WO2020111196A1 - Heater - Google Patents

Heater Download PDF

Info

Publication number
WO2020111196A1
WO2020111196A1 PCT/JP2019/046642 JP2019046642W WO2020111196A1 WO 2020111196 A1 WO2020111196 A1 WO 2020111196A1 JP 2019046642 W JP2019046642 W JP 2019046642W WO 2020111196 A1 WO2020111196 A1 WO 2020111196A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
lead terminal
heater
insulating base
heating resistor
Prior art date
Application number
PCT/JP2019/046642
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 谷口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020557834A priority Critical patent/JPWO2020111196A1/en
Publication of WO2020111196A1 publication Critical patent/WO2020111196A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material

Definitions

  • the present disclosure relates to, for example, a heater for ignition or flame detection in a combustion type in-vehicle heating device, a heater for ignition of various combustion devices such as an oil fan heater, a heater for a glow plug of a diesel engine, and various sensors such as an oxygen sensor.
  • a heater for various heat exchange units such as a fluid heating device or a heater used for heating a measuring instrument.
  • the size of heaters has been reduced and the heat generation temperature of heaters has been increased.
  • the heat of the heating resistor that rapidly generates heat tends to move to the electrode pads and the lead terminals, and the thermal stress applied to the connecting portion between the ceramic base and the lead terminals tends to increase.
  • the entire one end of the lead terminal is connected to the ceramic base through the electrode pad. Therefore, when the thermal stress applied to the connecting portion between the ceramic base and the lead terminal becomes large, the electrode pad of the lead terminal Peeling from the ceramic substrate and cracks in the ceramic substrate are likely to occur.
  • a heater according to one aspect of the present disclosure is a rod-shaped or tubular-shaped insulating base having one end and the other end, and a heating resistor provided inside the insulating base and extended to a side surface of the insulating base. And a conductive layer provided on a portion of the side surface where the heating resistor is drawn out, and a lead terminal electrically connected to the heating resistor via the conductive layer.
  • the lead terminal has a first portion joined to the conductive layer, and a second portion located closer to the one end side than the first portion, and the second portion is formed from the conductive layer. The end portions on the one end side of the second portion are separated from each other and are located on the other end side with respect to the end portion on the one end side of the conductive layer.
  • FIG. 3 is a cross-sectional view showing a heater according to an embodiment of the present disclosure. It is a principal part expanded sectional view in the A section of FIG.
  • FIG. 3 is an enlarged side view of a main part of a heater according to an embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view showing a heater according to another embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view showing a heater according to an embodiment of the present disclosure
  • FIG. 2 is an enlarged cross-sectional view of a main part of a portion A in FIG. 1
  • FIG. 3 is a cross-sectional view according to an embodiment of the present disclosure. It is a principal part expanded side view of a heater. Note that, in FIG. 3, portions other than the conductive layer and the lead terminals are omitted.
  • the heater 1 of the present embodiment includes an insulating substrate 10, a heating resistor 20, a conductive layer 30, and a lead terminal 40.
  • the insulating substrate 10 is a rod-shaped member, and has one end (hereinafter, also referred to as a first end) 11 and the other end (hereinafter, also referred to as a second end) 12 in the longitudinal direction (the left-right direction in FIG. 1). There is.
  • the insulating substrate 10 may have a shape such as a square bar shape or a round bar shape, or may have any other shape. In the present embodiment, the insulating substrate 10 has a round bar shape.
  • the insulating base 10 may be configured such that the end portion on the first end 11 side has a hemispherical shape.
  • the insulating base 10 is made of an electrically insulating ceramic material.
  • the ceramic material used for the insulating substrate 10 include ceramics having electrical insulation such as oxide ceramics, nitride ceramics, carbide ceramics, and silicon nitride ceramics.
  • the insulating base 10 has, for example, a length in the longitudinal direction of 15 to 50 mm.
  • the insulating base 10 When the insulating base 10 is in the shape of a round rod, the insulating base 10 has, for example, a diameter of a cross section perpendicular to the longitudinal direction of 1.5 to 10 mm.
  • one side of the cross section In the case of a plate shape, for example, one side of the cross section is 0.5 to 3 mm, and the other side is 2 to 10 mm.
  • the heating resistor 20 is a member that is provided inside the insulating substrate 10 and generates heat when energized.
  • the heating resistor 20 has an embedded portion 21 embedded in the insulating base 10 and an exposed portion 22 extended to the side surface 13 of the insulating base 10.
  • the embedded portion 21 extends in the longitudinal direction of the insulating base 10 and has two parallel portions 21 a facing each other and two parallel portions 21 a located near the first end 11 of the insulating base 10. It has a folded shape including a bent portion 21b that connects the two to each other.
  • the exposed portion 22 is located near the second end 12 of the insulating base 10, as shown in FIG. 1, for example.
  • the heating resistor 20 can be mainly composed of a carbide such as tungsten (W), molybdenum (Mo) or titanium (Ti), a nitride or a silicide. Further, the heating resistor 20 may contain a material for forming the insulating substrate 10.
  • the parallel portion 21a has, for example, a cross-sectional area of 0.15 to 3 mm 2 .
  • the bent portion 21b has, for example, a cross-sectional area of 0.15 to 0.8 mm 2 .
  • the exposed portion 22 has, for example, a cross-sectional area of 0.15 to 3 mm 2 .
  • the heat generating resistor 20 may have a heat generating area which is a particularly heat generating area.
  • the bent portion 21b may be the heat generating area.
  • the cross-sectional area of the bent portion 21b may be smaller than the cross-sectional area of the parallel portion 21a, and the electric resistance value per unit length of the bent portion 21b may be increased.
  • the electric resistance per unit length of the bent portion 21b is increased. The value may be increased.
  • the parallel portion 21a of the heating resistor 20 has a larger cross-sectional area than the bent portion 21b, or the content of the material forming the insulating substrate 10 is smaller than that of the bent portion 21b, so that the electric resistance value per unit length is increased. May be lower than the electric resistance value of the bent portion 21b.
  • the parallel portion 21a may be configured such that tungsten carbide (WC), which is an inorganic conductor, is a main component and silicon nitride (Si 3 N 4 ) is a secondary component.
  • WC tungsten carbide
  • Si 3 N 4 silicon nitride
  • the parallel portion 21a may contain 15% by mass or more of silicon nitride.
  • the coefficient of thermal expansion of the parallel portion 21a can be brought closer to the coefficient of thermal expansion of the silicon nitride forming the insulating substrate 10. Further, when the content of silicon nitride is 40% by mass or less, the resistance value of the parallel portion 21a becomes low and stable, so that the parallel portion 21a contains 15 to 40% by mass of silicon nitride. Good.
  • the heating resistor 20 is a conductor pattern having two parallel portions 21a and one bent portion 21b
  • the heating resistor 20 may be, for example, four or more parallel portions. 21 a and three or more bent portions 21 b, and may be repeatedly folded between a portion near the first end 11 and a portion near the second end 12. Further, among the three or more bent portions 21b, the bent portion 21b located closer to the first end 11 may be a heat generating region that particularly generates heat.
  • the conductive layer 30 is a member that electrically connects the heating resistor 20 and an external power supply (not shown).
  • the conductive layer 30 is provided on the side surface 13 of the insulating substrate 10 where the heating resistor 20 is drawn out, and is electrically connected to the heating resistor 20.
  • the conductive layer 30 may cover the exposed portion 22 of the heating resistor 20, as shown in FIGS.
  • the conductive layer 30 is made of a metal material.
  • the metal material used for the conductive layer 30 include silver (Ag), copper (Cu), titanium (Ti), and the like. Further, these may be coated with nickel (Ni).
  • the conductive layer 30 may have a surface shape such as a rectangular shape, a circular shape, an elliptical shape, or any other surface shape. In the present embodiment, the conductive layer 30 has a rectangular surface shape as shown in FIG. 3, for example.
  • the conductive layer 30 can be formed by, for example, a screen printing method.
  • the conductive layer 30 has, for example, a length of the insulating substrate 10 in the longitudinal direction of 2 to 10 mm, a length of the insulating substrate 10 in the circumferential direction of 2 to 8 mm, and a thickness of 20 to 200 ⁇ m.
  • the lead terminal 40 is electrically connected to the heating resistor 20 via the conductive layer 30.
  • the lead terminal 40 is an elongated member, and one end thereof is electrically connected to the exposed portion 22 of the heating resistor 20 via the conductive layer 30.
  • the other end of the lead terminal 40 is electrically connected to the external power supply. Thereby, a voltage can be applied to the heating resistor 20 via the lead terminal 40, and the heating resistor 20 can generate heat.
  • the lead terminal 40 is made of metal such as iron (Fe), chromium (Cr) or Ni.
  • the lead terminal 40 has the first portion 41 and the second portion 42.
  • the first portion 41 is joined to the conductive layer 30 via a brazing material, for example.
  • a brazing material for example, Ag brazing, gold (Au)-Cu brazing, Ag-Cu brazing or the like can be used.
  • the first portion 41 may have, for example, as shown in FIG. 2, a shape in which a joint portion with the conductive layer 30 is rounded. When the first portion 41 has a sharp corner at the joint with the conductive layer 30, it is likely to be a starting point for cracking of the insulating substrate 10 and separation of the lead terminal 40 from the conductive layer 30. By rounding the joining portion of the first portion 41 with the conductive layer 30, peeling of the lead terminal 40 and cracking of the insulating substrate 10 can be suppressed.
  • the second portion 42 is located closer to the first end 11 side than the first portion 41 and is continuous with the first portion 41.
  • the second portion 42 extends in a direction away from the insulating base 10 and is spaced apart from the conductive layer 30, as shown in FIGS. Since the second portion 42 is not directly bonded to the conductive layer 30 and is separated from the conductive layer 30, the heated second portion 42 thermally expands when the temperature of the heater 1 rises, and its extension. Can be stretched in the direction.
  • the heater 1 of the present embodiment can suppress the concentration of stress on the joint between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 from the conductive layer 30 and generation of cracks in the insulating substrate 10 can be suppressed.
  • the second portion 42 when the end portion 42 a of the second portion 42 on the first end 11 side is located closer to the first end 11 side than the end portion 30 a of the conductive layer 30 on the first end 11 side, the second portion 42. Absorbs the heat generated from the heat generating region (bent portion 21b) of the heat generating resistor 20, and the absorbed heat is transmitted to the first portion 41, so that the temperature difference between the first portion 41 and the conductive layer 30 increases. In some cases, thermal stress may occur at the joint between the lead terminal 40 and the conductive layer 30. In the heater 1 of the present embodiment, as shown in, for example, FIGS.
  • the end portion 42a of the second portion 42 on the first end 11 side is closer than the end portion 30a of the conductive layer 30 on the first end 11 side. It is located on the second end 12 side. This can reduce the absorption of heat generated from the heat generation region by the second portion 42, and thus can suppress the generation of thermal stress at the joint between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be suppressed. As described above, according to the heater 1 of the present embodiment, it is possible to provide a heater having excellent durability.
  • the second portion 42 has a sufficient distance from the heat generating area (bent portion 21b) and the absorption of heat generated from the heat generating area by the second portion 42 is suppressed, so that the first end The end portion 42a on the 11th side may be located closer to the first end 11 side than the end portion 30a on the first end side of the conductive layer 30. Further, for example, as shown in FIG. 3, the second portion 42 may be located between the one end 30c and the other end 30d of the conductive layer 30 in the circumferential direction of the insulating base 10. Thereby, in the manufacturing process of the heater 1, it becomes easy to visually confirm the bonding state between the lead terminal 40 and the conductive layer 30. As a result, the reliability of the electrical connection between the lead terminal 40 and the conductive layer 30 can be improved.
  • the lead terminal 40 is located closer to the second end 12 side than the first portion 41, and further has a third portion 43 continuous with the first portion 41.
  • the third portion 43 extends in a direction away from the insulating substrate 10 and is separated from the conductive layer 30. Since the third portion 43 is not directly bonded to the conductive layer 30 and is separated from the conductive layer 30, the heated third portion 43 thermally expands when the temperature of the heater 1 rises and its extension. Can be stretched in the direction. As a result, it is possible to suppress the concentration of stress on the joint between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be suppressed.
  • the end portion 43 a on the second end 12 side is located closer to the first end 11 side than the end portion 30 b on the second end 12 side of the conductive layer 30.
  • the second portion 42 and the third portion 43 are configured to be substantially symmetrical with respect to the first portion 41.
  • the second portion 42 and the third portion 43 cooperate with external stresses to function like springs and can disperse external stresses. Since the second portion 42 and the third portion 43 are configured to be substantially symmetrical with respect to the first portion 41, the bias of stress applied to the insulating base 10 can be reduced. As a result, it is possible to prevent stress from concentrating on a specific portion of the insulating base 10, and thus to suppress cracking of the insulating base 10.
  • the heater 1 for example, as shown in FIG. 1, there are two portions where the heating resistor 20 is pulled out to the side surface 13 of the insulating substrate 10, and the conductive layer 30 and the lead terminal 40 having the above-described configuration are provided at each portion. May be provided. With such a configuration, it is possible to prevent stress from concentrating on the joint between the lead terminal 40 and the conductive layer 30 even in a situation where the rush power density at the start of energization is large. Thereby, peeling of the lead terminals 40 and cracks of the insulating substrate 10 can be suppressed.
  • an insulating adhesive material 50 is provided between the second portion 42 of the lead terminal 40 and the conductive layer 30.
  • the adhesive 50 for example, an adhesive such as silicone or epoxy, or an inorganic adhesive obtained by mixing ceramic powder such as alumina and an inorganic polymer can be used.
  • the adhesive 50 between the second portion 42 and the conductive layer 30 it is possible to suppress the peeling of the lead terminal 40 from the conductive layer 30. Further, with the configuration in which the adhesive 50 is provided between the second portion 42 and the conductive layer 30, the uneven temperature distribution in the lead terminal 40 and the conductive layer 30 when the heating resistor 20 rapidly generates heat. Can be reduced. As a result, generation of thermal stress at the joint between the lead terminal 40 and the conductive layer 30 can be suppressed. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be suppressed.
  • the adhesive material 50 may be further provided between the third portion 43 and the conductive layer 30. Since the adhesive 50 is provided between the second portion 42 and the conductive layer 30 and between the third portion 43 and the conductive layer 30, the lead terminal when the heating resistor 20 suddenly generates heat. The unevenness of the temperature distribution in 40 and the conductive layer 30 can be effectively reduced. As a result, it is possible to effectively suppress the generation of thermal stress at the joint between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be effectively suppressed.
  • the heater 1 further includes a tubular member 70.
  • the tubular member 70 surrounds at least a portion of the insulating base 10 where the conductive layer 30 is provided in the circumferential direction of the insulating base 10.
  • the tubular member 70 may have, for example, a cylindrical shape, for example, a cylindrical shape, a rectangular tubular shape, or the like, or may have another shape. In the heater 1 of the present embodiment, the tubular member 70 has a cylindrical shape.
  • a portion of the insulating base 10 near the second end 12 including a portion where the conductive layer 30 is provided is inserted into the tubular member 70.
  • the tubular member 70 may have a smaller inner diameter at the end portion into which the insulating base 10 is inserted. This facilitates fixing the insulating base 10 to the tubular member 70.
  • the inside of the tubular member 70 is filled with an insulating adhesive material 60.
  • the adhesive 60 include an adhesive such as silicone and epoxy, or an inorganic adhesive obtained by mixing ceramic powder such as alumina and an inorganic polymer.
  • the adhesive 60 filled in the tubular member 70 may be the same adhesive as the adhesive 50 provided between the conductive layer 30 and the second portion of the lead terminal 40, or a different adhesive. May be
  • the adhesive 60 may cover the joint between the lead terminal 40 and the conductive layer 30, as shown in FIG. 1, for example. Thereby, the peeling of the lead terminal 40 from the conductive layer 30 can be effectively suppressed. Further, since it is possible to suppress uneven temperature distribution in the joint portion between the lead terminal 40 and the conductive layer 30, it is possible to suppress generation of thermal stress in the joint portion between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be suppressed.
  • FIG. 4 is a cross-sectional view showing a heater according to another embodiment of the present disclosure.
  • the cross-sectional view of FIG. 4 corresponds to the cross-sectional view shown in FIG.
  • the heater 1A of the present embodiment is different from the heater 1 of the above-described embodiment in the shapes of the insulating substrate 10 and the heating resistor 20, and is the same in the other respects. The description is omitted.
  • the heater 1A includes a cylindrical insulating substrate 10.
  • the insulating base 10 has one end (hereinafter, also referred to as a first end) 11 and the other end (hereinafter, also referred to as a second end) 12 in the longitudinal direction (the horizontal direction in FIG. 4 ).
  • the insulating substrate 10 may have a triangular tubular shape, a rectangular tubular shape, a cylindrical shape, an elliptic tubular shape, or the like, or may have any other shape.
  • the insulating base 10 has a cylindrical shape.
  • the insulating base 10 is made of an electrically insulating ceramic material.
  • the ceramic material used for the insulating substrate 10 include ceramics having electrical insulation such as oxide ceramics, nitride ceramics, carbide ceramics, and silicon nitride ceramics.
  • the insulating substrate 10 has, for example, a length in the longitudinal direction of 20 to 40 mm, an outer diameter of 2 to 8 mm, and an inner diameter of 1 to 5 mm.
  • the heating resistor 20 is provided inside the insulating base 10, and has an embedded portion 21 embedded in the insulating base 10 and an exposed portion 22 extended to the side surface 13 of the insulating base 10.
  • the embedded portion 21 has a conductor pattern which is repeatedly folded along the circumferential direction of the insulating base 10 between a portion near the first end 11 and a portion near the second end 12.
  • the exposed portion 22 is located near the second end 12 of the insulating base 10 as shown in FIG. 4, for example.
  • the heater 1A of the present embodiment it is possible to reduce the stress concentration on the joint portion between the lead terminal 40 and the conductive layer 30, similarly to the heater 1 of the above embodiment. Further, according to the heater 1 ⁇ /b>A, similarly to the heater 1, it is possible to suppress the concentration of stress on a specific portion of the insulating substrate 10 and reduce the uneven temperature distribution at the joint between the lead terminal 40 and the conductive layer 30. The generation of thermal stress in the joint can be suppressed. Thus, according to the heater 1A of the present embodiment, it is possible to provide a heater having excellent durability.

Abstract

This heater comprises: an insulating substrate having one end and another end, the insulating substrate being in a rod-form or cylindrical shape; a heat-emitting resistor provided inside the insulating substrate, the heat-emitting resistor being drawn out from a side surface of the insulating substrate; an electroconductive layer provided at the site on the side surface where the heat-emitting resistor is drawn out; and a lead terminal that is electrically connected to the heat-emitting resistor via the electroconductive layer. The lead terminal has a first portion joined to the electroconductive layer, and a second portion positioned closer to the one-end side than the first portion. The second portion is set apart from the electroconductive layer, and a one-end-side end part of the second portion is positioned closer to the other-end side than a one-end-side end part of the electroconductive layer.

Description

ヒータheater
 本開示は、例えば燃焼式車載暖房装置における点火用もしくは炎検知用のヒータ、石油ファンヒータ等の各種燃焼機器の点火用のヒータ、ディーゼルエンジンのグロープラグ用のヒータ、酸素センサ等の各種センサ用のヒータ、流体加熱装置等の各種熱交換ユニット用のヒータまたは測定機器の加熱用のヒータ等に利用されるヒータに関する。 The present disclosure relates to, for example, a heater for ignition or flame detection in a combustion type in-vehicle heating device, a heater for ignition of various combustion devices such as an oil fan heater, a heater for a glow plug of a diesel engine, and various sensors such as an oxygen sensor. , A heater for various heat exchange units such as a fluid heating device or a heater used for heating a measuring instrument.
 従来、棒状のセラミック基体と、セラミック基体に埋設された発熱抵抗体と、発熱抵抗体に電気的に接続され、セラミック基体の外表面に設けられた電極パッドと、一端部が電極パッドを介してセラミック基体に接続されたリード端子と、を備えるヒータが知られている(例えば、特許文献1を参照)。 Conventionally, a rod-shaped ceramic base, a heating resistor embedded in the ceramic base, an electrode pad electrically connected to the heating resistor and provided on the outer surface of the ceramic base, and one end portion of which via the electrode pad A heater including a lead terminal connected to a ceramic base is known (for example, see Patent Document 1).
 近年、ヒータの小型化、およびヒータの発熱温度の高温化が進められている。それに伴って、急激に発熱する発熱抵抗体の熱が電極パッドおよびリード端子に移動しやすくなり、セラミック基体とリード端子との接続部にかかる熱応力が大きくなる傾向がある。従来のヒータでは、リード端子の一端部全体が、電極パッドを介して、セラミック基体に接続されているため、セラミック基体とリード端子との接続部にかかる熱応力が大きくなると、リード端子の電極パッドからの剥離やセラミック基体のクラックが発生しやすくなる。 In recent years, the size of heaters has been reduced and the heat generation temperature of heaters has been increased. Along with this, the heat of the heating resistor that rapidly generates heat tends to move to the electrode pads and the lead terminals, and the thermal stress applied to the connecting portion between the ceramic base and the lead terminals tends to increase. In the conventional heater, the entire one end of the lead terminal is connected to the ceramic base through the electrode pad. Therefore, when the thermal stress applied to the connecting portion between the ceramic base and the lead terminal becomes large, the electrode pad of the lead terminal Peeling from the ceramic substrate and cracks in the ceramic substrate are likely to occur.
特開2017-107732号公報JP, 2017-107732, A
 本開示の一つの態様のヒータは、棒状または筒状であって、一端および他端を有する絶縁基体と、該絶縁基体の内部に設けられて、前記絶縁基体の側面に引き出された発熱抵抗体と、前記側面のうち前記発熱抵抗体が引き出された部位に設けられた導電層と、該導電層を介して前記発熱抵抗体に電気的に接続されたリード端子と、を備える。前記リード端子は、前記導電層に接合された第1部分と、該第1部分よりも前記一端側に位置する第2部分と、を有しており、前記第2部分は、前記導電層から離間しており、前記第2部分の前記一端側の端部が、前記導電層の前記一端側の端部よりも前記他端側に位置している。 A heater according to one aspect of the present disclosure is a rod-shaped or tubular-shaped insulating base having one end and the other end, and a heating resistor provided inside the insulating base and extended to a side surface of the insulating base. And a conductive layer provided on a portion of the side surface where the heating resistor is drawn out, and a lead terminal electrically connected to the heating resistor via the conductive layer. The lead terminal has a first portion joined to the conductive layer, and a second portion located closer to the one end side than the first portion, and the second portion is formed from the conductive layer. The end portions on the one end side of the second portion are separated from each other and are located on the other end side with respect to the end portion on the one end side of the conductive layer.
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本開示の一実施形態に係るヒータを示す断面図である。 図1のA部における要部拡大断面図である。 本開示の一実施形態に係るヒータの要部拡大側面図である。 本開示の他の実施形態に係るヒータを示す断面図である。
Objects, features, and advantages of the present disclosure will become more apparent from the following detailed description and drawings.
FIG. 3 is a cross-sectional view showing a heater according to an embodiment of the present disclosure. It is a principal part expanded sectional view in the A section of FIG. FIG. 3 is an enlarged side view of a main part of a heater according to an embodiment of the present disclosure. FIG. 6 is a cross-sectional view showing a heater according to another embodiment of the present disclosure.
 以下、本開示のヒータの実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the heater of the present disclosure will be described in detail with reference to the drawings.
 図1は、本開示の一実施形態に係るヒータを示す断面図であり、図2は、図1のA部における要部拡大断面図であり、図3は、本開示の一実施形態に係るヒータの要部拡大側面図である。なお、図3では、導電層およびリード端子以外の部分を省略して図示している。 FIG. 1 is a cross-sectional view showing a heater according to an embodiment of the present disclosure, FIG. 2 is an enlarged cross-sectional view of a main part of a portion A in FIG. 1, and FIG. 3 is a cross-sectional view according to an embodiment of the present disclosure. It is a principal part expanded side view of a heater. Note that, in FIG. 3, portions other than the conductive layer and the lead terminals are omitted.
 本実施形態のヒータ1は、絶縁基体10と、発熱抵抗体20と、導電層30と、リード端子40とを備えている。 The heater 1 of the present embodiment includes an insulating substrate 10, a heating resistor 20, a conductive layer 30, and a lead terminal 40.
 絶縁基体10は、棒状の部材であり、長手方向(図1における左右方向)における一端(以下、第1端ともいう)11、および他端(以下、第2端ともいう)12を有している。絶縁基体10は、角棒状、丸棒状等の形状を有していてもよく、その他の形状を有していてもよい。本実施形態では、絶縁基体10の形状は、丸棒状とされている。また、絶縁基体10は、第1端11側の端部が半球状の形状であるように構成されていてもよい。 The insulating substrate 10 is a rod-shaped member, and has one end (hereinafter, also referred to as a first end) 11 and the other end (hereinafter, also referred to as a second end) 12 in the longitudinal direction (the left-right direction in FIG. 1). There is. The insulating substrate 10 may have a shape such as a square bar shape or a round bar shape, or may have any other shape. In the present embodiment, the insulating substrate 10 has a round bar shape. Moreover, the insulating base 10 may be configured such that the end portion on the first end 11 side has a hemispherical shape.
 絶縁基体10は、電気絶縁性のセラミック材料から成る。絶縁基体10で用いられるセラミック材料としては、例えば、酸化物セラミックス、窒化物セラミックス、炭化物セラミックスまたは窒化珪素質セラミックス等の電気絶縁性を有するセラミックスが挙げられる。 The insulating base 10 is made of an electrically insulating ceramic material. Examples of the ceramic material used for the insulating substrate 10 include ceramics having electrical insulation such as oxide ceramics, nitride ceramics, carbide ceramics, and silicon nitride ceramics.
 絶縁基体10は、例えば、長手方向の長さが15~50mmである。絶縁基体10は、絶縁基体10が丸棒状である場合、例えば、長手方向に垂直な断面の直径が1.5~10mmである。また、板状である場合は、例えば断面の1辺が0.5~3mm、他の1辺が2~10mmである。 The insulating base 10 has, for example, a length in the longitudinal direction of 15 to 50 mm. When the insulating base 10 is in the shape of a round rod, the insulating base 10 has, for example, a diameter of a cross section perpendicular to the longitudinal direction of 1.5 to 10 mm. In the case of a plate shape, for example, one side of the cross section is 0.5 to 3 mm, and the other side is 2 to 10 mm.
 発熱抵抗体20は、絶縁基体10の内部に設けられ、通電によって発熱する部材である。発熱抵抗体20は、絶縁基体10に埋設された埋設部分21、および絶縁基体10の側面13に引き出された露出部分22を有している。 The heating resistor 20 is a member that is provided inside the insulating substrate 10 and generates heat when energized. The heating resistor 20 has an embedded portion 21 embedded in the insulating base 10 and an exposed portion 22 extended to the side surface 13 of the insulating base 10.
 埋設部分21は、例えば図1に示すように、絶縁基体10の長手方向に延び、互いに対向する2つの並列部分21aと、絶縁基体10の第1端11寄りに位置し、2つの並列部分21a同士を接続する屈曲部分21bとを含む折返し形状とされている。露出部分22は、例えば図1に示すように、絶縁基体10の第2端12寄りに位置している。 For example, as shown in FIG. 1, the embedded portion 21 extends in the longitudinal direction of the insulating base 10 and has two parallel portions 21 a facing each other and two parallel portions 21 a located near the first end 11 of the insulating base 10. It has a folded shape including a bent portion 21b that connects the two to each other. The exposed portion 22 is located near the second end 12 of the insulating base 10, as shown in FIG. 1, for example.
 発熱抵抗体20は、タングステン(W)、モリブデン(Mo)またはチタン(Ti)等の炭化物、窒化物または珪化物等を主成分とすることができる。また、発熱抵抗体20は、絶縁基体10の形成材料を含有していてもよい。並列部分21aは、例えば、断面積が0.15~3mmである。屈曲部分21bは、例えば、断面積が0.15~0.8mmである。露出部分22は、例えば、断面積が0.15~3mmである。 The heating resistor 20 can be mainly composed of a carbide such as tungsten (W), molybdenum (Mo) or titanium (Ti), a nitride or a silicide. Further, the heating resistor 20 may contain a material for forming the insulating substrate 10. The parallel portion 21a has, for example, a cross-sectional area of 0.15 to 3 mm 2 . The bent portion 21b has, for example, a cross-sectional area of 0.15 to 0.8 mm 2 . The exposed portion 22 has, for example, a cross-sectional area of 0.15 to 3 mm 2 .
 発熱抵抗体20は、特に発熱する領域である発熱領域を有していてもよく、例えば、屈曲部分21bが発熱領域とされていてもよい。屈曲部分21bを発熱領域とするには、屈曲部分21bの断面積を並列部分21aの断面積よりも小さくして、屈曲部分21bの単位長さ当たりの電気抵抗値を大きくしてもよい。あるいは、屈曲部分21bの、絶縁基体10の形成材料の含有量を、並列部分21aの、絶縁基体10の形成材料の含有量よりも大きくすることによって、屈曲部分21bの単位長さ当たりの電気抵抗値を大きくしてもよい。 The heat generating resistor 20 may have a heat generating area which is a particularly heat generating area. For example, the bent portion 21b may be the heat generating area. In order to use the bent portion 21b as a heat generation area, the cross-sectional area of the bent portion 21b may be smaller than the cross-sectional area of the parallel portion 21a, and the electric resistance value per unit length of the bent portion 21b may be increased. Alternatively, by setting the content of the forming material of the insulating base 10 of the bent portion 21b larger than the content of the forming material of the insulating base 10 of the parallel portion 21a, the electric resistance per unit length of the bent portion 21b is increased. The value may be increased.
 発熱抵抗体20の並列部分21aは、屈曲部分21bよりも断面積を大きくする、または絶縁基体10の形成材料の含有量を屈曲部分21bよりも小さくすることによって、単位長さ当たりの電気抵抗値が屈曲部分21bの電気抵抗値よりも低くなっていてもよい。並列部分21aは、無機導電体である炭化タングステン(WC)を主成分とし、窒化珪素(Si)を副成分とする構成であってもよい。並列部分21aは、15質量%以上の窒化珪素を含有していてもよい。窒化珪素の含有量が増すにつれて、並列部分21aの熱膨張率を、絶縁基体10を構成する窒化珪素の熱膨張率に近づけることができる。また、窒化珪素の含有量が40質量%以下である場合には、並列部分21aの抵抗値が低くなるとともに安定するため、並列部分21aは、15~40質量%の窒化珪素を含有していてもよい。 The parallel portion 21a of the heating resistor 20 has a larger cross-sectional area than the bent portion 21b, or the content of the material forming the insulating substrate 10 is smaller than that of the bent portion 21b, so that the electric resistance value per unit length is increased. May be lower than the electric resistance value of the bent portion 21b. The parallel portion 21a may be configured such that tungsten carbide (WC), which is an inorganic conductor, is a main component and silicon nitride (Si 3 N 4 ) is a secondary component. The parallel portion 21a may contain 15% by mass or more of silicon nitride. As the content of silicon nitride increases, the coefficient of thermal expansion of the parallel portion 21a can be brought closer to the coefficient of thermal expansion of the silicon nitride forming the insulating substrate 10. Further, when the content of silicon nitride is 40% by mass or less, the resistance value of the parallel portion 21a becomes low and stable, so that the parallel portion 21a contains 15 to 40% by mass of silicon nitride. Good.
 なお、図1では、発熱抵抗体20が、2つの並列部分21aと1つの屈曲部分21bとを有する導体パターンである例を示したが、発熱抵抗体20は、例えば、4つ以上の並列部分21aと3つ以上の屈曲部分21bとを有し、第1端11寄りの部位と第2端12寄りの部位との間で繰り返して折り返す形状とされていてもよい。また、3つ以上の屈曲部分21bのうち、第1端11寄りに位置する屈曲部分21bが、特に発熱する発熱領域とされていてもよい。 1 shows an example in which the heating resistor 20 is a conductor pattern having two parallel portions 21a and one bent portion 21b, the heating resistor 20 may be, for example, four or more parallel portions. 21 a and three or more bent portions 21 b, and may be repeatedly folded between a portion near the first end 11 and a portion near the second end 12. Further, among the three or more bent portions 21b, the bent portion 21b located closer to the first end 11 may be a heat generating region that particularly generates heat.
 導電層30は、発熱抵抗体20と外部電源(図示せず)とを電気的に接続する部材である。導電層30は、絶縁基体10の側面13のうち発熱抵抗体20が引き出された部位に設けられ、発熱抵抗体20に電気的に接続されている。導電層30は、例えば図1,2に示すように、発熱抵抗体20の露出部分22を覆っていてもよい。 The conductive layer 30 is a member that electrically connects the heating resistor 20 and an external power supply (not shown). The conductive layer 30 is provided on the side surface 13 of the insulating substrate 10 where the heating resistor 20 is drawn out, and is electrically connected to the heating resistor 20. The conductive layer 30 may cover the exposed portion 22 of the heating resistor 20, as shown in FIGS.
 導電層30は、金属材料から成る。導電層30で用いられる金属材料としては、例えば、銀(Ag)、銅(Cu)、チタン(Ti)等が挙げられる。またこれらにニッケル(Ni)を被覆しても良い。導電層30は、矩形状、円形状、楕円形状等の表面形状を有していてもよく、その他の表面形状を有していてもよい。本実施形態では、導電層30は、例えば図3に示すように、矩形状の表面形状を有している。導電層30は、例えばスクリーン印刷法によって形成することができる。導電層30は、例えば、絶縁基体10の長手方向の長さが2~10mmであり、絶縁基体10の周方向の長さが2~8mmであり、厚みが20~200μmである。 The conductive layer 30 is made of a metal material. Examples of the metal material used for the conductive layer 30 include silver (Ag), copper (Cu), titanium (Ti), and the like. Further, these may be coated with nickel (Ni). The conductive layer 30 may have a surface shape such as a rectangular shape, a circular shape, an elliptical shape, or any other surface shape. In the present embodiment, the conductive layer 30 has a rectangular surface shape as shown in FIG. 3, for example. The conductive layer 30 can be formed by, for example, a screen printing method. The conductive layer 30 has, for example, a length of the insulating substrate 10 in the longitudinal direction of 2 to 10 mm, a length of the insulating substrate 10 in the circumferential direction of 2 to 8 mm, and a thickness of 20 to 200 μm.
 リード端子40は、導電層30を介して、発熱抵抗体20に電気的に接続されている。リード端子40は、長尺状の部材であり、一方の端部が、導電層30を介して、発熱抵抗体20の露出部分22に電気的に接続されている。リード端子40の他方の端部は、外部電源に電気的に接続されている。これにより、リード端子40を介して発熱抵抗体20に電圧を印加することができ、発熱抵抗体20を発熱させることができる。リード端子40は、例えば、鉄(Fe)、クロム(Cr)またはNi等の金属からなる。 The lead terminal 40 is electrically connected to the heating resistor 20 via the conductive layer 30. The lead terminal 40 is an elongated member, and one end thereof is electrically connected to the exposed portion 22 of the heating resistor 20 via the conductive layer 30. The other end of the lead terminal 40 is electrically connected to the external power supply. Thereby, a voltage can be applied to the heating resistor 20 via the lead terminal 40, and the heating resistor 20 can generate heat. The lead terminal 40 is made of metal such as iron (Fe), chromium (Cr) or Ni.
 本実施形態のヒータ1では、リード端子40は、第1部分41および第2部分42を有している。第1部分41は、例えばろう材を介して、導電層30に接合されている。ろう材としては、例えば、Agろう、金(Au)-Cuろう、Ag-Cuろう等を用いることができる。第1部分41は、例えば図2に示すように、導電層30との接合部分の形状が丸められた形状であってもよい。第1部分41が導電層30との接合部分に鋭い角部を有していると、絶縁基体10のクラックやリード端子40の導電層30からの剥離の起点となりやすい。第1部分41の導電層30との接合部分を丸めることにより、リード端子40の剥離や絶縁基体10のクラックを抑制できる。 In the heater 1 of the present embodiment, the lead terminal 40 has the first portion 41 and the second portion 42. The first portion 41 is joined to the conductive layer 30 via a brazing material, for example. As the brazing material, for example, Ag brazing, gold (Au)-Cu brazing, Ag-Cu brazing or the like can be used. The first portion 41 may have, for example, as shown in FIG. 2, a shape in which a joint portion with the conductive layer 30 is rounded. When the first portion 41 has a sharp corner at the joint with the conductive layer 30, it is likely to be a starting point for cracking of the insulating substrate 10 and separation of the lead terminal 40 from the conductive layer 30. By rounding the joining portion of the first portion 41 with the conductive layer 30, peeling of the lead terminal 40 and cracking of the insulating substrate 10 can be suppressed.
 第2部分42は、第1部分41よりも第1端11側に位置しているとともに、第1部分41に連続している。第2部分42は、例えば図1,2に示すように、絶縁基体10から離れる方向に延在し、導電層30から離間している。第2部分42が、導電層30に直接に接合されておらず、導電層30から離間しているため、ヒータ1の昇温時に、加熱された第2部分42は、熱膨張し、その延在方向に伸びることができる。これにより、本実施形態のヒータ1は、リード端子40と導電層30との接合部に応力が集中することを抑制できる。ひいては、リード端子40の導電層30からの剥離や絶縁基体10におけるクラックの発生を抑制できる。 The second portion 42 is located closer to the first end 11 side than the first portion 41 and is continuous with the first portion 41. The second portion 42 extends in a direction away from the insulating base 10 and is spaced apart from the conductive layer 30, as shown in FIGS. Since the second portion 42 is not directly bonded to the conductive layer 30 and is separated from the conductive layer 30, the heated second portion 42 thermally expands when the temperature of the heater 1 rises, and its extension. Can be stretched in the direction. As a result, the heater 1 of the present embodiment can suppress the concentration of stress on the joint between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 from the conductive layer 30 and generation of cracks in the insulating substrate 10 can be suppressed.
 ここで、第2部分42の第1端11側の端部42aが、導電層30の第1端11側の端部30aよりも第1端11側に位置している場合、第2部分42が発熱抵抗体20の発熱領域(屈曲部分21b)から発せられた熱を吸収し、吸収した熱が第1部分41に伝わることにより、第1部分41と導電層30との温度差が大きくなり、リード端子40と導電層30との接合部に熱応力が発生することがある。本実施形態のヒータ1では、例えば図1,2に示すように、第2部分42の第1端11側の端部42aが、導電層30の第1端11側の端部30aよりも第2端12側に位置している。これにより、第2部分42による発熱領域から発せられた熱の吸収を低減できるため、リード端子40と導電層30との接合部における熱応力の発生を抑制できる。ひいては、リード端子40の剥離や絶縁基体10のクラックを抑制できる。このように、本実施形態のヒータ1によれば、耐久性に優れたヒータを提供することが可能になる。 Here, when the end portion 42 a of the second portion 42 on the first end 11 side is located closer to the first end 11 side than the end portion 30 a of the conductive layer 30 on the first end 11 side, the second portion 42. Absorbs the heat generated from the heat generating region (bent portion 21b) of the heat generating resistor 20, and the absorbed heat is transmitted to the first portion 41, so that the temperature difference between the first portion 41 and the conductive layer 30 increases. In some cases, thermal stress may occur at the joint between the lead terminal 40 and the conductive layer 30. In the heater 1 of the present embodiment, as shown in, for example, FIGS. 1 and 2, the end portion 42a of the second portion 42 on the first end 11 side is closer than the end portion 30a of the conductive layer 30 on the first end 11 side. It is located on the second end 12 side. This can reduce the absorption of heat generated from the heat generation region by the second portion 42, and thus can suppress the generation of thermal stress at the joint between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be suppressed. As described above, according to the heater 1 of the present embodiment, it is possible to provide a heater having excellent durability.
 なお、第2部分42は、発熱領域(屈曲部分21b)との十分な距離が確保され、第2部分42による発熱領域から発せられた熱の吸収が抑制されている場合には、第1端11側の端部42aは、導電層30の第1端側の端部30aよりも第1端11側に位置していてもよい。また、例えば図3に示すように、第2部分42は、絶縁基体10の周方向における導電層30の一端30cと他端30dとの間に位置していてもよい。これにより、ヒータ1の製造工程において、リード端子40と導電層30との接合状態を目視で確認することが容易になる。ひいては、リード端子40と導電層30との電気的接続の信頼性を向上させることができる。 It should be noted that the second portion 42 has a sufficient distance from the heat generating area (bent portion 21b) and the absorption of heat generated from the heat generating area by the second portion 42 is suppressed, so that the first end The end portion 42a on the 11th side may be located closer to the first end 11 side than the end portion 30a on the first end side of the conductive layer 30. Further, for example, as shown in FIG. 3, the second portion 42 may be located between the one end 30c and the other end 30d of the conductive layer 30 in the circumferential direction of the insulating base 10. Thereby, in the manufacturing process of the heater 1, it becomes easy to visually confirm the bonding state between the lead terminal 40 and the conductive layer 30. As a result, the reliability of the electrical connection between the lead terminal 40 and the conductive layer 30 can be improved.
 リード端子40は、第1部分41よりも第2端12側に位置しているとともに、第1部分41に連続している第3部分43をさらに有している。第3部分43は、例えば図1,2に示すように、絶縁基体10から離れる方向に延在し、導電層30から離間している。第3部分43が、導電層30に直接に接合されておらず、導電層30から離間しているため、ヒータ1の昇温時に、加熱された第3部分43は、熱膨張し、その延在方向に伸びることができる。これにより、リード端子40と導電層30との接合部に応力が集中することを抑制できる。ひいては、リード端子40の剥離や絶縁基体10のクラックを抑制できる。 The lead terminal 40 is located closer to the second end 12 side than the first portion 41, and further has a third portion 43 continuous with the first portion 41. For example, as shown in FIGS. 1 and 2, the third portion 43 extends in a direction away from the insulating substrate 10 and is separated from the conductive layer 30. Since the third portion 43 is not directly bonded to the conductive layer 30 and is separated from the conductive layer 30, the heated third portion 43 thermally expands when the temperature of the heater 1 rises and its extension. Can be stretched in the direction. As a result, it is possible to suppress the concentration of stress on the joint between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be suppressed.
 第3部分43は、例えば図1,2に示すように、第2端12側の端部43aが、導電層30の第2端12側の端部30bよりも第1端11側に位置している。換言すると、第2部分42と第3部分43とは、第1部分41に対して、略対称に構成されている。第2部分42および第3部分43は、外部からの応力に対して、協働してばねのように機能し、外部からの応力を分散することができる。第2部分42と第3部分43とが、第1部分41に対して、略対称に構成されていることにより、絶縁基体10にかかる応力の偏りが低減できる。これにより、絶縁基体10の特定の部分に応力が集中することを抑制できるため、絶縁基体10のクラックを抑制できる。 In the third portion 43, for example, as shown in FIGS. 1 and 2, the end portion 43 a on the second end 12 side is located closer to the first end 11 side than the end portion 30 b on the second end 12 side of the conductive layer 30. ing. In other words, the second portion 42 and the third portion 43 are configured to be substantially symmetrical with respect to the first portion 41. The second portion 42 and the third portion 43 cooperate with external stresses to function like springs and can disperse external stresses. Since the second portion 42 and the third portion 43 are configured to be substantially symmetrical with respect to the first portion 41, the bias of stress applied to the insulating base 10 can be reduced. As a result, it is possible to prevent stress from concentrating on a specific portion of the insulating base 10, and thus to suppress cracking of the insulating base 10.
 なお、ヒータ1は、例えば図1に示すように、発熱抵抗体20が絶縁基体10の側面13に引き出されている部位が2個所あり、それぞれの部位に上記構成の導電層30およびリード端子40が設けられている構成であってもよい。このような構成によれば、通電開始時の突入電力密度が大きい状況においても、リード端子40と導電層30との接合部に応力が集中することを抑制できる。これにより、リード端子40の剥離や絶縁基体10のクラックを抑制できる。 In the heater 1, for example, as shown in FIG. 1, there are two portions where the heating resistor 20 is pulled out to the side surface 13 of the insulating substrate 10, and the conductive layer 30 and the lead terminal 40 having the above-described configuration are provided at each portion. May be provided. With such a configuration, it is possible to prevent stress from concentrating on the joint between the lead terminal 40 and the conductive layer 30 even in a situation where the rush power density at the start of energization is large. Thereby, peeling of the lead terminals 40 and cracks of the insulating substrate 10 can be suppressed.
 本実施形態では、例えば図1,2に示すように、リード端子40の第2部分42と導電層30との間に絶縁性の接着材50が設けられている。接着材50としては、例えば、シリコーン、エポキシ等の接着材、またはアルミナ等のセラミック粉体と無機ポリマーを混合した無機系の接着材を用いることができる。 In this embodiment, as shown in FIGS. 1 and 2, for example, an insulating adhesive material 50 is provided between the second portion 42 of the lead terminal 40 and the conductive layer 30. As the adhesive 50, for example, an adhesive such as silicone or epoxy, or an inorganic adhesive obtained by mixing ceramic powder such as alumina and an inorganic polymer can be used.
 第2部分42と導電層30との間に接着材50を設けることにより、リード端子40の導電層30からの剥離を抑制できる。また、第2部分42と導電層30との間に接着材50が設けられている構成であると、発熱抵抗体20が急激に発熱した際の、リード端子40および導電層30における温度分布のむらを低減できる。これにより、リード端子40と導電層30との接合部における熱応力の発生を抑制できる。ひいては、リード端子40の剥離や絶縁基体10のクラックを抑制できる。 By providing the adhesive 50 between the second portion 42 and the conductive layer 30, it is possible to suppress the peeling of the lead terminal 40 from the conductive layer 30. Further, with the configuration in which the adhesive 50 is provided between the second portion 42 and the conductive layer 30, the uneven temperature distribution in the lead terminal 40 and the conductive layer 30 when the heating resistor 20 rapidly generates heat. Can be reduced. As a result, generation of thermal stress at the joint between the lead terminal 40 and the conductive layer 30 can be suppressed. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be suppressed.
 接着材50は、第3部分43と導電層30との間にさらに設けられていてもよい。第2部分42と導電層30との間、および第3部分43と導電層30との間に接着材50が設けられていることにより、発熱抵抗体20が急激に発熱した際の、リード端子40および導電層30における温度分布のむらを効果的に低減できる。これにより、リード端子40と導電層30との接合部における熱応力の発生を効果的に抑制できる。ひいては、リード端子40の剥離や絶縁基体10のクラックを効果的に抑制できる。 The adhesive material 50 may be further provided between the third portion 43 and the conductive layer 30. Since the adhesive 50 is provided between the second portion 42 and the conductive layer 30 and between the third portion 43 and the conductive layer 30, the lead terminal when the heating resistor 20 suddenly generates heat. The unevenness of the temperature distribution in 40 and the conductive layer 30 can be effectively reduced. As a result, it is possible to effectively suppress the generation of thermal stress at the joint between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be effectively suppressed.
 ヒータ1は、筒状部材70をさらに備えている。筒状部材70は、例えば図1に示すように、絶縁基体10における、少なくとも、導電層30が設けられた部分を、絶縁基体10の周方向に囲んでいる。筒状部材70は、例えば円筒状、例えば円筒状、四角筒状等の形状であってもよく、その他の形状であってもよい。本実施形態のヒータ1では、筒状部材70の形状は、円筒状とされている。 The heater 1 further includes a tubular member 70. For example, as shown in FIG. 1, the tubular member 70 surrounds at least a portion of the insulating base 10 where the conductive layer 30 is provided in the circumferential direction of the insulating base 10. The tubular member 70 may have, for example, a cylindrical shape, for example, a cylindrical shape, a rectangular tubular shape, or the like, or may have another shape. In the heater 1 of the present embodiment, the tubular member 70 has a cylindrical shape.
 筒状部材70には、例えば図1,2に示すように、絶縁基体10の、導電層30が設けられた部位を含む、第2端12寄りの部分が挿入されている。筒状部材70は、例えば図1に示すように、絶縁基体10が挿入された端部において内径が小さくなっていてもよい。これにより、絶縁基体10を筒状部材70に固定しやすくなる。 As shown in FIGS. 1 and 2, for example, a portion of the insulating base 10 near the second end 12 including a portion where the conductive layer 30 is provided is inserted into the tubular member 70. For example, as shown in FIG. 1, the tubular member 70 may have a smaller inner diameter at the end portion into which the insulating base 10 is inserted. This facilitates fixing the insulating base 10 to the tubular member 70.
 筒状部材70の内部は、絶縁性の接着材60が充填されている。接着材60としては、例えば、シリコーン、エポキシ等の接着材、またはアルミナ等のセラミック粉体と無機ポリマーを混合した無機系の接着材が挙げられる。筒状部材70の内部に充填される接着材60は、導電層30とリード端子40の第2部分との間に設けられる接着材50と、同一の接着材であってもよく、異なる接着材であってもよい。 The inside of the tubular member 70 is filled with an insulating adhesive material 60. Examples of the adhesive 60 include an adhesive such as silicone and epoxy, or an inorganic adhesive obtained by mixing ceramic powder such as alumina and an inorganic polymer. The adhesive 60 filled in the tubular member 70 may be the same adhesive as the adhesive 50 provided between the conductive layer 30 and the second portion of the lead terminal 40, or a different adhesive. May be
 接着材60は、例えば図1に示すように、リード端子40と導電層30との接合部を覆っていてもよい。これにより、リード端子40の導電層30からの剥離を効果的に抑制できる。また、リード端子40と導電層30との接合部における温度分布のむらを抑制できるため、リード端子40と導電層30との接合部における熱応力の発生を抑制できる。ひいては、リード端子40の剥離や絶縁基体10のクラックを抑制できる。 The adhesive 60 may cover the joint between the lead terminal 40 and the conductive layer 30, as shown in FIG. 1, for example. Thereby, the peeling of the lead terminal 40 from the conductive layer 30 can be effectively suppressed. Further, since it is possible to suppress uneven temperature distribution in the joint portion between the lead terminal 40 and the conductive layer 30, it is possible to suppress generation of thermal stress in the joint portion between the lead terminal 40 and the conductive layer 30. As a result, peeling of the lead terminal 40 and cracking of the insulating base 10 can be suppressed.
 次に、本開示の他の実施形態に係るヒータについて説明する。 Next, a heater according to another embodiment of the present disclosure will be described.
 図4は、本開示の他の実施形態に係るヒータを示す断面図である。図4の断面図は、図1に示した断面図に対応している。 FIG. 4 is a cross-sectional view showing a heater according to another embodiment of the present disclosure. The cross-sectional view of FIG. 4 corresponds to the cross-sectional view shown in FIG.
 本実施形態のヒータ1Aは、上記実施形態のヒータ1に対して、絶縁基体10および発熱抵抗体20の形状が異なっており、その他については同様の構成であるので、同様の構成については詳細な説明を省略する。 The heater 1A of the present embodiment is different from the heater 1 of the above-described embodiment in the shapes of the insulating substrate 10 and the heating resistor 20, and is the same in the other respects. The description is omitted.
 ヒータ1Aは、筒状の絶縁基体10を備えている。絶縁基体10は、長手方向(図4における左右方向)における一端(以下、第1端ともいう)11および他端(以下、第2端ともいう)12を有している。絶縁基体10は、三角筒状、四角筒状、円筒状、楕円筒状等であってもよく、その他の形状であってもよい。本実施形態のヒータ1Aでは、絶縁基体10は、円筒状とされている。 The heater 1A includes a cylindrical insulating substrate 10. The insulating base 10 has one end (hereinafter, also referred to as a first end) 11 and the other end (hereinafter, also referred to as a second end) 12 in the longitudinal direction (the horizontal direction in FIG. 4 ). The insulating substrate 10 may have a triangular tubular shape, a rectangular tubular shape, a cylindrical shape, an elliptic tubular shape, or the like, or may have any other shape. In the heater 1A of the present embodiment, the insulating base 10 has a cylindrical shape.
 絶縁基体10は、電気絶縁性のセラミック材料から成る。絶縁基体10で用いられるセラミック材料としては、例えば、酸化物セラミックス、窒化物セラミックス、炭化物セラミックスまたは窒化珪素質セラミックス等の電気絶縁性を有するセラミックスが挙げられる。絶縁基体10は、例えば、長手方向の長さが20~40mmであり、外径が2~8mmであり、内径が1~5mmである。 The insulating base 10 is made of an electrically insulating ceramic material. Examples of the ceramic material used for the insulating substrate 10 include ceramics having electrical insulation such as oxide ceramics, nitride ceramics, carbide ceramics, and silicon nitride ceramics. The insulating substrate 10 has, for example, a length in the longitudinal direction of 20 to 40 mm, an outer diameter of 2 to 8 mm, and an inner diameter of 1 to 5 mm.
 発熱抵抗体20は、絶縁基体10の内部に設けられており、絶縁基体10に埋設された埋設部分21、および絶縁基体10の側面13に引き出された露出部分22を有している。埋設部分21は、絶縁基体10の周方向に沿って第1端11寄りの部位と第2端12寄りの部位との間で繰り返して折り返す導体パターンを有している。露出部分22は、例えば図4に示すように、絶縁基体10の第2端12寄りに位置している。 The heating resistor 20 is provided inside the insulating base 10, and has an embedded portion 21 embedded in the insulating base 10 and an exposed portion 22 extended to the side surface 13 of the insulating base 10. The embedded portion 21 has a conductor pattern which is repeatedly folded along the circumferential direction of the insulating base 10 between a portion near the first end 11 and a portion near the second end 12. The exposed portion 22 is located near the second end 12 of the insulating base 10 as shown in FIG. 4, for example.
 本実施形態のヒータ1Aによれば、上記実施形態のヒータ1と同様に、リード端子40と導電層30との接合部への応力集中を低減できる。また、ヒータ1Aによれば、ヒータ1と同様に、絶縁基体10の特定の部分に応力が集中することを抑制できるとともに、リード端子40と導電層30との接合部における温度分布のむらを低減し、当該接合部における熱応力の発生を抑制できる。このように、本実施形態のヒータ1Aによれば、耐久性に優れたヒータを提供することが可能になる。 According to the heater 1A of the present embodiment, it is possible to reduce the stress concentration on the joint portion between the lead terminal 40 and the conductive layer 30, similarly to the heater 1 of the above embodiment. Further, according to the heater 1</b>A, similarly to the heater 1, it is possible to suppress the concentration of stress on a specific portion of the insulating substrate 10 and reduce the uneven temperature distribution at the joint between the lead terminal 40 and the conductive layer 30. The generation of thermal stress in the joint can be suppressed. Thus, according to the heater 1A of the present embodiment, it is possible to provide a heater having excellent durability.
 以上、本開示の実施形態について詳細に説明したが、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。 Although the embodiments of the present disclosure have been described above in detail, the present disclosure is not limited to the above-described embodiments, and various modifications and improvements can be made without departing from the scope of the present disclosure. is there.
 1,1A ヒータ
 10  絶縁基体
 11  一端(第1端)
 12  他端(第2端)
 13  側面
 20  発熱抵抗体
 21  埋設部分
 21a 並列部分
 21b 屈曲部分
 22  露出部分
 30  導電層
 30a,30b 端部
 30c 一端
 30d 他端
 40  リード端子
 41  第1部分
 42  第2部分
 42a 端部
 43  第3部分
 43a 端部
 50,60 接着材
 70  筒状部材
1, 1A heater 10 insulating substrate 11 one end (first end)
12 other end (second end)
13 side surface 20 heating resistor 21 embedded portion 21a parallel portion 21b bent portion 22 exposed portion 30 conductive layer 30a, 30b end portion 30c one end 30d other end 40 lead terminal 41 first portion 42 second portion 42a end portion 43 third portion 43a Edge part 50,60 Adhesive material 70 Cylindrical member

Claims (4)

  1.  棒状または筒状であって、一端および他端を有する絶縁基体と、
     該絶縁基体の内部に設けられて、前記絶縁基体の側面に引き出された発熱抵抗体と、
     前記側面のうち前記発熱抵抗体が引き出された部位に設けられた導電層と、
     該導電層を介して前記発熱抵抗体に電気的に接続されたリード端子と、を備えており、
     該リード端子は、前記導電層に接合された第1部分と、該第1部分よりも前記一端側に位置する第2部分と、を有しており、
     前記第2部分は、前記導電層から離間しており、前記第2部分の前記一端側の端部が、前記導電層の前記一端側の端部よりも前記他端側に位置していることを特徴とするヒータ。
    An insulating substrate that is rod-shaped or tubular and has one end and the other end;
    A heating resistor provided inside the insulating base and drawn out to a side surface of the insulating base;
    A conductive layer provided on a portion of the side surface where the heating resistor is drawn out,
    A lead terminal electrically connected to the heating resistor via the conductive layer,
    The lead terminal has a first portion joined to the conductive layer, and a second portion located closer to the one end side than the first portion,
    The second portion is separated from the conductive layer, and the end portion of the second portion on the one end side is located on the other end side of the end portion of the conductive layer on the one end side. A heater characterized by.
  2.  前記リード端子は、前記第1部分よりも前記他端側に位置する第3部分を、さらに有しており、
     前記第3部分は、前記導電層から離間しているとともに、前記第3部分の前記他端側の端部が、前記導電層の前記他端側の端部よりも前記一端側に位置していることを特徴とする請求項1に記載のヒータ。
    The lead terminal further has a third portion located closer to the other end side than the first portion,
    The third portion is separated from the conductive layer, and the end portion of the third portion on the other end side is located closer to the one end side than the end portion of the conductive layer on the other end side. The heater according to claim 1, wherein the heater is provided.
  3.  前記導電層と前記第2部分との間には絶縁性の接着材が設けられていることを特徴とする請求項1または請求項2に記載のヒータ。 The heater according to claim 1 or 2, wherein an insulating adhesive material is provided between the conductive layer and the second portion.
  4.  前記絶縁基体における、少なくとも、前記導電層が設けられた部分を、前記絶縁基体の周方向に囲む筒状部材を、さらに備えており、
     該筒状部材の内部は、絶縁性の接着材が充填されていることを特徴とする請求項1乃至請求項3のいずれかに記載のヒータ。
    The insulating base further includes a tubular member that surrounds at least a portion where the conductive layer is provided in a circumferential direction of the insulating base.
    The heater according to any one of claims 1 to 3, wherein the inside of the tubular member is filled with an insulating adhesive material.
PCT/JP2019/046642 2018-11-29 2019-11-28 Heater WO2020111196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020557834A JPWO2020111196A1 (en) 2018-11-29 2019-11-28 heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018223579 2018-11-29
JP2018-223579 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111196A1 true WO2020111196A1 (en) 2020-06-04

Family

ID=70853495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046642 WO2020111196A1 (en) 2018-11-29 2019-11-28 Heater

Country Status (2)

Country Link
JP (1) JPWO2020111196A1 (en)
WO (1) WO2020111196A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117101A (en) * 1982-12-24 1984-07-06 松下電器産業株式会社 Method of connecting terminal of positive temperature coefficient thermistor
JPH04167391A (en) * 1990-10-30 1992-06-15 Matsushita Electric Ind Co Ltd Constant temperature heating element
JP2005310767A (en) * 2004-03-26 2005-11-04 Ngk Spark Plug Co Ltd Ceramic heater and gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117101A (en) * 1982-12-24 1984-07-06 松下電器産業株式会社 Method of connecting terminal of positive temperature coefficient thermistor
JPH04167391A (en) * 1990-10-30 1992-06-15 Matsushita Electric Ind Co Ltd Constant temperature heating element
JP2005310767A (en) * 2004-03-26 2005-11-04 Ngk Spark Plug Co Ltd Ceramic heater and gas sensor

Also Published As

Publication number Publication date
JPWO2020111196A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020111196A1 (en) Heater
JP7444946B2 (en) heater
JP2537271B2 (en) Ceramic heating element
JP6835658B2 (en) Sample holder
JP2013038003A (en) Heater and glow plug provided with the same
KR100840796B1 (en) A terminal for ceramic heater
JPH06251862A (en) Ceramic heating element
JP6835946B2 (en) heater
JP7032954B2 (en) heater
JPS61193392A (en) Electric heater
JP3404827B2 (en) Ceramic heater
JP2004319459A (en) Ceramic heating resistor and heater for oxygen probe using the same
JPWO2019004286A1 (en) heater
JP7136915B2 (en) heater
JP7399262B2 (en) heater
JP2016103345A (en) Connection structure and heater comprising the same
JP6923425B2 (en) heater
JP6272519B2 (en) Heater and glow plug equipped with the same
JPH0152877B2 (en)
JPH0133734B2 (en)
WO2020067508A1 (en) Heater and glow-plug provided therewith
JP6085050B2 (en) Heater and glow plug equipped with the same
JPS5952725B2 (en) Glow plug for diesel engine
JPS5932833Y2 (en) Glow plug for diesel engine
JPS59173630A (en) Ceramic glow plug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888535

Country of ref document: EP

Kind code of ref document: A1