WO2020111442A1 - Local heat treatment system and cold forming method using same - Google Patents

Local heat treatment system and cold forming method using same Download PDF

Info

Publication number
WO2020111442A1
WO2020111442A1 PCT/KR2019/009979 KR2019009979W WO2020111442A1 WO 2020111442 A1 WO2020111442 A1 WO 2020111442A1 KR 2019009979 W KR2019009979 W KR 2019009979W WO 2020111442 A1 WO2020111442 A1 WO 2020111442A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
local
heat treatment
treatment system
blank material
Prior art date
Application number
PCT/KR2019/009979
Other languages
French (fr)
Korean (ko)
Inventor
강윤희
문창호
김기수
박종연
송길호
이은호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2021529340A priority Critical patent/JP2022510869A/en
Priority to CN201980079214.3A priority patent/CN113166825A/en
Priority to US17/296,883 priority patent/US20220016683A1/en
Priority to EP19891130.7A priority patent/EP3872196A4/en
Publication of WO2020111442A1 publication Critical patent/WO2020111442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/008Bending sheet metal along straight lines, e.g. to form simple curves combined with heating or cooling of the bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a local heat treatment system and a cold forming method using the same, and more particularly, to a local heat treatment system capable of improving the formability of an ultra-high-strength steel sheet and minimizing the springback phenomenon and a cold forming method using the same.
  • this ultra-high-strength steel sheet has high strength, it is not easy to press-form, so the forming load is large, the mold wear is large, and seizing is likely to occur. In addition, ductility is low and cracks are likely to occur when tensile stress acts during molding.
  • the local heat treatment system and the cold forming method using the same can improve the formability by controlling the physical properties by locally heating and cooling the part that is plastically deformed through an external heat source.
  • the local heat treatment system and the cold forming method using the same can reduce the springback by cold forming a material with controlled physical properties and improve productivity.
  • the heating device for heating only a portion of the plastic material generated plastic deformation locally to a constant temperature;
  • a moving device for moving the heating device to a position of a local heating area of the blank material;
  • a control device controlling the heating device and the moving device.
  • the heating device the housing coupled to the mobile device;
  • a heat source coupled to the housing to emit near infrared rays;
  • a reflector provided in the housing to reflect near-infrared rays generated from the heat source and converge into a local heating region.
  • the moving device a rotary joint coupled to the heating device; And a plurality of moving members coupled to the rotating joint to move the heating device in a three-axis (x, y, z) direction.
  • the plurality of moving members the first moving member coupled to the rotary joint to transfer the heating device in the direction in which the blank material is provided;
  • a second moving member coupled to the first moving member to convey the first moving member in a vertical direction;
  • a third moving member coupled to the second moving member and transferring the second moving member in a horizontal direction.
  • the moving device and the heating device are provided as one sub-assembly, and the sub-assembly is provided in plural so as to be locally heated on one side and the other side of the blank material, and each sub-assembly is the control device. Can be controlled independently.
  • control device may control the moving device and the heating device by setting a local heating position, a heating temperature, and a heating time in consideration of strain and stress according to a molding shape during the molding process of the blank material.
  • the heating device is positioned to be located in the local heating region, which is a region of plastic deformation. Operating the; (b) when the heating device is located in the local heating region, heating a portion of the plastic deformation-generating portion of the blank material through a heating device to a predetermined temperature and cooling to locally control the physical properties of the material; And (c) cold-forming after transferring the blank material having controlled physical properties to a mold.
  • step (a) the control device of the local heat treatment system sets the local heating position, heating temperature, and heating time in consideration of the strain and stress according to the shape to be formed during the molding process of the blank material to set the moving device. And a heating device.
  • the local heat treatment system and the cold forming method using the same have an effect of improving the moldability of the material by selectively heating the material locally using an external heat source and then cooling it to control physical properties.
  • AI artificial intelligence
  • sensing technology it is possible to easily and quickly process the material locally, thereby improving productivity, and to conveniently apply even with complicated molding shapes. There is.
  • FIG. 1 is a view schematically showing a local heat treatment system according to an embodiment of the present invention.
  • FIG. 2 is a view showing a state in which the local heat treatment system according to an embodiment of the present invention is operated.
  • FIG. 3 is a perspective view specifically showing a moving device of the local heat treatment system shown in FIG. 2.
  • FIG 4 is a view showing a heating device provided in the local heat treatment system according to an embodiment of the present invention.
  • FIG. 5 is a view showing a state of irradiating a heat source according to the shape of the reflector provided in the heating device shown in FIG. 4.
  • FIG. 6 is a view taken to compare a state in which the material is controlled by the local heat treatment system according to an embodiment of the present invention, in a state of V bending molding and a state in which a material of V is conventionally subjected to V bending molding.
  • FIG. 7 is a view for comparing a material in which the physical properties are adjusted by the local heat treatment system according to an embodiment of the present invention and an asymmetrically molded state of a conventional material.
  • FIG. 8 is a view showing a comparison of a state in which a physical component having a physical property controlled by a local heat treatment system according to an embodiment of the present invention is molded with a conventional physical component.
  • FIG. 1 is a view schematically showing a local heat treatment system according to an embodiment of the present invention
  • FIG. 2 is a view showing a state in which the local heat treatment system according to an embodiment of the present invention is operated
  • FIG. 3 is in FIG. 2 It is a perspective view specifically showing a moving device of the illustrated local heat treatment system
  • FIG. 4 is a view showing a heating apparatus provided in the local heat treatment system according to an embodiment of the present invention
  • FIG. 5 is a heating apparatus shown in FIG. 4 It is a figure which shows the state which irradiates the heat source according to the shape of the provided reflector.
  • the local heat treatment system 1 includes a heating device 100 and a heating device 100 that locally heats only the plastic deformation occurrence portion of the blank material 10 It includes a moving device 200 for moving to the location of the local heating area of the blank material 10, and a heating device 100 and a control device 300 for controlling the moving device 200.
  • the blank material 10 is an ultra-high-strength steel material that is cut and provided to have a certain length in order to form a product through cold forming according to the present invention, and is a hard-forming material having a tensile strength of 1 GPa or more. Since the area where the actual plastic deformation occurs in the process of producing the blank material 10 as a product is local, the formability of the blank material 10 is improved by applying heat only to the area where the plastic deformation occurs using a separate external heat source. Can be improved. In other words, in order to improve the moldability of the material, it is important to focus the location where heat is applied only to the local area where plastic deformation of the blank material 10 occurs.
  • the heating apparatus 100 is used as an external heat source, but the temperature of the local region where plastic deformation occurs is increased by using a linear near-infrared heater to improve the bending property of the hard-forming material to form the material into a precise shape. Make it possible.
  • the heating device 100 includes a heat source 110 and a reflector 120.
  • the heat source 110 may be provided as a lamp generating near infrared rays.
  • the heat source 110 is an electromagnetic wave having a wavelength of 700 to 1300 nm and is generated outside the red visible light. Since the heat source 110 is 90% or more radiant heat, it can be called high efficiency (efficiency 85% to 90%). Since the heat source 110 is near infrared, it does not burn air, so it can be used indoors as non-toxic, smokeless, odorless, and noiseless. The heat source 110 is very convenient to use because it only takes about 0.1 seconds to reach the maximum output.
  • the reflector 120 serves to reflect near infrared rays generated from a heat source and condense the local heating region.
  • the reflector 120 may adjust a region in which near-infrared rays are irradiated linearly according to a shape.
  • the reflector 120 in an oval shape is illustrated in FIG. 5A
  • the parabolic reflector 120 is illustrated in FIG. 5B.
  • the near infrared rays generated from the heat source 110 are reflected and condensed into one place, and the blank material 10 is linearly irradiated.
  • the near infrared rays generated from the heat source 110 are parallelized to irradiate the blank material 10 in a predetermined area. That is, according to the plastic deformation region of the blank material 10, a suitable reflector 120 may be applied to locally heat.
  • a suitable reflector 120 may be applied to locally heat.
  • various shapes of reflectors exist, so that each characteristic may be used differently. Therefore, the shape of the reflector 120 may be modified according to the purpose and used.
  • the heating apparatus 100 using near infrared rays only needs to use the heat source 110 and the reflector 120, it is possible to locally heat the blank material 10 in one direction.
  • the heating device 100 may further include a housing 130.
  • the housing 130 serves to protect the heat source 110 and the reflector 120 from external impacts and prevent energy loss through heat insulation.
  • the housing 130 is provided so that the heat source 110 and the reflector 120 are coupled, and has a partially open shape so that near infrared rays generated from the heat source 110 are irradiated in one direction through the reflector 120.
  • the housing 130 may be combined with a moving device 200 to be described later.
  • the moving device 200 is coupled to the heating device 100 and serves to move the heating device 100 to the surface of the blank material 10 in the plastically deformed region.
  • the moving device 200 includes a rotating joint 213 coupled to the heating device 100 and a plurality of moving members 210, 220, and 230 that move the heating device 100 in a three-axis direction.
  • the rotary joint 213 is coupled to the housing 130 of the heating device 100 and is provided to adjust the angle of the heating device 100. That is, the rotating joint 213 serves to smoothly converge near infrared rays to the blank surface 10 of the local heating region by adjusting the angle of the heating device 100. Since the structure of the rotating joint 213 is a well-known and well-known technique, detailed description thereof will be omitted.
  • It may be configured as a third moving member 230.
  • the third moving member 230 is provided to move in the x-axis direction
  • the second moving member 220 is provided to move in the y-axis direction
  • the first moving member 210 may be provided to move in the z-axis direction.
  • the first moving member 210 is coupled to the rotating joint 213 and is provided to transport the heating device 100 in the direction in which the blank material 100 is provided, that is, in the z-axis direction.
  • the first moving member 210 may be provided to have a configuration of a hydraulic or pneumatic cylinder to move in one direction.
  • the second moving member 220 is coupled to the first moving member 210 and is provided to transport the first moving member 210 in the vertical direction, that is, in the y-axis direction. At this time, since the first moving member 210 is coupled to the heating device 100, the heating device 100 is moved together when the first moving member 210 is moved.
  • the second moving member 220 may be provided to have a configuration of a hydraulic or pneumatic cylinder to move in one direction.
  • the third moving member 230 is coupled to the second moving member 220 and is provided to transport the second moving member 220 in the horizontal direction, that is, in the x-axis direction. At this time, since the second moving member 220 is coupled to the first moving member 210, the first moving member 210 is moved together when the second moving member 220 is moved.
  • the third moving member 230 may be provided to have a coupling structure of a rack pinion gear that receives the rotational force of the motor 232 and converts it into a linear motion.
  • first and second moving members 210 and 220 are shown as having a cylinder structure
  • the third moving member 230 is shown as having a gear coupling structure for converting rotational motion into linear motion.
  • the present invention is not limited thereto, and any shape may be used as long as the heating device 100 can be moved in a three-axis direction.
  • the local heat treatment system 1 comprises the moving device 200 and the heating device 100 as one sub-assembly, and the sub-assembly is one side and the other side of the blank material 10. It can be provided in a plurality so as to be locally heated at each required position.
  • the plurality of sub-assemblies can be independently controlled by the control device 300.
  • the control device 300 may control the heating device 100 and the mobile device 200, respectively, and independently control a plurality of sub-assemblies, as described above.
  • the control device 300 is combined with artificial intelligence (AI) and sensing technology to control each sub-assembly more efficiently.
  • AI artificial intelligence
  • the strain and stress are measured during the molding process, which is the molding characteristic of the molding target material, and the local heating position, heating temperature, heating time, etc. are taken into account in consideration of the molding shape and the processing time.
  • the mobile device 200 and the heating device 100 can be controlled by setting a local heating position, a heating temperature, and a heating time on the basis of measurement data obtained by measuring a molding object.
  • the moving device 200 operates to move the heating device 100 to the optimized point quickly and easily, and the heating device 100 is heated. Is heated over time and at a constant temperature. Therefore, even if the object to be molded has a complicated molding shape, it can be conveniently applied, and can be applied to various shapes.
  • the cold forming method of the present invention is largely, a process of locally heating and cooling the plastic deformation generating portion of the blank material 10 through the local heat treatment system 1, and the locally heated blank material 10 as a mold. And positioning and molding.
  • the heating device 100 moves the mobile device 200 to be located in the local heating area, which is a region of plastic deformation. It works. That is, as illustrated in FIG. 2, when the heating apparatus 100 is located in the local heating region, the plastic deformation occurrence region of the blank material 10 is heated to a constant temperature through the heating apparatus 100. The locally heated blank material 10 is subjected to a cooling step, and the physical properties of the material are locally adjusted to provide a cold forming process. That is, by adjusting the physical properties of the blank material 10 in advance before the cold forming process, it is possible to reduce the molding process time compared to the process of heating the material in the existing warm forming process and then performing warm forming.
  • the heating device 100 and the moving device 200 may be controlled to locally heat the blank material 10 by the control device 300.
  • the control device 300 independently controls the heating device 100 and the mobile device 200 provided in plural.
  • the mobile device 200 and the heating device are set by setting the local heating position, heating temperature, and heating time in consideration of the strain and stress according to the shape formed during the molding process of the blank material 10 through the control device 300. 100) can be controlled.
  • control device 300 is combined with artificial intelligence (AI) and sensing technology to control each heating device 100 and the mobile device 200 more efficiently. That is, before the local heating of the blank material 10, strain and stress are measured during the molding process, which is a molding characteristic of the molding target material, and the local heating position, heating temperature, and heating time are optimized in consideration of the molding shape and the processing time. do. Accordingly, the mobile device 200 and the heating device 100 may be controlled by setting a local heating position, a heating temperature, and a heating time on the basis of measurement data obtained by measuring the molding object. Therefore, when the blank material 10 is located by the local heat treatment system 1, the moving device 200 operates to quickly and easily move the heating device 100 to an optimized point, and the heating device 100 is heated. Is heated over time and at a constant temperature.
  • AI artificial intelligence
  • the blank material 10 introduced into the local heat treatment system 1 may be fixed at a certain position through a separate holder (not shown). That is, the blank material 10 may be supported so as not to interfere with a portion heated by the holder through the heating device 100.
  • the blank material 10 locally heated through the local heat treatment system 1 is cooled to be provided in a controlled state of material properties.
  • the blank material 10 with controlled physical properties is molded to have a desired shape through cold forming. That is, the blank material 10 transferred to a mold (not shown) is pressed by a punch (not shown) and plastically deformed.
  • the blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa, and the plastically deformed portion was locally heated to 550° C. and then V-bended.
  • the blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa, and the plastically deformed portion was locally heated to 850° C. and then V-bended.
  • the blank material was prepared with an ultra-high tensile steel having a tensile strength of 1.5 GPa, and the plastically deformed portion was locally heated to 950° C. and then V-bended.
  • the blank material was prepared from ultra-high tensile steel having a tensile strength of 1.2 GPa, and the plastically deformed portion was asymmetrically molded after local heating at 400°C.
  • the blank material was prepared from ultra-high tensile steel having a tensile strength of 1.2 GPa, and the plastically deformed portion was asymmetrically molded after local heating at 800°C.
  • the blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa, and the plastically deformed portion was locally heated to 800° C. and then a real part was molded.
  • the blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa and V-bended without local heating.
  • the blank material was prepared from ultra-high tensile steel having a tensile strength of 1.2 GPa, and was asymmetrically molded without local heating.
  • the blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa, and a real component was molded without local heating.
  • FIG. 6 is a view taken to compare a state in which the physical properties are adjusted by the local heat treatment system according to an embodiment of the present invention in a state of V bending molding and a state in which a conventional material is subjected to V bending molding.
  • FIG. 6(a) shows the state of V bending molding through Comparative Example 1
  • FIG. 6(b) shows the state of V bending molding through Examples 1 to 3. That is, as shown, in the case of Comparative Example 1, it can be confirmed that cracks were generated in the plastically deformed portion. On the other hand, in the case of Examples 1 to 3 of the present invention, since the part to be plastically deformed is locally heated to control the physical properties, cracks are not generated and are smoothly formed.
  • FIG. 7 is a view for comparing a state in which asymmetric molding of a material having physical properties controlled by a local heat treatment system and a conventional material according to an embodiment of the present invention.
  • FIG. 7(a) shows an asymmetric molded state through Comparative Example 2
  • FIG. 7(b) shows an asymmetric molded state through Example 4. That is, as shown, in the case of Comparative Example 2, it can be confirmed that a springback phenomenon of 25° occurred after asymmetric molding.
  • Example 5 of the present invention the crack is not generated because the plastically deformed portion is locally heated to control the physical properties, and a springback phenomenon of 7° occurs. That is, it can be seen that the springback is significantly reduced compared to the prior art.
  • FIG. 8 is a photograph comparing a state in which a physical component having a physical property controlled by a local heat treatment system according to an embodiment of the present invention is molded with a conventional component.
  • FIG. 8(a) shows a state in which the real parts are molded through Comparative Example 3
  • FIG. 8(b) shows a state in which the real parts are molded through Example 6. That is, as shown, in the case of Comparative Example 6, it can be confirmed that cracks and fractures occurred in the plastically deformed portion. On the other hand, in the case of Example 6 of the present invention, since the part that is plastically deformed is locally heated to control the physical properties, it is molded without cracking or breaking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Disclosed are a local heat treatment system and a cold forming method using same. According to one aspect of the present invention, a local heat treatment system may be provided, the system comprising: a heating device for locally heating only a plastically deformed section of a blank material to a certain temperature; a moving device for moving the heating device to the position of a local heating area of the blank material; and a control device for controlling the heating device and the moving device.

Description

국부 열처리 시스템 및 이를 이용한 냉간 성형 방법Local heat treatment system and cold forming method using the same
본 발명은 국부 열처리 시스템 및 이를 이용한 냉간 성형 방법에 관한 것으로서, 더욱 상세하게는 초고장력 강판의 성형성을 향상시키며 스프링백 현상을 최소화 할 수 있는 국부 열처리 시스템 및 이를 이용한 냉간 성형 방법에 관한 것이다.The present invention relates to a local heat treatment system and a cold forming method using the same, and more particularly, to a local heat treatment system capable of improving the formability of an ultra-high-strength steel sheet and minimizing the springback phenomenon and a cold forming method using the same.
일반적으로, 자동차 연비 향상을 위해서는 자동차의 경량화가 효과적이어서 최근에는 높은 비강도를 가진 재료인 고장력강의 사용이 증가하고 있다. 이러한 고장력 강판은 강도가 향상되고 있으며 최근에는 인장강도가 1GPa 이상인 초고장력강도 개발되었다.In general, in order to improve the fuel efficiency of automobiles, the weight reduction of automobiles is effective, and thus, the use of high-tensile steel, a material having a high specific strength, has recently increased. The strength of these high-tensile steel sheets is improving, and in recent years, ultra-high-strength steels having a tensile strength of 1 GPa or more have been developed.
이러한 초고장력 강판은 강도가 높기 때문에 프레스 성형이 쉽지 않아, 성형 하중이 커지고 금형 마모가 커서 시징(seizing)이 생기기 쉬우며, 성형 형상이 되돌아가는 스프링백이 커져 형상 동결성이 떨어지게 된다. 또한 연성도 낮고 성형 도중 인장 응력이 작용하면 균열이 생기기 쉽다.Since this ultra-high-strength steel sheet has high strength, it is not easy to press-form, so the forming load is large, the mold wear is large, and seizing is likely to occur. In addition, ductility is low and cracks are likely to occur when tensile stress acts during molding.
이에 난성형성 재료인 초고장력 강판의 성형성을 향상시키고, 스프링백 현상을 줄이기 위해 성형소재 전체를 가열해 성형성을 향상시키는 방법들이 개발되었다. 일 예로서, 온간 성형 공정과 같이 소재 전체를 가열하여 성형성을 개선하는 방법이 적용되고 있다. 그러나, 이러한 난성형성 소재 전체를 가열하는 방법은 성형이 발생하지 않는 영역도 가열하여 불필요한 에너지 손실이 발생하는 문제가 있다.Accordingly, methods for improving moldability by heating the entire molding material have been developed to improve the moldability of the ultra-high-strength steel sheet, which is a difficult-to-form material, and to reduce the springback phenomenon. As an example, a method of improving moldability by heating the entire material, such as a warm forming process, has been applied. However, in the method of heating the entire hard-forming material, there is a problem in that unnecessary energy loss occurs by heating an area in which molding does not occur.
상기한 문제로 인하여, 레이저 또는 근적외선 가열장치를 통해 소성 변형이 필요한 부분만을 국부적으로 가열하여 성형하는 방법이 제안되어 사용되고 있다. 그러나, 온간 성형 공정 내에서 소재를 가열한 후 온간 성형을 하는 것이기 때문에 가열시간에 의한 생산성이 하락하게 되며, 소재를 핸들링하는 동안 국부가열부가 빠르게 냉각되어 일정한 품질을 유지하기 어렵다는 문제점이 있다.Due to the above-mentioned problems, a method of locally heating and forming only a portion requiring plastic deformation through a laser or a near infrared heating device has been proposed and used. However, since the material is heated in the warm forming process and then warmed, the productivity due to the heating time decreases, and the local heating part is rapidly cooled while handling the material, and thus there is a problem that it is difficult to maintain a constant quality.
따라서, 성형 공정 내에서 가열하지 않아 생산성을 하락시키지 않으며, 일정한 품질을 확보하기 위해 온간성형이 아닌 냉간성형하는 방법 및 장치에 대한 요구가 높아지고 있는 실정이다.Accordingly, there is an increasing demand for a method and apparatus for cold forming rather than warm forming in order to secure a certain quality without deteriorating productivity due to not heating in the forming process.
본 발명의 실시 예에 따른 국부 열처리 시스템 및 이를 이용한 냉간 성형 방법은 외부 열원을 통해 소성 변형되는 부분을 국부적으로 가열한 후 냉각하여 물성을 조절함으로써 성형성을 향상시킬 수 있도록 한다.The local heat treatment system and the cold forming method using the same according to an embodiment of the present invention can improve the formability by controlling the physical properties by locally heating and cooling the part that is plastically deformed through an external heat source.
또한, 본 발명의 실시 예에 따른 국부 열처리 시스템 및 이를 이용한 냉간 성형 방법은 물성이 조절된 소재를 냉간 성형 함으로써 스프링백을 감소시킬 수 있음은 물론, 생산성을 향상시킬 수 있도록 한다.In addition, the local heat treatment system and the cold forming method using the same according to an embodiment of the present invention can reduce the springback by cold forming a material with controlled physical properties and improve productivity.
본 발명의 일 측면에 따르면, 블랭크 소재의 소성변형 발생 부위만 국부적으로 일정온도로 가열하는 가열장치; 상기 가열장치를 상기 블랭크 소재의 국부가열영역 위치까지 이동시키는 이동장치; 및 상기 가열장치 및 이동장치를 제어하는 제어장치;를 포함하는 국부 열처리 시스템을 제공할 수 있다.According to an aspect of the present invention, the heating device for heating only a portion of the plastic material generated plastic deformation locally to a constant temperature; A moving device for moving the heating device to a position of a local heating area of the blank material; And a control device controlling the heating device and the moving device.
또한, 상기 가열장치는, 상기 이동장치와 결합되는 하우징; 상기 하우징에 결합되어 근적외선을 방사하는 열원; 및 상기 하우징에 마련되어 상기 열원에서 발생되는 근적외선을 반사하여 국부가열영역으로 집광하는 반사판;을 구비할 수 있다.In addition, the heating device, the housing coupled to the mobile device; A heat source coupled to the housing to emit near infrared rays; And a reflector provided in the housing to reflect near-infrared rays generated from the heat source and converge into a local heating region.
또한, 상기 이동장치는, 상기 가열장치와 결합되는 회전 조인트; 및 상기 회전 조인트와 결합되어 가열장치를 3축(x,y,z) 방향으로 이동시키는 복수의 이동부재;를 구비할 수 있다.In addition, the moving device, a rotary joint coupled to the heating device; And a plurality of moving members coupled to the rotating joint to move the heating device in a three-axis (x, y, z) direction.
또한, 상기 복수의 이동부재는, 상기 회전 조인트와 결합되어 상기 가열장치를 블랭크 소재가 마련된 방향으로 이송하는 제1 이동부재; 상기 제1 이동부재와 결합되어 상기 제1 이동부재를 수직 방향으로 이송시키는 제2 이동부재; 및 상기 제2 이동부재와 결합되어 상기 제2 이동부재를 수평 방향으로 이송시키는 제3 이동부재;를 구비할 수 있다.In addition, the plurality of moving members, the first moving member coupled to the rotary joint to transfer the heating device in the direction in which the blank material is provided; A second moving member coupled to the first moving member to convey the first moving member in a vertical direction; And a third moving member coupled to the second moving member and transferring the second moving member in a horizontal direction.
또한, 상기 이동장치 및 가열장치는 하나의 서브 조립체로 마련되고, 상기 서브 조립체는 상기 블랭크 소재의 일측면 및 타측면에서 각각 국부적으로 가열할 수 있도록 복수개로 마련되며, 각 서브 조립체는 상기 제어장치에 의해 독립적으로 제어될 수 있다.In addition, the moving device and the heating device are provided as one sub-assembly, and the sub-assembly is provided in plural so as to be locally heated on one side and the other side of the blank material, and each sub-assembly is the control device. Can be controlled independently.
또한, 상기 제어장치는 상기 블랭크 소재의 성형공정 시 성형 형상에 따른 변형률과 응력을 고려하여 국부 가열위치, 가열온도, 가열시간을 세팅하여 상기 이동장치 및 가열장치를 제어할 수 있다.In addition, the control device may control the moving device and the heating device by setting a local heating position, a heating temperature, and a heating time in consideration of strain and stress according to a molding shape during the molding process of the blank material.
본 발명의 다른 측면에 따르면, 상기 국부 열처리 시스템을 이용하여 냉간 성형하는 방법으로서, (a) 상기 국부 열처리 시스템으로 블랭크 소재가 유입되면 가열장치가 소성변형 발생 부위인 국부가열영역에 위치하도록 이동장치를 작동시키는 단계; (b) 상기 가열장치가 국부가열영역에 위치되면 가열장치를 통하여 블랭크 소재의 소성변형 발생 부위를 일정 온도로 가열한 후 냉각하여 국부적으로 재료의 물성을 조절하는 단계; 및 (c) 물성이 조절된 블랭크 소재를 금형으로 이송 후 냉간 성형하는 단계;를 포함하는 냉간 성형 방법이 제공될 수 있다.According to another aspect of the present invention, as a method of cold forming using the local heat treatment system, (a) when the blank material is introduced into the local heat treatment system, the heating device is positioned to be located in the local heating region, which is a region of plastic deformation. Operating the; (b) when the heating device is located in the local heating region, heating a portion of the plastic deformation-generating portion of the blank material through a heating device to a predetermined temperature and cooling to locally control the physical properties of the material; And (c) cold-forming after transferring the blank material having controlled physical properties to a mold.
또한, 상기 (a) 단계에서, 상기 국부 열처리 시스템의 제어장치는 상기 블랭크 소재를 성형공정 시 성형되는 형상에 따른 변형률과 응력을 고려하여 국부 가열위치, 가열온도, 가열시간을 세팅하여 상기 이동장치 및 가열장치를 제어할 수 있다.In addition, in step (a), the control device of the local heat treatment system sets the local heating position, heating temperature, and heating time in consideration of the strain and stress according to the shape to be formed during the molding process of the blank material to set the moving device. And a heating device.
본 발명의 일 실시예에 따른 국부 열처리 시스템 및 이를 이용한 냉간 성형 방법은 외부 열원을 사용하여 선택적으로 소재를 국부 가열한 후 냉각하여 물성을 조절함으로써 소재의 성형성을 향상시킬 수 있는 효과가 있다.The local heat treatment system and the cold forming method using the same according to an embodiment of the present invention have an effect of improving the moldability of the material by selectively heating the material locally using an external heat source and then cooling it to control physical properties.
또한, 소성변형이 발생하는 부분만을 국부 가열하여 물성이 조절됨에 따라 성형하중을 줄여 냉간 성형 시 금형이 마모되는 것을 최소화할 수 있으며, 냉간 성형 후 스프링백 현상을 최소화시킬 수 있는 효과가 있다.In addition, it is possible to minimize the wear of the mold during cold forming by reducing the molding load as the physical properties are controlled by locally heating only the portion where plastic deformation occurs, and there is an effect of minimizing the springback phenomenon after cold forming.
또한, 기존 열간 성형에 비하여 에너지 비용을 줄일 수 있음은 물론, 생산성 및 품질을 향상시킬 수 있는 효과가 있다.In addition, as compared to the existing hot forming, it is possible to reduce energy costs, and also has an effect of improving productivity and quality.
또한, 인공지능(AI) 및 센싱 기술을 접목함으로써, 소재를 국부적으로 가열 시 용이하고 빠르게 공정을 진행할 수 있어 생산성을 향상시킬 수 있음은 물론, 복잡한 성형 형상의 갖더라도 편리하게 적용할 수 있는 효과가 있다.In addition, by incorporating artificial intelligence (AI) and sensing technology, it is possible to easily and quickly process the material locally, thereby improving productivity, and to conveniently apply even with complicated molding shapes. There is.
도 1은 본 발명의 일 실시예에 따른 국부 열처리 시스템을 개략적으로 나타내는 도면이다.1 is a view schematically showing a local heat treatment system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 국부 열처리 시스템이 작동된 상태를 나타내는 도면이다.2 is a view showing a state in which the local heat treatment system according to an embodiment of the present invention is operated.
도 3은 도 2에 도시된 국부 열처리 시스템의 이동장치를 구체적으로 나타내는 사시도이다.3 is a perspective view specifically showing a moving device of the local heat treatment system shown in FIG. 2.
도 4는 본 발명의 일 실시예에 따른 국부 열처리 시스템에 구비된 가열장치를 나타내는 도면이다.4 is a view showing a heating device provided in the local heat treatment system according to an embodiment of the present invention.
도 5는 도 4에 도시된 가열장치에 마련된 반사판의 형상에 따라 열원을 조사하는 상태를 나타내는 도면이다.5 is a view showing a state of irradiating a heat source according to the shape of the reflector provided in the heating device shown in FIG. 4.
도 6은 본 발명의 일 실시예에 따른 국부 열처리 시스템에 의하여 물성이 조절된 소재를 V 굽힘 성형한 상태와 종래의 소재를 V 굽힘 성형한 상태를 비교하기 위해 촬영한 도면이다.FIG. 6 is a view taken to compare a state in which the material is controlled by the local heat treatment system according to an embodiment of the present invention, in a state of V bending molding and a state in which a material of V is conventionally subjected to V bending molding.
도 7은 본 발명의 일 실시예에 따른 국부 열처리 시스템에 의해 물성이 조절된 소재와 종래의 소재를 비대칭 성형한 상태를 비교하기 위한 도면이다.7 is a view for comparing a material in which the physical properties are adjusted by the local heat treatment system according to an embodiment of the present invention and an asymmetrically molded state of a conventional material.
도 8은 본 발명의 일 실시예에 따른 국부 열처리 시스템에 의해 물성이 조절된 실 부품과 종래의 실 부품을 성형한 상태를 비교하기 촬영한 도면이다.FIG. 8 is a view showing a comparison of a state in which a physical component having a physical property controlled by a local heat treatment system according to an embodiment of the present invention is molded with a conventional physical component.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이며, 여기서 제시한 것으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략할 수 있고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented to sufficiently convey the spirit of the present invention to those of ordinary skill in the art to which the present invention pertains, and are not limited to those presented herein and may be embodied in other forms. To clarify the present invention, drawings of parts irrelevant to the description may be omitted, and the size of components may be exaggerated to facilitate understanding.
도 1은 본 발명의 일 실시예에 따른 국부 열처리 시스템을 개략적으로 나타내는 도면이고, 도 2는 본 발명의 일 실시예에 따른 국부 열처리 시스템이 작동된 상태를 나타내는 도면이며, 도 3은 도 2에 도시된 국부 열처리 시스템의 이동장치를 구체적으로 나타내는 사시도이고, 도 4는 본 발명의 일 실시예에 따른 국부 열처리 시스템에 구비된 가열장치를 나타내는 도면이며, 도 5는 도 4에 도시된 가열장치에 마련된 반사판의 형상에 따라 열원을 조사하는 상태를 나타내는 도면이다.1 is a view schematically showing a local heat treatment system according to an embodiment of the present invention, FIG. 2 is a view showing a state in which the local heat treatment system according to an embodiment of the present invention is operated, FIG. 3 is in FIG. 2 It is a perspective view specifically showing a moving device of the illustrated local heat treatment system, and FIG. 4 is a view showing a heating apparatus provided in the local heat treatment system according to an embodiment of the present invention, and FIG. 5 is a heating apparatus shown in FIG. 4 It is a figure which shows the state which irradiates the heat source according to the shape of the provided reflector.
도 1 내지 도 5를 참자하면, 본 발명의 일 측면에 따른 국부 열처리 시스템(1)은 블랭크 소재(10)의 소성변형 발생 부위만 국부적으로 가열하는 가열장치(100)와, 가열장치(100)를 블랭크 소재(10)의 국부가열영역 위치까지 이동시키는 이동장치(200) 및 가열장치(100)와 이동장치(200)를 제어하는 제어장치(300)를 포함한다.1 to 5, the local heat treatment system 1 according to an aspect of the present invention includes a heating device 100 and a heating device 100 that locally heats only the plastic deformation occurrence portion of the blank material 10 It includes a moving device 200 for moving to the location of the local heating area of the blank material 10, and a heating device 100 and a control device 300 for controlling the moving device 200.
여기서 블랭크 소재(10)는 본 발명에 따른 냉간 성형을 통해 제품으로 성형시키기 위하여 일정길이를 갖도록 절단되어 마련되는 초고장력강 소재로서 1GPa 이상의 인장강도를 갖는 난성형성 소재이다. 이러한 블랭크 소재(10)를 제품으로 생산하는 공정에서 실제 소성 변형이 일어나는 영역은 국부적이기 때문에 별도의 외부 열원을 이용하여 소성 변형이 일어나는 영역에 대해서만 열을 가함으로써 블랭크 소재(10)의 성형성을 향상시킬 수 있다. 즉, 소재의 성형성을 향상시키기 위해서는 열을 가해주는 위치를 블랭크 소재(10)의 소성 변형이 발생하는 국부적인 영역에 대해서만 집중시키는 것이 중요하다.Here, the blank material 10 is an ultra-high-strength steel material that is cut and provided to have a certain length in order to form a product through cold forming according to the present invention, and is a hard-forming material having a tensile strength of 1 GPa or more. Since the area where the actual plastic deformation occurs in the process of producing the blank material 10 as a product is local, the formability of the blank material 10 is improved by applying heat only to the area where the plastic deformation occurs using a separate external heat source. Can be improved. In other words, in order to improve the moldability of the material, it is important to focus the location where heat is applied only to the local area where plastic deformation of the blank material 10 occurs.
한편, 블랭크 소재(10)를 굽힘 성형 시 다른 공정보다 근적외선 열원을 외부 열원으로 사용하는 것이 효율적이다. 또한, 굽힘 성형은 대부분 선형이기 때문에 선형 열원을 사용하는 것이 바람직하다.Meanwhile, it is more efficient to use the near-infrared heat source as an external heat source than other processes when bending the blank material 10. In addition, it is preferable to use a linear heat source because the bending molding is mostly linear.
따라서, 본 발명에서는 가열장치(100)를 외부 열원으로서 사용하되, 선형 근적외선 히터를 이용해 소성 변형이 일어나는 국부적인 영역의 온도를 상승시켜 난성형성 소재의 굽힘 특성을 향상시켜 소재를 정밀한 형상으로 성형할 수 있도록 한다.Therefore, in the present invention, the heating apparatus 100 is used as an external heat source, but the temperature of the local region where plastic deformation occurs is increased by using a linear near-infrared heater to improve the bending property of the hard-forming material to form the material into a precise shape. Make it possible.
보다 구체적으로, 가열장치(100)는 도 4에 도시된 바와 같이, 열원(110)과 반사판(120)을 구비한다. 열원(110)은 근적외선을 발생하는 램프로 마련될 수 있다.More specifically, as shown in FIG. 4, the heating device 100 includes a heat source 110 and a reflector 120. The heat source 110 may be provided as a lamp generating near infrared rays.
열원(110)은 파장 700~1300nm 의 전자기파로 적색 가시광선의 바깥쪽에서 발생한다. 열원(110)은 90% 이상이 복사열이기 때문에 고효율(효율 85% ~ 90%)이라 할 수 있다. 열원(110)은 근적외선이라 공기를 태우지 않기 때문에 무독, 무연, 무취, 무소음으로 실내에서 사용이 가능하다. 열원(110)은 최대 출력까지 0.1초 정도밖에 소요되지 않기 때문에 사용이 매우 편리하다.The heat source 110 is an electromagnetic wave having a wavelength of 700 to 1300 nm and is generated outside the red visible light. Since the heat source 110 is 90% or more radiant heat, it can be called high efficiency (efficiency 85% to 90%). Since the heat source 110 is near infrared, it does not burn air, so it can be used indoors as non-toxic, smokeless, odorless, and noiseless. The heat source 110 is very convenient to use because it only takes about 0.1 seconds to reach the maximum output.
반사판(120)은 열원에서 발생되는 근적외선을 반사하여 국부가열영역으로 집광하는 역할을 수행한다. 이 반사판(120)은 형상에 따라 선형으로 근적외선이 조사되는 영역을 조절할 수 있다. 예컨대, 도 5의 (a)에는 타원형 형태의 반사판(120)이 도시되어 있으며, 도 5의 (b)에는 포물형 형태의 반사판(120)이 도시되어 있다. 타원형 반사판(120)의 경우에는 열원(110)에서 발생된 근적외선을 반사하여 한 곳으로 집광하여 선형으로 블랭크 소재(10)에 조사한다. 또한, 포물형 반사판(120)의 경우에는 열원(110)에서 발생된 근적외선을 평행화시켜 일정 영역으로 블랭크 소재(10)에 조사한다. 즉, 블랭크 소재(10)의 소성 변형 영역에 따라 그에 적합한 반사판(120)을 적용하여 국부적으로 가열할 수 있다. 그 외에도 여러 형상의 반사판이 존재하여 각각의 특성이 다르게 활용될 수 있다. 따라서 목적에 따라 반사판(120) 형상을 변형하여 이용이 가능하다.The reflector 120 serves to reflect near infrared rays generated from a heat source and condense the local heating region. The reflector 120 may adjust a region in which near-infrared rays are irradiated linearly according to a shape. For example, the reflector 120 in an oval shape is illustrated in FIG. 5A, and the parabolic reflector 120 is illustrated in FIG. 5B. In the case of the oval reflector 120, the near infrared rays generated from the heat source 110 are reflected and condensed into one place, and the blank material 10 is linearly irradiated. In addition, in the case of the parabolic reflector 120, the near infrared rays generated from the heat source 110 are parallelized to irradiate the blank material 10 in a predetermined area. That is, according to the plastic deformation region of the blank material 10, a suitable reflector 120 may be applied to locally heat. In addition, various shapes of reflectors exist, so that each characteristic may be used differently. Therefore, the shape of the reflector 120 may be modified according to the purpose and used.
상기와 같이, 근적외선을 사용한 가열장치(100)는 열원(110)과 반사판(120)만을 사용하면 되기 때문에 한 방향에서 블랭크 소재(10)를 국부적으로 가열하는 것이 가능하다.As described above, since the heating apparatus 100 using near infrared rays only needs to use the heat source 110 and the reflector 120, it is possible to locally heat the blank material 10 in one direction.
한편, 가열장치(100)는 하우징(130)을 더 구비할 수 있다. 하우징(130)은 열원(110) 및 반사판(120)을 외부의 충격으로부터 보호하며 단열을 통해 에너지의 손실을 방지하는 역할을 수행한다. 이 하우징(130)은 열원(110) 및 반사판(120)이 결합되도록 마련되며, 열원(110)으로부터 발생된 근적외선이 반사판(120)을 통해 일 방향으로 조사되도록 일부가 개방된 형태를 갖는다. 또한, 이 하우징(130)은 후술할 이동장치(200)와 결합될 수 있다.Meanwhile, the heating device 100 may further include a housing 130. The housing 130 serves to protect the heat source 110 and the reflector 120 from external impacts and prevent energy loss through heat insulation. The housing 130 is provided so that the heat source 110 and the reflector 120 are coupled, and has a partially open shape so that near infrared rays generated from the heat source 110 are irradiated in one direction through the reflector 120. In addition, the housing 130 may be combined with a moving device 200 to be described later.
이동장치(200)는 가열장치(100)와 결합되어 가열장치(100)를 소성 변형되는 영역의 블랭크 소재(10)의 표면으로 이동시키는 역할을 한다. 이 이동장치(200)는 가열장치(100)와 결합되는 회전 조인트(213)와 가열장치(100)를 3축 방향으로 이동시키는 복수의 이동부재(210, 220, 230)를 구비한다.The moving device 200 is coupled to the heating device 100 and serves to move the heating device 100 to the surface of the blank material 10 in the plastically deformed region. The moving device 200 includes a rotating joint 213 coupled to the heating device 100 and a plurality of moving members 210, 220, and 230 that move the heating device 100 in a three-axis direction.
회전 조인트(213)는 가열장치(100)의 하우징(130)에 결합되어 가열장치(100)의 각도를 조절하도록 마련된다. 즉, 회전 조인트(213)는 가열장치(100)의 각도를 조절하여 근적외선이 국부가열영역의 블랭크 표면(10)에 원활히 집광되도록 하는 역할을 수행한다. 이러한 회전 조인트(213)의 구조는 통상적으로 널리 알려진 공지의 기술이므로 상세한 설명은 생략하기로 한다.The rotary joint 213 is coupled to the housing 130 of the heating device 100 and is provided to adjust the angle of the heating device 100. That is, the rotating joint 213 serves to smoothly converge near infrared rays to the blank surface 10 of the local heating region by adjusting the angle of the heating device 100. Since the structure of the rotating joint 213 is a well-known and well-known technique, detailed description thereof will be omitted.
복수의 이동부재(210, 220, 230)는 3축 방향 즉, x,y,z축 방향으로 가열장치(100)를 이동시키기 위하여 제1 이동부재(210), 제2 이동부재(220) 및 제3 이동부재(230)로 구성될 수 있다. 예컨대, 도 3에 도시된 바와 같이, 제3 이동부재(230)는 x축 방향으로 이동할 수 있도록 마련되고, 제2 이동부재(220)는 y축 방향으로 이동할 수 있도록 마련되며, 제1 이동부재(210)는 z축 방향으로 이동할 수 있도록 마련될 수 있다.The plurality of moving members 210, 220, and 230, the first moving member 210, the second moving member 220 to move the heating device 100 in the three-axis direction, that is, the x, y, z-axis direction It may be configured as a third moving member 230. For example, as illustrated in FIG. 3, the third moving member 230 is provided to move in the x-axis direction, the second moving member 220 is provided to move in the y-axis direction, and the first moving member 210 may be provided to move in the z-axis direction.
제1 이동부재(210)는 회전 조인트(213)와 결합되어 가열장치(100)를 블랭크 소재(100)가 마련된 방향 즉, z축 방향으로 이송하도록 마련된다. 이 제1 이동부재(210)는 유압 또는 공압 실린더의 구성을 갖추어 일 방향으로 이동할 수 있도록 마련될 수 있다.The first moving member 210 is coupled to the rotating joint 213 and is provided to transport the heating device 100 in the direction in which the blank material 100 is provided, that is, in the z-axis direction. The first moving member 210 may be provided to have a configuration of a hydraulic or pneumatic cylinder to move in one direction.
제2 이동부재(220)는 제1 이동부재(210)와 결합되어 제1 이동부재(210)를 수직 방향 즉, y축 방향으로 이송하도록 마련된다. 이때, 제1 이동부재(210)는 가열장치(100)와 결합된 상태이므로, 가열장치(100)는 제1 이동부재(210)의 이동시 함께 이동된다. 이 제2 이동부재(220)는 유압 또는 공압 실린더의 구성을 갖추어 일 방향으로 이동할 수 있도록 마련될 수 있다.The second moving member 220 is coupled to the first moving member 210 and is provided to transport the first moving member 210 in the vertical direction, that is, in the y-axis direction. At this time, since the first moving member 210 is coupled to the heating device 100, the heating device 100 is moved together when the first moving member 210 is moved. The second moving member 220 may be provided to have a configuration of a hydraulic or pneumatic cylinder to move in one direction.
제3 이동부재(230)는 제2 이동부재(220)와 결합되어 제2 이동부재(220)를 수평 방향 즉, x축 방향으로 이송하도록 마련된다. 이때, 제2 이동부재(220)는 제1 이동부재(210)와 결합된 상태이므로, 제1 이동부재(210)는 제2 이동부재(220)의 이동시 함께 이동된다. 이 제3 이동부재(230)는 모터(232)의 회전력을 전달받아 직선운동으로 변환하는 렉 피니언 기어의 결합구조를 갖도록 마련될 수 있다.The third moving member 230 is coupled to the second moving member 220 and is provided to transport the second moving member 220 in the horizontal direction, that is, in the x-axis direction. At this time, since the second moving member 220 is coupled to the first moving member 210, the first moving member 210 is moved together when the second moving member 220 is moved. The third moving member 230 may be provided to have a coupling structure of a rack pinion gear that receives the rotational force of the motor 232 and converts it into a linear motion.
한편, 상기 제1 및 제2 이동부재(210, 220)가 실린더의 구조를 갖는 것으로 도시하고, 제3 이동부재(230)가 회전운동을 직선운동으로 변환하는 기어결합 구조를 갖는 것으로 도시하였으나, 이에 한정되지 않으며, 가열장치(100)를 3축 방향으로 이동시킬 수 있다면 어떠한 형태를 갖더라도 무방하다.On the other hand, the first and second moving members 210 and 220 are shown as having a cylinder structure, and the third moving member 230 is shown as having a gear coupling structure for converting rotational motion into linear motion. However, the present invention is not limited thereto, and any shape may be used as long as the heating device 100 can be moved in a three-axis direction.
본 발명의 일 측면에 따른 국부 열처리 시스템(1)은 상기 이동장치(200) 및 가열장치(100)를 하나의 서브 조립체로 구성하고, 이 서브 조립체는 블랭크 소재(10)의 일측면 및 타측면에서 각각 요구되는 위치에서 국부적으로 가열할 수 있도록 복수개로 마련될 수 있다. 이러한 복수의 서브 조립체는 제어장치(300)에 의해 독립적으로 제어될 수 있다.The local heat treatment system 1 according to an aspect of the present invention comprises the moving device 200 and the heating device 100 as one sub-assembly, and the sub-assembly is one side and the other side of the blank material 10. It can be provided in a plurality so as to be locally heated at each required position. The plurality of sub-assemblies can be independently controlled by the control device 300.
제어장치(300)는 가열장치(100) 및 이동장치(200)를 각각 제어함은 물론, 전술한 바와 같이 복수의 서브 조립체를 각각 독립적으로 제어할 수 있다. 이러한 제어장치(300)는 인공지능(AI) 및 센싱 기술과 접목되어 보다 효율적으로 각 서브 조립체를 제어할 수 있다. 예를 들면, 블랭크 소재(10)를 국부가열하기 전 성형대상재의 성형 특성인 성형공정 시 변형률과 응력을 측정하고, 성형 형상과 공정시간 등을 고려하여 국부 가열위치, 가열온도, 가열시간 등이 최적화되도록 한다. 즉, 성형대상물을 측정한 측정 데이터를 바탕으로 국부 가열위치, 가열온도, 가열시간을 세팅하여 상기 이동장치(200) 및 가열장치(100)를 제어할 수 있다. 이에, 국부 열처리 시스템(1)으로 블랭크 소재(10)가 위치되면 이동장치(200)가 작동하여 가열장치(100)를 최적화된 지점으로 신속하고 용이하게 이동시키며, 가열장치(100)가 가열 위치를 시간별 및 일정 온도로 가열하게 된다. 따라서, 성형하고자 하는 성형대상물이 복잡한 성형 형상의 갖더라도 편리하게 적용할 수 있음은 물론, 다양한 형상에 적용 가능하다.The control device 300 may control the heating device 100 and the mobile device 200, respectively, and independently control a plurality of sub-assemblies, as described above. The control device 300 is combined with artificial intelligence (AI) and sensing technology to control each sub-assembly more efficiently. For example, before the local heating of the blank material 10, the strain and stress are measured during the molding process, which is the molding characteristic of the molding target material, and the local heating position, heating temperature, heating time, etc. are taken into account in consideration of the molding shape and the processing time. To be optimized. That is, the mobile device 200 and the heating device 100 can be controlled by setting a local heating position, a heating temperature, and a heating time on the basis of measurement data obtained by measuring a molding object. Accordingly, when the blank material 10 is located by the local heat treatment system 1, the moving device 200 operates to move the heating device 100 to the optimized point quickly and easily, and the heating device 100 is heated. Is heated over time and at a constant temperature. Therefore, even if the object to be molded has a complicated molding shape, it can be conveniently applied, and can be applied to various shapes.
그러면, 상기와 같은 국부 열처리 시스템(1)을 이용하여 블랭크 소재(10)를 냉간 성형하는 방법에 대하여 도 1 내지 도 5를 참조하여 설명하기로 한다.Then, a method of cold forming the blank material 10 using the above-described local heat treatment system 1 will be described with reference to FIGS. 1 to 5.
본 발명의 냉간 성형 방법은 크게, 국부 열처리 시스템(1)을 통해 블랭크 소재(10)의 소성변형 발생 부분을 국부적으로 가열한 후 냉각하는 과정과, 국부적으로 가열된 블랭크 소재(10)를 금형으로 위치시킨 후 성형하는 과정을 포함한다.The cold forming method of the present invention is largely, a process of locally heating and cooling the plastic deformation generating portion of the blank material 10 through the local heat treatment system 1, and the locally heated blank material 10 as a mold. And positioning and molding.
구체적으로, 도 1에 도시된 바와 같이, 국부 열처리 시스템(1)으로 블랭크 소재(10)가 유입되면, 가열장치(100)가 소성변형 발생 부위인 국부가열영역에 위치하도록 이동장치(200)를 작동시킨다. 즉, 도 2에 도시된 바와 같이, 가열장치(100)가 국부가열영역에 위치되면 가열장치(100)를 통하여 블랭크 소재(10)의 소성변형 발생 부위를 일정 온도로 가열한다. 국부 가열된 블랭크 소재(10)는 냉각하는 단계를 거치며 국부적으로 재료의 물성이 조절되어 냉간 성형 공정으로 제공된다. 즉, 냉간 성형 공정에 앞서 미리 블랭크 소재(10)의 물성을 조절하도록 함으로써, 기존 온간 성형 공정 내에서 소재를 가열한 후 온간 성형을 진행하는 공정에 비하여 성형 공정 시간을 줄일 수 있게 된다.Specifically, as shown in FIG. 1, when the blank material 10 flows into the local heat treatment system 1, the heating device 100 moves the mobile device 200 to be located in the local heating area, which is a region of plastic deformation. It works. That is, as illustrated in FIG. 2, when the heating apparatus 100 is located in the local heating region, the plastic deformation occurrence region of the blank material 10 is heated to a constant temperature through the heating apparatus 100. The locally heated blank material 10 is subjected to a cooling step, and the physical properties of the material are locally adjusted to provide a cold forming process. That is, by adjusting the physical properties of the blank material 10 in advance before the cold forming process, it is possible to reduce the molding process time compared to the process of heating the material in the existing warm forming process and then performing warm forming.
한편, 가열장치(100) 및 이동장치(200)는 제어장치(300)에 의해 블랭크 소재(10)를 국부적으로 가열하도록 제어될 수 있다. 이 제어장치(300)는 복수개로 마련되는 가열장치(100)와 이동장치(200)를 각각 독립적으로 제어한다. 이러한 제어장치(300)를 통하여 블랭크 소재(10)를 성형공정 시 성형되는 형상에 따른 변형률과 응력을 고려하여 국부 가열위치, 가열온도, 가열시간을 세팅하여 상기 이동장치(200) 및 가열장치(100)를 제어할 수 있다.Meanwhile, the heating device 100 and the moving device 200 may be controlled to locally heat the blank material 10 by the control device 300. The control device 300 independently controls the heating device 100 and the mobile device 200 provided in plural. The mobile device 200 and the heating device are set by setting the local heating position, heating temperature, and heating time in consideration of the strain and stress according to the shape formed during the molding process of the blank material 10 through the control device 300. 100) can be controlled.
예컨대, 제어장치(300)는 인공지능(AI) 및 센싱 기술과 접목되어 보다 효율적으로 각 가열장치(100)와 이동장치(200)를 제어할 수 있다. 즉, 블랭크 소재(10)를 국부가열하기 전 성형대상재의 성형 특성인 성형공정 시 변형률과 응력을 측정하고, 성형 형상과 공정시간 등을 고려하여 국부 가열위치, 가열온도, 가열시간 등이 최적화되도록 한다. 이에, 성형대상물을 측정한 측정 데이터를 바탕으로 국부 가열위치, 가열온도, 가열시간을 세팅하여 상기 이동장치(200) 및 가열장치(100)를 제어할 수 있다. 따라서, 국부 열처리 시스템(1)으로 블랭크 소재(10)가 위치되면 이동장치(200)가 작동하여 가열장치(100)를 최적화된 지점으로 신속하고 용이하게 이동시키며, 가열장치(100)가 가열 위치를 시간별 및 일정 온도로 가열하게 된다.For example, the control device 300 is combined with artificial intelligence (AI) and sensing technology to control each heating device 100 and the mobile device 200 more efficiently. That is, before the local heating of the blank material 10, strain and stress are measured during the molding process, which is a molding characteristic of the molding target material, and the local heating position, heating temperature, and heating time are optimized in consideration of the molding shape and the processing time. do. Accordingly, the mobile device 200 and the heating device 100 may be controlled by setting a local heating position, a heating temperature, and a heating time on the basis of measurement data obtained by measuring the molding object. Therefore, when the blank material 10 is located by the local heat treatment system 1, the moving device 200 operates to quickly and easily move the heating device 100 to an optimized point, and the heating device 100 is heated. Is heated over time and at a constant temperature.
한편, 국부 열처리 시스템(1)으로 유입되는 블랭크 소재(10)는 별도의 홀더(미도시)등을 통하여 일정 위치에서 고정될 수 있다. 즉, 블랭크 소재(10)는 홀더에 의해 가열장치(100)를 통해 가열되는 부분과 저촉되지 않도록 지지될 수 있다.Meanwhile, the blank material 10 introduced into the local heat treatment system 1 may be fixed at a certain position through a separate holder (not shown). That is, the blank material 10 may be supported so as not to interfere with a portion heated by the holder through the heating device 100.
상기 국부 열처리 시스템(1)을 통하여 국부적으로 가열된 블랭크 소재(10)는 냉각되어 재료의 물성이 조절된 상태로 마련된다.The blank material 10 locally heated through the local heat treatment system 1 is cooled to be provided in a controlled state of material properties.
이어서, 물성이 조절된 블랭크 소재(10)는 냉간 성형을 통해 요구되는 형상을 갖도록 성형된다. 즉, 금형(미도시)으로 옮겨진 블랭크 소재(10)는 펀치(미도시)에 의해 가압되며 소성변형된다.Subsequently, the blank material 10 with controlled physical properties is molded to have a desired shape through cold forming. That is, the blank material 10 transferred to a mold (not shown) is pressed by a punch (not shown) and plastically deformed.
이하, 실시예 1 내지 6 및 비교예 1 내지 3을 통하여 본 발명을 보다 상세하게 설명하도록 한다.Hereinafter, the present invention will be described in more detail through Examples 1 to 6 and Comparative Examples 1 to 3.
실시예 1Example 1
블랭크 소재를 1.5GPa의 인장강도를 갖는 초고장력강으로 마련하고, 소성변형되는 부분을 550℃로 국부가열 후 V 굽힘 성형하였다.The blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa, and the plastically deformed portion was locally heated to 550° C. and then V-bended.
실시예 2Example 2
블랭크 소재를 1.5GPa의 인장강도를 갖는 초고장력강으로 마련하고, 소성변형되는 부분을 850℃로 국부가열 후 V 굽힘 성형하였다.The blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa, and the plastically deformed portion was locally heated to 850° C. and then V-bended.
실시예 3Example 3
블랭크 소재를 1.5GPa의 인장강도를 갖는 초고장력강으로 마련하고, 소성변형되는 부분을 950℃로 국부가열 후 V 굽힘 성형하였다.The blank material was prepared with an ultra-high tensile steel having a tensile strength of 1.5 GPa, and the plastically deformed portion was locally heated to 950° C. and then V-bended.
실시예 4Example 4
블랭크 소재를 1.2GPa의 인장강도를 갖는 초고장력강으로 마련하고, 소성변형되는 부분을 400℃로 국부가열 후 비대칭 성형하였다.The blank material was prepared from ultra-high tensile steel having a tensile strength of 1.2 GPa, and the plastically deformed portion was asymmetrically molded after local heating at 400°C.
실시예 5Example 5
블랭크 소재를 1.2GPa의 인장강도를 갖는 초고장력강으로 마련하고, 소성변형되는 부분을 800℃로 국부가열 후 비대칭 성형하였다.The blank material was prepared from ultra-high tensile steel having a tensile strength of 1.2 GPa, and the plastically deformed portion was asymmetrically molded after local heating at 800°C.
실시예 6Example 6
블랭크 소재를 1.5GPa의 인장강도를 갖는 초고장력강으로 마련하고, 소성변형되는 부분을 800℃로 국부가열 후 실부품을 성형하였다.The blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa, and the plastically deformed portion was locally heated to 800° C. and then a real part was molded.
비교예 1Comparative Example 1
블랭크 소재를 1.5GPa의 인장강도를 갖는 초고장력강으로 마련하고, 국부가열 없이 V 굽힘 성형하였다.The blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa and V-bended without local heating.
비교예 2Comparative Example 2
블랭크 소재를 1.2GPa의 인장강도를 갖는 초고장력강으로 마련하고, 국부가열 없이 비대칭 성형하였다.The blank material was prepared from ultra-high tensile steel having a tensile strength of 1.2 GPa, and was asymmetrically molded without local heating.
비교예 3Comparative Example 3
블랭크 소재를 1.5GPa의 인장강도를 갖는 초고장력강으로 마련하고, 국부가열 없이 실부품을 성형하였다.The blank material was prepared from an ultra-high tensile steel having a tensile strength of 1.5 GPa, and a real component was molded without local heating.
강종Steel 실시예/비교예Example/Comparative Example 성형방법Forming method 국부가열Local heating 성형결과Molding result
1.5GPa 초고장력강1.5GPa ultra-high tensile steel 실시예 1Example 1 V 굽힘 성형V bending molding 550℃550℃ 균열없음No crack
실시예 2Example 2 V 굽힘 성형V bending molding 850℃850℃ 균열없음No crack
실시예 3Example 3 V 굽힘 성형V bending molding 950℃950℃ 균열없음No crack
1.2GPa 초고장력강1.2GPa ultra high tensile steel 실시예 4Example 4 비대칭 성형Asymmetric molding 400℃400℃ 스프링백 15°Springback 15°
실시예 5Example 5 비대칭 성형Asymmetric molding 800℃800℃ 스프링백 7°Springback 7°
1.5GPa 초고장력강1.5GPa ultra-high tensile steel 실시예 6Example 6 실부품 성형Real part molding 800℃800℃ 균열없음No crack
1.5GPa 초고장력강1.5GPa ultra-high tensile steel 비교예 1Comparative Example 1 V 굽힘 성형V bending molding -- 균열발생Cracking
1.2GPa 초고장력강1.2GPa ultra-high tensile steel 비교예 2Comparative Example 2 비대칭 성형Asymmetric molding -- 스프링백 25°Springback 25°
1.5GPa 초고장력강1.5GPa ultra-high tensile steel 비교예 3Comparative Example 3 실부품 성형Real part molding -- 균열발생Cracking
상기 [표 1]의 성형결과에서 확인할 수 있는 바와 같이, 국부가열을 실시한 후 성형한 결과 균열이 발생하지 않았으며, 스프링백 현상이 현저히 감소하였다. 이러한 실시예와 비교예의 실험에 따른 결과가 도 6 내지 도 9에 도시되어 있다.As can be seen from the molding results in [Table 1], cracking did not occur as a result of molding after local heating, and the springback phenomenon was significantly reduced. The results of experiments of these examples and comparative examples are shown in FIGS. 6 to 9.
도 6은 본 발명의 일 실시예에 따른 국부 열처리 시스템에 의하여 물성이 조절된 소재를 V 굽힘 성형한 상태와 종래의 소재를 V 굽힘 성형한 상태를 비교하기 위해 촬영한 도면이다.FIG. 6 is a view taken to compare a state in which the physical properties are adjusted by the local heat treatment system according to an embodiment of the present invention in a state of V bending molding and a state in which a conventional material is subjected to V bending molding.
도 6의 (a)는 비교예 1을 통해 V 굽힘 성형한 상태를 나타내고, 도 6의 (b)는 실시예 1 내지 3을 통해 V 굽힘 성형한 상태를 나타낸다. 즉, 도시된 바와 같이, 비교예 1의 경우 소성변형되는 부분에 균열이 발생된 것을 확인할 수 있다. 이에 비하여, 본 발명의 실시예 1 내지 3의 경우 소성변형되는 부분을 국부적으로 가열하여 물성을 조절한 상태이기 때문에 균열이 발생되지 않고 매끄럽게 성형된다.FIG. 6(a) shows the state of V bending molding through Comparative Example 1, and FIG. 6(b) shows the state of V bending molding through Examples 1 to 3. That is, as shown, in the case of Comparative Example 1, it can be confirmed that cracks were generated in the plastically deformed portion. On the other hand, in the case of Examples 1 to 3 of the present invention, since the part to be plastically deformed is locally heated to control the physical properties, cracks are not generated and are smoothly formed.
도 7은 본 발명의 일 실시예에 따른 국부 열처리 시스템에 의해 물성이 조절된 소재와 종래의 소재를 비대칭 성형한 상태를 비교하기 위한 도면이다.7 is a view for comparing a state in which asymmetric molding of a material having physical properties controlled by a local heat treatment system and a conventional material according to an embodiment of the present invention.
도 7의 (a)는 비교예 2를 통해 비대칭 성형한 상태를 나타내고, 도 7의 (b)는 실시예 4를 통해 비대칭 성형한 상태를 나타낸다. 즉, 도시된 바와 같이, 비교예 2의 경우 비대칭 성형 후 25°의 스프링백 현상이 발생된 것을 확인할 수 있다. 이에 비하여, 본 발명의 실시예 5의 경우 소성변형되는 부분을 국부적으로 가열하여 물성을 조절한 상태이기 때문에 균열이 발생하지 않으며, 7°의 스프링백 현상이 발생된다. 즉, 종래에 비하여 스프링백이 현저히 감소된 것을 확인할 수 있다.FIG. 7(a) shows an asymmetric molded state through Comparative Example 2, and FIG. 7(b) shows an asymmetric molded state through Example 4. That is, as shown, in the case of Comparative Example 2, it can be confirmed that a springback phenomenon of 25° occurred after asymmetric molding. On the other hand, in the case of Example 5 of the present invention, the crack is not generated because the plastically deformed portion is locally heated to control the physical properties, and a springback phenomenon of 7° occurs. That is, it can be seen that the springback is significantly reduced compared to the prior art.
도 8은 본 발명의 일 실시예에 따른 국부 열처리 시스템에 의해 물성이 조절된 실 부품과 종래의 실 부품을 성형한 상태를 비교하기 촬영한 도면이다.FIG. 8 is a photograph comparing a state in which a physical component having a physical property controlled by a local heat treatment system according to an embodiment of the present invention is molded with a conventional component.
도 8의 (a)는 비교예 3을 통해 실부품을 성형한 상태를 나타내고, 도 8의 (b)는 실시예 6을 통해 실부품을 성형한 상태를 나타낸다. 즉, 도시된 바와 같이, 비교예 6의 경우 소성변형되는 부분에 균열 및 파단이 발생된 것을 확인할 수 있다. 이에 비하여, 본 발명의 실시예 6의 경우 소성변형되는 부분을 국부적으로 가열하여 물성을 조절한 상태이기 때문에 균열 및 파단이 발생되지 않고 성형된다.FIG. 8(a) shows a state in which the real parts are molded through Comparative Example 3, and FIG. 8(b) shows a state in which the real parts are molded through Example 6. That is, as shown, in the case of Comparative Example 6, it can be confirmed that cracks and fractures occurred in the plastically deformed portion. On the other hand, in the case of Example 6 of the present invention, since the part that is plastically deformed is locally heated to control the physical properties, it is molded without cracking or breaking.
한편, 도 8의 (b)에서 실부품이 소성변형되는 부분을 전체적으로 가열하지 않고, 양끝단부 즉, 기존 실부품을 소성변형 시 균열 및 파단이 발생된 부분만을 국부적으로 가열한 후 냉각하여 물성을 조절한 것을 확인할 수 있다. 이는 성형대상재의 성형 특성을 고려하여 성형공정 시 변형률과 응력을 측정한 데이터 값에 의하여 정해진 것이다. 따라서, 소성변형되는 모든 부분을 불필요하게 국부적으로 가열하는 것을 방지할 수 있으므로 에너지의 낭비를 더욱 효과적으로 줄일 수 있음은 물론, 생산성을 향상시킬 수 있다. 또한, 최적화된 가열 위치를 설정하고, 가열시간 및 가열온도를 제공할 수 있게 된다. 즉, 성형성이 향상되며 스프링백의 현상을 최소화할 수 있는 국부 열처리 시스템(1) 및 이를 통한 냉간 성형 방법을 제공함과 더불어 품질이 향상된 성형품을 제공할 수 있게 된다.On the other hand, in Figure 8 (b), instead of heating the part where the real part is plastically deformed, the both ends, i.e., only the part where cracks and fractures occurred during plastic deformation, are locally heated and cooled to cool the physical properties. You can see that it has been adjusted. This is determined by the data values of strain and stress measured during the molding process in consideration of the molding characteristics of the molding material. Therefore, it is possible to prevent unnecessary heating of all parts to be plastically deformed, so that waste of energy can be reduced more effectively and productivity can be improved. In addition, it is possible to set an optimized heating position and provide a heating time and a heating temperature. That is, it is possible to provide a molded article with improved quality while providing a local heat treatment system (1) capable of improving the formability and minimizing the phenomenon of springback and a cold forming method.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by a limited number of embodiments and drawings, the present invention is not limited by this, and the technical idea of the present invention and the following will be described by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the equivalent scope of the claims to be described.

Claims (8)

  1. 국부 열처리 시스템에 있어서,In the local heat treatment system,
    블랭크 소재의 소성변형 발생 부위만 국부적으로 일정온도로 가열하는 가열장치;A heating device that locally heats only the plastic deformation occurrence region of the blank material to a constant temperature;
    상기 가열장치를 상기 블랭크 소재의 국부가열영역 위치까지 이동시키는 이동장치; 및A moving device for moving the heating device to a position of a local heating area of the blank material; And
    상기 가열장치 및 이동장치를 제어하는 제어장치;를 포함하는 국부 열처리 시스템.Local control system comprising a; control device for controlling the heating device and the mobile device.
  2. 제1항에 있어서,According to claim 1,
    상기 가열장치는,The heating device,
    상기 이동장치와 결합되는 하우징;A housing coupled with the mobile device;
    상기 하우징에 결합되어 근적외선을 방사하는 열원; 및A heat source coupled to the housing to emit near infrared rays; And
    상기 하우징에 마련되어 상기 열원에서 발생되는 근적외선을 반사하여 국부가열영역으로 집광하는 반사판;을 구비하는 국부 열처리 시스템.A local heat treatment system provided with a reflector provided in the housing and reflecting near infrared rays generated from the heat source to collect light into a local heating region.
  3. 제1항에 있어서,According to claim 1,
    상기 이동장치는,The mobile device,
    상기 가열장치와 결합되는 회전 조인트; 및A rotating joint coupled with the heating device; And
    상기 회전 조인트와 결합되어 가열장치를 3축(x,y,z) 방향으로 이동시키는 복수의 이동부재;를 구비하는 국부 열처리 시스템.A local heat treatment system comprising a; a plurality of moving members coupled to the rotating joint to move the heating device in a three-axis (x, y, z) direction.
  4. 제3항에 있어서,According to claim 3,
    상기 복수의 이동부재는,The plurality of moving members,
    상기 회전 조인트와 결합되어 상기 가열장치를 블랭크 소재가 마련된 방향으로 이송하는 제1 이동부재;A first moving member coupled to the rotating joint and transferring the heating device in a direction in which a blank material is provided;
    상기 제1 이동부재와 결합되어 상기 제1 이동부재를 수직 방향으로 이송시키는 제2 이동부재; 및A second moving member coupled to the first moving member to convey the first moving member in a vertical direction; And
    상기 제2 이동부재와 결합되어 상기 제2 이동부재를 수평 방향으로 이송시키는 제3 이동부재;를 구비하는 국부 열처리 시스템.And a third moving member coupled to the second moving member to transfer the second moving member in a horizontal direction.
  5. 제1항에 있어서,According to claim 1,
    상기 이동장치 및 가열장치는 하나의 서브 조립체로 마련되고,The moving device and the heating device are provided as one sub-assembly,
    상기 서브 조립체는 상기 블랭크 소재의 일측면 및 타측면에서 각각 국부적으로 가열할 수 있도록 복수개로 마련되며,The sub-assembly is provided in plural to be locally heated on one side and the other side of the blank material, respectively.
    각 서브 조립체는 상기 제어장치에 의해 독립적으로 제어되는 국부 열처리 시스템.Each sub-assembly is a local heat treatment system controlled independently by the control device.
  6. 제1항에 있어서,According to claim 1,
    상기 제어장치는 상기 블랭크 소재의 성형공정 시 성형 형상에 따른 변형률과 응력을 고려하여 국부 가열위치, 가열온도, 가열시간을 세팅하여 상기 이동장치 및 가열장치를 제어하는 국부 열처리 시스템.The control device is a local heat treatment system that controls the moving device and the heating device by setting a local heating position, heating temperature, and heating time in consideration of strain and stress according to a molding shape during the molding process of the blank material.
  7. 제1항 내지 제6항 중 어느 한 항에 기재된 국부 열처리 시스템을 이용하여 냉간 성형하는 방법으로서,A method for cold forming using the local heat treatment system according to any one of claims 1 to 6,
    (a) 상기 국부 열처리 시스템으로 블랭크 소재가 유입되면 가열장치가 소성변형 발생 부위인 국부가열영역에 위치하도록 이동장치를 작동시키는 단계;(a) when a blank material is introduced into the local heat treatment system, operating the moving device such that the heating device is located in the local heating area, which is a plastic deformation generating site;
    (b) 상기 가열장치가 국부가열영역에 위치되면 가열장치를 통하여 블랭크 소재의 소성변형 발생 부위를 일정 온도로 가열한 후 냉각하여 국부적으로 재료의 물성을 조절하는 단계; 및(b) when the heating device is located in the local heating region, heating a portion of the plastic deformation-generating portion of the blank material through a heating device to a predetermined temperature and cooling to locally control the physical properties of the material; And
    (c) 물성이 조절된 블랭크 소재를 금형으로 이송 후 냉간 성형하는 단계;를 포함하는 냉간 성형 방법.(c) cold forming after transferring the blank material with controlled physical properties to a mold; and cold forming.
  8. 제7항에 있어서,The method of claim 7,
    상기 (a) 단계에서,In step (a),
    상기 국부 열처리 시스템의 제어장치는 상기 블랭크 소재를 성형공정 시 성형되는 형상에 따른 변형률과 응력을 고려하여 국부 가열위치, 가열온도, 가열시간을 세팅하여 상기 이동장치 및 가열장치를 제어하는 냉간 성형 방법.The control device of the local heat treatment system is a cold forming method of controlling the moving device and the heating device by setting the local heating position, heating temperature, and heating time in consideration of strain and stress according to the shape to be formed during the molding process of the blank material. .
PCT/KR2019/009979 2018-11-29 2019-08-08 Local heat treatment system and cold forming method using same WO2020111442A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021529340A JP2022510869A (en) 2018-11-29 2019-08-08 Local heat treatment system and cold forming method using it
CN201980079214.3A CN113166825A (en) 2018-11-29 2019-08-08 Local heat treatment system and cold forming method using the same
US17/296,883 US20220016683A1 (en) 2018-11-29 2019-08-08 Local heat treatment system and cold forming method using the same
EP19891130.7A EP3872196A4 (en) 2018-11-29 2019-08-08 Local heat treatment system and cold forming method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0151020 2018-11-29
KR1020180151020A KR20200064661A (en) 2018-11-29 2018-11-29 Selective heating system and cold forming method using the same

Publications (1)

Publication Number Publication Date
WO2020111442A1 true WO2020111442A1 (en) 2020-06-04

Family

ID=70853051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009979 WO2020111442A1 (en) 2018-11-29 2019-08-08 Local heat treatment system and cold forming method using same

Country Status (6)

Country Link
US (1) US20220016683A1 (en)
EP (1) EP3872196A4 (en)
JP (1) JP2022510869A (en)
KR (1) KR20200064661A (en)
CN (1) CN113166825A (en)
WO (1) WO2020111442A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112676386A (en) * 2020-12-23 2021-04-20 安徽骄阳软门有限责任公司 Soft magnet pressure feeding straightening device for door curtain production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100084059A1 (en) * 2008-10-03 2010-04-08 Pfaffman George D Locally austempered ductile iron
JP2011225998A (en) * 2011-06-30 2011-11-10 Neturen Co Ltd Apparatus and method for high-frequency induction heating
KR101176068B1 (en) * 2010-03-24 2012-08-24 황현태 Apparatus and method for local laser heat treatment
KR20120110963A (en) * 2011-03-31 2012-10-10 주식회사 포스코 Apparatus for heat treatment of hot forming blank and method for manufacturing hot formed part using the same
JP2017141486A (en) * 2016-02-09 2017-08-17 三菱重工業株式会社 Jig for laser heat treatment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160815B (en) * 1959-07-21 1964-01-09 Hoesch Ag Process for the production of profiles from cold-rolled or tempered steel and non-ferrous metal strips
DE3766507D1 (en) * 1986-01-21 1991-01-17 Siemens Ag METHOD AND DEVICES FOR THE HEAT TREATMENT OF ROD WELDED TUBES.
DE3728041A1 (en) * 1987-08-22 1989-03-02 Messer Griesheim Gmbh Method for the production of bent parts from pre-hardened metals by cold forming
US7984635B2 (en) * 2005-04-22 2011-07-26 K.U. Leuven Research & Development Asymmetric incremental sheet forming system
US7977611B2 (en) * 2007-07-19 2011-07-12 United Technologies Corporation Systems and methods for providing localized heat treatment of metal components
US9539630B2 (en) * 2011-03-03 2017-01-10 Nippon Steel & Sumitomo Metal Corporation Method for bending sheet metal and product of sheet metal
DE102011120679A1 (en) * 2011-12-08 2013-06-13 Linde Aktiengesellschaft Plant and method for hot forming of blanks
KR101484907B1 (en) * 2013-04-02 2015-01-21 현대자동차주식회사 Near-infrared condensing heating unit, near-infrared condensing heating device using the same
DE102013011572A1 (en) * 2013-07-10 2015-01-15 Audi Ag Method for local and distortion-free heat treatment of sheet metal or sheet-like components by local resistance heating
KR20150031834A (en) * 2013-09-17 2015-03-25 현대자동차주식회사 Method for heat treatment to improve formability of high tensile steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100084059A1 (en) * 2008-10-03 2010-04-08 Pfaffman George D Locally austempered ductile iron
KR101176068B1 (en) * 2010-03-24 2012-08-24 황현태 Apparatus and method for local laser heat treatment
KR20120110963A (en) * 2011-03-31 2012-10-10 주식회사 포스코 Apparatus for heat treatment of hot forming blank and method for manufacturing hot formed part using the same
JP2011225998A (en) * 2011-06-30 2011-11-10 Neturen Co Ltd Apparatus and method for high-frequency induction heating
JP2017141486A (en) * 2016-02-09 2017-08-17 三菱重工業株式会社 Jig for laser heat treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872196A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112676386A (en) * 2020-12-23 2021-04-20 安徽骄阳软门有限责任公司 Soft magnet pressure feeding straightening device for door curtain production

Also Published As

Publication number Publication date
KR20200064661A (en) 2020-06-08
CN113166825A (en) 2021-07-23
EP3872196A1 (en) 2021-09-01
US20220016683A1 (en) 2022-01-20
EP3872196A4 (en) 2022-03-16
JP2022510869A (en) 2022-01-28

Similar Documents

Publication Publication Date Title
JPH01252886A (en) Heat working furnace and heat treatment effected thereby
US3951634A (en) Method of and apparatus for bending and tempering thin glass sheets
US5827345A (en) Method for heating, forming and tempering a glass sheet
AU4879593A (en) Method and furnace for bending glass sheets
US20110265515A1 (en) Method and system for bending glass sheets with complex curvatures
SK30695A3 (en) Method of convex bending of glass and device for realization of this method
WO2020111442A1 (en) Local heat treatment system and cold forming method using same
FI951752A (en) Bending and hardening of glass sheets
US3682613A (en) Apparatus for press bending glass sheets
WO2012105787A2 (en) Far infrared radiant heat panel, method for manufacturing same, and heater using same
BR0200810A (en) Method and apparatus for heating glass panels in a tempering furnace fitted with rollers
CN107879606B (en) Automatic transferring, loading and unloading device for high-temperature forming die, efficient processing system for 3D cover plate glass and processing method of efficient processing system
FI914193A0 (en) ANORDNING FOER BOEJNING OCH HAERDNING AV GLAS.
US20020020192A1 (en) Method for making a curved glass-ceramic panel by bending a green glass panel to be ceramicized and apparatus for performing said method
US4047919A (en) Apparatus for press bending relatively thin glass sheets
US20210002169A1 (en) Device comprising a furnace and method for the use thereof
WO2018151364A1 (en) Method and system for heat treating low-e glass
JP2001089172A (en) Flexural molding apparatus for glass plate
EP1626938A1 (en) Method and furnace for bending glass panels
YU113289A (en) Process and device for recuperation and simultaneously hardening glass plates on the output of machine for bending and hardening
WO2021034119A1 (en) Mobile terminal cover glass forming apparatus
CN216837651U (en) Tempering furnace for temperature-controlled glass processing
CN208099346U (en) A kind of powder Quick pre-heating device for selective laser melting unit
US20190320508A1 (en) Microwave heating of boron steel blanks prior to the hot-stamping process
JP2002504475A (en) Gas kiln block assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891130

Country of ref document: EP

Effective date: 20210526