WO2020111335A1 - Method and device for monitoring ring-type optical network - Google Patents

Method and device for monitoring ring-type optical network Download PDF

Info

Publication number
WO2020111335A1
WO2020111335A1 PCT/KR2018/015038 KR2018015038W WO2020111335A1 WO 2020111335 A1 WO2020111335 A1 WO 2020111335A1 KR 2018015038 W KR2018015038 W KR 2018015038W WO 2020111335 A1 WO2020111335 A1 WO 2020111335A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
monitoring
optical
network
code
Prior art date
Application number
PCT/KR2018/015038
Other languages
French (fr)
Korean (ko)
Inventor
김상우
이선익
김가윤
송명훈
임훈
조범근
이종민
Original Assignee
주식회사 에치에프알
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에치에프알 filed Critical 주식회사 에치에프알
Publication of WO2020111335A1 publication Critical patent/WO2020111335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration

Definitions

  • the present invention relates to a ring-type optical network monitoring method and apparatus.
  • a base station uses a DU (Digital Unit) (or a BaseBand Unit) (hereinafter referred to as'DU' or'BBU') and a RU (Remote Unit) (or Remote Radio Head).
  • DU and RU are separated and installed separately.
  • DUs are centralized in one place, and multiple RUs are connected to one DU.
  • WDM wavelength division multiplexing
  • the operator in order to grasp the installation location and structure of the remote device, the operator must directly grasp the location of the remote device and the ring-type network structure, and if the ring-type network structure is changed, it is difficult to directly modify and redistribute the ring-type network structure diagram. There was. Due to this, the information of the ring-type network structure in the field is less reliable, and there is a problem in that the service operation cost increases even in continuous management.
  • This embodiment has a main purpose in identifying a remote device in a ring-type optical network using a WDM method and determining a path for transmitting and receiving signals through switching.
  • this embodiment has a main purpose to automatically grasp the structure of a ring-type optical network including the location of a remote device.
  • a method for monitoring a ring-type optical network by an in-house device includes generating a monitoring signal, converting the generated monitoring signal into an optical signal, and transmitting the received optical signal. Converting to an electrical signal, and analyzing the converted electrical signal, the monitoring signal includes a bit error rate (BER) code, forward error correction (FEC) code, time code, and ID .
  • BER bit error rate
  • FEC forward error correction
  • a domestic device for monitoring a ring-shaped optical network includes: a processor for generating a monitoring signal and analyzing a converted electrical signal, converting the generated monitoring signal into an optical signal, and transmitting the converted signal; 1 digital optical transceiver, and a second digital optical transceiver for receiving the optical signal and converting it into the electrical signal, the monitoring signal is a BER (Bit Error Rate) code, FEC (Forward Error Correction) code, Time code, And an ID.
  • BER Bit Error Rate
  • FEC Forward Error Correction
  • the device in the company can detect the abnormality of the line such as disconnection or twist by monitoring the optical power received in both directions, and operating the switch to reflect this to continuously operate the communication system. It can be done. Further, according to the present embodiment, even if the operator does not manually measure the distance to the remote device by using an OTDR (Optical Time Domain Reflectometer), it is possible to grasp the distance from the domestic device to the remote device.
  • OTDR Optical Time Domain Reflectometer
  • FIG. 1 is a diagram illustrating a communication system in which a device in a company and a plurality of remote devices are connected in a ring network structure through an optical path according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart illustrating a device in a domestic company according to an embodiment of the present disclosure
  • FIG. 3 is a view showing the configuration of a device in a domestic company according to an embodiment of the present disclosure
  • FIG. 4 is a view showing a flow of a monitoring signal transmitted and received in a domestic device according to an embodiment of the present disclosure
  • FIG. 5 is a view showing the configuration of a remote device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a communication system in which a device in a company and a plurality of remote devices are connected in a ring-type optical network structure through an optical path according to an embodiment of the present disclosure.
  • a base station of a communication system is divided into a BaseBand Unit (BBU) 110 (hereinafter'BBU') and a Remote Radio Head (RRH) (151, 152, 153, 154) (hereinafter'RRH'). Consists of.
  • BBU 110 is connected to a communication network through a backhaul, and the BBU 110 and RRHs 151, 152, 153, and 154 are connected to each other through a front hole, and RRHs 151, 152, and 153 , 154 is wirelessly connected to a terminal (not shown).
  • signals transmitted between the BBU 110 and the RRHs 151, 152, 153, and 154 are transmitted to a central office terminal (COT) 120 and a plurality of remote terminals (RT) 130. It is relayed through the formed ring type optical network.
  • the domestic device 120 is connected to the BBU 110 to transmit and receive signals through a backhaul, and the remote device 133 is directly connected to each RRH or through a sub-remote device (SRT: Sub-RT) 142 It is connected to RRH (151, 152, 153, 154) and transmits a signal.
  • SRT sub-remote device
  • the domestic device 120 and the plurality of remote devices 130 are connected in a ring shape through one optical path, and the domestic device 120 performs two-way communication with the plurality of remote devices 130.
  • the plurality of remote devices 130 is a passive node composed of passive elements, and distributes signals transmitted from the domestic device 120 or the RRH in such a ring-like network.
  • the domestic device 120 transmits a down-link signal to the remote devices 131, 132, 133, 134 in both directions or one direction, and the remote devices 131, 132, 133, 134
  • the uplink signal is transmitted to the domestic device 120 in both directions or in one direction.
  • the domestic device 120 receives the uplink signal from the remote devices 131, 132, 133, 134 in both directions or one way through the optical path to the distance to each remote device (131, 132, 133, 134). And a section where a failure has occurred.
  • the domestic device 120 may transmit signals in both directions by wavelength division multiplexing a signal to be transmitted to each remote device 131, 132, 133, or 134.
  • Each remote device (131, 132, 133, 134) is provided with a switch therein can use only one of the signals in both directions.
  • the domestic device 120 may have multiple The remote device 130 may receive an uplink signal and each remote device 131, 132, 133, 134 may receive a downlink signal from the domestic device 120.
  • FIG. 2 is a diagram illustrating a flowchart of an in-house device according to an embodiment of the present disclosure.
  • the domestic device generates a monitoring signal for monitoring the structure of the ring-shaped optical network (S210).
  • the monitoring signal includes at least one of a bit error rate (BER) code, a forward error correction (FEC) code for correcting an error, a header for frame synchronization, a time code for distance measurement, and an ID for distinguishing a system and a remote device.
  • BER bit error rate
  • FEC forward error correction
  • At this time, at least two monitoring signals are generated per remote device.
  • the domestic device converts the generated monitoring signal into an optical signal and transmits it (S220). Since the generated monitoring signal is an electrical signal, it is converted into an optical signal using a digital optical transceiver.
  • the converted optical signal has at least two or more wavelengths per remote device, and is separated from the wavelength of the service signal.
  • the service signal is multiplexed only with the wavelength of the service signal, and is output from the optical switch in one direction of both directions of the ring-type optical network.
  • the domestic device receives the light signal reflected from the remote device and converts it into an electrical signal (S230).
  • the reflected optical signal is an optical signal that is reflected by the remote device to the monitoring signal transmitted by the domestic device.
  • the domestic device analyzes the converted electrical signal (S240). First, the device in the domestic company checks the FEC code to determine whether there is an error, and if there is an error, corrects the error. In the absence of an error, the in-house device checks the time code to check the transmission time. Thereafter, the time transmitted by the time code is checked, and a clock counter up to the received time is multiplied by a clock period to obtain a transmission time, and the obtained transmission time is divided by the optical speed to calculate a distance from the domestic device to the remote device. Can be. In addition, the device in the company can confirm whether the network is properly connected by checking the ID.
  • the device in the domestic company may determine that the connection of the network is correct when the transmitted ID and the received ID are the same, but if it is not the same, the network connection may be twisted.
  • the in-house device can monitor cutting and damage in both directions with the power of the received optical signal. That is, when the loss of the received optical signal power exceeds a threshold value or when the received optical signal power is below a reference value, the service can be maintained by changing the direction of the optical switch in view of damage to the optical path.
  • the power of the received optical signal is 0 in both directions, it may be determined that the domestic device does not have a remote device, or even if there is a remote device, the connection between the first port and the second port is switched with each other. .
  • the in-house device calculates the distance to the remote devices using the distance measurement value obtained from a plurality of monitoring signals, and arranges the remote devices in the same direction according to the distance. In addition, after aligning the distance measurement values obtained from the plurality of monitoring signals in the same direction, the difference between the neighboring distance values becomes the distance between the remote devices. As a result, the domestic device can grasp the structure of the ring-type optical network using the order and distance of the aligned remote devices.
  • FIG. 2 it is described that the steps S210 to S240 are sequentially executed, but this is merely illustrative of the technical idea of an embodiment of the present invention.
  • a person having ordinary knowledge in the technical field to which one embodiment of the present invention pertains may execute or change the order described in FIG. 2 without departing from the essential characteristics of one embodiment of the present invention, or one of the processes S210 to S240 Since the above process can be applied in various modifications and variations by executing in parallel, FIG. 2 is not limited to the time series order.
  • the processes illustrated in FIG. 2 can be implemented as computer-readable codes on a computer-readable recording medium.
  • the computer-readable recording medium includes all kinds of recording devices in which data readable by a computer system is stored. That is, the computer-readable recording medium includes magnetic storage media (eg, ROM, floppy disk, hard disk, etc.), optical reading media (eg, CD-ROM, DVD, etc.) and carrier waves (eg, the Internet). Storage).
  • the computer-readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • FIG. 3 is a diagram illustrating a configuration diagram of an in-house device according to an embodiment of the present disclosure.
  • the configuration is divided into a plurality of configurations, but multiple configurations may be integrated and implemented as one configuration, or a single configuration may be divided into multiple configurations.
  • the detailed description will be omitted.
  • the flow of the signal shown in FIG. 3 shows the flow of the optical signal converted from the electrical signal, which will be described below with reference to the optical signal.
  • the domestic device generates at least two monitoring signals per remote device. That is, the device in the domestic company generates at least two monitoring signals 310 and 315 to transmit to the bidirectional, that is, the first port 360 and the second port 365 because the network structure is ring-shaped. At this time, the generated monitoring signals 310 and 315 have different wavelengths.
  • the in-house device may transmit a service signal 320 in addition to the monitoring signals 310 and 315.
  • the service signal 320 is multiplexed through the Mux/DeMux 330, and a direction in which the service signal 320 is to be transmitted is selected in one direction rather than in both directions through the optical switch 340.
  • the service signal 320 may be multiplexed and transmitted through the monitoring signal and Mux/DeMux before transmission.
  • the in-house device decides to transmit the service signal 320 using the first port 360 so that the service signal 320 is transmitted to the Mux/DeMux 350 using the optical switch 340. ). That is, a signal transmitted to the first port 360 transmits a monitoring signal and a service signal, and a signal transmitted to the second port 365 transmits only a monitoring signal.
  • the in-house device may receive signals received from a remote device through the first port 360 and the second port 365.
  • the first port 360 and the second port 365 can receive a signal for monitoring reflected from the remote device, and the other port can receive the signal from the remote device. Reflected monitoring signals and service signals can be received.
  • the service signal received by the domestic device may be a signal corresponding to the transmitted service signal.
  • the signals for monitoring transmitted and received through the first port 360 and the second port 365 will be described in detail with reference to FIG. 4.
  • FIG. 4 is a diagram illustrating a flow of a monitoring signal transmitted/received by an in-house device according to an embodiment of the present disclosure.
  • the processor 410 of a domestic device generates two monitoring signals to be transmitted to a remote device using a BER & Time code generator/monitor. Since each of the generated monitoring signals is an electrical signal, it is converted into an optical signal through digital optical transceivers #1, #2 (420, 430). The converted optical signal is transmitted through ports M1 and M2.
  • the in-house device may receive a monitoring signal transmitted from a remote device through the ports M1 and M2. Since the received monitoring signal is an optical signal, it is converted into an electrical signal through digital optical transceivers #1 and #2 (420, 430). The converted electrical signal can be confirmed through the BER & Time code generator/monitor of the processor 410.
  • the BER & Time code generator/monitor includes a BER (Bit Error Rate) code, a Forward Error Correction (FEC) code for correcting an error, a header for frame synchronization, a Time code for distance measurement, a system and a remote device. Generated as a signal for monitoring to transmit at least one of the IDs for classification, and then analyzes received from the remote device. That is, the BER & Time code generator/monitor checks the FEC code to determine whether an error exists, and corrects the error if an error exists.
  • BER Bit Error Rate
  • FEC Forward Error Correction
  • the BER & Time code generator/monitor If it is determined that the BER & Time code generator/monitor has no errors, check the time code to check the transmission time, check the time transmitted with the time code, multiply the clock counter to the received time by the clock period, and transmit time And calculates the distance from the domestic device to the remote device by dividing the obtained transmission time by the optical speed. In addition, the BER & Time code generator/monitor checks the ID to confirm that the network is properly connected.
  • FIG. 5 is a diagram showing the configuration of an in-house device according to an embodiment of the present disclosure.
  • the configuration is divided into a plurality of configurations, but multiple configurations may be integrated and implemented as a single configuration, or a single configuration may be divided into multiple configurations.
  • the detailed description will be omitted.
  • the flow of the signal shown in FIG. 5 represents the flow of the optical signal converted from the electrical signal, and will be described below with reference to the optical signal.
  • the remote device may receive the optical signal transmitted from the domestic device using the first port 510 and the second port 515.
  • the optical signal received using the first port 510 and the second port 515 is not the same signal, and a monitoring signal and a service signal are used as one of the ports, and a monitoring signal is used as the other port.
  • Each signal received through the first port 510 and the second port 515 is first separated through Mux/DeMux 520, 525, and the separated monitoring signals 550, 555 are mirrors 570, 575) and transmitted back to the in-house device through the first port 510 and the second port 515.
  • the service signals separated through the Mux/DeMux 520 and 525 are coupled through the coupler 530 and connected to the Mux/DeMux 540. Thereafter, the multiplexed service signal 560 is transmitted to a sub-remote device or RRH connected to the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

Disclosed is a method and device for monitoring a ring-type optical network. According to an aspect of the present embodiment, a method for monitoring a ring-type optical network by an in-house device comprises the steps of: generating a monitoring signal; converting the generated monitoring signal into an optical signal, and transmitting the converted optical signal; receiving the optical signal and converting the received optical signal into an electrical signal; and analyzing the converted electrical signal, wherein the monitoring signal includes a bit error rate (BER) code, a forward error correction (FEC) code, and a time code, and an ID.

Description

링형 광 네트워크 감시 방법 및 그 장치Ring type optical network monitoring method and apparatus
본 발명은 링형 광 네트워크 감시 방법 및 그 장치에 관한 것이다.The present invention relates to a ring-type optical network monitoring method and apparatus.
이 부분에 기술된 내용은 단순히 본 발명에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section merely provides background information for the present invention and does not constitute a prior art.
최근 통신 시스템에서는 기지국을 DU(Digital Unit)(또는, 베이스 밴드 장치(BaseBand Unit))(이하 'DU' 또는 'BBU')와 RU(Remote Unit)(또는, 원격 무선 장비(Remote Radio Head)) (이하 'RU' 또는 'RRH')로 분리하고, DU와 RU를 따로 분리하여 설치하는 방식이 적용되고 있다. 이러한 통신 시스템에서는 DU가 한 곳에 집중화(Centralized)되고, 하나의 DU에 여러 개의 RU가 연결된다. 이 경우, 광선로 비용(optic fiber cost)을 절감하기 위해 DU와 RU 간에 파장 분할 다중화(WDM: Wavelength Division Multiplexing)(이하 'WDM') 방식의 프론트홀(Fronthaul) 장비가 사용되고, 장비의 운영 안정화를 위해 선로 이중화 방식이 적용된다. 이러한 WDM 방식의 프론트홀 장비를 구현함에 있어, 설치가 용이하고 장애 및 결함 요소가 적은 수동(passive) 광소자를 사용한 원격지 장치(RT: Remote Terminal)의 이용이 점차 확대되고 있다. 그러나, 수동 광소자를 사용한 링형 네트워크의 경우, 시계 방향 또는 반시계 방향(또는 제1 포트 또는 제2 포트)으로의 스위칭은 회선의 광 파워 합을 이용해 결정해 왔으며, 이로 인해 서비스의 시작 전 원격지 장치의 설치 유무, 설치 위치 및 네트워크의 구조를 확인할 수단이 존재하지 않는다는 문제점이 있다.In a recent communication system, a base station uses a DU (Digital Unit) (or a BaseBand Unit) (hereinafter referred to as'DU' or'BBU') and a RU (Remote Unit) (or Remote Radio Head). (Hereinafter referred to as'RU' or'RRH'), DU and RU are separated and installed separately. In such a communication system, DUs are centralized in one place, and multiple RUs are connected to one DU. In this case, to reduce optical fiber cost, wavelength division multiplexing (WDM) (hereinafter referred to as'WDM') fronthaul equipment is used between the DU and the RU, and the operation of the equipment is stabilized. For this, the line redundancy method is applied. In implementing the WDM-type front hole equipment, the use of a remote terminal (RT) using a passive optical element that is easy to install and has fewer obstacles and defects is gradually expanding. However, in the case of a ring-type network using passive optical elements, switching in the clockwise or counterclockwise direction (or the first port or the second port) has been determined by using the sum of the optical powers of the lines, which causes the remote device to start before the service starts. There is a problem that there is no means to check the presence or absence of the installation, the installation location and the network structure.
따라서, 원격지 장치의 설치 위치 및 구조를 파악하기 위해 운용자는 직접 원격지 장치의 지정학적 설치 위치 및 링형 네트워크 구조를 파악해야 하며, 상기 링형 네트워크 구조가 변경되면 링형 네트워크 구조도를 직접 수정하여 재배포해야 하는 어려움이 있었다. 이로 인해 현장에 있는 링형 네트워크 구조도의 정보는 신뢰성이 떨어지고, 지속적인 관리에 있어서도 서비스 운용 비용이 증가하는 문제점이 있다.Therefore, in order to grasp the installation location and structure of the remote device, the operator must directly grasp the location of the remote device and the ring-type network structure, and if the ring-type network structure is changed, it is difficult to directly modify and redistribute the ring-type network structure diagram. There was. Due to this, the information of the ring-type network structure in the field is less reliable, and there is a problem in that the service operation cost increases even in continuous management.
본 실시예는, WDM 방식을 이용하는 링형 광 네트워크에서 원격지 장치를 식별하고, 스위칭을 통해 신호를 송수신하기 위한 경로를 결정하는데 주된 목적이 있다. 또한, 본 실시예는 원격지 장치의 위치를 포함하여 링형 광 네트워크의 구조를 자동으로 파악하는 데 주된 목적이 있다.This embodiment has a main purpose in identifying a remote device in a ring-type optical network using a WDM method and determining a path for transmitting and receiving signals through switching. In addition, this embodiment has a main purpose to automatically grasp the structure of a ring-type optical network including the location of a remote device.
본 실시예의 일 측면에 의하면, 국사내 장치가 링형 광 네트워크를 감시하는 방법은, 감시용 신호를 생성하는 과정, 상기 생성된 감시용 신호를 광 신호로 변환하여 송신하는 과정, 광 신호를 수신하여 전기적 신호로 변환하는 과정, 및 상기 변환된 전기적 신호를 분석하는 과정을 포함하고, 상기 감시용 신호는 BER(Bit Error Rate) 코드, FEC(Forward Error Correction) 코드, Time 코드, 및 ID를 포함한다.According to an aspect of the present embodiment, a method for monitoring a ring-type optical network by an in-house device includes generating a monitoring signal, converting the generated monitoring signal into an optical signal, and transmitting the received optical signal. Converting to an electrical signal, and analyzing the converted electrical signal, the monitoring signal includes a bit error rate (BER) code, forward error correction (FEC) code, time code, and ID .
본 실시예의 다른 측면에 의하면, 링형 광 네트워크를 감시하는 국사내 장치는, 감시용 신호를 생성하고, 변환된 전기적 신호를 분석하는 프로세서, 상기 생성된 감시용 신호를 광 신호로 변환하여 송신하는 제1 디지털 광 트랜시버, 및 광 신호를 수신하여 상기 전기적 신호로 변환하는 제2 디지털 광 트랜시버를 포함하고, 상기 감시용 신호는 BER(Bit Error Rate) 코드, FEC(Forward Error Correction) 코드, Time 코드, 및 ID를 포함함을 특징으로 한다.According to another aspect of this embodiment, a domestic device for monitoring a ring-shaped optical network includes: a processor for generating a monitoring signal and analyzing a converted electrical signal, converting the generated monitoring signal into an optical signal, and transmitting the converted signal; 1 digital optical transceiver, and a second digital optical transceiver for receiving the optical signal and converting it into the electrical signal, the monitoring signal is a BER (Bit Error Rate) code, FEC (Forward Error Correction) code, Time code, And an ID.
이상에서 설명한 바와 같이 본 실시예에 의하면, 국사내 장치는 양방향으로 수신되는 광 파워를 감시하여 단절, 꼬임 등 선로의 이상을 감지할 수 있고, 이를 반영하여 스위치를 동작시켜 통신 시스템이 지속적으로 운용되도록 할 수 있다. 또한, 본 실시예에 의하면 운용자가 OTDR(Optical Time Domain Reflectometer)를 이용하여 수동으로 원격지 장치까지의 거리를 측정하지 않더라도, 국사내 장치로부터 원격지 장치까지의 거리를 파악할 수 있다. As described above, according to the present embodiment, the device in the company can detect the abnormality of the line such as disconnection or twist by monitoring the optical power received in both directions, and operating the switch to reflect this to continuously operate the communication system. It can be done. Further, according to the present embodiment, even if the operator does not manually measure the distance to the remote device by using an OTDR (Optical Time Domain Reflectometer), it is possible to grasp the distance from the domestic device to the remote device.
도 1은 본 개시의 일 실시예에 따라 국사내 장치와 복수의 원격지 장치가 광선로를 통해 링형 네트워크 구조로 연결된 통신 시스템을 나타낸 도면,1 is a diagram illustrating a communication system in which a device in a company and a plurality of remote devices are connected in a ring network structure through an optical path according to an embodiment of the present disclosure;
도 2는 본 개시의 일 실시예에 따른 국사내 장치의 순서도를 나타낸 도면,2 is a flowchart illustrating a device in a domestic company according to an embodiment of the present disclosure,
도 3은 본 개시의 일 실시예에 따른 국사내 장치의 구성도를 나타낸 도면,3 is a view showing the configuration of a device in a domestic company according to an embodiment of the present disclosure;
도 4는 본 개시의 일 실시예에 따른 국사내 장치에서 송수신되는 감시용 신호의 흐름을 나타낸 도면,4 is a view showing a flow of a monitoring signal transmitted and received in a domestic device according to an embodiment of the present disclosure;
도 5는 본 개시의 일 실시예에 따른 원격지 장치의 구성도를 나타낸 도면이다.5 is a view showing the configuration of a remote device according to an embodiment of the present disclosure.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. It should be noted that in adding reference numerals to the components of each drawing, the same components have the same reference numerals as possible even though they are displayed on different drawings. In addition, in describing the present invention, when it is determined that detailed descriptions of related well-known structures or functions may obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 '포함', '구비'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 '…부', '모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, in describing the components of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the component from other components, and the nature, order, or order of the component is not limited by the term. Throughout the specification, when a part is'included' or'equipped' a component, this means that other components may be further included rather than excluded, unless otherwise stated. . In addition,'… Terms such as "unit" and "module" mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
도 1은 본 개시의 일 실시예에 따라 국사내 장치와 복수의 원격지 장치가 광선로를 통해 링형 광 네트워크 구조로 연결된 통신 시스템을 나타낸 도면이다.1 is a diagram illustrating a communication system in which a device in a company and a plurality of remote devices are connected in a ring-type optical network structure through an optical path according to an embodiment of the present disclosure.
도 1을 참고하면, 통신 시스템의 기지국은 BBU(BaseBand Unit)(110)(이하 'BBU')와 RRH(Remote Radio Head)(151, 152, 153, 154)(이하 'RRH')로 분리되어 구성되어 있다. BBU(110)는 백홀(Backhaul)을 통해 통신망과 연결되고, BBU(110)와 RRH(151, 152, 153, 154)는 프론트홀(Fronthaul)을 통해 서로 연결되며, RRH(151, 152, 153, 154)는 단말(미도시)과 무선으로 연결된다.Referring to FIG. 1, a base station of a communication system is divided into a BaseBand Unit (BBU) 110 (hereinafter'BBU') and a Remote Radio Head (RRH) (151, 152, 153, 154) (hereinafter'RRH'). Consists of. The BBU 110 is connected to a communication network through a backhaul, and the BBU 110 and RRHs 151, 152, 153, and 154 are connected to each other through a front hole, and RRHs 151, 152, and 153 , 154 is wirelessly connected to a terminal (not shown).
또한, BBU(110)와 RRH(151, 152, 153, 154) 간에 전달되는 신호는 국사내 장치(COT: Central Office Terminal)(120)와 복수의 원격지 장치(RT: Remote Terminal)(130)로 이루어진 링형 광 네트워크(ring type optical network)를 통해 중계된다. 국사내 장치(120)는 BBU(110)와 연결되어 백홀을 통해 신호를 송수신하며, 원격지 장치(133)는 각각의 RRH와 직접 연결되거나 서브 원격지 장치(SRT: Sub-RT)(142)를 거쳐 RRH(151, 152, 153, 154)와 연결되어 신호를 전송한다.In addition, signals transmitted between the BBU 110 and the RRHs 151, 152, 153, and 154 are transmitted to a central office terminal (COT) 120 and a plurality of remote terminals (RT) 130. It is relayed through the formed ring type optical network. The domestic device 120 is connected to the BBU 110 to transmit and receive signals through a backhaul, and the remote device 133 is directly connected to each RRH or through a sub-remote device (SRT: Sub-RT) 142 It is connected to RRH (151, 152, 153, 154) and transmits a signal.
국사내 장치(120)와 복수의 원격지 장치(130)는 하나의 광선로를 통해 링형으로 연결되며, 국사내 장치(120)는 복수의 원격지 장치(130)와 양방향 통신을 수행한다. 복수의 원격지 장치(130)는 수동 소자로 구성되는 수동형 노드(Passive Node)로서, 이러한 링형 네트워크에서 국사내 장치(120) 또는 RRH로부터 전송되는 신호를 분배한다. 다시 말해, 국사내 장치(120)는 다운링크(down-link) 신호를 양방향 또는 한방향으로 원격지 장치(131, 132, 133, 134)로 전송하고, 원격지 장치(131, 132, 133, 134)는 업링크(up-link) 신호를 국사내 장치(120)로 양방향 또는 한방향으로 전송한다. 또한, 국사내 장치(120)는 광선로를 통해 원격지 장치(131, 132, 133, 134)로부터의 업링크 신호를 양방향 또는 한방향으로 수신해 각 원격지 장치(131, 132, 133, 134)까지의 거리 및 장애가 발생한 구간 등을 파악할 수 있다.The domestic device 120 and the plurality of remote devices 130 are connected in a ring shape through one optical path, and the domestic device 120 performs two-way communication with the plurality of remote devices 130. The plurality of remote devices 130 is a passive node composed of passive elements, and distributes signals transmitted from the domestic device 120 or the RRH in such a ring-like network. In other words, the domestic device 120 transmits a down-link signal to the remote devices 131, 132, 133, 134 in both directions or one direction, and the remote devices 131, 132, 133, 134 The uplink signal is transmitted to the domestic device 120 in both directions or in one direction. In addition, the domestic device 120 receives the uplink signal from the remote devices 131, 132, 133, 134 in both directions or one way through the optical path to the distance to each remote device (131, 132, 133, 134). And a section where a failure has occurred.
구체적으로, 국사내 장치(120)는 각 원격지 장치(131, 132, 133, 134)로 보낼 신호를 파장 분할 다중화하여 양방향으로 전송할 수 있다. 각 원격지 장치(131, 132, 133, 134)는 다중화된 신호 중에서, 자신에게 할당된 파장의 신호를 분기시켜 서브 원격지 장치(141, 142) 또는 각 원격지 장치와 직접 연결된 RRH에 분배한다. 각 원격지 장치(131, 132, 133, 134)는 내부에 스위치를 구비하여 양방향의 신호 중 어느 하나만을 사용할 수 있다.Specifically, the domestic device 120 may transmit signals in both directions by wavelength division multiplexing a signal to be transmitted to each remote device 131, 132, 133, or 134. Each of the remote devices (131, 132, 133, 134), among the multiplexed signals, branch the signal of the wavelength assigned to it, and distribute it to the sub-remote devices (141, 142) or RRH directly connected to each remote device. Each remote device (131, 132, 133, 134) is provided with a switch therein can use only one of the signals in both directions.
한편, 본 발명의 일 실시예에 따른 링형 광 네트워크에서는 양방향으로 업링크 또는 다운링크 신호의 전송이 이루어질 수 있기 때문에 연결된 광선로 중 어느 구간의 광선로에 장애가 발생하더라도, 국사내 장치(120)는 복수의 원격지 장치(130)로부터 업링크 신호를 수신할 수 있고 각 원격지 장치(131, 132, 133, 134)는 국사내 장치(120)로부터 다운링크 신호를 수신할 수 있다.On the other hand, in the ring-type optical network according to an embodiment of the present invention, since transmission of an uplink or downlink signal can be performed in both directions, even if a failure occurs in an optical path of any section of the connected optical path, the domestic device 120 may have multiple The remote device 130 may receive an uplink signal and each remote device 131, 132, 133, 134 may receive a downlink signal from the domestic device 120.
도 2는 본 개시의 일 실시예에 따른 국사내 장치의 순서도를 나타낸 도면이다.2 is a diagram illustrating a flowchart of an in-house device according to an embodiment of the present disclosure.
상기 국사내 장치는 링형 광 네트워크의 구조를 감시하기 위한 감시용 신호를 생성한다(S210). 상기 감시용 신호에는 BER(Bit Error Rate) 코드, 오류를 수정하기 위한 FEC(Forward Error Correction) 코드, 프레임 동기를 위한 헤더, 거리 측정을 위한 Time 코드, 시스템 및 원격지 장치를 구분하기 위한 ID 중 적어도 하나가 포함될 수 있다. 이때 원격지 장치당 최소 2개의 감시용 신호를 생성한다.The domestic device generates a monitoring signal for monitoring the structure of the ring-shaped optical network (S210). The monitoring signal includes at least one of a bit error rate (BER) code, a forward error correction (FEC) code for correcting an error, a header for frame synchronization, a time code for distance measurement, and an ID for distinguishing a system and a remote device. One can be included. At this time, at least two monitoring signals are generated per remote device.
상기 국사내 장치는 상기 생성된 감시용 신호를 광 신호로 변환하여 송신한다(S220). 상기 생성된 감시용 신호는 전기적 신호이므로 디지털 광 트랜시버를 이용해 광 신호로 변환한다. 상기 변환된 광 신호는 원격지 장치당 최소 2개 이상의 파장을 가지며, 서비스 신호의 파장과는 구분된다.The domestic device converts the generated monitoring signal into an optical signal and transmits it (S220). Since the generated monitoring signal is an electrical signal, it is converted into an optical signal using a digital optical transceiver. The converted optical signal has at least two or more wavelengths per remote device, and is separated from the wavelength of the service signal.
한편, 서비스 신호는 서비스 신호의 파장만으로 다중화되어 광 스위치에서 링형 광 네트워크의 양방향 중 일방향으로 출력된다. On the other hand, the service signal is multiplexed only with the wavelength of the service signal, and is output from the optical switch in one direction of both directions of the ring-type optical network.
상기 국사내 장치는 원격지 장치에서 반사된 광 신호를 수신하여 전기적 신호로 변환한다(S230). 이때 반사된 광 신호는 상기 국사내 장치가 송신한 감시용 신호를 상기 원격지 장치가 반사한 광 신호이다.The domestic device receives the light signal reflected from the remote device and converts it into an electrical signal (S230). At this time, the reflected optical signal is an optical signal that is reflected by the remote device to the monitoring signal transmitted by the domestic device.
상기 국사내 장치는 상기 변환된 전기적 신호를 분석한다(S240). 먼저, 상기 국사내 장치는 FEC 코드를 확인해 에러의 유무를 확인하여, 에러가 존재하면 에러를 수정한다. 에러가 없는 상태에서, 상기 국사내 장치는 Time 코드를 확인해 송신 시각을 확인한다. 이후, 상기 Time 코드로 송신한 시각을 확인하여 수신한 시각까지의 클럭 카운터를 클럭 주기와 곱해 전송 시간을 구하고, 상기 구한 전송 시간을 광속도로 나누어 상기 국사내 장치로부터 상기 원격지 장치까지의 거리를 계산할 수 있다. 또한, 상기 국사내 장치는 ID를 확인하여 네트워크가 제대로 연결된 것인지 확인할 수 있다. 구체적으로, 상기 국사내 장치는 송신한 ID 와 수신한 ID가 동일하면 네트워크의 연결이 올바른 것으로 판단하나, 동일하지 않다면 네트워크의 연결이 꼬인 것으로 판단할 수 있다. 그 밖에도 상기 국사내 장치는 상기 수신된 광 신호의 파워로 양방향의 절단 및 손상을 감시할 수 있다. 즉, 상기 수신된 광 신호 파워의 손실이 임계치를 넘기거나 상기 수신된 광 신호 파워가 기준값 이하일 경우 광선로의 손상으로 보아 광 스위치의 방향을 바꾸어 서비스가 유지되도록 할 수 있다. 그러나, 상기 수신된 광 신호의 파워가 양방향 모두 0이면, 상기 국사내 장치는 원격지 장치가 없거나, 또는 상기 원격지 장치가 있더라도 제1 포트와 제2 포트의 연결을 서로 바꾸어 연결한 것으로 판단할 수 있다.The domestic device analyzes the converted electrical signal (S240). First, the device in the domestic company checks the FEC code to determine whether there is an error, and if there is an error, corrects the error. In the absence of an error, the in-house device checks the time code to check the transmission time. Thereafter, the time transmitted by the time code is checked, and a clock counter up to the received time is multiplied by a clock period to obtain a transmission time, and the obtained transmission time is divided by the optical speed to calculate a distance from the domestic device to the remote device. Can be. In addition, the device in the company can confirm whether the network is properly connected by checking the ID. Specifically, the device in the domestic company may determine that the connection of the network is correct when the transmitted ID and the received ID are the same, but if it is not the same, the network connection may be twisted. In addition, the in-house device can monitor cutting and damage in both directions with the power of the received optical signal. That is, when the loss of the received optical signal power exceeds a threshold value or when the received optical signal power is below a reference value, the service can be maintained by changing the direction of the optical switch in view of damage to the optical path. However, if the power of the received optical signal is 0 in both directions, it may be determined that the domestic device does not have a remote device, or even if there is a remote device, the connection between the first port and the second port is switched with each other. .
상기 국사내 장치는 복수의 감시용 신호에서 구한 거리 측정값을 이용하여 원격지 장치들까지의 거리를 계산하고 동일 방향으로 원격지 장치들을 거리에 따라 순서대로 정렬한다. 또한, 상기 복수의 감시용 신호에서 구한 거리 측정값을 같은 방향으로 정렬한 후 이웃한 거리값 간의 차이는 원격지 장치 간의 거리가 된다. 결과적으로, 상기 국사내 장치는 정렬된 원격지 장치들의 순서와 거리를 이용해 링형 광 네트워크의 구조를 파악할 수 있다. The in-house device calculates the distance to the remote devices using the distance measurement value obtained from a plurality of monitoring signals, and arranges the remote devices in the same direction according to the distance. In addition, after aligning the distance measurement values obtained from the plurality of monitoring signals in the same direction, the difference between the neighboring distance values becomes the distance between the remote devices. As a result, the domestic device can grasp the structure of the ring-type optical network using the order and distance of the aligned remote devices.
도 2에서는 과정 S210 내지 과정 S240을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 발명의 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것이다. 다시 말해, 본 발명의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 일 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 2에 기재된 순서를 변경하여 실행하거나 과정 S210 내지 과정 S240 중 하나 이상의 과정을 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 2는 시계열적인 순서로 한정되는 것은 아니다.In FIG. 2, it is described that the steps S210 to S240 are sequentially executed, but this is merely illustrative of the technical idea of an embodiment of the present invention. In other words, a person having ordinary knowledge in the technical field to which one embodiment of the present invention pertains may execute or change the order described in FIG. 2 without departing from the essential characteristics of one embodiment of the present invention, or one of the processes S210 to S240 Since the above process can be applied in various modifications and variations by executing in parallel, FIG. 2 is not limited to the time series order.
한편, 도 2에 도시된 과정들은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 즉, 컴퓨터가 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장매체를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.Meanwhile, the processes illustrated in FIG. 2 can be implemented as computer-readable codes on a computer-readable recording medium. The computer-readable recording medium includes all kinds of recording devices in which data readable by a computer system is stored. That is, the computer-readable recording medium includes magnetic storage media (eg, ROM, floppy disk, hard disk, etc.), optical reading media (eg, CD-ROM, DVD, etc.) and carrier waves (eg, the Internet). Storage). In addition, the computer-readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
도 3은 본 개시의 일 실시예에 따른 국사내 장치의 구성도를 나타낸 도면이다.3 is a diagram illustrating a configuration diagram of an in-house device according to an embodiment of the present disclosure.
도 3에서는 다수의 구성으로 나누어 설명하나 여러 개의 구성이 하나의 구성으로 통합되어 구현될 수 있으며 또는 하나의 구성이 여러 개의 구성으로 나누어 구현될 수도 있다. 또한, 본 개시를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In FIG. 3, the configuration is divided into a plurality of configurations, but multiple configurations may be integrated and implemented as one configuration, or a single configuration may be divided into multiple configurations. In addition, in describing the present disclosure, when it is determined that a detailed description of related known configurations or functions may obscure the subject matter of the present disclosure, the detailed description will be omitted.
도 3에 나타난 신호의 흐름은 전기적 신호가 변환된 광 신호의 흐름을 나타낸 것으로, 이하에서는 광 신호를 기준으로 설명한다.The flow of the signal shown in FIG. 3 shows the flow of the optical signal converted from the electrical signal, which will be described below with reference to the optical signal.
상기 국사내 장치는 원격지 장치당 감시용 신호를 최소 2개씩 생성한다. 즉, 상기 국사내 장치는 네트워크의 구조가 링형이기 때문에 양방향, 즉 제1 포트(360)와 제2 포트(365)로 전송하기 위해 감시용 신호를 최소 2개(310, 315) 생성한다. 이때 생성된 감시용 신호(310, 315)는 파장이 서로 다르다.The domestic device generates at least two monitoring signals per remote device. That is, the device in the domestic company generates at least two monitoring signals 310 and 315 to transmit to the bidirectional, that is, the first port 360 and the second port 365 because the network structure is ring-shaped. At this time, the generated monitoring signals 310 and 315 have different wavelengths.
상기 국사내 장치는 감시용 신호(310, 315) 외에 서비스 신호(320)도 전송할 수 있다. 서비스 신호(320)는 Mux/DeMux(330)를 통해 다중화되고, 서비스 신호(320)가 전송될 방향은 광 스위치(340)를 통해 양방향이 아닌 일방향이 선택된다. 서비스 신호(320)는 전송 전, 상기 감시용 신호와 Mux/DeMux를 통해 다중화되어 전송될 수 있다.The in-house device may transmit a service signal 320 in addition to the monitoring signals 310 and 315. The service signal 320 is multiplexed through the Mux/DeMux 330, and a direction in which the service signal 320 is to be transmitted is selected in one direction rather than in both directions through the optical switch 340. The service signal 320 may be multiplexed and transmitted through the monitoring signal and Mux/DeMux before transmission.
구체적으로 도 3을 참고하면, 상기 국사내 장치는 서비스 신호(320)를 제1 포트(360)를 이용해 전송하기로 결정하여 광 스위치(340)를 이용해 서비스 신호(320)를 Mux/DeMux(350)에 연결한다. 즉, 제1 포트(360)로 전송되는 신호는 감시용 신호와 서비스 신호가 전송되고, 제2 포트(365)로 전송되는 신호는 감시용 신호만이 전송된다.Specifically, referring to FIG. 3, the in-house device decides to transmit the service signal 320 using the first port 360 so that the service signal 320 is transmitted to the Mux/DeMux 350 using the optical switch 340. ). That is, a signal transmitted to the first port 360 transmits a monitoring signal and a service signal, and a signal transmitted to the second port 365 transmits only a monitoring signal.
또한, 상기 국사내 장치는 원격지 장치로부터 수신되는 신호를 제1 포트(360)와 제2 포트(365)로 수신할 수 있다. 송신 때와 마찬가지로, 제1 포트(360)와 제2 포트(365) 중 어느 하나의 포트로는 상기 원격지 장치로부터 반사된 감시용 신호만을 수신할 수 있고, 다른 하나의 포트로는 상기 원격지 장치로부터 반사된 감시용 신호와 서비스 신호를 수신할 수 있다. 여기서, 상기 국사내 장치가 수신한 서비스 신호는 송신한 서비스 신호에 대응하는 신호일 수 있다.In addition, the in-house device may receive signals received from a remote device through the first port 360 and the second port 365. As in the case of transmission, only one of the first port 360 and the second port 365 can receive a signal for monitoring reflected from the remote device, and the other port can receive the signal from the remote device. Reflected monitoring signals and service signals can be received. Here, the service signal received by the domestic device may be a signal corresponding to the transmitted service signal.
제1 포트(360)와 제2 포트(365)로 송수신되는 감시용 신호는 도 4를 이용해 자세히 설명한다.The signals for monitoring transmitted and received through the first port 360 and the second port 365 will be described in detail with reference to FIG. 4.
도 4는 본 개시의 일 실시예에 따른 국사내 장치에서 송수신되는 감시용 신호의 흐름을 나타낸 도면이다.4 is a diagram illustrating a flow of a monitoring signal transmitted/received by an in-house device according to an embodiment of the present disclosure.
도 4를 참조하면, 국사내 장치의 프로세서(410)는 BER & Time 코드 생성기/모니터를 이용해 원격지 장치로 송신할 2개의 감시용 신호를 생성한다. 상기 생성된 감시용 신호 각각은 전기적 신호이므로 디지털 광 트랜시버 #1, #2(420, 430)을 통해 광 신호로 변환된다. 상기 변환된 광 신호는 포트 M1, M2를 통해 전송된다.Referring to FIG. 4, the processor 410 of a domestic device generates two monitoring signals to be transmitted to a remote device using a BER & Time code generator/monitor. Since each of the generated monitoring signals is an electrical signal, it is converted into an optical signal through digital optical transceivers #1, #2 (420, 430). The converted optical signal is transmitted through ports M1 and M2.
역으로, 상기 국사내 장치는 상기 포트 M1, M2를 통해 원격지 장치로부터 송신된 감시용 신호를 수신할 수 있다. 상기 수신된 감시용 신호는 광 신호이므로 디지털 광 트랜시버 #1, #2(420, 430)을 통해 전기적 신호로 변환된다. 변환된 전기적 신호는 프로세서(410)의 BER & Time 코드 생성기/모니터를 통해 확인될 수 있다. Conversely, the in-house device may receive a monitoring signal transmitted from a remote device through the ports M1 and M2. Since the received monitoring signal is an optical signal, it is converted into an electrical signal through digital optical transceivers #1 and #2 (420, 430). The converted electrical signal can be confirmed through the BER & Time code generator/monitor of the processor 410.
구체적으로 상기 BER & Time 코드 생성기/모니터는 BER(Bit Error Rate) 코드, 오류를 수정하기 위한 FEC(Forward Error Correction) 코드, 프레임 동기를 위한 헤더, 거리 측정을 위한 Time 코드, 시스템 및 원격지 장치를 구분하기 위한 ID 중 적어도 하나를 송신하기 위한 감시용 신호로 생성하고, 이후 상기 원격지 장치로부터 수신된 분석한다. 즉, 상기 BER & Time 코드 생성기/모니터는 FEC 코드를 확인해 에러의 유무를 확인하여, 에러가 존재하면 에러를 수정한다. 상기 BER & Time 코드 생성기/모니터는 에러가 없는 것으로 판단되면, Time 코드를 확인해 송신 시각을 확인한 후, 상기 Time 코드로 송신한 시각을 확인하여 수신한 시각까지의 클럭 카운터를 클럭 주기와 곱해 전송 시간을 구하고, 상기 구한 전송 시간을 광속도로 나누어 상기 국사내 장치로부터 상기 원격지 장치까지의 거리를 계산한다. 또한, 상기 BER & Time 코드 생성기/모니터는 ID를 확인하여 네트워크가 제대로 연결된 것인지 확인한다.Specifically, the BER & Time code generator/monitor includes a BER (Bit Error Rate) code, a Forward Error Correction (FEC) code for correcting an error, a header for frame synchronization, a Time code for distance measurement, a system and a remote device. Generated as a signal for monitoring to transmit at least one of the IDs for classification, and then analyzes received from the remote device. That is, the BER & Time code generator/monitor checks the FEC code to determine whether an error exists, and corrects the error if an error exists. If it is determined that the BER & Time code generator/monitor has no errors, check the time code to check the transmission time, check the time transmitted with the time code, multiply the clock counter to the received time by the clock period, and transmit time And calculates the distance from the domestic device to the remote device by dividing the obtained transmission time by the optical speed. In addition, the BER & Time code generator/monitor checks the ID to confirm that the network is properly connected.
도 5는 본 개시의 일 실시예에 따른 국사내 장치의 구성도를 나타낸 도면이다.5 is a diagram showing the configuration of an in-house device according to an embodiment of the present disclosure.
도 5에서는 다수의 구성으로 나누어 설명하나 여러 개의 구성이 하나의 구성으로 통합되어 구현될 수 있으며 또는 하나의 구성이 여러 개의 구성으로 나누어 구현될 수도 있다. 또한, 본 개시를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In FIG. 5, the configuration is divided into a plurality of configurations, but multiple configurations may be integrated and implemented as a single configuration, or a single configuration may be divided into multiple configurations. In addition, in describing the present disclosure, when it is determined that a detailed description of related known configurations or functions may obscure the subject matter of the present disclosure, the detailed description will be omitted.
도 3과 마찬가지로, 도 5에 나타난 신호의 흐름은 전기적 신호가 변환된 광 신호의 흐름을 나타낸 것으로, 이하에서는 광 신호를 기준으로 설명한다.3, the flow of the signal shown in FIG. 5 represents the flow of the optical signal converted from the electrical signal, and will be described below with reference to the optical signal.
상기 원격지 장치는 국사내 장치로부터 송신된 광신호를 제1 포트(510)와 제2 포트(515)를 이용해 수신할 수 있다. 제1 포트(510)와 제2 포트(515)를 이용해 수신된 광신호는 동일한 신호는 아니며, 상기 포트 중 하나의 포트로는 감시용 신호와 서비스 신호를, 다른 하나의 포트로는 감시용 신호를 수신한다. 제1 포트(510)와 제2 포트(515)를 통해 수신한 각각의 신호는 Mux/DeMux(520, 525)를 통해 먼저 분리되고, 분리된 감시용 신호(550, 555)는 미러(570, 575)에 반사되어 다시 제1 포트(510)와 제2 포트(515)를 통해 상기 국사내 장치로 송신된다.The remote device may receive the optical signal transmitted from the domestic device using the first port 510 and the second port 515. The optical signal received using the first port 510 and the second port 515 is not the same signal, and a monitoring signal and a service signal are used as one of the ports, and a monitoring signal is used as the other port. To receive. Each signal received through the first port 510 and the second port 515 is first separated through Mux/ DeMux 520, 525, and the separated monitoring signals 550, 555 are mirrors 570, 575) and transmitted back to the in-house device through the first port 510 and the second port 515.
또한, Mux/DeMux(520, 525)를 통해 분리된 서비스 신호는 커플러(530)를 통해 결합하여 Mux/DeMux(540)로 연결된다. 이후 다중화된 서비스 신호(560)는 상기 원격지 장치와 연결된 서브 원격지 장치 또는 RRH로 전송된다.In addition, the service signals separated through the Mux/ DeMux 520 and 525 are coupled through the coupler 530 and connected to the Mux/DeMux 540. Thereafter, the multiplexed service signal 560 is transmitted to a sub-remote device or RRH connected to the remote device.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which this embodiment belongs may be capable of various modifications and variations without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical spirit of the present embodiment, but to explain, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The protection scope of the present embodiment should be interpreted by the claims below, and all technical spirits within the equivalent range should be interpreted as being included in the scope of the present embodiment.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2018년 11월 30일 한국에 출원한 특허출원번호 제10-2018-0151633호에 대해 미국 특허법 119(a)조(35 U.S.C §119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하며 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority to US Patent Law No. 119(a) (35 USC §119(a)) with respect to Patent Application No. 10-2018-0151633 filed in Korea on November 30, 2018. All contents are incorporated into this patent application as a reference. In addition, this patent application claims priority to countries other than the United States for the same reason as above, and all the contents are incorporated into this patent application as a reference.

Claims (6)

  1. 국사내 장치가 링형 광 네트워크를 감시하는 방법에 있어서,A method for monitoring a ring-type optical network by a device in a company,
    감시용 신호를 생성하는 과정,The process of generating a signal for monitoring,
    상기 생성된 감시용 신호를 광 신호로 변환하여 송신하는 과정,Converting and transmitting the generated monitoring signal to an optical signal,
    광 신호를 수신하여 전기적 신호로 변환하는 과정, 및A process of receiving an optical signal and converting it into an electrical signal, and
    상기 변환된 전기적 신호를 분석하는 과정을 포함하고,And analyzing the converted electrical signal,
    상기 감시용 신호는 BER(Bit Error Rate) 코드, FEC(Forward Error Correction) 코드, Time 코드, 및 ID를 포함함을 특징으로 하는 네트워크 감시 방법. The monitoring signal comprises a BER (Bit Error Rate) code, FEC (Forward Error Correction) code, Time code, and a network monitoring method characterized in that it comprises an ID.
  2. 제1항에 있어서,According to claim 1,
    상기 감시용 신호를 생성하는 과정은,The process of generating the monitoring signal,
    원격지 장치별로 적어도 2개의 감시용 신호를 생성하는 과정임을 특징으로 하는 네트워크 감시 방법.Network monitoring method characterized in that the process of generating at least two monitoring signals for each remote device.
  3. 제1항에 있어서,According to claim 1,
    상기 변환된 전기적 신호를 분석하는 과정은,The process of analyzing the converted electrical signal,
    상기 감시용 신호에 포함된 Time 코드를 이용해 원격지 장치까지의 거리를 계산하여 상기 네트워크의 구조를 분석하는 과정임을 특징으로 하는 네트워크 감시 방법.Network monitoring method characterized in that the process of analyzing the structure of the network by calculating the distance to the remote device using the Time code included in the monitoring signal.
  4. 제1항에 있어서,According to claim 1,
    상기 수신된 광 신호의 파워를 측정해 일정값 이하이면 상기 네트워크가 절단된 것으로 판단하는 과정을 더 포함하는 네트워크 감시 방법.And measuring the power of the received optical signal and determining that the network is disconnected if it is below a certain value.
  5. 제1항에 있어서,According to claim 1,
    상기 변환된 전기적 신호를 분석하는 과정은,The process of analyzing the converted electrical signal,
    상기 감시용 신호에 포함하여 송신한 ID가 상기 변환된 전기적 신호에 포함되어 있지 않으면 원격지 장치가 없는 것으로 판단하는 과정을 더 포함하는 네트워크 감시 방법.And determining that there is no remote device if the transmitted ID included in the monitoring signal is not included in the converted electrical signal.
  6. 링형 광 네트워크를 감시하는 국사내 장치에 있어서,In the domestic device for monitoring the ring optical network,
    감시용 신호를 생성하고, 변환된 전기적 신호를 분석하는 프로세서, Processor that generates a signal for monitoring and analyzes the converted electrical signal,
    상기 생성된 감시용 신호를 광 신호로 변환하여 송신하는 제1 디지털 광 트랜시버, 및A first digital optical transceiver for converting and transmitting the generated monitoring signal to an optical signal, and
    광 신호를 수신하여 상기 전기적 신호로 변환하는 제2 디지털 광 트랜시버를 포함하고,And a second digital optical transceiver that receives the optical signal and converts it into the electrical signal.
    상기 감시용 신호는 BER(Bit Error Rate) 코드, FEC(Forward Error Correction) 코드, Time 코드, 및 ID를 포함함을 특징으로 하는 링형 광 네트워크를 감시하는 국사내 장치.The monitoring signal is a domestic device for monitoring a ring-type optical network, characterized in that it comprises a bit error rate (BER) code, forward error correction (FEC) code, time code, and ID.
PCT/KR2018/015038 2018-11-30 2018-11-30 Method and device for monitoring ring-type optical network WO2020111335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180151633A KR20200066401A (en) 2018-11-30 2018-11-30 Method for monitoring a ring type optical network and apparatus thereof
KR10-2018-0151633 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111335A1 true WO2020111335A1 (en) 2020-06-04

Family

ID=70852809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015038 WO2020111335A1 (en) 2018-11-30 2018-11-30 Method and device for monitoring ring-type optical network

Country Status (2)

Country Link
KR (1) KR20200066401A (en)
WO (1) WO2020111335A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242862B2 (en) * 2002-01-21 2007-07-10 Altera Corporation Network diagnostic tool for an optical transport network
US20090129773A1 (en) * 2007-11-21 2009-05-21 Moshe Oron Method and apparatus for isolating a location of a fault in a passive optical network
US20130251362A1 (en) * 2008-10-21 2013-09-26 Broadcom Corporation Performance Monitoring in Passive Optical Networks
KR20140007003A (en) * 2011-06-07 2014-01-16 알까뗄 루슨트 Fault detector for optical network communication system
KR20140093597A (en) * 2013-01-18 2014-07-28 한국전자통신연구원 Optical tranceiver for performing data communication andoptical link monitoring, and optical network system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242862B2 (en) * 2002-01-21 2007-07-10 Altera Corporation Network diagnostic tool for an optical transport network
US20090129773A1 (en) * 2007-11-21 2009-05-21 Moshe Oron Method and apparatus for isolating a location of a fault in a passive optical network
US20130251362A1 (en) * 2008-10-21 2013-09-26 Broadcom Corporation Performance Monitoring in Passive Optical Networks
KR20140007003A (en) * 2011-06-07 2014-01-16 알까뗄 루슨트 Fault detector for optical network communication system
KR20140093597A (en) * 2013-01-18 2014-07-28 한국전자통신연구원 Optical tranceiver for performing data communication andoptical link monitoring, and optical network system

Also Published As

Publication number Publication date
KR20200066401A (en) 2020-06-10

Similar Documents

Publication Publication Date Title
US7068931B2 (en) Alarm control system and method
US20160315701A1 (en) Optical transmission device, method for verifying connection, and wavelength selective switch card
US20070019953A1 (en) Systems and methods for placing line terminating equipment of optical communication systems in customer points of presence
US8531983B2 (en) System and method for identifying a length of an installed fiber cable
US20110293265A1 (en) Optical Access Network, Secondary Network Side Termination Node of an Optical Access Network, and Method for Operating a Network Side Termination Node
CN101208884A (en) COTDR arrangement for an undersea optical transmission system comprising multiple cable stations and multiple transmission segments
US20050123293A1 (en) Optical transmission method and system
JP6387965B2 (en) Transmission apparatus, transmission system, transmission method, and storage medium storing program
WO2018216883A1 (en) Repeater optical core monitoring system using otdr
US11777597B2 (en) Dual-direction OTDR system for inter-node communications
WO2022245181A1 (en) Underwater communication device and method for transmitting/receiving id thereof
JP2007142529A (en) Pon system and testing method thereof
WO2015199266A1 (en) Optical communication line monitoring apparatus and method
US5212534A (en) Distance-measuring method and transmitting and receiving station for carrying out the same
WO2020111335A1 (en) Method and device for monitoring ring-type optical network
US7450519B2 (en) Auto-negotiation monitor system, repeating-transmission apparatus, and auto-negotiation monitor method used therefor
US7522835B1 (en) Method of testing bit error rates for a wavelength division multiplexed optical communication system
KR102020578B1 (en) Method and Apparatus for Detecting a Disconnected Optic Fiber Line and a Location of Disconnection in Ring Optical Network System
CN114189285A (en) pRRU remote system and communication processing method based on same
KR102048745B1 (en) Method and Optical Network System for Obtaining Line Information at Passive RN
KR102356762B1 (en) System for identifyimg a structure of network, central office terminal and identifyimg method a structure of network
US6819830B2 (en) System and method for communicating data in a network using backchannel signaling
JPWO2004010612A1 (en) Optical transmission method and system
WO2014157819A1 (en) Duplexing optical transceiver having line switching detour function
JP2006067239A (en) Transmission equipment, fault notification method therefor, and transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941438

Country of ref document: EP

Kind code of ref document: A1