric field of a predetermined size between the spaced second sub-electrodes 122a and the electric fields by them. In general, when the sub-electrodes 121a and 122b are too close to each other in the horizontal direction in the same plane, electrical interference may occur between these electrodes 121a and 122b, and precisely, adjacent sides thereof. The electric field may not be generated effectively. However, as described above, the first and second sub-electrodes 121a and 122a are spaced apart from each other in the vertical direction, so that their side parts are configured to be as close as possible to each other in the horizontal direction without electrical interference. Can be. Accordingly, the first and second sub-electrodes 121a and 122a configured as described above are connected to each other and may form electric fields covering the entire surface of the object O. For this reason, as shown in FIG. 16 to be described later, the electric fields Fa and Fb formed to be connected to each other by the first and second electrodes 121 and 122 of the modified example of the electrowetting device 100 are of any size. The microdroplets (D2) can also be wrapped, so that the microdroplets (D2) can always be excited and vibrated to be removed.
이러한 전극(120)의 보다 세부적인 구성(configuration)에 있어서, 도 13 및 도 14에 도시된 바와 같이, 제 1 및 제 2 서브전극들(121a,122a)은 서로 다른 평면들내에서 서로 번갈아가면서 배치되므로, 어느 하나의 제 1 서브전극(121a)와 이에 인접하는 제 2 서브전극(122a)사이에는 수평방향으로 소정의 간격(C1)이 형성될 수 있다. 보다 정확하게는, 전극(120)은 제 1 서브전극(121a)의 측부와 이에 인접하는 제 2 서브전극(122a)의 측부사이에 형성되는 제 1 간격(clearance)(C1)을 포함할 수 있다. 앞서 설명된 바와 같이, 서로 다른 평면들내의 배치로 인해, 제 1 및 제 2 서브전극들(121a,122a)은 서로 가능한 한 가깝게 배치될 수 있으므로, 제 1 간격(C1)도 작은 크기, 예를 들어, 5㎛로 설정될 수 있다. 또한, 도 13에 도시된 바와 같이, 제 1 및 제 2 전극들(121,122)는 수직방향으로 서로 이격되어 있으므로, 전극(120)은 상기 제 1 및 제 2 전극들(121,122)사이에서 수직방향을 따라 형성되는 제 2 간격(C2)을 포함할 수 있다. 제 2 간격(C2)은 제 1 및 제 2 전극들(121,122)사이의 전기적 간섭을 배제하도록 적절하게 설정될 수 있으며, 이에 따라 제 1 간격(C1)과 동일하게 설정될 수 있다. 따라서, 예를 들어, 제 2 간격(C2)은 제 1 간격(C1)과 동일하게 5㎛로 설정될 수 있다. 제 1 및 제 2 전극들(121,122)이 제 1 및 제 2 서브전극들(121a,122a)을 포함하므로, 제 2 간격(C2)는 상기 제 1 및 제 2 서브전극들(121a,122b)사이에서 수직방향을 따라 형성되는 간격으로도 설명될 수 있다. 더 나아가, 도 14를 참조하면, 각각의 제 1 및 제 2 서브전극들(121a,122a)은 각각 제 1 폭(W1) 및 제 2 폭(W2)을 가질 수 있으며, 이들 제 1 및 제 2 폭들(W1,W2)은 균일한 분포를 갖는 전기장들의 형성을 위해 동일하게 설정될 수 있다. 예를 들어, 제 1 및 제 2 폭들(W1,W2)은 50㎛로 설정될 수 있다. In a more detailed configuration of the electrode 120, as shown in FIGS. 13 and 14, the first and second sub-electrodes 121a and 122a alternate with each other in different planes. Since it is disposed, a predetermined interval C1 may be formed in a horizontal direction between any one of the first sub-electrodes 121a and the second sub-electrodes 122a adjacent thereto. More precisely, the electrode 120 may include a first clearance C1 formed between the side of the first sub-electrode 121a and the side of the second sub-electrode 122a adjacent thereto. As described above, due to the arrangement in different planes, the first and second sub-electrodes 121a and 122a may be disposed as close as possible to each other, so the first distance C1 is also small in size, for example For example, it can be set to 5 μm. In addition, as illustrated in FIG. 13, since the first and second electrodes 121 and 122 are spaced apart from each other in the vertical direction, the electrode 120 is positioned in a vertical direction between the first and second electrodes 121 and 122. A second gap C2 formed accordingly may be included. The second interval C2 may be appropriately set to exclude electrical interference between the first and second electrodes 121 and 122, and accordingly, may be set equal to the first interval C1. Therefore, for example, the second interval C2 may be set to 5 μm in the same manner as the first interval C1. Since the first and second electrodes 121 and 122 include the first and second sub-electrodes 121a and 122a, the second gap C2 is between the first and second sub-electrodes 121a and 122b. It can also be described as the interval formed along the vertical direction. Further, referring to FIG. 14, each of the first and second sub-electrodes 121a and 122a may have a first width W1 and a second width W2, respectively. The widths W1 and W2 can be set equally for the formation of electric fields having a uniform distribution. For example, the first and second widths W1 and W2 may be set to 50 μm.
이와 같은 전기습윤소자(100)의 변형예에서, 전극(120)은 보다 균일한 전기장들의 형성을 위해 추가적으로 변형될 수 있다. 도 15(a)를 참조하면, 제 2 서브전극(122a)은 인접하는 제 1 서브전극들(121a)사이의 제 3 간격(C3)에 동일한 폭을 갖도록 형성될 수 있다. 다른 한편(alternatively), 제 1 서브전극(121a)은 인접하는 제 2 서브전극들(121a)사이의 간격과 동일한 폭을 갖도록 형성될 수 있다. 따라서, 제 1 서브전극(121a)와 제 2 서브전극(122a)사이에는 수평방향으로 어떠한 간격도 형성되지 않을 수 있다. 또한, 도 15(b)를 참조하면, 제 2 서브전극(122a)은 인접하는 제 1 서브전극들(121a)사이의 제 3 간격(C3)보다 큰 폭을 갖도록 형성될 수 있다. 다른 한편으로, 제 1 서브전극(121a)은 인접하는 제 2 서브전극들(122a)사이의 간격보다 큰 폭을 갖도록 형성될 수 있다. 따라서, 제 2 서브전극(122a)는 제 1 서브전극(121a)와 오버랩(overlap)되거나 제 1 서브전극(121a)가 제 2 서브전극(122a)와 오버랩될 수 있다. 이와 같은 도 15(a) 및 (b)에 따른 변형예에 의해, 제 1 및 제 2 서브전극들(121a,122a)에서 발생되는 전기장들은 서로 더 가까와지거나 서로 오버랩될 수 있으며, 이에 따라 전기습윤소자(100) 또는 물체(O)의 전체에 걸쳐 보다 균일한 전기장들이 형성될 수 있다. In this modification of the electrowetting device 100, the electrode 120 may be further modified to form more uniform electric fields. Referring to FIG. 15(a), the second sub-electrode 122a may be formed to have the same width in the third interval C3 between adjacent first sub-electrodes 121a. On the other hand, the first sub-electrode 121a may be formed to have the same width as an interval between adjacent second sub-electrodes 121a. Therefore, no gap may be formed in the horizontal direction between the first sub-electrode 121a and the second sub-electrode 122a. In addition, referring to FIG. 15(b), the second sub-electrode 122a may be formed to have a width greater than a third gap C3 between adjacent first sub-electrodes 121a. On the other hand, the first sub-electrode 121a may be formed to have a width greater than the distance between adjacent second sub-electrodes 122a. Accordingly, the second sub-electrode 122a may overlap the first sub-electrode 121a or the first sub-electrode 121a may overlap the second sub-electrode 122a. 15(a) and (b), electric fields generated in the first and second sub-electrodes 121a and 122a may be closer to each other or overlap with each other, and thus electrowetting. More uniform electric fields may be formed throughout the device 100 or the object O.
또한, 절연층(130)은 액적(D)의 전기분해를 방지하고 전기습윤소자(100)의 안정적인 작동을 위해, 앞서 설명된 변형예에 따른 전극(120)을 전체적으로 덮도록 구성될 수 있다. 보다 상세하게는, 절연층(130)은 기판(110)상에 배치되며 제 1 전극(121)을 덮도록 구성되는 제 1 절연층(131)을 포함할 수 있다. 제 1 절연층(131)은 제 1 전극(121) 뿐만 아니라 이의 제 1 서브전극들(121a)사이에 노출되는 기판(110)의 표면도 덮도록 구성될 수 있다. 또한, 절연층(130)은 제 1 절연층(131)상에 배치되며, 제 2 전극(122)을 덮도록 구성되는 제 2 절연층(132)을 포함할 수 있다. 제 2 절연층(132)은 도시된 바와 같이, 제 2 전극(122) 뿐만 아니라 이의 제 2 서브전극들(122a)사이에 노출되는 제 1 절연층(131)의 표면도 덮도록 구성될 수 있다. 앞서 설명된 바와 같이, 전기적 간섭을 배제하기 위해서, 제 1 및 제 2 전극들(121,122)사이에는 수직방향으로 제 2 간격(C2)이 형성될 필요가 있다. 따라서, 도시된 바와 같이, 제 2 간격(C2)를 확보하기 위해, 제 1 절연층(131)이 제 1 및 제 2 전극(121,122)사이에 개재(interpose)될 수 있다. 또한, 이와 같이 개재된 제 1 절연층(131)상에 제 2 전극(122)이 배치될 수 있다. 절연층(130)에 의해, 전극(120), 즉 제 1 및 제 2 전극들(121,122)은 외부로 노출되지 않게 격리(isolate)될 수 있으며, 액적(D)의 이동 및 제거를 위해 안정적으로 전기장을 형성할 수 있다. 또한, 절연층(130)은 제 1 및 제 2 전극(121,122)을 전체적으로 감싸도록 구성되므로, 충분한 두께를 갖도록 형성되며, 이에 따라 제 1 및 제 2 전극(121,122)의 충분한 전기적 안정성을 보장할 수 있다. In addition, the insulating layer 130 may be configured to cover the electrode 120 according to the above-described modification, in order to prevent electrolysis of the droplet D and stable operation of the electrowetting device 100. In more detail, the insulating layer 130 may include a first insulating layer 131 disposed on the substrate 110 and configured to cover the first electrode 121. The first insulating layer 131 may be configured to cover not only the first electrode 121 but also the surface of the substrate 110 exposed between the first sub-electrodes 121a. In addition, the insulating layer 130 may be disposed on the first insulating layer 131 and may include a second insulating layer 132 configured to cover the second electrode 122. The second insulating layer 132 may be configured to cover the surface of the first insulating layer 131 exposed between the second electrode 122 as well as the second sub-electrodes 122a thereof, as shown. . As described above, in order to exclude electrical interference, the second gap C2 needs to be formed in the vertical direction between the first and second electrodes 121 and 122. Therefore, as illustrated, in order to secure the second gap C2, the first insulating layer 131 may be interposed between the first and second electrodes 121 and 122. In addition, the second electrode 122 may be disposed on the interposed first insulating layer 131. By the insulating layer 130, the electrode 120, that is, the first and second electrodes 121 and 122 may be isolated from being exposed to the outside, and stably for the movement and removal of the droplet D An electric field can be formed. In addition, since the insulating layer 130 is configured to cover the first and second electrodes 121 and 122 as a whole, it is formed to have a sufficient thickness, thereby ensuring sufficient electrical stability of the first and second electrodes 121 and 122. have.
한편, 전기습윤소자(100)의 변형예에서, 기판(110) 및 소수성층(140)은 도 1 및 도 2를 참조하여 설명된 이의 기본예의 기판(110) 및 소수성층(140)과 동일하며, 이에 따라 추가적인 설명은 다음에서 생략된다. 또한, 앞서 설명된 것을 제외하고, 기본예의 전극(120) 및 절연층(130)의 특징들도 변형예의 전극(120) 및 절연층(130)에 동일하게 적용될 수 있다. 전기습윤소자(100)의 기본예 및 변형예는 세부적인 구조에서만 구별되고 동일한 원리 및 개념을 공유하므로, 다음의 설명에서, 전기습윤소자(100)는 다른 설명이 없는 한 이의 기본예 및 변형예 둘 다를 의미할 수 있다. 같은 이유로, 다음의 설명에서 기판(110), 전극(120), 절연층(130) 및 소수성층(140)도 다른 설명이 없는 한 기본예 및 변형예의 해당 구성요소들을 모두 포괄할 수 있다. On the other hand, in a modification of the electrowetting device 100, the substrate 110 and the hydrophobic layer 140 are the same as the substrate 110 and the hydrophobic layer 140 of its basic example described with reference to FIGS. 1 and 2, Therefore, additional description is omitted in the following. In addition, the characteristics of the electrode 120 and the insulating layer 130 of the basic example can be equally applied to the electrode 120 and the insulating layer 130 of the modified example, except that described above. Since the basic example and the modified example of the electrowetting element 100 are distinguished only in a detailed structure and share the same principle and concept, in the following description, the electrowetting element 100 is a basic example and modified example thereof unless otherwise specified. It can mean both. For the same reason, in the following description, the substrate 110, the electrode 120, the insulating layer 130, and the hydrophobic layer 140 may cover all the corresponding components of the basic example and the modified example, unless otherwise described.
상술된 기본예 또는 변형예에 따른 전기습윤소자(100)에 추가적으로, 표면세정장치는 액적(D)의 가진을 위한 정전기력의 변동을 발생시키기 위해 전기습윤소자(100)에 교류전원을 공급하도록 구성되는 전원(200)을 포함할 수 있다. 전원(200)은 도 1 및 도 13에 도시된 바와 같이, 전기습윤소자(100), 정확하게는 이의 전극(120)에 연결되며, 상기 전극(120)에 교류전원 및 교류전압을 인가할 수 있다. 또한, 액적(D)의 진동을 적절하게 제어하기 위해서는 액적(D)의 거동이 모니터 될 필요가 있다. 예를 들어, 전원(200)에 의해 교류전원이 전극(120)에 공급될 때, 적어도 액적(D)의 진동이 실제적으로 발생되는지 여부가 확인될 필요가 있다. 따라서, 표면세정장치는 표면세정장치의 작동중 액적(D)의 거동(behavior)을 검출하도록 구성되는 감지장치(sensing device)(300)을 포함할 수 있다. 감지장치(300)에서 액적(D)의 거동은 다양한 방법으로 인식될 수 있으며, 예를 들어 초음파, 적외선 센서등이 액적(D)의 상태를 파악하기 위해 적용될 수 있다. 이러한 다양한 방식중, 액적(D)의 영상을 직접 획득하는 것이 이의 거동을 정확하게 판단하는데 유리할 수 있다. 이러한 이유로, 감지장치(300)는 물체(O)표면상의 액적들(D)의 영상을 획득하도록 구성되는 영상장치(imaging device)로 이루어질 수 있다. 따라서, 이와 같은 감지장치(300)는 액적(D)의 제거를 위한 정확하고 세부적인 제어를 위해 표면세정장치의 작동중에 계속적으로 액적들(D)의 영상을 획득할 수 있다. 이러한 감지장치(300)는 액적들(D)의 전체적인 영상을 확보할 수 있는 어떠한 위치에도 배치될 수 있다. 일 예로서, 도 1 및 도 13은 세정될 물체(O) 표면이 전체적으로 시야각 (FOV: field of view)내에 포함되도록 상기 물체(O)의 상부에 배치된 감지장치(300)를 도시한다. 더 나아가, 표면세정장치는 이의 작동을 제어하도록 구성되는 제어장치(400)를 포함할 수 있다. 제어장치(400)는 프로세서 및 관련 전자부품들로 이루어질 수 있으며, 도시된 바와 같이, 표면세정장치의 구성요소들, 즉 전기습윤소자(100), 전원(200) 및 감지장치(300)와 전기적으로 연결될 수 있다. 따라서, 제어장치(400)는 의도된 작동을 위해 표면세정장치를 전체적으로 제어할 수 있다. 일 예로서, 제어장치(400)는 요구되는 교류전원 또는 전압을 전기습윤소자(100)에 공급하도록 전원(200)을 제어할 수 있다. 또한, 제어장치(400)는 감지장치(300)를 이용하여 물체(O) 표면상의 액적(D)의 거동을 표면세정장치의 작동중 실시간적으로 모니터할 수 있다. 제어장치(300)의 보다 구체적인 작동은 후술되는 제어방법에서 보다 상세하게 설명된다. In addition to the electrowetting device 100 according to the above-described basic example or modification, the surface cleaning device is configured to supply AC power to the electrowetting device 100 to generate a change in electrostatic force for excitation of the droplet D Power source 200 may be included. 1 and 13, the power supply 200 is connected to the electrowetting device 100, and to the electrode 120 thereof, and may apply AC power and AC voltage to the electrode 120. . In addition, in order to properly control the vibration of the droplet D, the behavior of the droplet D needs to be monitored. For example, when AC power is supplied to the electrode 120 by the power source 200, it is necessary to check whether or not vibration of the droplet D is actually generated. Accordingly, the surface cleaning device may include a sensing device 300 configured to detect the behavior of the droplet D during operation of the surface cleaning device. The behavior of the droplet D in the sensing device 300 can be recognized in various ways, for example, ultrasonic waves, infrared sensors, and the like can be applied to grasp the state of the droplet D. Of these various methods, directly acquiring an image of a droplet D may be advantageous in accurately determining its behavior. For this reason, the sensing device 300 may consist of an imaging device configured to acquire an image of the droplets D on the surface of the object O. Accordingly, the sensing device 300 may continuously acquire the images of the droplets D during operation of the surface cleaning device for precise and detailed control for the removal of the droplets D. The sensing device 300 may be disposed at any position capable of securing the entire image of the droplets D. As an example, FIGS. 1 and 13 show a sensing device 300 disposed above the object O such that the surface of the object O to be cleaned is entirely contained within a field of view (FOV). Furthermore, the surface cleaning device may include a control device 400 configured to control its operation. The control device 400 may be composed of a processor and related electronic components, and as shown, components of the surface cleaning device, that is, the electrowetting element 100, the power source 200, and the sensing device 300 and the electrical Can be connected to. Therefore, the control device 400 can control the entire surface cleaning device for the intended operation. As an example, the control device 400 may control the power source 200 to supply the required AC power or voltage to the electrowetting device 100. In addition, the control device 400 may monitor the behavior of the droplet D on the surface of the object O using the sensing device 300 in real time during operation of the surface cleaning device. More specific operation of the control device 300 will be described in more detail in the control method described below.
앞서 설명된 습윤소자(100)의 기본 및 변형예들을 포함하는 표면세정장치는 세정을 위해 다양한 물체(O) 및 장치들에 적용될 수 있다. 예를 들어, 표면세정장치는 도 3에 도시된 바와 같이, 영상장치에 적용될 수 있다. 영상장치는 일반적으로 렌즈를 통해 입사되는 빛을 이용하여 영상을 획득하도록 구성된다. 따라서, 렌즈에 액적(D)와 같은 이물질이 존재하는 경우, 이러한 이물질은 입사되는 빛과 간섭하며 이에 따라 정확한 영상이 얻어질 수 없다. 특히, 영상장치가 실외에서 사용되는 경우, 눈, 비, 습도와 같은 기후적 요인을 포함하는 다양한 원인들에 의해, 정확한 영상의 획들을 방해하는 액적(D)이 렌즈 표면에 부착될 수 있다. 이러한 이유로, 본 출원에 따른 표면세정장치는 도 3에 도시된 바와 같이, 일 예로서 영상장치인 카메라(10)에 설치될 수 있다. The surface cleaning device including the basic and modified examples of the wetting element 100 described above can be applied to various objects O and devices for cleaning. For example, the surface cleaning device may be applied to an imaging device, as shown in FIG. 3. The imaging device is generally configured to acquire an image using light incident through the lens. Therefore, when a foreign substance such as a droplet D exists in the lens, the foreign substance interferes with the incident light and thus an accurate image cannot be obtained. Particularly, when the imaging device is used outdoors, droplets (D) that obstruct the strokes of the correct image may be attached to the lens surface due to various causes including climatic factors such as snow, rain, and humidity. For this reason, the surface cleaning apparatus according to the present application may be installed in the camera 10 as an imaging device as an example, as shown in FIG. 3.
보다 상세하게는, 카메라(10)는 렌즈부를 포함하며, 이러한 렌즈부는 몸체(11)와 상기 몸체(11)내에 설치된 렌즈(12)로 이루어질 수 있다. 또한, 카메라(10)는 렌즈(12)를 통해 입사된 빛으로부터 영상을 획득하는 이미지 센서(13)을 포함할 수 있으며, 상기 이미지 센서(13)는 예를 들어 CCD(charged-coupled device)로 이루어질 수 있다. 표면세정장치, 정확하게는 전기습윤소자(100)(기본예 및 변형예 포함)는 세정될 물체(O)인 렌즈(12)의 표면상에 설치될 수 있다. 또한, 전기습윤소자(100)는 렌즈(12)와 일체로 형성될 수 있다(integrated as one body). 즉, 전기습윤소자(100)는 렌즈(12)의 표면에 밀착되도록 상기 표면과 동일한 곡률을 갖도록 구성될 수 있다. 이와 같이, 전기습윤소자(100)는 렌즈(12)와 하나의 몸체를 형성하며, 단일의 모듈 또는 어셈블리로서 렌즈(12) 그 자체로 간주될 수 있다. 더 나아가, 전기습윤소자(100)는 렌즈(12)의 몸체 내부에 이식 또는 내장(embed)될 수도 있으며, 이러한 내장에 의해서도 상기 소자(100)는 렌즈(12)와 일체로 형성될 수 있다. 전기장은 개재되는 매질(medium)에 의해 영향받지 않으므로, 이러한 내장된 소자(100)도 여전히 전기장에 의한 정전기력을 렌즈(12)표면에 부가(apply)할 수 있으며, 이에 따라 렌즈(12)표면의 액적(D)를 진동시켜 제거할 수 있는 능력을 보유할 수 있다. 또한, 렌즈(12)에 적용된 전기습윤소자(100)는 빛의 입사를 막아서는 안된다. 따라서, 전기습윤소자(100)는 전체적으로 투명하게 구성될 수 있다. 보다 상세하게는, 기판(110), 전극(120), 절연층(130) 및 소수성층(140)은 모두 전체적으로 투명한 재질로 이루어질 수 있다. 이와 같은 투명한 전기습윤소자(100)는 렌즈(12)와 동일하게 입사되는 빛을 통과시키며, 동시에 액적(D)와 같은 이물질을 제거할 수 있다. 다른 한편, 카메라(10)는 렌즈(12)를 보호하도록 몸체(11)에 설치되는 별도의 커버를 포함할 수 있으며, 렌즈(12)대신에 이러한 커버가 카메라(10)외부로 노출될 수 있다. 이러한 경우, 표면세정장치의 전기습윤소자(100)는 렌즈 커버에 이와 일체화되도록 부착될 수 있다. 또 다른 한편, 상기 렌즈커버 자체가 전기습윤소자(100)로 이루어질 수 있다. More specifically, the camera 10 includes a lens unit, and such a lens unit may be formed of a body 11 and a lens 12 installed in the body 11. Further, the camera 10 may include an image sensor 13 that acquires an image from light incident through the lens 12, and the image sensor 13 is, for example, a charged-coupled device (CCD). It can be done. The surface cleaning device, precisely the electrowetting element 100 (including the basic example and the modification example) may be installed on the surface of the lens 12 which is the object O to be cleaned. Further, the electrowetting device 100 may be integrally formed with the lens 12 (integrated as one body). That is, the electrowetting element 100 may be configured to have the same curvature as the surface to be in close contact with the surface of the lens 12. As such, the electrowetting element 100 forms one body with the lens 12 and may be regarded as the lens 12 itself as a single module or assembly. Furthermore, the electrowetting device 100 may be implanted or embedded in the body of the lens 12, and the device 100 may be integrally formed with the lens 12 even by such a device. Since the electric field is not affected by the intervening medium, such an embedded device 100 can still apply the electrostatic force due to the electric field to the surface of the lens 12, and accordingly the surface of the lens 12 surface It is possible to retain the ability to vibrate and remove the droplet D. In addition, the electrowetting element 100 applied to the lens 12 should not prevent light from entering. Therefore, the electrowetting device 100 may be configured to be transparent as a whole. In more detail, the substrate 110, the electrode 120, the insulating layer 130, and the hydrophobic layer 140 may be entirely made of a transparent material. The transparent electrowetting device 100 passes light incident to the lens 12 and simultaneously removes foreign matter such as droplets D. On the other hand, the camera 10 may include a separate cover installed on the body 11 to protect the lens 12, and instead of the lens 12, such a cover may be exposed outside the camera 10. . In this case, the electrowetting element 100 of the surface cleaning device may be attached to the lens cover to be integrated therewith. On the other hand, the lens cover itself may be made of an electrowetting element (100).
또한, 카메라(10)의 내부 전원이 표면세정장치의 전원(200)으로 사용될 수 있으며, 필요한 경우 별도의 전원(200)이 카메라(10)에 제공된 전기습윤소자(100)에 연결될 수 있다. 마찬가지로, 카메라(10)의 제어장치가 전기습윤소자(100)와 연결되어 제어장치(400)로서 기능할 수 있다. 더 나아가, 카메라(10)의 이미지 센서(13)는 렌즈(12)를 통해 영상을 획득하므로, 상기 렌즈(12)상의 이물질, 즉 액적(D)의 영상도 획득할 수 있다. 따라서, 표면세정장치가 카메라(10)에 적용되는 경우, 이미지 센서(13)가 감지장치(300)를 대체할 수 있다. In addition, the internal power of the camera 10 may be used as the power source 200 of the surface cleaning device, and if necessary, a separate power source 200 may be connected to the electrowetting element 100 provided in the camera 10. Similarly, the control device of the camera 10 may be connected to the electrowetting element 100 to function as the control device 400. Furthermore, since the image sensor 13 of the camera 10 acquires an image through the lens 12, it is also possible to acquire an image of a foreign material, that is, a droplet D on the lens 12. Therefore, when the surface cleaning device is applied to the camera 10, the image sensor 13 may replace the sensing device 300.
이와 같은 카메라(10)에 적용된 표면세정장치에 있어서, 도 3(b)에 도시된 바와 같이, 소자(100)를 포함하는 렌즈(12)상에 이물질인 액적(D)이 생성되면, 제어장치(400)에 의해 교류전원 또는 전압이 소자(100)에 공급될 수 있으며, 전극(130)에서 생성되는 정전기력에 액적(D)는 가진될 수 있다. 계속해서, 도 3(c)를 참조하면, 액적(D)은 화살표로 표시된 바와 같이 진동하면서 렌즈(12) 외부로 이동할 수 있으며, 이와 같은 액적(D)의 제거에 의해 렌즈(12)는 세정될 수 있다. 따라서, 카메라(10)는 렌즈(12)의 세정에 의해 정확하고 좋은 이미지를 획득할 수 있다. 카메라(10)가 실외에서 사용되는 경우, 액적(D)이 빈번하게 렌즈(12)에 부착될 수 있으므로, 표면세정장치는 실외의 카메라(10)의 렌즈(12)를 세정하는데 있어서 특히 유효할 수 있다. In the surface cleaning device applied to the camera 10, as shown in FIG. 3(b), when a droplet D as a foreign material is generated on the lens 12 including the element 100, the control device AC power or voltage may be supplied to the device 100 by the 400, and the droplet D may be excited by the electrostatic force generated by the electrode 130. Subsequently, referring to FIG. 3(c), the droplet D may move out of the lens 12 while vibrating as indicated by the arrow, and the lens 12 is cleaned by the removal of such droplet D Can be. Therefore, the camera 10 can acquire an accurate and good image by cleaning the lens 12. When the camera 10 is used outdoors, since the droplet D can be frequently attached to the lens 12, the surface cleaning device is particularly effective in cleaning the lens 12 of the outdoor camera 10. Can be.
한편, 앞서 설명된 바와 같이, 표면세정장치는 액적(D)을 진동시켜 원하는 물체 표면을 세정시키는 기본적인 능력을 가지고 있으나, 의도된 세정기능은 표면세정장치에 대한 보다 최적화된 제어를 통해 극대화될 수 있다. 이러한 이유로, 도 1-도 3 및 도 12-도 15에 따른 표면세정장치에 최적화된 제어방법이 고안되었으며 다음에서 추가적으로 관련된 도면들을 참조하여 설명된다. 특별히 반대되는 설명이 없는 한 도 1-도 3, 도 12-도 15 및 이에 대한 설명들은 다음의 제어방법의 설명 및 도면들에 기본적으로 포함되고 참조된다. On the other hand, as described above, the surface cleaning device has the basic ability to clean the desired object surface by vibrating the droplet D, but the intended cleaning function can be maximized through more optimized control of the surface cleaning device. have. For this reason, an optimized control method for the surface cleaning apparatus according to FIGS. 1 to 3 and 12 to 15 has been devised and will be described with reference to additionally related drawings. 1 to 3, 12 to 15, and descriptions thereof are basically included and referenced in the following descriptions of control methods and drawings.
도 4는 본 출원에 따른 전기습윤소자를 이용한 표면세정장치를 제어하는 방법을 나타내는 순서도이며, 도 5는 본 출원의 제어방법에서 공진주파수를 검출하는 단계를 상세하게 나타내는 순서도이며, 도 6은 본 출원의 제어방법에서 제 1 교류전원의 전압과는 다른 전압을 갖는 제 2 교류전원을 제공하는 단계를 상세하게 나타내는 순서도이다. 또한, 도 7은 전기습윤소자에 교류전원이 공급될 때, 액적의 거동을 나타내는 그래프이며, 도 8은 서로 다른 주파수들을 갖는 교류전원이 공급되는 경우 액적의 거동들을 각각 보여주는 개략도이다. 4 is a flow chart showing a method of controlling a surface cleaning device using an electrowetting device according to the present application, FIG. 5 is a flow chart showing in detail a step of detecting a resonance frequency in the control method of the present application, and FIG. 6 is a flow chart It is a flow chart showing in detail the step of providing a second AC power having a voltage different from the voltage of the first AC power in the control method of the application. 7 is a graph showing the behavior of droplets when AC power is supplied to the electrowetting device, and FIG. 8 is a schematic diagram showing the behavior of droplets when AC power having different frequencies is supplied.
다음에서 설명되는 제어방법들은 앞서 도 1 - 도 3 및 도 12-도 15를 참조하여 설명된 구성요소, 즉 다양한 부품들의 작동을 제어하며, 이러한 작동에 기초하에 의도된 기능들을 제공할 수 있다. 따라서, 제어방법과 관련된 작동 및 기능들은 제어방법의 특징뿐만 아니라 모두 관련된 해당 구조적 구성요소들의 특징으로도 간주될 수 있다. 특히, 제어장치(400), 즉 프로세서는 제어기(controller) 및 제어부(controlling unit)와 같은 다양한 명칭으로 불릴 수 있으며, 제어방법에 따른 작동을 수행하기 위해 표면세정장치의 모든 구성요소들을 제어할 수 있다. 따라서, 제어장치(400)가 실질적으로 본 출원에서 다음에 설명되는 모든 방법 및 모드들을 실질적으로 제어하며, 이에 따라 이후 설명될 모든 단계들은 제어장치(400)의 특징이 될 수 있다. 이러한 이유로, 비록 제어장치(400)에 의해 수행되는 것으로 설명되지 않는다 하더라도, 다음의 단계들 및 이들의 세부적인 특징들은 모두 제어장치(400)의 특징으로 이해될 수 있다. 또한, 다음의 제어방법의 설명에서 구조적 특징 및 이의 작동은 모두 도 1-도 3 및 도 12-도 15에서 설명된 것을 참조하며, 이에 따라 이들에 대한 상세한 설명은 생략된다. 또한, 다음의 제어방법의 설명에서, 각각의 단계들의 특징들은 특별하게 반대되는 개시가 설명되지 않는 한, 전기습윤소자(100)의 기본예 및 변형예 둘 다에 동일하게 적용된다. 즉, 전기습윤소자(100)의 기본 및 변형예들 및 이들을 포함하는 표면세정장치는 모두 다음의 단계들의 특징들에 의해 기본적으로 구동될 수 있다. The control methods described below control the operation of the components described above with reference to FIGS. 1-3 and 12-15, that is, various components, and may provide intended functions based on the operation. Therefore, the operations and functions related to the control method can be regarded as not only the characteristics of the control method, but also the characteristics of the relevant structural components. In particular, the control device 400, that is, the processor may be referred to by various names such as a controller and a control unit, and may control all components of the surface cleaning device to perform operations according to the control method. have. Accordingly, the control device 400 substantially controls all the methods and modes described in the present application, so that all steps to be described later can be characteristic of the control device 400. For this reason, although not described as being performed by the control device 400, the following steps and their detailed features can all be understood as features of the control device 400. In addition, in the following description of the control method, structural features and operations thereof are all referred to in FIGS. 1-3 and 12-15, and thus detailed descriptions thereof are omitted. In addition, in the description of the following control method, the features of the respective steps apply equally to both the basic example and the modified example of the electrowetting element 100, unless a specifically opposed disclosure is described. That is, both the basic and modified examples of the electrowetting element 100 and the surface cleaning apparatus including them can be basically driven by the features of the following steps.
소정의 물체(O)는 사용중 외부환경에 노출될 수 있으며, 여러가지 원인들에 의해 상기 물체(O)의 표면상에는 액적(D)과 같은 이물질이 부착될 수 있다. 실제적으로, 세정될 물체(O)의 표면상에는 표면세정장치의 전기습윤소자(100)가 배치되어 있으므로, 액적(D)은 전기습윤소자(100)상에 부착될 수 있다. 그러나, 앞서 설명된 바와 같이, 전기습윤소자(100)는 해당 물체(O)와 일체화(integrated)되어 이의 일부로서 기능하므로, 전기습윤소자(100) 표면상의 액적(D)은 물체(O) 표면상의 액적으로 간주될 수 있다. 또한, 앞서 도 3을 참조하여 설명된 바와 같이, 물체(O)는 실제적으로 소정장치(10) 또는 이의 일부에 해당할 수 있다. 이러한 경우, 표면세정장치(이하, 간략히 "세정장치"), 즉 이의 제어장치(400)는 먼저 물체(O)의 표면에 배치된 이물질인 적어도 하나의 액적(D)을 감지할 수 있다(S10). 즉, 제어장치(400)는 물체(O) 표면상에 액적(D)이 존재하는지 여부를 감지하거나 판단할 수 있다. 이러한 감지단계(S10)는 다양한 방법들에 의해 수행될 수 있으며, 예를 들어, 감지장치(300)에서 획득된 영상으로부터 액적(D)의 부착이 감지될 수 있다. 또한, 액적(D)이 물체(O) 표면상에 배치되면, 상기 액적(D) 자체의 저항으로 인해 물체(O), 즉 전기습윤소자(100)의 표면 전체의 저항도 변화될 수 있다. 저항의 변화는 전기습윤소자(100), 정확하게는 전극(120)에서의 임피던스 변화를 가져올 수 있다. 따라서, 임피던스의 변화가 감지되면, 제어장치(400)는 액적(D)이 물체(O) 표면상에 부착된 것을 감지하고 판단할 수 있다. 이와 같은 임피던스에 기초한 액적(D)의 감지는 추가적인 장치없이 기본적인 전기습윤소자(100)의 구성만을 이용하여 수행될 수 있으므로, 세정장치를 단순화하면서도 정확하게 액적(D)을 감지할 수 있다. The predetermined object O may be exposed to the external environment during use, and foreign substances such as droplets D may adhere to the surface of the object O due to various reasons. In practice, since the electrowetting element 100 of the surface cleaning device is disposed on the surface of the object O to be cleaned, the droplet D may be attached on the electrowetting element 100. However, as described above, since the electrowetting device 100 is integrated with the object O and functions as a part thereof, the droplet D on the surface of the electrowetting device 100 is an object O surface It can be considered as a droplet. In addition, as described above with reference to FIG. 3, the object O may actually correspond to a predetermined device 10 or a part thereof. In this case, the surface cleaning device (hereinafter simply referred to as "cleaning device"), that is, the control device 400 thereof, may first detect at least one droplet D, which is a foreign material disposed on the surface of the object O (S10) ). That is, the control device 400 may detect or determine whether a droplet D exists on the surface of the object O. The sensing step S10 may be performed by various methods, for example, attachment of the droplet D may be detected from an image acquired by the sensing device 300. In addition, when the droplet D is disposed on the surface of the object O, the resistance of the entire surface of the object O, that is, the electrowetting device 100 may also change due to the resistance of the droplet D itself. The change in resistance can result in a change in impedance in the electrowetting device 100, and more precisely the electrode 120. Accordingly, when a change in impedance is sensed, the control device 400 may detect and determine that the droplet D is attached to the surface of the object O. The detection of the droplet D based on the impedance can be performed using only the basic configuration of the electrowetting element 100 without an additional device, thereby simplifying the cleaning device and accurately detecting the droplet D.
한편, 앞서 설명된 바와 같이, 전극들(120)에 교류전원(AC power) 또는 교류전압이 가해지면, 주파수의 주기적 변동(alternation)으로 인해 마찬가지로 주기적으로 변동되는 정전기력이 액적(D)에 가해질 수 있다. 이와 같은 정전기력은 액적(D)을 가진할 수 있으며, 가진에 의해 액적(D)은 진동하기 시작할 수 있다. 또한, 도 7에 도시된 바와 같이, 시간이 지나감에 따라 액적(D)의 진동량(도면상, 변형된 액적(D)의 높이)은 점점 증가될 수 있으며, 액적(D)의 이동에 충분한 진동이 발생될 수 있다. 특히, 만일 액적(D)에 공진을 발생시킬 수 있는 주파수(이하, "공진주파수")로 교류전원이 전극들(120)에 인가되면, 발생된 공진으로 인해 액적(D)이 얻는 기계적 에너지는 최대화되며, 최대의 진동 및 이동이 액적(D)에 발생될 수 있다. 따라서, 공진 주파수하에서 액적(D)은 보다 신속하게 물체(O)의 표면 외부로 이동해 나갈 수 있다. 이러한 이유로, 보다 효율적이고 효과적인 액적(D)의 제거를 위해 본 출원의 제어방법은 공진 주파수를 갖는 교류전원을 제공하도록 구성될 수 있다. On the other hand, as described above, when AC power or AC voltage is applied to the electrodes 120, the electrostatic force, which fluctuates periodically, may be applied to the droplet D due to periodic alteration of the frequency. have. Such an electrostatic force may excite the droplet D, and the droplet D may begin to vibrate due to the excitation. In addition, as shown in FIG. 7, as time passes, the vibration amount of the droplet D (in the drawing, the height of the deformed droplet D) may gradually increase, and the movement of the droplet D may increase. Sufficient vibration can be generated. In particular, if AC power is applied to the electrodes 120 at a frequency (hereinafter referred to as "resonant frequency") capable of generating resonance in the droplet D, the mechanical energy obtained by the droplet D due to the generated resonance is Maximized, and maximum vibration and movement can be generated in the droplet D. Therefore, the droplet D can move out of the surface of the object O more rapidly under the resonance frequency. For this reason, the control method of the present application can be configured to provide an AC power source having a resonance frequency for more efficient and effective removal of the droplet D.
이와 같은 교류전원의 공급을 위해, 제어장치(400)는 먼저 액적(D)의 공진 주파수를 검출하도록 구성될 수 있다(S20). 즉, 상기 감지단계(S10)를 통해 액적(D)이 감지되면, 제어장치(400)는 즉각적으로 부착된 액적(D)의 공진 주파수를 검출하기 위한 일련의 단계들을 수행할 수 있다. 검출단계(S20)에서, 공진 주파수는 다양한 방법들을 통해 특정될 수 있다. 그러나, 실제적으로 부착되는 액적(D)은 다양한 크기들을 가질 수 있으며, 이에 따라 공진 주파수는 이러한 액적(D)의 크기뿐만 아니라 다른 여러가지 요인들에 의해 약간씩 변화될 수 있다. 따라서, 정확하게 공진 주파수를 특정하기 위해서는 공진 주파수가 액적(D)이 감지될 때마다 검출될 필요가 있다. 이러한 이유로, 검출단계(S20)동안, 제어장치(400)는 전기습윤소자(100)에 교류전원을 계속적으로 공급하면서 공진 주파수를 실시간적으로 검색하도록 구성될 수 있다. For supply of the AC power, the control device 400 may be configured to detect the resonance frequency of the droplet D first (S20). That is, when the droplet D is detected through the sensing step S10, the control device 400 may perform a series of steps for detecting the resonance frequency of the droplet D immediately attached. In the detection step S20, the resonance frequency can be specified through various methods. However, the droplet D that is actually attached may have various sizes, and accordingly, the resonance frequency may be slightly changed by not only the size of the droplet D, but also various other factors. Therefore, in order to accurately specify the resonant frequency, the resonant frequency needs to be detected whenever the droplet D is detected. For this reason, during the detection step S20, the control device 400 may be configured to search the resonance frequency in real time while continuously supplying AC power to the electrowetting element 100.
이러한 검색을 위해, 도 5를 참조하면, 검출단계(S20)에서 제어장치(400)는 소자(100)에 교류전원을 공급하면서 소정범위의 주파수들을 순차적으로 스윕(sweep)할 수 있다(S21). 즉, 검출단계(S20)에서 제어장치(400)는 공진주파수를 찾기 위해, 한번에 하나의 다른 주파수를 갖는 교류전원을 소자(100)의 전극(120)에 공급할 수 있다. 또 바꿔 말하면, 제어장치(400)는 일정 전압의 교류전원을 공급하면서 공급되는 교류전원의 주파수를 단계적으로 변화시킬 수 있다. 보다 상세하게는, 스윕단계(S21)에서, 제어장치(400)는 소정의 주파수부터 시작하여 공급되는 교류전원의 주파수를 점차적으로 증가시킬 수 있다(S21a). 이러한 증가단계(S21a)는 액적(D)에 공진이 발생될 때까지 계속적으로 수행될 수 있다. 다른 한편으로, 액적(D)의 공진은 다수개의 주파수들에서 발생될 수 있으므로, 액적(D)의 공진이 발생 및 감지되더라도, 추가적인 공진 주파수를 검출하기 위해 계속적으로 교류전원의 주파수가 증가될 수 있다. 한편, 모든 주파수 대역에 대한 스윕을 수행하는 것은 비효율적이므로, 스윕되는 주파수 범위는 한정될 필요가 있다. 여러가지 요인들중에서, 이러한 주파수 범위의 한정을 위해, 주파수에 따른 액적(D)의 진동 거동(behavior)이 고려될 수 있다. 먼저 도 8(b)에 도시된 바와 같이, 상대적으로 낮은 주파수에서 액적(D)은 낮은 주기(cyccle)로 진동하면서 큰 변형(deformation)을 보여줄 수 있다. 그러나, 큰 변위는 도시된 바와 같이, 액적(D)과 물체(O)의 표면사이의 접촉면 및 마찰을 증가시키므로, 액적(D)의 원활한 이동에는 불리할 수 있다. 반면, 도 8(a)를 참조하면, 상대적으로 높은 주파수에서 액적은 큰 변형없이 높은 주기로 진동할 수 있다. 따라서, 액적(D)과 물체(O) 표면사이의 접촉면이 상대적으로 축소되며, 축소된 접촉면에 의해 마찰력도 상대적으로 적게 작용될 수 있다. 감소된 마찰하에서, 높은 주기의 변동은 액적(D)이 최초 위치로부터 이동을 시작하는 것을 촉진할 수 있다(facilitate). 따라서, 상대적으로 높은 주파수에서의 진동 및 공진이 액적(D)의 원활한 이동 및 제거에 유리할 수 있다. 이러한 이유로, 스윕되는 주파수 범위는 상대적으로 낮은 주파수부터 시작하되 상대적으로 높은 주파수들을 포함하도록 설정될 수 있으며, 예를 들어 10 Hz-150 Hz로 설정될 수 있다. 이러한 경우, 증가단계(S21a)에서 제어장치(400)는 소정의 주파수인 10 Hz부터 시작하여 상대적으로 높은 주파수인 150 Hz까지 공급되는 교류전원의 주파수를 점차적으로 증가시킬 수 있다.For this search, referring to FIG. 5, in the detection step S20, the control device 400 may sequentially sweep frequencies in a predetermined range while supplying AC power to the element 100 (S21). . That is, in the detection step S20, the control device 400 may supply AC power having one different frequency at a time to the electrode 120 of the device 100 in order to find the resonance frequency. In other words, the control device 400 may change the frequency of the AC power supplied in stages while supplying AC power of a constant voltage. More specifically, in the sweep step (S21), the control device 400 may gradually increase the frequency of the AC power supplied starting from a predetermined frequency (S21a). This increasing step S21a may be continuously performed until resonance occurs in the droplet D. On the other hand, since the resonance of the droplet D can occur at multiple frequencies, even if the resonance of the droplet D occurs and is sensed, the frequency of the AC power may be continuously increased to detect an additional resonance frequency. have. On the other hand, it is inefficient to perform sweeps for all frequency bands, and thus the frequency ranges to be swept need to be limited. Among various factors, to limit the frequency range, the vibration behavior of the droplet D according to the frequency can be considered. First, as shown in FIG. 8(b), at a relatively low frequency, the droplet D may vibrate at a low cycle and show large deformation. However, a large displacement increases the contact surface and friction between the surface of the droplet D and the object O, as shown, which may be disadvantageous for smooth movement of the droplet D. On the other hand, referring to Figure 8 (a), at a relatively high frequency, the droplet can vibrate at a high period without significant deformation. Therefore, the contact surface between the droplet D and the surface of the object O is relatively reduced, and the frictional force can also be relatively reduced by the reduced contact surface. Under reduced friction, high periodic fluctuations can promote droplet D to start moving from its initial position. Therefore, vibration and resonance at a relatively high frequency may be advantageous for smooth movement and removal of the droplet D. For this reason, the sweeped frequency range can be set to start with a relatively low frequency, but include relatively high frequencies, for example, 10 Hz-150 Hz. In this case, in the increasing step (S21a ), the control device 400 may gradually increase the frequency of the AC power supplied from a predetermined frequency of 10 Hz to a relatively high frequency of 150 Hz.
또한, 다시 도 5를 참조하면, 상기 스윕단계(S22)동안, 제어장치(400)는 특정 주파수에서 발생되는 액적(D)의 공진을 감지할 수 있다(S22). 감지단계(S22)에서 제어장치(400)는 감지장치(300)을 이용하여 액적의 공진을 감지할 수 있으며, 다양한 방식이 이에 적용될 수 있으며, 예를 들어 초음파, 적외선 센서등이 이용될 수 있다. 이러한 여러 방식들중, 액적(D)의 상태를 정확하게 판단하기 위해 영상장치로 이루어진 감지장치(300)가 사용될 수 있으며, 이에 따라 액적(D)의 공진은 상기 감지장치(300)에서 획득된 영상을 통해 감지될 수 있다. 보다 상세하게는, 도 5에 도시된 바와 같이, 감지단계(S22)에서, 먼저 제어장치(400)는 센서, 즉 감지장치(300)을 이용하여 주파수의 스윕이 수행되는 동안 액적(D)의 영상을 계속적으로 획득할 수 있다(S22a). 앞서 도 2를 참조하여 설명된 바와 같이, 세정장치가 카메라(10)에 적용된 경우, 상기 카메라(10)내에 내장된 이미지 센서(13)가 액적(D)의 영상을 획득하게 위해 사용될 수 있다. 만일 액적(D)에 공진이 발생되면, 액적(D)의 진동은 급격하게 증가되며, 이러한 증가는 영상을 통해 명확하게 확인될 수 있다. 따라서, 제어장치(400)는 획득된 영상을 분석하고 분석된 영상으로부터 액적(D)의 진동의 급격한 증가를 판단할 수 있다(S22b). 이와 같이 진동의 급격한 증가가 판단 또는 감지될 때, 제어장치(400)는 공진이 액적(D)에 발생된 것을 감지할 수 있다. In addition, referring to FIG. 5 again, during the sweep step (S22), the control device 400 may detect the resonance of the droplet D generated at a specific frequency (S22). In the sensing step (S22), the control device 400 may detect the resonance of the droplets using the sensing device 300, and various methods may be applied thereto, for example, ultrasonic waves, infrared sensors, and the like. . Among these various methods, a sensing device 300 made of an imaging device may be used to accurately determine the state of the droplet D, so that the resonance of the droplet D is obtained by the sensing device 300 It can be detected through. More specifically, as shown in FIG. 5, in the sensing step (S22 ), first, the control device 400 uses the sensor, that is, the sensing device 300 to perform the sweep of the frequency while the droplet D is performed. The image may be continuously acquired (S22a). As described above with reference to FIG. 2, when a cleaning device is applied to the camera 10, an image sensor 13 embedded in the camera 10 may be used to acquire an image of the droplet D. If resonance occurs in the droplet D, the vibration of the droplet D increases rapidly, and this increase can be clearly confirmed through an image. Accordingly, the control device 400 may analyze the acquired image and determine a sudden increase in vibration of the droplet D from the analyzed image (S22b). When the sudden increase in vibration is determined or sensed as described above, the control device 400 may detect that resonance is generated in the droplet D.
상기 감지단계(S22)에서 진동의 급격한 증가, 즉 공진이 감지되면, 제어장치(400)는 그와 같은 공진이 감지될 때 공급된 교류전원의 주파수를 공진 주파수로 설정할 수 있다(S23). 또한, 제어장치(400)는 감지단계(S22)에서 공진이 감지된 주파수를 향후 전기습윤소자(100)에 공급될 교류전원의 주파수로 설정할 수 있다. 대부분의 경우, 진동의 급격한 증가는 물체(O) 표면상의 다수개의 액적들(D)에서 발생되며, 이에 따라 공진의 감지 및 공진 주파수의 설정은 비교적 용이하게 수행될 수 있다. 그럼에도 불구하고, 보다 일관되고 객관적인 공진의 감지 및 공진 주파수의 설정을 위해, 제어장치(400)는 물체(O)표면상의 액적들(D)중 적어도 하나에서 급격한 진동이 발생된 것으로 감지 또는 판단될 때, 공진의 발생이 발생한 것으로 감지 또는 판단할 수 있으며, 같은 이유로 이때의 주파수를 공진 주파수로 설정할 수 있다. In the sensing step (S22), when a sudden increase in vibration, that is, resonance is detected, the control device 400 may set the frequency of the AC power supplied to the resonance frequency when such resonance is sensed (S23). In addition, the control device 400 may set the frequency at which the resonance is sensed in the sensing step S22 as the frequency of the AC power to be supplied to the electrowetting device 100 in the future. In most cases, a rapid increase in vibration occurs in a plurality of droplets D on the surface of the object O, so that detection of resonance and setting of the resonance frequency can be performed relatively easily. Nevertheless, for more consistent and objective detection of resonance and setting of the resonance frequency, the control device 400 may detect or determine that sudden vibration has occurred in at least one of the droplets D on the surface of the object O. At this time, it may be sensed or determined that resonance has occurred, and for this reason, the frequency at this time may be set as the resonance frequency.
앞서 언급된 바와 같이, 여러가지 요인들로 인해 액적들(D)의 공진 주파수는 약간씩 변화될 수 있다. 그러나, 실제적으로 대부분의 경우 부착된 액적(D)들의 크기는 대략 2 - 3 ㎛ 범위로 한정된다. 따라서, 액적(D)의 공진도 대체적으로 30 Hz에서 발생된다. 또한, 액적(D)의 공진은 더 높은 주파수인 100 Hz에서 추가적으로 발생된다. 따라서, 상기 설정단계(S23)에서 제어장치(400)는 30 Hz 및 100 Hz를 제 1 및 제 2 공진 주파수로 각각 설정하며, 이들중 어느 하나를 전기습윤소자(100)에 공급될 교류전원의 주파수로서 설정할 수 있다. 더 나아가, 앞서 도 8과 관련하여 논의된 바와 같이, 상대적으로 높은 주파수에서의 진동 및 공진에 의해 액적(D)은 보다 원활하고 신속하게 이동될 수 있다. 따라서, 만일 검출단계(S20:S21-S23)를 통해 다수개의 공진 주파수들이 검출되는 경우, 제어장치(400)는 보다 높은 주파수를 실제적으로 검출된 공진 주파수로 선택할 수 있다. 즉, 제어장치(400)는 다수개의 공진 주파수들중 가장 높은 주파수를 공급될 교류전원의 주파수로 설정할 수 있다. 예를 들어, 제어장치(400)는 액적(D)의 효과적인 제거를 위해, 제 1 공진 주파수인 30 Hz보다 상대적으로 높은 제 2 공진 주파수인 100 Hz를 공급될 교류전원의 주파수로 설정할 수 있다. As mentioned above, the resonance frequency of the droplets D may be slightly changed due to various factors. However, practically in most cases, the size of the attached droplets D is limited to a range of approximately 2-3 micrometers. Therefore, the resonance of the droplet D is also generally generated at 30 Hz. Also, the resonance of the droplet D is additionally generated at a higher frequency, 100 Hz. Therefore, in the setting step (S23), the control device 400 sets 30 Hz and 100 Hz as the first and second resonant frequencies, respectively, and any one of them is an AC power to be supplied to the electrowetting device 100. Can be set as frequency. Furthermore, as discussed above with respect to FIG. 8, the droplet D can be moved more smoothly and quickly by vibration and resonance at a relatively high frequency. Therefore, if a plurality of resonance frequencies are detected through the detection steps (S20: S21-S23 ), the control device 400 may select a higher frequency as the actually detected resonance frequency. That is, the control device 400 may set the highest frequency among the plurality of resonance frequencies to the frequency of the AC power to be supplied. For example, the control device 400 may set the second resonant frequency 100 Hz, which is relatively higher than the first resonant frequency 30 Hz, as the frequency of the AC power to be supplied, for effective removal of the droplet D.
다시 도 4를 참조하면, 앞서 논의된 바와 같이, 검출단계(S20)를 통해 단일의 공진주파수가 감지되거나 감지된 다수개의 공진 주파수들중 하나가 선택되며, 이에 따라 특정한 하나의 공진 주파수가 교류전원의 공급을 위해 설정될 수 있다. 이러한 경우, 제어장치(400)는 이와 같은 설정된 공진 주파수, 즉 제 1 주파수를 갖는 제 1 교류전원을 액적(D)의 진동 및 이에 의한 제거를 위해 전기습윤소자(100)에 제공 또는 공급할 수 있다(S30). 공급단계(S30)에서, 공급되는 제 1 교류전원은 소정의 제 1 전압을 가질 수 있다. 이러한 제 1 전압은 제 1 교류전원의 특성 또는 세정장치가 설치된 장치에서 요구되는 전압에 따라 적절하게 설정될 수 있으며, 예를 들어, 50 V - 150 V의 범위를 가질 수 있다. 또한, 같은 이유로, 앞서 설명된 검출단계(S20)동안에도 교류전원은 동일한 제 1 전압을 가질 수 있다. 또한, 제 1 교류전원은 소정의 제 1 시간(time period)동안 전기습윤소자(100)에 제공될 수 있으며, 상기 제 1 시간은 액적(D)의 충분한 이동 및 제거를 발생시키도록 적절하게 설정될 수 있다. 보다 상세하게는, 제어장치(400)는 감지장치(300)를 이용하여 물체(O)의 표면상의 액적(D)의 상태를 확인할 수 있으며, 상기 액적(D)이 상기 표면으로부터 충분하게 제거될 때까지 제 1 교류전원의 공급을 지속시킬 수 있다. Referring to FIG. 4 again, as discussed above, a single resonant frequency is sensed or one of a plurality of resonant frequencies sensed is selected through the detection step S20, and accordingly, a specific resonant frequency is an AC power source. Can be set for the supply of. In this case, the control device 400 may provide or supply the first AC power having the set resonance frequency, that is, the first frequency, to the electrowetting device 100 for vibration of the droplet D and removal thereof. (S30). In the supply step (S30), the first AC power supplied may have a predetermined first voltage. The first voltage may be appropriately set according to the characteristics of the first AC power source or a voltage required in a device equipped with a cleaning device, and may have, for example, a range of 50 V-150 V. In addition, for the same reason, the AC power may have the same first voltage even during the detection step S20 described above. In addition, the first AC power may be provided to the electrowetting device 100 for a predetermined first time period, and the first time is appropriately set to generate sufficient movement and removal of the droplet D. Can be. More specifically, the control device 400 may use the sensing device 300 to check the state of the droplet D on the surface of the object O, and the droplet D may be sufficiently removed from the surface. Until the supply of the first AC power can be continued.
이와 같은 공급단계(S30)동안 검출된 공진주파수를 갖는 교류전원의 공급에 의해 액적(D)들은 크게 진동하면서 물체(O) 표면에서 제거될 수 있으며, 이러한 일련의 과정들은 도 9에 잘 도시된다. 도 9는 본 출원에 따른 제어방법에 의해 제거되는 액적을 보여주는 평면도이며, 도 3에 따른 카메라(10)에 적용된 세정장치의 작동이 일 예로서 도시된다. 먼저, 도 9(a)를 참조하면, 카메라(10)의 사용중 렌즈(12)표면에 다수개의 액적들(D)이 이물질로서 부착될 수 있다. 이러한 경우, 감지단계(S10)을 통해 세정장치, 즉 제어장치(400)는 액적들(D)의 존재를 감지할 수 있다. 계속해서, 제어장치(400)는 검출단계(S20)를 수행하여 공진 주파수를 검출할 수 있으며, 검출된 공진 주파수를 갖는 제 1 교류전원을 전기습윤소자(100)에 공급할 수 있다. 이러한 제 1 교류전원에 의해, 도 9(b)에 도시된 바와 같이, 렌즈(12)표면상의 액적들(D)에는 공진이 발생하며, 최대의 에너지에 의해 액적들(D)이 가진될 수 있다. 도시된 바와 같이, 액적들(D)은 공진에 의해 크게 진동하면서 얻어진 에너지에 의해 화살표로 도시된 바와 같이, 렌즈(12)의 표면 외부로 신속하게 이동할 수 있다. 또한, 발생된 공진에 의해 액적들(D)이 크게 진동하므로, 서로 인접하는 액적들(D)은 서로 결합되어 증가된 크기의 액적(D)을 형성할 수 있다. 더 나아가, 증가된 크기의 액적(D)은 이동해가면서 다른 액적들(D)을 흡수하면서 더 큰 크기를 가질 수 있다. 공진에 의해 발생되는 큰 액적(D)은 증가된 크기 및 질량으로 인해 더 크게 진동할 수 있으며, 이에 따라 더 신속하고 원활하게 렌즈(12), 즉 소정 물체(O)의 표면외부로 이동할 수 있다. 따라서, 공진 주파수를 갖는 교류전원의 공급은 단순히 액적(D)의 진동을 증폭시킬 뿐만 아니라 앞서 설명된 바와 같은 액적(D)의 이동을 촉진하는 효과를 가져올 수 있다. 결과적으로, 렌즈(12), 즉 물체(O) 표면외부로 이동함으로써 액적(D)은 상기 표면으로부터 제거될 수 있으며, 이에 따라 상기 표면은 세정될 수 있다. By supplying an AC power having a resonance frequency detected during the supply step (S30), the droplets (D) can be removed from the surface of the object (O) while greatly vibrating, and this series of processes is well illustrated in FIG. 9. . 9 is a plan view showing droplets removed by a control method according to the present application, and the operation of the cleaning device applied to the camera 10 according to FIG. 3 is illustrated as an example. First, referring to FIG. 9(a), a plurality of droplets D may be attached as a foreign material to the surface of the lens 12 during use of the camera 10. In this case, the cleaning device, that is, the control device 400 may detect the presence of the droplets D through the sensing step S10. Subsequently, the control device 400 may detect the resonance frequency by performing the detection step S20 and supply the first AC power having the detected resonance frequency to the electrowetting device 100. Due to this first AC power, as shown in FIG. 9(b), resonance occurs in the droplets D on the surface of the lens 12, and the droplets D may be excited by maximum energy. have. As shown, the droplets D can quickly move out of the surface of the lens 12, as shown by the arrows by the energy obtained while vibrating greatly by resonance. In addition, since the droplets D are greatly vibrated by the generated resonance, the droplets D adjacent to each other may be combined with each other to form a droplet D of an increased size. Furthermore, the droplet D of an increased size may have a larger size while absorbing other droplets D as it moves. The large droplet D generated by the resonance may vibrate larger due to the increased size and mass, and thus can move more quickly and smoothly out of the surface of the lens 12, that is, a certain object O. . Accordingly, the supply of the AC power having the resonant frequency may not only amplify the vibration of the droplet D, but also may have an effect of promoting the movement of the droplet D as described above. As a result, the droplet D can be removed from the surface by moving out of the surface of the lens 12, that is, the object O, so that the surface can be cleaned.
한편, 도 9(c)에서 도시된 바와 같이, 제 1 교류전원의 공급에 의해 대부분의 액적들(D1)은 이동 및 제거되지만, 상대적으로 작거나 미세한 액적들(D2)(이하, "미세액적")은 물체(O). 즉 렌즈(12) 표면상에 잔류할 수도 있다. 이러한 현상은 전극(120)에서 발생되는 전기장에 의해 영향받을 수 있는 액적(D)의 크기에 대한 제한으로 설명될 수 있다. 이와 관련하여(in this regard), 도 10은 전기장의 범위와 가진될(excite) 수 있는 액적의 크기사이의 상관관계를 보여두는 개략도이다. 도 10은 예를 들어, 앞서 설명된 전기습윤소자(100)의 기본예를 보여준다. 도 10에 도시된 바와 같이, 인접하는 전극들(120)은 서로 소정 거리로 이격되어 있다. 또한, 전기장의 세기(intensity) 또는 범위는 전극(120)에 공급되는 전압에 따라 결정되므로, 제 1 교류전원의 일정한 제 1 전압하에서 생성되는 전기장(F)도 도시된 바와 같이 일정한 범위를 가질 수 있다. 따라서, 서로 이격된 전극들(120)사이에는 전기장(F)이 형성되지 않는 일정 영역이 존재할 수 있다. 이러한 이유로, 상대적으로 큰 크기의 액적(D1)은 생성된 인접한 전기장들(F)내에 포함되어 가진될 수 있는 반면, 미세 액적(D2)은 상기 전기장들(F) 외부에 배치되어 가진될 수 없다. 따라서, 미세 액적(D2)은 적절하게 진동될 수 없으며, 도 9(c)에 도시된 바와 같이, 물체(O)(즉, 렌즈(12))표면에 잔류할 수 있다. 만일 전기장(F)의 범위가 확장되면, 이와 같은 미세 액적(D2)도 확장된 전기장(F)의 범위내에 포함되어 가진 및 진동될 수 있다. 이미 논의된 바와 같이, 전기장(F)의 범위(또는 크기)는 공급되는 전압에 비례하므로, 전기장(F)의 범위를 확장하기 위해, 공급단계(S30) 이후에, 제어장치(400)는 제 1 전압보다 큰 제 2 전압을 갖는 제 2 교류전원을 전기습윤소자(100)에 제공 또는 공급할 수 있다(S40). On the other hand, as shown in Figure 9 (c), most of the droplets D1 are moved and removed by the supply of the first AC power, but relatively small or fine droplets D2 (hereinafter, "fine liquid") The enemy") is the object (O). That is, it may remain on the surface of the lens 12. This phenomenon can be explained by a limitation on the size of the droplet D that can be affected by the electric field generated by the electrode 120. In this regard, FIG. 10 is a schematic diagram showing the correlation between the range of an electric field and the size of droplets that can be excite. 10 shows, for example, a basic example of the electrowetting element 100 described above. 10, adjacent electrodes 120 are spaced apart from each other by a predetermined distance. In addition, since the intensity or range of the electric field is determined according to the voltage supplied to the electrode 120, the electric field F generated under a constant first voltage of the first AC power may also have a certain range as shown. have. Therefore, a certain region in which an electric field F is not formed may exist between the electrodes 120 spaced apart from each other. For this reason, droplets D1 of a relatively large size may be included and excited within the generated adjacent electric fields F, whereas fine droplets D2 may not be disposed and excited outside the electric fields F. . Therefore, the fine droplet D2 cannot be properly vibrated and may remain on the surface of the object O (ie, the lens 12), as shown in FIG. 9(c). If the range of the electric field F is expanded, such a fine droplet D2 may also be included in the expanded electric field F and vibrate and vibrate. As already discussed, since the range (or size) of the electric field F is proportional to the supplied voltage, in order to expand the range of the electric field F, after the supply step S30, the control device 400 is operated A second AC power having a second voltage greater than 1 voltage may be provided or supplied to the electrowetting device 100 (S40).
보다 상세하게는, 효율적으로 액적(D)을 제거하기 위해서는 공급단계(S40)가 선행하는 공급단계(S30)에 뒤이어 중단없이 수행되는 것이 유리할 수 있다. 이러한 연속성을 위해, 공급단계(S40)에서, 제어장치(400)는 도 6에 도시된 바와 같이, 실제적으로 현재 공급되고 있는 제 1 교류전원에서 제 1 전압만을 제 2 전압으로 증가시킬 수 있다(S41). 그러나, 제 2 전압으로의 변경에 의해 실제적으로 제어장치(400)는 제 1 교류전원과는 다른 제 2 교류전원을 제공한다고 설명될 수 있다. 또한, 전기장(F)의 확장을 위해 전압만이 변경되며, 계속적인 가진을 위해 제공되는 제 2 교류전원은 제 1 교류전원의 제 1 주파수와 동일한 제 2 주파수, 즉 공진 주파수를 가질 수 있다. 또한, 공급되는 제 2 교류전원의 제 2 주파수(즉, 공진주파수)는 전체 공급단계(S40)동안 계속적으로 유지될 수 있다. 제 2 전압은 적어도 제 1 전압보다는 커지도록 적절하게 설정될 수 있으며, 예를 들어, 150 V - 200 V의 범위를 가질 수 있다. 이와 같은 제 2 교류전원(즉, 제 2 전압)의 공급에 의해 전기장(F)은 확장될 수 있으며, 확장된 전기장과 미세 액적(D2)사이의 관계는 도 11에 잘 보여진다. 도 11을 참조하면, 공급된 제 2 전압에 의해 전극(120)은 기존의 제 1 전압하에서의 전기장(F)보다 큰 전기장(F1)을 형성할 수 있다. 이러한 확장된 전기장(F1)내에 미세 액적(D2)도 포함될 수 있으며, 제거되기에 충분하게 가진 및 진동될 수 있다. In more detail, in order to efficiently remove the droplet D, it may be advantageous that the supply step S40 is performed without interruption following the preceding supply step S30. For this continuity, in the supplying step (S40 ), the control device 400 may increase only the first voltage from the first AC power currently being supplied to the second voltage, as shown in FIG. 6 ( S41). However, it can be explained that, by changing to the second voltage, the control device 400 actually provides a second AC power different from the first AC power. In addition, only the voltage is changed for the expansion of the electric field F, and the second AC power provided for continuous excitation may have the same second frequency as the first frequency of the first AC power, that is, the resonance frequency. In addition, the second frequency (that is, the resonance frequency) of the supplied second AC power may be continuously maintained during the entire supplying step S40. The second voltage may be appropriately set to be greater than at least the first voltage, and may have a range of 150 V-200 V, for example. The electric field F may be expanded by supplying the second AC power (ie, the second voltage), and the relationship between the extended electric field and the fine droplet D2 is well illustrated in FIG. 11. Referring to FIG. 11, the electrode 120 may form an electric field F1 larger than the electric field F under the existing first voltage by the supplied second voltage. Fine droplets D2 may also be included in this extended electric field F1, and may be sufficiently excited and vibrated to be removed.
더 나아가, 작은 액적(D2)의 보다 효과적인 가진을 위해 제어장치(400)는 공급단계(S40)동안 제 2 교류전원의 제 2 전압을 제 3 전압으로 감소시킬 수 있다(S42). 즉, 제어장치(400)는 제 2 전압보다 작은 제 3 전압을 갖는 제 2 교류전원을 전기습윤소자(100)에 공급할 수 있다. 도 11에 도시된 바와 같이, 제 3 전압를 갖는 제 2 교류전원의 공급에 의해 제 2 전압에서의 전기장(F1)보다는 축소된 전기장(F2)가 형성될 수 있다. 그러나, 이러한 경우에도, 미세 액적(D2)에 계속적으로 유효한 가진을 가하기 위해서는 제 3 전압에서의 전기장(F2)는 적어도 미세 액적(D2)를 포함하도록 형성되어야 한다. 따라서, 그와 같은 전기장(F2)을 형성하기 위해 제 3 전압은 제 2 전압보다는 작지만 적어도 제 1 전압보다는 크게 설정될 수 있다. 계속해서, 제어장치(400)는 제 2 교류전원의 제 3 전압을 제 2 전압으로 증가시키고 다시 제 2 전압을 제 3 전압으로 감소킬 수 있으며, 이러한 전압의 증가와 감소를 반복적으로 수행할 수 있다(S43). 즉, 제어장치(400)는 제 2 전압을 갖는 제 2 교류전원의 공급과 제 3 전압을 갖는 제 2 교류전원의 공급을 반복적으로 수행할 수 있다. 미세 액적(D2)은 이의 작은 크기 및 질량으로 인해, 전기장(F1,F2)내에 포함된다 하더라도 충분하게 가진시키기 쉽지않을 수 있다. 그러나, 도 11에 도시된 바와 같이, 서로 다른 제 2 및 제 3 전압의 교번적인(alternate) 공급에 의해 서로 다른 범위의 전기장들(F1,F2)이 번갈아가며(alternately) 미세 액적(D2)에 가해지며, 이에 따라 추가적인 가진력이 미세 액적(D2)에 가해질 수 있다. 따라서, 미세 액적(D2)도 적절하게 진동될 수 있으며, 이러한 미세액적(D2)의 제거로 인해 물체(O) 표면은 완전하게 세정될 수 있다. Furthermore, for more effective excitation of the small droplet D2, the control device 400 may reduce the second voltage of the second AC power source to the third voltage during the supplying step S40 (S42). That is, the control device 400 may supply the second AC power having the third voltage smaller than the second voltage to the electrowetting device 100. As illustrated in FIG. 11, a reduced electric field F2 may be formed rather than the electric field F1 at the second voltage by supplying the second AC power having the third voltage. However, even in this case, in order to continuously excite the fine droplet D2, the electric field F2 at the third voltage must be formed to include at least the fine droplet D2. Therefore, in order to form such an electric field F2, the third voltage may be set smaller than the second voltage but at least larger than the first voltage. Subsequently, the control device 400 may increase the third voltage of the second AC power to the second voltage and reduce the second voltage to the third voltage again, and repeatedly increase and decrease the voltage. Yes (S43). That is, the control device 400 may repeatedly supply the second AC power having the second voltage and the second AC power having the third voltage. Because of its small size and mass, the fine droplets D2 may not be easy to sufficiently excite even if they are included in the electric fields F1 and F2. However, as shown in FIG. 11, different ranges of electric fields F1, F2 alternately and alternately fine droplets D2 by alternate supply of different second and third voltages. It is applied, and thus an additional excitation force may be applied to the fine droplet D2. Therefore, the fine droplets D2 can also be vibrated appropriately, and the surface of the object O can be completely cleaned due to the removal of the fine droplets D2.
상술된 공급단계(S40)동안, 다양한 전압들을 갖는 제 2 교류전원은 소정의 제 2 시간(time period)동안 전기습윤소자(100)에 제공될 수 있으며, 상기 제 2 시간은 미세 액적(D2)의 충분한 이동 및 제거를 발생시키도록 적절하게 설정될 수 있다. 보다 상세하게는, 제어장치(400)는 감지장치(300)을 이용하여 물체(O)의 표면을 모니터할 수 있으며, 미세 액적(D2)까지도 상기 표면으로부터 완전하게 제거될 때까지 제 2 교류전원의 공급을 유지시킬 수 있다. 또한, 이미 논의된 바와 같이, 공급단계(S30)는 대부분의 액적들(D1)을 제거하도록 구성되는 반면, 공급단계(S40)는 잔류하는 미세 액적(D2)만을 제거하도록 구성될 수 있다. 따라서, 공급단계(S30)가 수행되는 제 1 시간은 공급단계(S40)이 수행되는 제 2 시간보다 길게 설정될 수 있으며, 예를 들어, 상기 제 1 시간과 제 2 시간은 8:2의 비율로 설정될 수 있다. During the above-described supply step (S40), a second AC power having various voltages may be provided to the electrowetting device 100 for a predetermined second time period, the second time being a fine droplet D2 It can be appropriately set to cause a sufficient movement and removal of. More specifically, the control device 400 may monitor the surface of the object O using the sensing device 300, and even the second droplet AC power until the fine droplets D2 are completely removed from the surface. Can maintain the supply. In addition, as already discussed, the supply step (S30) is configured to remove most of the droplets (D1), while the supply step (S40) can be configured to remove only the remaining fine droplets (D2). Therefore, the first time in which the supplying step S30 is performed may be set longer than the second time in which the supplying step S40 is performed, for example, the ratio of the first time and the second time is 8:2. Can be set to
한편, 도 12-도 15에 도시된 전기습윤소자(100)의 변형예는 실제 작동중에 앞서 설명된 도 10 및 도 11에서의 기본예와는 다른 거동을 보일 수 있다. 도 16은 전기습윤소자의 변형예에서 전기장의 범위와 가진될(excite) 수 있는 액적의 크기사이의 상관관계를 보여두는 개략도이며, 도 17은 전기습윤소자의 변형예에서 증가된 전압으로 인해 확장된 전기장에 의해 가진되는 미세 액적을 보여주는 개략도이다. On the other hand, the modified example of the electrowetting device 100 shown in FIGS. 12-15 may exhibit a different behavior from the basic example in FIGS. 10 and 11 described above during actual operation. FIG. 16 is a schematic diagram showing the correlation between the range of the electric field and the size of droplets that can be excite in a modification of the electrowetting device, and FIG. 17 is expanded due to the increased voltage in the modification of the electrowetting device It is a schematic diagram showing fine droplets excited by an electric field.
상기 공급단계(S30)에서 공진 주파수 및 제 1 전압을 갖는 제 1 교류전원이 이들 서브전극들(121a,122a)에 동시에 공급되면, 제 1 및 제 2 서브전극들(121a,122a)은 전기장들(Fa,Fb)을 형성할 수 있다 (도 16 참조). 앞서 설명된 바와 같이, 제 1 및 제 2 서브전극들(121a,122a)의 교번배열로 인해, 도 16에 도시된 바와 같이, 형성된 전기장들(Fa,Fb)는 서로 연결되어 물체(O)의 표면 전체를 커버하는 균일한 전기장을 형성할 수 있다. 따라서, 통상적인 크기의 액적(D1) 뿐만 아니라 어떠한 미세액적(D2)도 이러한 연결된 전기장들(Fa,Fb)내에 포함될 수 있으며, 이러한 전기장에 의해 진동되어 제거될 수 있다. 이러한 이유로, 제 1 교류전원의 공급단계(S30)만으로도 전기습윤소자(100)의 변형예는 어떠한 크기의 액적들(D1,D2)도 모두 효과적으로 제거할 수 있다. 그럼에도 불구하고, 본 출원의 제어방법에 따라, 상술된 제 2 교류전원의 공급단계(S40)가 추가적으로 전기습윤소자(100)의 변형예를 포함하는 세정장치에서 수행될 수 있다. 따라서, 도 17에 도시된 바와 같이, 제 1 및 제 2 서브전극들(121a,122a)은 서로 다른 범위의 전기장들(F1,F2)을 번갈아가면 형성할 수 있으며, 이에 따라 미세액적(D2)는 보다 효과적으로 제거될 수 있다. 전기습윤소자(100)의 변형예에 대해서도 앞서 도 6을 참조하여 설명된 동일한 공급단계(S40:S41-S43)이 적용되며, 이에 대한 추가적인 설명은 다음에서 생략된다. When the first AC power having the resonant frequency and the first voltage is simultaneously supplied to these sub-electrodes 121a and 122a in the supply step S30, the first and second sub-electrodes 121a and 122a are electric fields. (Fa,Fb) can be formed (see FIG. 16). As described above, due to the alternating arrangement of the first and second sub-electrodes 121a and 122a, as shown in FIG. 16, the formed electric fields Fa and Fb are connected to each other to connect the object O to the It is possible to form a uniform electric field covering the entire surface. Therefore, not only the droplets D1 of a normal size but also any microdroplets D2 can be included in these connected electric fields Fa and Fb, and can be removed by being vibrated by these electric fields. For this reason, the modified example of the electrowetting device 100 can effectively remove all the droplets D1 and D2 of any size only by the step of supplying the first AC power (S30). Nevertheless, according to the control method of the present application, the above-described second AC power supply step (S40) may be additionally performed in a cleaning device including a modification of the electrowetting device 100. Accordingly, as illustrated in FIG. 17, the first and second sub-electrodes 121a and 122a may be formed by alternately alternating electric fields F1 and F2 in different ranges, and accordingly, the microdroplets D2 ) Can be removed more effectively. For the modified example of the electrowetting device 100, the same supply steps (S40: S41-S43) described above with reference to FIG. 6 are applied, and further description thereof will be omitted in the following.
앞서 설명된 바와 같이, 전기습윤소자(100)의 변형예는 액적의 제거에 보다 효과적인 구조를 가지고 있으므로, 이러한 변형예에 기초하여 본 출원의 제어방법은 부분적으로 변형될 수 있다. 일 예로서, 제 1 교류전원의 공급단계(S30)는 전기습윤소자(100)의 변형예가 적용되는 경우, 변형될 수 있으며, 도 18은 본 출원의 제어방법에서, 공진주파수 및 제 1 전압을 갖는 제 1 교류전원을 제공하는 단계를 상세하게 나타내는 순서도이다. As described above, since the modification example of the electrowetting device 100 has a more effective structure for removing droplets, the control method of the present application may be partially modified based on the modification example. As an example, the first AC power supply step (S30) may be modified when a modified example of the electrowetting device 100 is applied, and FIG. 18 shows the resonance frequency and the first voltage in the control method of the present application. It is a flow chart showing in detail the steps of providing the first AC power having.
도 18을 참조하면, 공급단계(S30)에서, 제어장치(140)는 먼저 소정시간동안 제 1 전극(121), 즉 이의 제 1 서브전극들(121a)에만 제 1 교류전원을 공급할 수 있다(S31). 이후, 제어장치(140)는 계속해서 소정시간동안 제 2 전극(122), 즉 이의 제 2 서브전극들(122a)에만 제 1 교류전원을 공급할 수 있다(S32). 또한, 제어장치(140)는 이러한 공급단계들(S31,S32)를 반복해서 수행할 수 있다. 즉, 제어장치(140)는 제 1 및 제 2 전극들(121,122)에 번갈아가며 제 1 교류전원을 공급하도록 구성될 수 있다. 앞서 공급단계(S30)에서 이미 상세하게 설명된 바와 같이, 공급되는 제 1 교류전원은 공진 주파수 및 제 1 전압을 가질 수 있다. 앞서 설명된 바와 같이, 제 1 및 제 2 전극들(121,122)는 물체표면 전체를 커버하는 전기장들을 형성하므로, 아무리 작은 미세액적이라도 상기 공급단계들(S31,S32)중 어느 하나에 의해 형성되는 전기장내에 포함될 수 있으며, 적절하게 진동될 수 있다. 오히려, 이러한 교번적인 공급단계들 및 이의 반복(S31-S33)에 의해 전기장의 형성위치들은 주기적으로 변화될 수 있으며, 이에 따라 미세액적은 보다 효과적으로 가진되어 제거될 수 있다. Referring to FIG. 18, in the supplying step (S30 ), the control device 140 may first supply the first AC power only to the first electrode 121, that is, its first sub-electrodes 121a for a predetermined time ( S31). Thereafter, the control device 140 may continuously supply the first AC power only to the second electrode 122, that is, the second sub-electrodes 122a thereof for a predetermined time (S32 ). In addition, the control device 140 may repeatedly perform these supply steps (S31, S32). That is, the control device 140 may be configured to alternately supply the first AC power to the first and second electrodes 121 and 122. As previously described in detail in the supply step (S30), the first AC power supplied may have a resonance frequency and a first voltage. As described above, since the first and second electrodes 121 and 122 form electric fields covering the entire object surface, even the smallest microdroplets are formed by any one of the supply steps S31 and S32. It can be included in the electric field and can be vibrated appropriately. Rather, these alternating supply steps and the repetitions (S31-S33) thereof can periodically change the formation positions of the electric field, so that the microdroplets can be more effectively excited and removed.
한편, 물체(O)가 경사지게 배향되면, 상기 물체(O)(즉, 전기습윤소자(100))상의 액적(D)은 중력의 영향을 받게 되며 이러한 추가적으로 작용되는 힘에 의해 보다 용이하게 이동될 수 있다. 따라서, 다시 도 4를 참조하면, 제어장치(400)는 물체(O) 및 이에 설치된 전기습윤소자(100)를 경사지게 배향할 수 있다(S50). 예를 들어, 도 2에 도시된 바와 같이, 카메라(10)는 소정의 구동장치(14)를 포함할 수 있다. 제어장치(400)는 구동장치(14)를 이용하여 카메라(10)에 변위를 발생시키고 세정될 물체(O), 즉 렌즈(12) 및 전기습윤소자(100)를 경사지게 배향시킬 수 있다. 보다 상세하게는, 구동장치(14)는 회전력을 발생시킬 수 있는 장치로 이루어질 수 있으며, 도 1에도 화살표로 도시된 바와 같이, 발생된 회전력을 이용하여 적어도 렌즈(12) 및 소자(100)를 경사지게 배향되도록 회전시킬 수 있다. 구동장치(14)는 예시적으로 렌즈 몸체(11)에 결합된 것으로 도시되나 카메라(10)의 다른 부위에 결합될 수도 있으며, 세정될 물체인 렌즈(12) 및 전기습윤소자(100)의 배향을 변화하는 구동력을 발생시킬 수 있는 어떠한 장치로도 이루어질 수 있다. 배향단계(S50)는 공급단계(S40,S50)이전 또는 이후에 수행될 수 있으며, 공급단계(S40,S50)동안 언제라도 수행될 수 있다. 이와 같은 배향단계(S50)에 의해 액적(D)은 진동하면서 중력에 의해 보다 원활하게 경사진 방향으로 이동될 수 있으며, 보다 용이하게 물체(O)의 표면으로부터 제거될 수 있다. On the other hand, when the object O is inclined, the droplet D on the object O (that is, the electrowetting device 100) is affected by gravity and can be moved more easily by this additionally applied force. Can be. Thus, referring to FIG. 4 again, the control device 400 may orient the object O and the electrowetting element 100 installed thereon in an inclined manner (S50). For example, as shown in FIG. 2, the camera 10 may include a predetermined driving device 14. The control device 400 may generate a displacement in the camera 10 using the driving device 14 and incline the object O to be cleaned, that is, the lens 12 and the electrowetting element 100. More specifically, the driving device 14 may be formed of a device capable of generating a rotational force, and as shown by an arrow in FIG. 1, at least the lens 12 and the element 100 are generated using the generated rotational force. It can be rotated to be inclined. The driving device 14 is exemplarily shown as being coupled to the lens body 11, but may also be coupled to other parts of the camera 10, and the orientation of the lens 12 and the electrowetting element 100 as objects to be cleaned. It can be made of any device capable of generating a driving force that changes. The alignment step S50 may be performed before or after the supply steps S40 and S50, and may be performed at any time during the supply steps S40 and S50. By such an alignment step (S50), the droplet (D) can be moved in a more smoothly inclined direction by gravity while vibrating, and can be more easily removed from the surface of the object (O).
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 안되며 예시적인 것으로 고려되어야 한다. 본 출원의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 출원의 등가적 범위 내에서의 모든 변경은 본 출원의 범위에 포함된다. The above detailed description should not be construed as limiting in all respects and should be considered illustrative. The scope of the present application should be determined by rational interpretation of the appended claims, and all changes within the equivalent scope of the present application are included in the scope of the present application.

Claims (22)

  1. 소정 물체의 표면상에 제공되는 기판; A substrate provided on the surface of a given object;
    상기 기판에 제공되며, 서로 다른 평면들내에 각각 배치되는 제 1 및 제 2 전극들을 포함하는 전극; An electrode provided on the substrate and including first and second electrodes respectively disposed in different planes;
    상기 기판에 제공되며, 상기 전극을 덮도록 구성되는 절연층(dielectric layer); 및An insulating layer provided on the substrate and configured to cover the electrode; And
    상기 전극에 교류전원을 공급하도록 구성되는 제어장치를 포함하며, And a control device configured to supply AC power to the electrode,
    상기 제어장치는 상기 전극에서 발생되는 정전기력의 주기적인 변화에 의해 상기 물체표면상의 액적에 진동을 발생시키기 위해, 소정의 제 1 주파수 및 소정의 제 1 전압을 갖는 제 1 교류전원을 제 1 시간동안 상기 전극에 제공하도록 구성되며, 상기 제 1 주파수는 상기 액적의 공진주파수로 설정되는 물체표면 세정장치. The control device is configured to apply a first alternating current power source having a predetermined first frequency and a predetermined first voltage for a first time period to generate vibrations in droplets on the object surface by periodic changes in the electrostatic force generated by the electrodes. It is configured to provide to the electrode, the first frequency is the object surface cleaning apparatus is set to the resonance frequency of the droplet.
  2. 제 1 항에 있어서, According to claim 1,
    상기 제어장치는 상기 제 1 교류전원을 공급하기 이전에, 상기 전극에 교류전원을 제공하면서 상기 액적의 공진 주파수를 검출하도록 구성되는 물체표면 세정장치. The control device is configured to detect the resonant frequency of the droplet while providing AC power to the electrode before supplying the first AC power.
  3. 제 2 항에 있어서, According to claim 2,
    상기 공진 주파수를 검출하는 동안, 상기 제어장치는: While detecting the resonant frequency, the control device:
    상기 제공되는 교류전원의 소정 범위의 주파수들을 순차적으로 스윕(sweep)하며; Sequentially sweep frequencies in a predetermined range of the provided AC power;
    상기 스윕동안 상기 액적의 공진을 감지하며; Sensing the resonance of the droplet during the sweep;
    상기 공진이 발생된 주파수를 상기 제 1 주파수로 설정하도록 구성되는 물체표면 세정장치. And an object surface cleaning device configured to set the frequency at which the resonance occurs to the first frequency.
  4. 제 3 항에 있어서, The method of claim 3,
    상기 소정범위의 주파수들을 스윕하는 동안, 상기 제어장치는 소정의 주파수부터 시작하여 상기 액적에 공진이 발생할 때까지 상기 교류전원의 주파수를 점차적으로 증가시키도록 구성되는 물체표면 세정장치. While sweeping the frequencies of the predetermined range, the control device is configured to gradually increase the frequency of the AC power source until a resonance occurs in the droplet starting from a predetermined frequency.
  5. 제 4 항에 있어서, The method of claim 4,
    상기 제어장치는 10Hz-150Hz의 주파수들을 스윕하도록 구성되는 물체표면 세정장치. The control device is an object surface cleaning device configured to sweep frequencies of 10Hz-150Hz.
  6. 제 3 항에 있어서, The method of claim 3,
    상기 액적의 공진을 감지하기 위해, 상기 제어장치는: To detect the resonance of the droplet, the control device:
    센서를 이용하여 상기 액적의 영상을 획득하며; Acquire an image of the droplet using a sensor;
    상기 액적의 진동의 급격한 증가를 감지하기 위해 상기 획득된 영상을 분석하도록 구성되는 물체표면 세정장치. An object surface cleaning device configured to analyze the acquired image to detect a sharp increase in vibration of the droplet.
  7. 제 1 항에 있어서, According to claim 1,
    상기 액적의 공진이 다수개의 주파수들에서 감지되는 경우, 상기 제어장치는 상기 주파수들중 가장 높은 주파수를 상기 교류전원의 제 1 주파수로 설정하도록 구성되는 물체표면 세정장치. When the resonance of the droplet is sensed at multiple frequencies, the control device is configured to set the highest frequency of the frequencies to the first frequency of the AC power.
  8. 제 1 항에 있어서, According to claim 1,
    상기 제 1 주파수는 30 Hz 또는 100 Hz인 물체표면 세정장치. The first frequency is 30 Hz or 100 Hz object surface cleaning apparatus.
  9. 제 1 항에 있어서, According to claim 1,
    상기 제 1 전압은 50V-150V의 범위를 갖는 물체표면 세정장치. The first voltage is an object surface cleaning apparatus having a range of 50V-150V.
  10. 제 1 항에 있어서, According to claim 1,
    상기 제어장치는 상기 제 1 시간동안의 제 1 교류전원의 제공 이후에, 상기 제 1 전압보다 큰 제 2 전압을 갖는 제 2 교류전원을 제 2 시간동안 상기 전극에 제공하도록 구성되는 물체표면 세정장치. The control device is configured to provide a second AC power supply having a second voltage greater than the first voltage to the electrode for a second time after providing the first AC power supply during the first time period. .
  11. 제 10 항에 있어서, The method of claim 10,
    상기 제 2 전압은 150V-200V의 범위를 갖는 물체표면 세정장치. The second voltage is an object surface cleaning apparatus having a range of 150V-200V.
  12. 제 10 항에 있어서, The method of claim 10,
    상기 제 2 교류전원을 공급하기 위해, 상기 제어장치는 상기 제 1 주파수를 갖는 제 1 교류전원의 제 1 전압을 상기 제 2 전압으로 증가시키도록 구성되는 물체표면 세정장치. In order to supply the second AC power, the control device is configured to increase the first voltage of the first AC power having the first frequency to the second voltage.
  13. 제 10 항에 있어서, The method of claim 10,
    상기 제 2 교류전원을 제공하는 동안, 상기 제어장치는:While providing the second AC power, the control device:
    상기 제 2 전압을 상기 제 2 전압보다 작은 제 3 전압으로 감소시키고;Reducing the second voltage to a third voltage less than the second voltage;
    이 후, 상기 제 3 전압을 상기 제 2 전압으로 증가시키고;Then, increase the third voltage to the second voltage;
    상기 제 3 전압에서 상기 제 2 전압으로의 증가 및 상기 제 2 전압에서 상기 제 3 전압으로의 감소를 반복하도록 더 구성되는 물체표면 세정장치. And an object surface cleaning apparatus further configured to repeat the increase from the third voltage to the second voltage and the decrease from the second voltage to the third voltage.
  14. 제 10 항에 있어서, The method of claim 10,
    상기 제 1 시간과 제 2 시간은 8:2의 비율로 설정되는 물체표면 세정장치. The first time and the second time are set to 8:2 object surface cleaning apparatus.
  15. 제 1 항에 있어서, According to claim 1,
    상기 제 1 전극은 상기 기판상에 배치되며, 상기 제 2 전극은 상기 제 1 전극 위쪽(above)에 배치되는 물체표면 세정장치. The first electrode is disposed on the substrate, and the second electrode is an object surface cleaning device disposed above the first electrode (above).
  16. 제 1 항에 있어서, According to claim 1,
    상기 제 1 전극은 서로 소정간격으로 이격되며, 동일평면내에 배치되는 다수개의 제 1 서브전극들을 포함하며, The first electrode is spaced apart from each other at a predetermined interval, and includes a plurality of first sub-electrodes disposed in the same plane,
    상기 제 2 전극은 서로 소정 간격으로 이격되며, 동일평면내에 배치되는 다수개의 제 2 서브전극들을 포함하는 물체표면 세정장치.The second electrode is spaced apart from each other at a predetermined interval, the object surface cleaning apparatus including a plurality of second sub-electrodes disposed in the same plane.
  17. 제 16 항에 있어서, The method of claim 16,
    상기 제 1 및 제 2 서브전극들은 서로 번갈아가며 배치되는 물체표면 세정장치. The first and second sub-electrodes are alternately disposed object surface cleaning apparatus.
  18. 제 16 항에 있어서, The method of claim 16,
    상기 전극은 상기 제 1 서브전극의 측부와 이에 인접하는 상기 제 2 서브전극의 측부사이에 형성되는 소정의 제 1 간격을 포함하는 물체표면 세정장치. The electrode surface cleaning apparatus including a predetermined first gap formed between a side of the first sub-electrode and a side of the second sub-electrode adjacent thereto.
  19. 제 18 항에 있어서, The method of claim 18,
    상기 제 1 간격은 5 ㎛인 물체표면 세정장치. The first interval is 5 ㎛ object surface cleaning apparatus.
  20. 제 1 항에 있어서, According to claim 1,
    상기 절연층은:The insulating layer:
    상기 기판상에 배치되며 상기 제 1 전극을 덮도록 구성되는 제 1 절연층; 및 A first insulating layer disposed on the substrate and configured to cover the first electrode; And
    상기 제 1 절연층상에 배치되며, 상기 제 2 전극을 덮도록 구성되는 제 2 절연층을 포함하는 물체표면 세정장치. And a second insulating layer disposed on the first insulating layer and configured to cover the second electrode.
  21. 제 1 항에 있어서, According to claim 1,
    상기 전극은 상기 제 1 전극과 상기 제 2 전극사이에 수직방향을 따라 형성되는 제 2 간격을 포함하는 물체표면 세정장치. The electrode is an object surface cleaning apparatus including a second gap formed in a vertical direction between the first electrode and the second electrode.
  22. 제 1 항에 있어서, According to claim 1,
    상기 제 1 교류전원을 제공하는 동안, 상기 제어장치는 상기 제 1 및 제 2 전극들에 번갈아가며 상기 제 1 교류전원을 공급하도록 구성되는 물체표면 세정장치. While providing the first AC power, the control device is configured to supply the first AC power alternately to the first and second electrodes.
PCT/KR2019/016129 2018-11-26 2019-11-22 Device for cleaning surface by using electrowetting element and method for controlling same WO2020111669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862771179P 2018-11-26 2018-11-26
US62/771,179 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020111669A1 true WO2020111669A1 (en) 2020-06-04

Family

ID=70851862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016129 WO2020111669A1 (en) 2018-11-26 2019-11-22 Device for cleaning surface by using electrowetting element and method for controlling same

Country Status (1)

Country Link
WO (1) WO2020111669A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100035691A (en) * 2007-05-24 2010-04-06 디지털 바이오시스템즈 Electrowetting based digital microfluidics
KR101158706B1 (en) * 2004-01-12 2012-06-22 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrowetting device
US20140158213A1 (en) * 2011-07-28 2014-06-12 Sharp Kabushiki Kaisha Antifouling structure and operation method of same
WO2017200242A2 (en) * 2016-05-18 2017-11-23 명지대학교 산학협력단 Cleaning apparatus and method
KR20180105056A (en) * 2017-03-14 2018-09-27 엘지전자 주식회사 Device for cleaning surface using electrowetting element and method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158706B1 (en) * 2004-01-12 2012-06-22 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrowetting device
KR20100035691A (en) * 2007-05-24 2010-04-06 디지털 바이오시스템즈 Electrowetting based digital microfluidics
US20140158213A1 (en) * 2011-07-28 2014-06-12 Sharp Kabushiki Kaisha Antifouling structure and operation method of same
WO2017200242A2 (en) * 2016-05-18 2017-11-23 명지대학교 산학협력단 Cleaning apparatus and method
KR20180105056A (en) * 2017-03-14 2018-09-27 엘지전자 주식회사 Device for cleaning surface using electrowetting element and method for controlling the same

Similar Documents

Publication Publication Date Title
WO2018169233A1 (en) Device for cleaning surface using electrowetting element and method for controlling the same
KR102102653B1 (en) Device for cleaning surface using electrowetting element and method for controlling the same
CN105579829B (en) The timing and/or phase adjustment of separation and/or the charging of the drop of fluid stream in flow cytometer
US8909079B2 (en) Image forming apparatus
EP3361231B1 (en) Inspection device, inspection system, and inspection method
CN109005636B (en) Printed circuit board and image forming apparatus
JP5158495B2 (en) Developing device, process unit, and image forming apparatus
CN1312734A (en) AC waveform biasing for bead manipulating chucks
US9252004B2 (en) Ionization device, mass spectrometry apparatus, mass spectrometry method, and imaging system
WO2020111669A1 (en) Device for cleaning surface by using electrowetting element and method for controlling same
CN110420673A (en) A kind of micro-fluidic device and its driving method, microfluidic system
US4680669A (en) Corona discharging apparatus
US20080302664A1 (en) Apparatus for driving fluid
US20180224475A1 (en) Modulated Air Surface Particle Detector
KR20060081077A (en) Static elctricity sensor and apparatus for measuring static elctricity having the same
US9207613B2 (en) Image forming apparatus
US7121157B2 (en) Hand-held bio-agent collector
US10551611B2 (en) Techniques for removing particulate from an optical surface
CN109603942A (en) Micro fluidic device and microfluidic methods
WO2022186453A1 (en) Material measurement device, material measurement system, and material measurement method
JP2009002745A (en) Light induced dielectric migration apparatus
CN1093796C (en) Image-forming equipment
Kranz et al. In situ wafer-level polarization of electret films in MEMS acoustic sensor arrays
CN109373914B (en) Method, device and system for measuring thickness of non-parallel movable electrode
JP2006163182A (en) Potential profile measuring instrument and image forming apparatus with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890597

Country of ref document: EP

Kind code of ref document: A1