WO2020111169A1 - Genetic testing method for multifactorial genetic disease and testing kit - Google Patents

Genetic testing method for multifactorial genetic disease and testing kit Download PDF

Info

Publication number
WO2020111169A1
WO2020111169A1 PCT/JP2019/046519 JP2019046519W WO2020111169A1 WO 2020111169 A1 WO2020111169 A1 WO 2020111169A1 JP 2019046519 W JP2019046519 W JP 2019046519W WO 2020111169 A1 WO2020111169 A1 WO 2020111169A1
Authority
WO
WIPO (PCT)
Prior art keywords
schizophrenia
disease
functional
test
gene
Prior art date
Application number
PCT/JP2019/046519
Other languages
French (fr)
Japanese (ja)
Inventor
雅臣 伊豫
信久 金原
賢吾 大石
正幸 高瀬
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to JP2020557812A priority Critical patent/JPWO2020111169A1/en
Publication of WO2020111169A1 publication Critical patent/WO2020111169A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a method for testing a morbidity risk of a multifactorial genetic disease using a plurality of Single Nucleotide Polymorphisms (single nucleotide polymorphism, hereinafter referred to as SNP), an auxiliary diagnostic method, a test chip and a test kit.
  • SNP Single Nucleotide Polymorphism
  • SNP Diversity in which one base in the base sequence of the genome of a certain biological population is mutated is called SNP.
  • SNPs are present outside the gene region and their regulatory regions in genomic DNA, and do not cause changes in genetic characteristics.
  • SNPs that are clearly associated with these diseases have been proposed for application as markers that identify disease-related genes by linkage analysis and association analysis. Many SNPs associated with these diseases do not cause changes such as gene expression, but the expression and properties of disease-related genes such as gene expression levels, qualitative changes in proteins, and changes in non-coding RNA. It is known that there is a SNP called a functional SNP (functional SNP) that influences (non-patent document 1).
  • Multifactorial genetic disease is a disease that is caused by multiple factors such as environmental factors in addition to multiple genetic predispositions. It is considered difficult to predict morbidity risk because environmental factors are involved in onset in addition to multiple genetic predispositions. However, if the morbidity risk can be predicted in advance, the onset can be suppressed by various methods such as removing the environmental factors of the disease. As a result, it is possible to reduce the number of affected persons.
  • Multifactorial genetic diseases include various diseases such as diabetes, hypertension, ischemic heart disease, NASH (non-alcoholic steatohepatitis), rheumatoid arthritis, gout, and malignant tumors.
  • diseases such as diabetes, hypertension, ischemic heart disease, NASH (non-alcoholic steatohepatitis), rheumatoid arthritis, gout, and malignant tumors.
  • neuropsychiatric disorders schizophrenia, mood disorders (bipolar disorder, major depressive disorder, etc.), addictive diseases, autism spectrum disorders, attention deficit/hyperactivity disorder, Alzheimer's disease, narcolepsy , Panic disorder, social anxiety disorder, obsessive-compulsive disorder, generalized anxiety disorder, eating disorder, personality tendency and disorder are considered to be multifactorial diseases.
  • the genetic background of these diseases remains largely unknown, it is believed that there are multiple genetic predispositions. If the morbidity risk of these multifactorial diseases can be known in advance, the morbidity risk
  • diseases in the field of neuropsychiatry are considered to be extremely useful if an auxiliary diagnosis can be made by examination using SNP.
  • diagnosis is based on an inquiry. Unlike in the case of visceral diseases such as digestive organs, the diseases of the neuropsychiatric region cannot collect the brain tissue of the patient for examination and cannot be diagnosed by tissue biopsy. Although one depressive symptom may be a different disease, most of the diseases have been diagnosed by a doctor's inquiry, and establishment of an objective test method is desired.
  • Schizophrenia is a psychotic disorder that often develops from late adolescence to adolescence and has a chronic course.
  • the symptoms of schizophrenia are diverse, and many diseases exhibit similar symptoms such as mood disorders, and differential diagnosis is difficult especially for early symptoms.
  • Schizophrenia is a disease that can be expected to have a favorable prognosis if it is diagnosed and treated as accurately as possible at the earliest stage, and early diagnosis is desired. If there is a means for objectively making an auxiliary diagnosis in addition to the inquiry, it is possible to make a reliable diagnosis early.
  • Non-patent Reference 2 Non-patent Reference 2
  • Patent Document 1 is a test kit in which gene expression levels are comprehensively examined by a DNA microarray, and those having a change compared with healthy subjects are selected. Although the analysis was performed using samples from 5 acute patients, 12 chronic patients, and 9 healthy subjects, the number of samples in each group used in the analysis was small, and the gene expression level was the subject's health condition and environmental factors. Since it is highly likely to be affected by such factors, it is considered that the diagnostic accuracy is low.
  • Non-Patent Document 3 is an attempt to use a plurality of gene polymorphisms obtained by comprehensive gene analysis (Genome-Wide Association Study, GWAS) as a polymorphism risk for auxiliary diagnosis of schizophrenia and bipolar disorder.
  • GWAS Gene-Wide Association Study
  • each of the candidate genes has a very low effective dose, and there is a big problem in its validity. None of the results have been put to practical use, and new test methods and test kits are required.
  • various markers for examining morbidity risk have been proposed, but none of them has been put into practical use.
  • the present invention provides a new test method using a combination of a plurality of SNPs that cause a quantitative or qualitative change in gene expression as a disease marker.
  • An object of the present invention is to provide a method, a test chip, and a test kit for testing the risk of morbidity of a multifactorial genetic disease, which has been difficult to predict the risk of morbidity. It is another object of the present invention to provide a test method and a test kit for assisting diagnosis in diseases in the neuropsychiatric field for which there is no objective diagnostic criterion.
  • the present invention relates to an inspection method and an inspection kit for the following diseases.
  • the multifactorial genetic diseases include schizophrenia, bipolar disorder, mood disorders, addictive disorders, autism spectrum disorders, attention deficit/hyperactivity disorder, Alzheimer's disease, as neuropsychiatric disorders.
  • Narcolepsy, panic disorder, social anxiety disorder, obsessive-compulsive disorder, general anxiety disorder, eating disorder, personality tendency and disorder, and other areas of disease include diabetes, hypertension, ischemic heart disease, and NASH (non-alcoholic steatohepatitis).
  • the SNP is a functional polymorphism involved in dopamine fluctuation.
  • the functional polymorphisms involved in the fluctuation of dopamine are gene polymorphisms of tyrosine hydroxylase (TH) gene, catechol-O-methyltransferase (COMT) gene, and dopamine D2 receptor (DRD2) gene.
  • TH tyrosine hydroxylase
  • COMP catechol-O-methyltransferase
  • D2 receptor D2 receptor
  • a DNA of interest is analyzed for rs10770141, rs4680, and rs1800497, which are functional SNPs, and at least two of T(+) for rs10770141, Met( ⁇ ) for rs4680, and A1(+) for rs1800497 are combined. If you have schizophrenia, or you are at high risk of morbidity, if you have all three, you have bipolar disorder or you are at high risk of morbidity To test for schizophrenia and bipolar disorder.
  • a method for examining a patient suspected of schizophrenia which comprises analyzing the DNA of a target for functional SNPs rs10770141, rs4680, and rs1800497.
  • Is a T(+), or rs4680 has a combination of Met( ⁇ ) and rs1800497 has a combination of A1(+), a method of determining that the possibility of schizophrenia is high.
  • a method for assisting the dose determination of an antipsychotic drug in a schizophrenic patient by analyzing functional SNPs rs10770141, rs4680, and rs1800497.
  • It is recommended that patients with T(+) rs10770141 and Met( ⁇ ) rs4680 study high-dose dopamine receptor blockers.
  • Assist the dose determination of antipsychotic drugs Method.
  • a method for diagnosing a disease in a neuropsychiatric region which comprises examining functional SNPs of at least two or more genes known to be involved in a multifactorial genetic disease and sickness of the disease due to the functional SNP.
  • a diagnostic method that refers to and diagnoses risks.
  • the test method described in any one of (1) to (7) determines that the risk of developing a multifactorial genetic disease is high, administration of a prophylactic drug or non-drug therapy Preventive methods to suppress the onset.
  • the term “functional SNP” refers to an SNP existing in a gene region or its regulatory region, which causes some change such as increase/decrease in gene expression or qualitative change in translated protein. ..
  • the functional SNP in a certain disease includes not only a functional SNP directly involved in the disease but also a functional SNP of a gene group involved in the disease such as a signal transduction system or an enzyme cascade that is clearly involved in the disease.
  • a functional SNP of a gene group involved in the disease such as a signal transduction system or an enzyme cascade that is clearly involved in the disease.
  • a signal transduction system or an enzyme cascade that is clearly involved in the disease.
  • dopamine nervous system not only dopamine nervous system but also serotonin nervous system, noradrenaline nervous system, and other proteins related to other neurotransmission systems that have been reported to be involved in schizophrenia, and functional SNPs of proteins that will be found in the future. Can be included.
  • oligonucleotides complementary to a plurality of SNPs to be detected may be directly immobilized on a substrate, or may be immobilized on a carrier such as beads and then retained on the substrate.
  • Nucleic acid may be extracted from the blood of a patient and hybridized by a conventional method to detect the double-stranded nucleic acid.
  • a plurality of SNPs to be detected may be simultaneously detected by a known inspection method using PCR such as the invader method and the real-time PCR method.
  • a functional SNP capable of testing other diseases may also be fixed to one test chip so that a plurality of diseases can be tested at the same time.
  • test kit can include a primer for detecting functional SNPs, a reagent for use in PCR, or the above-mentioned test chip and necessary reagents.
  • the present invention will be described focusing on schizophrenia, but the analysis method using a combination of “functional SNPs” is effective for other diseases, particularly multifactorial genetic diseases.
  • schizophrenia, mood disorders, addictive diseases, diabetes, hypertension, and hyperlipidemia are diseases that have many patients all over the world, and early diagnosis and prevention are desired.
  • the combination of functional polymorphisms of genes is inherent and can be predicted before the onset, and of course, the prognosis and progress of the disease can be predicted without being affected by the condition and stage of the disease. In particular, being able to predict the risk of morbidity before onset is a very important test from the viewpoint of prevention.
  • Dopamine is synthesized by tyrosine hydroxylase (Tyrosine Hydroxylase, TH) and released into the synaptic cleft.
  • the dopamine released in the synaptic cleft is decomposed by catechol-O-methyltransferase (COMT) or reintroduced into the cell by the dopamine transporter (DAT).
  • DAT dopamine transporter
  • D2 dopamine D2 receptor
  • Non-patent Documents 7 and 8 In schizophrenia, it has been suggested that dopamine release is enhanced at nerve endings in limbic dopaminergic nerves and dopamine concentration in synaptic cleft is increased.
  • the group in which the positive symptoms are improved by the antipsychotic drug has an increased dopamine synthetic ability, and in the group that does not improve the synthetic ability is equivalent to that of a healthy person (non-patent document 9), and dopamine.
  • synthetic ability and dopamine concentration in the synaptic cleft are involved in symptoms and treatment responsiveness to antipsychotic drugs.
  • TH, COMT, and DRD2 proteins known to have functional polymorphisms.
  • Schizophrenia is formed by the repetitive hyperactivity and elimination of dopaminergic function. It is believed that this is a mechanism similar to psychosis that occurs with repeated administration of dopamine antagonists. Therefore, the risk of developing schizophrenia was examined using a gene set having a high correlation with the risk of developing DSP.
  • the SNP used is a polymorphism of the TH gene promoter region, COMT gene, DRD2 gene (Table 1). Specifically, C-824T gene polymorphism in the TH gene promoter region, polymorphism in which Val at position 158 of COMT gene is replaced with Met, -141C Ins/Del polymorphism in DRD2 gene, Taq1A polymorphism in ANKK1 gene is there.
  • the ANKK1 (the ankyrin repeat and kinase domain maintaining 1) gene is a gene close to the DRD2 gene, and the Taq1A polymorphism of ANKK1 is a polymorphism suggested to be associated with the DRD2 density.
  • Non-Patent Documents 10 to 13 We analyzed whether polymorphisms of these three genes are involved in schizophrenia risk.
  • dopamine neurotransmitter activity indicates dopamine neurotransmitter activity, from the left, high and low levels of dopamine synthesis, high and low levels of dopamine degradation, high and low receptor expression, specific combinations of polymorphisms, schizophrenia, number of healthy individuals, The appearance frequency and the appearance frequency ratio are summarized.
  • Table 4 shows the results of calculating the odds ratio by comparing the case of T(+), Met( ⁇ ), which is A1(+), or Del(+), with other combinations.
  • the odds ratio was 6.5 (p ⁇ 0.029), resulting in a high rate. The result was that they were prone to schizophrenia.
  • the P value was 0.00357 in the one-sided test, 0.00296 in the two-sided test, and the P-value was corrected by Bonferroni's method when the gene polymorphism was present.
  • the results were 0.02856 and 0.02368, which indicates that schizophrenia was significantly more likely to occur.
  • the risk of developing DSP increases (Non-Patent Document 4).
  • the DSP onset risk does not completely match the onset risk of schizophrenia because the onset risk increases not only in the combination of the above SNPs but also in other combinations.
  • a person with this combination has the following dopamine neurotransmission function.
  • a person with a functional SNP of this combination has a high ability to synthesize dopamine by the TH gene, and thus a large amount of dopamine is synthesized due to stress or the like.
  • DRD2 since DRD2 is low-expressed, release inhibition is less likely to occur, and a large amount of dopamine is released in the synaptic cleft.
  • the dopamine decomposing ability by COMT is high, there is a possibility that the dopamine has a dopamine transmitting function of being immediately decomposed.
  • the person with this combination has a dopamine neurotransmission function in which the dopaminergic nerve activity is rapidly enhanced and disappears naturally, and it is considered that repeated stress causes sensitization and manifests schizophrenia. This is consistent with the conventional pathological hypothesis of schizophrenia, and it is possible to select an appropriate treatment method, and it is highly likely to lead to the development of a prevention method.
  • antipsychotic drugs which are DRD2 blockers.
  • antipsychotic treatment it is considered that there is an optimal DRD2 occupancy rate by the antipsychotic and that there is an optimal dose for each antipsychotic.
  • the function of the gene is changed by the functional SNP, it is considered that the effect of the antipsychotic drug is also affected. Therefore, the correlation between functional SNP and antipsychotic dose was analyzed.
  • the chlorpromazine equivalent which is the value obtained by converting the prescribed amount of the prescribed oral drug into chlorpromazine, is used as a standard, so it was decided to analyze the correlation between the chlorpromazine equivalent and SNP.
  • the CP equivalent conversion tended to be high for T(+) for TH and Met(-) for COMT.
  • the result that the CP equivalent conversion amount was significantly high was obtained in the combination of T(+) of TH and Met( ⁇ ) of COMT (p ⁇ 0.05).
  • the CP equivalent conversion amount also tended to be high in the combination of T(+) of TH and A1(-) of TaqIA.
  • Antipsychotics do not exert antipsychotic effects at low doses.
  • overdose of antipsychotic drugs causes side effects such as extrapyramidal symptoms, depression, and discomfort, resulting in decreased medication adherence and recurrence, leading to a poor long-term prognosis.
  • overdose causes a compensatory increase in DRD2, induces dopamine hypersensitivity psychosis, and develops treatment resistance. While a biological index is needed to provide the optimal dose for each individual, it is also possible to use a combination of functional SNPs as a guide for determining the optimal dose.
  • the odds ratio of each SNP calculated by correlating with schizophrenia for age and sex is 1.24 for rs4680 (Met(-)) and 1 for rs1800497(A1(+)). 0.73 and rs10770141(T(+)) were 1.79, which were both significant.
  • the odds ratios of two genetic risk carriers were 2.01 respectively. A significant difference was observed with 1.87.
  • rs4680(Met(-)) has 53.0%
  • rs1800497(A1(+)) has 62.1%
  • rs10770141(T(+)) has 13.7%
  • all of these risk factors was 3.3%.
  • rs4680(Met( ⁇ )) was 38.8%
  • rs1800497(A1(+)) was 48.8%
  • rs10770141(T(+)) was 1.2%. 1.2% had all risk factors.
  • schizophrenia has a pre-symptomatic stage (at risk mental state, ARMS) or a pre-symptomatic phase called attenuated psychosis syndrome in the American Psychiatric Association diagnostic criteria DSM-5 before the onset of schizophrenia.
  • ARMS may develop not only schizophrenia but also bipolar disorder, and it is said that diagnosis of both diseases is often wrong even after the onset.
  • ARMS has been reported to be effective for some antipsychotic drugs, family intervention, and omega-3 fatty acids, and there is a high risk of developing schizophrenia by testing SNPs at the ARMS stage, or If it is possible to judge whether the risk of developing bipolar disorder is high, more appropriate measures can be taken.
  • Bipolar disorder known to have genetic factors other than schizophrenia, autism and ADHD, social anxiety disorder, dementia, etc. if functional SNPs can be used for testing, medication, family It is possible to take appropriate measures early or before the onset, such as intervention of.
  • psychiatric diseases become less responsive to antipsychotic drugs when the time from the onset of symptoms to the start of treatment becomes longer.
  • diagnosis is difficult in the early stage of onset, for example, it is difficult to distinguish bipolar disorder from schizophrenia.
  • the test using the functional SNP can obtain information that assists the diagnosis, and thus an appropriate treatment method can be selected earlier.
  • BP Bipolar disorder
  • CNT healthy person
  • serotonin transporter gene 5HTLTPR (l/s), serotonin 5HT 1A receptor gene 5HTR1 (C-1019G, Gly272Asp), serotonin 5HT 2A receptor gene 5HTR2A (T102C, A-1438G), tryptophan synthase TPH1.
  • functional dependent SNPs such as opioid receptor gene OPRM1 (A11G) are known in addition to gene polymorphisms of dopamine neurotransmission system in dependent diseases such as gene polymorphism of dopamine neurotransmission system (non-patent document 18 ⁇ 19), by combining these SNPs, morbidity risk can be similarly examined.
  • the analysis method shown here is a method capable of analyzing the morbidity risk of a multifactorial genetic disease by combining and analyzing the functional SNPs reported so far. , It is a very versatile analysis method.

Abstract

The present invention can be used as a method for testing for the risk of morbidity or for a disease from a functional polymorphism (functional SNP) of a gene of a functional protein which is assumed to be abnormal or responsible for the disease. Since the risk of morbidity for a multifunctional genetic disease can be tested by analyzing a functional SNP, the present invention can be used to assist diagnosis and prevent the disease. Provided are a method, testing chip, and testing kit for testing functional SNPs.

Description

多因子遺伝疾患の遺伝子検査法、及び検査キットGenetic test method and test kit for multifactorial genetic diseases
 機能が知られている複数のSingle Nucleotide Polymorphism(一塩基多型、以下SNPと記載する。)を用いて多因子遺伝疾患の罹患リスクを検査する方法、補助診断方法、検査チップ及び検査キットに関する。 The present invention relates to a method for testing a morbidity risk of a multifactorial genetic disease using a plurality of Single Nucleotide Polymorphisms (single nucleotide polymorphism, hereinafter referred to as SNP), an auxiliary diagnostic method, a test chip and a test kit.
 ある生物集団のゲノムの塩基配列中の一塩基が変異した多様性をSNPと呼ぶ。SNPは多くの場合、ゲノムDNAにおいて、遺伝子領域やその制御調節領域外に存在し、遺伝的な特徴の変化をもたらさない。しかし、遺伝子上のマーカーとなり得るものがあるため、SNPを解析しその頻度を比較する研究が多数行われている。 ∙ Diversity in which one base in the base sequence of the genome of a certain biological population is mutated is called SNP. In many cases, SNPs are present outside the gene region and their regulatory regions in genomic DNA, and do not cause changes in genetic characteristics. However, there are many studies that analyze SNPs and compare their frequencies because some of them can serve as genetic markers.
 例えば、病気のかかりやすさや薬の副作用の有無などと関連するSNPをマーカーとして使い、その頻度を比較する研究が行われている。日本では、肺がん、乳がんなどの悪性腫瘍や、心不全、心筋梗塞などの心血管系疾患をはじめとする35疾患の日本人患者集団における疾患毎のSNP頻度と日本人の標準的なSNP頻度情報が比較研究され公開されている(JSNPデータベース、URL:http://snp.ims.u-tokyo.ac.jp/index_ja.html)。 For example, studies have been conducted to compare the frequency of SNPs used as markers, which are related to the susceptibility to illness and the side effects of drugs. In Japan, the SNP frequency for each disease in the Japanese patient population of 35 diseases including malignant tumors such as lung cancer and breast cancer, and cardiovascular diseases such as heart failure and myocardial infarction, and standard SNP frequency information of the Japanese are available. Comparative research has been published (JSNP database, URL: http://snp.ims.u-tokyo.ac.jp/index_ja.html).
 これら疾患に関連することが明らかであるSNPは、連鎖解析や関連解析によって、疾患関連遺伝子を特定するマーカーとしての応用が提案されている。これら疾患と関連のあるSNPは、遺伝子発現などの変化をもたらさない中立なものも多いが、遺伝子発現量、タンパク質の質的な変化、non-coding RNAの変化など、疾患関連遺伝子の発現や性質に影響を及ぼす機能的SNP(functional SNP)と呼ばれるSNPがあることが知られている(非特許文献1)。 -SNPs that are clearly associated with these diseases have been proposed for application as markers that identify disease-related genes by linkage analysis and association analysis. Many SNPs associated with these diseases do not cause changes such as gene expression, but the expression and properties of disease-related genes such as gene expression levels, qualitative changes in proteins, and changes in non-coding RNA. It is known that there is a SNP called a functional SNP (functional SNP) that influences (non-patent document 1).
 現在のところ、SNPと疾患との関連が明らかになってきてはいるものの、疾患の診断、罹患リスクを解析するマーカーとして実用化されている機能的SNPはない。さらに、多因子遺伝疾患では、関与すると考えられている遺伝子自体が複数存在することから、単一の機能的SNPによって罹患リスクを判断することが非常に難しい。 Currently, although the relationship between SNPs and diseases has been clarified, there is no functional SNP that has been put to practical use as a marker for diagnosing diseases and analyzing risk of morbidity. Moreover, in multifactorial genetic diseases, it is very difficult to judge the risk of morbidity by a single functional SNP, because there are multiple genes themselves that are considered to be involved.
 多因子遺伝疾患は複数の遺伝的な素因に加えて、環境要因などいくつもの要因が重なって発症する疾患である。複数の遺伝的な素因に加えて環境要因が発症に関与することから、罹患リスクを予測することは難しいと考えられている。しかしながら、予め罹患リスクを予測することができれば、疾患の環境要因を取り除くなど、種々の方法により発症を抑えることが可能である。その結果として、罹患者数を減少させることも可能となる。 Multifactorial genetic disease is a disease that is caused by multiple factors such as environmental factors in addition to multiple genetic predispositions. It is considered difficult to predict morbidity risk because environmental factors are involved in onset in addition to multiple genetic predispositions. However, if the morbidity risk can be predicted in advance, the onset can be suppressed by various methods such as removing the environmental factors of the disease. As a result, it is possible to reduce the number of affected persons.
 多因子遺伝疾患としては、糖尿病、高血圧、虚血性心疾患、NASH(非アルコール性脂肪肝炎)、関節リウマチ、痛風、悪性腫瘍など種々の疾患が挙げられる。また、精神神経科領域の疾患では、統合失調症、気分障害(双極性障害、大うつ病性障害など)、依存性疾患、自閉スペクトラム症、注意欠陥・多動性障害、アルツハイマー病、ナルコレプシー、パニック障害、社交不安障害、強迫性障害、全般性不安障害、摂食障害、人格傾向及び障害などが多因子遺伝疾患であると考えられている。これら疾患の遺伝的背景については分からない点も多いが、複数の遺伝的素因が存在すると考えられている。これら多因子遺伝疾患の罹患リスクを予め知ることができれば、環境要因を減じることにより、罹患リスクを低減することができる。 Multifactorial genetic diseases include various diseases such as diabetes, hypertension, ischemic heart disease, NASH (non-alcoholic steatohepatitis), rheumatoid arthritis, gout, and malignant tumors. In neuropsychiatric disorders, schizophrenia, mood disorders (bipolar disorder, major depressive disorder, etc.), addictive diseases, autism spectrum disorders, attention deficit/hyperactivity disorder, Alzheimer's disease, narcolepsy , Panic disorder, social anxiety disorder, obsessive-compulsive disorder, generalized anxiety disorder, eating disorder, personality tendency and disorder are considered to be multifactorial diseases. Although the genetic background of these diseases remains largely unknown, it is believed that there are multiple genetic predispositions. If the morbidity risk of these multifactorial diseases can be known in advance, the morbidity risk can be reduced by reducing the environmental factors.
 さらに、精神神経科領域の疾患は、SNPを用いた検査によって、補助診断を行うことができれば、非常に有用であると考えられている。精神神経科領域の疾患では、問診によって診断を行うのが基本となっている。精神神経科領域の疾患は、消化器などの内臓疾患の場合とは異なり、患者の脳組織を検査のために採取することはできず、組織生検によって診断を行うことができない。うつ症状一つをとっても異なる疾患である可能性があるが、多くは医師の問診などによって疾患の診断がなされており、客観的な検査方法の確立が望まれている。 Furthermore, diseases in the field of neuropsychiatry are considered to be extremely useful if an auxiliary diagnosis can be made by examination using SNP. In the field of psychiatry and neurology, diagnosis is based on an inquiry. Unlike in the case of visceral diseases such as digestive organs, the diseases of the neuropsychiatric region cannot collect the brain tissue of the patient for examination and cannot be diagnosed by tissue biopsy. Although one depressive symptom may be a different disease, most of the diseases have been diagnosed by a doctor's inquiry, and establishment of an objective test method is desired.
 例えば、統合失調症は、100人に1人が罹患すると言われており、不安障害、うつ病に続いて患者数が多く、日本では79.5万人の患者がいると推定されている(厚生労働省、2008年患者調査)。統合失調症は、多くは思春期後半から青年期に発症し、慢性的な経過をたどる精神病性障害である。統合失調症の病像は多様であり、気分障害など似た症状を呈する疾患も多く、特に初期症状においては鑑別診断が難しい。統合失調症は発症からなるべく早い段階で正確な診断を行い治療すれば、良好な予後が期待できる病気であり、早期の診断が望まれている。問診に加えて客観的に補助診断を行う手段があれば、早期に確実な診断を行うことが可能となる。 For example, schizophrenia is said to affect 1 in 100 people, and the number of patients is high following anxiety and depression, and it is estimated that there are 79.5 million patients in Japan ( Ministry of Health, Labor and Welfare, 2008 patient survey). Schizophrenia is a psychotic disorder that often develops from late adolescence to adolescence and has a chronic course. The symptoms of schizophrenia are diverse, and many diseases exhibit similar symptoms such as mood disorders, and differential diagnosis is difficult especially for early symptoms. Schizophrenia is a disease that can be expected to have a favorable prognosis if it is diagnosed and treated as accurately as possible at the earliest stage, and early diagnosis is desired. If there is a means for objectively making an auxiliary diagnosis in addition to the inquiry, it is possible to make a reliable diagnosis early.
 また、統合失調症に移行しやすいハイリスク群では抗精神病薬やオメガ3脂肪酸投与、認知行動療法、家族療法によって、統合失調症への移行が大きく抑制されることも報告されており(非特許文献2)、ハイリスク群を早期に特定することは統合失調症の予防のうえでも大きなメリットがある。他の多因子遺伝疾患も早期にハイリスク群を特定することができれば、予防対策を行うことのできる疾患が多いことから、疾患発症の抑制につながるものと考えられる。 It has also been reported that antipsychotics, omega-3 fatty acid administration, cognitive behavioral therapy, and family therapy significantly suppress the transition to schizophrenia in the high-risk group who are prone to schizophrenia (Non-patent Reference). Reference 2), early identification of high-risk groups has a great merit in preventing schizophrenia. For other multifactorial genetic diseases, if the high-risk group can be identified at an early stage, many diseases can be taken preventive measures, and it is considered that the onset of the diseases can be suppressed.
特開2004-135667号公報JP 2004-135667 A
 以下に実施例として解析例を挙げる統合失調症に関しては、検査キットや補助診断方法がすでに開示されている(特許文献1、非特許文献3)。特許文献1は、DNAマイクロアレイで遺伝子発現レベルを網羅的に調べて健常者と比較して変化のあったものを選択して検査キットとしたものである。急性患者5名、慢性患者12名、健常者9名のサンプルを用いて解析しているものの、解析に用いている各群のサンプル数が少なく、遺伝子発現レベルは対象者の健康状態や環境要因などにも影響を受ける可能性が高いことから、診断精度は低いものと考えられる。非特許文献3は、網羅的遺伝子解析(Genome-Wide Association Study、GWAS)によって得られた複数の遺伝子多型を多型リスクとして統合失調症や双極性障害の補助診断に用いる試みである。しかしながら、候補となっている遺伝子はいずれも効果量が非常に低いものであり、妥当性に大きな問題がある。いずれの結果も実用化されておらず、新たな検査方法、検査キットが求められている。上記で挙げた多因子遺伝疾患に関しても、罹患リスクを検査するための種々のマーカーが提案されているがいずれも実用化にはいたっていない。 Regarding schizophrenia whose analysis examples are shown below as examples, test kits and auxiliary diagnosis methods have already been disclosed (Patent Document 1, Non-Patent Document 3). Patent Document 1 is a test kit in which gene expression levels are comprehensively examined by a DNA microarray, and those having a change compared with healthy subjects are selected. Although the analysis was performed using samples from 5 acute patients, 12 chronic patients, and 9 healthy subjects, the number of samples in each group used in the analysis was small, and the gene expression level was the subject's health condition and environmental factors. Since it is highly likely to be affected by such factors, it is considered that the diagnostic accuracy is low. Non-Patent Document 3 is an attempt to use a plurality of gene polymorphisms obtained by comprehensive gene analysis (Genome-Wide Association Study, GWAS) as a polymorphism risk for auxiliary diagnosis of schizophrenia and bipolar disorder. However, each of the candidate genes has a very low effective dose, and there is a big problem in its validity. None of the results have been put to practical use, and new test methods and test kits are required. Regarding the above-mentioned multifactorial genetic diseases, various markers for examining morbidity risk have been proposed, but none of them has been put into practical use.
 上述のように、多因子遺伝疾患は、遺伝的素因だけではなく、環境因子も発症に重要な影響を与えることから、罹患リスクが高い場合には、発症リスクと関連の高い環境要因を避ける、予防薬の服用など発症の抑止に務めることができる。また、予め疾患の罹患リスクが高いことが分かっていれば、定期的な検査を行い、早期に適切な治療を受けることが可能となる。しかしながら、罹患リスクを予測する有効なマーカーは開発されていない。 As described above, in a multifactorial genetic disease, not only the genetic predisposition but also environmental factors have an important influence on the onset, so when the morbidity risk is high, avoid the environmental factors highly associated with the onset risk, Can be used to prevent the onset of symptoms such as taking prophylactic drugs. Further, if it is known in advance that the disease risk is high, it is possible to perform regular examinations and receive appropriate treatment early. However, effective markers for predicting morbidity risk have not been developed.
 今までSNPを検査マーカーとして使用する場合には、単一遺伝子に存在するマーカーについて検討がなされていた。また、機能的SNPのみを対象として疾患との関連を検討し、罹患リスクを解析した例はない。本発明は、疾患のマーカーとして、遺伝子発現に量的、あるいは質的な変化をもたらす複数のSNPを組み合わせて用いる新しい検査方法を提供する。本発明は、これまで罹患リスクを予測することが難しかった多因子遺伝疾患の罹患リスクを検査する方法、検査チップ、検査キットを提供することを課題とする。また、客観的な診断基準のなかった精神神経科領域の疾患において、診断を補助する検査方法、検査キットを提供することを課題とする。 Until now, when SNPs were used as test markers, studies were conducted on markers that existed in a single gene. In addition, there is no example in which the risk of morbidity was analyzed by examining the relationship with a disease only for functional SNPs. The present invention provides a new test method using a combination of a plurality of SNPs that cause a quantitative or qualitative change in gene expression as a disease marker. An object of the present invention is to provide a method, a test chip, and a test kit for testing the risk of morbidity of a multifactorial genetic disease, which has been difficult to predict the risk of morbidity. It is another object of the present invention to provide a test method and a test kit for assisting diagnosis in diseases in the neuropsychiatric field for which there is no objective diagnostic criterion.
 本発明は、以下の疾患の検査方法、検査キットに関する。
(1)多因子遺伝疾患に関与することが知られている少なくとも2つ以上の遺伝子の機能的SNPを用いて多因子遺伝疾患の罹患リスク、又は診断を補助する検査方法。
(2)前記多因子遺伝疾患が、精神神経科領域の疾患としては、統合失調症、双極性障害、気分障害、依存性疾患、自閉スペクトラム症、注意欠陥・多動性障害、アルツハイマー病、ナルコレプシー、パニック障害、社交不安障害、強迫性障害、全般性不安障害、摂食障害、人格傾向及び障害、他領域の疾患としては、糖尿病、高血圧、虚血性心疾患、NASH(非アルコール性脂肪肝炎)、関節リウマチ、痛風、悪性腫瘍であることを特徴とする(1)記載の検査方法。
(3)前記多因子遺伝疾患が、統合失調症、又は双極性障害であることを特徴とする(1)、又は(2)記載の検査方法。
(4)前記SNPがドパミンの変動に関与する機能多型であることを特徴とする(3)記載の検査方法。
(5)前記ドパミンの変動に関与する機能多型が、チロシン水酸化酵素(TH)遺伝子、カテコール-O-メチル転移酵素(COMT)遺伝子、及びドパミンD2受容体(DRD2)遺伝子の遺伝子多型であることを特徴とする(4)記載の検査方法。
(6)前記機能的SNPが、rs10770141、rs4680、rs1799732、及びrs1800497であることを特徴とする(4)、又は(5)記載の検査方法。
(7)(6)に記載の機能的SNPに加えて、rs2070762、rs6356、rs921451、rs3837091、rs1079597、rs1076560、rs6277、rs1799836、rs1040399、DAT1 Promoter -67A/T、DAT1 40-bp variable number of tandem repeatsの少なくともいずれか1つを含むことを特徴とする検査方法。
(8)(1)~(7)いずれか1つに記載の多因子遺伝疾患の罹患リスク、又は診断を補助する検査に用いる検査チップであって、多因子遺伝疾患に関与することが知られている複数の遺伝子の機能的SNPが検出可能に保持されている検査チップ。
(9)多因子遺伝疾患の罹患リスク、又は診断を補助する検査に用いる検査キットであって、(1)~(7)いずれか1つに記載の検査に用いるプライマー及び検査に必要な試薬、又は(8)の検査チップ及び検査に必要な試薬を含む検査キット。
(10)機能的SNPであるrs10770141、rs4680、及びrs1800497について対象のDNAを解析し、rs10770141がT(+)、rs4680がMet(-)、rs1800497がA1(+)の少なくともいずれか2つを組合せて有している場合には統合失調症である、あるいは罹患リスクの可能性が高く、3つすべてを有している場合には双極性障害である、あるいは罹患リスクの可能性が高いと判定する統合失調症と双極性障害の検査方法。
(11)統合失調症が疑われる患者の検査方法であって、機能的SNPであるrs10770141、rs4680、及びrs1800497について対象のDNAを解析し、対象の年齢が30歳以下である場合には、rs10770141がT(+)であるか、rs4680がMet(-)、rs1800497がA1(+)の組合せを有している場合には統合失調症の可能性が高いと判定する検査方法。
(12)機能的SNPであるrs10770141、rs4680、及びrs1800497を解析することにより、統合失調症患者の抗精神病薬の投与量決定を補助する方法。
(13)rs10770141がT(+)かつrs4680がMet(-)の患者には高用量のドパミン受容体遮断薬の投与の検討を推奨する(12)記載の抗精神病薬の投与量決定を補助する方法。
(14)精神神経科領域の疾患を診断する方法であって、多因子遺伝子疾患に関与することが知られている少なくとも2つ以上の遺伝子の機能的SNPを検査し、機能的SNPによる疾患罹患リスクを参照して診断する診断方法。
(15)前記精神神経科領域の疾患が、統合失調症、又は双極性障害であり、前記機能的SNPがドパミンの変動に関与する機能多型である(14)記載の診断方法。
(16)(1)~(7)のいずれか1つに記載の検査方法によって、多因子遺伝疾患を発症するリスクが高いと判断された場合には、予防薬の投与、又は非薬物療法により発症を抑制する予防方法。
(17)(1)~(7)のいずれか1つに記載の検査方法によって、多因子遺伝疾患を鑑別診断し、治療薬を投与又は非薬物療法を行う治療方法。
The present invention relates to an inspection method and an inspection kit for the following diseases.
(1) A test method for assisting a morbidity risk or diagnosis of a multifactorial genetic disease by using a functional SNP of at least two or more genes known to be involved in the multifactorial genetic disease.
(2) The multifactorial genetic diseases include schizophrenia, bipolar disorder, mood disorders, addictive disorders, autism spectrum disorders, attention deficit/hyperactivity disorder, Alzheimer's disease, as neuropsychiatric disorders. Narcolepsy, panic disorder, social anxiety disorder, obsessive-compulsive disorder, general anxiety disorder, eating disorder, personality tendency and disorder, and other areas of disease include diabetes, hypertension, ischemic heart disease, and NASH (non-alcoholic steatohepatitis). ), Rheumatoid arthritis, gout, and malignant tumor.
(3) The test method according to (1) or (2), wherein the multifactorial genetic disease is schizophrenia or bipolar disorder.
(4) The test method according to (3), wherein the SNP is a functional polymorphism involved in dopamine fluctuation.
(5) The functional polymorphisms involved in the fluctuation of dopamine are gene polymorphisms of tyrosine hydroxylase (TH) gene, catechol-O-methyltransferase (COMT) gene, and dopamine D2 receptor (DRD2) gene. (4) The inspection method according to (4).
(6) The inspection method according to (4) or (5), wherein the functional SNPs are rs10770141, rs4680, rs1799732, and rs1800497.
(7) In addition to the functional SNP according to (6), rs2070762, rs6356, rs921451, rs3837091, rs1079597, rs1076560, rs6277, rs1799836, rs1040399, DAT1 Promoter -67A / T, DAT1 40-bp variable number of tandem repeats An inspection method comprising at least one of the above.
(8) A test chip for use in a test for assisting the morbidity risk or diagnosis of the multifactorial genetic disease according to any one of (1) to (7), which is known to be involved in the multifactorial genetic disease. A test chip in which functional SNPs of a plurality of genes are retained in a detectable manner.
(9) A test kit used for a test for assisting a morbidity risk of a multifactorial genetic disease or a diagnosis, wherein the primer used for the test according to any one of (1) to (7) and a reagent necessary for the test, Alternatively, an inspection kit including the inspection chip of (8) and a reagent necessary for the inspection.
(10) A DNA of interest is analyzed for rs10770141, rs4680, and rs1800497, which are functional SNPs, and at least two of T(+) for rs10770141, Met(−) for rs4680, and A1(+) for rs1800497 are combined. If you have schizophrenia, or you are at high risk of morbidity, if you have all three, you have bipolar disorder or you are at high risk of morbidity To test for schizophrenia and bipolar disorder.
(11) A method for examining a patient suspected of schizophrenia, which comprises analyzing the DNA of a target for functional SNPs rs10770141, rs4680, and rs1800497. Is a T(+), or rs4680 has a combination of Met(−) and rs1800497 has a combination of A1(+), a method of determining that the possibility of schizophrenia is high.
(12) A method for assisting the dose determination of an antipsychotic drug in a schizophrenic patient by analyzing functional SNPs rs10770141, rs4680, and rs1800497.
(13) It is recommended that patients with T(+) rs10770141 and Met(−) rs4680 study high-dose dopamine receptor blockers. (12) Assist the dose determination of antipsychotic drugs. Method.
(14) A method for diagnosing a disease in a neuropsychiatric region, which comprises examining functional SNPs of at least two or more genes known to be involved in a multifactorial genetic disease and sickness of the disease due to the functional SNP. A diagnostic method that refers to and diagnoses risks.
(15) The diagnostic method according to (14), wherein the disease in the neuropsychiatric region is schizophrenia or bipolar disorder, and the functional SNP is a functional polymorphism involved in dopamine fluctuation.
(16) If the test method described in any one of (1) to (7) determines that the risk of developing a multifactorial genetic disease is high, administration of a prophylactic drug or non-drug therapy Preventive methods to suppress the onset.
(17) A treatment method for differentially diagnosing a multifactorial genetic disease by the test method according to any one of (1) to (7), and administering a therapeutic drug or non-pharmacotherapy.
ドパミン合成、分解を模式的に示す図。The figure which shows typically dopamine synthesis and decomposition. 機能的SNPsと抗精神病薬用量との関係を示す図。The figure which shows the relationship between functional SNPs and antipsychotic drug dose.
 従来は、網羅的に遺伝子解析を行い、疾患と関連するSNPを探すという方法が取られていた。これに対し、本発明者らは、疾患において「責任がある(又は異常がある)と想定されている機能」は、その機能発現に必要な構成タンパク質の遺伝子の機能多型の組み合わせによって影響を受けると仮定し、機能多型の解析を行った。この方法は、疾患に関連する遺伝子の機能多型により罹患リスクを解析する方法であることから、疾患に関与すると想定される機能の生来の特徴、又は異常と関連付けることになる。したがって、その疾患の病理や病態を説明することが可能となり、患者個々に適切な予防法や治療法を選択できる可能性が高い。 Previously, a method of comprehensively analyzing genes to find SNPs associated with a disease was used. On the other hand, the present inventors have found that the “function that is assumed to be responsible (or abnormal)” in a disease is affected by the combination of functional polymorphisms of the constituent protein genes required for the expression of the function. Assuming that they received it, we performed functional polymorphism analysis. Since this method is a method of analyzing the risk of morbidity based on the functional polymorphism of a gene associated with a disease, it will be associated with an innate characteristic or abnormality of a function that is supposed to be involved in the disease. Therefore, it becomes possible to explain the pathology and pathological condition of the disease, and there is a high possibility that an appropriate preventive method or therapeutic method can be selected for each patient.
 本明細書において、「機能的SNP」とは、遺伝子領域やその制御調節領域に存在するSNPであって、遺伝子発現の増減や翻訳されるタンパク質の質的変化など、何らかの変化を及ぼすものを指す。ある疾患における機能的SNPとは、その疾患に直接関与する機能的SNPだけではなく、関与することが明らかなシグナル伝達系、酵素カスケードなど、疾患に関与する遺伝子群の機能的SNPを含む。以下に例として示す統合失調症の場合には、ドパミン合成能、分解能、またその受容体であるドパミンD2受容体(Dopamine D2 Receptor、DRD2)の密度に関与する遺伝子領域、その制御調節領域に存在し、遺伝子発現量、あるいはタンパク質に変化を生じさせるSNPを指す。さらに、ドパミン神経系だけではなく、セロトニン神経系、ノルアドレナリン神経系など、統合失調症に関与することが報告されている他の神経伝達系に関わるタンパク質や、今後関与が見出されるタンパク質の機能的SNPを含めることができる。 As used herein, the term “functional SNP” refers to an SNP existing in a gene region or its regulatory region, which causes some change such as increase/decrease in gene expression or qualitative change in translated protein. .. The functional SNP in a certain disease includes not only a functional SNP directly involved in the disease but also a functional SNP of a gene group involved in the disease such as a signal transduction system or an enzyme cascade that is clearly involved in the disease. In the case of schizophrenia shown below as an example, it exists in the gene region involved in dopamine synthetic ability, resolution, and the density of its receptor, dopamine D2 receptor (Dopamine D2 Receptor, DRD2), and its regulatory region. SNP that causes a change in gene expression level or protein. Furthermore, not only dopamine nervous system but also serotonin nervous system, noradrenaline nervous system, and other proteins related to other neurotransmission systems that have been reported to be involved in schizophrenia, and functional SNPs of proteins that will be found in the future. Can be included.
 また、本発明の検査チップは、検出したい複数のSNPに相補的なオリゴヌクレオチドを基板に直接固定してもよいし、ビーズなどの担体に固定したうえで基板に保持させてもよい。患者の血液などから核酸を抽出して、常法によりハイブリダイゼーションを行い、2本鎖を形成した核酸を検出すればよい。あるいは、インベーダー法、リアルタイムPCR法など、PCRを用いた公知の検査方法によって検出対象とする複数のSNPを同時に検出できるように構成してもよい。また、一つの検査チップに他の疾患を検査することができる機能的SNPを併せて固定し、複数の疾患を同時に検査することができるように構成してもよい。機能的SNPsの配列を特定することができる公知の方法であればどのような方法を用いても構わない。また、検査キットとしては機能的SNPsを検出するためのプライマー、及びPCRに用いるための試薬、あるいは、上記の検査チップと必要な試薬などを含めることができる。 In the test chip of the present invention, oligonucleotides complementary to a plurality of SNPs to be detected may be directly immobilized on a substrate, or may be immobilized on a carrier such as beads and then retained on the substrate. Nucleic acid may be extracted from the blood of a patient and hybridized by a conventional method to detect the double-stranded nucleic acid. Alternatively, a plurality of SNPs to be detected may be simultaneously detected by a known inspection method using PCR such as the invader method and the real-time PCR method. Further, a functional SNP capable of testing other diseases may also be fixed to one test chip so that a plurality of diseases can be tested at the same time. Any known method can be used as long as it is a known method that can specify the sequence of functional SNPs. Further, the test kit can include a primer for detecting functional SNPs, a reagent for use in PCR, or the above-mentioned test chip and necessary reagents.
 今まで本発明者らは、罹患と作用機序の明確なドパミン過感受性精神病(Dopamine supersensitivity psychosis、DSP)について、罹患リスクを報告している(非特許文献4)。しかし、統合失調症自体の罹患リスクについては、ドパミン神経伝達系以外にも多くの機序が関与すると考えられており、これら遺伝子のSNP解析だけでは行うことができないと考えられていた。しかし、本発明者らの解析の結果、発症機序が多岐にわたっている多因子遺伝疾患に関しても、関与すると考えられる遺伝子のSNPを組み合わせて解析することによって、罹患リスクを診断することが可能であることが明らかとなった。発症に関わる機序がドパミン神経系以外にも存在することが示唆されている系で、半数近い集団の罹患リスクを判断することが可能な系の構築は非常に意味があるものと考えられる。 Until now, the present inventors have reported morbidity risk for dopamine hypersensitivity psychosis (DSP) whose morbidity and mechanism of action are clear (Non-patent document 4). However, it is considered that many mechanisms other than the dopamine neurotransmission system are involved in the morbidity risk of schizophrenia itself, and it has been considered that SNP analysis of these genes alone cannot be performed. However, as a result of the analysis by the present inventors, it is possible to diagnose a morbidity risk even with respect to a multifactorial genetic disease having a wide variety of pathogenic mechanisms, by analyzing SNPs of genes considered to be involved in combination. It became clear. It has been suggested that the mechanism involved in the pathogenesis is not limited to the dopaminergic nervous system, and construction of a system capable of judging the morbidity risk of nearly half of the population is considered to be extremely meaningful.
 以下、本発明について、統合失調症を中心として説明するが、「機能的SNP」を組み合わせて用いる解析手法は、他の疾患、特に多因子遺伝疾患において有効である。特に、統合失調症、気分障害、依存性疾患、糖尿病、高血圧、高脂血症は、世界中で多くの患者がいる疾患であり、早期診断や予防が望まれている。遺伝子の機能多型の組み合わせは生来的なものであり、発症前に予測できることはもちろん、病状・病期に影響を受けず、疾患の予後、進展を予測することができる。特に、発症前に罹患リスクを予測できることは予防の観点から非常に重要な検査となる。また、問診が診断の重要な要素となる精神神経疾患では診断に客観的な判断材料を提供する補助診断方法として有用なツールとなる。特に、発症初期において鑑別診断が困難な疾患、例えば、統合失調症と双極性障害などでは、機能的SNPという客観的な判断材料は診断にとって非常に有益である。 Hereinafter, the present invention will be described focusing on schizophrenia, but the analysis method using a combination of “functional SNPs” is effective for other diseases, particularly multifactorial genetic diseases. In particular, schizophrenia, mood disorders, addictive diseases, diabetes, hypertension, and hyperlipidemia are diseases that have many patients all over the world, and early diagnosis and prevention are desired. The combination of functional polymorphisms of genes is inherent and can be predicted before the onset, and of course, the prognosis and progress of the disease can be predicted without being affected by the condition and stage of the disease. In particular, being able to predict the risk of morbidity before onset is a very important test from the viewpoint of prevention. In addition, in the case of neuropsychiatric diseases, in which inquiry is an important factor for diagnosis, it is a useful tool as an auxiliary diagnosis method that provides objective judgment material for diagnosis. In particular, in diseases where differential diagnosis is difficult in the early stage of onset, such as schizophrenia and bipolar disorder, the objective judgment material of functional SNP is very useful for diagnosis.
 統合失調症は異種性が高いと言われているが、約75%はドパミンD2受容体遮断薬である抗精神病薬が有効である。DRD2遮断薬が有効な患者ではドパミン合成能が亢進していることが報告されている(非特許文献5)。さらに、統合失調症患者では、DRD2密度が低い可能性が報告されている(非特許文献6)。ドパミン神経伝達系を構成するタンパク質とその機能的SNPを図1に模式的に示す。 It is said that schizophrenia is highly heterogeneous, but about 75% is effective with antipsychotic drugs, which are dopamine D2 receptor blockers. It has been reported that the dopamine synthesizing ability is enhanced in patients for which a DRD2 blocker is effective (Non-patent Document 5). Furthermore, it has been reported that DRD2 density may be low in schizophrenia patients (Non-Patent Document 6). The proteins that compose the dopamine neurotransmission system and their functional SNPs are schematically shown in FIG.
 ドパミンはチロシン水酸化酵素(Tyrosine Hydroxylase、TH)によって、合成されシナプス間隙に放出される。シナプス間隙に遊離されたドパミンはカテコール-O-メチルトランスフェラーゼ(Catecol-O-methyltransferase、COMT)によって分解されるか、ドパミントランスポーター(Dopamine transported、DAT)によって細胞内に再び取り込まれる。また、ドパミンはドパミンD2受容体(DRD2)によって遊離抑制される。 Dopamine is synthesized by tyrosine hydroxylase (Tyrosine Hydroxylase, TH) and released into the synaptic cleft. The dopamine released in the synaptic cleft is decomposed by catechol-O-methyltransferase (COMT) or reintroduced into the cell by the dopamine transporter (DAT). Also, dopamine is released and suppressed by the dopamine D2 receptor (DRD2).
 統合失調症では、中脳辺縁系ドパミン作動性神経における神経終末でのドパミン放出の亢進とシナプス間隙のドパミン濃度の上昇が示唆されている(非特許文献7、8)。一方で、抗精神病薬によって陽性症状が改善する群ではドパミン合成能が高まっており、改善しない群ではその合成能が健常者と同等であるという報告がなされており(非特許文献9)、ドパミン合成能やシナプス間隙のドパミン濃度が症状や抗精神病薬への治療反応性に関わっていることが示唆されている。 In schizophrenia, it has been suggested that dopamine release is enhanced at nerve endings in limbic dopaminergic nerves and dopamine concentration in synaptic cleft is increased (Non-patent Documents 7 and 8). On the other hand, it has been reported that the group in which the positive symptoms are improved by the antipsychotic drug has an increased dopamine synthetic ability, and in the group that does not improve the synthetic ability is equivalent to that of a healthy person (non-patent document 9), and dopamine. It has been suggested that synthetic ability and dopamine concentration in the synaptic cleft are involved in symptoms and treatment responsiveness to antipsychotic drugs.
 細胞内でチロシンから合成されたドパミンはこれらの酵素、受容体によって、その作用が調節されており、統合失調症の発症と関連することが知られている。図1に模式的に示したタンパク質のうち、TH、COMT、DRD2は機能多型が存在することが知られているタンパク質である。 The action of dopamine synthesized from tyrosine in cells is regulated by these enzymes and receptors, and it is known to be associated with the onset of schizophrenia. Among the proteins schematically shown in FIG. 1, TH, COMT, and DRD2 are proteins known to have functional polymorphisms.
 ドパミン神経伝達系だけではなく、より多くの遺伝子が関与していると考えられる統合失調症においても、ドパミン神経伝達機能が発症リスクに関与するのであれば、DSPの発症リスクに関与する機能的SNPのセットは、統合失調症発症リスクを高める可能性がある。統合失調症は、ドパミン神経機能の反復的な過剰な亢進と消退により形成される。これは、ドパミンアンタゴニストの反復投与で生じる精神病と同様の機序と考えられる。そこで、DSP発症リスクと相関の高い遺伝子セットを用いて統合失調症発症リスクについて検討を行った。 Not only in the dopamine neurotransmission system, but also in schizophrenia, which is thought to involve more genes, if the dopamine neurotransmission function is involved in the onset risk, a functional SNP involved in the onset risk of DSP May increase the risk of developing schizophrenia. Schizophrenia is formed by the repetitive hyperactivity and elimination of dopaminergic function. It is believed that this is a mechanism similar to psychosis that occurs with repeated administration of dopamine antagonists. Therefore, the risk of developing schizophrenia was examined using a gene set having a high correlation with the risk of developing DSP.
 用いたSNPは、TH遺伝子プロモーター領域、COMT遺伝子、DRD2遺伝子の多型である(表1)。具体的には、TH遺伝子プロモーター領域のC-824T遺伝子多型、COMT遺伝子の158位のValがMetに置換する多型、DRD2遺伝子の-141C Ins/Del多型、ANKK1遺伝子のTaq1A多型である。ANKK1(the ankyrin repeat and kinase domain containing 1)遺伝子は、DRD2遺伝子に近接する遺伝子であり、ANKK1のTaq1A多型は、DRD2密度との関連が示唆されている多型である。これらの多型は、米国国立バイオテクノロジー情報センターのSNPデータベースにそれぞれrs10770141、rs4680、rs1799732、及びrs1800497として登録された1塩基多型である(非特許文献10~13)。これら3つの遺伝子の多型が統合失調症発症リスクに関与するかの解析を行った。 The SNP used is a polymorphism of the TH gene promoter region, COMT gene, DRD2 gene (Table 1). Specifically, C-824T gene polymorphism in the TH gene promoter region, polymorphism in which Val at position 158 of COMT gene is replaced with Met, -141C Ins/Del polymorphism in DRD2 gene, Taq1A polymorphism in ANKK1 gene is there. The ANKK1 (the ankyrin repeat and kinase domain maintaining 1) gene is a gene close to the DRD2 gene, and the Taq1A polymorphism of ANKK1 is a polymorphism suggested to be associated with the DRD2 density. These polymorphisms are single nucleotide polymorphisms registered as rs10770141, rs4680, rs1799732, and rs1800497 in the SNP database of the National Center for Biotechnology Information (Non-Patent Documents 10 to 13). We analyzed whether polymorphisms of these three genes are involved in schizophrenia risk.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施例は、千葉大学医学部の倫理審査委員会で承認を受け、また、世界医師会によるヘルシンキ宣言及び日本精神神経学会の倫理規約に則し、十分なインフォームド・コンセントを得て、プライバシーに関する守秘義務を遵守し、匿名性の保持に十分な配慮をした上で実施した。 This example was approved by the ethics review committee of Chiba University School of Medicine, and in accordance with the Declaration of Helsinki by the World Medical Association and the ethical rules of the Japanese Society of Psychiatry and Neurology, with sufficient informed consent to obtain privacy. Observing confidentiality obligations, and giving due consideration to maintaining anonymity.
 統合失調症患者は、アメリカ精神医学会出版の精神障害の診断と統計マニュアル第4版テキスト改訂版(DSM-4-TR;diagnostic and statistical manual of mental disorders-IV-text revision)で診断基準を満たすものを選択した。統合失調症患者349人と健常者273人を対象に、上述の機能多型の組み合わせを解析した。 Patients with schizophrenia meet the criteria for diagnosis of mental disorders published by American Psychiatric Association and a revised text manual 4th edition (DSM-4-TR; diagnostic and statistical manual of mental disorders-IV-text revision). I chose one. The combination of the above functional polymorphisms was analyzed in 349 patients with schizophrenia and 273 healthy subjects.
 統合失調症患者、健常者から採取した血液由来のDNAをQIAamp DNA Blood Minikit(Qinagen)用いて抽出し解析を行った。解析はリアルタイムPCRの手法(TaqMan SNP Genotyping Assay(サーモフィッシャー・サイエンティフィック))により上記4つのSNPについて、各患者、及び健常者の遺伝子型を同定した。すなわちTH遺伝子C-824T遺伝子多型(rs10770141、Tアレル)と、COMT遺伝子Val158Met多型(rs4680、Metアレル)、DRD2遺伝子Taq1A多型(rs1800497、A1アレル)、及びその上流近傍に位置するANKK1の-141CIns/Del多型(rs1799732、Delアレル)を解析した(表2)。 Blood-derived DNA collected from schizophrenia patients and healthy subjects was extracted and analyzed using QIAamp DNA Blood Minikit (Qinagen). For the analysis, the genotypes of each patient and healthy subjects were identified for the above four SNPs by a real-time PCR method (TaqMan SNP Genotyping Assay (Thermo Fisher Scientific)). That is, the TH gene C-824T gene polymorphism (rs10770141, T allele), the COMT gene Val158Met polymorphism (rs4680, Met allele), the DRD2 gene Taq1A polymorphism (rs1800497, A1 allele), and ANKK1 located in the upstream vicinity thereof. The -141CIns/Del polymorphism (rs1799732, Del allele) was analyzed (Table 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 TH遺伝子のC-824T遺伝子多型(rs10770141)において、CがTに置換しているものをT(+)、COMT遺伝子Val158Met多型(rs4680)において、Metに置換しているものをMet(+)、DRD2遺伝子Taq1A多型(rs1800497)におけるA1アレル保有者をA1(+)、-141CIns/Del多型(rs1799732)におい欠失が認められるものをDel(+)と表示している。各多型において(-)の表示は上記多型を保有していないことを示す。 In the C-824T polymorphism (rs10770141) of the TH gene, the one in which C is replaced by T is T(+), and in the COMT gene Val158Met polymorphism (rs4680), the one in which it is replaced by Met is Met(+). ), the A1 allele carrier in the DRD2 gene Taq1A polymorphism (rs1800497) is indicated as A1(+), and the deletion in the -141CIns/Del polymorphism (rs17979932) is indicated as Del(+). The indication of (-) in each polymorphism indicates that the polymorphism is not possessed.
 TH遺伝子において、遺伝子多型T(+)を保有している者は、チロシン水酸化酵素の活性が高く、すなわちドパミン産生能が高い。COMT遺伝子において、Valに置換しているMet(-)を保有している者はドパミン分解酵素であるCOMTの活性が高くドパミン分解が速い。A1(+)、又はDel(+)の遺伝子多型を保有している者は、ドパミンD2受容体の低発現をきたす。 Persons who carry the polymorphism T(+) in the TH gene have high activity of tyrosine hydroxylase, that is, high dopamine-producing ability. In the COMT gene, a person who possesses Met(−) substituting for Val has a high activity of the dopamine-degrading enzyme COMT and has a high rate of dopamine degradation. Those who carry the A1(+) or Del(+) gene polymorphism have low expression of the dopamine D2 receptor.
 各多型の組み合わせから、ドパミンの合成、分解、受容体発現についてまとめた(表3)。活動性はドパミン神経伝達性の活動性を示し、左からドパミン合成の高低、ドパミン分解の高低、受容体発現の高低を示し、具体的な多型の組み合わせ、統合失調症、健常者における人数、出現頻度、出現頻度比をまとめている。 From the combinations of each polymorphism, we summarized dopamine synthesis, degradation, and receptor expression (Table 3). Activity indicates dopamine neurotransmitter activity, from the left, high and low levels of dopamine synthesis, high and low levels of dopamine degradation, high and low receptor expression, specific combinations of polymorphisms, schizophrenia, number of healthy individuals, The appearance frequency and the appearance frequency ratio are summarized.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 その結果、THが高発現(T(+))、COMTが高発現(Met(-))、DRD2が低発現(A1(+)、又はDel(+))の組み合わせの場合には、他の組み合わせと比較して統合失調症の出現頻度が非常に高いことが明らかとなった。表4に、T(+)、Met(-)、でありA1(+)、又はDel(+)の場合と、他の組み合わせとを比較してオッズ比を算出した結果を示す。T(+)、Met(-)であり、A1(+)、又はDel(+)の遺伝子多型の組み合わせの場合には、オッズ比が6.5(p<0.029)で高率に統合失調症になりやすいという結果が得られた。フィッシャーの正確確率検定を行った結果、上記の遺伝子多型を有する場合には、片側検定ではP値が0.00357、両側検定では0.00296、ボンフェローニの方法で補正後でもP値がそれぞれ0.02856、0.02368と有意に統合失調症になりやすいという結果が得られた。上記SNPの組み合わせの場合は、DSP発症リスクも高くなる(非特許文献4)。しかしながら、DSP発症リスクは、上記SNPの組み合わせだけではなく、他の組み合わせでも発症リスクは高くなることから、統合失調症発症リスクとは完全に一致しない。 As a result, when TH is highly expressed (T(+)), COMT is highly expressed (Met(−)), and DRD2 is lowly expressed (A1(+) or Del(+)), other It became clear that the incidence of schizophrenia was much higher than that of the combination. Table 4 shows the results of calculating the odds ratio by comparing the case of T(+), Met(−), which is A1(+), or Del(+), with other combinations. In the case of T(+), Met(-), and the combination of A1(+) or Del(+) gene polymorphisms, the odds ratio was 6.5 (p<0.029), resulting in a high rate. The result was that they were prone to schizophrenia. As a result of the Fisher's exact test, the P value was 0.00357 in the one-sided test, 0.00296 in the two-sided test, and the P-value was corrected by Bonferroni's method when the gene polymorphism was present. The results were 0.02856 and 0.02368, which indicates that schizophrenia was significantly more likely to occur. In the case of the combination of the above SNPs, the risk of developing DSP increases (Non-Patent Document 4). However, the DSP onset risk does not completely match the onset risk of schizophrenia because the onset risk increases not only in the combination of the above SNPs but also in other combinations.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 機能多型の性質から、この組み合わせの人は、次のようなドパミン神経伝達機能を有していると考えられる。この組み合わせの機能的SNPの人は、TH遺伝子によるドパミン合成能が高いことからストレスなどによりドパミンが大量に合成される。しかもDRD2は低発現であることから遊離抑制がかかりにくく、シナプス間隙に大量のドパミンが遊離される。しかし、COMTによるドパミン分解能が高いことから、ドパミンが即座に分解されるというドパミン伝達機能を有している可能性がある。この組み合わせの人は、生来ドパミン神経活動が急激に増強し、消退するドパミン神経伝達機能を有しており、ストレスの繰り返しによりsensitizationが生じて、統合失調症状が発現すると考えられる。これは、従来からの統合失調症の病態仮説とも合致し、適切な治療法を選択することができるとともに、予防法の開発に繋げられる可能性が高い。 Due to the nature of functional polymorphism, it is considered that the person with this combination has the following dopamine neurotransmission function. A person with a functional SNP of this combination has a high ability to synthesize dopamine by the TH gene, and thus a large amount of dopamine is synthesized due to stress or the like. Moreover, since DRD2 is low-expressed, release inhibition is less likely to occur, and a large amount of dopamine is released in the synaptic cleft. However, since the dopamine decomposing ability by COMT is high, there is a possibility that the dopamine has a dopamine transmitting function of being immediately decomposed. The person with this combination has a dopamine neurotransmission function in which the dopaminergic nerve activity is rapidly enhanced and disappears naturally, and it is considered that repeated stress causes sensitization and manifests schizophrenia. This is consistent with the conventional pathological hypothesis of schizophrenia, and it is possible to select an appropriate treatment method, and it is highly likely to lead to the development of a prevention method.
 この組み合わせは、解析した統合失調症患者の4.6%であったが、表5に示すように他にもシナプス間隙のドパミン変動に関係する機能多型があり、これらも同様のドパミン変動を示す機能的SNPの組み合わせがあると考えられる。さらに、セロトニン神経伝達系、ノルアドレナリン神経伝達系など、統合失調症と関連すると言われている神経伝達系に関わる機能多型を組み合わせることによって、より広範囲で正確に統合失調症の罹患リスクを予測することができる。 This combination accounted for 4.6% of the analyzed schizophrenia patients, but as shown in Table 5, there are other functional polymorphisms related to dopamine fluctuations in the synaptic cleft, which also show similar dopamine fluctuations. It is believed that there are combinations of functional SNPs shown. Furthermore, by combining functional polymorphisms related to the neurotransmission system, which are said to be associated with schizophrenia, such as the serotonin neurotransmission system and the noradrenaline neurotransmission system, the risk of schizophrenia is predicted more widely and accurately. be able to.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 統合失調症患者の多くはDRD2遮断薬である抗精神病薬によって改善する。抗精神病薬治療おいては、抗精神病薬による至適DRD2占拠率が存在すると考えられているとともに、個々の抗精神病薬には至適用量が存在すると考えられている。しかし、実臨床では治療用量は個人差が大きい。機能的SNPによって遺伝子の機能が変化するのであれば、抗精神病薬の効果にも影響を及ぼすものと考えられる。そこで、機能的SNPと抗精神病薬用量との相関を解析した。統合失調症の場合、処方された内服薬の処方量をクロルプロマジンに換算した値であるクロルプロマジン換算量が目安として用いられているので、クロルプロマジン換算量とSNPとの相関を解析することとした。 Most patients with schizophrenia are ameliorated by antipsychotic drugs, which are DRD2 blockers. In antipsychotic treatment, it is considered that there is an optimal DRD2 occupancy rate by the antipsychotic and that there is an optimal dose for each antipsychotic. However, there are large individual differences in the therapeutic dose in actual clinical practice. If the function of the gene is changed by the functional SNP, it is considered that the effect of the antipsychotic drug is also affected. Therefore, the correlation between functional SNP and antipsychotic dose was analyzed. In the case of schizophrenia, the chlorpromazine equivalent, which is the value obtained by converting the prescribed amount of the prescribed oral drug into chlorpromazine, is used as a standard, so it was decided to analyze the correlation between the chlorpromazine equivalent and SNP.
 上記で示してきた千葉大学で収集した統合失調症患者のサンプルについて単一のSNP(Single SNP)、あるいは2つのSNPの組合せ(Double SNP)とクロルプロマジン換算量(CP等価換算量)との関係を解析した。詳細な解析の結果、DRD2の遺伝子多型のうちTaqIAが疾患発症に相関が高いことが明らかとなったことから、ドパミン神経伝達系の遺伝子の機能多型のうち、TaqIA、TH、COMTの3つの遺伝子の機能的SNPについて解析を行った(図2)。 The relationship between a single SNP (Single SNP) or a combination of two SNPs (Double SNP) and the chlorpromazine equivalent (CP equivalent equivalent) for the samples of schizophrenia patients collected at Chiba University shown above. Analyzed. As a result of detailed analysis, it was revealed that TaqIA among the DRD2 gene polymorphisms had a high correlation with the onset of disease. Therefore, among the functional polymorphisms of genes of the dopamine neurotransmission system, 3 of TaqIA, TH, and COMT were identified. The functional SNPs of one gene were analyzed (Fig. 2).
 個々の遺伝子では、THのT(+)とCOMTのMet(-)においてCP等価換算量が高い傾向がみられた。遺伝子の組合せではTHのT(+)とCOMTのMet(-)の組合せにおいて有意にCP等価換算量が高いという結果が得られた(p<0.05)。また、THのT(+)とTaqIAのA1(-)の組合せにおいてもCP等価換算量が高い傾向があった。 ▽ For individual genes, the CP equivalent conversion tended to be high for T(+) for TH and Met(-) for COMT. As for the combination of genes, the result that the CP equivalent conversion amount was significantly high was obtained in the combination of T(+) of TH and Met(−) of COMT (p<0.05). In addition, the CP equivalent conversion amount also tended to be high in the combination of T(+) of TH and A1(-) of TaqIA.
 これらの結果を踏まえ、TH、COMT、TaqIAの3つの機能的多型について、個々の多型の統合失調症患者、及び健常者における出現頻度の解析を行った(表6)。有意にCP等価換算量が高値であったTHのT(+)とCOMTのMet(-)の組合せはオッズ比2.59(p<0.05)と明らかに高い割合を示していた。 Based on these results, we analyzed the frequency of occurrence of TH, COMT, and TaqIA functional polymorphisms in individual schizophrenia patients and healthy individuals (Table 6). The combination of T(+) of TH and Met(−) of COMT, which had significantly high CP equivalent conversion values, had an odds ratio of 2.59 (p<0.05), which was clearly high.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 抗精神病薬は投与量が少ないと抗精神病効果を発揮しない。一方で、抗精神病薬の過剰投与では錐体外路症状や抑うつ、不快感などの副作用が生じ、服薬アドヒアランスが低下して再発し、不良な長期予後を招く。また過剰投与ではDRD2の代償的増加が引き起こされてドパミン過感受性精神病が誘発されて治療抵抗性に発展する。各個人に至適用量を提供するための生物学的指標が必要であるが、至適用量を定めるための目安として機能的SNPの組合せを使用することも可能となる。  Antipsychotics do not exert antipsychotic effects at low doses. On the other hand, overdose of antipsychotic drugs causes side effects such as extrapyramidal symptoms, depression, and discomfort, resulting in decreased medication adherence and recurrence, leading to a poor long-term prognosis. In addition, overdose causes a compensatory increase in DRD2, induces dopamine hypersensitivity psychosis, and develops treatment resistance. While a biological index is needed to provide the optimal dose for each individual, it is also possible to use a combination of functional SNPs as a guide for determining the optimal dose.
 次に、理化学研究所の多数サンプルを用いて解析を行った。日本人集団における2012名の統合失調症患者(男性1111名、平均年齢47.2±14.1歳、女性901名、平均年齢49.2±14.7歳)、及び2170名の健常者(男性889名、平均年齢39.2±13.8歳、女性1281名、平均年齢44.6±14.1歳)から、年齢、性別に関して「Greedy 5-To-1 Digit-Matching」アルゴリズムを用いた傾向スコアマッチング(propensity score matching)により統合失調症患者、健常者各1272名について解析を行った。統合失調症患者は、男性574名、女性698名、平均年齢47.4±13.9歳、平均発症年齢24.9±13.4歳であり、健常者は男性603名、女性669名、平均年齢46.5±13.9歳であった。なお、上述のパイロット・スタディによる予備的な結果を検証するために、解析に用いた対象は千葉大学及び関連病院で採用された患者を除外している。 Next, we conducted analysis using a large number of RIKEN samples. 2012 Japanese schizophrenia patients (1111 men, average age 47.2±14.1 years, 901 females, average age 49.2±14.7 years) and 2170 healthy people ( From 889 men, average age 39.2±13.8 years, 1281 women, average age 44.6±14.1 years), use “Greedy 5-To-1 Digit-Matching” algorithm for age and gender By using the tendency score matching (property score matching), an analysis was performed for each of 1272 individuals with schizophrenia and healthy individuals. The number of schizophrenia patients is 574 men, 698 women, average age 47.4±13.9 years, average onset age 24.9±13.4 years, healthy persons 603 men, 669 women, The average age was 46.5±13.9 years. In addition, in order to verify the preliminary results of the pilot study described above, the subjects used in the analysis exclude the patients employed at Chiba University and related hospitals.
 rs10770141(TH)、rs4680(COMT)、rs1800497(TaqA1)が、ドパミンの変動との相関が高いと考えられたことから、これら3つの機能的SNPsについて解析を行った。統計解析の方法については、上述の方法に準じている。 Since rs10770141 (TH), rs4680 (COMT), and rs1800497 (TaqA1) were considered to have a high correlation with the fluctuation of dopamine, these three functional SNPs were analyzed. The statistical analysis method is based on the method described above.
Figure JPOXMLDOC01-appb-T000007
全年齢:統合失調症(SZ)n=1272、健常者(CNT)n=1272;20-30歳:SZ n=182、CNT n=170、フィッシャーの正確確率検定(両側検定)により#p<0.05、*p<0.01、**p<0.001
また、All Double Combinationは、2つのSNPの組合せを有するものを意味し、3つのSNPすべての変異(Met(-)*A1(+)*T(+))を有するものも含んでいる。
Figure JPOXMLDOC01-appb-T000007
All ages: schizophrenia (SZ) n=1272, healthy people (CNT) n=1272; 20-30 years old: SZ n=182, CNT n=170, Fisher's exact test (two-sided test) #p< 0.05, *p<0.01, **p<0.001
All Double Combination means a combination of two SNPs, and also includes a combination of all three SNPs (Met(-)*A1(+)*T(+)).
 まず、全年齢での統合失調症患者内での遺伝的リスクは、rs4680(Met(-))は48.1%、rs1800497(A1(+))は61.1%、rs10770141(T(+))が11.5%、これらすべてのリスク因子を有しているものが2.9%、有していないものが18.1%であった。これに対し、健常者では、rs4680(Met(-))は42.7%、rs1800497(A1(+))は47.6%、rs10770141(T(+))は6.8%であり、これらすべてのリスク因子を有しているものが2.4%、有していないものが25.3%であった。統合失調症との相関を年齢、性別を合わせて算出した各SNPsのオッズ比は、表7に示すように、rs4680(Met(-))は1.24、rs1800497(A1(+))は1.73、rs10770141(T(+))は1.79であり、いずれも有意であった。 First, the genetic risk in schizophrenia patients at all ages was 48.1% for rs4680(Met(-)), 61.1% for rs1800497(A1(+)), and rs10770141(T(+)). ) Was 11.5%, those with all these risk factors were 2.9%, and those without all were 18.1%. On the other hand, in healthy subjects, rs4680(Met(−)) was 42.7%, rs1800497(A1(+)) was 47.6%, and rs10770141(T(+)) was 6.8%. 2.4% had all risk factors, and 25.3% did not. As shown in Table 7, the odds ratio of each SNP calculated by correlating with schizophrenia for age and sex is 1.24 for rs4680 (Met(-)) and 1 for rs1800497(A1(+)). 0.73 and rs10770141(T(+)) were 1.79, which were both significant.
 また、rs4680(Met(-))とrs1800497(A1(+))、rs1800497(A1(+))とrs10770141(T(+))の2つの遺伝的リスクの保有者のオッズ比はそれぞれ2.01、1.87と有意に差が認められた。また、rs4680(Met(-))とrs10770141(T(+))は、統合失調症と相関する傾向(p=0.068)が認められた。上記2つのリスク因子のいずれかを保有しているのは統合失調症患者群の35.8%、オッズ比2.22と非常に高い値となっている。 Also, the odds ratios of two genetic risk carriers, rs4680 (Met(−)) and rs1800497(A1(+)), and rs1800497(A1(+)) and rs10770141(T(+)) were 2.01 respectively. A significant difference was observed with 1.87. In addition, rs4680 (Met(−)) and rs10770141(T(+)) tended to correlate with schizophrenia (p=0.068). The ratio of possessing either of the above two risk factors is 35.8% in the schizophrenia patient group, and the odds ratio is 2.22, which is a very high value.
 さらに、統合失調症発症の好発年齢(30歳以下)に区切って解析すると、より顕著な傾向が認められた(表7、20-30歳)。rs4680(Met(-))は53.0%、rs1800497(A1(+))は62.1%、rs10770141(T(+))が13.7%、これらすべてのリスク因子を有しているものが3.3%であった。これに対し、健常者では、rs4680(Met(-))は38.8%、rs1800497(A1(+))は48.8%、rs10770141(T(+))は1.2%であり、これらすべてのリスク因子を有しているものが1.2%であった。統合失調症との相関を算出した各SNPsのオッズ比は、表7に示すように、rs4680(Met(-))は1.78、rs1800497(A1(+))は1.72、rs10770141(T(+))は13.38であり、全年齢での解析に比べ、より高い相関を示していた。 Furthermore, a more prominent tendency was recognized when analyzed by dividing into the prevalence of schizophrenia onset (30 years or younger) (Table 7, 20-30 years). rs4680(Met(-)) has 53.0%, rs1800497(A1(+)) has 62.1%, rs10770141(T(+)) has 13.7%, all of these risk factors Was 3.3%. On the other hand, in healthy subjects, rs4680(Met(−)) was 38.8%, rs1800497(A1(+)) was 48.8%, and rs10770141(T(+)) was 1.2%. 1.2% had all risk factors. As shown in Table 7, the odds ratio of each SNP calculated for correlation with schizophrenia was 1.78 for rs4680(Met(−)), 1.72 for rs1800497(A1(+)), and rs10770141(T (+)) was 13.38, showing a higher correlation than the analysis at all ages.
 また、2つのリスク因子の解析においても、全ての組み合わせで有意差が認められ、rs4680(Met(-))とrs1800497(A1(+))、rs4680(Met(-))とrs10770141(T(+))、rs1800497(A1(+))とrs10770141(T(+))、のオッズ比は、それぞれ8.97、5.96、6.46であった。さらに、上記2つのリスク因子のいずれかを保有しているのは統合失調症患者群の42.9%(健常者群5.9%)、オッズ比12.00と非常に高い値となっている。 In addition, in the analysis of the two risk factors, significant differences were found in all combinations, and rs4680(Met(−)) and rs1800497(A1(+)), rs4680(Met(−)) and rs10770141(T(+) )), the odds ratios of rs1800497(A1(+)) and rs10770141(T(+)) were 8.97, 5.96, and 6.46, respectively. Furthermore, those who possess either of the above two risk factors are very high, 42.9% of the schizophrenia patient group (5.9% of the healthy person group) and the odds ratio of 12.00. There is.
 好発年齢でオッズ比がより高いのは、遺伝的要因が好発年齢において統合失調症発症により関与していることを示唆している。遺伝的なリスク要因が高い群において、統合失調症の好発年齢で予防的介入を行うことができれば、統合失調症の発症を抑制することが可能となる。例えば、検査チップなどによって、遺伝的要因の有無を予め把握しておき、発症リスクが高い群には、投薬、認知行動療法、家族療法などの予防的介入を行うことが可能となる。 Higher odds ratios at prevalence suggest that genetic factors are more involved in the development of schizophrenia at prevalence. If preventive intervention can be performed at a prevalence age of schizophrenia in a group with a high genetic risk factor, the onset of schizophrenia can be suppressed. For example, the presence or absence of a genetic factor can be grasped in advance by a test chip or the like, and preventive intervention such as medication, cognitive behavior therapy, or family therapy can be performed for a group with a high risk of onset.
 統合失調症は、発症の前段階に精神病発症リスク状態(at risk mental state、ARMS)、あるいは米国精神医学会診断基準DSM-5における減弱精神病症候群といわれる発症前の段階があることが知られている。ARMSは統合失調症だけではなく、双極性障害に発展する場合もあり、発症後も両疾患の診断を間違うことが多いと言われている。ARMSは抗精神病薬の一部や家族への介入、オメガ3脂肪酸が有効であるとの報告もあり、ARMSの段階で、SNPsを検査することによって統合失調症に発展するリスクが高いか、あるいは双極性障害に発展するリスクが高いかを判断することができれば、より適切な対応を行うことができる。 It is known that schizophrenia has a pre-symptomatic stage (at risk mental state, ARMS) or a pre-symptomatic phase called attenuated psychosis syndrome in the American Psychiatric Association diagnostic criteria DSM-5 before the onset of schizophrenia. There is. ARMS may develop not only schizophrenia but also bipolar disorder, and it is said that diagnosis of both diseases is often wrong even after the onset. ARMS has been reported to be effective for some antipsychotic drugs, family intervention, and omega-3 fatty acids, and there is a high risk of developing schizophrenia by testing SNPs at the ARMS stage, or If it is possible to judge whether the risk of developing bipolar disorder is high, more appropriate measures can be taken.
 統合失調症以外にも遺伝的要因があることが知られている双極性障害、自閉症やADHD、社交不安障害、認知症なども機能的SNPにより検査が可能になれば、投薬、家族への介入など、早期、あるいは発症前に適切な対応を行うことが可能となる。 Bipolar disorder known to have genetic factors other than schizophrenia, autism and ADHD, social anxiety disorder, dementia, etc. if functional SNPs can be used for testing, medication, family It is possible to take appropriate measures early or before the onset, such as intervention of.
 また、精神科領域の疾患は、症状が発現してから治療開始までの時期が長くなると抗精神病薬に対する反応性が乏しくなることが知られている。しかし、発症初期においては診断が難しく、例えば、双極性障害と統合失調症の鑑別は難しいことが指摘されている。機能的SNPを用いた検査により、診断を補助する情報を得ることができるため、より早く適切な治療法を選択することが可能となる。 Also, it is known that psychiatric diseases become less responsive to antipsychotic drugs when the time from the onset of symptoms to the start of treatment becomes longer. However, it has been pointed out that diagnosis is difficult in the early stage of onset, for example, it is difficult to distinguish bipolar disorder from schizophrenia. The test using the functional SNP can obtain information that assists the diagnosis, and thus an appropriate treatment method can be selected earlier.
 次に、双極性障害について千葉大のサンプルを用いて解析を行った結果、双極性障害に関してもドパミン神経系遺伝子多型が関連することが明らかとなった。今後予定している多数例での検証を待つ必要があるが、rs4680(Met(-))とrs10770141(T(+))の2つのリスク因子を有する場合にはオッズ比5.86、3つのリスク因子を有している場合には、オッズ比12.0と有意に健常者との間に差が認められた(表8)。 Next, as a result of analyzing the bipolar disorder using a sample of Chiba University, it was revealed that the dopaminergic nervous system gene polymorphism was also associated with the bipolar disorder. It is necessary to wait for verification in a large number of cases planned in the future, but in the case of having two risk factors of rs4680 (Met(-)) and rs10770141 (T(+)), an odds ratio of 5.86 and three When there was a risk factor, a significant difference was observed between the odds ratio of 12.0 and healthy subjects (Table 8).
Figure JPOXMLDOC01-appb-T000008
双極性障害(BP)n=172、健常者(CNT)n=273、フィッシャーの正確確率検定(両側検定)により#p<0.05、*p<0.01、**p<0.001
Figure JPOXMLDOC01-appb-T000008
Bipolar disorder (BP) n=172, healthy person (CNT) n=273, #p<0.05, *p<0.01, **p<0.001 by Fisher's exact test (two-sided test)
 統合失調症では3つのリスク因子の保有は、健常者と有意差が認められなかったのに対し、双極性障害では3つのリスク因子の保有が疾患と相関することが明らかとなった。これら結果を踏まえると、疾患毎にドパミン神経系の特徴が異なっていることは明らかである。また、統合失調症ではCOMTの高活性アレルと前シナプスのDDR2密度の低発現アレルの組合せ(Met(-)*A1(+))が特徴的であり、双極性障害ではCOMTの高活性アレルとTHの高発現アレルの組合せ(Met(-)*T(+))が特徴的である。COMTのMetの有無によって遂行機能や作業記憶、注意機能に違いがあることが示唆されていることから、Met(-)は両疾患の発症に関わる環境因子への応答性に関与していることが推察される。さらに、TaqIAのA1(+)、THのT(+)によって、統合失調症、あるいは双極性障害を呈する可能性も推測される。  In schizophrenia, there was no significant difference in the possession of the three risk factors from the healthy subjects, whereas in bipolar disorder, it was revealed that the possession of the three risk factors correlates with the disease. Based on these results, it is clear that the characteristics of the dopaminergic nervous system differ depending on the disease. In schizophrenia, a combination of a highly active allele of COMT and a low expression allele of DDR2 density of presynapse (Met(-)*A1(+)) is characteristic, and in bipolar disorder, a highly active allele of COMT. A combination of TH highly expressing alleles (Met(−)*T(+)) is characteristic. It has been suggested that there is a difference in executive function, working memory, and attention function depending on the presence or absence of Met in COMT. Therefore, Met(-) is involved in responsiveness to environmental factors involved in the onset of both diseases. Is inferred. Furthermore, it is speculated that A1(+) of TaqIA and T(+) of TH may cause schizophrenia or bipolar disorder.
 また、上述のように、他にもドパミンの変動に関わる機能的SNPが存在する。さらにセロトニン神経系、ノルアドレナリン神経系など、統合失調症等の精神疾患には他にも関与が推測される機能的SNPsが存在する。これらの解析を進めることによって、異種性の高い精神科領域の疾患の鑑別を行うことができるようになれば、より早く鑑別診断を行い、適切な治療法を選択することが可能となる。 Also, as mentioned above, there are other functional SNPs involved in dopamine fluctuations. Furthermore, there are other functional SNPs that are presumed to be involved in mental disorders such as schizophrenia, such as the serotonin nervous system and the noradrenaline nervous system. If it becomes possible to differentiate diseases in the psychiatric region with high heterogeneity by advancing these analyses, it becomes possible to make a differential diagnosis earlier and select an appropriate treatment method.
 ここでは、統合失調症、双極性障害を例に示したが、例えば糖尿病の罹患リスクを検定するための機能的SNPとしては、インスリン抵抗性関連遺伝子アディポネクチンの機能的SNP(G-276T、T94G)、CD14の機能的SNP(T-159C)、アミリン遺伝子SNP(Ser20Gly)、肝細胞核因子の遺伝子HNF4α(P1-HNF4α、P2-HNF4α)、PPARγ(Pro12Ala)、インスリン受容体遺伝子IRS-1(Gly972Arg)、IRS-2(Gly1057Asp)、肥満に関連する遺伝子多型の機能的SNPであるβ3アドレナリン受容体の遺伝子多型(Trp64Arg)、β2アドレナリン受容体の遺伝子多型(Arg16Gly)、UCP1(Uncoupling Protein 1)の遺伝子多型(A-3826G)、FTO(A/T)などが挙げられる(非特許文献14~17)。また、気分障害ではセロトニントランスポーター遺伝子5HTTLTPR(l/s)、セロトニン5HT1A受容体遺伝子5HTR1(C-1019G,Gly272Asp)、セロトニン5HT2A受容体遺伝子5HTR2A(T102C,A-1438G)、トリプトファン合成酵素TPH1、またドパミンン神経伝達系の遺伝子多型など、依存性疾患ではドパミン神経伝達系の遺伝子多型に加えてオピオイド受容体遺伝子OPRM1(A11G)などの機能的SNPが知られており(非特許文献18~19)、これらSNPを組み合わせることによって、同様に罹患リスクを検査することが可能となる。 Here, schizophrenia and bipolar disorder are shown as examples, but as a functional SNP for assaying the risk of diabetes, for example, the functional SNP of the insulin resistance-related gene adiponectin (G-276T, T94G) is used. , CD14 functional SNP (T-159C), amylin gene SNP (Ser20Gly), hepatocyte nuclear factor gene HNF4α (P1-HNF4α, P2-HNF4α), PPARγ (Pro12Ala), insulin receptor gene IRS-1 (Gly972Arg) , IRS-2 (Gly1057Asp), gene polymorphism of β3 adrenergic receptor (Trp64Arg) which is a functional SNP of gene polymorphism associated with obesity, β2 adrenergic receptor gene polymorphism (Arg16Gly), UCP1 (Uncoupling Protein 1) ) Gene polymorphism (A-3826G), FTO (A/T) and the like (Non-patent Documents 14 to 17). In mood disorders, serotonin transporter gene 5HTLTPR (l/s), serotonin 5HT 1A receptor gene 5HTR1 (C-1019G, Gly272Asp), serotonin 5HT 2A receptor gene 5HTR2A (T102C, A-1438G), tryptophan synthase TPH1. In addition, functional dependent SNPs such as opioid receptor gene OPRM1 (A11G) are known in addition to gene polymorphisms of dopamine neurotransmission system in dependent diseases such as gene polymorphism of dopamine neurotransmission system (non-patent document 18 ~19), by combining these SNPs, morbidity risk can be similarly examined.
 以上示したように、ここで示した解析方法は、多因子遺伝疾患について、今まで報告されている機能的SNPを組み合わせて解析することにより、疾患の罹患リスクを解析することができる方法であり、非常に応用範囲が広い解析方法である。 As described above, the analysis method shown here is a method capable of analyzing the morbidity risk of a multifactorial genetic disease by combining and analyzing the functional SNPs reported so far. , It is a very versatile analysis method.

Claims (13)

  1.  多因子遺伝疾患に関与することが知られている少なくとも2つ以上の遺伝子の機能的SNPを用いて多因子遺伝疾患の罹患リスク、又は診断を補助する検査方法。 A test method that assists the morbidity risk or diagnosis of a multifactorial genetic disease by using functional SNPs of at least two genes known to be involved in the multifactorial genetic disease.
  2.  前記多因子遺伝疾患が、
     精神神経科領域の疾患としては、
     統合失調症、双極性障害、気分障害、依存性疾患、自閉スペクトラム症、注意欠陥・多動性障害、アルツハイマー病、ナルコレプシー、パニック障害、社交不安障害、強迫性障害、全般性不安障害、摂食障害、人格傾向及び障害、
     他領域の疾患としては、
     糖尿病、高血圧、虚血性心疾患、NASH(非アルコール性脂肪肝炎)、関節リウマチ、痛風、悪性腫瘍であることを特徴とする請求項1記載の検査方法。
    The multifactorial disease is
    Diseases in the field of neuropsychiatry include:
    Schizophrenia, bipolar disorder, mood disorder, addictive disease, autism spectrum disorder, attention deficit/hyperactivity disorder, Alzheimer's disease, narcolepsy, panic disorder, social anxiety disorder, obsessive-compulsive disorder, generalized anxiety disorder, intake Eating disorders, personality trends and disabilities,
    Diseases in other areas include
    The test method according to claim 1, which is diabetes, hypertension, ischemic heart disease, NASH (non-alcoholic steatohepatitis), rheumatoid arthritis, gout, or malignant tumor.
  3.  前記多因子遺伝疾患が、
     統合失調症、又は双極性障害であることを特徴とする請求項1、又は2記載の検査方法。
    The multifactorial disease is
    The test method according to claim 1 or 2, wherein the test method is schizophrenia or bipolar disorder.
  4.  前記SNPがドパミンの変動に関与する機能多型であることを特徴とする請求項3記載の検査方法。 The test method according to claim 3, wherein the SNP is a functional polymorphism involved in fluctuation of dopamine.
  5.  前記ドパミンの変動に関与する機能多型が、チロシン水酸化酵素(TH)遺伝子、カテコール-O-メチル転移酵素(COMT)遺伝子、及びドパミンD2受容体(DRD2)遺伝子の遺伝子多型であることを特徴とする請求項4記載の検査方法。 The functional polymorphisms involved in the fluctuation of dopamine are gene polymorphisms of tyrosine hydroxylase (TH) gene, catechol-O-methyltransferase (COMT) gene, and dopamine D2 receptor (DRD2) gene. The inspection method according to claim 4, which is characterized in that:
  6.  前記機能的SNPが、rs10770141、rs4680、rs1799732、及びrs1800497であることを特徴とする請求項4、又は5記載の検査方法。 The inspection method according to claim 4 or 5, wherein the functional SNPs are rs10770141, rs4680, rs1799732, and rs1800497.
  7.  請求項6に記載の機能的SNPに加えて、rs2070762、rs6356、rs921451、rs3837091、rs1079597、rs1076560、rs6277、rs1799836、rs1040399、DAT1 Promoter -67A/T、DAT1 40-bp variable number of tandem repeatsの少なくともいずれか1つを含むことを特徴とする検査方法。 In addition to the functional SNP according to claim 6, rs2070762, rs6356, rs9221451, rs3837091, rs1079597, rs1076560, rs6277, rs1799836, rs1040399, DAT1 Promoter-67a/T, DAT1 40-bp alien varieval-varia vari. An inspection method characterized by including one of them.
  8.  請求項1~7いずれか1項に記載の多因子遺伝疾患の罹患リスク、又は診断を補助する検査に用いる検査チップであって、
     多因子遺伝疾患に関与することが知られている複数の遺伝子の機能的SNPが検出可能に保持されている検査チップ。
    A test chip for use in a test for assisting diagnosis of morbidity of a multifactorial genetic disease according to any one of claims 1 to 7, or diagnosis,
    A test chip in which functional SNPs of a plurality of genes known to be involved in a multifactorial genetic disease are detectably retained.
  9.  多因子遺伝疾患の罹患リスク、又は診断を補助する検査に用いる検査キットであって、
     請求項1~7いずれか1項に記載の検査に用いるプライマー及び検査に必要な試薬、
     又は請求項8の検査チップ及び検査に必要な試薬を含む検査キット。
    A test kit for use in a test for assisting diagnosis of a multifactorial genetic disease risk, or
    A primer used in the test according to any one of claims 1 to 7 and a reagent necessary for the test,
    Alternatively, an inspection kit containing the inspection chip of claim 8 and a reagent necessary for the inspection.
  10.  機能的SNPであるrs10770141、rs4680、及びrs1800497について対象のDNAを解析し、rs10770141がT(+)、rs4680がMet(-)、rs1800497がA1(+)の少なくともいずれか2つを組合せて有している場合には統合失調症である、あるいは罹患リスクの可能性が高く、
     3つすべてを有している場合には双極性障害である、あるいは罹患リスクの可能性が高いと判定する統合失調症と双極性障害の検査方法。
    DNA of interest was analyzed for the functional SNPs rs10770141, rs4680, and rs1800497, and rs10770141 has T(+), rs4680 has Met(−), and rs1800497 has at least one of A1(+) in combination. If you have schizophrenia, or you are at high risk of morbidity,
    A method for testing schizophrenia and bipolar disorder, which is determined to be bipolar disorder or has a high risk of morbidity if all three are present.
  11.  統合失調症が疑われる患者の検査方法であって、
     機能的SNPであるrs10770141、rs4680、及びrs1800497について対象のDNAを解析し、
     対象の年齢が30歳以下である場合には、rs10770141がT(+)であるか、
     rs4680がMet(-)、rs1800497がA1(+)の組合せを有している場合には統合失調症の可能性が高いと判定する検査方法。
    A method for testing a patient suspected of having schizophrenia,
    DNA of interest was analyzed for functional SNPs rs10770141, rs4680, and rs1800497,
    If the target age is 30 years or younger, rs10770141 is T(+),
    A test method that determines that schizophrenia is likely when rs4680 has a combination of Met(-) and rs1800497 has a combination of A1(+).
  12.  機能的SNPであるrs10770141、rs4680、及びrs1800497を解析することにより、統合失調症患者の抗精神病薬の投与量決定を補助する方法。 A method of assisting in determining the dose of an antipsychotic drug in schizophrenia patients by analyzing functional SNPs rs10770141, rs4680, and rs1800497.
  13.  rs10770141がT(+)かつrs4680がMet(-)の患者には高用量のドパミン受容体遮断薬の投与の検討を推奨する請求項12記載の抗精神病薬の投与量決定を補助する方法。
     
    The method for assisting in determining the dose of an antipsychotic drug according to claim 12, which is recommended for studying the administration of a high dose of a dopamine receptor blocker to a patient in which rs10770141 is T(+) and rs4680 is Met(−).
PCT/JP2019/046519 2018-11-28 2019-11-28 Genetic testing method for multifactorial genetic disease and testing kit WO2020111169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020557812A JPWO2020111169A1 (en) 2018-11-28 2019-11-28 Genetic testing methods and test kits for multifactorial genetic diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-222219 2018-11-28
JP2018222219 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020111169A1 true WO2020111169A1 (en) 2020-06-04

Family

ID=70852981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046519 WO2020111169A1 (en) 2018-11-28 2019-11-28 Genetic testing method for multifactorial genetic disease and testing kit

Country Status (3)

Country Link
JP (1) JPWO2020111169A1 (en)
TW (1) TW202033760A (en)
WO (1) WO2020111169A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763728A (en) * 2020-08-20 2020-10-13 中日友好医院(中日友好临床医学研究所) SNP locus combination, primer set and kit for early screening of Alzheimer disease

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521879A (en) * 1999-04-20 2003-07-22 マイトコー Single nucleotide polymorphisms in mitochondrial genes segregating with Alzheimer's disease
JP2008529524A (en) * 2005-02-15 2008-08-07 サムスン エレクトロニクス カンパニー リミテッド Method for diagnosing type 2 diabetes using multilocus marker, polynucleotide containing marker related to type 2 diabetes, microarray containing the same, and kit for diagnosing type 2 diabetes
JP2010507388A (en) * 2006-10-27 2010-03-11 デコード・ジェネティクス・イーエイチエフ Cancer susceptibility variants on CHR8Q24.21
JP2010511380A (en) * 2006-11-24 2010-04-15 ライセンティア, リミテッド How to predict response to treatment
JP2012526562A (en) * 2009-05-15 2012-11-01 ヴァンダ ファーマシューティカルズ インコーポレイテッド Antipsychotic treatment based on DRD2 or ANKK1 SNP genotype
WO2018098292A2 (en) * 2016-11-23 2018-05-31 Assurex Health, Inc. Methods for treating opioid addiction
JP2018157776A (en) * 2017-03-22 2018-10-11 国立大学法人三重大学 Method for detecting hereditary risk of metabolic disease
JP2018186768A (en) * 2017-05-09 2018-11-29 国立大学法人千葉大学 Combinational analysis of functional snp

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521879A (en) * 1999-04-20 2003-07-22 マイトコー Single nucleotide polymorphisms in mitochondrial genes segregating with Alzheimer's disease
JP2008529524A (en) * 2005-02-15 2008-08-07 サムスン エレクトロニクス カンパニー リミテッド Method for diagnosing type 2 diabetes using multilocus marker, polynucleotide containing marker related to type 2 diabetes, microarray containing the same, and kit for diagnosing type 2 diabetes
JP2010507388A (en) * 2006-10-27 2010-03-11 デコード・ジェネティクス・イーエイチエフ Cancer susceptibility variants on CHR8Q24.21
JP2010511380A (en) * 2006-11-24 2010-04-15 ライセンティア, リミテッド How to predict response to treatment
JP2012526562A (en) * 2009-05-15 2012-11-01 ヴァンダ ファーマシューティカルズ インコーポレイテッド Antipsychotic treatment based on DRD2 or ANKK1 SNP genotype
WO2018098292A2 (en) * 2016-11-23 2018-05-31 Assurex Health, Inc. Methods for treating opioid addiction
JP2018157776A (en) * 2017-03-22 2018-10-11 国立大学法人三重大学 Method for detecting hereditary risk of metabolic disease
JP2018186768A (en) * 2017-05-09 2018-11-29 国立大学法人千葉大学 Combinational analysis of functional snp

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
ALZUBI, R. ET AL.: "SNPs-based Hypertension Disease Detection via Machine Learning Techniques", 2018 24TH INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC, 6 September 2018 (2018-09-06), pages 1 - 6, XP033571376, DOI: 10.23919/IConAC.2018.8748972 *
CADZOW, M. ET AL.: "Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank", ARTHRITIS RESEARCH & THERAPY, vol. 19, no. 181, 9 August 2017 (2017-08-09), pages 1 - 7, XP055713634 *
GIEGLING, I. ET AL.: "Dopa Decarboxylase and Tyrosine Hydroxylase Gene Variants in Suicidal Behavior", AMERICAN JOURNAL OF MEDICAL GENETICS PART B, vol. 147 B, 2008, pages 308 - 315, XP055713618 *
GOTO, A. ET AL.: "Predictive performance of a genetic risk score using 11 susceptibility alleles for incidence of Type 2 diabetes in a general Japanese population: a nested case-control study", DIABETIC MEDICINE, vol. 35, 14 February 2018 (2018-02-14), pages 602 - 611, XP055713636 *
HE, H. ET AL.: "Associations between dopamine D2 receptor gene polymorphisms and schizophrenia risk: a PRISMA compliant meta-analysis", NEUROPSYCHIATRIC DISEASE AND TREATMENT, vol. 12, 2016, pages 3129 - 3144, XP055713610 *
HU , J. ET AL.: "The role of tyrosine hydroxylase gene variants in suicide attempt in schizophrenia", NEUROSCIENCE LETTERS, vol. 559, 2014, pages 39 - 43, XP028813221, DOI: 10.1016/j.neulet.2013.11.025 *
MAYA, SHIGERU ET AL.: "A method to identify disease- related SNP combinations using mutual information", RESEARCH DOCUMENTS OF THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, vol. B5, no. 03, 25 March 2016 (2016-03-25), pages 29 - 34 *
NISHI, AKITO ET AL.: "Rheumatoid arthritis and disease susceptibility gene", KAGAKU TO SEIBUTSU, vol. 42, no. 8, 2004, pages 526 - 527 *
OISHI, K. ET AL.: "Genetic combination risk for schizophrenia", SCHIZOPHRENIA RESEARCH, 30 August 2019 (2019-08-30), pages 1 - 14, XP086052782 *
OISHI, K. ET AL.: "Genetic risks of schizophrenia identified in a matched case-control study", BIORXIV, 13 July 2019 (2019-07-13), pages 1 - 17, XP055713601 *
OISHI, K. ET AL.: "Vulnerable combinations of functional dopaminergic polymorphisms to late- onset treatment resistant schizophrenia", PLOS ONE, vol. 13, no. 11, 8 November 2018 (2018-11-08), pages 1 - 10, XP055713561 *
OISHI, KENGO ET AL.: "Human genome diversity: Risk of Dopamine Hypersensitivity", CHIBA MEDICAL JOURNAL, vol. 94, no. 5, 1 October 2018 (2018-10-01), pages 191 - 194 *
OISHI, KENGO: "Proposal for a new risk assessment method of late-onset treatment- resistant schizophrenia by a comprehensive assessment of functional single nucleotide polymorphisms", CHIBA UNIVERSITY REPOSITORY FOR ACCESS TO OUTCOMES FROM RESEARCH, 30 September 2018 (2018-09-30), pages 1 - 4 *
OZAKI, KOICHI ET AL.: "Molecular genetics of coronary artery disease", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 266, no. 5, 4 August 2018 (2018-08-04), pages 441 - 448 *
PERKOVIC, M. N. ET AL.: "Monoamine oxidase and agitation in psychiatric patients", PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, vol. 69, 4 February 2016 (2016-02-04), pages 131 - 146, XP029531711, DOI: 10.1016/j.pnpbp.2016.02.002 *
TERZIC, T. ET AL.: "GENETIC POLYMORPHISMS IN DOPAMINERGIC SYSTEM AND TREATMENT-RESISTANT SCHIZOPHRENIA", PSYCHIATRIA DANUBINA, vol. 28, no. 2, 2016, pages 127 - 131, XP055713564 *
TUNG, MIN-CHE ET AL.: "Dopamine receptor D2 genetic variations is associated with the risk and clinicopathological variables of urothelial cell carcinoma in a Taiwan ese population", INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, vol. 15, 30 July 2018 (2018-07-30), pages 1187 - 1193, XP055713633 *
VAN DEN BROECK, T. ET AL.: "The Role of Single Nucleotide Polymorphisms in Predicting Prostate Cancer Risk and Therapeutic Decision Making", BIOMED RESEARCH INTERNATIONAL, vol. 2014, 2014, pages 1 - 16, XP055713632 *
VESPASIANI-GENTILUCCI, U. ET AL., COMBINING GENETIC VARIANTS TO IMPROVE RISK PREDICTION FOR NAFLD AND ITS PROGRESSION TO CIRRHOSIS: A PROOF OF CONCEPT STUDY, 14 March 2018 (2018-03-14), pages 1 - 9, XP055713637 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763728A (en) * 2020-08-20 2020-10-13 中日友好医院(中日友好临床医学研究所) SNP locus combination, primer set and kit for early screening of Alzheimer disease

Also Published As

Publication number Publication date
TW202033760A (en) 2020-09-16
JPWO2020111169A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
Liu et al. A DNA methylation biomarker of alcohol consumption
van Veldhoven et al. Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis
Keller et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity
Pajer et al. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression
Reynolds et al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells
Manjarrez-Orduño et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation
Cui et al. Long non-coding RNA: potential diagnostic and therapeutic biomarker for major depressive disorder
Lee et al. Association between a G-protein β3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders
Belzeaux et al. Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression
Ghosh et al. Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity
Wang et al. A genome-wide methylation study on essential hypertension in young African American males
Guilloux et al. Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression
Kohlmann et al. Gene expression profiling in AML with normal karyotype can predict mutations for molecular markers and allows novel insights into perturbed biological pathways
JP6935079B2 (en) Combination analysis of functional SNPs
Oh et al. Circadian oscillations of cytosine modification in humans contribute to epigenetic variability, aging, and complex disease
Bell et al. Novel regional age-associated DNA methylation changes within human common disease-associated loci
Ghebranious et al. A pilot study of gene/gene and gene/environment interactions in Alzheimer disease
Herrera et al. Genome-epigenome interactions associated with myalgic encephalomyelitis/chronic fatigue syndrome
US11884980B2 (en) Method for detection of traumatic brain injury
Mamdani et al. Pharmacogenomic predictors of citalopram treatment outcome in major depressive disorder
Chang et al. Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Huntington's disease patients
Koleck et al. An exploratory study of host polymorphisms in genes that clinically characterize breast cancer tumors and pretreatment cognitive performance in breast cancer survivors
Vaughan et al. Linkage and association analysis of obesity traits reveals novel loci and interactions with dietary n-3 fatty acids in an Alaska Native (Yup’ik) population
Ciuculete et al. Longitudinal DNA methylation changes at MET may alter HGF/c-MET signalling in adolescents at risk for depression
Cappetta et al. Discovery of novel DNA methylation biomarkers for non‐invasive sporadic breast cancer detection in the Latino population

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888726

Country of ref document: EP

Kind code of ref document: A1