WO2020111360A1 - Oscillating water column-type wave power generation system having flowrate control function - Google Patents

Oscillating water column-type wave power generation system having flowrate control function Download PDF

Info

Publication number
WO2020111360A1
WO2020111360A1 PCT/KR2018/015320 KR2018015320W WO2020111360A1 WO 2020111360 A1 WO2020111360 A1 WO 2020111360A1 KR 2018015320 W KR2018015320 W KR 2018015320W WO 2020111360 A1 WO2020111360 A1 WO 2020111360A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
air
power generation
generation system
vibration
Prior art date
Application number
PCT/KR2018/015320
Other languages
French (fr)
Korean (ko)
Inventor
김길원
최종수
이정기
고태경
임창혁
박지용
오정환
노찬
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2020111360A1 publication Critical patent/WO2020111360A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/004Valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/24Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy to produce a flow of air, e.g. to drive an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a vibration-based wave power generation system having a flow rate control function, and more specifically, a flow rate control function for controlling the flow rate of the air rotating the turbine in order to maintain the rated capacity of the turbine in the vibration-based wave power generation system.
  • the present invention relates to a vibration-based wave power generation system.
  • wave energy is highly profitable because it can be predicted compared to solar energy or wind energy, and can be dispatched using a power grid.
  • the frequency-based wave power generation is a trend that is widely developed at home and abroad because of its simple structure and easy use in combination with existing structures such as breakwaters.
  • the vibration-based wave power generation system converts blue energy into air flow energy, converts mechanical energy through rotation of a turbine or the like using air flow energy, and converts mechanical energy into electric energy to produce electric power.
  • the frequency-based wave power generation system changes in the flow rate of air moved to the turbine according to the deviation of the blue energy, there is a problem in that the power generation amount is irregular, and the power of the rated capacity is stably generated according to the changes caused by wave height, wave period, etc. There is a problem that it is difficult to produce.
  • Korean Patent No. 10-1085907 the volume of air or seawater flowing in the air chamber is changed by changing the internal volume while moving one side of the air chamber.
  • an oscillating wave-type wave power generation device capable of stably generating power regardless of changes in wave height or wave period due to wave adjustment.
  • Korean Patent Registration No. 10-1871249 discloses a structure for controlling the flow rate of the incoming seawater while moving one side of the chamber skirt through which the seawater flows up and down through the lazy gear and the pinion gear.
  • the present invention was created to improve the problems of the prior art as described above, and it is easy to maintain the rated power of the produced power, and at the same time, a vibration-based wave power generation system having a flow control function capable of reducing installation cost and shortening construction period. to provide.
  • a vibration-based wave power generation system having a flow control function that is easy to replace in the event of malfunction and is easy to maintain is provided.
  • the sea water inlet or discharge through the sea water inlet provided on one side of the vibration receiving chamber, the inside of the vibration receiving chamber and Connected and provided in the air flow path, the air flow path through which air flows according to the inflow or outflow of seawater, and is provided inside the turbine, the air flow path, which produces electricity while rotating according to the flow of air, and the degree of air flow.
  • the flow control duct for controlling the flow and a control unit for controlling the operation of the flow control duct
  • the flow control duct is provided to surround the outer circumference of the inner pipe, the inner pipe forming the inner pipe and spaced apart from the inner pipe to the outer pipe It is provided on the outer pipe and the outer pipe forming the and includes a control valve for determining whether to open and close according to the signal of the control unit.
  • the turbine can be arranged on the centerline of the inner tube.
  • control unit may receive information on the RPM of the turbine, open the control valve when the RPM of the turbine is greater than or equal to the set range, and close the control valve when the RPM of the turbine is less than or equal to the set range.
  • control valves are provided along the outer circumference of the inner tube, and the control unit can independently open and close the plurality of control valves, respectively.
  • control unit can differentially adjust the ratio of the control valve to be opened among the plurality of control valves according to the RPM of the turbine.
  • the inner diameter of the inner tube may gradually decrease in the direction of the turbine in the vibration receiving chamber.
  • the internal pipeline further includes an auxiliary valve whose opening and closing degree is determined according to a signal from the control unit.
  • the degree of air flow is controlled, it is easy to maintain the rated capacity of power produced by the turbine.
  • FIG. 1 is a schematic diagram showing a vibration-based wave power generation system according to an embodiment of the present invention.
  • Figure 2 is a perspective view showing the operating state of the flow control duct according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a control unit according to an embodiment of the present invention.
  • FIG. 4 is an exemplary view showing a flow control duct according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a vibration-based wave power generation system according to an embodiment of the present invention.
  • the wave power generation system is a system for generating turbine 400 by flowing air according to the reciprocating motion of blue waves generated at sea, and is supported on the seabed or supported by structures such as breakwaters.
  • the furnace converts blue energy into mechanical energy according to the rotation of the turbine, and converts mechanical energy into electrical energy.
  • the vibration-based wave power generation system having a flow rate control function is a vibration-based wave power generation system that generates electric power by using air flow generated by the sea wave, the seawater inlet provided on one side ( 110) a vibration water receiving chamber 100 through which the sea water flows in or out, an air flow path 200 connected to the inside of the vibration water receiving chamber 100 and through which air flows according to the inflow or discharge of the sea water, the It is provided inside the air flow path 200 and is provided in the turbine 400, which is rotated according to the flow of air through the air flow path 200 to produce electric power, and inside the air flow path 200 and flows of air It includes a flow rate control duct 300 for adjusting the degree and a control unit 500 for controlling the operation of the flow rate control duct 300.
  • the vibration receiving chamber 100 is provided with a seawater inlet 110 opened on one side, and the interior of the vibration receiving chamber 100 is occupied by air and seawater. As the seawater flows into or out of the seawater inlet 110 due to the wave, the seawater level inside the vibration receiving chamber 100 varies. As the water level changes, the air located above the sea water flows inside the vibration receiving chamber 100.
  • the shape, material, and structure of the vibration receiving chamber 100 is not particularly limited as long as it can flow the air located therein by blue waves.
  • the air flow path 200 is a space through which air connected to the inside of the vibration receiving chamber 100 flows, and is preferably located above the sea water inlet 110.
  • one side communicates with the inside of the vibration receiving chamber 100 and the other side communicates with the outside, so that the air inside the vibration receiving chamber 100 passes through the air flow path 200 by blue.
  • the external air may be moved to the vibration receiving chamber 100. The movement of air as described above generates electric power while rotating the turbine 400.
  • FIG. 2 is a perspective view showing an operating state of the flow control duct 300 according to an embodiment of the present invention.
  • FIG. 2(a) shows a state in which the control valve 322 is closed
  • FIG. 2(b) shows a state in which the control valve 322 is opened.
  • the air flow path 200 of the present invention is provided with a flow control duct 300 for adjusting the degree of air flow.
  • the flow control duct 300 is arranged to block the movement of air through the air flow path 200 so that the air located inside the vibration receiving chamber 100 moves only through the flow control duct 300. desirable.
  • the flow control duct 300 may have a double tube shape. Specifically, the flow control duct 300 is provided to surround the outer circumference of the inner pipe 310 and the inner pipe 310 forming the inner pipe 311 and is spaced apart from the inner pipe 310 to the outer pipe An external pipe 320 forming the 321 and a control valve 322 provided in the external pipe 321 and determined whether to open or close according to a signal from the control unit 500 may be included.
  • Air is moved to the inner pipe 311 formed inside the inner pipe 310 and the outer pipe 321 formed between the inner pipe 310 and the outer pipe 320, and the inner pipe 311
  • the external channels 321 may be blocked from each other.
  • the flow control duct 300 is installed in a standing state on one side of the air flow path 200 in a thin plate shape, and the inner pipe 310 forming the inner pipe 311 is
  • the flow control duct 300 is provided to be concentric with the outer pipe 320 forming the outer pipe 321 may be provided to be concentric with the inner pipe 310.
  • the inner tube 310 and the outer tube 320 may have a ring shape.
  • the inner pipe 310 and the outer pipe 320 are arranged to be concentric with the flow control duct 300 in a cylindrical shape, and the air and the outer pipe 321 moving the inner pipe 311 ) Moving air may be blocked from each other.
  • the flow rate of the air passing through the inner pipe 311 and/or the air passing through the outer pipe 321 is regulated to generate the turbine 400.
  • the power generated from is maintained at the rated capacity.
  • the turbine 400 may be disposed on the center line of the inner tube 310.
  • the air passing through the inner pipe 311 has a greater influence on the rotation of the turbine 400, and the air passing through the outer pipe 321 has less influence on the rotation of the turbine 400. I do it. That is, it is possible to maintain the rated capacity of the electric power produced by adjusting the RPM of the turbine 400 according to the flow rate control of the air passing through the external pipe 321.
  • a control valve 322 is provided in the outer pipe 321 or the outer pipe 320, and the control valve 322 controls the flow rate of air passing through the outer pipe 321. When the control valve 322 is opened, air may move through the outer pipe 321, but when closed, the air passes only the inner pipe 311.
  • the control valve 322 may be a throttle valve method in which the degree of opening and closing is adjusted in a state in which the external pipe 321 is blocked, and the opening and closing of the control valve 322 may be performed by the control unit 500. It can be operated according to the open/close signal.
  • control valve 322 may be plural, and the plural control valves 322 may be radially arranged based on the center of the flow control duct 300. That is, a plurality of control valves 322 may be provided along the outer circumference of the inner tube 310. In this case, each of the plurality of control valves 322 is independently controlled to open and close, and the control unit 500 may generate an open and close signal to open and close each of the plurality of control valves 322 independently.
  • the degree of opening and closing of the control valve 322 may be controlled by the control unit 500 of the present invention.
  • the control unit 500 may be connected to the control valve 322, the turbine 400, and the like by wire or wirelessly, and transmits an opening/closing signal to the control valve 322.
  • the control unit 500 may be provided outside the air flow path 200 if it is possible to communicate with the control valve 322, the turbine 400, and the like.
  • FIG. 3 is a block diagram showing a control unit 500 according to an embodiment of the present invention.
  • the control unit 500 receives information on the RPM of the turbine 400, and the turbine ( When the RPM of 400) is greater than or equal to the set range, the control valve 322 may be opened, and when the RPM of the turbine 400 is less than or equal to the set range, the control valve 322 may be closed. In this case, when the RPM of the turbine 400 is greater than or equal to a set range, power generation through the turbine 400 is excessive, so the control valve 322 is opened to open air through the inner pipe 311 and the outer pipe 321.
  • control unit 500 may adjust the opening and closing degree of the control valve 322 step by step, for example, the control unit 500 is set from 1 to N to increase the RPM of the turbine 400 sequentially It can be divided into sections, and the degree of opening can be adjusted step by step from full opening to full closing of the control valve 322 according to the RPM corresponding to the section from N to 1.
  • control unit 500 may differentially adjust the ratio of the control valve 322 to be opened among the plurality of control valves 322 according to the RPM of the turbine 400.
  • the control valve 322 may control the plurality of control valves 322 according to the RPM corresponding to the section from N to 1 Among them, the number of control valves 322 that are open or closed is adjusted in stages.
  • control valve 322 is automatically adjusted according to the RPM of the turbine 400, thereby making it easier to maintain the required rated capacity.
  • the inner pipe 311 may be provided with an auxiliary valve 312 that receives and receives an opening/closing signal from the control unit 500 to adjust the opening/closing degree.
  • the auxiliary valve 312 may have the same structure as the control valve 322. The degree of opening and closing is controlled independently of the control valve 322. For example, in case the control unit 500 closes the control valve 322 and lowers the opening ratio of the auxiliary valve 312, the moving speed of air passing through the auxiliary valve 312 becomes faster, and the turbine ( The RPM of the 400) can be increased, and on the contrary, the RPM of the turbine 400 can be lowered by opening both the control valve 322 and the auxiliary valve 312.
  • FIG 4 is an exemplary view showing a flow control duct 300 according to an embodiment of the present invention.
  • the inner tube 310 may gradually decrease in inner diameter in the direction of the turbine 400 in the vibration receiving chamber 100.
  • the cross-sectional area of the inner pipe 311 gradually decreases as it progresses in the direction of the turbine 400, and accordingly, the turbine 400 in the vibration receiving chamber 100
  • the air moving in the direction may be compressed to increase the power output of the turbine 400.
  • the outer tube 320 may gradually increase the inner diameter in the direction of the turbine 400 from the vibration receiving chamber 100.
  • the cross-sectional area of the outer pipe 321 gradually increases as it progresses in the direction of the turbine 400.
  • the external pipe 320 having the above shape has a turbine in the vibration receiving chamber 100 as the air passing through the control valve 322 increases in cross-sectional area of the external pipe 321. As it expands when moving in the direction of (400), it is easier to lower it to the set RPM when excessive RPM is measured.
  • the above-described structure in which the inner tube 310 gradually decreases in the direction of the turbine 400 and the structure in which the outer tube 320 gradually increases in diameter in the direction of the turbine 400 may be applied simultaneously.
  • the flow control duct 300 may be plural, and when one flow control duct 300 is disposed in the direction of the vibration receiving chamber 100, the other flow control duct 300 is external.
  • the turbine 400 is positioned between the plurality of flow control ducts 300, and the air moving from the vibration receiving chamber 100 to the air flow path 200 is disposed in the direction of the vibration receiving chamber 100.
  • the flow is controlled through the flow control duct 300, and the air moving from the outside to the air flow path 200 is controlled through the flow control duct 300 disposed in the external direction.
  • the flow control duct 300 disposed in the direction of the vibration receiving chamber 100 In the state of closing the control valve 322 and opening the auxiliary valve 312, both the control valve 322 and the auxiliary valve 312 of the flow control duct 300 arranged in the outside direction are opened, and the outside In the case of air movement in the direction of the turbine 400, the control valve 322 of the flow rate control duct 300 disposed in the outside direction is closed and the auxiliary valve 312 is opened, and the vibration receiving chamber 100 The control valve 322 and the auxiliary valve 312 of the flow control duct 300 arranged in the direction may be opened.
  • the control unit 500 flow rate control ducts arranged in the direction of the vibration receiving chamber 100 when the internal water level of the vibration receiving chamber 100 increases.
  • the plurality of flow control ducts 300 may be connected to each other with the inner tubes 310 or the outer tubes 320 with each other.
  • the plurality of flow control ducts 300 connected to each other between the inner pipes 310 generates electricity by rotating the turbine 400 only by air moving through the inner pipes 311 connected to each other.
  • the flow rate control of the air using the flow rate control duct 300 according to the present invention can maintain the set power production capacity of the turbine 400 regardless of the deviation of the blue energy, and excessively of the turbine 400 It can be expected to improve the durability of the turbine 400 by preventing the RPM from rising or falling.
  • the present invention it is possible to stably produce electric power despite variable blue energy, and to improve the durability of the turbine by controlling the air movement path according to the RPM of the turbine, and to continuously produce an appropriate level of electric power.

Abstract

The present invention relates to an oscillating water column-type wave power generation system using sea wave energy, comprising: an oscillating water column chamber allowing seawater to flows therein or be discharged through a seawater inlet provided at one side thereof; an air flow path which is connected to the inside of the oscillating water column chamber, and which allows air to flow therein according to the inflow or discharge of the seawater; a turbine which is provided inside the air flow path and which produces power while rotating according to the flow of air through the air flow path; a flowrate control duct which is provided inside the air flow path and which controls the degree of air flow; and a control unit for controlling the operation of the flowrate control duct, wherein the flowrate control duct includes: an inner pipe forming an inner pipeline; an outer pipe provided so as to encompass the outer circumference of the inner pipe, and spaced from the inner pipe so as to form an outer pipeline; and a control valve which is provided at the outer pipeline, and of which the opening/closing is determined according to a signal of the control unit. Therefore, the present invention regulates, from information about the RPM of the turbine, the flowrate of the air moving in the inner pipeline and the outer pipeline of the flowrate control duct, and thus is effective in maintaining the rated capacity of the power produced by the turbine.

Description

유량제어 기능을 갖는 진동수주형 파력발전 시스템Vibration-based wave power generation system with flow control function
본 발명은 유량제어 기능을 갖는 진동수주형 파력발전 시스템에 관한 것으로, 보다 상세하게는 진동수주형 파력발전 시스템에 있어서 터빈의 정격용량을 유지하기 위하여 터빈을 회전시키는 공기의 유량을 제어하는 유량제어 기능을 갖는 진동수주형 파력발전 시스템에 관한 것이다.The present invention relates to a vibration-based wave power generation system having a flow rate control function, and more specifically, a flow rate control function for controlling the flow rate of the air rotating the turbine in order to maintain the rated capacity of the turbine in the vibration-based wave power generation system. The present invention relates to a vibration-based wave power generation system.
일반적으로 파력 에너지는 태양 에너지나 풍력 에너지 등에 비하여 예측이 가능하여 전력망을 이용하여 급송할 수 있다는 점에서 수익성이 높다. 이러한 파력에너지를 이용한 발전기 중 진동수주형 파력발전은 구조가 간단하고 방파제 등 기존의 구조물과 복합 이용이 용이하여 국내외적으로 널리 개발하고 있는 추세이다.In general, wave energy is highly profitable because it can be predicted compared to solar energy or wind energy, and can be dispatched using a power grid. Among the generators using the wave energy, the frequency-based wave power generation is a trend that is widely developed at home and abroad because of its simple structure and easy use in combination with existing structures such as breakwaters.
진동수주형 파력발전 시스템은 파랑에너지를 공기의 유동에너지로 변환하고, 공기의 유동에너지를 이용하여 터빈 등의 회전을 통한 기계적 에너지로 변환하고, 기계적 에너지를 전기에너지로 변환하여 전력을 생산한다.The vibration-based wave power generation system converts blue energy into air flow energy, converts mechanical energy through rotation of a turbine or the like using air flow energy, and converts mechanical energy into electric energy to produce electric power.
이러한 진동수주형 파력발전 시스템은 파랑에너지의 편차에 따라 터빈으로 이동되는 공기의 유량에 변하므로 전력 생산량이 불규칙한 문제점이 있고, 파랑에 의한 파고, 파주기 등에 따른 변화에 따라 안정적으로 정격용량의 전력을 생산하기 어렵다는 문제점이 있다.Since the frequency-based wave power generation system changes in the flow rate of air moved to the turbine according to the deviation of the blue energy, there is a problem in that the power generation amount is irregular, and the power of the rated capacity is stably generated according to the changes caused by wave height, wave period, etc. There is a problem that it is difficult to produce.
위와 같은 문제점을 해결하기 위하여 종래 진동수주형 파력발전 시스템에 관한 기술로, 대한민국 등록특허 제10-1085907호에서는 공기챔버의 일측을 이동시키면서 내부 부피를 가변시켜 공기챔버 내부에서 유동하는 공기나 해수의 부피을 조절함으로써 파랑에 의한 파고나 파주기 등의 변화에 관계없이 안정적으로 동력을 발생시킬 수 있는 진동수주형 파력발전장치가 개시된다. 또한, 대한민국 등록특허 제10-1871249호에서는 래크기어와 피니언기어를 통해 해수가 유입되는 챔버스커트의 일측을 상하로 이동시키면서 유입되는 해수의 유량을 조절하는 구조가 개시된다.In order to solve the above problems, as a technology related to the conventional vibration-based wave power generation system, in Korean Patent No. 10-1085907, the volume of air or seawater flowing in the air chamber is changed by changing the internal volume while moving one side of the air chamber. Disclosed is an oscillating wave-type wave power generation device capable of stably generating power regardless of changes in wave height or wave period due to wave adjustment. In addition, Korean Patent Registration No. 10-1871249 discloses a structure for controlling the flow rate of the incoming seawater while moving one side of the chamber skirt through which the seawater flows up and down through the lazy gear and the pinion gear.
그러나 위와 같은 종래기술은 초기 설치비용과 공사기간이 증가하는 단점과 유지관리가 어렵다는 문제점이 있다.However, the above conventional technology has a disadvantage that initial installation cost and construction period are increased and maintenance is difficult.
[선행기술문헌][Advanced technical literature]
[특허문헌][Patent Document]
대한민국등록특허 제10-1085907호Korea Registered Patent No. 10-1085907
대한민국등록특허 제10-1871249호Korea Registered Patent No. 10-1871249
본 발명은 상기와 같은 종래기술의 문제점을 개선하기 위하여 창출된 것으로, 생산되는 전력의 정격유지가 용이한 동시에 설치비용의 감소와 공사 기간의 단축이 가능한 유량제어 기능을 갖는 진동수주형 파력발전 시스템을 제공한다.The present invention was created to improve the problems of the prior art as described above, and it is easy to maintain the rated power of the produced power, and at the same time, a vibration-based wave power generation system having a flow control function capable of reducing installation cost and shortening construction period. to provide.
또한, 오작동 시 교체가 편리하고 유지관리가 용이한 유량제어 기능을 갖는 진동수주형 파력발전 시스템을 제공한다.In addition, a vibration-based wave power generation system having a flow control function that is easy to replace in the event of malfunction and is easy to maintain is provided.
해상의 파랑에 의해 발생된 공기 유동을 이용하여 전력을 생산하는 진동수주형 파력발전 시스템에 있어서, 일측에 구비된 해수유입구를 통해 내부에 해수가 유입 또는 배출되는 진동수주챔버, 진동수주챔버의 내부와 연결되고 해수의 유입 또는 배출에 따라 공기가 유동되는 공기유동로, 공기유동로의 내부에 구비되며 공기의 유동에 따라 회전되면서 전력을 생산하는 터빈, 공기유동로의 내부에 구비되며 공기의 유동 정도를 조절하는 유량제어덕트 및 유량제어덕트의 작동을 제어하는 제어부를 포함하고, 유량제어덕트는, 내부관로를 형성하는 내부관, 내부관의 외측 둘레를 감싸도록 구비되며 내부관으로부터 이격되어 외부관로를 형성하는 외부관 및 외부관로에 구비되며 제어부의 신호에 따라 개폐여부가 결정되는 제어밸브를 포함한다.In the vibration-based wave power generation system for generating electric power by using the air flow generated by the blue wave in the sea, the sea water inlet or discharge through the sea water inlet provided on one side of the vibration receiving chamber, the inside of the vibration receiving chamber and Connected and provided in the air flow path, the air flow path through which air flows according to the inflow or outflow of seawater, and is provided inside the turbine, the air flow path, which produces electricity while rotating according to the flow of air, and the degree of air flow. It includes a flow control duct for controlling the flow and a control unit for controlling the operation of the flow control duct, the flow control duct is provided to surround the outer circumference of the inner pipe, the inner pipe forming the inner pipe and spaced apart from the inner pipe to the outer pipe It is provided on the outer pipe and the outer pipe forming the and includes a control valve for determining whether to open and close according to the signal of the control unit.
또한, 터빈은 내부관의 중심선 상에 배치될 수 있다.In addition, the turbine can be arranged on the centerline of the inner tube.
또한, 제어부는, 터빈의 RPM에 대한 정보를 입력받고, 터빈의 RPM이 설정된 범위 이상인 경우 제어밸브를 개방시키고, 터빈의 RPM이 설정된 범위 이하인 경우 제어밸브를 폐쇄시킬 수 있다.In addition, the control unit may receive information on the RPM of the turbine, open the control valve when the RPM of the turbine is greater than or equal to the set range, and close the control valve when the RPM of the turbine is less than or equal to the set range.
또한, 제어밸브는 내부관의 외측 둘레를 따라 복수가 구비되고, 제어부는 복수의 제어밸브를 각각 독립적으로 개폐시킬 수 있다.In addition, a plurality of control valves are provided along the outer circumference of the inner tube, and the control unit can independently open and close the plurality of control valves, respectively.
또한, 제어부는, 터빈의 RPM에 따라 복수의 제어밸브 중 개방되는 제어밸브의 비율을 차등적으로 조절할 수 있다.In addition, the control unit can differentially adjust the ratio of the control valve to be opened among the plurality of control valves according to the RPM of the turbine.
또한, 내부관은 진동수주챔버에서 터빈의 방향으로 점차 내부 직경이 감소할 수 있다.In addition, the inner diameter of the inner tube may gradually decrease in the direction of the turbine in the vibration receiving chamber.
또한, 내부관로에 구비되며 제어부의 신호에 따라 개폐 정도가 결정되는 보조밸브를 더 포함할 수 있다.In addition, it may be provided in the internal pipeline further includes an auxiliary valve whose opening and closing degree is determined according to a signal from the control unit.
본 발명의 일실시예에 따르면 공기의 유동 정도가 조절되므로 터빈에서 생산되는 전력의 정격용량을 유지하기 용이하다.According to an embodiment of the present invention, since the degree of air flow is controlled, it is easy to maintain the rated capacity of power produced by the turbine.
또한, 제어부를 통하여 터빈의 RPM에 대한 정보를 기반으로 제어밸브 등의 개폐정도가 조절되므로 자동적으로 설정된 전력 생산량을 유지할 수 있는 장점이 있다.In addition, since the opening and closing degree of the control valve is adjusted based on the information on the RPM of the turbine through the control unit, there is an advantage of automatically maintaining the set power generation amount.
또한, 터빈의 RPM 피크 값을 낮추는 효과가 있으므로 터빈의 내구성 향상을 기대할 수 있다.In addition, since the effect of lowering the peak value of the RPM of the turbine can be expected to improve the durability of the turbine.
도 1은 본 발명의 일 실시예에 따른 진동수주형 파력발전 시스템을 나타낸 개략도이다.1 is a schematic diagram showing a vibration-based wave power generation system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유량제어덕트의 동작 상태를 나타낸 사시도이다.Figure 2 is a perspective view showing the operating state of the flow control duct according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 제어부를 나타낸 블록도이다.3 is a block diagram showing a control unit according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 유량제어덕트를 나타낸 예시도이다.4 is an exemplary view showing a flow control duct according to an embodiment of the present invention.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In the description of the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The embodiments according to the concept of the present invention may be modified in various ways and have various forms, and thus specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention to a specific disclosure form, and it should be understood to include all modifications, equivalents, or substitutes included in the spirit and scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is only used to describe a specific embodiment, and is not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, the "inclusive" or "gajida" and the terms are staking the features, numbers, steps, operations, elements, parts or geotyiji to be a combination thereof specify the presence, of one or more other features, integers It should be understood that it does not preclude the presence or addition possibilities of, steps, actions, components, parts or combinations thereof.
이하, 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.
도 1은 본 발명의 일 실시예에 따른 진동수주형 파력발전 시스템을 나타낸 개략도이다.1 is a schematic diagram showing a vibration-based wave power generation system according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에 따른 파력발전 시스템은 해상에서 발생되는 파랑의 왕복운동에 따라 공기를 유동시켜 터빈(400)을 발전시키는 시스템으로, 해저에 지지되거나 방파제 등의 구조물에 지지된 상태로 파랑에너지를 터빈의 회전에 따른 기계에너지로, 기계에너지를 전기에너지로 변환시킨다.Referring to FIG. 1, the wave power generation system according to the present invention is a system for generating turbine 400 by flowing air according to the reciprocating motion of blue waves generated at sea, and is supported on the seabed or supported by structures such as breakwaters. The furnace converts blue energy into mechanical energy according to the rotation of the turbine, and converts mechanical energy into electrical energy.
본 발명의 일 실시예에 따른 유량제어 기능을 갖는 진동수주형 파력발전 시스템은 해상의 파랑에 의해 발생된 공기 유동을 이용하여 전력을 생산하는 진동수주형 파력발전 시스템에 있어서, 일측에 구비된 해수유입구(110)를 통해 내부에 해수가 유입 또는 배출되는 진동수주챔버(100), 상기 진동수주챔버(100)의 내부와 연결되고 해수의 유입 또는 배출에 따라 공기가 유동되는 공기유동로(200), 상기 공기유동로(200) 내부에 구비되며 상기 공기유동로(200)를 통한 공기의 유동에 따라 회전되면서 전력을 생산하는 터빈(400), 상기 공기유동로(200)의 내부에 구비되며 공기의 유동 정도를 조절하는 유량제어덕트(300) 및 상기 유량제어덕트(300)의 작동을 제어하는 제어부(500)를 포함한다.The vibration-based wave power generation system having a flow rate control function according to an embodiment of the present invention is a vibration-based wave power generation system that generates electric power by using air flow generated by the sea wave, the seawater inlet provided on one side ( 110) a vibration water receiving chamber 100 through which the sea water flows in or out, an air flow path 200 connected to the inside of the vibration water receiving chamber 100 and through which air flows according to the inflow or discharge of the sea water, the It is provided inside the air flow path 200 and is provided in the turbine 400, which is rotated according to the flow of air through the air flow path 200 to produce electric power, and inside the air flow path 200 and flows of air It includes a flow rate control duct 300 for adjusting the degree and a control unit 500 for controlling the operation of the flow rate control duct 300.
상기 진동수주챔버(100)는 일측에 개구된 해수유입구(110)가 구비되며, 진동수주챔버(100)의 내부는 공기와 해수로 점유된다. 파랑에 의해 상기 해수유입구(110)로 해수가 유입 또는 배출되면서 진동수주챔버(100) 내부의 해수 수위는 가변된다. 해수 수위가 가변됨에 따라 진동수주챔버(100) 내부에서 해수의 상부에 위치한 공기가 유동된다. 상기 진동수주챔버(100)의 형상과 소재 및 구조는 파랑에 의해 내부에 위치된 공기를 유동시킬 수 있다면 특별히 제한되지 않는다.The vibration receiving chamber 100 is provided with a seawater inlet 110 opened on one side, and the interior of the vibration receiving chamber 100 is occupied by air and seawater. As the seawater flows into or out of the seawater inlet 110 due to the wave, the seawater level inside the vibration receiving chamber 100 varies. As the water level changes, the air located above the sea water flows inside the vibration receiving chamber 100. The shape, material, and structure of the vibration receiving chamber 100 is not particularly limited as long as it can flow the air located therein by blue waves.
상기 공기유동로(200)는 상기 진동수주챔버(100)의 내부와 연결된 공기가 유동하는 공간으로, 상기 해수유입구(110)보다 상부에 위치하는 것이 바람직하다. 상기 공기유동로(200)는 일측이 상기 진동수주챔버(100) 내부와 연통되고 타측이 외부와 연통되어 파랑에 의해 진동수주챔버(100) 내부의 공기가 공기유동로(200)를 통과하면서 외부로 이동되거나 외부의 공기가 진동수주챔버(100) 내부로 이동할 수 있다. 위와 같은 공기의 이동은 상기 터빈(400)을 회전시키면서 전력을 발생시킨다.The air flow path 200 is a space through which air connected to the inside of the vibration receiving chamber 100 flows, and is preferably located above the sea water inlet 110. In the air flow path 200, one side communicates with the inside of the vibration receiving chamber 100 and the other side communicates with the outside, so that the air inside the vibration receiving chamber 100 passes through the air flow path 200 by blue. The external air may be moved to the vibration receiving chamber 100. The movement of air as described above generates electric power while rotating the turbine 400.
상기 터빈(400)은 다양한 종류가 이용될 수 있으며, 본 발명의 요지를 흐리지 않기 위하여 상세한 설명은 생략한다.Various types of the turbine 400 may be used, and detailed description is omitted so as not to obscure the subject matter of the present invention.
도 2는 본 발명의 일 실시예에 따른 유량제어덕트(300)의 동작 상태를 나타낸 사시도이다. 도 2의 (a)는 제어밸브(322)가 닫힌 상태를 나타내고, 도 2의 (b)는 제어밸브(322)가 열린 상태를 나타낸다.2 is a perspective view showing an operating state of the flow control duct 300 according to an embodiment of the present invention. FIG. 2(a) shows a state in which the control valve 322 is closed, and FIG. 2(b) shows a state in which the control valve 322 is opened.
도 2를 참조하면, 본 발명의 공기유동로(200)에는 공기의 유동 정도를 조절하는 유량제어덕트(300)가 구비된다. 상기 유량제어덕트(300)는 상기 공기유동로(200)를 통한 공기의 이동을 차단하도록 배치되어 상기 진동수주챔버(100) 내부에 위치된 공기는 상기 유량제어덕트(300)를 통해서만 이동하는 것이 바람직하다.Referring to Figure 2, the air flow path 200 of the present invention is provided with a flow control duct 300 for adjusting the degree of air flow. The flow control duct 300 is arranged to block the movement of air through the air flow path 200 so that the air located inside the vibration receiving chamber 100 moves only through the flow control duct 300. desirable.
본 발명에서 상기 유량제어덕트(300)는 이중관 형상을 가질 수 있다. 구체적으로, 상기 유량제어덕트(300)는 내부관로(311)를 형성하는 내부관(310), 상기 내부관(310)의 외측 둘레를 감싸도록 구비되며 상기 내부관(310)으로부터 이격되어 외부관로(321)를 형성하는 외부관(320) 및 상기 외부관로(321)에 구비되며 상기 제어부(500)의 신호에 따라 개폐여부가 결정되는 제어밸브(322)를 포함할 수 있다.In the present invention, the flow control duct 300 may have a double tube shape. Specifically, the flow control duct 300 is provided to surround the outer circumference of the inner pipe 310 and the inner pipe 310 forming the inner pipe 311 and is spaced apart from the inner pipe 310 to the outer pipe An external pipe 320 forming the 321 and a control valve 322 provided in the external pipe 321 and determined whether to open or close according to a signal from the control unit 500 may be included.
상기 내부관(310)의 내부에 형성된 내부관로(311)와, 상기 내부관(310)과 외부관(320) 사이에 형성된 외부관로(321)로 공기가 이동되며, 상기 내부관로(311)와 상기 외부관로(321)는 서로 차단될 수 있다. 구체적으로, 예를 들어 상기 유량제어덕트(300)는 얇은 판 형상으로 상기 공기유동로(200)의 일측에 기립된 상태로 설치되며, 상기 내부관로(311)를 형성하는 내부관(310)은 상기 유량제어덕트(300)와 동심을 이루도록 구비되고 상기 외부관로(321)를 형성하는 외부관(320)은 상기 내부관(310)과 동심을 이루도록 구비될 수 있다. 이 경우 상기 내부관(310)과 외부관(320)은 링 형상을 가질 수 있다. 또한, 다른 예를 들어 상기 내부관(310)과 외부관(320)은 원통형상으로 상기 유량제어덕트(300)와 동심을 이루도록 배치되고 상기 내부관로(311)를 이동하는 공기와 외부관로(321)를 이동하는 공기는 서로 차단될 수 있다.Air is moved to the inner pipe 311 formed inside the inner pipe 310 and the outer pipe 321 formed between the inner pipe 310 and the outer pipe 320, and the inner pipe 311 The external channels 321 may be blocked from each other. Specifically, for example, the flow control duct 300 is installed in a standing state on one side of the air flow path 200 in a thin plate shape, and the inner pipe 310 forming the inner pipe 311 is The flow control duct 300 is provided to be concentric with the outer pipe 320 forming the outer pipe 321 may be provided to be concentric with the inner pipe 310. In this case, the inner tube 310 and the outer tube 320 may have a ring shape. In addition, for another example, the inner pipe 310 and the outer pipe 320 are arranged to be concentric with the flow control duct 300 in a cylindrical shape, and the air and the outer pipe 321 moving the inner pipe 311 ) Moving air may be blocked from each other.
본 발명에서는 위와 같이 내부관로(311)와 외부관로(321)를 별도로 구획함으로써 내부관로(311)를 통과하는 공기 및/또는 외부관로(321)를 통과하는 공기의 유량을 조절하여 터빈(400)으로부터 생산되는 전력을 정격용량으로 유지한다.In the present invention, by dividing the inner pipe 311 and the outer pipe 321 separately as described above, the flow rate of the air passing through the inner pipe 311 and/or the air passing through the outer pipe 321 is regulated to generate the turbine 400. The power generated from is maintained at the rated capacity.
본 발명의 일 실시예에서 상기 터빈(400)은 상기 내부관(310)의 중심선 상에 배치될 수 있다. 이 경우 상기 내부관로(311)를 통과하는 공기는 상기 터빈(400)의 회전에 보다 큰 영향력을 끼치고, 상기 외부관로(321)를 통과하는 공기는 상기 터빈(400)의 회전에 보다 작은 영향력을 끼친다. 즉, 외부관로(321)를 통과하는 공기의 유량 조절에 따라 상기 터빈(400)의 RPM을 조절하여 생산되는 전력의 정격용량을 유지할 수 있다. In one embodiment of the present invention, the turbine 400 may be disposed on the center line of the inner tube 310. In this case, the air passing through the inner pipe 311 has a greater influence on the rotation of the turbine 400, and the air passing through the outer pipe 321 has less influence on the rotation of the turbine 400. I do it. That is, it is possible to maintain the rated capacity of the electric power produced by adjusting the RPM of the turbine 400 according to the flow rate control of the air passing through the external pipe 321.
상기 외부관로(321) 또는 외부관(320)에는 제어밸브(322)가 구비되며, 상기 제어밸브(322)는 외부관로(321)를 통과하는 공기의 유량을 조절한다. 상기 제어밸브(322)가 개방되는 경우 외부관로(321)를 통해 공기가 이동할 수 있으나 폐쇄되는 경우 공기는 내부관로(311)만을 통과한다.A control valve 322 is provided in the outer pipe 321 or the outer pipe 320, and the control valve 322 controls the flow rate of air passing through the outer pipe 321. When the control valve 322 is opened, air may move through the outer pipe 321, but when closed, the air passes only the inner pipe 311.
상기 제어밸브(322)는 상기 외부관로(321)를 차단한 상태에서 개폐정도가 조절되는 스로틀밸브(throttle valve)의 방식이 적용될 수 있고, 상기 제어밸브(322)의 개폐는 제어부(500)의 개폐신호에 따라 동작될 수 있다.The control valve 322 may be a throttle valve method in which the degree of opening and closing is adjusted in a state in which the external pipe 321 is blocked, and the opening and closing of the control valve 322 may be performed by the control unit 500. It can be operated according to the open/close signal.
또한, 상기 제어밸브(322)는 복수일 수 있으며, 복수의 제어밸브(322)는 상기 유량제어덕트(300)의 중심을 기준으로 방사상으로 배치될 수 있다. 즉, 상기 제어밸브(322)는 상기 내부관(310)의 외측 둘레를 따라 복수가 구비될 수 있다. 이 경우 상기 복수의 제어밸브(322)는 각각 독립적으로 개폐정도가 조절되며, 상기 제어부(500)는 상기 복수의 제어밸브(322)를 각각 독립적으로 개폐시키는 개폐신호를 발생시킬 수 있다.In addition, the control valve 322 may be plural, and the plural control valves 322 may be radially arranged based on the center of the flow control duct 300. That is, a plurality of control valves 322 may be provided along the outer circumference of the inner tube 310. In this case, each of the plurality of control valves 322 is independently controlled to open and close, and the control unit 500 may generate an open and close signal to open and close each of the plurality of control valves 322 independently.
상기 제어밸브(322)는 본 발명의 제어부(500)에 의해 개폐 정도가 조절될 수 있다. 상기 제어부(500)는 상기 제어밸브(322), 터빈(400) 등과 유선 또는 무선으로 연결될 수 있으며, 개폐신호를 상기 제어밸브(322)로 송신한다. 상기 제어부(500)는 상기 제어밸브(322), 터빈(400) 등과 통신 가능하다면 공기유동로(200) 외부에 구비되어도 무방하다.The degree of opening and closing of the control valve 322 may be controlled by the control unit 500 of the present invention. The control unit 500 may be connected to the control valve 322, the turbine 400, and the like by wire or wirelessly, and transmits an opening/closing signal to the control valve 322. The control unit 500 may be provided outside the air flow path 200 if it is possible to communicate with the control valve 322, the turbine 400, and the like.
도 3은 본 발명의 일 실시예에 따른 제어부(500)를 나타낸 블록도이다.3 is a block diagram showing a control unit 500 according to an embodiment of the present invention.
*도 3을 참조하여 상기 제어부(500)를 통한 공기 유량제어에 대하여 구체적으로 설명하면, 예를 들어, 상기 제어부(500)는 상기 터빈(400)의 RPM에 대한 정보를 입력받고, 상기 터빈(400)의 RPM이 설정된 범위 이상인 경우 상기 제어밸브(322)를 개방시키고, 상기 터빈(400)의 RPM이 상기 설정된 범위 이하인 경우 상기 제어밸브(322)를 폐쇄시킬 수 있다. 이 경우 상기 터빈(400)의 RPM이 설정된 범위 이상인 경우 상기 터빈(400)을 통한 전력 생산이 과도한 상태이므로 상기 제어밸브(322)를 개방시켜 내부관로(311)와 외부관로(321)를 통해 공기를 유동시켜 터빈(400)의 RPM을 낮추고, 상기 터빈(400)의 RPM이 설정된 범위 이하인 경우 상기 터번을 통한 전력 생산이 과소한 상태이므로 상기 제어밸브(322)를 폐쇄시켜 내부관로(311)로만 공기를 유동시켜 터빈(400)의 RPM을 높이는 메커니즘이 적용된다.* Referring to FIG. 3, the air flow control through the control unit 500 will be described in detail. For example, the control unit 500 receives information on the RPM of the turbine 400, and the turbine ( When the RPM of 400) is greater than or equal to the set range, the control valve 322 may be opened, and when the RPM of the turbine 400 is less than or equal to the set range, the control valve 322 may be closed. In this case, when the RPM of the turbine 400 is greater than or equal to a set range, power generation through the turbine 400 is excessive, so the control valve 322 is opened to open air through the inner pipe 311 and the outer pipe 321. Flow to lower the RPM of the turbine 400, and if the RPM of the turbine 400 is below a set range, power generation through the turban is understated, so the control valve 322 is closed to only the internal pipeline 311. A mechanism to increase the RPM of the turbine 400 by flowing air is applied.
또한, 상기 제어부(500)는 상기 제어밸브(322)의 개폐정도를 단계적으로 조절할 수 있는데, 예를 들어 상기 제어부(500)는 상기 터빈(400)의 RPM을 순차적으로 높아지는 1부터 N까지의 설정된 구간으로 나누고, N부터 1까지의 구간에 해당되는 RPM에 따라 상기 제어밸브(322)를 완전 개방에서 완전 폐쇄까지 단계적으로 개방 정도를 조절할 수 있다.In addition, the control unit 500 may adjust the opening and closing degree of the control valve 322 step by step, for example, the control unit 500 is set from 1 to N to increase the RPM of the turbine 400 sequentially It can be divided into sections, and the degree of opening can be adjusted step by step from full opening to full closing of the control valve 322 according to the RPM corresponding to the section from N to 1.
다른 예를 들어, 상기 제어부(500)는 상기 터빈(400)의 RPM에 따라 상기 복수의 제어밸브(322) 중 개방되는 제어밸브(322)의 비율을 차등적으로 조절할 수 있다. 구체적으로, 상기 터빈(400)의 RPM이 1부터 N까지 설정된 구간으로 나뉘는 경우를 가정하면 상기 제어밸브(322)는 N부터 1까지의 구간에 해당되는 RPM에 따라 상기 복수의 제어밸브(322)들 중 개방되거나 폐쇄되는 제어밸브(322)의 개수를 단계적으로 조절한다.For another example, the control unit 500 may differentially adjust the ratio of the control valve 322 to be opened among the plurality of control valves 322 according to the RPM of the turbine 400. Specifically, assuming a case in which the RPM of the turbine 400 is divided into sections set from 1 to N, the control valve 322 may control the plurality of control valves 322 according to the RPM corresponding to the section from N to 1 Among them, the number of control valves 322 that are open or closed is adjusted in stages.
위와 같은 메커니즘을 적용할 경우 터빈(400)의 RPM에 따라 자동적으로 제어밸브(322)를 조절하여 요구되는 정격용량을 유지하기 더욱 용이한 장점이 있다. When the above mechanism is applied, the control valve 322 is automatically adjusted according to the RPM of the turbine 400, thereby making it easier to maintain the required rated capacity.
본 발명의 일 실시예에서 상기 내부관로(311)에는 상기 제어부(500)로부터 개폐신호를 전달받아 개폐정도가 조절되는 보조밸브(312)가 구비될 수 있다. 상기 보조밸브(312)는 상기 제어밸브(322)와 동일한 구조일 수 있으며. 상기 제어밸브(322)와 독립적으로 개폐정도가 조절된다. 예를 들어, 경우 상기 제어부(500)는 상기 제어밸브(322)를 폐쇄시키고 상기 보조밸브(312)의 개방 비율을 낮춰 보조밸브(312)를 통과하는 공기의 이동속도를 더욱 빠르게 하여 상기 터빈(400)의 RPM을 높일 수 있고, 이와 반대로 제어밸브(322)와 보조밸브(312)를 모두 개방하여 상기 터빈(400)의 RPM을 낮출 수 있다.In one embodiment of the present invention, the inner pipe 311 may be provided with an auxiliary valve 312 that receives and receives an opening/closing signal from the control unit 500 to adjust the opening/closing degree. The auxiliary valve 312 may have the same structure as the control valve 322. The degree of opening and closing is controlled independently of the control valve 322. For example, in case the control unit 500 closes the control valve 322 and lowers the opening ratio of the auxiliary valve 312, the moving speed of air passing through the auxiliary valve 312 becomes faster, and the turbine ( The RPM of the 400) can be increased, and on the contrary, the RPM of the turbine 400 can be lowered by opening both the control valve 322 and the auxiliary valve 312.
도 4는 본 발명의 일 실시예에 따른 유량제어덕트(300)를 나타낸 예시도이다.4 is an exemplary view showing a flow control duct 300 according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 일 실시예에서 상기 내부관(310)은 상기 진동수주챔버(100)에서 상기 터빈(400)의 방향으로 점차 내부 직경이 감소할 있다. 상기 내부관(310)의 직경이 감소함에 따라 상기 내부관로(311)의 단면적은 상기 터빈(400)의 방향으로 진행할수록 점진적으로 작아지는데, 이에 따라 상기 진동수주챔버(100)에서 터빈(400)의 방향으로 이동하는 공기는 압축되어 상기 터빈(400)의 전력 생산량을 높일 수 있다.Referring to FIG. 4, in one embodiment of the present invention, the inner tube 310 may gradually decrease in inner diameter in the direction of the turbine 400 in the vibration receiving chamber 100. As the diameter of the inner pipe 310 decreases, the cross-sectional area of the inner pipe 311 gradually decreases as it progresses in the direction of the turbine 400, and accordingly, the turbine 400 in the vibration receiving chamber 100 The air moving in the direction may be compressed to increase the power output of the turbine 400.
또한, 상기 외부관(320)은 상기 진동수주챔버(100)에서 상기 터빈(400)의 방향으로 점차 내부 직경이 증가할 수 있다. 이 경우 상기 외부관로(321)의 단면적은 상기 터빈(400)의 방향으로 진행할수록 점진적으로 커지게 된다.In addition, the outer tube 320 may gradually increase the inner diameter in the direction of the turbine 400 from the vibration receiving chamber 100. In this case, the cross-sectional area of the outer pipe 321 gradually increases as it progresses in the direction of the turbine 400.
위와 같은 형상을 갖는 외부관(320)은 상기 제어밸브(322)를 개방시켰을 때 제어밸브(322)를 통과하는 공기가 외부관로(321)의 단면적이 증가함에 따라 진동수주챔버(100)에서 터빈(400)의 방향으로 이동할 때 팽창하므로 과도한 RPM이 측정되었을 대 설정된 RPM으로 낮추기 더욱 용이하다.When the control valve 322 is opened, the external pipe 320 having the above shape has a turbine in the vibration receiving chamber 100 as the air passing through the control valve 322 increases in cross-sectional area of the external pipe 321. As it expands when moving in the direction of (400), it is easier to lower it to the set RPM when excessive RPM is measured.
상술한 내부관(310)이 터빈(400)의 방향으로 점차 내부 직경이 감소되는 구조와 외부관(320)이 터빈(400)의 방향으로 점차 내부 직경이 증가하는 구조는 동시에 적용될 수 있다.The above-described structure in which the inner tube 310 gradually decreases in the direction of the turbine 400 and the structure in which the outer tube 320 gradually increases in diameter in the direction of the turbine 400 may be applied simultaneously.
본 발명에서 상기 유량제어덕트(300)는 복수일 수 있으며, 하나의 유량제어덕트(300)가 상기 진동수주챔버(100)의 방향으로 배치되는 경우 다른 하나의 유량제어덕트(300)는 외부의 방향에 배치될 수 있다. 이 경우 상기 복수의 유량제어덕트(300) 사이에 상기 터빈(400)이 위치되며 상기 진동수주챔버(100)에서 공기유동로(200)로 이동되는 공기는 진동수주챔버(100)의 방향에 배치된 유량제어덕트(300)를 통해 조절하고, 외부에서 공기유동로(200)로 이동하는 공기는 외부 방향에 배치된 유량제어덕트(300)를 통해 조절된다.In the present invention, the flow control duct 300 may be plural, and when one flow control duct 300 is disposed in the direction of the vibration receiving chamber 100, the other flow control duct 300 is external. Direction. In this case, the turbine 400 is positioned between the plurality of flow control ducts 300, and the air moving from the vibration receiving chamber 100 to the air flow path 200 is disposed in the direction of the vibration receiving chamber 100. The flow is controlled through the flow control duct 300, and the air moving from the outside to the air flow path 200 is controlled through the flow control duct 300 disposed in the external direction.
예를 들어, 터빈(400)의 RPM을 높이고자 할 때 진동수주챔버(100)에서 터빈(400)의 방향으로 공기가 이동하는 경우 진동수주챔버(100)의 방향으로 배치된 유량제어덕트(300)의 제어밸브(322)를 폐쇄시키기고 보조밸브(312)를 개방시킨 상태에서 외부 방향으로 배치된 유량제어덕트(300)의 제어밸브(322)와 보조밸브(312)를 모두 개방시키고, 외부에서 터빈(400)의 방향으로 공기가 이동하는 경우 외부 방향으로 배치된 유량제어덕트(300)의 제어밸브(322)를 폐쇄시키고 보조밸브(312)를 개방시킨 상태에서 진동수주챔버(100)의 방향으로 배치된 유량제어덕트(300)의 제어밸브(322)와 보조밸브(312)를 개방시킬 수 있다.For example, when air is moved in the direction of the turbine 400 from the vibration receiving chamber 100 to increase the RPM of the turbine 400, the flow control duct 300 disposed in the direction of the vibration receiving chamber 100 ) In the state of closing the control valve 322 and opening the auxiliary valve 312, both the control valve 322 and the auxiliary valve 312 of the flow control duct 300 arranged in the outside direction are opened, and the outside In the case of air movement in the direction of the turbine 400, the control valve 322 of the flow rate control duct 300 disposed in the outside direction is closed and the auxiliary valve 312 is opened, and the vibration receiving chamber 100 The control valve 322 and the auxiliary valve 312 of the flow control duct 300 arranged in the direction may be opened.
상기 복수의 유량제어덕트(300)를 통하여 공기 유량을 조절하는 경우 상기 제어부(500)는 진동수주챔버(100)의 내부 수위가 높아지는 경우 상기 진동수주챔버(100)의 방향으로 배치된 유량제어덕트(300)와 상기 외부 방향으로 배치된 유량제어덕트(300)를 각각 조절함으로써 정격용량의 전력 생산이 더욱 용이해진다.When controlling the air flow rate through the plurality of flow control ducts 300, the control unit 500 flow rate control ducts arranged in the direction of the vibration receiving chamber 100 when the internal water level of the vibration receiving chamber 100 increases By regulating each of the flow control ducts 300 and the flow control ducts 300 arranged in the outer direction, power generation of the rated capacity becomes easier.
또한, 도면에 도시되진 않았으나 본 발명의 일 실시예에서 상기 복수의 유량제어덕트(300)는 내부관(310)끼리 서로 연결되거나 외부관(320)끼리 서로 연결될 수 있다. 상기 내부관(310)끼리 서로 연결된 복수의 유량제어덕트(300)는 서로 연결된 내부관로(311)를 통해 이동하는 공기에 의해서만 터빈(400)이 회전하여 전력을 생산한다.In addition, although not shown in the drawing, in one embodiment of the present invention, the plurality of flow control ducts 300 may be connected to each other with the inner tubes 310 or the outer tubes 320 with each other. The plurality of flow control ducts 300 connected to each other between the inner pipes 310 generates electricity by rotating the turbine 400 only by air moving through the inner pipes 311 connected to each other.
상술한 바와 같이, 본 발명에 따른 유량제어덕트(300)를 이용한 공기의 유량 제어는 파랑에너지의 편차에 관계없이 터빈(400)의 설정된 전력 생산 용량을 유지할 수 있으며, 과도하게 터빈(400)의 RPM이 높아지거나 낮아지는 것을 방지하여 터빈(400)의 내구성 향상을 기대할 수 있다.As described above, the flow rate control of the air using the flow rate control duct 300 according to the present invention can maintain the set power production capacity of the turbine 400 regardless of the deviation of the blue energy, and excessively of the turbine 400 It can be expected to improve the durability of the turbine 400 by preventing the RPM from rising or falling.
[부호의 설명][Description of codes]
100 : 진동수주챔버100: vibration receiving chamber
110 : 해수유입구110: seawater inlet
200 : 공기유동로200: air flow path
300 : 유량제어덕트300: flow control duct
310 : 내부관310: inner tube
311 : 내부관로311: internal pipeline
312 : 보조밸브312: auxiliary valve
320 : 외부관320: outer tube
321 : 외부관로321: External pipeline
322 : 제어밸브322: control valve
400 : 터빈400: turbine
500 : 제어부500: control unit
본 발명에 따르면 가변적인 파랑에너지에도 불구하고 안정적으로 전력을 생산할 수 있으며, 터빈의 RPM에 따라 공기의 이동 경로를 조절하여 터빈의 내구성을 향상시키는 동시에 적정 수준의 전력을 지속적으로 생산할 수 있으며, 현재 사용되고 있는 진동수주형 파력발전 구조에 즉각 적용시킬 수 있는 장점이 있다.According to the present invention, it is possible to stably produce electric power despite variable blue energy, and to improve the durability of the turbine by controlling the air movement path according to the RPM of the turbine, and to continuously produce an appropriate level of electric power. There is an advantage that can be immediately applied to the frequency-based wave power structure used.

Claims (7)

  1. 해상의 파랑에 의해 발생된 공기 유동을 이용하여 전력을 생산하는 진동수주형 파력발전 시스템에 있어서,In the wave-based wave power generation system for generating electric power by using the air flow generated by the sea wave,
    일측에 구비된 해수유입구를 통해 내부에 해수가 유입 또는 배출되는 진동수주챔버;A vibration receiving chamber in which seawater is introduced or discharged through the seawater inlet provided on one side;
    상기 진동수주챔버의 내부와 연결되고 해수의 유입 또는 배출에 따라 공기가 유동되는 공기유동로;An air flow path connected to the inside of the vibration water main chamber and through which air flows according to inflow or outflow of seawater;
    상기 공기유동로 내부에 구비되며 상기 공기유동로를 통한 공기의 유동에 따라 회전되면서 전력을 생산하는 터빈;A turbine provided inside the air flow path and rotating to generate power while being rotated according to air flow through the air flow path;
    상기 공기유동로의 내부에 구비되며 공기의 유동 정도를 조절하는 유량제어덕트; 및A flow control duct provided inside the air flow path and controlling the flow of air; And
    상기 유량제어덕트의 작동을 제어하는 제어부;를 포함하고,Includes a control unit for controlling the operation of the flow control duct;
    상기 유량제어덕트는,The flow control duct,
    내부관로를 형성하는 내부관;An inner pipe forming an inner pipe;
    상기 내부관의 외측 둘레를 감싸도록 구비되며 상기 내부관으로부터 이격되어 외부관로를 형성하는 외부관; 및An outer tube provided to surround the outer periphery of the inner tube and spaced apart from the inner tube to form an outer tube; And
    상기 외부관로에 구비되며 상기 제어부의 신호에 따라 개폐여부가 결정되는 제어밸브;를 포함하는 것을 특징으로 하는 유량제어 기능을 갖는 진동수주형 파력발전 시스템.A vibration-based wave power generation system having a flow control function, characterized in that it comprises; a control valve provided in the external pipeline and determining whether to open or close according to the signal of the control unit.
  2. 제 1항에 있어서,According to claim 1,
    상기 터빈은 상기 내부관의 중심선 상에 배치되는 것을 특징으로 하는 유량제어 기능을 갖는 진동수주형 파력발전 시스템.The turbine is a vibration-based wave power generation system having a flow control function, characterized in that disposed on the center line of the inner tube.
  3. 제 1항에 있어서,According to claim 1,
    상기 제어부는,The control unit,
    상기 터빈의 RPM에 대한 정보를 입력받고,Receive information about the RPM of the turbine,
    상기 터빈의 RPM이 설정된 범위 이상인 경우 상기 제어밸브를 개방시키고,When the RPM of the turbine is higher than the set range, the control valve is opened,
    상기 터빈의 RPM이 상기 설정된 범위 이하인 경우 상기 제어밸브를 폐쇄시키는 것을 특징으로 하는 유량제어 기능을 갖는 진동수주형 파력발전 시스템.A vibration-based wave power generation system having a flow rate control function, characterized in that the control valve is closed when the RPM of the turbine is below the set range.
  4. 제 3항에 있어서,According to claim 3,
    상기 제어밸브는 상기 내부관의 외측 둘레를 따라 복수가 구비되고,The control valve is provided with a plurality along the outer circumference of the inner tube,
    상기 제어부는 상기 복수의 제어밸브를 각각 독립적으로 개폐시키는 것을 특징으로 하는 유량제어 기능을 갖는 진동수주형 파력발전 시스템.The controller is a frequency-driven wave power generation system having a flow control function, characterized in that each of the plurality of control valves are opened and closed independently.
  5. 제 4항에 있어서,The method of claim 4,
    상기 제어부는,The control unit,
    상기 터빈의 RPM에 따라 상기 복수의 제어밸브 중 개방되는 제어밸브의 비율을 차등적으로 조절하는 것을 특징으로 하는 유량제어 기능을 갖는 진동수주형 파력발전 시스템.Vibration-based wave power generation system having a flow control function, characterized in that the differential control of the ratio of the control valve to be opened among the plurality of control valves according to the RPM of the turbine.
  6. 제 2항에 있어서,According to claim 2,
    상기 내부관은 상기 진동수주챔버에서 상기 터빈의 방향으로 점차 내부 직경이 감소하는 것을 특징으로 하는 유량제어 기능을 갖는 진동수주형 파력발전 시스템.The inner tube is a vibration-based wave power generation system having a flow control function, characterized in that the inner diameter gradually decreases in the direction of the turbine from the vibration receiving chamber.
  7. 제 1항에 있어서,According to claim 1,
    상기 내부관로에 구비되며 상기 제어부의 신호에 따라 개폐 정도가 결정되는 보조밸브를 더 포함하는 것을 특징으로 하는 유량제어 기능을 갖는 진동수주형 파력발전 시스템.A vibration-based wave power generation system having a flow control function, characterized in that it further includes an auxiliary valve provided in the internal pipeline and the opening and closing degree is determined according to the signal of the control unit.
PCT/KR2018/015320 2018-11-30 2018-12-05 Oscillating water column-type wave power generation system having flowrate control function WO2020111360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0152186 2018-11-30
KR1020180152186A KR102054957B1 (en) 2018-11-30 2018-11-30 Oscillating water column wave-power generation system with flow control function

Publications (1)

Publication Number Publication Date
WO2020111360A1 true WO2020111360A1 (en) 2020-06-04

Family

ID=69368172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015320 WO2020111360A1 (en) 2018-11-30 2018-12-05 Oscillating water column-type wave power generation system having flowrate control function

Country Status (2)

Country Link
KR (1) KR102054957B1 (en)
WO (1) WO2020111360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931787A (en) * 2021-10-16 2022-01-14 长沙理工大学 Utilize oscillating water column type wave energy power generation facility of breakwater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194840B1 (en) 2020-03-02 2020-12-23 조창휘 Wave power generator
KR102372082B1 (en) * 2020-11-23 2022-03-08 한국해양과학기술원 rated output control performance test device of oscillating water column wave power generation system
KR102385082B1 (en) 2020-12-14 2022-04-08 부경대학교 산학협력단 System for wave power generation using reciprocating motion of magnetic sphere
KR102374093B1 (en) * 2021-12-07 2022-03-14 한국해양과학기술원 A turbine system with variable diameter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796441B1 (en) * 2006-07-31 2008-01-22 신덕호 Wind force generator
KR20100023328A (en) * 2008-08-21 2010-03-04 김선탁 Tideland power generation
JP2013036376A (en) * 2011-08-06 2013-02-21 Kaiyo Energy Engineering Kk Wave-activated power generation system, and construction method therefor
KR20140004554A (en) * 2011-05-06 2014-01-13 보이트 파텐트 게엠베하 A turbine installation for extracting sea wave energy
KR101742317B1 (en) * 2016-11-08 2017-05-31 한국해양과학기술원 Real sea performance test system of energy converting device for oscillating water column wave converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085907B1 (en) 2009-12-28 2011-11-22 부산대학교 산학협력단 Wave power generating apparatus of Oscillating water column type
KR101871249B1 (en) 2017-02-22 2018-06-27 한국해양과학기술원 Variable Length Chamber Of Oscillating Water Column Wave-Power Generation Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796441B1 (en) * 2006-07-31 2008-01-22 신덕호 Wind force generator
KR20100023328A (en) * 2008-08-21 2010-03-04 김선탁 Tideland power generation
KR20140004554A (en) * 2011-05-06 2014-01-13 보이트 파텐트 게엠베하 A turbine installation for extracting sea wave energy
JP2013036376A (en) * 2011-08-06 2013-02-21 Kaiyo Energy Engineering Kk Wave-activated power generation system, and construction method therefor
KR101742317B1 (en) * 2016-11-08 2017-05-31 한국해양과학기술원 Real sea performance test system of energy converting device for oscillating water column wave converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931787A (en) * 2021-10-16 2022-01-14 长沙理工大学 Utilize oscillating water column type wave energy power generation facility of breakwater

Also Published As

Publication number Publication date
KR102054957B1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2020111360A1 (en) Oscillating water column-type wave power generation system having flowrate control function
WO2018199406A1 (en) Parallel small-scale hydroelectric power generation apparatus having fixed passage and operated in stages
CN2789556Y (en) Multifunction central rotating connection
WO2014123276A1 (en) Small hydropower generation apparatus and control method therefor
WO2012081796A1 (en) Gas boiler including output adjusting device, and method of adjusting output of gas boiler
WO2018221901A1 (en) Diffuser system for equally discharging air
CN203598956U (en) Adjustable cyclone separator
WO2010124661A1 (en) Pressure regulating device, compressed air supply system and motor vehicle
US5941682A (en) Draft tube peripheral plenum
WO2012174864A1 (en) Eccentric ring wind power mechanism
CN1036410A (en) The water-cooled water-sealed method and apparatus of blast-furnace distributor
FI94151B (en) Methods for regulating the supply of reaction gas to a furnace and multifunctional burner intended for this purpose
WO2018216881A1 (en) Wind and wave power generation system
WO2020145574A1 (en) Power generation apparatus
WO2021060631A1 (en) Air dome device
CN202281228U (en) Digital bit type adjustment combustor
CN106931176A (en) Blast furnace opens diffusion valve with flexible
WO2017122898A1 (en) Buoyancy-driven power generation apparatus
WO2011139085A2 (en) Hydro and wind power generator
CN207961579U (en) Tap external member
WO2022119030A1 (en) Device for evaluating blade seal
WO2010151061A2 (en) Wind power generation apparatus having guide blade
WO2011068312A2 (en) Flow sensor and combustion device having same
WO2012067287A1 (en) Multi-layer wind power generation system
CN205559847U (en) Gas -cooker flow control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941538

Country of ref document: EP

Kind code of ref document: A1