WO2018216881A1 - Wind and wave power generation system - Google Patents

Wind and wave power generation system Download PDF

Info

Publication number
WO2018216881A1
WO2018216881A1 PCT/KR2018/001781 KR2018001781W WO2018216881A1 WO 2018216881 A1 WO2018216881 A1 WO 2018216881A1 KR 2018001781 W KR2018001781 W KR 2018001781W WO 2018216881 A1 WO2018216881 A1 WO 2018216881A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
power generation
wind
unit
wave power
Prior art date
Application number
PCT/KR2018/001781
Other languages
French (fr)
Korean (ko)
Inventor
강주영
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2018216881A1 publication Critical patent/WO2018216881A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/181Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation
    • F03B13/1815Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation with an up-and-down movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/24Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy to produce a flow of air, e.g. to drive an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a wind power and wave power generation system, and more particularly to a power generation system that maximizes the efficiency of a spar (spar bouy) wind generator.
  • the wind generator is located on the ground, but the wind is not constant, and a large site is required, and recently, it is located in the sea to solve this problem.
  • wind power generation structures that can be located at sea
  • wind power is used in the form of floating in the state suspended by the sea using a circumference buoy, but this is caused by the rotational and translational movements caused by the waves.
  • wind generator itself is difficult to produce a steady energy by the inconsistent wind.
  • the present invention has been made to solve the problems of the prior art as described above, the wind power generation system that can increase the wind power generation efficiency by minimizing the rotational and translational movement of the spar (floor bouy) floating wind power generator
  • the purpose is to provide.
  • the present invention has another object to provide a sparse (floor bouy) floating wind generator that can use wave power generation.
  • the present invention has another object to provide a wave power and wind power generation system that can exhibit a steady energy production efficiency using the air compression storage device.
  • the wind power generator is composed of a sparse floating body, floating on the sea, is formed inside the floating body, the inflow and movement through the up and down of the floating body and Including a wave power generation unit provided with a turbine operated by the discharged sea water and the floating body, and a pneumatic generating unit for selectively compressing and discharging the air flowing in and out through the up and down movement of the floating body; It is composed.
  • the wind and wave power generation system according to the present invention has the effect of increasing the wind efficiency by minimizing the rotational and translational movements of the sparse floating wind turbine.
  • the wind and wave power generation system according to the present invention has the effect of increasing the energy generation efficiency by using the wind and wave power at the same time.
  • the wind and wave power generation system according to the present invention, there is an effect that can exhibit a steady energy production efficiency using the air compression storage device.
  • FIG 1 shows briefly the structure of the wind and wave power generation system according to the present invention.
  • Figure 2 (a) shows the floating state of the wind and wave power generation system according to the present invention when the sea level is the maximum.
  • Figure 2 (b) shows the floating state of the wind and wave power generation system according to the present invention when the sea level is the lowest.
  • FIG. 3 schematically shows the wave power generation unit structure of the wind and wave power generation system according to the present invention.
  • Figure 4 shows a wave power generation unit of the wind and wave power generation system according to the present invention.
  • Figure 5 schematically shows the pneumatic generating unit of the wind and wave power generation system according to the present invention.
  • the wind power generator is composed of a sparse floating body, floating on the sea, is formed inside the floating body, the inflow and movement through the up and down of the floating body and A wave power generation unit provided with a turbine operated by discharged sea water; And a pneumatic generation unit formed inside the float, and selectively compressing and discharging air introduced and discharged through the upward and downward movement of the float.
  • the wave power generation unit the cylindrical body portion; An air outlet portion formed at an upper end of the body portion and having an end portion formed outside the float so that external air can be introduced into and discharged from the body portion; It is formed on the lower end of the body portion, the seawater inflow and outflow portion is provided with a through hole to facilitate the introduction and discharge of seawater; An air turbine part formed at the air outlet part to generate power by being operated by the inlet and outlet of the air; And a hydro turbine unit formed at the sea water inlet and outlet to generate power by being operated by inflow and outflow of the sea water.
  • the pneumatic generating unit is provided in the inside of the floating body, the air compression unit for compressing the air flowing into the floating body; A storage tank unit for storing the compressed air through the air compression unit; An end portion connected to the wave power generation unit, and a pneumatic discharge unit selectively discharged air stored in the storage tank unit; And a heat supply unit provided adjacent to the pneumatic discharge unit and generating heat to prevent the ambient temperature from being lowered when the air is discharged and to increase the flow rate of the discharged air. .
  • the compressed air is moved to the storage tank through the pipe, the pipe is located in sea water, characterized in that to maintain a low temperature to increase the compression efficiency.
  • the wind and wave power generation system consisting of a spar buoy (spar buoy), in the wind turbine (wind turbine) is provided floating on the sea, the It is formed in the body (B), and formed in the wave power generating unit (2) and the body (B) is provided with a turbine operated by the sea water flowing in and out through the heave (heave) movement of the body (B)
  • a pneumatic generating unit (1) for selectively compressing and discharging the air flowing in and out through the heave (heave) movement of the body (B).
  • the wave power generation unit 2 is formed in the floating body B,
  • a turbine is provided which is operated by seawater entering and exiting through the heave motion of the body B.
  • the wave power generation unit 2 is configured to perform additional power generation separately from the power generation facilities of the wind turbine (A).
  • the wave power generation unit 2 the body (B) is moved up and down by the heave (heave) by the waves of the sea surface, air and sea water is introduced and discharged into the body (B), It generates power by simultaneously using the air and sea water which are introduced and discharged.
  • the wave power generation unit 2 as shown in Figs. 3 and 4, the body portion 21, the air inlet and outlet 22, seawater inlet and outlet 23, air turbine unit 24, It is configured to include a hydraulic turbine portion (25).
  • the body portion 21 is provided in a cylindrical shape, is formed inside the body (B).
  • the body portion 21 can withstand the fatigue caused by the inflow and outflow of seawater, and is preferably composed of an anti-corrosion material.
  • the body portion 21 is formed inside the floating body B, and on average, seawater is provided to be positioned at an intermediate portion of the body portion 21 with respect to the vertical direction.
  • the upper end of the body portion 21 is formed in a position and size such that it is not submerged in seawater.
  • the air outlet portion 22 is provided at the upper end of the body portion 21, the air is continuously introduced and discharged through the air outlet portion 22, the air turbine portion 24 below To operate.
  • the air outlet portion 22 is formed on the upper end of the body portion 21 has an end portion formed outside the body (B) so that the outside air can be introduced into and discharged from the body portion 21. .
  • the air outlet portion 22 is provided in the shape of an inlet of a diameter significantly smaller than the diameter of the body portion 21 in a tubular shape.
  • the diameter of the air outlet portion 22 is smaller than the diameter of the body portion 21, when the air is introduced and discharged by the upward and downward movement of the floating body B, the flow of the air This will not be smooth.
  • the seawater inflow and outflow portion 23 is formed at the lower end of the body portion 21, and is provided with a through hole that is easy to enter and discharge seawater.
  • the seawater inflow and outflow portion 23 is formed at the lower end of the body portion 21, and may be configured in any form as long as it can increase the rate of introduction and discharge of seawater.
  • through holes are formed at both side surfaces of the lower end of the body portion 21.
  • the through holes are formed at both side surfaces of the lower end of the body portion 21, it is possible to facilitate the flow of the sea water. That is, two holes facing each other are formed to facilitate the flow of the seawater.
  • the strength may be structurally greatly reduced and durability may be weakened.
  • An outflow hole 231 having an open shape is provided at a central portion of the through hole in a horizontal direction.
  • the seawater flows into and out of the body portion 21 through the outflow hole 231.
  • the outflow hole 231 is formed in a smaller diameter than the diameter of the through hole, when the seawater is introduced into and discharged into the body portion through the outflow hole 231, to maximize the flow rate of the seawater Can be.
  • seawater inflow and outflow portion 23 and the outflow hole 231 is formed at the lower end of the body portion, it is preferably positioned so that it can be kept submerged in the sea water at all times.
  • the air turbine portion 24 is formed in the air inlet and outlet 22 and is operated by the air introduced and discharged by the heave movement of the floating body B to generate power. It is arranged to be.
  • the air turbine unit 24 it is preferable that the blade is rotated in one direction by the air flowing in and out steadily repeated through the air inlet and outlet 22 is formed to maximize the operating efficiency.
  • the hydraulic turbine portion 25 is formed in the seawater inflow and outflow portion 23 is provided to operate by the inflow and discharge of the seawater to generate energy.
  • the hydraulic turbine portion 25 is formed in the outflow hole 231, and is operated by the seawater introduced and discharged at a high flow rate.
  • the hydraulic turbine portion 25, like the blades of the air turbine portion 24 is preferably provided with a blade which is rotated in one direction only by the sea water introduced and discharged to increase the operating efficiency.
  • the air turbine unit 24 and the hydraulic turbine unit 25 can be continuously operated by using the air and the sea water continuously introduced into and out of the floating body B, the wind generator A In addition to the energy generated by, it is possible to generate continuous additional energy.
  • the degree of movement up and down of the floating body (B) is determined by the intensity of the wave of the sea water, and thus the flow rate and flow rate during the inflow and discharge of the air and sea water is determined, day and night, season, etc.
  • the production efficiency of the energy may vary depending on the natural conditions of the.
  • the pneumatic generating unit 1 is further provided, and the amount of energy generated through the air turbine unit 24 can be controlled.
  • the pneumatic generator (1) is formed inside the body (B), and selectively compresses and stores the air introduced and discharged through the heave (heave) movement of the body (B), the compressed
  • the air turbine unit 24 may be operated by discharging air according to preset conditions.
  • the pneumatic generation unit 1 includes an air compression unit 11, a storage tank unit 12, a pneumatic discharge unit 13, and a heat supply unit 14. do.
  • the air compression unit 11 is provided in the floating body B, and selectively compresses the air flowing into the floating body B.
  • the air compression unit 11 is formed in the floating body (B), it is preferable to be formed at a height that does not reach the sea surface like the air outflow and inlet (22).
  • the air may be compressed using a time zone in which energy demand is low.
  • the air compressor 11 further includes a valve (not shown) controlled by a control unit (not shown).
  • the reason for selectively compressing the air is that, when the wind is low or the wave is low, when the air inside the body 21 is compressed, the air discharged through the air outlet 22 This is because the flow velocity of the gas is lowered, and the energy generation efficiency of the air turbine unit 24 may be greatly reduced.
  • a fan is formed in the air compressor 11 to increase the compression efficiency of the air or a cylinder is formed to increase the compression efficiency of the air.
  • the air compression unit 11 may be configured in any form as long as the system can effectively compress the air.
  • the air compressed through the air compression unit 11 is stored in the storage tank unit 12 below through a connected pipe.
  • the storage tank part 12 is a tank capable of storing a gas of high pressure, and stores the compressed air through the air compression part 11.
  • the pipe and the storage tank 12 is preferably formed at a lower position to be exposed to sea water.
  • it is preferably located at the lower end of the floating body (B) to be exposed to sea water.
  • the storage tank unit 12 is connected to the outside through the tube, it may be further provided separately to the outside of the wind turbine (A).
  • the pneumatic discharge portion 13 the end is connected to the inside of the body portion 21, the air stored in the storage tank portion 12 is selectively discharged into the body portion 21 to the air
  • the operation efficiency of the turbine unit 24 is provided.
  • the air discharged through the pneumatic discharge unit 13 is controlled by a controller (not shown) and selectively discharged.
  • control unit increases the discharge rate of the air at a time when energy demand is high, thereby increasing the operation rate of the air turbine unit 24, and restricting the discharge of the air at a time when the energy demand is low.
  • the operation rate of the turbine part 24 can be reduced.
  • the operation rate of the air turbine unit 24 is lowered by limiting the amount of air discharged, and the hydraulic turbine unit 25 is low due to low waves.
  • the compressed air may be discharged to control the air turbine 24 to increase the operation rate.
  • the control unit (not shown) may be configured in any form as long as it can control the air compressor 11 and the pneumatic discharge unit 13 according to a predetermined condition.
  • the air compressor 11 and the pneumatic discharge unit 13 may be controlled by presetting compression and discharge conditions of the air using an external terminal such as a console or a smart terminal from the outside.
  • the heat supply part 14 is provided adjacent to the pneumatic discharge part 13 to generate heat.
  • the air when the air is discharged, it is possible to prevent the ambient temperature is lowered.
  • the pressure of the compressed air is expanded and at the same time the ambient temperature is significantly lowered by the endothermic reaction of the air, the heat supply unit ( 14) can generate heat to prevent the temperature of the surrounding facilities from falling.
  • heat is generated through the heat supply part 14 to increase the expansion rate of the air discharged into the body 21 and to increase the flow rate of the air, so that the air turbine part 24 The operation efficiency can be maximized.
  • a spar buoy (spar buoy) is formed at the bottom, floating on the sea surface.
  • the wind generator A in which the floating body B is integrally formed, moves upward and downward by waves formed on the sea surface.
  • the sea water is introduced into the body portion 21, the body portion 21 so as not to contact the air outlet 22 and the air turbine portion 24 formed in the upper end of the body portion 21 )
  • Location and shape shall be configured.
  • the hydraulic turbine portion 25 is provided in the outflow hole 231, and is operated by inflow and discharge of the seawater, and the air turbine portion 24 is provided in the air outlet portion 22. Is activated by the inflow and outflow of
  • the hydraulic turbine portion 25 and the air turbine portion 24 has a blade which can be rotated in one direction irrespective of the flow of the fluid is formed to increase the operating efficiency.
  • the air compression unit 11 compresses the air inside the body portion 21.
  • a fan or cylinder is formed to compress the air, and when the floating body B moves downward, the air is collected by the high pressure to collect the air.
  • the compression efficiency can be improved.
  • the compressed air is stored in the storage tank part 12 and is selectively supplied into the body part 21 through the pneumatic discharge part 13.
  • Air stored in the (12) can be discharged through the pneumatic discharge unit 13 to increase the operation rate of the air turbine unit 24.
  • control unit may increase the operation rate of the air turbine unit 24 by controlling the pneumatic discharge unit 13 according to the demand of the energy.
  • the air inlet and outlet 22 and the outlet inlet 231 are formed narrower than the diameter of the body 21, the inflow and outflow of the air and sea water is not smooth, the pressure inside the body (B) The degree of change can be lowered to dampen sudden shaking caused by waves. In particular, it is possible to attenuate the movement of the heave (heave) moving up and down.
  • the configuration of the storage tank such as a high load is formed at the bottom of the wind turbine to form a stable center of gravity, it is possible to damp the translational and rotational motion other than the heave (heave) movement, stable wind power generation system Can be maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a wind and wave power generation system and, more particularly, to a power generation system that maximizes the efficiency of a spar-buoy type wind power generator. The wind power and wave power generation system according to the present invention, which is a wind power generator using a spar type buoy and floating on the sea, comprises: a wind power generation unit which is formed inside a floating body and is provided with a turbine operated by seawater that is introduced into or discharged out of the floating body by the upward and downward movements of the floating body; and a pneumatic pressure generating unit which is formed inside the floating body and selectively compresses and discharges air that is introduced or discharged out of the floating body by the upward and downward movements of the floating body. The wind and wave power generation system according to the present invention has the effect of improving wind power generation efficiency by minimizing rotational and translational motions of a spar-buoy type floating wind power generator. Also, the wind and wave power generation system according to the present invention has the effect of increasing energy generation efficiency by simultaneously using both wind power and wave power. In addition, the wind and wave power generation system according to the present invention has the effect of achieving steady energy generation efficiency by using air compression and storage devices.

Description

풍력 및 파력 발전 시스템Wind and wave power generation systems
본 발명은 풍력 및 파력 발전 시스템에 관한 것으로, 더욱 상세하게는 스파(spar bouy)타입의 풍력 발전기의 효율을 극대화 한 발전 시스템에 관한 것이다.The present invention relates to a wind power and wave power generation system, and more particularly to a power generation system that maximizes the efficiency of a spar (spar bouy) wind generator.
일반적으로 풍력 발전기는, 지상에 위치하였으나 바람이 일정치 않고 넓은 부지가 필요하여 최근에는 해상에 위치시켜 이를 해결하고 있다.In general, the wind generator is located on the ground, but the wind is not constant, and a large site is required, and recently, it is located in the sea to solve this problem.
해상에 위치시킬 수 있는 풍력발전 구조물 중 원주부표(spar buoy)를 이용하여 해상에 계류된 상태로 부유하는 형태의 풍력발전이 이용되고 있으나 이는 풍력발전기가 파도에 의해 회전운동 및 병진운동에 의한 움직임이 많아져 일정한 풍력을 유지하기 어려울 수 있는 문제점이 있었고, 풍력발전기 자체가 일정치 않은 바람에 의해 꾸준한 에너지의 생산이 어려운 문제점이 있었다.Among the wind power generation structures that can be located at sea, wind power is used in the form of floating in the state suspended by the sea using a circumference buoy, but this is caused by the rotational and translational movements caused by the waves. There was a problem that it may be difficult to maintain a constant wind power, there was a problem that the wind generator itself is difficult to produce a steady energy by the inconsistent wind.
이와 관련하여, 종래의 기술을 살펴보면, ‘풍력 터빈 설비의 파도 에너지 추출’이 대한민국 공개특허 제10-2016-0133578호에 개시되고 있으나, 이는 풍력 발전 효율만을 높이기 위한 구조로 상기한 문제점을 해결하기에 한계가 있다.In this regard, looking at the prior art, 'wave energy extraction of the wind turbine installation' is disclosed in Republic of Korea Patent Publication No. 10-2016-0133578, which solves the above problems as a structure to increase the wind power generation efficiency only. There is a limit to.
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 스파(spar bouy)형 부유식 풍력발전기의 회전운동 및 병진 운동을 최소화 하여 풍력발전 효율을 높일 수 있는 풍력발전시스템을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the problems of the prior art as described above, the wind power generation system that can increase the wind power generation efficiency by minimizing the rotational and translational movement of the spar (floor bouy) floating wind power generator The purpose is to provide.
또한, 본 발명은 파력발전을 이용할 수 있는 스파(spar bouy)형 부유식 풍력발전기 제공하는데 또 다른 목적이 있다.In addition, the present invention has another object to provide a sparse (floor bouy) floating wind generator that can use wave power generation.
또한, 본 발명은 공기압축저장장치를 이용하여 꾸준한 에너지 생산 효율을 나타낼 수 있는 파력 및 풍력 발전 시스템을 제공하는데 또 다른 목적이 있다.In addition, the present invention has another object to provide a wave power and wind power generation system that can exhibit a steady energy production efficiency using the air compression storage device.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 여기에 언급되지 않은 본 발명이 해결하고자 하는 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problem, another problem to be solved by the present invention not mentioned here is those skilled in the art to which the present invention pertains from the following description Will be clearly understood.
본 발명에 따른 풍력 및 파력 발전 시스템은, 스파형 부체로 구성되어, 해상에 부유식으로 마련되는 풍력발전기에 있어서, 상기 부체 내부에 형성되고, 상기 부체의 상방 및 하방으로의 움직임을 통해 유입 및 배출되는 해수에 의해 작동되는 터빈이 마련되는 파력발전부 및 상기 부체 내부에 형성되고, 상기 부체의 상방 및 하방으로의 움직임을 통해 유입 및 배출되는 공기를 선택적으로 압축 및 배출하는 공압생성부를 포함하여 구성된다.Wind and wave power generation system according to the present invention, the wind power generator is composed of a sparse floating body, floating on the sea, is formed inside the floating body, the inflow and movement through the up and down of the floating body and Including a wave power generation unit provided with a turbine operated by the discharged sea water and the floating body, and a pneumatic generating unit for selectively compressing and discharging the air flowing in and out through the up and down movement of the floating body; It is composed.
본 발명에 따른 풍력 및 파력 발전 시스템은, 스파(spar bouy)형 부유식 풍력발전기의 회전운동 및 병진운동을 최소화 하여 풍력효율을 높일 수 있는 효과가 있다.The wind and wave power generation system according to the present invention has the effect of increasing the wind efficiency by minimizing the rotational and translational movements of the sparse floating wind turbine.
또한, 본 발명에 따른 풍력 및 파력 발전 시스템은, 풍력 및 파력을 동시에 이용하여 에너지 생성 효율을 높일 수 있는 효과가 있다.In addition, the wind and wave power generation system according to the present invention has the effect of increasing the energy generation efficiency by using the wind and wave power at the same time.
또한, 본 발명에 따른 풍력 및 파력 발전 시스템은, 공기압축저장장치를 이용하여 꾸준한 에너지 생산효율을 나타낼 수 있는 효과가 있다.In addition, the wind and wave power generation system according to the present invention, there is an effect that can exhibit a steady energy production efficiency using the air compression storage device.
도 1은 본 발명에 따른 풍력 및 파력 발전 시스템 구조를 간략히 나타낸 것이다.Figure 1 shows briefly the structure of the wind and wave power generation system according to the present invention.
도 2의 (a)는 해수면 높이가 최대일 때, 본 발명에 따른 풍력 및 파력 발전 시스템의 부유상태를 나타낸 것이다.Figure 2 (a) shows the floating state of the wind and wave power generation system according to the present invention when the sea level is the maximum.
도 2의 (b)는 해수면 높이가 최저일 때, 본 발명에 따른 풍력 및 파력 발전 시스템의 부유상태를 나타낸 것이다.Figure 2 (b) shows the floating state of the wind and wave power generation system according to the present invention when the sea level is the lowest.
도 3은 본 발명에 따른 풍력 및 파력 발전 시스템의 파력발전부 구조를 개략적으로 나타낸 것이다.Figure 3 schematically shows the wave power generation unit structure of the wind and wave power generation system according to the present invention.
도 4는 본 발명에 따른 풍력 및 파력 발전 시스템의 파력발전부를 나타낸 것이다.Figure 4 shows a wave power generation unit of the wind and wave power generation system according to the present invention.
도 5는 본 발명에 따른 풍력 및 파력 발전 시스템의 공압생성부를 개략적으로 나타낸 것이다.Figure 5 schematically shows the pneumatic generating unit of the wind and wave power generation system according to the present invention.
본 발명에 따른 풍력 및 파력 발전 시스템은, 스파형 부체로 구성되어, 해상에 부유식으로 마련되는 풍력발전기에 있어서, 상기 부체 내부에 형성되고, 상기 부체의 상방 및 하방으로의 움직임을 통해 유입 및 배출되는 해수에 의해 작동되는 터빈이 마련되는 파력발전부; 및 상기 부체 내부에 형성되고, 상기 부체의 상방 및 하방으로의 움직임을 통해 유입 및 배출되는 공기를 선택적으로 압축 및 배출하는 공압생성부;를 포함하는 것을 특징으로 한다.Wind and wave power generation system according to the present invention, the wind power generator is composed of a sparse floating body, floating on the sea, is formed inside the floating body, the inflow and movement through the up and down of the floating body and A wave power generation unit provided with a turbine operated by discharged sea water; And a pneumatic generation unit formed inside the float, and selectively compressing and discharging air introduced and discharged through the upward and downward movement of the float.
본 발명에 있어서, 상기 파력발전부는, 원통형의 바디부; 상기 바디부의 상단에 형성되어 외부 공기가 상기 바디부로 유입 및 배출 될 수 있도록 상기 부체 외부로 단부가 형성되는 공기유출입부; 상기 바디부의 하단에 형성되고, 해수의 유입 및 배출이 용이하게 관통홀이 마련되는 해수유출입부; 상기 공기유출입부에 형성되어 상기 공기의 유입 및 배출에 의해 가동되어 동력을 발생시키는 에어터빈부; 상기 해수유출입부에 형성되어 상기 해수의 유입 및 배출에 의해 가동되어 동력을 발생시키는 수력터빈부;를 포함하는 것을 특징으로 한다.In the present invention, the wave power generation unit, the cylindrical body portion; An air outlet portion formed at an upper end of the body portion and having an end portion formed outside the float so that external air can be introduced into and discharged from the body portion; It is formed on the lower end of the body portion, the seawater inflow and outflow portion is provided with a through hole to facilitate the introduction and discharge of seawater; An air turbine part formed at the air outlet part to generate power by being operated by the inlet and outlet of the air; And a hydro turbine unit formed at the sea water inlet and outlet to generate power by being operated by inflow and outflow of the sea water.
본 발명에 있어서, 상기 공압생성부는, 상기 부체 내부에 마련되어, 상기 부체 내부로 유입되는 공기를 압축하는 공기압축부; 상기 공기압축부를 통해 압축된 공기를 저장하는 저장탱크부; 단부가 상기 파력발전부 내부로 연결되어, 선택적으로 상기 저장탱크부에 저장된 공기가 배출되는 공압배출부; 상기 공압배출부와 인접하게 마련되고, 열이 발생되어, 상기 공기 배출 시, 주변 온도가 낮아지는 것을 방지하고, 배출되는 공기의 유속을 높일 수 있게 마련되는 열공급부;를 포함하는 것을 특징으로 한다.In the present invention, the pneumatic generating unit is provided in the inside of the floating body, the air compression unit for compressing the air flowing into the floating body; A storage tank unit for storing the compressed air through the air compression unit; An end portion connected to the wave power generation unit, and a pneumatic discharge unit selectively discharged air stored in the storage tank unit; And a heat supply unit provided adjacent to the pneumatic discharge unit and generating heat to prevent the ambient temperature from being lowered when the air is discharged and to increase the flow rate of the discharged air. .
본 발명에 있어서, 상기 압축된 공기는 관을 통해 상기 저장탱크부로 이동하되, 상기 관은 해수에 위치시켜 낮은 온도를 유지하여 압축효율을 높이는 것을 특징으로 한다.In the present invention, the compressed air is moved to the storage tank through the pipe, the pipe is located in sea water, characterized in that to maintain a low temperature to increase the compression efficiency.
이상과 같은 본 발명에 대한 해결하고자 하는 과제, 과제의 해결수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.Specific matters including the problem to be solved, the solution to the problem, and the effects of the present invention as described above are included in the embodiments and drawings to be described below. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings.
본 발명에 따른 풍력 및 파력 발전 시스템은, 도 1 내지 도 5에 도시된 바와 같이, 스파형 부체(spar buoy)로 구성되어, 해상에 부유식으로 마련되는 풍력발전기(wind turbine)에 있어서, 상기 부체(B) 내부에 형성되고, 상기 부체(B)의 히브(heave)운동을 통해 유입 및 배출되는 해수에 의해 작동되는 터빈이 마련되는 파력발전부(2) 및 상기 부체(B) 내부에 형성되고, 상기 부체(B)의 히브(heave)운동을 통해 유입 및 배출되는 공기를 선택적으로 압축 및 배출하는 공압생성부(1)를 포함하여 구성된다.The wind and wave power generation system according to the present invention, as shown in Figures 1 to 5, consisting of a spar buoy (spar buoy), in the wind turbine (wind turbine) is provided floating on the sea, the It is formed in the body (B), and formed in the wave power generating unit (2) and the body (B) is provided with a turbine operated by the sea water flowing in and out through the heave (heave) movement of the body (B) It is configured to include a pneumatic generating unit (1) for selectively compressing and discharging the air flowing in and out through the heave (heave) movement of the body (B).
먼저, 상기 파력발전부(2)는, 상기 부체(B) 내부에 형성되고, 상기First, the wave power generation unit 2 is formed in the floating body B,
부체(B)의 히브(heave)운동을 통해 유입 및 배출되는 해수에 의해 작동되는 터빈이 마련된다.A turbine is provided which is operated by seawater entering and exiting through the heave motion of the body B.
상기 파력발전부(2)는, 상기 풍력발전기(A)의 발전설비와 별도로 추가 발전을 실시할 수 있는 구성된다.The wave power generation unit 2 is configured to perform additional power generation separately from the power generation facilities of the wind turbine (A).
상기 파력발전부(2)는, 해수면의 파도에 의해 상기 부체(B)가 히브(heave)운동을 하여 상방 및 하방으로 움직이며, 상기 부체(B) 내부로 공기 및 해수가 유입 및 배출되므로, 유입 및 배출되는 상기 공기 및 해수를 동시에 이용하여 발전을 일으킨다.The wave power generation unit 2, the body (B) is moved up and down by the heave (heave) by the waves of the sea surface, air and sea water is introduced and discharged into the body (B), It generates power by simultaneously using the air and sea water which are introduced and discharged.
구체적으로, 상기 파력발전부(2)는, 도 3 및 도 4에 도시된 바와 같이, 바디부(21), 공기유출입부(22), 해수유출입부(23), 에어터빈부(24), 수력터빈부(25)를 포함하여 구성된다.Specifically, the wave power generation unit 2, as shown in Figs. 3 and 4, the body portion 21, the air inlet and outlet 22, seawater inlet and outlet 23, air turbine unit 24, It is configured to include a hydraulic turbine portion (25).
먼저, 상기 바디부(21)는, 원통형으로 마련되어, 상기 부체(B)의 내부에 형성된다.First, the body portion 21 is provided in a cylindrical shape, is formed inside the body (B).
상기 바디부(21)는, 해수의 유출입에 의한 피로(fatigue)를 견딜 수있고, 방식(anti-corrosion) 소재로 구성되는 것이 바람직하다.The body portion 21 can withstand the fatigue caused by the inflow and outflow of seawater, and is preferably composed of an anti-corrosion material.
상기 바디부(21)는, 상기 부체(B) 내부에 형성되되, 평균적으로 해수가 상기 바디부(21)의 수직방향을 기준으로 중간부에 위치할 수 있도록 마련된다.The body portion 21 is formed inside the floating body B, and on average, seawater is provided to be positioned at an intermediate portion of the body portion 21 with respect to the vertical direction.
이때, 상기 바디부(21)의 상단부는 해수에 잠기지 않을 정도의 위치 및 크기로 형성되는 것이 바람직하다.At this time, it is preferable that the upper end of the body portion 21 is formed in a position and size such that it is not submerged in seawater.
이는, 상기 바디부(21)의 상단부에 공기유출입부(22)가 마련되기 때문으로, 상기 공기유출입부(22)를 통해 지속적으로 공기가 유입 및 배출되어, 하기의 에어터빈부(24)를 가동시키기 위함이다.This is because the air outlet portion 22 is provided at the upper end of the body portion 21, the air is continuously introduced and discharged through the air outlet portion 22, the air turbine portion 24 below To operate.
구체적으로, 상기 공기유출입부(22)는, 상기 바디부(21)의 상단에 형성되어 외부 공기가 상기 바디부(21)로 유입 및 배출 될 수 있도록 상기 부체(B) 외부로 단부가 형성된다.Specifically, the air outlet portion 22 is formed on the upper end of the body portion 21 has an end portion formed outside the body (B) so that the outside air can be introduced into and discharged from the body portion 21. .
해수면의 파도에 의해, 상기 부체(B)가 히브(heave)운동을 하여 상방 및 하방으로 움직일 때, 상기 부체(B) 내부의 공기는 상기 공기유출입부(22)를 통해 유입 및 배출 된다.When the floating body B moves upward and downward due to the movement of the sea wave by the waves of the sea surface, the air inside the floating body B is introduced and discharged through the air inlet / outlet 22.
보다 구체적으로, 상기 부체(B)가 파도에 의해, 상방으로 움직일 때, 상기 공기유출입부(22)를 통해 상기 부체(B) 내부로 공기가 유입되고, 상기 부체(B)가 파도에 의해, 하방으로 움직일 때, 상기 공기유출입부(22)를 통해 상기 부체(B) 내부의 공기가 배출된다.More specifically, when the floating body (B) is moved upward by the wave, the air flows into the inside of the floating body (B) through the air inlet and outlet 22, the floating body (B) by the wave, When moving downward, the air inside the floating body B is discharged through the air outlet 22.
이때, 상기 공기유출입부(22)는 관 형상으로 상기 바디부(21)의 직경보다 월등히 작은 직경의 입구 형태로 마련된다.At this time, the air outlet portion 22 is provided in the shape of an inlet of a diameter significantly smaller than the diameter of the body portion 21 in a tubular shape.
상기 공기유출입부(22)의 직경이 상기 바디부(21)의 직경보다 작으므로, 상기 부체(B)의 상방 및 하방으로의 움직임에 의해, 상기 공기가 유입 및 배출될 때, 상기 공기의 유동이 원활하지 못하게 된다.Since the diameter of the air outlet portion 22 is smaller than the diameter of the body portion 21, when the air is introduced and discharged by the upward and downward movement of the floating body B, the flow of the air This will not be smooth.
이를 통해, 상기 부체(B) 내부에 압력이 급격히 변화되는 것을 방지하여 상기 풍력발전기(A) 전체가 급격하게 회동되는 것을 방지할 수 있는 감쇠(damping)효과가 나타난다.As a result, a damping effect may be prevented that the pressure inside the floating body B may be rapidly changed to prevent the entire wind turbine A from being suddenly rotated.
또한, 상기 공기유출입부(22)를 통해 유입 및 배출되는 공기의 속도가 높아지므로, 상기 공기유출입부(22)에 위치하여 가동되는 하기의 에어터빈부(24)의 가동효율을 극대화 할 수 있다.In addition, since the speed of the air flowing in and out through the air inlet and outlet 22 increases, it is possible to maximize the operating efficiency of the air turbine unit 24 which is located and operated in the air outlet and outlet 22. .
다음으로, 상기 해수유출입부(23)는, 상기 바디부(21)의 하단에 형성되고, 해수의 유입 및 배출이 용이하게 마련되는 관통구가 마련된다.Next, the seawater inflow and outflow portion 23 is formed at the lower end of the body portion 21, and is provided with a through hole that is easy to enter and discharge seawater.
상기 해수유출입부(23)는, 상기 바디부(21)의 하단에 형성되어, 해수의 유입 및 배출 속도를 높일 수 있는 형태라면 어떠한 형태로도 구성될 수있다.The seawater inflow and outflow portion 23 is formed at the lower end of the body portion 21, and may be configured in any form as long as it can increase the rate of introduction and discharge of seawater.
보다 바람직하게는, 상기 바디부(21)의 하단의 양측면으로 관통구가 형성된다.More preferably, through holes are formed at both side surfaces of the lower end of the body portion 21.
상기 바디부(21) 하단의 양측면으로 관통구가 형성됨으로 인해, 상기 해수의 유동을 용이하게 할 수 있다. 즉, 마주보는 2개의 홀이 형성되어 상기 해수의 유동을 용이하게 한다.Since the through holes are formed at both side surfaces of the lower end of the body portion 21, it is possible to facilitate the flow of the sea water. That is, two holes facing each other are formed to facilitate the flow of the seawater.
이때, 상기 관통구가 2개를 초과하여 형성되면, 구조적으로 강도가 크게 저하되어 내구성이 약해질 수 있다.At this time, if more than two through-holes are formed, the strength may be structurally greatly reduced and durability may be weakened.
또한, 상기 관통구가 2개를 초과하여 형성되면, 유입되는 상기 해수의 흐름에 와류가 형성되어, 상기 해수의 흐름을 오히려 방해할 수 있어, 높은 유속에 의해 가동효율이 상승하는 하기의 수력터빈부(25)의 효율을 오히려 낮출 수 있으므로, 상기한 바와 같이 구성되는 것이 바람직하다.In addition, if more than two through-holes are formed, vortices are formed in the flow of the incoming seawater, which can rather hinder the flow of the seawater. Since the efficiency of the part 25 can be lowered rather, it is preferable to be comprised as mentioned above.
상기 관통구의 수평방향을 기준으로 중심부에는, 상방으로 개방된 형태의 유출입홀(231)이 마련된다.An outflow hole 231 having an open shape is provided at a central portion of the through hole in a horizontal direction.
상기 유출입홀(231)을 통해 상기 해수가 상기 바디부(21)의 내부로 유입 및 배출된다.The seawater flows into and out of the body portion 21 through the outflow hole 231.
이때, 상기 유출입홀(231)은 상기 관통구의 직경에 비해 작은 직경으로 형성되어, 상기 해수가 상기 유출입홀(231)을 통해 상기 바디부 내부로 유입 및 배출 될 때, 상기 해수의 유속을 극대화 할 수 있다.At this time, the outflow hole 231 is formed in a smaller diameter than the diameter of the through hole, when the seawater is introduced into and discharged into the body portion through the outflow hole 231, to maximize the flow rate of the seawater Can be.
물론, 상기 해수유출입부(23) 및 상기 유출입홀(231)은 상기 바디부의 하단부에 형성되며, 상시 해수에 잠긴 상태로 유지될 수 있게 위치되는 것이 바람직하다.Of course, the seawater inflow and outflow portion 23 and the outflow hole 231 is formed at the lower end of the body portion, it is preferably positioned so that it can be kept submerged in the sea water at all times.
다음으로, 상기 에어터빈부(24)는, 상기 공기유출입부(22)에 형성되어 상기 부체(B)의 히브(heave)운동에 의해 유입 및 배출되는 상기 공기에 의해 가동되어 동력을 발생시킬 수 있게 마련된다.Next, the air turbine portion 24 is formed in the air inlet and outlet 22 and is operated by the air introduced and discharged by the heave movement of the floating body B to generate power. It is arranged to be.
이때, 상기 에어터빈부(24)는, 상기 공기유출입부(22)를 통해 꾸준히 반복되어 유입 및 배출되는 공기에 의해 일방향으로 회전될 수 있는 블레이드가 형성되어 가동 효율을 극대화 하는 것이 바람직하다.At this time, the air turbine unit 24, it is preferable that the blade is rotated in one direction by the air flowing in and out steadily repeated through the air inlet and outlet 22 is formed to maximize the operating efficiency.
다음으로, 상기 수력터빈부(25)는, 상기 해수유출입부(23)에 형성되어 상기 해수의 유입 및 배출에 의해 가동되어 에너지를 생성시킬 수 있게 마련된다.Next, the hydraulic turbine portion 25 is formed in the seawater inflow and outflow portion 23 is provided to operate by the inflow and discharge of the seawater to generate energy.
구체적으로, 상기 수력터빈부(25)는, 상기 유출입홀(231)에 형성되어, 높은 유속으로 유입 및 배출되는 상기 해수에 의해 가동된다.Specifically, the hydraulic turbine portion 25 is formed in the outflow hole 231, and is operated by the seawater introduced and discharged at a high flow rate.
이때, 상기 수력터빈부(25)는, 상기 에어터빈부(24)의 블레이드와 마찬가지로 유입 및 배출되는 상기 해수에 의해 일방향으로만 회전되는 블레이드가 마련되어 가동효율을 높이는 것이 바람직하다.At this time, the hydraulic turbine portion 25, like the blades of the air turbine portion 24 is preferably provided with a blade which is rotated in one direction only by the sea water introduced and discharged to increase the operating efficiency.
상기 부체(B) 내부로 지속적으로 반복되어 유입 및 배출되는 상기 공기 및 해수를 이용하여 상기 에어터빈부(24) 및 수력터빈부(25)가 지속적으로 가동될 수 있으므로, 상기 풍력발전기(A)에 의한 에너지 생성 외에 지속적인 추가 에너지의 생성이 가능하다.Since the air turbine unit 24 and the hydraulic turbine unit 25 can be continuously operated by using the air and the sea water continuously introduced into and out of the floating body B, the wind generator A In addition to the energy generated by, it is possible to generate continuous additional energy.
이때, 상기 해수의 파도의 세기에 의해 상기 부체(B)의 상방 및 하방으로의 움직임 정도가 결정되고, 이에 따라 상기 공기 및 해수의 유입 및 배출시의 유속 및 유량이 결정되므로, 밤낮, 계절 등의 자연 조건에 의해 상기 에너지의 생성 효율이 달라질 수 있다.At this time, the degree of movement up and down of the floating body (B) is determined by the intensity of the wave of the sea water, and thus the flow rate and flow rate during the inflow and discharge of the air and sea water is determined, day and night, season, etc. The production efficiency of the energy may vary depending on the natural conditions of the.
이를 해결하기 위해, 공압생성부(1)가 더 마련되어, 상기 에어터빈부(24)를 통해 발생되는 에너지량을 제어할 수 있다.In order to solve this problem, the pneumatic generating unit 1 is further provided, and the amount of energy generated through the air turbine unit 24 can be controlled.
먼저, 상기 공압생성부(1)는, 상기 부체(B) 내부에 형성되고, 상기 부체(B)의 히브(heave)운동을 통해 유입 및 배출되는 공기를 선택적으로 압축하여 저장하고, 압축 된 상기 공기를 기설정된 조건에 맞춰 배출하여 상기 에어터빈부(24)를 가동시킬 수 있다.First, the pneumatic generator (1) is formed inside the body (B), and selectively compresses and stores the air introduced and discharged through the heave (heave) movement of the body (B), the compressed The air turbine unit 24 may be operated by discharging air according to preset conditions.
구체적으로, 상기 공압생성부(1)는, 도 5에 도시된 바와 같이, 공기압축부(11), 저장탱크부(12), 공압배출부(13), 열공급부(14)를 포함하여 구성된다.Specifically, as shown in FIG. 5, the pneumatic generation unit 1 includes an air compression unit 11, a storage tank unit 12, a pneumatic discharge unit 13, and a heat supply unit 14. do.
먼저, 상기 공기압축부(11)는, 상기 부체(B) 내부에 마련되어, 상기 부체(B) 내부로 유입되는 공기를 선택적으로 압축한다.First, the air compression unit 11 is provided in the floating body B, and selectively compresses the air flowing into the floating body B.
이때, 상기 공기압축부(11)는, 상기 부체(B) 내부에 형성되되, 상기 공기유출입부(22)와 마찬가지로 해수면이 닿지 않는 높이로 형성되는 것이 바람직하다.At this time, the air compression unit 11 is formed in the floating body (B), it is preferable to be formed at a height that does not reach the sea surface like the air outflow and inlet (22).
상기 공기압축부(11)를 통해 공기를 압축하는 조건은, 에너지의 수요가 적은 시간대를 이용하여 압축을 실시할 수 있다.In the condition of compressing air through the air compressor 11, the air may be compressed using a time zone in which energy demand is low.
또한, 많은 바람이 불어 상기 풍력발전기(A)의 에너지 생성량이 높아지거나 높은 파도로 인해 상기 파력발전부(2)의 에너지 생성량이 높아졌을 때, 압축을 실시할 수 있다.In addition, when a large amount of wind blows due to a high energy generation amount of the wind turbine (A) or a high wave due to the high energy generation amount of the wave power generation unit 2 can be compressed.
이를 위해, 상기 공기압축부(11)는, 하기의 제어부(미도시)에 의해 제어되는 밸브(미도시)가 더 마련되는 것이 바람직하다.To this end, it is preferable that the air compressor 11 further includes a valve (not shown) controlled by a control unit (not shown).
상기한 바와 같이, 선택적으로 상기 공기를 압축하는 이유는, 바람이 작거나 파도가 낮을 때, 상기 바디부(21) 내부의 공기를 압축하게 되면, 상기 공기유출입부(22)를 통해 배출되는 공기의 유속이 저하되어, 상기 에어터빈부(24)의 에너지 생성효율이 크게 떨어질 수 있기 때문이다.As described above, the reason for selectively compressing the air is that, when the wind is low or the wave is low, when the air inside the body 21 is compressed, the air discharged through the air outlet 22 This is because the flow velocity of the gas is lowered, and the energy generation efficiency of the air turbine unit 24 may be greatly reduced.
따라서 상기 에어터빈부(24)의 에너지 생성량이 기설정된 기준 이상일 때에만 상기 공기압축부(11)를 통해 압축을 실시하는 것이 바람직하다.Therefore, it is preferable to perform compression through the air compressor 11 only when the energy generation amount of the air turbine unit 24 is equal to or greater than a predetermined reference value.
상기 공기압축부(11)를 통해 압축되는 공기의 압축효율을 높이기 위해서는, 상기 부체(B)가 파도에 의해 하방으로 움직일 때, 유입되는 해수에 의해, 상기 부체(B) 내부에 압력이 높아지므로, 높아지는 상기 압력에 의해 급격히 배출되는 상기 공기를 포집하여 압축공기를 형성할 수 있다.In order to increase the compression efficiency of the air compressed through the air compression unit 11, when the floating body B moves downward by the waves, the pressure inside the floating body B increases due to the incoming seawater. In addition, the compressed air discharged rapidly by the increased pressure may form compressed air.
또한, 상기 공기압축부(11)에 팬(fan)이 형성되어 상기 공기의 압축 효율을 높이거나 실린더(cylinder)가 형성되어 상기 공기의 압축 효율을 높일 수 있다.In addition, a fan is formed in the air compressor 11 to increase the compression efficiency of the air or a cylinder is formed to increase the compression efficiency of the air.
상기 공기압축부(11)는, 상기 공기의 압축을 효과적으로 할 수 있는 시스템이라면 어떠한 형태로도 구성될 수 있다.The air compression unit 11 may be configured in any form as long as the system can effectively compress the air.
다음으로, 상기 공기압축부(11)를 통해 압축된 상기 공기는 연결된 관을 통해 하기의 저장탱크부(12)로 저장된다.Next, the air compressed through the air compression unit 11 is stored in the storage tank unit 12 below through a connected pipe.
상기 저장탱크부(12)는, 높은 압력의 가스를 저장할 수 있는 탱크로서, 상기 공기압축부(11)를 통해 압축된 공기를 저장한다.The storage tank part 12 is a tank capable of storing a gas of high pressure, and stores the compressed air through the air compression part 11.
이때, 상기 관 및 상기 저장탱크부(12)는, 해수에 노출될 수 있도록 보다 낮은 위치에 형성되는 것이 바람직하다.At this time, the pipe and the storage tank 12 is preferably formed at a lower position to be exposed to sea water.
바람직하게는, 상기 부체(B)의 하단에 위치하여 해수에 노출되도록 위치하는 것이 바람직하다.Preferably, it is preferably located at the lower end of the floating body (B) to be exposed to sea water.
이는, 해수의 낮은 온도를 이용하여 상기 공기의 압축 효율을 높이기 위함이다.This is to increase the compression efficiency of the air by using the low temperature of the sea water.
또한, 상기 저장탱크부(12)는, 상기 관을 통해 외부로 연결되어, 상기 풍력발전기(A)의 외부에 별도로 더 마련될 수 있다.In addition, the storage tank unit 12 is connected to the outside through the tube, it may be further provided separately to the outside of the wind turbine (A).
이는, 보다 높은 용량의 상기 저장탱크부(12)를 구성하기 위함으로, 상기 공기의 압축효율을 높일 수 있고, 상기 공기의 압축 저장용량을 높이기 위한 구성이라면 어떠한 형태로도 구성될 수 있다.This, in order to configure the storage tank portion 12 of a higher capacity, it is possible to increase the compression efficiency of the air, may be configured in any form as long as the configuration for increasing the compressed storage capacity of the air.
다음으로, 상기 공압배출부(13)는, 단부가 상기 바디부(21) 내부로 연결되어, 상기 저장탱크부(12)에 저장된 공기가 상기 바디부(21) 내부로 선택적으로 배출되어 상기 에어터빈부(24)의 가동효율을 높일 수 있게 마련된다.Next, the pneumatic discharge portion 13, the end is connected to the inside of the body portion 21, the air stored in the storage tank portion 12 is selectively discharged into the body portion 21 to the air The operation efficiency of the turbine unit 24 is provided.
이때, 상기 공압배출부(13)를 통해 배출되는 상기 공기는 제어부(미도시)에 의해 제어되어 선택적으로 배출된다.In this case, the air discharged through the pneumatic discharge unit 13 is controlled by a controller (not shown) and selectively discharged.
구체적으로, 상기 제어부(미도시)에서는, 에너지수요가 높은 시간대에 상기 공기의 배출량을 높여 상기 에어터빈부(24)의 가동률을 높이고, 에너지수요가 낮은 시간대에는 상기 공기의 배출량을 제한하여 상기 에어터빈부(24)의 가동률을 낮출 수 있다.In detail, the control unit (not shown) increases the discharge rate of the air at a time when energy demand is high, thereby increasing the operation rate of the air turbine unit 24, and restricting the discharge of the air at a time when the energy demand is low. The operation rate of the turbine part 24 can be reduced.
또한, 파도가 높아 상기 수력터빈부(25)를 통해 생성되는 에너지량이 많을 시에는, 상기 공기의 배출량을 제한하여 상기 에어터빈부(24)의 가동률을 낮추고, 파도가 낮아 상기 수력터빈부(25)를 통해 생성되는 에너지량이 적을 시에는, 압축된 상기 공기를 배출하여 상기 에어터빈부(24)의 가동률을 높이는 형태로 제어할 수 있다.In addition, when the amount of energy generated through the hydraulic turbine unit 25 is high due to high waves, the operation rate of the air turbine unit 24 is lowered by limiting the amount of air discharged, and the hydraulic turbine unit 25 is low due to low waves. When the amount of energy generated through) is small, the compressed air may be discharged to control the air turbine 24 to increase the operation rate.
이를 통해, 에너지의 생산효율을 높이며 생산량을 일정하게 유지할 수 있다.Through this, it is possible to increase the production efficiency of energy and keep the output constant.
상기 제어부(미도시)는, 기설정된 조건에 따라 상기 공기압축부(11) 및 상기 공압배출부(13)를 제어할 수 있는 형태라면 어떠한 형태로도 구성될 수 있다.The control unit (not shown) may be configured in any form as long as it can control the air compressor 11 and the pneumatic discharge unit 13 according to a predetermined condition.
일예로, 외부에서 콘솔, 스마트단말기 등의 외부단말기를 이용하여 상기 공기의 압축 및 배출 조건을 기설정하여 상기 공기압축부(11) 및 공압배출부(13)를 제어할 수 있다.For example, the air compressor 11 and the pneumatic discharge unit 13 may be controlled by presetting compression and discharge conditions of the air using an external terminal such as a console or a smart terminal from the outside.
다음으로, 상기 열공급부(14)는, 상기 공압배출부(13)와 인접하게 마련되어, 열을 발생시킨다.Next, the heat supply part 14 is provided adjacent to the pneumatic discharge part 13 to generate heat.
이를 통해, 상기 공기 배출 시, 주변 온도가 낮아지는 것을 방지할 수 있다. 구체적으로, 상기 공기가 상기 공압배출부(13)를 통해 배출될 때에는, 압축되어 있던 상기 공기의 압력이 팽창됨과 동시에, 상기 공기의 흡열반응에 의해, 주변온도가 크게 낮아지므로, 상기 열공급부(14)를 통해 열을 발생시켜 주변시설의 온도가 떨어지는 것을 방지할 수 있다.Through this, when the air is discharged, it is possible to prevent the ambient temperature is lowered. Specifically, when the air is discharged through the pneumatic discharge unit 13, the pressure of the compressed air is expanded and at the same time the ambient temperature is significantly lowered by the endothermic reaction of the air, the heat supply unit ( 14) can generate heat to prevent the temperature of the surrounding facilities from falling.
또한, 상기 열공급부(14)를 통해 열이 발생되어, 상기 바디부(21) 내부로 배출되는 상기 공기의 팽창속도를 높이고, 상기 공기의 유속을 높일 수 있어, 상기 에어터빈부(24)의 가동효율을 극대화 할 수 있다.In addition, heat is generated through the heat supply part 14 to increase the expansion rate of the air discharged into the body 21 and to increase the flow rate of the air, so that the air turbine part 24 The operation efficiency can be maximized.
이하에서는 상기와 같이 구성되는 발명의 작용에 대하여 설명한다.Hereinafter, the operation of the invention configured as described above will be described.
먼저, 본 발명에 따른 풍력 및 파력 발전 시스템은, 스파형 부체(spar buoy)가 하부에 형성되어, 해수면에 부유식으로 형성된다.First, in the wind and wave power generation system according to the present invention, a spar buoy (spar buoy) is formed at the bottom, floating on the sea surface.
이에 따라, 상기 부체(B)가 일체로 형성된 상기 풍력발전기(A)는 해수면에 형성되는 파도에 의해, 상방 및 하방(heave)으로 움직인다.Accordingly, the wind generator A, in which the floating body B is integrally formed, moves upward and downward by waves formed on the sea surface.
상기 부체(B)가 상방 및 하방으로 움직일 때, 상기 부체(B) 내부에는 공기 및 해수가 유입 및 배출된다.When the body B moves upward and downward, air and sea water are introduced and discharged into the body B.
구체적으로, 상기 부체(B)가 상방으로 움직일 때, 상기 해수가 배출되며, 상기 공기가 유입되고, 상기 부체(B)가 하방으로 움직일 때, 상기 해수가 유입되며, 상기 공기가 배출된다.Specifically, when the floating body (B) moves upward, the sea water is discharged, the air is introduced, when the floating body (B) moves downward, the sea water is introduced, the air is discharged.
상기 부체(B)가 하방으로 움직일 때, 상기 해수는 상기 부체(B)의 하부로 유입되어, 상기 해수유출입부(23)를 통해 상기 바디부(21) 내부로 유입되거나 배출된다.When the floating body B moves downward, the sea water flows into the lower portion of the floating body B, and is introduced into or discharged into the body portion 21 through the seawater inflow and outflow portion 23.
구체적으로, 상기 부체(B)가 하방으로 움직일 때, 상기 해수는 상기 해수유출입부(23)를 통해 유입되어 상기 유출입홀(231)을 통해 상기 바디부(21) 내부로 유입되고, 상기 바디부(21) 내부의 공기는 상기 공기유출입부(22)를 통해 외부로 배출된다.Specifically, when the floating body (B) moves downward, the seawater is introduced through the seawater inflow and outflow (23) to flow into the body portion 21 through the outflow hole 231, the body portion The air inside 21 is discharged to the outside through the air outlet 22.
이때, 상기 해수가 상기 바디부(21) 내부로 유입되되, 상기 바디부(21)의 상단부에 형성되는 상기 공기유출입부(22) 및 상기 에어터빈부(24)에 닿지 않도록 상기 바디부(21)의 위치 및 형태(높이 등)가 구성되어야 한다.At this time, the sea water is introduced into the body portion 21, the body portion 21 so as not to contact the air outlet 22 and the air turbine portion 24 formed in the upper end of the body portion 21 ) Location and shape (height, etc.) shall be configured.
상기 부체(B)가 상방으로 움직일 때, 상기 해수는 상기 유출입홀(231) 및 해수유출입부(23)를 통해 배출되고, 상기 공기는 상기 공기유출입부(22)를 통해 상기 바디부(21) 내부로 유입된다.When the floating body B moves upward, the sea water is discharged through the outflow hole 231 and the seawater inflow and outflow part 23, and the air is the body part 21 through the air inflow and outflow part 22. Flows inside.
이때, 상기 유출입홀(231)에는 상기 수력터빈부(25)가 마련되어, 상기 해수의 유입 및 배출에 의해 가동되고, 상기 공기유출입부(22)에는 상기 에어터빈부(24)가 마련되어, 상기 공기의 유입 및 배출에 의해 가동된다.In this case, the hydraulic turbine portion 25 is provided in the outflow hole 231, and is operated by inflow and discharge of the seawater, and the air turbine portion 24 is provided in the air outlet portion 22. Is activated by the inflow and outflow of
이때, 상기 수력터빈부(25) 및 상기 에어터빈부(24)는 유체의 흐름에 상관없이 일방향으로 회전될 수 있는 블레이드가 형성되어 가동 효율을 높인다.At this time, the hydraulic turbine portion 25 and the air turbine portion 24 has a blade which can be rotated in one direction irrespective of the flow of the fluid is formed to increase the operating efficiency.
에너지의 수요가 적은 시간대이거나 많은 바람이 불고 파도가 높아져 풍력발전기(A) 및 파력발전부(2)의 에너지 생산량이 높을 때에는 상기 바디부(21) 내부의 공기를 압축하여 저장한다.When the demand for energy is low, or when a lot of wind is blowing and the waves are high, the energy of the wind generator A and the wave power generator 2 is high, and the air inside the body 21 is compressed and stored.
상기 공기를 압축하여 저장하기 위해, 먼저, 상기 공기압축부(11)가 상기 바디부(21) 내부의 공기를 압축한다.In order to compress and store the air, first, the air compression unit 11 compresses the air inside the body portion 21.
상기 공기압축부(11)에서는, 팬 또는 실린더가 형성되어, 상기 공기를 압축할 수 있고, 상기 부체(B)가 하방으로 움직일 때, 상기 공기가 강한 압력에 의해 배출되는 것을 포집하여 상기 공기의 압축 효율을 높일 수 있다.In the air compression unit 11, a fan or cylinder is formed to compress the air, and when the floating body B moves downward, the air is collected by the high pressure to collect the air. The compression efficiency can be improved.
압축 된 상기 공기는, 상기 저장탱크부(12)로 저장되어, 선택적으로 상기 공압배출부(13)를 통해 상기 바디부(21) 내부로 공급된다.The compressed air is stored in the storage tank part 12 and is selectively supplied into the body part 21 through the pneumatic discharge part 13.
파도가 낮아 상기 부체(B)가 상방 및 하방으로 움직이는 정도가 크지 않아, 상기 수력터빈부(25)에 의한 에너지 발생이 미미할 경우에는, 상기 제어부(미도시)에 의해 제어되어, 상기 저장탱크부(12)에 저장되어 있는 공기를 상기 공압배출부(13)를 통해 배출하여 상기 에어터빈부(24)의 가동률을 높일 수 있다.When the wave B is low and the degree of movement of the floating body B upwards and downwards is not great, and the generation of energy by the hydraulic turbine unit 25 is small, it is controlled by the control unit (not shown). Air stored in the (12) can be discharged through the pneumatic discharge unit 13 to increase the operation rate of the air turbine unit 24.
또한, 상기 제어부(미도시)에서는 상기 에너지의 수요에 맞춰 상기 공압배출부(13)를 제어하여 상기 에어터빈부(24)의 가동률을 높일 수 있다.In addition, the control unit (not shown) may increase the operation rate of the air turbine unit 24 by controlling the pneumatic discharge unit 13 according to the demand of the energy.
또한, 상기 공기유출입부(22) 및 유출입홀(231)이 상기 바디부(21)의 직경에 비해 협소하게 형성되므로 상기 공기 및 해수의 유출입이 원활하지 못하므로, 상기 부체(B) 내부의 압력변화 정도가 낮아져 파도에 의한 급격한 흔들림을 감쇠(damping)할 수 있다. 특히, 상부 및 하부로 움직이는 히브(heave)운동을 감쇠 할 수 있다.In addition, since the air inlet and outlet 22 and the outlet inlet 231 are formed narrower than the diameter of the body 21, the inflow and outflow of the air and sea water is not smooth, the pressure inside the body (B) The degree of change can be lowered to dampen sudden shaking caused by waves. In particular, it is possible to attenuate the movement of the heave (heave) moving up and down.
또한 상기 저장탱크부 등의 구성에 의해, 높은 하중이 상기 풍력발전기의 하단에 형성되어 안정적인 무게중심을 형성하므로 상기 히브(heave)운동 외의 병진운동 및 회전운동을 감쇠할 수 있어, 안정적인 풍력발전 시스템을 유지할 수 있다.In addition, by the configuration of the storage tank, such as a high load is formed at the bottom of the wind turbine to form a stable center of gravity, it is possible to damp the translational and rotational motion other than the heave (heave) movement, stable wind power generation system Can be maintained.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, the technical configuration of the present invention described above can be understood by those skilled in the art that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the above-described embodiments are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and their All changes or modifications derived from an equivalent concept should be construed as being included in the scope of the present invention.

Claims (4)

  1. 스파형 부체로 구성되어, 해상에 부유식으로 마련되는 풍력발전기에 있어서,In the wind turbine is composed of a sparse floating body, floating on the sea,
    상기 부체 내부에 형성되고, 상기 부체의 상방 및 하방으로의 움직임을 통해 유입 및 배출되는 해수에 의해 작동되는 터빈이 마련되는 파력발전부; 및 A wave power generation unit formed inside the float and provided with a turbine operated by seawater introduced and discharged through the upward and downward movement of the float; And
    상기 부체 내부에 형성되고, 상기 부체의 상방 및 하방으로의 움직임을 통해 유입 및 배출되는 공기를 선택적으로 압축 및 배출하는 공압생성부;를 포함하는 것을 특징으로 하는 풍력 및 파력 발전 시스템.And a pneumatic generation unit formed inside the float and selectively compressing and discharging the air introduced and discharged through the upward and downward movement of the floating body.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 파력발전부는,The wave power generation unit,
    원통형의 바디부;Cylindrical body portion;
    상기 바디부의 상단에 형성되어 외부 공기가 상기 바디부로 유입 및 배출 될 수 있도록 상기 부체 외부로 단부가 형성되는 공기유출입부;An air outlet portion formed at an upper end of the body portion and having an end portion formed outside the float so that external air can be introduced into and discharged from the body portion;
    상기 바디부의 하단에 형성되고, 해수의 유입 및 배출이 용이하게 관통홀이 마련되는 해수유출입부;It is formed on the lower end of the body portion, the seawater inflow and outflow portion is provided with a through hole to facilitate the introduction and discharge of seawater;
    상기 공기유출입부에 형성되어 상기 공기의 유입 및 배출에 의해 가동되어 동력을 발생시키는 에어터빈부;An air turbine part formed at the air outlet part to generate power by being operated by the inlet and outlet of the air;
    상기 해수유출입부에 형성되어 상기 해수의 유입 및 배출에 의해 가동되어 동력을 발생시키는 수력터빈부;를 포함하는 것을 특징으로 하는 풍력 및 파력 발전 시스템.And a hydroelectric turbine unit formed at the seawater inlet and outlet to generate power by being operated by the inflow and outflow of the seawater.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 공압생성부는,The pneumatic generation unit,
    상기 부체 내부에 마련되어, 상기 부체 내부로 유입되는 공기를 압축하는 공기압축부;An air compression unit provided inside the float to compress air introduced into the float;
    상기 공기압축부를 통해 압축된 공기를 저장하는 저장탱크부;A storage tank unit for storing the compressed air through the air compression unit;
    단부가 상기 파력발전부 내부로 연결되어, 선택적으로 상기 저장탱크부에 저장된 공기가 배출되는 공압배출부;An end portion connected to the wave power generation unit, and a pneumatic discharge unit selectively discharged air stored in the storage tank unit;
    상기 공압배출부와 인접하게 마련되고, 열이 발생되어, 상기 공기 배출 시, 주변 온도가 낮아지는 것을 방지하고, 배출되는 공기의 유속을 높일 수 있게 마련되는 열공급부;를 포함하는 것을 특징으로 하는 풍력 및 파력 발전 시스템.And a heat supply unit provided adjacent to the pneumatic discharge unit and generating heat to prevent the ambient temperature from being lowered when the air is discharged, and to increase the flow rate of the discharged air. Wind and wave power generation systems.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 압축된 공기는 관을 통해 상기 저장탱크부로 이동하되, 상기 관은 해수에 위치시켜 낮은 온도를 유지하여 압축효율을 높이는 것을 특징으로 하는 풍력 및 파력 발전 시스템.The compressed air is moved to the storage tank through the pipe, the pipe is located in the sea water, wind and wave power generation system, characterized in that to maintain a low temperature to increase the compression efficiency.
PCT/KR2018/001781 2017-05-26 2018-02-12 Wind and wave power generation system WO2018216881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0065213 2017-05-26
KR1020170065213A KR101989482B1 (en) 2017-05-26 2017-05-26 Wind and wave power generation system

Publications (1)

Publication Number Publication Date
WO2018216881A1 true WO2018216881A1 (en) 2018-11-29

Family

ID=64396559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001781 WO2018216881A1 (en) 2017-05-26 2018-02-12 Wind and wave power generation system

Country Status (2)

Country Link
KR (1) KR101989482B1 (en)
WO (1) WO2018216881A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397562A (en) * 2019-08-19 2019-11-01 上海交通大学 A kind of floating blower model wire harness device
CN115163410A (en) * 2022-05-30 2022-10-11 广东海洋大学 Wind array turbine dual-mode power generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322975A (en) * 2001-04-25 2002-11-08 Aasunetsuto Internatl:Kk Power generation device utilizing wave and tidal power
JP2006097633A (en) * 2004-09-30 2006-04-13 Toyo Sekkei Kogyo Kk Wave power generation device
KR101179668B1 (en) * 2010-12-23 2012-09-10 한국지질자원연구원 Compressed air storage and electricity generating system connected with offshore wind farm and Compressed air storage tank
KR101204992B1 (en) * 2010-09-27 2012-11-26 이달은 Floating wind turbine installations
KR20140015076A (en) * 2012-07-27 2014-02-06 삼성테크윈 주식회사 Energy storage system and method for storing energy and reharvesting the stored energy using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0907132D0 (en) 2009-04-24 2009-06-03 Statoilhydro Asa Wave energy extraction
KR20150046509A (en) * 2013-10-22 2015-04-30 대우조선해양 주식회사 Department Fluid Motion Reduction Device of Marine Wind Generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322975A (en) * 2001-04-25 2002-11-08 Aasunetsuto Internatl:Kk Power generation device utilizing wave and tidal power
JP2006097633A (en) * 2004-09-30 2006-04-13 Toyo Sekkei Kogyo Kk Wave power generation device
KR101204992B1 (en) * 2010-09-27 2012-11-26 이달은 Floating wind turbine installations
KR101179668B1 (en) * 2010-12-23 2012-09-10 한국지질자원연구원 Compressed air storage and electricity generating system connected with offshore wind farm and Compressed air storage tank
KR20140015076A (en) * 2012-07-27 2014-02-06 삼성테크윈 주식회사 Energy storage system and method for storing energy and reharvesting the stored energy using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397562A (en) * 2019-08-19 2019-11-01 上海交通大学 A kind of floating blower model wire harness device
CN115163410A (en) * 2022-05-30 2022-10-11 广东海洋大学 Wind array turbine dual-mode power generation system
CN115163410B (en) * 2022-05-30 2024-04-16 广东海洋大学 Wind array turbine dual-mode power generation system

Also Published As

Publication number Publication date
KR101989482B1 (en) 2019-09-30
KR20180129338A (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2018216881A1 (en) Wind and wave power generation system
WO2022161127A1 (en) Ocean buoy for complementary power generation and supply by using solar, wind, and ocean current energy and method therefor
WO2023134270A1 (en) Net cage culture platform comprehensively utilizing marine new energy
CN102165183A (en) Improvements in ocean wave energy extraction
WO2015176345A1 (en) Vertical shaft wave generator
CN111120208B (en) Hydraulic constant-pressure energy storage and release system and intelligent regulation and control method
CN1103746A (en) Chimney
CN112780492A (en) Offshore wind energy storage and transportation system for pneumatic power generation
CN115140257A (en) Honeycomb-shaped wind and wave combined power generation platform
CN113931786B (en) Hydraulic wave energy power generation device and offshore wind wave power generation system
CN105020090A (en) Buoyancy power generating device
WO2013048007A2 (en) High-efficiency tidal current generator, and hybrid generation system
CN210526815U (en) Tide-testing instrument winding and unwinding device
CN105626369A (en) Buoyancy power generation device
WO2020050675A1 (en) Conduit turbine for supporting conduit of water wheel rotational body, and hydroelectric generator having conduit turbines serially provided in multiple levels
CN101806274B (en) Piston cylinder type tidal power generating set
WO2020145574A1 (en) Power generation apparatus
WO2017122898A1 (en) Buoyancy-driven power generation apparatus
CN210284529U (en) Multi-stage power supply buoy with central pipe
CN211777805U (en) Hydraulic constant-pressure energy storage and release system
WO2019098664A1 (en) High altitude atmospheric energy storing apparatus
JP2009167925A (en) Hydraulic power generation method and device using tidal energy
CN215946789U (en) Sewage purification device for river regulation
CN215109274U (en) Offshore wind energy storage and transportation system for pneumatic power generation
CN214007401U (en) Water energy utilization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806624

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18806624

Country of ref document: EP

Kind code of ref document: A1