WO2020111241A1 - 冷凍サイクル装置及び冷凍サイクルシステム - Google Patents

冷凍サイクル装置及び冷凍サイクルシステム Download PDF

Info

Publication number
WO2020111241A1
WO2020111241A1 PCT/JP2019/046814 JP2019046814W WO2020111241A1 WO 2020111241 A1 WO2020111241 A1 WO 2020111241A1 JP 2019046814 W JP2019046814 W JP 2019046814W WO 2020111241 A1 WO2020111241 A1 WO 2020111241A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
heat exchanger
heat source
amount
Prior art date
Application number
PCT/JP2019/046814
Other languages
English (en)
French (fr)
Inventor
武史 檜皮
吉見 学
笠原 伸一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2020111241A1 publication Critical patent/WO2020111241A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration cycle device that performs a heating operation that causes the state of the heat source side heat exchanger to function as an evaporator, and a refrigeration cycle system including the refrigeration cycle device.
  • refrigerant may leak from the refrigerant circuit due to deterioration over time, and the amount of refrigerant in the refrigerant circuit may decrease relative to the amount of refrigerant originally filled.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2009-115340
  • the air conditioner is operated in a heating cycle, and the degree of supercooling at this time is controlled.
  • a technique for determining the amount of refrigerant using the value is disclosed.
  • the refrigeration cycle device includes a refrigerant circuit.
  • the refrigerant circuit includes a compressor, a heat source side heat exchanger, a utilization side heat exchanger, and a flow direction switching mechanism.
  • the flow direction switching mechanism switches the flow direction of the refrigerant in order to change the state of the heat source side heat exchanger between the first state that functions as an evaporator and the second state that functions as a condenser.
  • the refrigeration cycle apparatus further includes a control unit and a refrigerant amount determination unit. When the operation mode of the refrigeration cycle device is in the heating operation mode in which the heat source side heat exchanger is in the first state and the heating operation is performed, the control unit controls the flow direction switching mechanism to temporarily perform heat exchange on the heat source side.
  • the reverse cycle operation is performed by switching the state of the vessel to the second state.
  • the refrigerant amount determination unit determines the amount of refrigerant in the refrigerant circuit based on the information about the reverse cycle operation.
  • the operation mode when the operation mode is the heating operation mode, it is not based on the information on the heating operation but on the information on the reverse cycle operation that is relatively susceptible to the decrease in the refrigerant amount.
  • the amount of refrigerant in the refrigerant circuit is determined. Therefore, the present refrigeration cycle apparatus can accurately determine the refrigerant amount.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein during reverse cycle operation, defrost operation for defrosting the heat source side heat exchanger and refrigerating machine oil in the refrigerant circuit are applied to the compressor. At least one of oil return operation for returning is included.
  • the amount of the refrigerant in the refrigerant circuit is determined by using the information about the defrost operation or the oil return operation that is normally performed to operate the refrigeration cycle device, the stop time of the heating operation that should be originally performed is suppressed. At the same time, the amount of refrigerant can be determined.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect or the second aspect, and the information on the reverse cycle operation includes the value of the high pressure of the refrigeration cycle during the reverse cycle operation and the value during the reverse cycle operation.
  • Low pressure value of refrigeration cycle, discharge temperature of refrigeration cycle during reverse cycle operation, degree of supercooling of refrigeration cycle during reverse cycle operation, suction superheat of refrigeration cycle during reverse cycle operation, and compressor of reverse cycle operation At least one of the rotation speed and the defrost operation time for defrosting the heat source side heat exchanger as the reverse cycle operation is included.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein the reverse cycle operation is a first operation performed by controlling a high pressure value of the refrigeration cycle in the refrigerant circuit to a predetermined first pressure. including.
  • the first operation performed by controlling the high pressure value of the refrigeration cycle to a predetermined pressure is performed as a reverse cycle operation.
  • the same refrigeration cycle state is realized in the refrigerant circuit even if the temperature of the heat source side air around the heat source side heat exchanger is different. Therefore, the amount of refrigerant can be accurately determined.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fourth aspect, and the information regarding the reverse cycle operation includes the degree of supercooling of the refrigeration cycle during the first operation.
  • the amount of refrigerant can be accurately determined.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fourth aspect or the fifth aspect, wherein the rotation speed of the compressor during the first operation is the defrost operation in which the heat source side heat exchanger is defrosted. And the rotation speed of the compressor during the oil return operation for returning the refrigeration oil in the refrigerant circuit to the compressor.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the fourth to sixth aspects, wherein the control unit performs the oil return operation of returning the refrigeration oil in the refrigerant circuit to the compressor, or After the execution, the first operation is performed as the reverse cycle operation.
  • the refrigerant is suppressed while suppressing an increase in the number of times of switching of the flow direction switching mechanism that requires a pressure equalizing time or the like. A quantity can be judged. Then, by suppressing an increase in the number of times of switching of the flow direction switching mechanism, it is possible to suppress the interruption time of the heating operation.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the fourth to sixth aspects, wherein the control unit is in the heating operation mode when the operation mode of the refrigeration cycle apparatus is the refrigeration cycle apparatus.
  • the first operation is performed as the reverse cycle operation.
  • the first operation for determining the refrigerant amount is executed at a timing when the operation of the refrigeration cycle device is not necessary, it is possible to determine the refrigerant amount without impairing the provision of the function of the refrigeration cycle device to the user.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the fourth to eighth aspects, wherein the refrigerant circuit has a main refrigerant pipe, a supercooling pipe, a supercooling expansion valve, and a supercooling device. And a heat exchanger.
  • the main refrigerant pipe connects the heat source side heat exchanger and the use side heat exchanger.
  • the supercooling pipe branches from the main refrigerant pipe and guides the refrigerant to the suction side of the compressor.
  • the supercooling expansion valve is provided in the supercooling pipe and reduces the pressure of the refrigerant flowing through the supercooling pipe.
  • the refrigeration cycle apparatus further includes a first temperature sensor.
  • the first temperature sensor measures a first temperature, which is the temperature of the refrigerant flowing through the main refrigerant pipe that has passed through the subcooling heat exchanger.
  • the control unit further controls the supercooling expansion valve so that the first temperature becomes a predetermined value when performing the first operation.
  • the density change of the refrigerant in the refrigerant pipe gives the accuracy of the determination of the refrigerant amount. The influence can be suppressed.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the fourth to ninth aspects, wherein the refrigeration cycle apparatus removes air in a target space by a refrigerant flowing through a utilization side heat exchanger during heating operation. To heat.
  • the refrigeration cycle apparatus further includes a second temperature sensor and a first prohibition unit.
  • the second temperature sensor measures a second temperature that is the temperature of the air in the target space.
  • the first prohibition unit prohibits the control unit from executing the first operation when the second temperature is lower than the target temperature of the target space by a predetermined temperature or more.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the fourth to tenth aspects, further including a third temperature sensor and a second prohibition unit.
  • the third temperature sensor measures a third temperature, which is the temperature of the heat source air that exchanges heat with the refrigerant in the heat source side heat exchanger.
  • the second prohibition unit prohibits the control unit from executing the first operation when the third temperature is lower than the temperature at which the high pressure value of the refrigeration cycle can be maintained at the first pressure.
  • the first operation is prohibited when the heat source air temperature is low in which the first operation for controlling the high pressure value of the refrigeration cycle to the predetermined first pressure is difficult, so the determination of the refrigerant amount is made at a timing not suitable for the determination of the refrigerant amount. Can be suppressed from being performed.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the second aspect, and in the reverse cycle operation, a first operation performed by controlling a high pressure value of the refrigeration cycle in the refrigerant circuit to a predetermined first pressure. including.
  • the control unit determines the first operation as the reverse cycle operation. To do.
  • the first operation that enables more accurate determination of the refrigerant amount is performed, so the refrigerant is accurately measured. A quantity can be judged.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to twelfth aspects, wherein the refrigerant amount determination unit learns a relationship between information about the reverse cycle operation and the refrigerant amount of the refrigerant circuit. It has a completed discriminator. The refrigerant amount determination unit determines the amount of refrigerant in the refrigerant circuit by inputting information regarding the reverse cycle operation to the discriminator.
  • the refrigeration cycle system includes a refrigeration cycle device and a refrigerant amount determination unit.
  • the refrigeration cycle device includes a refrigerant circuit and a control unit.
  • the refrigerant circuit includes a compressor, a heat source side heat exchanger, a utilization side heat exchanger, and a flow direction switching mechanism.
  • the flow direction switching mechanism switches the flow direction of the refrigerant in order to change the state of the heat source side heat exchanger between the first state that functions as an evaporator and the second state that functions as a condenser.
  • the control unit controls the flow direction switching mechanism to temporarily perform heat exchange on the heat source side.
  • the reverse cycle operation is performed by switching the state of the vessel to the second state.
  • the refrigerant amount determination unit determines the amount of refrigerant in the refrigerant circuit based on the information about the reverse cycle operation.
  • the refrigeration cycle system according to the fifteenth aspect is the refrigeration cycle system according to the fourteenth aspect, wherein the refrigerant amount determination unit has a discriminator that has learned the relationship between the information about the reverse cycle operation and the refrigerant amount in the refrigerant circuit.
  • the refrigerant amount determination unit determines the amount of refrigerant in the refrigerant circuit by inputting information regarding the reverse cycle operation to the discriminator.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle system including a refrigeration cycle device according to a first embodiment. It is a block diagram of the refrigeration cycle system of FIG. 3 is a flowchart of a refrigerant amount determination process based on information regarding a defrost operation and an oil return operation in the refrigeration cycle device of FIG. 1. 6 is a flowchart of a refrigerant amount determination process in the refrigeration cycle apparatus of FIG. 1 based on information regarding a refrigerant amount determination operation. It is a block diagram of the refrigerating cycle system of a 2nd embodiment. It is a block diagram of a refrigerating cycle system including a refrigerating cycle device provided with a refrigerant quantity judging part which has a learned discriminator.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle system 100 including the refrigeration cycle device 1 according to the first embodiment.
  • FIG. 2 is a block diagram of the refrigeration cycle system 100.
  • the refrigeration cycle device 1 of the present embodiment is an air conditioner that cools/heats the target space by performing a vapor compression refrigeration cycle.
  • the refrigeration cycle apparatus 1 is not limited to the air conditioner, and may be a device other than the air conditioner, such as a hot water supply device.
  • the refrigeration cycle apparatus 1 mainly includes one heat source unit 2, a plurality of (two in the present embodiment) utilization units 4 and 5 connected in parallel to the heat source unit 2, a liquid refrigerant communication pipe 6, and a gas.
  • the refrigerant communication pipe 7 and the controller 8 are provided (see FIGS. 1 and 2).
  • the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 are pipes that connect the heat source unit 2 and the usage units 4 and 5 (see FIG. 1 ).
  • the controller 8 controls operations of various devices of the heat source unit 2 and the utilization units 4 and 5. Further, in the present embodiment, the controller 8 also functions as a refrigerant amount determination unit 85 that determines the amount of refrigerant in the refrigerant circuit 10 described later (see FIG. 2).
  • the refrigeration cycle apparatus 1 has two use units, but the number of use units is not limited to two.
  • the refrigeration cycle apparatus 1 may have one or three or more utilization units.
  • the refrigeration cycle apparatus 1 has one heat source unit 2, but the number of heat source units 2 is not limited to one.
  • the refrigeration cycle apparatus 1 may have a plurality of heat source units 2 connected in parallel.
  • the heat source unit 2 and the utilization units 4 and 5 are connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 to form the refrigerant circuit 10 (see FIG. 1).
  • the refrigerant circuit 10 includes the compressor 21 of the heat source unit 2, the heat source side heat exchanger 23, the flow direction switching mechanism 22, and the use side heat exchangers 42 and 52 of the use units 4 and 5 (see FIG. 1 ).
  • the refrigerant circuit 10 further includes the subcooling heat exchanger 25 and the bypass expansion valve 62 of the heat source unit 2 (see FIG. 1 ).
  • the refrigerant used in the refrigeration cycle apparatus 1 is, but not limited to, a fluorocarbon refrigerant such as R32.
  • the refrigerant used in the refrigeration cycle device 1 may be a natural refrigerant.
  • the refrigeration cycle apparatus 1 has, as operation modes, a cooling operation mode for performing a cooling operation and a heating operation mode for performing a heating operation.
  • the heating operation mode is an example of the heating operation mode.
  • the cooling operation is an operation in which the heat source side heat exchanger 23 functions as a condenser, the use side heat exchangers 42 and 52 function as an evaporator, and the air in the target space in which the use units 4 and 5 are installed is cooled. is there.
  • the heat source side heat exchanger 23 functions as an evaporator
  • the use side heat exchangers 42 and 52 function as a condenser
  • the air in the target space in which the use units 4 and 5 are installed is heated.
  • the heating operation is an example of the heating operation.
  • the refrigeration cycle device 1 executes defrosting operation and oil return operation in addition to cooling operation and heating operation.
  • the defrost operation is an operation for defrosting the heat source side heat exchanger 23.
  • the oil return operation is an operation for returning the refrigeration oil in the refrigerant circuit 10 existing outside the compressor 21 to the compressor 21. Furthermore, it is preferable that the refrigeration cycle apparatus 1 can execute the operation for determining the amount of refrigerant, which is an example of the first operation. Details of the defrost operation, the oil return operation, and the refrigerant amount determination operation will be described later.
  • the refrigeration cycle apparatus 1 when it is a hot water supply apparatus, it has a heating operation mode for executing a heating operation as an operation mode.
  • the heating operation is an operation in which the heat source side heat exchanger 23 functions as an evaporator, the use side heat exchangers 42 and 52 function as condensers, and the use side heat exchangers 42 and 52 heat water.
  • the refrigeration cycle apparatus 1 can execute, for example, a defrost operation, an oil return operation, and a refrigerant amount determination operation in addition to the heating operation.
  • the utilization units 4 and 5 are units installed in a target space such as a building room.
  • the usage units 4 and 5 are ceiling-embedded units installed on the ceiling.
  • the usage units 4 and 5 are not limited to the ceiling-embedded units, and the ceiling-suspended type that is hung on the ceiling, the wall-mounted type that is installed on the wall, and the floor-standing type that is installed on the floor. May be a unit.
  • the usage units 4 and 5 are connected to the heat source unit 2 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7, and form a part of the refrigerant circuit 10.
  • the usage unit 4 has a usage-side refrigerant circuit 10a forming a part of the refrigerant circuit 10 (see FIG. 1).
  • the usage-side refrigerant circuit 10a mainly has a usage-side expansion mechanism 41 and a usage-side heat exchanger 42 (see FIG. 1).
  • the usage unit 4 has a usage-side fan 43 driven by a motor 43a (see FIG. 1).
  • the usage unit 4 has various sensors.
  • the various sensors included in the utilization unit 4 include the liquid side temperature sensor 44, the gas side temperature sensor 45, and the target space temperature sensor 46 (see FIG. 1 ).
  • the usage unit 4 has a usage-side control unit 47 that controls the operation of the usage unit 4 (see FIG. 1).
  • the usage unit 5 has a usage-side refrigerant circuit 10b forming a part of the refrigerant circuit 10 (see FIG. 1).
  • the usage-side refrigerant circuit 10b mainly has a usage-side expansion mechanism 51 and a usage-side heat exchanger 52 (see FIG. 1).
  • the usage unit 5 has a usage-side fan 53 driven by a motor 53a (see FIG. 1).
  • the usage unit 5 has various sensors.
  • the various sensors included in the utilization unit 5 include the liquid side temperature sensor 54, the gas side temperature sensor 55, and the target space temperature sensor 56 (see FIG. 1 ).
  • the usage unit 5 has a usage-side control unit 57 that controls the operation of the usage unit 4 (see FIG. 1).
  • each part of the usage unit 5 is the same as that of the corresponding part of the usage unit 4. Therefore, below, only each part of the usage unit 4 will be described, and if not particularly necessary, a description of each part of the usage unit 5 will be omitted.
  • (2-1-1) Utilization-side Heat Exchanger In the utilization-side heat exchanger 42, heat exchange is performed between the refrigerant flowing through the utilization-side heat exchanger 42 and the medium passing through the utilization-side heat exchanger 42. .. In the present embodiment, in the use side heat exchanger 42, heat exchange is performed between the refrigerant flowing through the use side heat exchanger 42 and the air in the target space.
  • One end of the usage-side heat exchanger 42 is connected to the liquid refrigerant communication pipe 6 via a refrigerant pipe.
  • the other end of the usage-side heat exchanger 42 is connected to the gas refrigerant communication pipe 7 via a refrigerant pipe.
  • the type of the use side heat exchanger 42 is not limited, for example, a cross fin type fin-and-tube heat exchanger configured by a heat transfer tube (not shown) and a large number of fins (not shown). It is a vessel.
  • the heat exchanger 42 on the use side functions as an evaporator during cooling operation, defrost operation, oil return operation, and refrigerant amount determination operation.
  • the utilization side heat exchanger 42 functions as a condenser during heating operation.
  • the utilization side expansion mechanism 41 is a mechanism for adjusting the pressure and flow rate of the refrigerant flowing through the utilization side refrigerant circuit 10a.
  • the usage-side expansion mechanism 41 is provided in a refrigerant pipe that connects the liquid side of the usage-side heat exchanger 42 and the liquid refrigerant communication pipe 6.
  • the use side expansion mechanism 41 is, for example, an electronic expansion valve whose opening degree is variable.
  • the use-side expansion mechanism 41 is not limited to the electronic expansion valve, and a mechanism generally used as an expansion mechanism in the refrigeration cycle device may be appropriately selected.
  • the usage-side fan 43 draws air in the target space into the usage unit 4 and supplies it to the usage-side heat exchanger 42. It is a mechanism that blows out the exchanged air into the target space.
  • the use side fan 43 is, for example, a sirocco fan. However, the type of the use-side fan 43 is not limited to the sirocco fan and may be appropriately selected.
  • the use side fan 43 is driven by the motor 43a.
  • the utilization side fan 43 is a variable air volume fan driven by a motor 43a whose rotation speed can be changed.
  • the use unit 4 has a liquid side temperature sensor 44, a gas side temperature sensor 45, and a target space temperature sensor 46 as sensors (see FIG. 1).
  • the usage unit 4 may not have all of the above-mentioned sensors 44 to 46, and may have only some of them. Further, the heat source unit 2 may have sensors other than the sensors 44 to 46 described above.
  • the liquid side temperature sensor 44 is provided in the refrigerant pipe that connects the liquid side of the use side heat exchanger 42 and the liquid refrigerant communication pipe 6.
  • the liquid-side temperature sensor 44 measures the temperature of the refrigerant flowing through the liquid-side refrigerant pipe of the usage-side heat exchanger 42.
  • the gas side temperature sensor 45 is provided in the refrigerant pipe that connects the gas side of the use side heat exchanger 42 and the gas refrigerant communication pipe 7.
  • the gas side temperature sensor 45 measures the temperature of the refrigerant flowing through the gas side refrigerant pipe of the usage side heat exchanger 42.
  • the target space temperature sensor 46 is provided on the intake side of the target space air of the usage unit 4.
  • the target space temperature sensor 46 detects the temperature of the air in the target space flowing into the utilization unit 4 (target space temperature Tr).
  • the type of the sensor is not limited, in the present embodiment, the liquid side temperature sensor 44, the gas side temperature sensor 45 and the target space temperature sensor 46 are thermistors.
  • the utilization-side control unit 47 controls the operation of each unit constituting the utilization unit 4.
  • the user-side control unit 47 has a microcomputer, a memory, etc. provided for controlling the user unit 4.
  • the use side control unit 47 exchanges control signals and information with the use side expansion mechanism 41, the use side fan 43, the liquid side temperature sensor 44, the gas side temperature sensor 45, and the target space temperature sensor 46 of the use unit 4. It is electrically connected so that it can be performed (see FIG. 1).
  • the usage-side control unit 47 is connected to the heat-source-side control unit 37 by the transmission line 8a in a state in which control signals and the like can be exchanged with the heat-source-side control unit 37 of the heat-source unit 2. ..
  • the use-side controller 47 and the heat-source-side controller 37 do not have to be connected by the physical transmission line 8a.
  • the use-side control unit 47 and the heat-source-side control unit 37 may be wirelessly connected so as to be communicable with each other.
  • the usage-side control unit 47 is configured to be able to receive various signals transmitted from a remote controller (not shown) for operating the usage unit 4.
  • the various signals include signals related to the operation/stop of the usage unit 4 and signals related to various settings.
  • the signals related to various settings include, for example, an operation mode switching signal and a target temperature (set temperature Trs) for cooling operation and heating operation.
  • the use-side control unit 47 and the use-side control unit 57 of the use unit 5, and the heat-source-side control unit 37 of the heat-source unit 2 that is connected to the use-side control units 47 and 57 via the transmission line 8a cooperate with each other.
  • the function of the controller 8 will be described later.
  • the heat source unit 2 is installed, for example, outside the building in which the refrigeration cycle apparatus 1 is installed.
  • the heat source unit 2 is connected to the usage units 4 and 5 via a liquid refrigerant communication pipe 6 and a gas refrigerant communication pipe 7.
  • the heat source unit 2 constitutes the refrigerant circuit 10 together with the utilization units 4 and 5 (see FIG. 1).
  • the heat source unit 2 has a heat source side refrigerant circuit 10c forming a part of the refrigerant circuit 10 (see FIG. 1).
  • the heat source side refrigerant circuit 10c mainly includes a compressor 21, a flow direction switching mechanism 22, a heat source side heat exchanger 23, a heat source side expansion mechanism 38, an accumulator 24, a supercooling heat exchanger 25, and a bypass expansion valve. It has 62, the liquid side closing valve 26, and the gas side closing valve 27 (refer to FIG. 1).
  • the heat source unit 2 has a heat source side fan 28 driven by a motor 28a (see FIG. 1).
  • the heat source unit 2 has various sensors. The sensor included in the heat source unit 2 will be described later.
  • the heat source unit 2 has a heat source side controller 37 (see FIG. 1).
  • the heat source unit 2 has a suction pipe 11a, a discharge pipe 11b, a first gas refrigerant pipe 11c, a liquid refrigerant pipe 11d, a second gas refrigerant pipe 11e, and a bypass refrigerant pipe 61 (FIG. 1). reference).
  • the suction pipe 11a connects the flow direction switching mechanism 22 and the suction side of the compressor 21 (see FIG. 1).
  • the suction pipe 11a is provided with an accumulator 24 (see FIG. 1).
  • the discharge pipe 11b connects the discharge side of the compressor 21 and the flow direction switching mechanism 22 (see FIG. 1).
  • the first gas refrigerant pipe 11c connects the flow direction switching mechanism 22 and the gas side of the heat source side heat exchanger 23 (see FIG. 1).
  • the liquid refrigerant pipe 11d connects the liquid side of the heat source side heat exchanger 23 and the liquid refrigerant communication pipe 6 (see FIG. 1).
  • the liquid refrigerant tube 11d is an example of a main refrigerant tube that connects the heat source side heat exchanger 23 and the use side heat exchangers 42 and 52.
  • a heat source side expansion mechanism 38 is provided in the liquid refrigerant tube 11d (see FIG. 1).
  • a supercooling heat exchanger 25 is provided in the liquid refrigerant tube 11d (see FIG. 1).
  • a liquid-side shutoff valve 26 is provided at the connection between the liquid-refrigerant pipe 11d and the liquid-refrigerant communication pipe 6 (see FIG. 1).
  • the second gas refrigerant pipe 11e connects the flow direction switching mechanism 22 and the gas refrigerant communication pipe 7 (see FIG. 1).
  • a gas side shutoff valve 27 is provided at a connection portion between the second gas refrigerant pipe 11e and the gas refrigerant communication pipe 7 (see FIG. 1).
  • the bypass refrigerant pipe 61 is branched from a portion connecting the heat source side expansion mechanism 38 of the liquid refrigerant pipe 11d and the supercooling heat exchanger 25, and its end is connected to the suction pipe 11a (see FIG. 1). ..
  • the bypass refrigerant pipe 61 is an example of a supercooling pipe that guides a part of the refrigerant flowing through the liquid refrigerant pipe 11d to the suction side of the compressor 21.
  • a supercooling heat exchanger 25 is provided in the bypass refrigerant pipe 61 (see FIG. 1).
  • the bypass refrigerant pipe 61 is a first pipe 61a connecting the branch portion from the liquid refrigerant pipe 11d and the supercooling heat exchanger 25, and a second pipe connecting the supercooling heat exchanger 25 and the suction pipe 11a. 61b and (see FIG. 1).
  • the first pipe 61a is provided with a bypass expansion valve 62 (see FIG. 1).
  • the main configuration of the heat source unit 2 will be further described below.
  • the compressor 21 sucks the low-pressure refrigerant in the refrigeration cycle from the suction pipe 11a, compresses the refrigerant by a compression mechanism (not shown), and discharges the compressed refrigerant to the discharge pipe 11b.
  • the heat source unit 2 has only one compressor 21, but the number of compressors 21 is not limited to one.
  • the heat source unit 2 may have a plurality of compressors 21 connected in parallel. Further, when the heat source unit 2 compresses the refrigerant in a plurality of stages, the heat source unit 2 may have a plurality of compressors 21 connected in series.
  • the compressor 21 is not limited in type, but is, for example, a rotary or scroll volumetric compressor.
  • the compression mechanism (not shown) of the compressor 21 is driven by the motor 21a (see FIG. 1).
  • the motor 21a is a motor whose rotation speed can be controlled by an inverter.
  • the capacity of the compressor 21 is controlled by controlling the rotation speed (operating frequency) of the motor 21a.
  • the compression mechanism of the compressor 21 may be driven by a prime mover (for example, an internal combustion engine) other than the motor.
  • the flow direction switching mechanism 22 switches the flow direction of the refrigerant so that the heat source side heat exchanger 23 is in a first state that functions as an evaporator and a second state that functions as a condenser. It is a mechanism to change between two states.
  • the flow direction switching mechanism 22 sets the state of the heat source side heat exchanger 23 to the first state
  • the use side heat exchangers 42 and 52 function as condensers.
  • the use side heat exchangers 42 and 52 function as evaporators.
  • the flow direction switching mechanism 22 is a mechanism for switching the flow direction of the refrigerant discharged from the compressor 21 between the first flow direction A and the second flow direction B (see arrows A and B in FIG. 1).
  • the state of the heat source side heat exchanger 23 becomes the first state.
  • the heat source side heat exchanger 23 is in the second state.
  • the flow direction switching mechanism 22 is a four-way switching valve.
  • the flow direction of the refrigerant discharged from the compressor 21 is switched to the first flow direction A by the flow direction switching mechanism 22.
  • the flow direction switching mechanism 22 connects the suction pipe 11a to the first gas refrigerant pipe 11c and the discharge pipe 11b to the second gas refrigerant pipe 11e (Fig. (See the broken line in the flow direction switching mechanism 22 in 1).
  • the refrigerant discharged from the compressor 21 is used in the refrigerant circuit 10 by the use side heat exchangers 42 and 52, the use side expansion mechanisms 41 and 51, the heat source side expansion mechanism 38, and the heat source. It flows in order of the side heat exchanger 23, and returns to the compressor 21.
  • the flow direction of the refrigerant discharged from the compressor 21 is switched to the second flow direction B by the flow direction switching mechanism 22.
  • the flow direction switching mechanism 22 communicates the suction pipe 11a with the second gas refrigerant pipe 11e and the discharge pipe 11b with the first gas refrigerant pipe 11c (Fig. (See the solid line in the flow direction switching mechanism 22 in 1).
  • the refrigerant discharged from the compressor 21 flows through the refrigerant circuit 10 in the heat source side heat exchanger 23, the heat source side expansion mechanism 38, the usage side expansion mechanisms 41, 51, and the usage side heat. It flows in the order of the exchangers 42 and 52 and returns to the compressor 21.
  • the flow direction switching mechanism 22 is not limited to the four-way switching valve.
  • the flow direction switching mechanism 22 may be configured to combine a plurality of solenoid valves and a refrigerant pipe so as to realize the switching of the refrigerant flow direction as described above.
  • One end of the heat source side heat exchanger 23 is connected to the liquid refrigerant pipe 11d.
  • the other end of the heat source side heat exchanger 23 is connected to the first gas refrigerant pipe 11c.
  • the heat source side heat exchanger 23 is not limited in type, but is, for example, a fin-and-tube heat exchanger having a heat transfer tube (not shown) and a large number of fins (not shown).
  • the heat source side heat exchanger 23 functions as an evaporator during heating operation. On the other hand, during the cooling operation, the defrost operation, the oil return operation, and the refrigerant amount determination operation, the heat source side heat exchanger 23 functions as a condenser (radiator).
  • the heat source side expansion mechanism 38 is arranged between the heat source side heat exchanger 23 and the use side heat exchangers 42 and 52 in the refrigerant flow path (see FIG. 1). .. Specifically, the heat source side expansion mechanism 38 is arranged between the heat source side heat exchanger 23 of the liquid refrigerant pipe 11d and a branch portion between the liquid refrigerant pipe 11d and the bypass refrigerant pipe 61 (FIG. 1).
  • the heat source side expansion mechanism 38 adjusts the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 11d.
  • the heat source side expansion mechanism 38 is, for example, an electronic expansion valve whose opening degree is variable.
  • the heat source side expansion mechanism 38 is not limited to the electronic expansion valve, and a device generally used as an expansion mechanism in the refrigeration cycle apparatus may be appropriately selected.
  • the accumulator 24 is a container having a gas-liquid separation function of dividing the inflowing refrigerant into a gas refrigerant and a liquid refrigerant. Further, the accumulator 24 is a container having a function of storing excess refrigerant generated according to fluctuations in the operating load of the usage units 4 and 5.
  • the accumulator 24 is provided in the suction pipe 11a (see FIG. 1). The refrigerant flowing into the accumulator 24 is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant collected in the upper space flows out to the compressor 21.
  • the subcooling heat exchanger 25 is a heat exchanger such as a double pipe heat exchanger or a plate heat exchanger.
  • the supercooling heat exchanger 25 is provided mainly for cooling the refrigerant condensed in the heat source side heat exchanger 23 and sent to the utilization units 4 and 5.
  • heat is exchanged between the refrigerant that is branched from the liquid refrigerant tube 11d, flows through the bypass refrigerant tube 61, and is decompressed by the bypass expansion valve 62, and the refrigerant that flows through the liquid refrigerant tube 11d.
  • the subcooling heat exchanger 25 is arranged between the liquid-side shutoff valve 26 and the branch of the liquid-refrigerant pipe 11d between the liquid-refrigerant pipe 11d and the bypass refrigerant pipe 61 (see FIG. 1). Further, the supercooling heat exchanger 25 is arranged between the bypass refrigerant pipe 61 and the connection portion between the bypass expansion valve 62 and the suction pipe 11a (see FIG. 1).
  • the bypass expansion valve 62 is an example of a supercooling expansion valve.
  • the bypass expansion valve 62 is provided in the first pipe 61a of the bypass refrigerant pipe 61 (see FIG. 1).
  • the bypass expansion valve 62 reduces the pressure of the refrigerant flowing through the bypass refrigerant pipe 61.
  • the bypass expansion valve 62 adjusts the flow rate of the refrigerant flowing through the bypass refrigerant pipe 61.
  • the bypass expansion valve 62 is, for example, an electronic expansion valve whose opening can be adjusted.
  • the bypass expansion valve 62 is not limited to an electronic expansion valve whose opening can be adjusted, and may be a solenoid valve that can control only opening/closing.
  • the bypass expansion valve 62 is an electromagnetic valve capable of controlling only opening/closing
  • the bypass refrigerant pipe 61 is preferably provided with a capillary for adjusting the flow rate.
  • the refrigerant branched from the liquid refrigerant tube 11d to the bypass refrigerant tube 61 flows into the subcooling heat exchanger 25, exchanges heat with the refrigerant flowing through the liquid refrigerant tube 11d, absorbs heat, and forms a gas phase. Becomes the refrigerant and flows into the suction pipe 11a.
  • the refrigerant flowing through the liquid refrigerant pipe 11d that has exchanged heat with the refrigerant flowing through the bypass refrigerant pipe 61 in the supercooling heat exchanger 25 is cooled in the supercooling heat exchanger 25 and sent to the utilization units 4 and 5.
  • the liquid-side close valve 26 is a valve provided at the connecting portion between the liquid refrigerant pipe 11d and the liquid refrigerant communication pipe 6.
  • the gas-side shutoff valve 27 is a valve provided at a connection portion between the second gas refrigerant pipe 11e and the gas refrigerant communication pipe 7.
  • the liquid side closing valve 26 and the gas side closing valve 27 are, for example, manually operated valves.
  • the heat source side fan 28 draws the heat source air outside the heat source unit 2 into the heat source unit 2 and supplies the heat source air to the heat source side heat exchanger 23. This is a fan for discharging the air that has exchanged heat with the outside of the heat source unit 2.
  • the heat source side fan 28 is, for example, a propeller fan.
  • the fan type of the heat source side fan 28 is not limited to the propeller fan, and may be appropriately selected.
  • the heat source side fan 28 is driven by a motor 28a (see FIG. 1).
  • the motor 28a is a motor whose rotation speed can be controlled by an inverter.
  • the heat source side fan 28 is a fan whose air volume is variable by controlling the rotation speed of the motor 28a.
  • the heat source unit 2 is provided with various sensors.
  • the heat source unit 2 has the following temperature sensor and pressure sensor.
  • the types of the temperature sensor and the pressure sensor may be appropriately selected.
  • the sensors of the heat source unit 2 include the suction pressure sensor 29, the discharge pressure sensor 30, the suction temperature sensor 31, the discharge temperature sensor 32, the heat exchange temperature sensor 33, the liquid side temperature sensor 34, and the liquid pipe temperature. It includes a sensor 35, a heat source air temperature sensor 36, and a bypass temperature sensor 63 (see FIGS. 1 and 2).
  • the heat source unit 2 may not have all of the above-mentioned sensors 29 to 36, 63, but may have only some of them. Further, the heat source unit 2 may have a sensor other than the above-mentioned sensors 29 to 36, 63.
  • the suction pressure sensor 29 is provided in the suction pipe 11a (see FIG. 1).
  • the suction pressure sensor 29 is a sensor that measures the suction pressure Ps.
  • the suction pressure Ps is a low pressure value of the refrigeration cycle.
  • the discharge pressure sensor 30 is provided on the discharge pipe 11b (see FIG. 1).
  • the discharge pressure sensor 30 is a sensor that measures the discharge pressure Pd.
  • the discharge pressure Pd is a high pressure value of the refrigeration cycle.
  • the suction temperature sensor 31 is provided in the suction pipe 11a (see FIG. 1).
  • the intake temperature sensor 31 is a sensor that measures the intake temperature Ts.
  • the discharge temperature sensor 32 is provided in the discharge pipe 11b (see FIG. 1).
  • the discharge temperature sensor 32 is a sensor that measures the discharge temperature Td.
  • the heat exchange temperature sensor 33 is provided in the heat source side heat exchanger 23 (see FIG. 1).
  • the heat exchange temperature sensor 33 measures the temperature of the refrigerant flowing in the heat source side heat exchanger 23.
  • the heat exchange temperature sensor 33 measures the refrigerant temperature corresponding to the condensation temperature Tc during the cooling operation, and measures the refrigerant temperature corresponding to the evaporation temperature Te during the heating operation.
  • the liquid side temperature sensor 34 is provided on the liquid side of the heat source side heat exchanger 23 and measures the temperature Tb of the refrigerant.
  • the flow direction switching mechanism 22 is switching the flow direction of the refrigerant to the second flow direction B
  • the refrigerant temperature Tb measured by the liquid side temperature sensor 34 is subtracted from the condensation temperature Tc measured by the heat exchange temperature sensor 33. The degree of supercooling of the cycle is calculated.
  • the liquid pipe temperature sensor 35 is arranged between the subcooling heat exchanger 25 and the liquid side closing valve 26 of the liquid refrigerant pipe 11d.
  • the liquid pipe temperature sensor 35 is an example of a first temperature sensor.
  • the liquid pipe temperature sensor 35 measures the temperature (liquid pipe temperature Tlp) of the refrigerant flowing between the subcooling heat exchanger 25 and the liquid side closing valve 26 of the liquid refrigerant pipe 11d.
  • the liquid pipe temperature sensor 35 is cooled in the subcooling heat exchanger 25 and flows through the liquid refrigerant pipe 11d when the flow direction switching mechanism 22 switches the flow direction of the refrigerant to the second flow direction B and the bypass expansion valve 62 is opened.
  • the temperature of the refrigerant is measured as the liquid pipe temperature Tlp.
  • the liquid pipe temperature sensor 35 measures the temperature of the refrigerant (liquid pipe temperature Tlp) flowing through the liquid refrigerant pipe 11d that has passed through the subcooling heat exchanger 25 during the refrigerant amount determination operation.
  • the heat source air temperature sensor 36 measures the temperature of the heat source air.
  • the bypass temperature sensor 63 is provided in the second pipe 61b of the bypass refrigerant pipe 61.
  • the bypass temperature sensor 63 exchanges heat with the refrigerant flowing through the first refrigerant pipe 61a of the bypass refrigerant pipe 61 and the liquid refrigerant pipe 11d in the supercooling heat exchanger 25, and measures the temperature of the refrigerant flowing into the suction pipe 11a.
  • the heat source side control section 37 controls the operation of each section constituting the heat source unit 2.
  • the heat source side control unit 37 has a microcomputer, a memory, etc. provided for controlling the heat source unit 2.
  • the heat source side controller 37 includes the compressor 21, the flow direction switching mechanism 22, the heat source side expansion mechanism 38, the bypass expansion valve 62, the heat source side fan 28, the suction pressure sensor 29, the discharge pressure sensor 30, and the suction temperature sensor of the heat source unit 2. 31, it is possible to exchange control signals and information with the discharge temperature sensor 32, the heat exchange temperature sensor 33, the liquid side temperature sensor 34, the liquid pipe temperature sensor 35, the heat source air temperature sensor 36, and the bypass temperature sensor 63. It is electrically connected (see FIG. 1). Further, the heat source side control unit 37 is connected to the use side control units 47 and 57 of the use units 4 and 5 via the transmission line 8a in a state in which control signals and the like can be exchanged. It is connected to 57.
  • the heat source side control unit 37 and the use side control units 47 and 57 of the use units 4 and 5 are connected via a transmission line 8a and function as a controller 8 that controls the operation of the refrigeration cycle apparatus 1.
  • the controller 8 controls the operation of the entire refrigeration cycle apparatus 1 by causing the microcomputer of the heat source side control unit 37 and/or the use side control units 47 and 57 to execute the program stored in the memory.
  • the controller 8 also functions as a refrigerant amount determination unit 85 that determines the amount of refrigerant in the refrigerant circuit 10. The function of the controller 8 will be described later.
  • the refrigeration cycle apparatus 1 has a liquid refrigerant communication pipe 6 and a gas refrigerant communication pipe 7 as refrigerant communication pipes.
  • the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 are pipes constructed at the installation site of the refrigeration cycle device 1 when the refrigeration cycle device 1 is installed.
  • pipes of various lengths and diameters are used according to the installation location and the installation conditions such as the combination of the heat source unit and the utilization unit.
  • the refrigeration cycle apparatus 1 is configured such that the use side refrigerant circuits 10a and 10b of the use units 4 and 5 and the heat source side refrigerant circuit 10c of the heat source unit 2 are connected by the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7.
  • the refrigerant circuit 10 is constructed.
  • the controller 8 is configured by the heat source side controller 37 of the heat source unit 2 and the user side controllers 47 and 57 of the usage units 4 and 5 being communicably connected via the transmission line 8a. Has been done.
  • the controller 8 controls the operation of the entire refrigeration cycle apparatus 1 by the microcomputer of the heat source side control unit 37 and the use side control units 47 and 57 executing the program stored in the memory.
  • controller 8 of this embodiment is only an example.
  • the controller may realize the same function as the function of the controller 8 of the present embodiment by hardware such as a logic circuit or a combination of hardware and software.
  • the heat source side control unit 37 and the use side control units 47 and 57 configure the controller 8, but the controller 8 is not limited to this.
  • the refrigeration cycle apparatus 1 includes, in addition to the heat source side control unit 37 and the use side control units 47 and 57, or in place of the heat source side control unit 37 and the use side control units 47 and 57, a controller 8 described below. You may have the control apparatus provided separately from the heat source unit 2 and the utilization units 4 and 5 which implement
  • the controller 8 of the refrigeration cycle apparatus 1 may not have some or all of the functions described below.
  • some or all of the functions of the controller 8 described below may be realized by a server or the like installed in a place different from the refrigeration cycle apparatus 1.
  • the function of the controller 8 may not be executed only by the refrigeration cycle apparatus 1, and may be realized by a server or the like (not shown) installed separately from the refrigeration cycle apparatus 1 that constitutes the refrigeration cycle system 100.
  • the function of the refrigerant amount determination unit 85 which will be described later, may be realized by the server configuring the refrigeration cycle system 100.
  • the controller 8 includes the use side expansion mechanisms 41 and 51, the compressor 21, the flow direction switching mechanism 22, the heat source side expansion mechanism 38, the bypass expansion valve 62, the use side fans 43 and 53, and the heat source side.
  • the heat source unit 2 including the fan 28 and various devices of the utilization units 4 and 5 are electrically connected.
  • the controller 8 includes the liquid side temperature sensors 44 and 54, the gas side temperature sensors 45 and 55, the target space temperature sensors 46 and 56, the suction pressure sensor 29, the discharge pressure sensor 30, and the suction pressure sensor.
  • the temperature sensor 31, the discharge temperature sensor 32, the heat exchange temperature sensor 33, the liquid side temperature sensor 34, the liquid pipe temperature sensor 35, the heat source air temperature sensor 36, and the bypass temperature sensor 63 are electrically connected.
  • the controller 8 mainly has a device control unit 81, a prohibition unit 82, and a refrigerant amount determination unit 85 as functional units.
  • the device control unit 81 is a device based on the controller 8 based on the measurement signals of the various sensors 29 to 36, 44 to 46, 54 to 56, 63 and the commands sent from the remote controller (not shown) to the user side control units 47 and 57. It controls the operations of 21, 22, 28, 38, 41, 43, 51, 53, 62 and the like.
  • the device control section 81 controls the devices 21, 22, 28, 38, 41, 43, 51, 53, 62 during cooling operation, heating operation, defrost operation, oil return operation, and refrigerant amount determination operation. The control of the operation will be described later.
  • the prohibition unit 82 prohibits the device control unit 81 from executing the operation for judging the amount of refrigerant when a predetermined condition is satisfied.
  • the predetermined condition will be described later.
  • the refrigerant amount determination unit 85 determines the amount of refrigerant in the refrigerant circuit 10.
  • the determination of the amount of refrigerant here does not have to be a quantitative determination of the amount of refrigerant, but may be a qualitative determination of the amount of refrigerant.
  • the qualitative determination of the amount of refrigerant includes, for example, determining whether or not the amount of refrigerant has decreased compared to the time when the refrigeration cycle apparatus 1 was installed. Further, the qualitative determination of the refrigerant amount includes the determination of whether or not the refrigerant amount is smaller than the appropriate refrigerant amount (referred to as an appropriate refrigerant amount) for operating the refrigeration cycle apparatus 1. Details of the determination of the refrigerant amount by the refrigerant amount determination unit 85 will be described later.
  • the refrigeration cycle apparatus 1 has an informing unit 9 electrically connected to the controller 8.
  • the notification unit 9 notifies the determination result of the refrigerant amount determination unit 85.
  • the notification unit 9 is, for example, a warning light or a display.
  • the notification unit 9 may be a transmission unit that transmits an alarm signal to a user of the refrigeration cycle apparatus 1, a mobile terminal of an operator who performs maintenance of the refrigeration cycle apparatus 1, or a speaker that emits a warning sound. It may be.
  • the controller 8 sets the operation mode of the refrigeration cycle apparatus 1 to the cooling operation mode. Set to.
  • the device control unit 81 controls the flow direction switching mechanism 22 to the state shown by the solid line in FIG. 1 so that the state of the heat source side heat exchanger 23 becomes the first state that functions as a condenser, and the compressor 21 and the heat source
  • the side fan 28 and the use side fans 43 and 53 are operated.
  • the device control unit 81 controls the devices of the refrigeration cycle apparatus 1 in the following manner during the cooling operation, for example.
  • the device control unit 81 fully opens the electronic expansion valve, which is an example of the heat source side expansion mechanism 38.
  • the device control unit 81 is an example of electronic expansion that is an example of the use-side expansion mechanisms 41 and 51 so that the superheat degree SHr of the refrigerant at the gas-side outlets of the use-side heat exchangers 42 and 52 becomes a predetermined target value SHrs. Adjust the valve opening.
  • the degree of superheat SHr of the refrigerant at the gas-side outlets of the use-side heat exchangers 42 and 52 is, for example, evaporation converted from the measured values of the gas-side temperature sensors 45 and 55 from the measured values of the suction pressure sensor 29 (suction pressure Ps). It is calculated by subtracting the temperature Te.
  • the superheat degree SHr of the refrigerant may be calculated by subtracting the measured values of the liquid side temperature sensors 44 and 54 corresponding to the evaporation temperature Te from the measured values of the gas side temperature sensors 45 and 55.
  • the device control unit 81 adjusts the opening degree of the bypass expansion valve 62 so that the superheat degree SHb of the refrigerant at the outlet of the subcooling heat exchanger 25 on the bypass refrigerant pipe 61 side becomes a predetermined target value SHbs.
  • the superheat degree SHb of the refrigerant at the outlet of the subcooling heat exchanger 25 on the bypass refrigerant pipe 61 side is calculated by, for example, the evaporation temperature calculated from the measurement value of the bypass temperature sensor 63 from the measurement value of the intake pressure sensor 29 (intake pressure Ps). It is calculated by subtracting Te.
  • the device control unit 81 controls the operating capacity of the compressor 21 so that the evaporation temperature Te corresponding to the measured value (intake pressure Ps) of the intake pressure sensor 29 approaches the target evaporation temperature Tes.
  • the operation capacity of the compressor 21 is controlled by controlling the rotation speed of the motor 21a.
  • the refrigerant flows in the refrigerant circuit 10 as follows during the cooling operation.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21 and compressed by the compressor 21 to become the high-pressure gas refrigerant in the refrigeration cycle.
  • the high-pressure gas refrigerant is sent to the heat-source-side heat exchanger 23 via the flow direction switching mechanism 22, exchanges heat with the heat-source air supplied by the heat-source-side fan 28, and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows through the liquid refrigerant pipe 11d and passes through the heat source side expansion mechanism 38. A part of the refrigerant that has passed through the heat source side expansion mechanism 38 flows into the bypass refrigerant pipe 61.
  • the high-pressure liquid refrigerant in the supercooled state is sent to the utilization units 4, 5 via the liquid refrigerant communication pipe 6.
  • the refrigerant that has exchanged heat with the refrigerant that flows through the bypass refrigerant pipe 61 and the liquid refrigerant pipe 11 d in the subcooling heat exchanger 25 is returned to the suction side of the compressor 21.
  • the high-pressure liquid refrigerant sent to the usage units 4 and 5 is depressurized to near the suction pressure of the compressor 21 in the usage-side expansion mechanisms 41 and 51, and becomes a gas-liquid two-phase refrigerant to be used-side heat exchanger 42. , 52.
  • the refrigerant in the gas-liquid two-phase state evaporates by performing heat exchange with the air in the target space supplied to the use side heat exchangers 42, 52 by the use side fans 43, 53 in the use side heat exchangers 42, 52. And becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the heat source unit 2 via the gas refrigerant communication pipe 7, and flows into the accumulator 24 via the flow direction switching mechanism 22.
  • the low-pressure gas refrigerant flowing into the accumulator 24 is again sucked into the compressor 21.
  • the temperature of the air supplied to the use-side heat exchangers 42 and 52 is lowered by exchanging heat with the refrigerant flowing through the use-side heat exchangers 42 and 52, and is cooled by the use-side heat exchangers 42 and 52. The air blows out into the target space.
  • the controller 8 sets the operation mode of the refrigeration cycle apparatus 1 to the heating operation mode. Set to.
  • the device control unit 81 performs heat exchange on the heat source side.
  • the flow direction switching mechanism 22 is controlled to the state shown by the broken line in FIG. 1 so that the state of the vessel 23 becomes the second state in which it functions as an evaporator. Further, the device control section 81 operates the compressor 21, the heat source side fan 28, and the use side fans 43 and 53 during the heating operation.
  • the device control unit 81 controls the devices of the refrigeration cycle apparatus 1 as follows, for example, during the heating operation.
  • the device control unit 81 is an example of an electronic device that is an example of the use-side expansion mechanisms 41 and 51 so that the subcooling degree SCr of the refrigerant at the liquid-side outlets of the use-side heat exchangers 42 and 52 becomes a predetermined target value SCrs. Adjust the opening of the expansion valve.
  • the degree of supercooling SCr of the refrigerant at the liquid-side outlets of the use-side heat exchangers 42 and 52 is calculated, for example, from the condensation temperature Tc converted from the measurement value (discharge pressure Pd) of the discharge pressure sensor 30 to the liquid-side temperature sensor. It is calculated by subtracting the measured values of 44 and 54.
  • the device control unit 81 adjusts the opening degree of the heat source side expansion mechanism 38 so that the refrigerant flowing into the heat source side heat exchanger 23 is depressurized to a pressure (condensation pressure Pe) that can be evaporated in the heat source side heat exchanger 23. To do.
  • the device control unit 81 controls the operating capacity of the compressor 21 so that the condensation temperature Tc corresponding to the measured value of the discharge pressure sensor 30 (discharge pressure Pd) approaches the target evaporation temperature Tcs.
  • the operation capacity of the compressor 21 is controlled by controlling the rotation speed of the motor 21a.
  • the refrigerant flows in the refrigerant circuit 10 as follows during the heating operation.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21 and compressed by the compressor 21 to become the high-pressure gas refrigerant in the refrigeration cycle.
  • the high-pressure gas refrigerant is sent to the use-side heat exchangers 42 and 52 via the flow direction switching mechanism 22, exchanges heat with the air in the target space supplied by the use-side fans 43 and 53, condenses, and becomes high pressure. It becomes the liquid refrigerant of.
  • the temperature of the air supplied to the use side heat exchangers 42 and 52 rises by exchanging heat with the refrigerant flowing through the use side heat exchangers 42 and 52, and is heated by the use side heat exchangers 42 and 52. Air blows into the target space.
  • the high-pressure liquid refrigerant that has passed through the use-side heat exchangers 42 and 52 passes through the use-side expansion mechanisms 41 and 51 and is decompressed.
  • the refrigerant decompressed in the use-side expansion mechanisms 41, 51 is sent to the heat source unit 2 via the liquid refrigerant communication pipe 6 and flows into the liquid refrigerant pipe 11d.
  • the refrigerant flowing through the liquid refrigerant pipe 11d is depressurized to near the suction pressure of the compressor 21 when passing through the heat source side expansion mechanism 38, and becomes a gas-liquid two-phase refrigerant and flows into the heat source side heat exchanger 23.
  • the device control unit 81 controls the flow direction switching mechanism 22 to temporarily change the state of the heat source side heat exchanger 23 when the operation mode of the refrigeration cycle apparatus 1 is in the heating operation mode. Is switched to the second state and the defrost operation is performed.
  • the defrost operation is an example of the reverse cycle operation.
  • the defrost operation is an operation for melting and removing frost attached to the heat source side heat exchanger 23.
  • the device control unit 81 determines that a predetermined defrost start condition is satisfied, and controls the flow direction switching mechanism 22 to change the refrigerant to the first state.
  • the heating operation of flowing in the first flow direction A is temporarily stopped, and the operation state of the refrigeration cycle apparatus 1 is switched to the defrost operation in which the refrigerant flows in the second flow direction B.
  • the defrost start condition is a condition under which it is desirable to defrost the heat source side heat exchanger 23 when the condition is satisfied.
  • the device control unit 81 determines that the defrost start condition is satisfied when the refrigerant temperature measured by the heat exchange temperature sensor 33 becomes equal to or lower than the predetermined temperature.
  • the predetermined temperature of the refrigerant temperature used as the threshold value for determining whether or not the defrost start condition is satisfied is, for example, ⁇ 5° C. Further, the device control section 81 may determine that the defrost start condition is satisfied when the duration of the heating operation exceeds the predetermined time.
  • the device control unit 81 controls the devices of the refrigeration cycle apparatus 1 as follows, for example, during defrost operation.
  • the device control unit 81 temporarily stops the compressor 21 before starting the defrost operation. Alternatively, the device control unit 81 reduces the rotation speed of the compressor 21 before starting the defrost operation. After that, the device control unit 81 switches the flow direction switching mechanism 22 from the state during the heating operation to the same state as during the cooling operation at a predetermined timing, and operates the compressor 21 at a predetermined rotation speed (starts the defrost operation). To).
  • the device controller 81 controls the rotation speed of the compressor 21 to be relatively high in order to melt the frost attached to the heat source side heat exchanger 23.
  • the device control unit 81 controls the heat source side fan 28 to a predetermined air volume smaller than the maximum air volume during the defrost operation.
  • the device control unit 81 stops the use side fans 43 and 53 during the defrost operation.
  • the device control unit 81 adjusts the heat source side expansion mechanism 38 and the use side expansion mechanisms 41, 51 to almost full opening immediately after the start of the defrost operation, and then appropriately adjusts the opening degrees of the expansion mechanisms 38, 41, 51.
  • the device control unit 81 determines the end of the defrost operation and returns to the heating operation. For example, the device control unit 81 determines that the defrost termination condition is satisfied when the refrigerant temperature measured by the heat exchange temperature sensor 33 is equal to or higher than a predetermined termination determination temperature and the state continues for a predetermined time or longer. To do.
  • the defrost termination condition is not limited to the above condition.
  • the device control section 81 may determine that the defrost termination condition is satisfied immediately when the refrigerant temperature measured by the heat exchange temperature sensor 33 becomes equal to or higher than the predetermined termination determination temperature.
  • the device control section 81 controls the flow direction switching mechanism 22 to temporarily operate the heat source side heat exchanger 23 when the operation mode of the refrigeration cycle apparatus 1 is in the heating operation mode. The state is switched to the second state and the oil return operation is performed.
  • the oil return operation is an example of the reverse cycle operation.
  • the oil return operation is an operation for returning the refrigerating machine oil that has flowed from the compressor 21 to the piping of the refrigerant circuit 10 and the heat exchanger to the compressor 21.
  • oil return operation is also performed during the cooling operation, but here, the oil return operation performed when the operation mode of the refrigeration cycle device 1 is in the heating operation mode will be described.
  • the operation of the device during the oil return operation is the same as the operation of the device during the defrost operation, so the defrost operation may be replaced with the oil return operation.
  • the device control unit 81 determines that the predetermined oil return start condition is satisfied, and controls the flow direction switching mechanism 22 to remove the refrigerant.
  • the heating operation of flowing in the first flow direction A is temporarily stopped, and the operation state of the refrigeration cycle apparatus 1 is switched to the oil return operation of flowing the refrigerant in the second flow direction B.
  • the oil return start condition is a condition that it is desirable to perform an oil return operation when the condition is satisfied.
  • the device control unit 81 determines that the oil return condition is satisfied when the integrated time of the heating operation exceeds the predetermined time.
  • the device control unit 81 controls the devices of the refrigeration cycle apparatus 1 during the oil return operation as follows, for example.
  • the device control unit 81 temporarily stops the compressor 21 before starting the oil return operation. Alternatively, the device control unit 81 reduces the rotation speed of the compressor 21 before starting the oil return operation. After that, the device control section 81 switches the flow direction switching mechanism 22 from the state during the heating operation to the same state as during the cooling operation at a predetermined timing, and operates the compressor 21 at a predetermined rotation speed (oil return operation). Start).
  • the device control unit 81 controls the rotation speed of the compressor 21 to be relatively high in order to push the refrigerant outside the compressor 21 back to the compressor 21.
  • the device control section 81 controls the heat source side fan 28 to a predetermined air volume smaller than the maximum air volume during the oil return operation.
  • the device control unit 81 stops the use side fans 43 and 53 during the oil return operation.
  • the device control unit 81 adjusts the heat source side expansion mechanism 38 and the use side expansion mechanisms 41, 51 to almost full opening immediately after the start of the oil return operation, and then appropriately adjusts the opening degrees of the expansion mechanisms 38, 41, 51
  • the device control unit 81 determines the end of the oil return operation and returns to the heating operation. For example, the device control unit 81 determines that the oil return operation end condition is satisfied when the operation time of the oil return operation becomes equal to or longer than the end determination time.
  • the cumulative heating operation time is reset once, for example, when it is determined that the oil return operation end condition has been met. Then, when the accumulated time of the heating operation reaches the predetermined time again, the device control section 81 executes the oil return operation.
  • the device control unit 81 controls the flow direction switching mechanism 22 to temporarily heat the heat source side heat exchanger when the operation mode of the refrigeration cycle apparatus 1 is in the heating operation mode.
  • the state of No. 23 is switched to the second state and the operation for judging the amount of refrigerant is performed.
  • the refrigerant amount determination operation is an example of the reverse cycle operation.
  • the time when the operation mode of the refrigeration cycle apparatus 1 is in the heating operation mode is not limited to the case where the heating operation is actually executed, and the refrigeration cycle apparatus 1 is set in the heating operation mode.
  • the heating operation includes the stopped state.
  • the remote controller instructs the operation stop of the refrigeration cycle apparatus 1 and the refrigeration cycle apparatus 1 is heated. Including the state where the operation is stopped.
  • the operation for judging the amount of refrigerant is an operation for judging the amount of refrigerant in the refrigerant circuit 10.
  • the refrigerant amount determining operation is an example of a first operation performed by controlling the high pressure value of the refrigeration cycle in the refrigerant circuit 10 to a predetermined first pressure P1.
  • the first pressure P1 is a pressure smaller than the high pressure value of the refrigeration cycle during the cooling operation or the heating operation.
  • the device control section 81 controls the flow direction switching mechanism 22 at a predetermined timing or when it determines that a predetermined condition is satisfied, thereby controlling the refrigeration cycle apparatus 1.
  • the operation of is switched to the operation for judging the amount of refrigerant which causes the refrigerant to flow in the second flow direction B.
  • the timing at which the refrigerant amount determination operation is executed and the conditions under which the refrigerant amount determination operation is executed will be described later.
  • the device control unit 81 controls the operation of the device of the refrigeration cycle apparatus 1 in the following manner during the operation for judging the amount of refrigerant.
  • the device control unit 81 temporarily stops the compressor 21 before the refrigerant amount determination operation. Alternatively, the device control unit 81 reduces the rotation speed of the compressor 21 before the refrigerant amount determination operation. After that, the device control unit 81 switches the flow direction switching mechanism 22 from the state during the heating operation to the same state as during the cooling operation at a predetermined timing, and operates the compressor 21 (starts the refrigerant amount determination operation). ..
  • the device control unit 81 controls the rotation speed of the compressor 21 to be low within a range in which the high pressure value in the refrigeration cycle can be controlled to the predetermined first pressure P1. For example, the device control unit 81 controls the rotation speed of the compressor 21 during the refrigerant amount determination operation to be smaller than the rotation speed of the compressor 21 during the defrost operation and the oil return operation. The device control unit 81 controls the maximum rotation speed of the compressor 21 during the refrigerant amount determination operation to be smaller than the maximum rotation speed of the compressor 21 during the defrost operation and the oil return operation. More preferably, the device control unit 81 controls the average rotation speed of the compressor 21 during the refrigerant amount determination operation to be smaller than the average rotation speed of the compressor 21 during the defrost operation and the oil return operation.
  • the device control unit 81 controls the heat source side fan 28 to a predetermined air volume so that the value of the high pressure in the refrigeration cycle is controlled to a predetermined first pressure P1 described later during the refrigerant amount determination operation.
  • the device control unit 81 operates the usage-side fans 43, 53 at a predetermined air volume during the operation for determining the refrigerant amount.
  • the predetermined air volume of the use side fans 43, 53 is the minimum air volume of the use side fans 43, 53, or a low air volume close to the minimum air volume.
  • the device control unit 81 sets the opening degree of the electronic expansion valve, which is an example of the heat source side expansion mechanism 38, to the maximum opening degree during the refrigerant amount determination operation. Further, the device control unit 81, during the operation for determining the amount of refrigerant, so that the superheat degree SHr of the refrigerant at the gas side outlets of the use side heat exchangers 42 and 52 becomes constant at a predetermined target value SHrs1.
  • the opening degree of the electronic expansion valve as an example of 41, 51 is adjusted.
  • the method for calculating the superheat degree SHr of the refrigerant by the device control unit 81 is the same as the method for calculating the superheat degree SHr of the refrigerant during refrigerant operation.
  • the device control unit 81 when performing the operation for judging the amount of refrigerant, the liquid pipe temperature Tlp measured by the liquid pipe temperature sensor 35 (the refrigerant at the outlet of the subcooling heat exchanger 25 on the liquid refrigerant pipe 11d side).
  • the opening degree of the bypass expansion valve 62 is controlled so that the temperature of the bypass expansion valve 62 becomes a predetermined value.
  • the liquid pipe temperature Tlp is an example of the first temperature.
  • the device control unit 81 terminates the operation for determining the amount of refrigerant after executing the operation for determining the amount of refrigerant for a predetermined time. After that, the device control unit 81 restarts the heating operation if the refrigerant amount determination operation is executed during the heating operation. On the other hand, if the device control unit 81 has executed the operation for judging the amount of refrigerant when receiving an instruction to stop the heating operation from a remote controller (not shown) as will be described later, the refrigeration cycle apparatus 1 until the instruction to start the heating operation. To stop.
  • the process of judging the amount of refrigerant in the refrigerant circuit 10, which is executed by the refrigerant amount judgment unit 85, will be described below.
  • the refrigerant amount determination unit 85 qualitatively determines whether or not the refrigerant amount is smaller than the appropriate refrigerant amount (hereinafter referred to as an appropriate refrigerant amount) in operating the refrigeration cycle apparatus 1. to decide.
  • the state in which the refrigerant amount is smaller than the appropriate refrigerant amount includes a state in which the refrigerant amount is reduced by a predetermined amount or more as compared with the refrigerant amount initially filled in the refrigeration cycle device 1.
  • the refrigerant amount determination unit 85 determines the amount of refrigerant in the refrigerant circuit 10 based on the information about the reverse cycle operation that is temporarily performed when the operation mode of the refrigeration cycle device 1 is the heating operation mode.
  • the reverse cycle operation here includes at least one of a defrost operation, an oil return operation, and a refrigerant amount determination operation. How to determine the amount of refrigerant in the refrigerant circuit 10 at each operation will be described later.
  • the information about the reverse cycle operation used by the refrigerant amount determination unit 85 to determine the refrigerant amount in the refrigerant circuit 10 includes the high pressure value of the refrigeration cycle, the low pressure value of the refrigeration cycle, and the discharge temperature of the refrigeration cycle during the reverse cycle operation. , Supercooling degree of the refrigeration cycle, suction superheat degree of the refrigeration cycle, and at least one index of the rotation speed of the compressor 21.
  • the refrigerant amount determination unit 85 may use two or more indexes to determine the amount of refrigerant in the refrigerant circuit 10.
  • the information about the reverse cycle operation is the high pressure value of the refrigeration cycle, the low pressure value of the refrigeration cycle, the discharge temperature of the refrigeration cycle, the supercooling degree of the refrigeration cycle, and the refrigeration cycle at a predetermined time after the start of the reverse cycle operation. Is at least one of the intake superheat degree and the rotation speed of the compressor 21. Further, for example, the information about the reverse cycle operation is, for a predetermined period of the reverse cycle operation, the high pressure value of the refrigeration cycle, the low pressure value of the refrigeration cycle, the discharge temperature of the refrigeration cycle, the supercooling degree of the refrigeration cycle, and the suction of the refrigeration cycle.
  • the predetermined period of the reverse cycle operation is, for example, a period from the start to the end of the reverse cycle operation.
  • the index used as the information about the reverse cycle operation used by the refrigerant amount determination unit 85 for the determination of the refrigerant amount in the refrigerant circuit 10 is, in addition to the above-mentioned index, or The defrost operation time may be included instead of the above index.
  • the defrost operation time is, for example, the time from the start of the defrost operation until the defrost end condition is satisfied.
  • one or more indices included in the information about the reverse cycle operation used for determining the amount of refrigerant in the refrigerant circuit 10 will be collectively referred to as a determination index.
  • the refrigerant amount judgment unit 85 judges the refrigerant amount based on information related to the defrost operation and oil return operation.
  • the refrigerant amount determination unit 85 may determine the refrigerant amount each time the defrost operation or the oil return operation is performed, for example. Further, the refrigerant amount determination unit 85 does not perform the defrost operation or the oil return operation, but at a predetermined frequency, for example, when the defrost operation or the oil return operation is performed for the first time in a certain week, or the defrost operation for the first time in a certain month. The amount of refrigerant may be determined when the oil return operation is performed. Further, the refrigerant amount determination unit 85 may perform the defrosting operation and the oil returning operation a plurality of times, and may determine the refrigerant amount based on the information regarding the plurality of defrosting operations and the oil returning operation.
  • the refrigerant amount determination unit 85 determines the refrigerant amount based on the information regarding the defrost operation and the oil return operation as follows.
  • the controller 8 temporarily switches the flow direction switching mechanism 22 when the operation mode of the refrigeration cycle apparatus 1 is in the heating operation mode while the refrigeration cycle apparatus 1 is filled with an appropriate amount of refrigerant.
  • the database 86 stores the value of the index for determination during the reverse cycle operation (hereinafter referred to as the reference value of the index for determination) when the defrosting operation and the oil return operation are performed.
  • the database 86 stores the reference value of the determination index for each operating condition.
  • the database 86 stores the reference value of the determination index for each of the operating conditions including the combination of the temperature and the humidity of the heat source air.
  • the reference value of the judgment index stored in the database 86 is, for example, a value obtained by actually operating the tester of the refrigeration cycle apparatus 1.
  • the reference value of the determination index stored in the database 86 may be a value obtained in the test operation of the refrigeration cycle apparatus 1 that is the determination target of the refrigerant amount.
  • the reference value of the determination index may be obtained by one actual operation of the refrigeration cycle apparatus 1 or multiple times. It may be a statistic (an average value, an intermediate value, a maximum value, etc.) obtained based on the actual operation of.
  • the reference value of the judgment index stored in the database 86 may be theoretically calculated.
  • the reference value of the determination index stored in the database 86 is updated with the value acquired in the actual operation of the refrigeration cycle apparatus 1 whose refrigerant amount is to be determined.
  • the reference value of the determination index stored in the database 86 is acquired by the actual operation of the refrigeration cycle apparatus 1 in the first year of installation of the refrigeration cycle apparatus 1 in which the possibility of refrigerant leakage due to deterioration over time is relatively low. Value is updated with the value.
  • the database 86 does not have to be included in the controller 8 and may be built on a server communicably connected to the controller 8 via a network such as the Internet.
  • the refrigerant amount determination unit 85 uses the database 86 to determine the amount of refrigerant, for example, as follows (see the flowchart in FIG. 3).
  • the refrigerant amount determination unit 85 acquires the determination index corresponding to the reference value of the determination index stored in the database 86 (step S1).
  • the refrigerant amount determination unit 85 also acquires the value related to the operating condition. For example, when the database 86 stores the reference value of the determination index for each combination of the temperature and humidity of the heat source air, the refrigerant amount determination unit 85 causes the heat source air temperature sensor 36 and the heat source air humidity sensor ( And (not shown) are used to obtain the temperature and humidity of the heat source air. Further, the refrigerant amount determination unit 85 may acquire the temperature and humidity of the heat source air from a server that is connected to the controller 8 via a network such as the Internet and distributes weather information.
  • the refrigerant amount determination unit 85 acquires the value of the discharge pressure Pd measured by the discharge pressure sensor 30. For example, when the determination index includes the low pressure value of the refrigeration cycle, the refrigerant amount determination unit 85 acquires the value of the suction pressure Ps measured by the suction pressure sensor 29. For example, when the determination index includes the value of the discharge temperature of the refrigeration cycle, the refrigerant amount determination unit 85 acquires the value of the discharge temperature Td measured by the discharge temperature sensor 32.
  • the refrigerant amount determination unit 85 determines the refrigerant temperature Tb measured by the liquid side temperature sensor 34 from the condensation temperature Tc measured by the heat exchange temperature sensor 33. To obtain the degree of supercooling of the refrigeration cycle.
  • the refrigerant amount determination unit 85 converts the suction temperature Ts measured by the suction temperature sensor 31 into the suction pressure Ps measured by the suction pressure sensor 29. A value obtained by subtracting the calculated evaporation temperature Te is obtained as the suction superheat degree of the refrigeration cycle.
  • the method of acquiring the value of each determination index is an example, and the value may be acquired by using the measurement values of other sensors if possible, and the pressure value and the temperature value may be appropriately set. You may convert and may acquire a value.
  • the refrigerant amount determination unit 85 compares the acquired determination index with the reference value of the determination index stored in the database 86 (step S2).
  • the refrigerant amount determination unit 85 determines whether or not the refrigerant amount is smaller than the proper refrigerant amount based on the comparison result between the acquired determination index and its reference value (step S3). For example, when the difference between the acquired determination index and the reference value of the determination index stored in the database 86 is larger than a predetermined value, the refrigerant amount determination unit 85 decreases the refrigerant amount compared to the appropriate refrigerant amount. To judge. It should be noted that the refrigerant amount determination unit 85 determines the difference between the determination index acquired for each of a plurality of types of determination indexes and the reference value of each determination index stored in the database 86, not for one type of determination index. When is larger than a predetermined value, it may be determined that the refrigerant amount is smaller than the proper refrigerant amount.
  • the low-pressure value of the refrigeration cycle tends to decrease when the refrigerant amount decreases with respect to the appropriate refrigerant amount. Further, when the amount of refrigerant is smaller than the appropriate amount of refrigerant, the value of the discharge temperature of the refrigeration cycle tends to increase. Further, when the amount of refrigerant is smaller than the appropriate amount of refrigerant, the value of the degree of supercooling in the refrigeration cycle tends to be small. Using such a tendency, the refrigerant amount determination unit 85 determines whether or not the refrigerant amount is smaller than the proper refrigerant amount.
  • the refrigerant amount determination unit 85 determines in step S3 that the refrigerant amount is smaller than the proper refrigerant amount, the refrigerant amount determination unit 85 controls the notification unit 9 to inform that the refrigerant amount is smaller than the proper refrigerant amount. It is preferable to issue a report (step S4). Then, the refrigerant amount determination process based on the information about the defrost operation and the oil return operation ends.
  • the refrigerant amount determination unit 85 does not proceed to step S4 and determines the refrigerant amount based on the information regarding the defrost operation and the oil return operation. The process ends.
  • the refrigerant amount judgment unit 85 performs the refrigerant amount judgment based on information related to the defrost operation and the oil return operation, or the defrost operation and the oil return. Instead of determining the amount of refrigerant based on the information about the operation, the amount of refrigerant is determined based on the information about the operation for determining the amount of refrigerant.
  • the determination of the refrigerant amount based on the information regarding the refrigerant amount determination operation is usually characterized in that the refrigerant amount can be determined more accurately than the determination of the refrigerant amount based on the information regarding the defrost operation and the oil return operation. is there.
  • the information regarding the refrigerant amount determining operation used by the refrigerant amount determining unit 85 for determining the refrigerant amount includes the high pressure value of the refrigeration cycle, the low pressure value of the refrigeration cycle, and the discharge of the refrigeration cycle during the refrigerant amount determination operation. At least one index of the temperature, the degree of supercooling of the refrigeration cycle, the degree of suction superheat of the refrigeration cycle, and the rotation speed of the compressor 21 can be included.
  • the information regarding the refrigerant amount determining operation used by the refrigerant amount determining unit 85 to determine the refrigerant amount includes at least the degree of supercooling of the refrigeration cycle during the refrigerant amount determining operation.
  • the refrigerant amount determination unit 85 uses only the degree of supercooling of the refrigeration cycle during the refrigerant amount determination operation as the information regarding the refrigerant amount determination operation that is used to determine the refrigerant amount.
  • the following description will be made by taking as an example.
  • the refrigerant amount determination unit 85 causes the device control unit 81 to perform the refrigerant amount determination operation at, for example, a predetermined timing or when a predetermined condition is satisfied, and the refrigerant circuit 10 based on the information regarding the refrigerant amount determination operation. Determine the amount of refrigerant inside.
  • the predetermined timing at which the refrigerant amount determination unit 85 determines the refrigerant amount based on the information regarding the refrigerant amount determination operation is, for example, a regular timing.
  • the device control unit 81 performs the refrigerant amount determination operation once a month at a predetermined timing, and the refrigerant amount determination unit 85 determines the refrigerant amount in the refrigerant circuit 10 based on the information regarding the refrigerant amount determination operation. ..
  • the device control unit 81 performs the refrigerant amount determination operation once a month before the oil return operation performed when the operation mode of the refrigeration cycle apparatus 1 is in the heating operation mode, and subsequently performs the oil return operation. I do.
  • the device control section 81 may perform the refrigerant amount determination operation subsequent to the oil return operation after performing the oil return operation performed once a month when the operation mode of the refrigeration cycle apparatus 1 is in the heating operation mode. ..
  • the device control section 81 may perform the refrigerant amount determination operation before or after the defrost operation performed when the operation mode of the refrigeration cycle device 1 is in the heating operation mode. Then, the refrigerant amount determination unit 85 determines the amount of refrigerant in the refrigerant circuit 10 based on the information regarding the refrigerant amount determination operation.
  • the device control section 81 stops the refrigeration cycle device 1 once a month when the operation mode of the refrigeration cycle device 1 is in the heating operation mode and is instructed from a remote controller or a timer is set. At this time, the operation for judging the amount of refrigerant is performed. Then, the refrigerant amount determination unit 85 determines the amount of refrigerant in the refrigerant circuit 10 based on the information regarding the refrigerant amount determination operation.
  • the predetermined timing at which the refrigerant amount determination unit 85 determines the refrigerant amount based on the information regarding the refrigerant amount determination operation is set by the user of the refrigeration cycle apparatus 1 or the like using an unillustrated remote controller or the like. May be
  • the predetermined condition for the refrigerant amount determination unit 85 to determine the amount of refrigerant based on the information regarding the refrigerant amount determination operation is that the refrigerant amount determination unit 85 is based on the information regarding the defrost operation or the oil return operation. It may be judged that the amount of the refrigerant is decreased.
  • the device control unit 81 performs the refrigerant amount determination operation when the refrigerant amount determination unit 85 determines that the amount of the refrigerant in the refrigerant circuit 10 is decreasing based on the information regarding the defrost operation or the oil return operation.
  • the refrigerant amount determination unit 85 determines the amount of refrigerant in the refrigerant circuit 10 based on the information regarding the refrigerant amount determination operation. By doing so, after the determination of the reduction of the refrigerant amount based on the information about the defrost operation or the oil return operation with relatively low accuracy, the presence or absence of the decrease of the refrigerant amount can be accurately determined based on the information about the operation for determining the refrigerant amount. You can judge.
  • the prohibition unit 82 of the controller 8 establishes a predetermined prohibition condition even at the timing when the refrigerant amount determination unit 85 determines the refrigerant amount based on the information regarding the refrigerant amount determination operation as described above. It is preferable to prohibit the execution of the operation for judging the amount of refrigerant by the device control section 81 during the operation.
  • the refrigeration cycle device 1 is a device that heats the air in the target space with the refrigerant flowing through the usage-side heat exchangers 42 and 52 during the heating operation as the heating operation.
  • the prohibiting unit 82 controls the device control unit 81.
  • the execution of the refrigerant quantity determination operation is prohibited. In this way, the prohibition unit 82 prohibits the execution of the operation for determining the amount of refrigerant, so that the refrigeration cycle apparatus 1 can suppress the adverse effect on the comfort of the user who wants to heat the target space.
  • the prohibition unit 82 causes the device control unit 81 to operate.
  • the execution of the refrigerant quantity determination operation is prohibited.
  • the temperature of the heat source air that can maintain the high pressure value of the refrigeration cycle at the first pressure P1 is stored in advance in a memory (not shown) of the controller 8.
  • the prohibition unit 82 prohibits the device control unit 81 from executing the refrigerant amount determination operation.
  • the refrigerant amount determination unit 85 determines the refrigerant amount based on the information regarding the refrigerant amount determination operation, for example, as follows.
  • the database 86 of the controller 8 temporarily switches the flow direction when the operation mode of the refrigeration cycle apparatus 1 is in the heating operation mode while the refrigeration cycle apparatus 1 is filled with an appropriate amount of refrigerant.
  • the reference value of the degree of supercooling of the refrigeration cycle during the refrigerant amount determination operation when the mechanism 22 is switched and the refrigerant amount determination operation is executed is stored. Even if the reference value of the degree of supercooling during the operation for refrigerant amount determination stored in the database 86 is a value obtained by actually operating the tester of the refrigeration cycle apparatus 1, the refrigeration cycle for which the refrigerant amount is to be determined It may be a value obtained by a test operation of the device 1.
  • the reference value of the degree of supercooling during the refrigerant amount determination operation is obtained by the actual operation of the refrigeration cycle apparatus 1, the reference value may be obtained by one actual operation of the refrigeration cycle apparatus 1. However, it may be a statistic (average value, intermediate value, maximum value, etc.) obtained based on a plurality of actual operations.
  • the reference value of the degree of supercooling during the operation for determining the amount of refrigerant stored in the database 86 may be theoretically calculated.
  • the reference value stored in the database 86 is a value obtained by the operation of the tester of the refrigeration cycle apparatus 1 or a theoretically calculated value
  • the reference value stored in the database 86 is the determination of the refrigerant amount. It is preferable that the refrigeration cycle apparatus 1 of interest is updated with the value acquired when the operation for determining the amount of refrigerant is performed. For example, the reference value stored in the database 86 is updated with the value acquired during the first operation for refrigerant amount determination of the refrigeration cycle apparatus 1 in which the possibility of refrigerant leakage due to deterioration over time is relatively low.
  • the database 86 does not have to be included in the controller 8 and may be built on a server communicably connected to the controller 8 via a network such as the Internet.
  • the refrigerant amount determination unit 85 uses the database 86 to determine the amount of refrigerant as follows (see the flowchart in FIG. 4), for example.
  • the refrigerant amount determination unit 85 acquires the degree of supercooling of the refrigeration cycle (step S11). For example, the refrigerant amount determination unit 85 acquires the supercooling degree of the refrigeration cycle by subtracting the refrigerant temperature Tb measured by the liquid side temperature sensor 34 from the condensation temperature Tc measured by the heat exchange temperature sensor 33.
  • the refrigerant amount determination unit 85 compares the obtained supercooling degree with the reference value of the supercooling degree stored in the database 86 (step S12).
  • the refrigerant amount determination unit 85 determines whether or not the refrigerant amount is smaller than the proper refrigerant amount based on the comparison result (step S13). For example, when the acquired degree of supercooling is smaller than the reference value of the degree of supercooling stored in the database 86 by a predetermined value or more, the refrigerant amount determination unit 85 decreases the amount of refrigerant compared to the proper amount of refrigerant. To judge.
  • the refrigerant amount determination unit 85 determines in step S13 that the refrigerant amount is smaller than the proper refrigerant amount, it controls the notification unit 9 to indicate that the refrigerant amount is smaller than the proper refrigerant amount. Is preferably issued (step S14). Then, the refrigerant amount determination process based on the information regarding the refrigerant amount determination operation ends. When it is determined in step S13 that the refrigerant amount has not decreased compared to the proper refrigerant amount, the refrigerant amount determination unit 85 does not proceed to step S14 and determines the refrigerant amount based on the information regarding the defrost operation and the oil return operation. The process ends.
  • the refrigeration cycle device 1 of the present embodiment includes a refrigerant circuit 10.
  • the refrigerant circuit 10 includes a compressor 21, a heat source side heat exchanger 23, usage side heat exchangers 42 and 52, and a flow direction switching mechanism 22.
  • the flow direction switching mechanism 22 switches the flow direction of the refrigerant in order to change the state of the heat source side heat exchanger 23 between the first state that functions as an evaporator and the second state that functions as a condenser.
  • the refrigeration cycle apparatus 1 includes a device control unit 81 and a refrigerant amount determination unit 85.
  • the device control unit 81 is an example of a control unit.
  • the device control unit 81 controls the flow direction switching mechanism 22 and temporarily. Then, the state of the heat source side heat exchanger 23 is switched to the second state to perform the reverse cycle operation.
  • the heating operation is an example of the heating operation.
  • the heating operation mode is an example of the heating operation mode.
  • the refrigerant amount determination unit 85 determines the amount of refrigerant in the refrigerant circuit 10 based on the information about the reverse cycle operation.
  • the operation mode when the operation mode is the heating operation mode, it is based not on the information on the heating operation but on the information on the reverse cycle operation which is relatively susceptible to the decrease of the refrigerant amount.
  • the amount of refrigerant in the refrigerant circuit 10 is determined. Therefore, in the refrigeration cycle apparatus 1, it is possible to accurately determine the refrigerant amount.
  • the information about the reverse cycle operation used for determining the amount of refrigerant in the refrigerant circuit 10 includes the information about the defrost operation and the information about the oil return operation.
  • the defrost operation is an operation for defrosting the heat source side heat exchanger 23.
  • the oil return operation is an operation for returning the refrigerating machine oil in the refrigerant circuit 10 to the compressor 21.
  • the amount of the refrigerant in the refrigerant circuit 10 is determined by using the information about the defrost operation or the oil return operation that is normally performed to operate the refrigeration cycle device 1, the stop time of the heating operation that should be originally performed is It is possible to judge the amount of the refrigerant while suppressing it.
  • the information about the reverse cycle operation used for determining the amount of refrigerant in the refrigerant circuit 10 includes the information about the operation for determining the amount of refrigerant.
  • the operation for determining the refrigerant amount is an example of the first operation.
  • the refrigerant amount determination operation is an operation performed by controlling the high pressure value of the refrigeration cycle in the refrigerant circuit 10 to a predetermined first pressure P1.
  • the operation for judging the amount of refrigerant which is performed by controlling the high pressure value of the refrigeration cycle to a predetermined pressure, is performed as the reverse cycle operation.
  • the same refrigeration cycle state is realized in the refrigerant circuit 10 even if the temperature of the heat source side air around the heat source side heat exchanger 23 is different. Therefore, the amount of refrigerant can be accurately determined.
  • the information on the reverse cycle operation includes the high pressure value of the refrigeration cycle, the low pressure value of the refrigeration cycle, the discharge temperature of the refrigeration cycle, and the degree of supercooling of the refrigeration cycle during the reverse cycle operation. At least one of the suction superheat degree of the refrigeration cycle, the rotation speed of the compressor 21, and the time of the defrost operation as the reverse cycle operation.
  • the information about the refrigerant amount determining operation includes the information about the refrigerant amount determining operation. It is preferable that the degree of subcooling of the refrigerating cycle is included.
  • the rotation speed of the compressor 21 during the refrigerant amount determination operation is smaller than the rotation speed of the compressor 21 during the defrost operation and the oil return operation.
  • the use side heat exchangers 42 and 52 function as evaporators and the use side fans 43 and 53 are operated as described above. Therefore, when the operation mode of the refrigeration cycle apparatus 1 is set to the heating operation mode, the target space may be cooled during the operation for refrigerant amount determination, even though the target space needs to be heated. Becomes However, in the refrigeration cycle device 1 of the present embodiment, the rotational speed of the compressor 21 is suppressed to a relatively low value, so that it is possible to suppress the effect on the comfort of the user of the refrigeration cycle device 1.
  • the device control unit 81 performs the refrigerant amount determination operation as the reverse cycle operation before or after executing the oil return operation, for example.
  • the refrigerant amount determination unit 85 does not have to use the information regarding the oil return operation for determining the amount of refrigerant. Then, the refrigerant amount determination unit 85 may determine the amount of refrigerant in the refrigerant circuit 10 based on the information regarding the refrigerant amount determination operation that enables relatively accurate determination of the refrigerant amount.
  • the operation for judging the amount of refrigerant is executed before and after the oil return operation which is normally performed to operate the refrigeration cycle apparatus 1, the number of switching times of the flow direction switching mechanism 22 which requires a pressure equalizing time or the like is increased. It is possible to judge the amount of the refrigerant while suppressing it. Then, by suppressing an increase in the number of times of switching of the flow direction switching mechanism 22, it is possible to suppress the interruption time of the heating operation.
  • the device control unit 81 for example, when the operation mode of the refrigeration cycle apparatus 1 is the heating operation mode and the refrigeration cycle apparatus 1 is stopped, the reverse cycle operation is performed. As a refrigerant quantity determination operation is performed.
  • the operation for determining the amount of refrigerant for determining the amount of refrigerant is executed at a timing at which the operation of the refrigeration cycle apparatus 1 is not necessary, so that the amount of refrigerant is controlled without impairing the provision of the function of the refrigeration cycle apparatus 1 to the user. Can make decisions.
  • the refrigerant circuit 10 includes a liquid refrigerant pipe 11d as an example of a main refrigerant pipe, a bypass refrigerant pipe 61 as an example of a supercooling pipe, and a bypass as an example of a supercooling expansion valve.
  • the expansion valve 62 and the subcooling heat exchanger 25 are included.
  • the liquid refrigerant tube 11d constitutes a part of a pipe connecting the heat source side heat exchanger 23 and the use side heat exchangers 42 and 52.
  • the bypass refrigerant pipe 61 branches from the liquid refrigerant pipe 11d and guides the refrigerant to the suction side of the compressor 21.
  • the bypass expansion valve 62 is provided in the bypass refrigerant pipe 61 and reduces the pressure of the refrigerant flowing through the bypass refrigerant pipe 61.
  • the refrigeration cycle device 1 includes a liquid pipe temperature sensor 35 as an example of a first temperature sensor.
  • the liquid pipe temperature sensor 35 measures the liquid pipe temperature Tlp of the refrigerant flowing through the liquid refrigerant pipe 11d that has passed through the subcooling heat exchanger 25.
  • the liquid pipe temperature Tlp is an example of the first temperature.
  • the device control unit 81 controls the bypass expansion valve 62 so that the liquid pipe temperature Tlp becomes a predetermined value when performing the refrigerant amount determination operation.
  • the temperature of the refrigerant flowing through the liquid refrigerant communication pipe 6 or the like connecting the heat source side heat exchanger 23 and the use side heat exchangers 42, 52 is controlled to be constant, the refrigerant in the liquid refrigerant communication pipe 6 or the like is controlled. It is possible to suppress the influence of the density change on the accuracy of the determination of the refrigerant amount.
  • the refrigeration cycle apparatus 1 heats the air in the target space with the refrigerant flowing through the use side heat exchangers 42 and 52 during the heating operation.
  • the refrigeration cycle apparatus 1 includes target space temperature sensors 46 and 56 as an example of a second temperature sensor, and a prohibition unit 82 as an example of a first prohibition unit.
  • the target space temperature sensors 46 and 56 measure a target space temperature Tr that is the temperature of the air in the target space.
  • the target space temperature Tr is an example of the second temperature.
  • the prohibition unit 82 prohibits the device control unit 81 from performing the refrigerant amount determination operation when the target space temperature Tr is lower than the target temperature (set temperature Trs) of the target space by a predetermined temperature or more.
  • the prohibition unit 82 controls the use units 4, 5 to perform air conditioning by at least one of the target space temperatures Tr measured by the target space temperature sensors 46, 56 of the use units 4, 5 in operation.
  • the device control unit 81 is prohibited from executing the operation for determining the amount of refrigerant.
  • the refrigeration cycle apparatus 1 of the present embodiment includes a heat source air temperature sensor 36 as an example of a third temperature sensor and a prohibition unit 82 as an example of a second prohibition unit.
  • the heat source air temperature sensor 36 measures the temperature of the heat source air that exchanges heat with the refrigerant in the heat source side heat exchanger 23 (heat source air temperature Ta).
  • the heat source air temperature Ta is an example of the third temperature.
  • the prohibition unit 82 prohibits the device control unit 81 from executing the refrigerant amount determination operation when the heat source air temperature Ta is lower than the temperature at which the high pressure value of the refrigeration cycle can be maintained at the first pressure P1.
  • the operation for determining the amount of refrigerant is prohibited when the heat source air temperature is low, where the operation for determining the amount of refrigerant for controlling the high-pressure value of the refrigeration cycle to the predetermined first pressure P1 is difficult, so the timing is not suitable for determining the amount of refrigerant. Therefore, it is possible to prevent the operation for determining the refrigerant amount from being executed.
  • the refrigeration cycle apparatus 1 preferably has a prohibition unit 82 that prohibits the device control unit 81 from performing the refrigerant amount determination operation when the target space temperature Tr is low or the heat source air temperature Ta is low. , But is not limited to this.
  • the refrigeration cycle apparatus 1 may not have the prohibition unit 82. Further, the prohibition unit 82 may prohibit the device control unit 81 from performing the refrigerant amount determination operation based on only one of the target space temperature Tr and the heat source air temperature Ta.
  • the device control unit 81 determines that the refrigerant amount determination unit 85 determines that the amount of refrigerant in the refrigerant circuit 10 is decreasing based on the information about the defrost operation or the oil return operation.
  • the refrigerant quantity determination operation is performed as the reverse cycle operation.
  • the operation for refrigerant amount determination that enables more accurate determination of the refrigerant amount is performed.
  • the amount of refrigerant can be well determined.
  • the refrigerant amount determination unit 85 determines the refrigerant amount based on the result of comparison between each determination index as information about the reverse cycle operation and the reference value of each determination index.
  • the present invention is not limited to such an aspect.
  • the refrigerant amount determination unit 85 uses a mode of change of each determination index as information on the reverse cycle operation (for example, a rate of change per time), and a mode of change of each determination index serving as a reference in the proper refrigerant amount, The amount of refrigerant may be determined based on the comparison result.
  • the refrigerant amount determination unit 85 is a function that uses a plurality of determination indexes as parameters, and outputs according to whether the refrigerant amount is the proper refrigerant amount or is smaller than the proper refrigerant amount. It is also possible to use the changing function and substitute the judgment index acquired during the reverse cycle operation into the function, and judge the refrigerant amount based on the calculation result.
  • the refrigerant amount determination unit 85 determines whether or not the amount of refrigerant has decreased.
  • the present invention is not limited to this, and the refrigerant amount determination unit 85 may determine the reduction of the refrigerant amount stepwise.
  • the database 86 may store a plurality of reference values corresponding to the amount of reduction of the refrigerant for each determination index. For example, in the database 86, for each determination index, the reference value when the proper refrigerant amount is, the reference value when the refrigerant reduction amount is 10% with respect to the proper refrigerant amount, and the refrigerant reduction amount is 20% with respect to the proper refrigerant amount. A plurality of reference values such as the reference value at the time of are stored. Then, the refrigerant amount determination unit 85 may determine the reduction amount of the refrigerant amount stepwise according to the result of comparison between the value of the determination index acquired during the reverse cycle operation and the plurality of reference values. For example, the refrigerant amount determination unit 85 determines the reference value that is closest to the value of the determination index acquired during the reverse cycle operation, and determines that the refrigerant reduction amount corresponding to this reference value is the refrigerant reduction amount. Good.
  • the information about the reverse cycle operation used to determine the amount of refrigerant in the refrigerant circuit 10 includes all the information about the defrost operation, the information about the oil return operation, and the information about the operation for determining the amount of refrigerant.
  • the present invention is not limited to this, and the refrigerant amount determination unit 85 may determine the amount of refrigerant in the refrigerant circuit 10 using only a part of this information.
  • the refrigerant amount determination unit 85 may determine the refrigerant amount in the refrigerant circuit 10 based only on the information regarding the refrigerant amount determination operation.
  • the refrigerant amount determination unit 85 may determine the refrigerant amount in the refrigerant circuit 10 based only on the information about the defrost operation or the information about the oil return operation. In this case, the device control section 81 does not have to execute the refrigerant determination operation having no purpose such as defrosting or oil return.
  • FIG. 5 is a block diagram of the refrigeration cycle system 100A.
  • the refrigeration cycle system 100A has, in addition to the refrigeration cycle apparatus 1A, a server 200 connected to the refrigeration cycle apparatus 1A via a network NW such as the Internet.
  • the refrigeration cycle apparatus 1A according to the second embodiment differs from the refrigeration cycle apparatus 1 of the first embodiment in that the controller 8 of the refrigeration cycle apparatus 1A does not have the refrigerant amount determination unit 85.
  • the refrigeration cycle apparatus 1A is similar to the refrigeration cycle apparatus 1, and therefore the description of the refrigeration cycle apparatus 1 is basically omitted.
  • the controller 8 of the refrigeration cycle apparatus 1A does not have the refrigerant amount determination unit 85, but the server 200 has the refrigerant amount determination unit 85a.
  • the server 200 is a computer communicably connected to the controller 8 of the refrigeration cycle apparatus 1A via the network NW. Although the server 200 is connected only to the controller 8 in FIG. 5, the present invention is not limited to such a mode. For example, instead of acquiring various measurement values from some or all of the various sensors 29 to 36, 44 to 46, 54 to 56, 63 via the controller 8, the server 200 does not use the various sensors 29 to 36, 44 to 46. , 54 to 56, 63 are directly connected to some or all of them through the network NW, and various measurement values are directly obtained from some or all of the various sensors 29 to 36, 44 to 46, 54 to 56, 63. Good.
  • the server 200 is a computer mainly including a CPU, a RAM, a ROM, and an external storage device such as a hard disk.
  • the server 200 functions as the refrigerant amount determination unit 85a when the CPU executes various programs stored in the ROM or the external storage device.
  • the refrigerant amount determination unit 85a determines the amount of refrigerant in the refrigerant circuit 10 based on the information about the reverse cycle operation, like the refrigerant amount determination unit 85 of the first embodiment.
  • the refrigerant amount determination unit 85a has a discriminator 851 that has learned the relationship between the information about the reverse cycle operation and the refrigerant amount in the refrigerant circuit 10.
  • the discriminator 851 learns to output the refrigerant amount of the refrigerant circuit 10 with respect to the input including the information about the reverse cycle operation.
  • the refrigerant amount determination unit 85a determines the amount of refrigerant in the refrigerant circuit 10 by inputting an input including information regarding the reverse cycle operation to the discriminator 851.
  • the refrigerant amount determination unit 85a has a discriminator that has learned the relationship between the information about the reverse cycle operation and the refrigerant amount of the refrigerant circuit 10 for each type of the reverse cycle operation.
  • the discriminator 851 of the refrigerant amount determination unit 85a includes the learned discriminator for defrost operation, the learned discriminator for oil return operation, and the learning for refrigerant amount determination operation. It is preferable to include a completed discriminator.
  • the discriminator 851 When the information including at least one of the information on the reverse cycle operation listed in the first embodiment is input to the discriminator 851, the refrigerant amount in the refrigerant circuit 10, particularly, the refrigerant in the refrigerant circuit 10 is input.
  • the learning process is performed so as to output whether or not the amount is smaller than the proper refrigerant amount as a determination result.
  • the discriminator 851 has been learned by machine learning.
  • machine learning means that the computer learns based on the given information, not the rule base (even if the rule for judgment is not given in advance), and autonomously determines the rule for judgment. It means a technology/method that can be found.
  • the classifier 851 has been learned by learning with a teacher, for example.
  • Supervised learning means a method of machine learning in which the discriminator 851 learns by providing a large number of data (teacher data) in which an input and a corresponding correct answer are provided.
  • the input of the teacher data is the high pressure value of the refrigeration cycle, the low pressure value of the refrigeration cycle, the discharge temperature of the refrigeration cycle, the supercooling degree of the refrigeration cycle, the suction superheat degree of the refrigeration cycle, and the compressor during reverse cycle operation. It includes at least one index of 21 rpm.
  • the input here may include the time of the defrost operation in addition to the above index or instead of the above index. Further, the input here may further include a value such as the temperature and humidity of the heat source air, which represents the operating condition during the reverse cycle operation.
  • the correct answer of the output in the teacher data is, for example, whether the refrigerant amount is the proper refrigerant amount or the refrigerant amount is less than the proper refrigerant amount. If the refrigerant amount determination unit 85a not only determines whether or not the amount of refrigerant has decreased with respect to the appropriate amount of refrigerant, but also determines that the amount of refrigerant has decreased stepwise, the teacher data
  • the correct answer of the output in 1 may be a value such as what percentage the amount of refrigerant is with respect to the appropriate amount of refrigerant.
  • the teacher data includes, for example, various judgment indexes obtained by actually operating the tester of the refrigeration cycle apparatus 1A with different amounts of refrigerant (for an appropriate amount of refrigerant and for an amount less than the appropriate amount of refrigerant). Or the value of the operating condition at that time is used.
  • the teacher data indicates the refrigerant amount (the refrigerant amount is the proper refrigerant amount or is less than the proper refrigerant amount. It may be data obtained through the actual operation of the plurality of refrigeration cycle devices 1A.
  • the learning algorithm used by the discriminator 851 is, for example, a neural network, but may be another known machine learning algorithm (for example, support vector machine).
  • the learning algorithm may be one in which a machine automatically extracts a feature amount, such as deep learning. Further, the learning algorithm may be a machine learning algorithm that requires a person to extract the feature amount.
  • the refrigerant amount determination unit 85a learns by acquiring various determination indexes and operating conditions corresponding to input of teacher data during any one of the reverse cycle operations of the defrost operation, the oil return operation, and the refrigerant amount determination operation. For example, it is determined whether the amount of the refrigerant is the proper amount of the refrigerant or the amount of the refrigerant is smaller than the appropriate amount of the refrigerant by using the discriminator 851 that has been used.
  • the controller 8 of the refrigeration cycle apparatus 1B may include the refrigerant amount determination unit 85a having the discriminator 851.
  • the refrigerant amount determination unit 85a inputs the information regarding the reverse cycle operation to the discriminator 851 for all types of reverse cycle operations to determine the refrigerant amount of the refrigerant circuit 10. Although it is determined, it is not limited to this.
  • the refrigerant amount determination unit 85a determines the refrigerant amount by inputting the information about the reverse cycle operation to the discriminator 851, and the reverse cycle operation is performed.
  • the refrigerant amount is determined in the manner described in the first embodiment (for example, by comparing the degree of supercooling during the refrigerant amount determination operation with a reference value). May be.
  • Refrigeration cycle device 10 Refrigerant circuit 11d Liquid refrigerant pipe (main refrigerant pipe) 21 compressor 22 flow direction switching mechanism 23 heat source side heat exchanger 25 supercooling heat exchanger 35 liquid pipe temperature sensor (first temperature sensor) 36 Heat source air temperature sensor (3rd temperature sensor) 42,52 Use side heat exchanger 46,56 Target space temperature sensor (second temperature sensor) 61 Bypass refrigerant pipe (supercooling pipe) 62 Bypass expansion valve (supercooling expansion valve) 81 Equipment control section (control section) 82 Prohibition section (first prohibition section, second prohibition section) 85,85a Refrigerant amount determination unit 851 Discriminators 100, 100A, 100B Refrigeration cycle system P1 First pressure Tlp Liquid pipe temperature (first temperature) Tr target space temperature (second temperature) Trs installation temperature (target temperature of target space) Ta heat source air temperature (3rd temperature)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

通常運転として加熱運転モードで冷凍サイクル装置が運転されている時にも、冷媒量を精度よく判断可能な冷凍サイクル装置及び冷凍サイクルシステムを提供する。冷凍サイクル装置(1)は、冷媒回路と、機器制御部(81)と、冷媒量判断部(85)と、を備える。冷媒回路は、圧縮機(21)、熱源側熱交換器、利用側熱交換器、及び流向切換機構(22)を含む。流向切換機構は、熱源側熱交換器の状態を、蒸発器として機能する第1状態と、凝縮器として機能する第2状態と、の間で変更するために、冷媒の流向を切り換える。機器制御部は、冷凍サイクル装置の運転モードが熱源側熱交換器の状態を第1状態にして暖房運転を行う暖房運転モードにある時に、流向切換機構を制御して一時的に熱源側熱交換器の状態を第2状態に切り換えて逆サイクル運転を行う。冷媒量判断部は、逆サイクル運転に関する情報に基づいて冷媒回路内の冷媒量を判断する。

Description

冷凍サイクル装置及び冷凍サイクルシステム
 熱源側熱交換器の状態を蒸発器として機能させる加熱運転を行う冷凍サイクル装置、及び冷凍サイクル装置を含む冷凍サイクルシステムに関する。
 冷凍サイクル装置において、経年劣化等を原因として冷媒回路から冷媒が漏洩し、冷媒回路内の冷媒量が、当初充填されていた冷媒量に対し減少する可能性がある。
 このような課題に対し、特許文献1(特開2009-115340号公報)では、冷凍サイクル装置の一例としての空気調和機において、暖房サイクルで空気調和機を運転し、この時の過冷却度の値を利用して冷媒量を判断する技術が開示されている。
 しかし、特許文献1に開示されているような空気調和機では、一般に暖房サイクルでの運転時に余剰冷媒が生じやすく、余剰冷媒はアキュムレータ等に貯まるように空気調和機の運転は制御される。そのため、特許文献1に開示されているような空気調和機では、経年劣化等により冷媒回路から比較的少量の冷媒が漏洩しても、暖房サイクルでの運転時にはアキュムレータ等に蓄えられた冷媒量が変化するだけで、暖房サイクル運転時の過冷却度からだけでは、冷媒回路内の冷媒量の変化の把握が困難なおそれがある。
 そこで、通常運転として暖房運転モードのような加熱運転モードで冷凍サイクル装置が運転されている時にも、冷媒回路の冷媒量を精度よく判断可能な冷凍サイクル装置及び冷凍サイクルシステムが求められている。
 第1観点に係る冷凍サイクル装置は、冷媒回路を備える。冷媒回路は、圧縮機と、熱源側熱交換器と、利用側熱交換器と、流向切換機構と、を含む。流向切換機構は、熱源側熱交換器の状態を蒸発器として機能する第1状態と、凝縮器として機能する第2状態と、の間で変更するために、冷媒の流向を切り換える。冷凍サイクル装置は、制御部と、冷媒量判断部と、を更に備える。制御部は、冷凍サイクル装置の運転モードが、熱源側熱交換器の状態を第1状態にして加熱運転を行う加熱運転モードにある時に、流向切換機構を制御して一時的に熱源側熱交換器の状態を第2状態に切り換えて逆サイクル運転を行う。冷媒量判断部は、逆サイクル運転に関する情報に基づいて冷媒回路内の冷媒量を判断する。
 第1観点に係る冷凍サイクル装置では、運転モードが加熱運転モードにある時に、加熱運転時の情報に基づいてではなく、冷媒量の減少の影響を比較的受けやすい逆サイクル運転に関する情報に基づいて冷媒回路の冷媒量が判断される。そのため、本冷凍サイクル装置では、精度よく冷媒量の判断が可能である。
 第2観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、逆サイクル運転には、熱源側熱交換器の除霜を行うデフロスト運転及び冷媒回路中の冷凍機油を圧縮機に戻す油戻し運転の少なくとも一方を含む。
 ここでは、冷凍サイクル装置を機能させるために通常行われるデフロスト運転や油戻し運転に関する情報を利用して冷媒回路内の冷媒量が判断されるため、本来行われるべき加熱運転の停止時間は抑制しつつ、冷媒量の判断を行うことができる。
 第3観点に係る冷凍サイクル装置は、第1観点又は第2観点の冷凍サイクル装置であって、逆サイクル運転に関する情報には、逆サイクル運転時の冷凍サイクルの高圧の値、逆サイクル運転時の冷凍サイクルの低圧の値、逆サイクル運転時の冷凍サイクルの吐出温度、逆サイクル運転時の冷凍サイクルの過冷却度、逆サイクル運転時の冷凍サイクルの吸入過熱度、逆サイクル運転時の圧縮機の回転数、及び逆サイクル運転としての熱源側熱交換器の除霜を行うデフロスト運転の時間の少なくとも1つを含む。
 第4観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、逆サイクル運転には、冷媒回路における冷凍サイクルの高圧の値を所定の第1圧力に制御して行う第1運転を含む。
 ここでは、冷媒量の判断を行うために、冷凍サイクルの高圧の値を所定の圧力に制御して行う第1運転が逆サイクル運転として行われる。第1運転中には、熱源側熱交換器の周囲の熱源側空気の温度が異なっても、冷媒回路では同じ冷凍サイクル状態が実現される。そのため、精度よく冷媒量の判断を行うことができる。
 第5観点に係る冷凍サイクル装置は、第4観点の冷凍サイクル装置であって、逆サイクル運転に関する情報には、第1運転時の冷凍サイクルの過冷却度を含む。
 ここでは、精度よく冷媒量の判断を行うことができる。
 第6観点に係る冷凍サイクル装置は、第4観点又は第5観点の冷凍サイクル装置であって、第1運転時の圧縮機の回転数は、熱源側熱交換器の除霜を行うデフロスト運転時及び冷媒回路中の冷凍機油を圧縮機に戻す油戻し運転時の圧縮機の回転数よりも小さい。
 第7観点に係る冷凍サイクル装置は、第4観点から第6観点のいずれかの冷凍サイクル装置であって、制御部は、冷媒回路中の冷凍機油を圧縮機に戻す油戻し運転の実行前又は実行後に、逆サイクル運転として第1運転を行う。
 ここでは、冷凍サイクル装置を機能させるために通常行われる油戻し運転の前後に第1運転が実行されるため、均圧時間等が必要になる流向切換機構の切換回数の増加を抑制しつつ冷媒量の判断を行うことができる。そして、流向切換機構の切換回数の増加を抑制することで、加熱運転の中断時間を抑制できる。
 第8観点に係る冷凍サイクル装置は、第4観点から第6観点のいずれかの冷凍サイクル装置であって、制御部は、冷凍サイクル装置の運転モードが加熱運転モードにある時であって、冷凍サイクル装置が停止される際に、逆サイクル運転として第1運転を行う。
 ここでは、冷凍サイクル装置の運転が不要となるタイミングで冷媒量の判断のための第1運転が実行されるため、ユーザに対する冷凍サイクル装置の機能の提供を損なうことなく冷媒量の判断を行うことができる。
 第9観点に係る冷凍サイクル装置は、第4観点から第8観点のいずれかの冷凍サイクル装置であって、冷媒回路は、主冷媒管と、過冷却管と、過冷却膨張弁と、過冷却熱交換器と、を更に有する。主冷媒管は、熱源側熱交換器と利用側熱交換器とを接続する。過冷却管は、主冷媒管から分岐し圧縮機の吸入側へと冷媒を導く。過冷却膨張弁は、過冷却管に設けられ、過冷却管を流れる冷媒を減圧する。過冷却熱交換器では、過冷却膨張弁で減圧された冷媒と主冷媒管を流れる冷媒との間で熱交換が行われる。冷凍サイクル装置は、第1温度センサを更に備える。第1温度センサは、過冷却熱交換器を通過した主冷媒管を流れる冷媒の温度である第1温度を測定する。制御部は、第1運転を行う時に、第1温度が所定値になるよう過冷却膨張弁を更に制御する。
 ここでは、熱源側熱交換器と利用側熱交換器とを接続する冷媒管を流れる冷媒の温度が一定に制御されるため、冷媒管における冷媒の密度変化が、冷媒量の判断の精度に与える影響を抑制することができる。
 第10観点に係る冷凍サイクル装置は、第4観点から第9観点のいずれかの冷凍サイクル装置であって、冷凍サイクル装置は、加熱運転時に利用側熱交換器を流れる冷媒により対象空間の空気を加熱する。冷凍サイクル装置は、第2温度センサと、第1禁止部と、を更に備える。第2温度センサは、対象空間の空気の温度である第2温度を測定する。第1禁止部は、第2温度が、対象空間の目標温度より所定温度以上低い場合に、制御部が第1運転を実行することを禁止する。
 ここでは、ユーザの快適性に与える影響は抑制しつつ、冷媒量の判断を行うことができる。
 第11観点に係る冷凍サイクル装置は、第4観点から第10観点のいずれかの冷凍サイクル装置であって、第3温度センサと、第2禁止部と、を更に備える。第3温度センサは、熱源側熱交換器において冷媒と熱交換する熱源空気の温度である第3温度を測定する。第2禁止部は、第3温度が、冷凍サイクルの高圧の値を第1圧力に維持可能な温度より低い場合に、制御部が第1運転を実行することを禁止する。
 ここでは、冷凍サイクルの高圧の値を所定の第1圧力に制御する第1運転が困難な熱源空気低温時には第1運転が禁止されるので、冷媒量の判断に向かないタイミングで冷媒量の判断のための運転が実行されることを抑制できる。
 第12観点に係る冷凍サイクル装置は、第2観点の冷凍サイクル装置であって、逆サイクル運転には、冷媒回路における冷凍サイクルの高圧の値を所定の第1圧力に制御して行う第1運転を含む。制御部は、冷媒量判断部が、逆サイクル運転としてのデフロスト運転又は油戻し運転に関する情報に基づいて冷媒回路の冷媒量が減少していると判断した場合に、逆サイクル運転として第1運転を行う。
 ここでは、デフロスト運転や油戻し運転の情報に基づいて冷媒量が減少していると判断された場合に、より高精度な冷媒量の判断が可能な第1運転が行われるので、精度よく冷媒量の判断を行うことができる。
 第13観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれかの冷凍サイクル装置であって、冷媒量判断部は、逆サイクル運転に関する情報と冷媒回路の冷媒量との関係を学習済みの識別器を有する。冷媒量判断部は、逆サイクル運転に関する情報を識別器に入力することで、冷媒回路の冷媒量を判断する。
 ここでは、逆サイクル運転に関する情報と冷媒回路の冷媒量との関係を学習済みの識別器を用いて、精度よく冷媒量の判断を行うことができる。
 第14観点に係る冷凍サイクルシステムは、冷凍サイクル装置と、冷媒量判断部と、を備える。冷凍サイクル装置は、冷媒回路と、制御部と、を有する。冷媒回路は、圧縮機と、熱源側熱交換器と、利用側熱交換器と、流向切換機構と、を含む。流向切換機構は、熱源側熱交換器の状態を、蒸発器として機能する第1状態と、凝縮器として機能する第2状態と、の間で変更するために冷媒の流向を切り換える。制御部は、冷凍サイクル装置の運転モードが、熱源側熱交換器の状態を第1状態にして加熱運転を行う加熱運転モードにある時に、流向切換機構を制御して一時的に熱源側熱交換器の状態を第2状態に切り換えて逆サイクル運転を行う。冷媒量判断部は、逆サイクル運転に関する情報に基づいて冷媒回路内の冷媒量を判断する。
 第15観点に係る冷凍サイクルシステムは、第14観点の冷凍サイクルシステムであって、冷媒量判断部は、逆サイクル運転に関する情報と冷媒回路の冷媒量との関係を学習済みの識別器を有する。冷媒量判断部は、逆サイクル運転に関する情報を識別器に入力することで、冷媒回路の冷媒量を判断する。
第1実施形態に係る冷凍サイクル装置を含む冷凍サイクルシステムの概略構成図である。 図1の冷凍サイクルシステムのブロック図である。 図1の冷凍サイクル装置における、デフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断処理のフローチャートである。 図1の冷凍サイクル装置における、冷媒量判断用運転に関する情報に基づく冷媒量の判断処理のフローチャートである。 第2実施形態の冷凍サイクルシステムのブロック図である。 学習済みの識別器を有する冷媒量判断部を備えた冷凍サイクル装置を含む冷凍サイクルシステムのブロック図である。
 <第1実施形態>
 第1実施形態に係る冷凍サイクル装置1及び冷凍サイクル装置1を含む冷凍サイクルシステム100について、図面を参照しながら説明する。
 (1)全体構成
 図1は、第1実施形態に係る冷凍サイクル装置1を含む冷凍サイクルシステム100の概略構成図である。図2は、冷凍サイクルシステム100のブロック図である。
 本実施形態の冷凍サイクル装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、対象空間の冷房/暖房を行う空調装置である。ただし、冷凍サイクル装置1は、空調装置に限定されるものではなく、空調装置以外の装置、例えば給湯装置等であってもよい。
 冷凍サイクル装置1は、主として、1台の熱源ユニット2と、これに並列に接続された複数台(本実施形態では、2台)の利用ユニット4,5と、液冷媒連絡配管6と、ガス冷媒連絡配管7と、コントローラ8と、を備えている(図1及び図2参照)。液冷媒連絡配管6及びガス冷媒連絡配管7は、熱源ユニット2と利用ユニット4、5とを接続する配管である(図1参照)。コントローラ8は、熱源ユニット2及び利用ユニット4,5の各種機器の動作を制御する。また、本実施形態では、コントローラ8は、後述する冷媒回路10内の冷媒量を判断する冷媒量判断部85としても機能する(図2参照)。
 なお、本実施形態では冷凍サイクル装置1は、利用ユニットを2台有するが、利用ユニットの台数は2台に限定されるものではない。冷凍サイクル装置1は、利用ユニットを1台又は3台以上有してもよい。また、冷凍サイクル装置1は、熱源ユニット2を1台の有するが、熱源ユニット2の台数は1台に限定されるものではない。冷凍サイクル装置1は、並列に接続された熱源ユニット2を複数台有してもよい。
 熱源ユニット2と利用ユニット4,5とは、液冷媒連絡配管6及びガス冷媒連絡配管7を介して接続されることで、冷媒回路10を構成する(図1参照)。冷媒回路10は、熱源ユニット2の圧縮機21、熱源側熱交換器23、及び流向切換機構22や、利用ユニット4,5の利用側熱交換器42,52を備える(図1参照)。好ましくは、冷媒回路10は、熱源ユニット2の、過冷却熱交換器25と、バイパス膨張弁62と、を更に備える(図1参照)。
 冷凍サイクル装置1で利用される冷媒は、限定するものではないが、例えばR32等のフルオロカーボン系の冷媒である。冷凍サイクル装置1で利用される冷媒は、自然冷媒であってもよい。
 冷凍サイクル装置1は、運転モードとして、冷房運転を実行する冷房運転モードと、暖房運転を実行する暖房運転モードと、を有する。暖房運転モードは、加熱運転モードの一例である。冷房運転は、熱源側熱交換器23を凝縮器として機能させ、利用側熱交換器42,52を蒸発器として機能させ、利用ユニット4,5が設置される対象空間の空気を冷却する運転である。暖房運転は、熱源側熱交換器23を蒸発器として機能させ、利用側熱交換器42,52を凝縮器として機能させ、利用ユニット4,5が設置されている対象空間の空気を加熱する運転である。暖房運転は、加熱運転の一例である。
 冷凍サイクル装置1は、冷房運転及び暖房運転に加え、デフロスト運転及び油戻し運転を実行する。デフロスト運転は、熱源側熱交換器23の除霜のための運転である。油戻し運転は、圧縮機21外に存在する、冷媒回路10中の冷凍機油を圧縮機21に戻すための運転である。さらに、冷凍サイクル装置1は、第1運転の一例である冷媒量判断用運転を実行可能であることが好ましい。デフロスト運転、油戻し運転及び冷媒量判断用運転の詳細については後述する。
 なお、冷凍サイクル装置1が給湯装置である場合には、運転モードとして、加熱運転を実行する加熱運転モードを有する。加熱運転は、熱源側熱交換器23を蒸発器として機能させ、利用側熱交換器42,52を凝縮器として機能させ、利用側熱交換器42,52において水を加熱する運転である。冷凍サイクル装置1は、加熱運転に加え、例えば、デフロスト運転、油戻し運転及び冷媒量判断用運転を実行可能である。
 (2)詳細構成
 冷凍サイクル装置1の利用ユニット4,5、熱源ユニット2、冷媒連絡配管6,7、及びコントローラ8について詳細を説明する。
 (2-1)利用ユニット
 利用ユニット4,5は、建物室内等の対象空間に設置されるユニットである。例えば、利用ユニット4,5は、天井に設置される天井埋込型のユニットである。ただし、利用ユニット4,5は、天井埋込型のユニットに限定されるものではなく、天井に吊り下げられる天井吊下型や、壁に設置される壁掛型や、床に設置される床置型のユニットであってもよい。
 利用ユニット4,5は、上述のように、液冷媒連絡配管6及びガス冷媒連絡配管7を介して熱源ユニット2に接続され、冷媒回路10の一部を構成している。
 利用ユニット4は、冷媒回路10の一部を構成する利用側冷媒回路10aを有する(図1参照)。利用側冷媒回路10aは、主として、利用側膨張機構41と、利用側熱交換器42とを有する(図1参照)。利用ユニット4は、モータ43aにより駆動される利用側ファン43を有する(図1参照)。利用ユニット4は、各種のセンサを有する。本実施形態では、利用ユニット4が有する各種のセンサには、液側温度センサ44と、ガス側温度センサ45と、対象空間温度センサ46と、を含む(図1参照)。利用ユニット4は、利用ユニット4の動作を制御する利用側制御部47を有する(図1参照)。
 利用ユニット5は、冷媒回路10の一部を構成する利用側冷媒回路10bを有する(図1参照)。利用側冷媒回路10bは、主として、利用側膨張機構51と、利用側熱交換器52とを有する(図1参照)。利用ユニット5は、モータ53aにより駆動される利用側ファン53を有する(図1参照)。利用ユニット5は、各種のセンサを有する。本実施形態では、利用ユニット5の有する各種のセンサには、液側温度センサ54と、ガス側温度センサ55と、対象空間温度センサ56と、を含む(図1参照)。利用ユニット5は、利用ユニット4の動作を制御する利用側制御部57を有する(図1参照)。なお、利用ユニット5の各部の構成は、利用ユニット4の対応する各部と同様の構成である。そのため、以下では、利用ユニット4の各部についてのみ説明し、特に必要がない場合、利用ユニット5の各部についての説明は省略する。
 (2-1-1)利用側熱交換器
 利用側熱交換器42では、利用側熱交換器42を流れる冷媒と、利用側熱交換器42を通過する媒体との間で熱交換が行われる。本実施形態では、利用側熱交換器42では、利用側熱交換器42を流れる冷媒と、対象空間の空気との間で熱交換が行われる。
 利用側熱交換器42の一端は、冷媒配管を介して液冷媒連絡配管6と接続される。利用側熱交換器42の他端は、冷媒配管を介してガス冷媒連絡配管7と接続される。
 利用側熱交換器42は、タイプを限定するものではないが、例えば、伝熱管(図示省略)と多数のフィン(図示省略)とにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器である。
 利用側熱交換器42は、冷房運転時、デフロスト運転時、油戻し運転時、及び冷媒量判断用運転時には、蒸発器として機能する。利用側熱交換器42は、暖房運転時には、凝縮器として機能する。
 (2-1-2)利用側膨張機構
 利用側膨張機構41は、利用側冷媒回路10aを流れる冷媒の圧力や流量を調節するための機構である。利用側膨張機構41は、利用側熱交換器42の液側と液冷媒連絡配管6とを接続する冷媒配管に設けられる。利用側膨張機構41は、例えば開度可変の電子膨張弁である。ただし、利用側膨張機構41は、電子膨張弁に限定されるものではなく、冷凍サイクル装置において一般に膨張機構として使用される機構が適宜選択されればよい。
 (2-1-3)利用側ファン
 利用側ファン43は、利用ユニット4内に対象空間内の空気を吸入し、利用側熱交換器42に供給し、利用側熱交換器42において冷媒と熱交換した空気を、対象空間へと吹き出す機構である。利用側ファン43は、例えばシロッコファンである。しかし、利用側ファン43のタイプは、シロッコファンに限定されるものではなく適宜選択されればよい。利用側ファン43は、モータ43aによって駆動される。利用側ファン43は、回転数を変更可能なモータ43aによって駆動される、風量可変のファンである。
 (2-1-4)センサ
 利用ユニット4は、液側温度センサ44と、ガス側温度センサ45と、対象空間温度センサ46と、をセンサとして有する(図1参照)。なお、利用ユニット4は、上述のセンサ44~46の全てを有していなくてもよく、一部のみを有してもよい。また、熱源ユニット2は、上述のセンサ44~46以外のセンサを有してもよい。
 液側温度センサ44は、利用側熱交換器42の液側と液冷媒連絡配管6とを接続する冷媒配管に設けられる。液側温度センサ44は、利用側熱交換器42の液側の冷媒配管を流れる冷媒の温度を計測する。
 ガス側温度センサ45は、利用側熱交換器42のガス側とガス冷媒連絡配管7とを接続する冷媒配管に設けられる。ガス側温度センサ45は、利用側熱交換器42のガス側の冷媒配管を流れる冷媒の温度を計測する。
 対象空間温度センサ46は、利用ユニット4の対象空間空気の吸入口側に設けられる。対象空間温度センサ46は、利用ユニット4に流入する対象空間の空気の温度(対象空間温度Tr)を検出する。
 センサのタイプを限定するものではないが、本実施形態では、液側温度センサ44、ガス側温度センサ45及び対象空間温度センサ46は、サーミスタである。
 (2-1-5)利用側制御部
 利用側制御部47は、利用ユニット4を構成する各部の動作を制御する。
 利用側制御部47は、利用ユニット4の制御を行うために設けられたマイクロコンピュータやメモリ等を有する。
 利用側制御部47は、利用ユニット4の、利用側膨張機構41、利用側ファン43、液側温度センサ44、ガス側温度センサ45、及び対象空間温度センサ46と、制御信号や情報のやりとりを行うことが可能に電気的に接続されている(図1参照)。また、利用側制御部47は、熱源ユニット2の熱源側制御部37との間で制御信号等のやりとりを行うことが可能な状態で、伝送線8aにより熱源側制御部37に接続されている。なお、利用側制御部47と熱源側制御部37とは、物理的な伝送線8aにより接続されなくてもよい。利用側制御部47と熱源側制御部37とは、無線により通信可能に接続されてもよい。利用側制御部47は、利用ユニット4を操作するためのリモコン(図示せず)から送信される各種信号を受信可能に構成されている。各種信号には、利用ユニット4の運転/停止に関する信号や、各種設定に関する信号を含む。各種設定に関する信号には、例えば、運転モードの切換信号や、冷房運転や暖房運転の目標温度(設定温度Trs)を含む。
 利用側制御部47及び利用ユニット5の利用側制御部57と、利用側制御部47,57と伝送線8aを介して接続されている熱源ユニット2の熱源側制御部37とは、協働してコントローラ8として機能する。コントローラ8の機能については後述する。
 (2-2)熱源ユニット
 熱源ユニット2は、例えば冷凍サイクル装置1の設置される建物の室外等に設置されている。
 熱源ユニット2は、液冷媒連絡配管6及びガス冷媒連絡配管7を介して利用ユニット4、5に接続されている。熱源ユニット2は、利用ユニット4、5と共に冷媒回路10を構成する(図1参照)。
 熱源ユニット2は、冷媒回路10の一部を構成する熱源側冷媒回路10cを有する(図1参照)。熱源側冷媒回路10cは、主として、圧縮機21と、流向切換機構22と、熱源側熱交換器23と、熱源側膨張機構38と、アキュムレータ24と、過冷却熱交換器25と、バイパス膨張弁62と、液側閉鎖弁26と、ガス側閉鎖弁27と、を有する(図1参照)。熱源ユニット2は、モータ28aにより駆動される熱源側ファン28を有する(図1参照)。熱源ユニット2は、各種のセンサを有する。熱源ユニット2の有するセンサについては後述する。熱源ユニット2は、熱源側制御部37を有する(図1参照)。
 また、熱源ユニット2は、吸入管11aと、吐出管11bと、第1ガス冷媒管11cと、液冷媒管11dと、第2ガス冷媒管11eと、バイパス冷媒管61と、を有する(図1参照)。
 吸入管11aは、流向切換機構22と圧縮機21の吸入側とを接続する(図1参照)。吸入管11aには、アキュムレータ24が設けられる(図1参照)。
 吐出管11bは、圧縮機21の吐出側と流向切換機構22とを接続する(図1参照)。
 第1ガス冷媒管11cは、流向切換機構22と熱源側熱交換器23のガス側とを接続する(図1参照)。
 液冷媒管11dは、熱源側熱交換器23の液側と液冷媒連絡配管6とを接続する(図1参照)。液冷媒管11dは、熱源側熱交換器23と利用側熱交換器42,52とを接続する主冷媒管の一例である。液冷媒管11dには、熱源側膨張機構38が設けられている(図1参照)。液冷媒管11dには、過冷却熱交換器25が設けられている(図1参照)。液冷媒管11dと液冷媒連絡配管6との接続部には、液側閉鎖弁26が設けられている(図1参照)。
 第2ガス冷媒管11eは、流向切換機構22とガス冷媒連絡配管7とを接続する(図1参照)。第2ガス冷媒管11eとガス冷媒連絡配管7との接続部には、ガス側閉鎖弁27が設けられている(図1参照)。
 バイパス冷媒管61は、液冷媒管11dの熱源側膨張機構38と過冷却熱交換器25との間を接続する部分から分岐し、その端部は吸入管11aに接続される(図1参照)。バイパス冷媒管61は、液冷媒管11dを流れる冷媒の一部を、圧縮機21の吸入側へと導く過冷却管の一例である。バイパス冷媒管61には、過冷却熱交換器25が設けられている(図1参照)。バイパス冷媒管61は、液冷媒管11dからの分岐部と過冷却熱交換器25との間を接続する第1管61aと、過冷却熱交換器25と吸入管11aとを接続する第2管61bと、を含む(図1参照)。第1管61aには、バイパス膨張弁62が設けられている(図1参照)。
 以下に、熱源ユニット2の主な構成について更に説明する。
 (2-2-1)圧縮機
 圧縮機21は、吸入管11aから冷凍サイクルにおける低圧の冷媒を吸入し、図示しない圧縮機構で冷媒を圧縮して、圧縮した冷媒を吐出管11bへと吐出する機器である。本実施形態では、熱源ユニット2は、圧縮機21を1台だけ有するが、圧縮機21の台数は1台に限定されるものではない。熱源ユニット2は、並列に接続された複数の圧縮機21を有するものであってもよい。また、熱源ユニット2が複数段で冷媒を圧縮する場合には、熱源ユニット2は、直列に接続された複数の圧縮機21を有するものであってもよい。
 圧縮機21は、タイプを限定するものではないが、例えば、ロータリ式やスクロール式等の容積圧縮機である。圧縮機21の図示しない圧縮機構は、モータ21aによって駆動される(図1参照)。モータ21aにより圧縮機構(図示せず)が駆動されることで、圧縮機構により冷媒が圧縮される。ここでは、モータ21aは、インバータによる回転数制御が可能なモータである。モータ21aの回転数(運転周波数)が制御されることで、圧縮機21の容量が制御される。なお、圧縮機21の圧縮機構は、モータ以外の原動機(例えば内燃機関)により駆動されてもよい。
 (2-2-2)流向切換機構
 流向切換機構22は、冷媒の流向を切り換えることで、熱源側熱交換器23の状態を、蒸発器として機能する第1状態と、凝縮器として機能する第2状態との間で変更する機構である。なお、流向切換機構22が熱源側熱交換器23の状態を第1状態とする時には、利用側熱交換器42,52は凝縮器として機能する。一方、流向切換機構22が熱源側熱交換器23の状態を第2状態とする時には、利用側熱交換器42,52は蒸発器として機能する。
 流向切換機構22は、圧縮機21から吐出される冷媒の流向を、第1流向Aと第2流向Bとの間で切り換える機構である(図1中の矢印A,Bを参照)。流向切換機構22が冷媒の流向を第1流向Aに切り換えた時、熱源側熱交換器23の状態は第1状態となる。流向切換機構22が冷媒の流向を第2流向Bに切り換えた時、熱源側熱交換器23の状態は第2状態となる。
 ここでは、流向切換機構22は、四路切換弁である。
 加熱運転の一例である暖房運転時には、圧縮機21から吐出される冷媒の流向は、流向切換機構22により第1流向Aに切り換えられる。流向切換機構22は、冷媒の流向を第1流向Aに設定している時、吸入管11aを第1ガス冷媒管11cと連通させ、吐出管11bを第2ガス冷媒管11eと連通させる(図1中の流向切換機構22内の破線参照)。冷媒が第1流向Aに流れる時、圧縮機21から吐出される冷媒は、冷媒回路10内を、利用側熱交換器42,52、利用側膨張機構41,51、熱源側膨張機構38、熱源側熱交換器23の順に流れ、圧縮機21へと戻る。
 冷房運転時、デフロスト運転時、油戻し運転時及び冷媒量判断用運転時には、圧縮機21から吐出される冷媒の流向は、流向切換機構22により第2流向Bに切り換えられる。流向切換機構22は、冷媒の流向を第2流向Bに設定している時、吸入管11aを第2ガス冷媒管11eと連通させ、吐出管11bを第1ガス冷媒管11cと連通させる(図1中の流向切換機構22内の実線参照)。冷媒が第2流向Bに流れる時、圧縮機21から吐出される冷媒は、冷媒回路10内を、熱源側熱交換器23、熱源側膨張機構38、利用側膨張機構41,51、利用側熱交換器42,52の順に流れ、圧縮機21へと戻る。
 なお、流向切換機構22は、四路切換弁に限られるものではない。例えば、流向切換機構22は、複数の電磁弁及び冷媒管を組み合わせて、上記のような冷媒の流れ方向の切り換えを実現できるように構成されてもよい。
 (2-2-3)熱源側熱交換器
 熱源側熱交換器23では、内部を流れる冷媒と熱源ユニット2の設置場所の空気(熱源空気と呼ぶ)との間で熱交換が行われる。熱源ユニット2が室外に設置される場合には、熱源側熱交換器23では、内部を流れる冷媒と室外空気との間で熱交換が行われる。
 熱源側熱交換器23の一端は、液冷媒管11dに接続されている。熱源側熱交換器23の他端は、第1ガス冷媒管11cに接続されている。
 熱源側熱交換器23は、タイプを限定するものではないが、例えば、伝熱管(図示省略)と多数のフィン(図示省略)とを有するフィン・アンド・チューブ型熱交換器である。
 熱源側熱交換器23は、暖房運転時には蒸発器として機能する。一方、冷房運転時、デフロスト運転時、油戻し運転時、及び冷媒量判断用運転時には、熱源側熱交換器23は、凝縮器(放熱器)として機能する。
 (2-2-4)熱源側膨張機構
 熱源側膨張機構38は、冷媒の流路において熱源側熱交換器23と利用側熱交換器42,52との間に配置される(図1参照)。具体的には、熱源側膨張機構38は、液冷媒管11dの、熱源側熱交換器23と、液冷媒管11dとバイパス冷媒管61との分岐部と、の間に配置されている(図1参照)。
 熱源側膨張機構38は、液冷媒管11dを流れる冷媒の圧力や流量の調節を行う。熱源側膨張機構38は、例えば開度可変の電子膨張弁である。ただし、熱源側膨張機構38は、電子膨張弁に限定されず、冷凍サイクル装置において一般に膨張機構として使用される機器が適宜選択されればよい。
 (2-2-5)アキュムレータ
 アキュムレータ24は、流入する冷媒をガス冷媒と液冷媒とに分ける気液分離機能を有する容器である。また、アキュムレータ24は、利用ユニット4、5の運転負荷の変動等に応じて発生する余剰冷媒の貯留機能を有する容器である。アキュムレータ24は、吸入管11aに設けられる(図1参照)。アキュムレータ24に流入する冷媒は、ガス冷媒と液冷媒とに分離され、上部空間に集まるガス冷媒が圧縮機21へと流出する。
 (2-2-6)過冷却熱交換器及びバイパス膨張弁
 過冷却熱交換器25は、例えば二重管型熱交換器やプレート型熱交換器などの熱交換器である。過冷却熱交換器25は、主に、熱源側熱交換器23において凝縮し、利用ユニット4,5へと送られる冷媒を冷却するために設けられている。過冷却熱交換器25では、液冷媒管11dから分流しバイパス冷媒管61を流れ、バイパス膨張弁62で減圧された冷媒と、液冷媒管11dを流れる冷媒との間で熱交換が行われる。過冷却熱交換器25は、液冷媒管11dの、液冷媒管11dとバイパス冷媒管61との分岐部と、液側閉鎖弁26との間に配置されている(図1参照)。また、過冷却熱交換器25は、バイパス冷媒管61の、バイパス膨張弁62と吸入管11aとの接続部との間に配置されている(図1参照)。
 バイパス膨張弁62は、過冷却膨張弁の一例である。バイパス膨張弁62は、バイパス冷媒管61の第1管61aに設けられている(図1参照)。バイパス膨張弁62は、バイパス冷媒管61を流れる冷媒を減圧する。また、バイパス膨張弁62は、バイパス冷媒管61を流れる冷媒の流量を調節する。バイパス膨張弁62は、例えば、開度調整可能な電子膨張弁である。ただし、バイパス膨張弁62は、開度調整可能な電子膨張弁に限定されず、開/閉のみを制御可能な電磁弁であってもよい。なお、バイパス膨張弁62が開/閉のみを制御可能な電磁弁である場合には、バイパス冷媒管61に流量調整用のキャピラリが設けられることが好ましい。
 バイパス膨張弁62が開かれると、液冷媒管11dからバイパス冷媒管61に分流した冷媒が過冷却熱交換器25に流入し、液冷媒管11dを流れる冷媒と熱交換して吸熱し、ガス相の冷媒となって吸入管11aに流入する。一方、過冷却熱交換器25においてバイパス冷媒管61を流れる冷媒と熱交換した液冷媒管11dを流れる冷媒は、過冷却熱交換器25において冷却されて、利用ユニット4,5へと送られる。
 (2-2-7)液側閉鎖弁及びガス側閉鎖弁
 液側閉鎖弁26は、液冷媒管11dと液冷媒連絡配管6との接続部に設けられた弁である。ガス側閉鎖弁27は、第2ガス冷媒管11eとガス冷媒連絡配管7との接続部に設けられた弁である。液側閉鎖弁26及びガス側閉鎖弁27は、例えば、手動で操作される弁である。
 (2-2-8)熱源側ファン
 熱源側ファン28は、熱源ユニット2内に熱源ユニット2外部の熱源空気を吸入して熱源側熱交換器23に供給し、熱源側熱交換器23において冷媒と熱交換した空気を熱源ユニット2外に排出するためのファンである。
 熱源側ファン28は、例えばプロペラファンである。ただし、熱源側ファン28のファンのタイプは、プロペラファンに限定されず、適宜選択されればよい。
 熱源側ファン28は、モータ28aによって駆動される(図1参照)。限定するものではないが、モータ28aはインバータにより回転数制御が可能なモータである。熱源側ファン28は、モータ28aの回転数制御により風量可変のファンである。
 (2-2-9)センサ
 熱源ユニット2には、各種センサが設けられている。例えば、熱源ユニット2は、以下の温度センサ及び圧力センサを有する。なお、温度センサや圧力センサの種類は、適宜選択されればよい。
 熱源ユニット2の有するセンサには、吸入圧力センサ29と、吐出圧力センサ30と、吸入温度センサ31と、吐出温度センサ32と、熱交温度センサ33と、液側温度センサ34と、液管温度センサ35と、熱源空気温度センサ36と、バイパス温度センサ63と、を含む(図1及び図2参照)。なお、熱源ユニット2は、上述のセンサ29~36,63の全てを有していなくてもよく、一部のみを有してもよい。また、熱源ユニット2は、上述のセンサ29~36,63以外のセンサを有してもよい。
 吸入圧力センサ29は、吸入管11aに設けられている(図1参照)。吸入圧力センサ29は、吸入圧力Psを計測するセンサである。吸入圧力Psは、冷凍サイクルの低圧の値である。
 吐出圧力センサ30は、吐出管11bに設けられている(図1参照)。吐出圧力センサ30は、吐出圧力Pdを計測するセンサである。吐出圧力Pdは、冷凍サイクルの高圧の値である。
 吸入温度センサ31は、吸入管11aに設けられている(図1参照)。吸入温度センサ31は、吸入温度Tsを計測するセンサである。
 吐出温度センサ32は、吐出管11bに設けられている(図1参照)。吐出温度センサ32は、吐出温度Tdを計測するセンサである。
 熱交温度センサ33は、熱源側熱交換器23に設けられている(図1参照)。熱交温度センサ33は、熱源側熱交換器23内を流れる冷媒の温度を計測する。熱交温度センサ33は、冷房運転時には凝縮温度Tcに対応する冷媒温度を計測し、暖房運転時には蒸発温度Teに対応する冷媒温度を計測する。
 液側温度センサ34は、熱源側熱交換器23の液側に設けられ、冷媒の温度Tbを計測する。流向切換機構22が冷媒の流向を第2流向Bに切り換えている時には、熱交温度センサ33が計測する凝縮温度Tcから、液側温度センサ34が計測する冷媒の温度Tbを減じることで、冷凍サイクルの過冷却度が算出される。
 液管温度センサ35は、液冷媒管11dの、過冷却熱交換器25と液側閉鎖弁26との間に配置される。液管温度センサ35は、第1温度センサの一例である。液管温度センサ35は、液冷媒管11dの、過冷却熱交換器25と液側閉鎖弁26との間を流れる冷媒の温度(液管温度Tlp)を計測する。液管温度センサ35は、流向切換機構22が冷媒の流向を第2流向Bに切り換え、バイパス膨張弁62が開かれている時に、過冷却熱交換器25において冷却されて液冷媒管11dを流れる冷媒の温度を、液管温度Tlpとして計測する。例えば、液管温度センサ35は、冷媒量判断用運転時に、過冷却熱交換器25を通過した液冷媒管11dを流れる冷媒の温度(液管温度Tlp)を測定する。
 熱源空気温度センサ36は、熱源空気の温度を計測する。
 バイパス温度センサ63は、バイパス冷媒管61の第2管61bに設けられている。バイパス温度センサ63は、バイパス冷媒管61の第1管61aを流れ、過冷却熱交換器25において液冷媒管11dを流れる冷媒と熱交換し、吸入管11aへと流れる冷媒の温度を計測する。
 (2-2-10)熱源側制御部
 熱源側制御部37は、熱源ユニット2を構成する各部の動作を制御する。
 熱源側制御部37は、熱源ユニット2の制御を行うために設けられたマイクロコンピュータやメモリ等を有する。
 熱源側制御部37は、熱源ユニット2の、圧縮機21、流向切換機構22、熱源側膨張機構38、バイパス膨張弁62、熱源側ファン28、吸入圧力センサ29、吐出圧力センサ30、吸入温度センサ31、吐出温度センサ32、熱交温度センサ33、液側温度センサ34、液管温度センサ35、熱源空気温度センサ36、及びバイパス温度センサ63と、制御信号や情報のやりとりを行うことが可能に電気的に接続されている(図1参照)。また、熱源側制御部37は、利用ユニット4,5の利用側制御部47,57との間で制御信号等のやりとりを行うことが可能な状態で、伝送線8aにより利用側制御部47,57に接続されている。
 熱源側制御部37と利用ユニット4,5の利用側制御部47,57とは、伝送線8aを介して接続されて、冷凍サイクル装置1の動作の制御を行うコントローラ8として機能する。コントローラ8は、熱源側制御部37及び/又は利用側制御部47,57のマイクロコンピュータがメモリに記憶されたプログラムを実行することで、冷凍サイクル装置1全体の動作を制御する。また、コントローラ8は、冷媒回路10内の冷媒量を判断する冷媒量判断部85としても機能する。コントローラ8の機能については後述する。
 (2-3)冷媒連絡配管
 冷凍サイクル装置1は、冷媒連絡配管として、液冷媒連絡配管6と、ガス冷媒連絡配管7と、を有する。液冷媒連絡配管6及びガス冷媒連絡配管7は、冷凍サイクル装置1の設置時に、冷凍サイクル装置1の設置サイトで施工される配管である。液冷媒連絡配管6及びガス冷媒連絡配管7には、設置場所や、熱源ユニットと利用ユニットとの組み合わせ等の設置条件に応じて様々な長さや径の配管が使用される。
 利用ユニット4,5の利用側冷媒回路10a、10bと、熱源ユニット2の熱源側冷媒回路10cとが、液冷媒連絡配管6とガス冷媒連絡配管7とにより接続されることで、冷凍サイクル装置1の冷媒回路10が構成される。
 (2-4)コントローラ
 コントローラ8は、熱源ユニット2の熱源側制御部37と利用ユニット4,5の利用側制御部47,57とが伝送線8aを介して通信可能に接続されることによって構成されている。コントローラ8は、熱源側制御部37や利用側制御部47,57のマイクロコンピュータがメモリに記憶されたプログラムを実行することで、冷凍サイクル装置1全体の動作の制御を行う。
 なお、本実施形態のコントローラ8は、一実施例にすぎない。コントローラは、本実施形態のコントローラ8が発揮する機能と同様の機能を、論理回路等のハードウェアにより実現してもよいし、ハードウェアとソフトウェアとの組合せにより実現してもよい。
 また、ここでは、熱源側制御部37と利用側制御部47,57とがコントローラ8を構成するが、これに限定されない。例えば、冷凍サイクル装置1は、熱源側制御部37と利用側制御部47,57に加えて、あるいは熱源側制御部37と利用側制御部47,57に代えて、以下で説明するコントローラ8の機能の一部又は全部を実現する熱源ユニット2及び利用ユニット4,5とは別に設けられる制御装置を有してもよい。
 また、冷凍サイクル装置1のコントローラ8は、以下で説明する機能の一部又は全部を有していなくてもよい。例えば、以下で説明するコントローラ8の機能の一部又は全部は、冷凍サイクル装置1とは別の場所に設置されるサーバ等により実現されてもよい。言い換えれば、コントローラ8の機能は、冷凍サイクル装置1だけで実行されなくてもよく、冷凍サイクルシステム100を構成する冷凍サイクル装置1とは別に設置される図示しないサーバ等により実現されてもよい。例えば、後述する冷媒量判断部85の機能は、冷凍サイクルシステム100を構成するサーバにより実現されてもよい。
 コントローラ8は、図2に示されるように、利用側膨張機構41,51、圧縮機21、流向切換機構22,熱源側膨張機構38、バイパス膨張弁62、利用側ファン43,53、及び熱源側ファン28を含む熱源ユニット2及び利用ユニット4,5の各種機器と電気的に接続されている。また、コントローラ8は、図2に示されるように、液側温度センサ44,54、ガス側温度センサ45,55、及び対象空間温度センサ46,56、吸入圧力センサ29、吐出圧力センサ30、吸入温度センサ31、吐出温度センサ32、熱交温度センサ33、液側温度センサ34、液管温度センサ35、熱源空気温度センサ36、及びバイパス温度センサ63と電気的に接続されている。
 コントローラ8は、機能部として、機器制御部81と、禁止部82と、冷媒量判断部85と、を主に有する。
 機器制御部81は、コントローラ8が各種センサ29~36,44~46,54~56,63の計測信号や利用側制御部47,57が図示しないリモコンから送信されてくる指令等に基づいて機器21,22,28,38,41,43,51,53,62等の動作を制御する。機器制御部81による、冷房運転時、暖房運転時、デフロスト運転時、油戻し運転時、及び冷媒量判断用運転時の機器21,22,28,38,41,43,51,53,62の動作の制御については後述する。
 禁止部82は、所定の条件が成立している時に、機器制御部81が冷媒量判断用運転を実行することを禁止する。所定の条件については後述する。
 冷媒量判断部85は、冷媒回路10内の冷媒量を判断する。なお、ここでの冷媒量の判断は、定量的な冷媒量の判断でなくてもよく、定性的な冷媒量の判断でもよい。定性的な冷媒量の判断には、例えば、冷凍サイクル装置1の設置時点に比べて冷媒量が減少しているか否かを判断することを含む。また、定性的な冷媒量の判断には、冷凍サイクル装置1を運転する上で適切な冷媒量(適正冷媒量と呼ぶ)に比べ、冷媒量が減少しているか否かの判断を含む。冷媒量判断部85による冷媒量の判断の詳細については後述する。
 なお、冷凍サイクル装置1は、コントローラ8と電気的に接続される報知部9を有することが好ましい。報知部9は、冷媒量判断部85の判断結果を報知する。報知部9は、例えば、冷媒量判断部85が冷媒回路10内の冷媒量が適正冷媒量に比べ減少していると判断した場合にこれを報知する。報知部9は、例えば、警告灯やディスプレイである。また、報知部9は、冷凍サイクル装置1のユーザや、冷凍サイクル装置1のメンテナンスを行う作業者の携帯端末等に警報信号を送信する送信部であってもよいし、警告音を発するスピーカーであってもよい。
 (3)冷凍サイクル装置の動作
 冷房運転時、暖房運転時、デフロスト運転時、油戻し運転時及び冷媒量判断用運転時の冷凍サイクル装置1の動作について説明する。
 (3-1)冷房運転時の動作
 リモコン(図示せず)から、冷凍サイクル装置1に対して冷房運転の実行が指示されると、コントローラ8は、冷凍サイクル装置1の運転モードを冷房運転モードに設定する。機器制御部81は、熱源側熱交換器23の状態が凝縮器として機能する第1状態になるよう、流向切換機構22を図1において実線で示された状態に制御し、圧縮機21、熱源側ファン28、利用側ファン43,53を運転する。
 そして、機器制御部81は、冷房運転時に、例えば以下のように冷凍サイクル装置1の機器を制御する。
 機器制御部81は、熱源側膨張機構38の一例である電子膨張弁を全開状態にする。
 機器制御部81は、利用側熱交換器42、52のそれぞれのガス側出口における冷媒の過熱度SHrが所定の目標値SHrsになるように、利用側膨張機構41、51の一例である電子膨張弁を開度調節する。利用側熱交換器42、52のガス側出口における冷媒の過熱度SHrは、例えば、ガス側温度センサ45,55の計測値から吸入圧力センサ29の計測値(吸入圧力Ps)から換算される蒸発温度Teを差し引くことで算出される。冷媒の過熱度SHrは、ガス側温度センサ45、55の計測値から、蒸発温度Teに相当する液側温度センサ44、54の計測値を差し引いて算出されてもよい。
 機器制御部81は、過冷却熱交換器25のバイパス冷媒管61側の出口における冷媒の過熱度SHbが所定の目標値SHbsになるように、バイパス膨張弁62を開度調節する。過冷却熱交換器25のバイパス冷媒管61側の出口における冷媒の過熱度SHbは、例えば、バイパス温度センサ63の計測値から吸入圧力センサ29の計測値(吸入圧力Ps)から算出される蒸発温度Teを差し引いて算出される。
 機器制御部81は、吸入圧力センサ29の計測値(吸入圧力Ps)に相当する蒸発温度Teが目標蒸発温度Tesに近づくように、圧縮機21の運転容量を制御する。圧縮機21の運転容量の制御は、モータ21aの回転数制御により行われる。
 以上のように機器の動作が制御されることで、冷房運転時には冷媒回路10を以下のように冷媒が流れる。
 圧縮機21が起動されると、冷凍サイクルにおける低圧のガス冷媒が圧縮機21に吸入され、圧縮機21で圧縮されて冷凍サイクルにおける高圧のガス冷媒となる。高圧のガス冷媒は、流向切換機構22を経由して熱源側熱交換器23に送られ、熱源側ファン28によって供給される熱源空気と熱交換を行って凝縮し、高圧の液冷媒となる。高圧の液冷媒は、液冷媒管11dを流れ、熱源側膨張機構38を通過する。熱源側膨張機構38を通過した冷媒の一部は、バイパス冷媒管61に流入する。液冷媒管11dから過冷却熱交換器25に流入した冷媒は、バイパス冷媒管61を流れてバイパス膨張弁62で圧縮機21の吸入圧力付近まで減圧され過冷却熱交換器25へと流入した冷媒と、過冷却熱交換器25において熱交換を行ない、過冷却状態になる。過冷却状態になった高圧の液冷媒は、液冷媒連絡配管6を経由して、利用ユニット4、5へと送られる。一方、バイパス冷媒管61を流れ、過冷却熱交換器25において液冷媒管11dを流れる冷媒と熱交換をした冷媒は、圧縮機21の吸入側に戻される。利用ユニット4、5に送られた高圧の液冷媒は、利用側膨張機構41、51において圧縮機21の吸入圧力近くまで減圧され、気液二相状態の冷媒となって利用側熱交換器42、52に送られる。気液二相状態の冷媒は、利用側熱交換器42、52において、利用側ファン43,53により利用側熱交換器42、52へと供給される対象空間の空気と熱交換を行って蒸発して低圧のガス冷媒となる。低圧のガス冷媒は、ガス冷媒連絡配管7を経由して熱源ユニット2に送られ、流向切換機構22を経由してアキュムレータ24に流入する。アキュムレータ24に流入した低圧のガス冷媒は、再び、圧縮機21に吸入される。一方、利用側熱交換器42、52に供給された空気の温度は、利用側熱交換器42、52を流れる冷媒と熱交換することで低下し、利用側熱交換器42、52で冷却された空気は対象空間に吹き出す。
 (3-2)暖房運転時の動作
 リモコン(図示せず)から、冷凍サイクル装置1に対して暖房運転の実行が指示されると、コントローラ8は、冷凍サイクル装置1の運転モードを暖房運転モードに設定する。機器制御部81は、冷凍サイクル装置1の運転モードが暖房運転モードに設定された状態であって、後述するデフロスト運転、油戻し運転及び冷媒量判断用運転を行っていない時には、熱源側熱交換器23の状態が蒸発器として機能する第2状態になるよう、流向切換機構22を図1において破線で示された状態に制御する。また、機器制御部81は、暖房運転中には、圧縮機21、熱源側ファン28、利用側ファン43,53を運転する。
 そして、機器制御部81は、暖房運転時に、例えば以下のように冷凍サイクル装置1の機器を制御する。
 機器制御部81は、利用側熱交換器42、52のそれぞれの液側出口における冷媒の過冷却度SCrが所定の目標値SCrsになるように、利用側膨張機構41、51の一例である電子膨張弁を開度調節する。利用側熱交換器42、52のそれぞれの液側出口における冷媒の過冷却度SCrは、例えば、吐出圧力センサ30の計測値(吐出圧力Pd)から換算される凝縮温度Tcから、液側温度センサ44,54の計測値を差し引くことで算出される。
 機器制御部81は、熱源側熱交換器23に流入する冷媒が、熱源側熱交換器23において蒸発可能な圧力(凝縮圧力Pe)まで減圧されるように、熱源側膨張機構38を開度調節する。
 機器制御部81は、吐出圧力センサ30の計測値(吐出圧力Pd)に相当する凝縮温度Tcが目標蒸発温度Tcsに近づくように、圧縮機21の運転容量を制御する。圧縮機21の運転容量の制御は、モータ21aの回転数制御により行われる。
 以上のように機器の動作が制御されることで、暖房運転時には冷媒回路10を以下のように冷媒が流れる。
 圧縮機21が起動されると、冷凍サイクルにおける低圧のガス冷媒が圧縮機21に吸入され、圧縮機21で圧縮されて冷凍サイクルにおける高圧のガス冷媒となる。高圧のガス冷媒は、流向切換機構22を経由して利用側熱交換器42,52に送られ、利用側ファン43,53によって供給される対象空間の空気と熱交換を行って凝縮し、高圧の液冷媒となる。利用側熱交換器42、52へと供給された空気の温度は、利用側熱交換器42、52を流れる冷媒と熱交換することで上昇し、利用側熱交換器42、52で加熱された空気は対象空間に吹き出す。利用側熱交換器42,52を通過した高圧の液冷媒は、利用側膨張機構41、51を通過して減圧される。利用側膨張機構41、51において減圧された冷媒は、液冷媒連絡配管6を経由して熱源ユニット2に送られ、液冷媒管11dに流入する。液冷媒管11dを流れる冷媒は、熱源側膨張機構38を通過する際に圧縮機21の吸入圧力近くまで減圧され、気液二相状態の冷媒となって熱源側熱交換器23に流入する。熱源側熱交換器23に流入した低圧の気液二相状態の冷媒は、熱源側ファン28によって供給される熱源空気と熱交換を行って蒸発して低圧のガス冷媒となり、流向切換機構22を経由してアキュムレータ24に流入する。アキュムレータ24に流入した低圧のガス冷媒は、再び、圧縮機21に吸入される。
 (3-3)デフロスト運転時の動作
 機器制御部81は、冷凍サイクル装置1の運転モードが暖房運転モードにある時に、流向切換機構22を制御して一時的に熱源側熱交換器23の状態を第2状態に切り換えてデフロスト運転を行う。デフロスト運転は、逆サイクル運転の一例である。デフロスト運転は、熱源側熱交換器23に付着した霜を溶かして除去するための運転である。
 機器制御部81は、冷凍サイクル装置1の運転モードが暖房運転モードにあり暖房運転を行っている時に、所定のデフロスト開始条件が成立したと判断すると、流向切換機構22を制御し、冷媒を第1流向Aに流す暖房運転を一時的に停止し、冷媒を第2流向Bに流すデフロスト運転に、冷凍サイクル装置1の運転状態を切り換える。
 なお、デフロスト開始条件とは、その条件が成立した時に、熱源側熱交換器23の除霜を行うことが望ましい条件である。例えば、機器制御部81は、熱交温度センサ33により計測される冷媒温度が所定温度以下になった時に、デフロスト開始条件が成立したと判断する。デフロスト開始条件が成立したか否かの判断の閾値に用いられる冷媒温度の所定温度は、例えば-5℃である。また、機器制御部81は、暖房運転の継続時間が所定時間を超えた時に、デフロスト開始条件が成立したと判断してもよい。
 機器制御部81は、デフロスト運転時に、例えば以下のように冷凍サイクル装置1の機器を制御する。
 機器制御部81は、デフロスト運転開始前に、圧縮機21を一旦停止する。または、機器制御部81は、デフロスト運転開始前に、圧縮機21の回転数を低減する。その後、機器制御部81は、所定のタイミングで、流向切換機構22を暖房運転時の状態から冷房運転時と同様の状態に切り換え、圧縮機21を所定の回転数で運転する(デフロスト運転を開始する)。機器制御部81は、熱源側熱交換器23に付着した霜を溶かすため、圧縮機21の回転数を比較的高く制御する。機器制御部81は、デフロスト運転時に、熱源側ファン28を最大風量より小さな所定風量に制御する。機器制御部81は、デフロスト運転時に、利用側ファン43,53を停止する。機器制御部81は、デフロスト運転開始直後には熱源側膨張機構38及び利用側膨張機構41,51をほぼ全開に調節し、その後、膨張機構38,41,51の開度を適宜調節する。
 そして、機器制御部81は、デフロスト運転中に、デフロスト終了条件が成立したと判断すると、デフロスト運転の終了を決定し、暖房運転に復帰する。例えば、機器制御部81は、熱交温度センサ33により計測される冷媒温度が所定の終了判断温度以上になり、なおかつ、その状態が所定時間以上継続した場合に、デフロスト終了条件が成立したと判断する。なお、デフロスト終了条件は、上記の条件に限定されない。例えば、機器制御部81は、熱交温度センサ33により計測される冷媒温度が所定の終了判断温度以上になると、直ちにデフロスト終了条件が成立したと判断してもよい。
 (3-4)油戻し運転時の動作
 機器制御部81は、冷凍サイクル装置1の運転モードが暖房運転モードにある時に、流向切換機構22を制御して一時的に熱源側熱交換器23の状態を第2状態に切り換えて油戻し運転を行う。油戻し運転は、逆サイクル運転の一例である。油戻し運転は、圧縮機21から冷媒回路10の配管や熱交換器へと流出した冷凍機油を圧縮機21に戻すための運転である。
 なお、油戻し運転は冷房運転時にも行われるが、ここでは冷凍サイクル装置1の運転モードが暖房運転モードにある時に行われる油戻し運転について説明する。また、油戻し運転時の機器の動作は、デフロスト運転時の機器の動作と同様であるので、デフロスト運転をもって油戻し運転に代えてもよい。
 機器制御部81は、冷凍サイクル装置1の運転モードが暖房運転モードにあり暖房運転を行っている時に、所定の油戻し開始条件が成立したと判断すると、流向切換機構22を制御し、冷媒を第1流向Aに流す暖房運転を一時的に停止し、冷媒を第2流向Bに流す油戻し運転に、冷凍サイクル装置1の運転状態を切り換える。
 なお、油戻し開始条件とは、その条件が成立した時に、油戻し運転を行うことが望ましい条件である。例えば、機器制御部81は、暖房運転の積算時間が所定時間を超えた時に、油戻し条件が成立したと判断する。
 機器制御部81は、油戻し運転時に、例えば以下のように冷凍サイクル装置1の機器を制御する。
 機器制御部81は、油戻し運転開始前に、圧縮機21を一旦停止する。または、機器制御部81は、油戻し運転開始前に、圧縮機21の回転数を低減する。その後、機器制御部81は、所定のタイミングで、流向切換機構22を暖房運転時の状態から冷房運転時と同様の状態に切り換え、圧縮機21を所定の回転数で運転する(油戻し運転を開始する)。機器制御部81は、圧縮機21外の冷媒を圧縮機21に押し戻すため、圧縮機21の回転数を比較的高く制御する。機器制御部81は、油戻し運転時に、熱源側ファン28を最大風量より小さな所定風量に制御する。機器制御部81は、油戻し運転時に、利用側ファン43,53を停止する。機器制御部81は、油戻し運転開始直後には熱源側膨張機構38及び利用側膨張機構41,51をほぼ全開に調節し、その後、膨張機構38,41,51の開度を適宜調節する。
 そして、機器制御部81は、油戻し運転中に、油戻し終了条件が成立したと判断すると、油戻し運転の終了を決定し、暖房運転に復帰する。例えば、機器制御部81は、油戻し運転の運転時間が終了判断時間以上になった時に、油戻し運転終了条件が成立したと判断する。
 なお、暖房運転の積算時間は、例えば油戻し運転終了条件が成立したと判断されると一旦リセットされる。そして、再度、暖房運転の積算時間が所定時間に達すると、機器制御部81は油戻し運転を実行する。
 (3-5)冷媒量判断用運転時の動作
 機器制御部81は、冷凍サイクル装置1の運転モードが暖房運転モードにある時に、流向切換機構22を制御して一時的に熱源側熱交換器23の状態を第2状態に切り換えて冷媒量判断用運転を行う。冷媒量判断用運転は、逆サイクル運転の一例である。
 なお、ここで、冷凍サイクル装置1の運転モードが暖房運転モードにある時とは、暖房運転を実際に実行している場合に限定されるものではなく、冷凍サイクル装置1が暖房運転モードに設定されているものの、暖房運転は停止している状態を含む。例えば、冷凍サイクル装置1の運転モードが暖房運転モードにある時には、冷凍サイクル装置1の運転モードが暖房運転モードにある時にリモコンから冷凍サイクル装置1の運転停止が指示され、冷凍サイクル装置1が暖房運転を停止した状態も含む。
 冷媒量判断用運転は、冷媒回路10内の冷媒量を判断するための運転である。冷媒量判断用運転は、冷媒回路10における冷凍サイクルの高圧の値を所定の第1圧力P1に制御して行う第1運転の一例である。第1圧力P1は、冷房運転時や暖房運転時の冷凍サイクルの高圧の値よりも小さな圧力である。
 機器制御部81は、冷凍サイクル装置1の運転モードが暖房運転モードにある時に、所定のタイミングで、あるいは所定の条件が成立したと判断すると、流向切換機構22を制御して、冷凍サイクル装置1の運転を、冷媒を第2流向Bに流す冷媒量判断用運転に切り換える。冷媒量判断用運転が実行されるタイミングや、冷媒量判断用運転が実行される条件については後述する。
 機器制御部81は、冷媒量判断用運転時に、例えば以下のように冷凍サイクル装置1の機器の動作を制御する。
 機器制御部81は、冷媒量判断用運転前に、圧縮機21を一旦停止する。または、機器制御部81は、冷媒量判断用運転前に、圧縮機21の回転数を低減する。その後、機器制御部81は、所定のタイミングで、流向切換機構22を暖房運転時の状態から冷房運転時と同様の状態に切り換え、圧縮機21を運転する(冷媒量判断用運転を開始する)。
 機器制御部81は、冷凍サイクルにおける高圧の値を所定の第1圧力P1に制御可能な範囲で、圧縮機21の回転数を低く制御する。例えば、機器制御部81は、冷媒量判断用運転時の圧縮機21の回転数を、デフロスト運転時及び油戻し運転時の圧縮機21の回転数よりも小さく制御する。機器制御部81は、冷媒量判断用運転時の圧縮機21の最大回転数を、デフロスト運転時及び油戻し運転時の圧縮機21の最大回転数よりも小さく制御する。さらに好ましくは、機器制御部81は、冷媒量判断用運転時の圧縮機21の平均回転数を、デフロスト運転時及び油戻し運転時の圧縮機21の平均回転数よりも小さく制御する。
 機器制御部81は、冷媒量判断用運転時に、冷凍サイクルにおける高圧の値が後述する所定の第1圧力P1に制御されるように、熱源側ファン28を所定風量に制御する。
 機器制御部81は、冷媒量判断用運転時に、利用側ファン43,53を所定風量で運転する。好ましくは、利用側ファン43,53の所定風量は、利用側ファン43,53の最小風量、又は、最小風量に近い低風量である。このように利用側ファン43,53の風量が制御されることで、対象空間に吹き出す冷風の量は抑制しつつ、利用側熱交換器42,52において冷媒を過熱状態とすることができる。
 機器制御部81は、冷媒量判断用運転時に、熱源側膨張機構38の一例としての電子膨張弁の開度を最大開度とする。また、機器制御部81は、冷媒量判断用運転時に、利用側熱交換器42,52のガス側出口における冷媒の過熱度SHrが所定の目標値SHrs1で一定になるように、利用側膨張機構41,51の一例としての電子膨張弁の開度を調節する。機器制御部81による冷媒の過熱度SHrの算出方法は、冷媒運転時の冷媒の過熱度SHrの算出方法と同様である。
 また、好ましくは、機器制御部81は、冷媒量判断用運転を行う時に、液管温度センサ35により測定される液管温度Tlp(過冷却熱交換器25の液冷媒管11d側の出口における冷媒の温度)が、所定値になるように、バイパス膨張弁62の開度を制御する。液管温度Tlpは、第1温度の一例である。
 機器制御部81は、冷媒量判断用運転を所定時間実行した後、冷媒量判断用運転を終了する。その後、機器制御部81は、暖房運転中に冷媒量判断用運転が実行されたのであれば暖房運転を再開する。一方、機器制御部81は、後述するように図示しないリモコン等から暖房運転の停止の指示を受けた時に冷媒量判断用運転を実行したのであれば、暖房運転の開始の指示まで冷凍サイクル装置1を停止する。
 (4)冷媒量判断処理
 冷媒量判断部85が実行する、冷媒回路10内の冷媒量の判断の処理について以下に説明する。なお、ここでは、冷媒量判断部85は、冷凍サイクル装置1を運転する上で適切な冷媒量(以後、適正冷媒量と呼ぶ)に比べ、冷媒量が減少しているか否かを定性的に判断する。適正冷媒量に比べ冷媒量が減少している状態には、冷凍サイクル装置1に当初充填されていた冷媒量に比べ、冷媒量が所定量以上減少している状態を含む。
 冷媒量判断部85は、冷凍サイクル装置1の運転モードが暖房運転モードにある時に、一時的に行われる逆サイクル運転に関する情報に基づいて、冷媒回路10内の冷媒量を判断する。ここでの逆サイクル運転には、デフロスト運転、油戻し運転、及び冷媒量判断用運転の少なくとも1つも含む。冷媒量判断部85は、各運転時に、どのように冷媒回路10内の冷媒量の判断を行うかについては後述する。
 冷媒量判断部85が冷媒回路10内の冷媒量の判断に用いる逆サイクル運転に関する情報には、逆サイクル運転時の、冷凍サイクルの高圧の値、冷凍サイクルの低圧の値、冷凍サイクルの吐出温度、冷凍サイクルの過冷却度、冷凍サイクルの吸入過熱度、及び圧縮機21の回転数の少なくとも1つの指標を含む。冷媒量判断部85は、2つ以上の指標を、冷媒回路10内の冷媒量の判断に用いてもよい。例えば、逆サイクル運転に関する情報は、逆サイクル運転の開始から所定時間経過時点の、冷凍サイクルの高圧の値、冷凍サイクルの低圧の値、冷凍サイクルの吐出温度、冷凍サイクルの過冷却度、冷凍サイクルの吸入過熱度、及び圧縮機21の回転数の少なくとも1つの値である。また、例えば、逆サイクル運転に関する情報は、逆サイクル運転の所定期間の、冷凍サイクルの高圧の値、冷凍サイクルの低圧の値、冷凍サイクルの吐出温度、冷凍サイクルの過冷却度、冷凍サイクルの吸入過熱度、及び圧縮機21の回転数の少なくとも1つの統計量(例えば、平均値、中間値、最大値等)であってもよい。逆サイクル運転の所定期間は、例えば逆サイクル運転の開始から終了までの期間である。
 逆サイクル運転がデフロスト運転である場合には、冷媒量判断部85が冷媒回路10内の冷媒量の判断に用いる逆サイクル運転に関する情報として用いられる指標には、上記の指標に加えて、又は、上記の指標に代えて、デフロスト運転の時間が含まれてもよい。デフロスト運転の時間は、例えば、デフロスト運転の開始からデフロスト終了条件が成立するまでの時間である。なお、以下では、冷媒回路10内の冷媒量の判断に用いられる逆サイクル運転に関する情報に含まれる1又は複数の指標を、集合的に判断用指標と呼ぶ。
 以下に、逆サイクル運転としてのデフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断の処理と、逆サイクル運転としての冷媒量判断用運転に関する情報に基づく冷媒量の判断の処理と、について以下に説明する。
 (4-1)デフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断処理
 冷媒量判断部85は、デフロスト運転及び油戻し運転に関する情報に基づいて冷媒量を判断する。
 冷媒量判断部85は、例えば、デフロスト運転や油戻し運転を行うたびに冷媒量を判断してもよい。また、冷媒量判断部85は、デフロスト運転や油戻し運転を行う度ではなく、所定の頻度で、例えばある週に初めてデフロスト運転や油戻し運転が行われる際や、ある月に初めてデフロスト運転や油戻し運転が行われる際に、冷媒量を判断してもよい。また、冷媒量判断部85は、複数回デフロスト運転や油戻し運転を行い、複数回のデフロスト運転及び油戻し運転に関する情報に基づいて冷媒量を判断してもよい。
 例えば、冷媒量判断部85は、以下のようにしてデフロスト運転及び油戻し運転に関する情報に基づいて冷媒量の判断を行う。
 まず、前提として、コントローラ8は、冷凍サイクル装置1に適切な量の冷媒が充填されている状態で、冷凍サイクル装置1の運転モードが暖房運転モードにある時に一時的に流向切換機構22を切り換えてデフロスト運転及び油戻し運転が実行された時の、逆サイクル運転時の判断用指標の値(以後、判断用指標の基準値と呼ぶ)を記憶したデータベース86を有する。好ましくは、データベース86には、運転条件別に判断用指標の基準値が記憶されている。例えば、データベース86には、熱源空気の温度と湿度との組合せからなる運転条件のそれぞれに対して判断用指標の基準値が記憶されている。
 データベース86に記憶される判断用指標の基準値は、例えば、冷凍サイクル装置1の試験機を実際に運転して得られる値である。データベース86に記憶される判断用指標の基準値は、冷媒量の判断対象の冷凍サイクル装置1の試運転で得られた値であってもよい。判断用指標の基準値が冷凍サイクル装置1の実運転で得られる場合には、判断用指標の基準値は冷凍サイクル装置1の1回の実運転で得られるものであってもよいし複数回の実運転に基づいて得られる統計量(平均値、中間値、最大値等)であってもよい。データベース86に記憶される判断用指標の基準値は、理論的に算出されてもよい。
 好ましくは、データベース86に記憶されている判断用指標の基準値は、冷媒量の判断対象の冷凍サイクル装置1の実運転で取得された値で更新される。例えば、データベース86に記憶される判断用指標の基準値は、経年劣化による冷媒の漏洩の可能性が比較的低い、冷凍サイクル装置1の設置の初年度の冷凍サイクル装置1の実運転で取得された値を用いて更新される。
 なお、データベース86は、コントローラ8が有するものではなくてもよく、コントローラ8と、インターネット等のネットワークにより通信可能に接続されたサーバ上に構築されてもよい。
 冷媒量判断部85は、データベース86を利用して、例えば以下のように冷媒量の判断を行う(図3のフローチャート参照)。
 冷媒量判断部85は、デフロスト運転や油戻し運転が実行されると、データベース86に記憶された判断用指標の基準値に対応する判断用指標を取得する(ステップS1)。データベース86に運転条件別に判断用指標の基準値が記憶されている場合には、冷媒量判断部85は、運転条件に関する値も取得する。例えば、データベース86に、熱源空気の温度と湿度との組合せ別に判断用指標の基準値が記憶されている場合には、冷媒量判断部85は、熱源空気温度センサ36と熱源空気用湿度センサ(図示せず)とを用いて、熱源空気の温度と湿度とを取得する。また、冷媒量判断部85は、インターネット等のネットワークを介してコントローラ8に接続されている気象情報を配信するサーバから、熱源空気の温度と湿度とを取得してもよい。
 例えば判断用指標に冷凍サイクルの高圧の値が含まれる場合、冷媒量判断部85は、吐出圧力センサ30の計測する吐出圧力Pdの値を取得する。例えば判断用指標に冷凍サイクルの低圧の値が含まれる場合、冷媒量判断部85は、吸入圧力センサ29の計測する吸入圧力Psの値を取得する。例えば判断用指標に冷凍サイクルの吐出温度の値が含まれる場合、冷媒量判断部85は吐出温度センサ32の計測する吐出温度Tdの値を取得する。例えば判断用指標に冷凍サイクルの過冷却度の値が含まれる場合、冷媒量判断部85は、熱交温度センサ33が計測する凝縮温度Tcから、液側温度センサ34が計測する冷媒の温度Tbを減じることで、冷凍サイクルの過冷却度を取得する。例えば判断用指標に冷凍サイクルの吸入過熱度の値が含まれる場合、冷媒量判断部85は、吸入温度センサ31が測定する吸入温度Tsから、吸入圧力センサ29の計測する吸入圧力Psを換算して算出した蒸発温度Teを差し引いた値を、冷凍サイクルの吸入過熱度として取得する。なお、各判断用指標の値の取得方法は例示であって、可能であれば他のセンサの計測値を利用して値を取得してもよいし、圧力の値と温度の値とを適宜換算して値を取得してもよい。
 次に、冷媒量判断部85は、取得した判断用指標と、データベース86に記憶された判断用指標の基準値とを比較する(ステップS2)。
 そして、冷媒量判断部85は、取得した判断用指標とその基準値との比較結果に基づき、冷媒量が適正冷媒量に比べて減少しているか否かを判断する(ステップS3)。冷媒量判断部85は、例えば、取得した判断用指標とデータベース86に記憶された判断用指標の基準値との差が所定値より大きい場合、冷媒量が適正冷媒量に比べて減少していると判断する。なお、冷媒量判断部85は、1種類の判断用指標についてではなく、複数種類の判断用指標についてそれぞれ取得した判断用指標とデータベース86に記憶されたそれぞれの判断用指標の基準値との差が所定値より大きい場合に、冷媒量が適正冷媒量に比べて減少していると判断してもよい。
 なお、例を上げて説明すると、冷媒量が適正冷媒量に対して減少している場合、冷凍サイクルの低圧の値は下がる傾向にある。また、冷媒量が適正冷媒量に対して減少している場合、冷凍サイクルの吐出温度の値は上がる傾向にある。また、冷媒量が適正冷媒量に対して減少している場合、冷凍サイクルの過冷却度の値は小さくなる傾向にある。このような傾向を利用して、冷媒量判断部85は、冷媒量が適正冷媒量に比べて減少しているか否かを判断する。
 冷媒量判断部85は、ステップS3で冷媒量が適正冷媒量に比べて減少していると判断した場合、報知部9を制御して冷媒量が適正冷媒量に比べて減少している旨を発報することが好ましい(ステップS4)。そして、デフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断処理は終了する。ステップS3で冷媒量が適正冷媒量に比べて減少していないと判断した場合、冷媒量判断部85は、ステップS4には進まずに、デフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断処理を終了する。
 (4-2)冷媒量判断用運転に関する情報に基づく冷媒量の判断処理
 冷媒量判断部85は、デフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断に加え、又は、デフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断に代えて、冷媒量判断用運転に関する情報に基づいて冷媒量を判断する。なお、冷媒量判断用運転に関する情報に基づく冷媒量の判断は、通常、デフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断よりも、精度よく冷媒量の判断を行うことが可能という特徴がある。
 なお、冷媒量判断部85が冷媒量の判断に用いる冷媒量判断用運転に関する情報には、冷媒量判断用運転時の、冷凍サイクルの高圧の値、冷凍サイクルの低圧の値、冷凍サイクルの吐出温度、冷凍サイクルの過冷却度、冷凍サイクルの吸入過熱度、及び圧縮機21の回転数の少なくとも1つの指標を含めることができる。好ましくは、冷媒量判断部85が冷媒量の判断に用いる冷媒量判断用運転に関する情報には、少なくとも、冷媒量判断用運転時の冷凍サイクルの過冷却度を含む。限定するものではないが、本実施形態では、冷媒量判断部85が冷媒量の判断に用いる冷媒量判断用運転に関する情報に、冷媒量判断用運転時の冷凍サイクルの過冷却度だけを用いる場合を例に以下の説明を行う。
 冷媒量判断部85は、例えば、所定のタイミングで、又は所定の条件が成立した時に、機器制御部81に冷媒量判断用運転を行わせ、冷媒量判断用運転に関する情報に基づいて冷媒回路10内の冷媒量を判断する。
 冷媒量判断部85が、冷媒量判断用運転に関する情報に基づいて冷媒量の判断を行う所定のタイミングは、例えば定期的なタイミングである。
 例えば、機器制御部81は、毎月一度、所定のタイミングで冷媒量判断用運転を行い、冷媒量判断部85は、冷媒量判断用運転に関する情報に基づいて冷媒回路10内の冷媒量を判断する。例えば、好ましくは、機器制御部81は、毎月一度、冷凍サイクル装置1の運転モードが暖房運転モードにある時に行われる油戻し運転の実行前に冷媒量判断用運転を行い、引き続いて油戻し運転を行う。または、機器制御部81は、毎月一度、冷凍サイクル装置1の運転モードが暖房運転モードにある時に行われる油戻し運転の実行後に、油戻し運転に引き続いて冷媒量判断用運転を行ってもよい。また、他の例では、機器制御部81は、冷凍サイクル装置1の運転モードが暖房運転モードにある時に行われるデフロスト運転の実行前又は実行後に冷媒量判断用運転を行ってもよい。そして、冷媒量判断部85は、冷媒量判断用運転に関する情報に基づいて冷媒回路10内の冷媒量を判断する。
 他の好ましい形態では、機器制御部81は、毎月一度、冷凍サイクル装置1の運転モードが暖房運転モードにある時であって、リモコンからの指示やタイマーの設定等で冷凍サイクル装置1が停止される際に、冷媒量判断用運転を行う。そして、冷媒量判断部85は、冷媒量判断用運転に関する情報に基づいて冷媒回路10内の冷媒量を判断する。
 また、冷媒量判断部85が冷媒量判断用運転に関する情報に基づいて冷媒量の判断を行う所定のタイミングは、冷凍サイクル装置1のユーザ等が、図示しないリモコン等を用いて設定する任意の日時であってもよい。
 また、冷媒量判断部85が冷媒量判断用運転に関する情報に基づいて冷媒量の判断を行う所定の条件は、冷媒量判断部85が、デフロスト運転又は油戻し運転に関する情報に基づいて冷媒回路10の冷媒量が減少していると判断することであってもよい。機器制御部81は、冷媒量判断部85がデフロスト運転又は油戻し運転に関する情報に基づいて冷媒回路10内の冷媒量が減少していると判断した場合に、冷媒量判断用運転を行う。そして、冷媒量判断部85は、冷媒量判断用運転に関する情報に基づいて冷媒回路10内の冷媒量を判断する。このようにすることで、比較的精度の低いデフロスト運転又は油戻し運転に関する情報に基づく冷媒量の減少の判断後に、冷媒量判断用運転に関する情報に基づいて高精度に冷媒量の減少の有無を判断することができる。
 なお、コントローラ8の禁止部82は、以上のような冷媒量判断部85が冷媒量判断用運転に関する情報に基づいて冷媒量の判断を行うタイミングであっても、所定の禁止条件が成立している時には、機器制御部81による冷媒量判断用運転の実行を禁止することが好ましい。
 例えば、本実施形態では、冷凍サイクル装置1は、加熱運転としての暖房運転時に、利用側熱交換器42,52を流れる冷媒により対象空間の空気を加熱する装置である。禁止部82は、対象空間温度センサ46,56の測定する対象空間温度Trが、対象空間の目標温度(設定温度Trs)より所定温度以上(例えば3℃以上)低い場合に、機器制御部81による冷媒量判断用運転の実行を禁止する。このように禁止部82が冷媒量判断用運転の実行を禁止することで、冷凍サイクル装置1により対象空間の暖房を行いたいユーザの快適性に対する悪影響を抑制できる。
 また、例えば、熱源空気温度センサ36の測定する熱源空気温度Taが、冷凍サイクルの高圧の値を第1圧力P1に維持可能な温度より低い場合には、禁止部82は、機器制御部81による冷媒量判断用運転の実行を禁止する。具体的な実施形態としては、コントローラ8の図示しないメモリには、冷凍サイクルの高圧の値を第1圧力P1に維持可能な熱源空気の温度が予め記憶されている。禁止部82は、熱源空気温度センサ36の測定した熱源空気温度Taがメモリに記憶された温度より低い場合に、機器制御部81による冷媒量判断用運転の実行を禁止する。
 冷媒量判断部85は、例えば以下のようにして冷媒量判断用運転に関する情報に基づいて冷媒量の判断を行う。
 まず、前提として、コントローラ8のデータベース86には、冷凍サイクル装置1に適切な量の冷媒が充填されている状態で、冷凍サイクル装置1の運転モードが暖房運転モードにある時に一時的に流向切換機構22を切り換えて冷媒量判断用運転が実行された時の、冷媒量判断用運転時の冷凍サイクルの過冷却度の基準値が記憶されている。データベース86に記憶される冷媒量判断用運転時の過冷却度の基準値は、冷凍サイクル装置1の試験機を実際に運転して得られる値であっても、冷媒量の判断対象の冷凍サイクル装置1の試運転で得られた値であってもよい。冷媒量判断用運転時の過冷却度の基準値が冷凍サイクル装置1の実運転で得られる場合には、基準値は冷凍サイクル装置1の1回の実運転で得られるものであってもよいし複数回の実運転に基づいて得られる統計量(平均値、中間値、最大値等)であってもよい。データベース86に記憶される冷媒量判断用運転時の過冷却度の基準値は、理論的に算出されてもよい。
 データベース86に記憶された基準値が、冷凍サイクル装置1の試験機の運転で得られた値や理論的に算出された値である場合、データベース86に記憶される基準値は、冷媒量の判断対象の冷凍サイクル装置1で冷媒量判断用運転が行われた時に取得された値で更新されることが好ましい。例えば、データベース86に記憶される基準値は、経年劣化による冷媒の漏洩の可能性が比較的低い、冷凍サイクル装置1の初めての冷媒量判断用運転時に取得された値で更新される。
 なお、データベース86は、コントローラ8が有するものでなくてもよく、コントローラ8と、インターネット等のネットワークにより通信可能に接続されたサーバ上に構築されてもよい。
 冷媒量判断部85は、データベース86を利用して、例えば以下のように冷媒量の判断を行う(図4のフローチャート参照)。
 冷媒量判断部85は、冷媒量判断用運転が実行されると、冷凍サイクルの過冷却度を取得する(ステップS11)。例えば、冷媒量判断部85は、熱交温度センサ33が計測する凝縮温度Tcから、液側温度センサ34が計測する冷媒の温度Tbを減じることで、冷凍サイクルの過冷却度を取得する。
 次に、冷媒量判断部85は、取得した過冷却度と、データベース86に記憶された過冷却度の基準値とを比較する(ステップS12)。
 そして、冷媒量判断部85は、比較結果に基づき、冷媒量が適正冷媒量に比べて減少しているか否かを判断する(ステップS13)。冷媒量判断部85は、例えば、取得した過冷却度が、データベース86に記憶された過冷却度の基準値に比べて所定値以上小さい場合、冷媒量が適正冷媒量に比べて減少していると判断する。
 冷媒量判断部85は、ステップS13で冷媒量が適正冷媒量に比べて減少していると判断した場合、報知部9を制御して、冷媒量が適正冷媒量に比べて減少している旨を発報することが好ましい(ステップS14)。そして、冷媒量判断用運転に関する情報に基づく冷媒量の判断処理を終了する。ステップS13で冷媒量が適正冷媒量に比べて減少していないと判断した場合、冷媒量判断部85は、ステップS14には進まずに、デフロスト運転及び油戻し運転に関する情報に基づく冷媒量の判断処理を終了する。
 (5)特徴
 (5-1)
 本実施形態の冷凍サイクル装置1は、冷媒回路10を備える。冷媒回路10は、圧縮機21と、熱源側熱交換器23と、利用側熱交換器42,52と、流向切換機構22と、を含む。流向切換機構22は、熱源側熱交換器23の状態を蒸発器として機能する第1状態と、凝縮器として機能する第2状態と、の間で変更するために、冷媒の流向を切り換える。冷凍サイクル装置1は、機器制御部81と、冷媒量判断部85と、を備える。機器制御部81は、制御部の一例である。機器制御部81は、冷凍サイクル装置1の運転モードが、熱源側熱交換器23の状態を第1状態にして暖房運転を行う暖房運転モードにある時に、流向切換機構22を制御して一時的に熱源側熱交換器23の状態を第2状態に切り換えて逆サイクル運転を行う。暖房運転は、加熱運転の一例である。暖房運転モードは、加熱運転モードの一例である。冷媒量判断部85は、逆サイクル運転に関する情報に基づいて冷媒回路10内の冷媒量を判断する。
 本実施形態の冷凍サイクル装置1では、運転モードが暖房運転モードにある時に、暖房運転時の情報に基づいてではなく、冷媒量の減少の影響を比較的受けやすい逆サイクル運転に関する情報に基づいて冷媒回路10の冷媒量が判断される。そのため、本冷凍サイクル装置1では、精度よく冷媒量の判断が可能である。
 (5-2)
 本実施形態の冷凍サイクル装置1では、冷媒回路10内の冷媒量の判断に用いられる逆サイクル運転に関する情報には、デフロスト運転に関する情報及び油戻し運転に関する情報を含む。デフロスト運転は、熱源側熱交換器23の除霜を行う運転である。油戻し運転は、冷媒回路10中の冷凍機油を圧縮機21に戻す運転である。
 ここでは、冷凍サイクル装置1を機能させるために通常行われるデフロスト運転や油戻し運転に関する情報を利用して冷媒回路10内の冷媒量が判断されるため、本来行われるべき暖房運転の停止時間は抑制しつつ、冷媒量の判断を行うことができる。
 (5-3)
 本実施形態の冷凍サイクル装置1では、冷媒回路10内の冷媒量の判断に用いられる逆サイクル運転に関する情報には、冷媒量判断用運転に関する情報を含む。冷媒量判断用運転は、第1運転の一例である。冷媒量判断用運転では、冷媒回路10における冷凍サイクルの高圧の値を所定の第1圧力P1に制御して行う運転である。
 ここでは、冷媒量の判断を行うために、冷凍サイクルの高圧の値を所定の圧力に制御して行う冷媒量判断用運転が逆サイクル運転として行われる。冷媒量判断用運転中には、熱源側熱交換器23の周囲の熱源側空気の温度が異なっても、冷媒回路10では同じ冷凍サイクル状態が実現される。そのため、精度よく冷媒量の判断を行うことができる。
 (5-4)
 本実施形態の冷凍サイクル装置1では、逆サイクル運転に関する情報には、逆サイクル運転時の、冷凍サイクルの高圧の値、冷凍サイクルの低圧の値、冷凍サイクルの吐出温度、冷凍サイクルの過冷却度、冷凍サイクルの吸入過熱度、圧縮機21の回転数、及び逆サイクル運転としてのデフロスト運転の時間の少なくとも1つを含む。
 なお、冷媒回路10内の冷媒量の判断に用いられる逆サイクル運転に関する情報が、冷媒量判断用運転に関する情報である場合には、冷媒量判断用運転に関する情報には、冷媒量判断用運転時の冷凍サイクルの過冷却度が含まれることが好ましい。
 (5-5)
 本実施形態の冷凍サイクル装置1では、冷媒量判断用運転時の圧縮機21の回転数は、デフロスト運転時及び油戻し運転時の圧縮機21の回転数よりも小さい。
 冷媒量判断用運転時には、上述のように利用側熱交換器42,52が蒸発器として機能し、利用側ファン43,53が運転される。そのため、冷凍サイクル装置1の運転モードが暖房運転モードに設定されている時には、対象空間の暖房が必要とされているにもかかわらず、冷媒量判断用運転時には逆に対象空間が冷房される事となる。しかし、本実施形態の冷凍サイクル装置1では、圧縮機21の回転数が比較的小さく抑制されているため、冷凍サイクル装置1のユーザの快適性に与える影響は抑制することができる。
 (5-6)
 本実施形態の冷凍サイクル装置1では、機器制御部81は、例えば、油戻し運転の実行前又は実行後に、逆サイクル運転として冷媒量判断用運転を行う。
 なお、このように構成される場合、冷媒量判断部85は、油戻し運転に関する情報は冷媒量の判断には用いなくてもよい。そして、冷媒量判断部85は、比較的精度よく冷媒量の判断が可能な冷媒量判断用運転に関する情報に基づいて冷媒回路10内の冷媒量を判断してもよい。
 ここでは、冷凍サイクル装置1を機能させるために通常行われる油戻し運転の前後に冷媒量判断用運転が実行されるため、均圧時間等が必要になる流向切換機構22の切換回数の増加を抑制しつつ冷媒量の判断を行うことができる。そして、流向切換機構22の切換回数の増加を抑制することで、暖房運転の中断時間を抑制できる。
 (5-7)
 本実施形態の冷凍サイクル装置1では、機器制御部81は、例えば、冷凍サイクル装置1の運転モードが暖房運転モードにある時であって、冷凍サイクル装置1が停止される際に、逆サイクル運転として冷媒量判断用運転を行う。
 ここでは、冷凍サイクル装置1の運転が不要となるタイミングで冷媒量の判断のための冷媒量判断用運転が実行されるため、ユーザに対する冷凍サイクル装置1の機能の提供を損なうことなく冷媒量の判断を行うことができる。
 (5-8)
 本実施形態の冷凍サイクル装置1では、冷媒回路10は、主冷媒管の一例としての液冷媒管11dと、過冷却管の一例としてのバイパス冷媒管61と、過冷却膨張弁の一例としてのバイパス膨張弁62と、過冷却熱交換器25と、を有する。液冷媒管11dは、熱源側熱交換器23と利用側熱交換器42,52とを接続する配管の一部を構成する。バイパス冷媒管61は、液冷媒管11dから分岐し圧縮機21の吸入側へと冷媒を導く。バイパス膨張弁62は、バイパス冷媒管61に設けられ、バイパス冷媒管61を流れる冷媒を減圧する。過冷却熱交換器25では、バイパス冷媒管61で減圧された冷媒と液冷媒管11dを流れる冷媒との間で熱交換が行われる。冷凍サイクル装置1は、第1温度センサの一例としての液管温度センサ35を備える。液管温度センサ35は、過冷却熱交換器25を通過した液冷媒管11dを流れる冷媒の液管温度Tlpを測定する。液管温度Tlpは、第1温度の一例である。機器制御部81は、冷媒量判断用運転を行う時に、液管温度Tlpが所定値になるようバイパス膨張弁62を制御する。
 ここでは、熱源側熱交換器23と利用側熱交換器42,52とを接続する液冷媒連絡配管6等を流れる冷媒の温度が一定に制御されるため、液冷媒連絡配管6等における冷媒の密度変化が、冷媒量の判断の精度に与える影響を抑制することができる。
 (5-9)
 本実施形態の冷凍サイクル装置1では、冷凍サイクル装置1は、暖房運転時に利用側熱交換器42,52を流れる冷媒により対象空間の空気を加熱する。冷凍サイクル装置1は、第2温度センサの一例としての対象空間温度センサ46,56と、第1禁止部の一例としての禁止部82と、を備える。対象空間温度センサ46,56は、対象空間の空気の温度である対象空間温度Trを測定する。対象空間温度Trは、第2温度の一例である。禁止部82は、対象空間温度Trが、対象空間の目標温度(設定温度Trs)より所定温度以上低い場合に、機器制御部81が冷媒量判断用運転を実行することを禁止する。
 例えば、具体的な形態では、禁止部82は、運転中の利用ユニット4,5の対象空間温度センサ46,56の測定する対象空間温度Trの少なくともいずれかが、その利用ユニット4,5が空調する対象空間の設定温度Trsより所定温度以上低い場合に、機器制御部81が冷媒量判断用運転を実行することを禁止する。
 ここでは、ユーザの快適性に与える影響は抑制しつつ、冷媒量の判断を行うことができる。
 (5-10)
 本実施形態の冷凍サイクル装置1は、第3温度センサの一例としての熱源空気温度センサ36と、第2禁止部の一例としての禁止部82と、を備える。熱源空気温度センサ36は、熱源側熱交換器23において冷媒と熱交換する熱源空気の温度(熱源空気温度Ta)を測定する。熱源空気温度Taは、第3温度の一例である。禁止部82は、熱源空気温度Taが、冷凍サイクルの高圧の値を第1圧力P1に維持可能な温度より低い場合に、機器制御部81が冷媒量判断用運転を実行することを禁止する。
 ここでは、冷凍サイクルの高圧の値を所定の第1圧力P1に制御する冷媒量判断用運転が困難な熱源空気低温時には冷媒量判断用運転が禁止されるので、冷媒量の判断に向かないタイミングで冷媒量の判断のための運転が実行されることを抑制できる。
 なお、冷凍サイクル装置1は、好ましくは、対象空間温度Trが低い時や熱源空気温度Taが低い時に、機器制御部81が冷媒量判断用運転を実行することを禁止する禁止部82を有するが、これに限定されるものではない。冷凍サイクル装置1は、禁止部82を有していなくてもよい。また、禁止部82は、対象空間温度Tr及び熱源空気温度Taのいずれか一方にのみ基づいて、機器制御部81が冷媒量判断用運転を実行することを禁止してもよい。
 (5-11)
 一実施形態の冷凍サイクル装置1では、機器制御部81は、冷媒量判断部85が、デフロスト運転又は油戻し運転に関する情報に基づいて冷媒回路10の冷媒量が減少していると判断した場合に、逆サイクル運転として冷媒量判断用運転を行う。
 ここでは、デフロスト運転や油戻し運転の情報に基づいて冷媒量が減少していると判断された場合に、より高精度な冷媒量の判断が可能な冷媒量判断用運転が行われるので、精度よく冷媒量の判断を行うことができる。
 (6)変形例
 (6-1)変形例1A
 上記実施形態に係る冷凍サイクル装置1では、冷媒量判断部85は、逆サイクル運転に関する情報としての各判断用指標と、各判断用指標の基準値と、の比較結果に基づいて冷媒量の判断を行うが、このような態様に限定されるものではない。
 例えば、冷媒量判断部85は、逆サイクル運転に関する情報としての各判断用指標の変化の態様(例えば時間あたりの変化率)と、適正冷媒量における基準となる各判断用指標の変化の態様、の比較結果に基づいて冷媒量の判断を行ってもよい。
 他の例では、冷媒量判断部85は、複数の判断用指標をパラメータとする関数であって、冷媒量が適正冷媒量であるか適正冷媒量に比べて減少しているかに応じて出力が変化する関数を用いて、逆サイクル運転時に取得した判断用指標を関数に代入し、その算出結果に基づいて冷媒量を判断してもよい。
 (6-2)変形例1B
 上記実施形態に係る冷凍サイクル装置1では、冷媒量判断部85は、冷媒量が減少しているか否かを判断する。ただし、これに限定されるものではなく、冷媒量判断部85は、冷媒量の減少を段階的に判断してもよい。
 例えば、データベース86には、各判断用指標について、冷媒の減少量に対応する複数の基準値が記憶されてもよい。例えば、データベース86には、各判断用指標について、適正冷媒量の時の基準値、適正冷媒量に対する冷媒の減少量が10%の時の基準値、適正冷媒量に対する冷媒の減少量が20%の時の基準値というように、複数の基準値が記憶される。そして、冷媒量判断部85は、逆サイクル運転時に取得した判断用指標の値と複数の基準値との比較結果に応じて、冷媒量の減少量を段階的に判断してもよい。例えば、冷媒量判断部85は、逆サイクル運転時に取得した判断用指標の値と最も近い基準値を決定し、この基準値に対応する冷媒の減少量を、冷媒の減少量と判断してもよい。
 (6-3)変形例1C
 上記実施形態では、冷媒回路10内の冷媒量の判断に用いられる逆サイクル運転に関する情報に、デフロスト運転に関する情報、油戻し運転に関する情報、及び冷媒量判断用運転に関する情報の全てを含む。ただし、これに限定されるものではなく、冷媒量判断部85は、これらの情報の一部だけを用いて冷媒回路10内の冷媒量の判断を行ってもよい。
 例えば、冷媒量判断部85は、冷媒量判断用運転に関する情報にのみ基づいて冷媒回路10内の冷媒量を判断してもよい。
 また、例えば、冷媒量判断部85は、デフロスト運転に関する情報又は油戻し運転に関する情報にのみ基づいて冷媒回路10内の冷媒量を判断してもよい。この場合には、機器制御部81は、除霜や油戻し等の目的を有さない冷媒判断用運転は実行しなくてもよい。
 <第2実施形態>
 第2実施形態に係る冷凍サイクルシステム100Aについて、図面を参照しながら説明する。図5は、冷凍サイクルシステム100Aのブロック図である。
 冷凍サイクルシステム100Aは、冷凍サイクル装置1Aに加え、冷凍サイクル装置1Aにインターネット等のネットワークNWを介して接続されるサーバ200を有する。第2実施形態に係る冷凍サイクル装置1Aは、冷凍サイクル装置1Aのコントローラ8が冷媒量判断部85を有さない点で第1実施形態の冷凍サイクル装置1と相違する。その他の点については、冷凍サイクル装置1Aは、冷凍サイクル装置1と同様であるので、冷凍サイクル装置1についての説明は基本的に省略する。
 第2実施形態の冷凍サイクルシステム100Aでは、冷凍サイクル装置1Aのコントローラ8が冷媒量判断部85を有さない代わりに、サーバ200が冷媒量判断部85aを有する。
 サーバ200は、ネットワークNWを介して冷凍サイクル装置1Aのコントローラ8と通信可能に接続されるコンピュータである。なお、図5では、サーバ200は、コントローラ8とのみ接続されているが、このような態様に限定されるものではない。例えば、サーバ200は、コントローラ8を介して各種センサ29~36,44~46,54~56,63の一部又は全部から各種計測値を取得する代わりに、各種センサ29~36,44~46,54~56,63の一部又は全部とネットワークNWを介して直接接続され、各種センサ29~36,44~46,54~56,63の一部又は全部から各種計測値を直接取得してもよい。
 サーバ200は、CPU、RAM、ROM、及びハードディスク等の外部記憶装置を主に備えたコンピュータである。サーバ200は、ROMや外部記憶装置等に記憶された各種プログラムをCPUが実行することで、冷媒量判断部85aとして機能する。
 冷媒量判断部85aは、第1実施形態の冷媒量判断部85と同様に逆サイクル運転に関する情報に基づいて冷媒回路10内の冷媒量を判断する。
 なお、冷媒量判断部85aは、逆サイクル運転に関する情報と冷媒回路10の冷媒量との関係を学習済みの識別器851を有する。識別器851は、逆サイクル運転に関する情報を含む入力に対し、冷媒回路10の冷媒量を出力するように学習している。冷媒量判断部85aは、逆サイクル運転に関する情報を含む入力を識別器851に入力することで、冷媒回路10の冷媒量を判断する。なお、冷媒量判断部85aは、逆サイクル運転の種類別に、逆サイクル運転に関する情報と冷媒回路10の冷媒量との関係を学習済みの識別器を有することが好ましい。本実施形態であれば、冷媒量判断部85aの識別器851には、デフロスト運転用の学習済みの識別器と、油戻し運転用の学習済みの識別器と、冷媒量判断用運転用の学習済みの識別器と、を含むことが好ましい。
 識別器851には、第1実施形態で列挙したな逆サイクル運転に関する情報の少なくとも1つを含む情報が入力された際に、冷媒回路10内の冷媒量、特には、冷媒回路10内の冷媒量が適正冷媒量に比べて減少しているか否かを判断結果として出力するように学習処理が行われている。本実施形態では、識別器851は、機械学習による学習済みである。ここで、機械学習とは、コンピュータが、ルールベースではなく(判断のための規則等が予め与えられなくても)、与えられた情報に基づいて学習し、自律的に判断のための規則を見つけ出すことが可能な技術・手法を意味する。
 識別器851は、例えば教師あり学習により学習済みである。教師あり学習とは、入力とこれに対応する出力の正解とを関連付けたデータ(教師データ)を多数提供することで、識別器851に学習させる機械学習の一手法を意味する。
 教師データでの入力は、逆サイクル運転時の、冷凍サイクルの高圧の値、冷凍サイクルの低圧の値、冷凍サイクルの吐出温度、冷凍サイクルの過冷却度、冷凍サイクルの吸入過熱度、及び圧縮機21の回転数の少なくとも1つの指標を含む。また、逆サイクル運転がデフロスト運転である場合には、ここでの入力には、上記の指標に加えて、又は、上記の指標に代えて、デフロスト運転の時間が含まれてもよい。また、ここでの入力には、熱源空気の温度や湿度のような、逆サイクル運転時の運転条件を表す値が更に含まれてもよい。
 教師データでの出力の正解は、例えば、冷媒量が適正冷媒量か、あるいは冷媒量が適正冷媒量より減少しているかである。なお、冷媒量判断部85aが、冷媒量が適正冷媒量に対して減少しているか否かを判断するだけではなく、冷媒量の減少を段階的に判断するものである場合には、教師データにおける出力の正解は、例えば、冷媒量が適正冷媒量に対して何%であるかというような値であってもよい。
 教師データには、例えば、冷凍サイクル装置1Aの試験機を、冷媒量を変えて(適正冷媒量の場合と、適正冷媒量より少ない場合とについて)実際に運転して得た各種の判断用指標や、その際の運転条件の値が用いられる。また、サーバ200が複数の冷凍サイクル装置1AとネットワークNWを介して接続されている場合には、教師データは、冷媒量が分かっている(冷媒量が適正冷媒量か、適正冷媒量より減少しているかが分かっている)複数の冷凍サイクル装置1Aの実際の運転を通して得られるデータであってもよい。
 識別器851が用いる学習アルゴリズムは、例えば、ニューラルネットワークであるが、その他の公知の機械学習アルゴリズム(例えば、サポートベクタマシン)であってもよい。学習アルゴリズムは、ディープラーニングのように特徴量を機械が自動抽出するものであってもよい。また、学習アルゴリズムは、人が特徴量の抽出を行う必要のある機械学習アルゴリズムであってもよい。
 冷媒量判断部85aは、デフロスト運転、油戻し運転、及び冷媒量判断用運転時のいずれかの逆サイクル運転時に、教師データの入力に対応する各種の判断用指標や運転条件を取得すると、学習済みの識別器851を用いて、冷媒量が適正冷媒量か、あるいは冷媒量が適正冷媒量より減少しているかを例えば判断する。
 本冷凍サイクルシステム100Aでは、逆サイクル運転に関する情報と冷媒回路10の冷媒量との関係を学習済みの識別器851を用いて、精度よく冷媒量の判断を行うことができる。
 なお、ここでは、サーバ200が識別器851を有する冷媒量判断部85aを備えた冷凍サイクルシステム100Aについて説明した。しかし、これに代えて、図6の冷凍サイクルシステム100Bのように、冷凍サイクル装置1Bのコントローラ8が、識別器851を有する冷媒量判断部85aを備えていてもよい。
 <変形例2A>
 第2実施形態に係る冷凍サイクルシステム100Aでは、冷媒量判断部85aは、全ての種類の逆サイクル運転について、逆サイクル運転に関する情報を識別器851に入力することで、冷媒回路10の冷媒量を判断しているが、これに限定されるものではない。
 例えば、冷媒量判断部85aは、逆サイクル運転がデフロスト運転又は油戻し運転である場合については、逆サイクル運転に関する情報を識別器851に入力することで冷媒量の判断を行い、逆サイクル運転が冷媒量判断用運転である場合については、第1実施形態で説明したような態様で(例えば、冷媒量判断用運転時の過冷却度を基準値と比較することで)冷媒量の判断を行ってもよい。
 <付記>
 以上で説明した第1実施形態の構成や、第2実施形態の構成や、これらの変形例の構成は、互いに矛盾の無い範囲で適宜組み合わされてもよい。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
1,1A,1B       冷凍サイクル装置
10            冷媒回路
11d           液冷媒管(主冷媒管)
21            圧縮機
22            流向切換機構
23            熱源側熱交換器
25            過冷却熱交換器
35            液管温度センサ(第1温度センサ)
36            熱源空気温度センサ(第3温度センサ)
42,52         利用側熱交換器
46,56         対象空間温度センサ(第2温度センサ)
61            バイパス冷媒管(過冷却管)
62            バイパス膨張弁(過冷却膨張弁)
81            機器制御部(制御部)
82            禁止部(第1禁止部、第2禁止部)
85,85a        冷媒量判断部
851           識別器
100,100A,100B 冷凍サイクルシステム
P1            第1圧力
Tlp           液管温度(第1温度)
Tr            対象空間温度(第2温度)
Trs           設置温度(対象空間の目標温度)
Ta            熱源空気温度(第3温度)
特開2009-115340号公報

Claims (15)

  1.  圧縮機(21)と、熱源側熱交換器(23)と、利用側熱交換器(42,52)と、前記熱源側熱交換器の状態を蒸発器として機能する第1状態と凝縮器として機能する第2状態との間で変更するために冷媒の流向を切り換える流向切換機構(22)と、を含む冷媒回路(10)、を備えた冷凍サイクル装置であって、
     前記冷凍サイクル装置の運転モードが、前記熱源側熱交換器の状態を前記第1状態にして加熱運転を行う加熱運転モードにある時に、前記流向切換機構を制御して一時的に前記熱源側熱交換器の状態を前記第2状態に切り換えて逆サイクル運転を行う制御部(81)と、
     前記逆サイクル運転に関する情報に基づいて前記冷媒回路内の冷媒量を判断する冷媒量判断部(85,85a)と、
    を更に備える、
    冷凍サイクル装置(1,1B)。
  2.  前記逆サイクル運転には、前記熱源側熱交換器の除霜を行うデフロスト運転及び前記冷媒回路中の冷凍機油を前記圧縮機に戻す油戻し運転の少なくとも一方を含む、
    請求項1に記載の冷凍サイクル装置。
  3.  前記逆サイクル運転に関する情報には、前記逆サイクル運転時の冷凍サイクルの高圧の値、前記逆サイクル運転時の冷凍サイクルの低圧の値、前記逆サイクル運転時の冷凍サイクルの吐出温度、前記逆サイクル運転時の冷凍サイクルの過冷却度、前記逆サイクル運転時の冷凍サイクルの吸入過熱度、前記逆サイクル運転時の前記圧縮機の回転数、及び前記逆サイクル運転としての前記熱源側熱交換器の除霜を行うデフロスト運転の時間の少なくとも1つを含む、
    請求項1又は2に記載の冷凍サイクル装置。
  4.  前記逆サイクル運転には、前記冷媒回路における冷凍サイクルの高圧の値を所定の第1圧力(P1)に制御して行う第1運転を含む、
    請求項1に記載の冷凍サイクル装置。
  5.  前記逆サイクル運転に関する情報には、前記第1運転時の冷凍サイクルの過冷却度を含む、
    請求項4に記載の冷凍サイクル装置。
  6.  前記第1運転時の前記圧縮機の回転数は、前記熱源側熱交換器の除霜を行うデフロスト運転時及び前記冷媒回路中の冷凍機油を前記圧縮機に戻す油戻し運転時の前記圧縮機の回転数よりも小さい、
    請求項4又は5に記載の冷凍サイクル装置。
  7.  前記制御部は、前記冷媒回路中の冷凍機油を前記圧縮機に戻す油戻し運転の実行前又は実行後に、前記逆サイクル運転として前記第1運転を行う、
    請求項4から6のいずれか1項に記載の冷凍サイクル装置。
  8.  前記制御部は、前記冷凍サイクル装置の運転モードが前記加熱運転モードにある時であって、前記冷凍サイクル装置が停止される際に、前記逆サイクル運転として前記第1運転を行う、
    請求項4から6のいずれか1項に記載の冷凍サイクル装置。
  9.  前記冷媒回路は、
     前記熱源側熱交換器と前記利用側熱交換器とを接続する主冷媒管(11d)と、
     前記主冷媒管から分岐し前記圧縮機の吸入側へと冷媒を導く過冷却管(61)と、
     前記過冷却管に設けられ、前記過冷却管を流れる冷媒を減圧する過冷却膨張弁(62)と、
     前記過冷却膨張弁で減圧された冷媒と前記主冷媒管を流れる冷媒との間で熱交換が行われる過冷却熱交換器(25)と、
    を更に有し、
     前記冷凍サイクル装置は、前記過冷却熱交換器を通過した前記主冷媒管を流れる冷媒の温度である第1温度(Tlp)を測定する第1温度センサ(35)、を更に備え、
     前記制御部は、前記第1運転を行う時に、前記第1温度が所定値になるよう前記過冷却膨張弁を更に制御する、
    請求項4から8のいずれか1項に記載の冷凍サイクル装置。
  10.  前記冷凍サイクル装置は、前記加熱運転時に前記利用側熱交換器を流れる冷媒により対象空間の空気を加熱し、
     前記冷凍サイクル装置は、
     前記対象空間の空気の温度である第2温度(Tr)を測定する第2温度センサ(46,56)と、
     前記第2温度が、前記対象空間の目標温度(Trs)より所定温度以上低い場合に、前記制御部が前記第1運転を実行することを禁止する、第1禁止部(82)と、
    を更に備える、
    請求項4から9のいずれか1項に記載の冷凍サイクル装置。
  11.  前記熱源側熱交換器において冷媒と熱交換する熱源空気の温度である第3温度(Ta)を測定する第3温度センサ(36)と、
     前記第3温度が、冷凍サイクルの高圧の値を前記第1圧力に維持可能な温度より低い場合に、前記制御部が前記第1運転を実行することを禁止する、第2禁止部(82)と、
    を更に備える、
    請求項4から10のいずれか1項に記載の冷凍サイクル装置。
  12.  前記逆サイクル運転には、前記冷媒回路における冷凍サイクルの高圧の値を所定の第1圧力(P1)に制御して行う第1運転を含み、
     前記制御部は、前記冷媒量判断部が、前記逆サイクル運転としての前記デフロスト運転又は前記油戻し運転に関する情報に基づいて前記冷媒回路の冷媒量が減少していると判断した場合に、前記逆サイクル運転として前記第1運転を行う、
    請求項2に記載の冷凍サイクル装置。
  13.  前記冷媒量判断部(85a)は、前記逆サイクル運転に関する情報と前記冷媒回路の冷媒量との関係を学習済みの識別器(851)を有し、前記逆サイクル運転に関する情報を前記識別器に入力することで、前記冷媒回路の冷媒量を判断する、
    請求項1から12のいずれか1項に記載の冷凍サイクル装置(1B)。
  14.  圧縮機(21)と、熱源側熱交換器(23)と、利用側熱交換器(42,52)と、前記熱源側熱交換器の状態を蒸発器として機能する第1状態と凝縮器として機能する第2状態との間で変更するために冷媒の流向を切り換える流向切換機構(22)と、を含む冷媒回路(10)を有する冷凍サイクル装置であって、前記冷凍サイクル装置の運転モードが、前記熱源側熱交換器の状態を前記第1状態にして加熱運転を行う加熱運転モードにある時に、前記流向切換機構を制御して一時的に前記熱源側熱交換器の状態を前記第2状態に切り換えて逆サイクル運転を行う制御部(81)を更に有する冷凍サイクル装置(1,1A,1B)と、
     前記逆サイクル運転に関する情報に基づいて前記冷媒回路内の冷媒量を判断する冷媒量判断部(85,85a)と、
    を備える、冷凍サイクルシステム(100,100A,100B)。
  15.  前記冷媒量判断部(85a)は、前記逆サイクル運転に関する情報と前記冷媒回路の冷媒量との関係を学習済みの識別器(851)を有し、前記逆サイクル運転に関する情報を前記識別器に入力することで、前記冷媒回路の冷媒量を判断する、
    請求項14に記載の冷凍サイクルシステム(100A,100B)。
PCT/JP2019/046814 2018-11-29 2019-11-29 冷凍サイクル装置及び冷凍サイクルシステム WO2020111241A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-223021 2018-11-29
JP2018223021A JP2020085385A (ja) 2018-11-29 2018-11-29 冷凍サイクル装置及び冷凍サイクルシステム

Publications (1)

Publication Number Publication Date
WO2020111241A1 true WO2020111241A1 (ja) 2020-06-04

Family

ID=70852989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046814 WO2020111241A1 (ja) 2018-11-29 2019-11-29 冷凍サイクル装置及び冷凍サイクルシステム

Country Status (2)

Country Link
JP (1) JP2020085385A (ja)
WO (1) WO2020111241A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116507865A (zh) * 2020-12-01 2023-07-28 大金工业株式会社 冷冻循环系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163107A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2008175444A (ja) * 2007-01-17 2008-07-31 Daikin Ind Ltd 空気調和装置
WO2013088590A1 (ja) * 2011-12-12 2013-06-20 三菱電機株式会社 室外機及び空気調和装置
JP2016138714A (ja) * 2015-01-28 2016-08-04 ヤンマー株式会社 ヒートポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163107A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2008175444A (ja) * 2007-01-17 2008-07-31 Daikin Ind Ltd 空気調和装置
WO2013088590A1 (ja) * 2011-12-12 2013-06-20 三菱電機株式会社 室外機及び空気調和装置
JP2016138714A (ja) * 2015-01-28 2016-08-04 ヤンマー株式会社 ヒートポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116507865A (zh) * 2020-12-01 2023-07-28 大金工业株式会社 冷冻循环系统

Also Published As

Publication number Publication date
JP2020085385A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6652219B1 (ja) 冷媒漏洩判定システム及び冷凍サイクル装置
AU2006324596B2 (en) Air conditioner
JP3852472B2 (ja) 空気調和装置
AU2006324593B2 (en) Air conditioner
JP6238876B2 (ja) 冷凍サイクル装置
EP2017556A1 (en) Air conditioner
EP2012079A1 (en) Air conditioner
JP2009079842A (ja) 冷凍サイクル装置およびその制御方法
WO2005121664A1 (ja) 空気調和装置
AU2006324602A1 (en) Air conditioner
JP2010007995A (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP2006058007A (ja) 空気調和装置
US12013139B2 (en) Air conditioning apparatus, management device, and connection pipe
JPWO2019053858A1 (ja) 冷凍サイクル装置および冷凍装置
JP5078817B2 (ja) 冷凍サイクル装置
JP2011012958A (ja) 冷凍サイクル装置の制御方法
JP2008298335A (ja) 冷凍装置および同冷凍装置に用いられる冷媒追加充填キット並びに冷凍装置の冷媒追加充填方法
JP5505477B2 (ja) 空気調和装置および空気調和装置の冷媒量判定方法
JP4957243B2 (ja) 空気調和装置
WO2020111241A1 (ja) 冷凍サイクル装置及び冷凍サイクルシステム
JP5245576B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP5245575B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP6537629B2 (ja) 空気調和装置
JP2019086244A (ja) 冷媒サイクル装置
JP2007163101A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891538

Country of ref document: EP

Kind code of ref document: A1