WO2020111163A1 - Braking control device - Google Patents

Braking control device Download PDF

Info

Publication number
WO2020111163A1
WO2020111163A1 PCT/JP2019/046483 JP2019046483W WO2020111163A1 WO 2020111163 A1 WO2020111163 A1 WO 2020111163A1 JP 2019046483 W JP2019046483 W JP 2019046483W WO 2020111163 A1 WO2020111163 A1 WO 2020111163A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
motor
control
target
braking force
Prior art date
Application number
PCT/JP2019/046483
Other languages
French (fr)
Japanese (ja)
Inventor
雅敏 半澤
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2020111163A1 publication Critical patent/WO2020111163A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/60Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling combinations of dc and ac dynamo-electric motors

Definitions

  • the present invention relates to a braking control device.
  • EPBs Electric Parking Brakes
  • a braking control device that executes braking by EPB generates electric braking force by controlling a motor to drive a wheel braking mechanism, for example.
  • the stop timings of the left motor provided on the left wheel side and the right motor provided on the right wheel side may be different for various reasons.
  • one of the objects of the present invention is to provide, for example, a braking control device that can reduce the uncomfortable feeling and the discomfort caused by the operating noise when the braking by the EPB is executed.
  • the present invention for example, generates an electric braking force on the left wheel by driving a left motor provided on the left wheel side, and an electric braking force on the right wheel by driving a right motor provided on the right wheel side.
  • a left target current value that is a target current value for the left motor to generate and a right target current value that is a target current value for the right motor are calculated, and the left motor and the right motor are driven to generate the left target current value.
  • FIG. 1 is a schematic diagram showing an overall outline of the vehicle brake device of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a rear wheel wheel brake mechanism provided in the vehicle brake device of the first embodiment.
  • FIG. 3 is a flowchart showing the overall processing by the braking control device of the first embodiment.
  • FIG. 4 is a flowchart showing a lock control process by the braking control device of the first embodiment.
  • FIG. 5 is a flowchart showing a process of estimating an actual axial force by the braking control device of the first embodiment.
  • FIG. 6 is a flowchart showing a process of calculating the required axial force by the braking control device of the first embodiment.
  • FIG. 1 is a schematic diagram showing an overall outline of the vehicle brake device of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a rear wheel wheel brake mechanism provided in the vehicle brake device of the first embodiment.
  • FIG. 3 is a flowchart showing the overall processing by the braking control
  • FIG. 7 is a flowchart showing a follow control process by the braking control device of the first embodiment.
  • FIG. 8 is a time chart showing a first control example in the first embodiment.
  • FIG. 9 is a time chart showing a second control example in the first embodiment.
  • FIG. 10 is a time chart showing a third control example in the first embodiment.
  • FIG. 11 is a time chart showing a fourth control example in the first embodiment.
  • FIG. 12 is a flowchart showing a lock control process by the braking control device of the second embodiment.
  • FIG. 13 is a time chart showing a control example in the second embodiment.
  • FIG. 14 is a flowchart showing a lock control process by the braking control device of the third embodiment.
  • FIG. 15 is a flowchart showing the process of estimating the current axial force by the braking control device of the third embodiment.
  • FIG. 16 is a flowchart showing a process of estimating a required axial force (variation) by the braking control device of the third embodiment.
  • FIG. 17 is a flowchart showing a lock control process by the braking control device of the fourth embodiment.
  • FIG. 18 is a time chart showing a control example in the fourth embodiment.
  • FIG. 19 is a flowchart showing a lock control process by the braking control device of the fifth embodiment.
  • FIG. 20 is a time chart showing a control example in the fifth embodiment.
  • FIG. 1 is a schematic diagram showing an overall outline of the vehicle brake device of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a rear wheel wheel brake mechanism provided in the vehicle brake device of the first embodiment.
  • the vehicle brake device of the first embodiment includes a service brake 1 (hydraulic brake device) and an EPB 2 (electric brake device).
  • the service brake 1 is hydraulically applied toward the braked member (the brake disc 12 in FIG. 2) that rotates integrally with the wheels based on the driver's depression of the brake pedal 3 (the brake pad 11 in FIG. 2). ) To generate a service braking force (hydraulic braking force). Specifically, the service brake 1 boosts the pedal effort corresponding to the depression of the brake pedal 3 by the driver with the booster 4, and then applies the brake fluid pressure corresponding to the boosted pedal effort to the master cylinder ( Hereinafter, it is generated within 5). Then, the brake hydraulic pressure is transmitted to a wheel cylinder (hereinafter, referred to as W/C) 6 provided in a wheel brake mechanism of each wheel to generate a service brake force. Further, an actuator 7 for controlling brake fluid pressure is provided between M/C5 and W/C6. The actuator 7 adjusts the service brake force generated by the service brake 1 and performs various controls (for example, anti-skid control) for improving the safety of the vehicle.
  • W/C wheel cylinder
  • W/C wheel
  • ESC-ECU 8 that controls the service braking force.
  • the ESC-ECU 8 outputs a control current for controlling various control valves (not shown) provided in the actuator 7 and a motor for driving the pump, thereby controlling the hydraulic circuit provided in the actuator 7, and the W/C 6 It controls the W/C pressure transmitted to.
  • ESC Electronic Stability Control
  • the actuator 7 controls, for each wheel, a pressure increase control that controls whether the brake fluid pressure generated in the M/C5 or the brake fluid pressure generated by the pump drive is applied to the W/C6. It is equipped with a valve and a pressure reduction control valve that reduces the W/C pressure by supplying the brake fluid in each W/C 6 to the reservoir, and is configured to increase/hold/depress the W/C pressure. ing. Further, the actuator 7 can realize the automatic pressurizing function of the service brake 1, and automatically applies the W/C 6 based on the control of the pump drive and various control valves even when the brake is not operated. You can press.
  • the EPB 2 is for generating an electric braking force by driving the wheel braking mechanism by the motor 10, and has an EPB-ECU 9 (braking control device. electric braking control unit) for controlling the driving of the motor 10. It is configured. Specifically, for example, the EPB 2 drives the motor 10 toward the braked member (the brake disc 12 in FIG. 2) so that the vehicle does not move unintentionally during parking, and thus the brake member (in FIG. 2). The brake pad 11) is pressed to generate an electric braking force.
  • the EPB-ECU 9 and the ESC-ECU 8 send and receive information by CAN (Controller Area Network) communication, for example.
  • CAN Controller Area Network
  • the wheel brake mechanism is a mechanical structure that generates a braking force in the vehicle brake device of the first embodiment.
  • the front wheel system wheel brake mechanism has a structure that generates a service braking force by operating the service brake 1. ing.
  • the wheel brake mechanism of the rear wheel system has a common structure that generates a braking force for both the operation of the service brake 1 and the operation of the EPB 2.
  • the front wheel brake mechanism is a wheel brake mechanism that has been generally used since the rear wheel brake mechanism does not include a mechanism that generates an electric braking force based on the operation of EPB2. The description is omitted here, and the wheel brake mechanism of the rear wheel system will be described below.
  • the wheel brake mechanism rotates the motor 10 directly fixed to the body 14 of the W/C 6 for pressing the brake pad 11 as shown in FIG. 2 in the caliper 13 shown in FIG.
  • the spur gear 15 provided on the drive shaft 10a of the motor 10 is rotated.
  • the brake pad 11 is moved to generate the electric braking force by the EPB 2.
  • the W/C 6 can generate the W/C pressure in the hollow portion 14a which is the brake fluid storage chamber by introducing the brake fluid pressure into the hollow portion 14a of the cylindrical body 14 through the passage 14b.
  • the hollow portion 14a is provided with a rotary shaft 17, a propulsion shaft 18, a piston 19 and the like.
  • the rotary shaft 17 has one end connected to the spur gear 16 through an insertion hole 14c formed in the body 14, and when the spur gear 16 is rotated, it is rotated together with the rotation of the spur gear 16.
  • a male screw groove 17a is formed on the outer peripheral surface of the rotary shaft 17 at the end of the rotary shaft 17 opposite to the end connected to the spur gear 16.
  • the other end of the rotary shaft 17 is supported by being inserted into the insertion hole 14c.
  • the insertion hole 14c is provided with a bearing 21 together with the O-ring 20, and the O-ring 20 prevents the brake fluid from leaking out between the rotary shaft 17 and the inner wall surface of the insertion hole 14c. Meanwhile, the other end of the rotary shaft 17 is axially supported by the bearing 21.
  • the propulsion shaft 18 is composed of a nut made of a hollow cylindrical member, and has an internal wall surface formed with a female screw groove 18a that is screwed into the male screw groove 17a of the rotary shaft 17.
  • the propulsion shaft 18 is configured to have, for example, a columnar shape or a polygonal columnar shape provided with a key for preventing rotation, so that even if the rotation shaft 17 rotates, the propulsion shaft 18 is rotated about the rotation center of the rotation shaft 17. There is no structure. Therefore, when the rotating shaft 17 is rotated, the rotational force of the rotating shaft 17 becomes a force for moving the propulsion shaft 18 in the axial direction of the rotating shaft 17 due to the engagement between the male screw groove 17a and the female screw groove 18a. Convert.
  • the propulsion shaft 18 stops at the same position due to the frictional force due to the engagement between the male screw groove 17a and the female screw groove 18a, and the target electric braking force is obtained. If the drive of the motor 10 is stopped at that time, the propulsion shaft 18 is held at that position, and a desired electric braking force can be held and self-locking (hereinafter simply referred to as "lock") can be performed.
  • the piston 19 is arranged so as to surround the outer periphery of the propulsion shaft 18, is configured by a bottomed cylindrical member or a polygonal cylindrical member, and has an outer peripheral surface in contact with the inner wall surface of the hollow portion 14 a formed in the body 14.
  • a seal member 22 is provided on the inner wall surface of the body 14 so that the brake fluid does not leak between the outer peripheral surface of the piston 19 and the inner wall surface of the body 14, and W/C pressure can be applied to the end surface of the piston 19. It is said that.
  • the seal member 22 is used to generate a reaction force for returning the piston 19 during release control after lock control.
  • this seal member 22 is provided, basically, even if the brake pad 11 and the piston 19 are pushed in by the tilted brake disc 12 within a range not exceeding the elastic deformation amount of the seal member 22, they are braked. It can be pushed back to the side of the disc 12 so that the space between the brake disc 12 and the brake pad 11 is maintained with a predetermined clearance (clearance C2 in FIG. 2).
  • the piston 19 does not rotate about the center of rotation of the rotary shaft 17 even if the rotary shaft 17 rotates, so that if the propulsion shaft 18 is provided with a key for preventing rotation, the key is
  • the propulsion shaft 18 has a polygonal column shape, it is provided with a sliding key groove, and has a polygonal cylindrical shape having a shape corresponding thereto.
  • the brake pad 11 is arranged at the tip of the piston 19, and the brake pad 11 is moved in the left-right direction on the paper surface as the piston 19 moves.
  • the piston 19 is movable to the left in the drawing with the movement of the propulsion shaft 18, and is located at the end of the piston 19 (the end opposite to the end where the brake pad 11 is arranged).
  • W/C pressure By applying W/C pressure, it is configured to be able to move to the left side of the drawing independently of the propulsion shaft 18.
  • the brake fluid pressure in the hollow portion 14a is not applied (W/C). If the pressure is 0), the piston 19 is moved to the right in the drawing by the elastic force of the seal member 22 described later, and the brake pad 11 can be separated from the brake disc 12.
  • the propulsion shaft 18 moves the piston 19 rightward on the paper surface. Movement is restricted and the brake pad 11 is held in place.
  • the clearance C1 in FIG. 2 indicates the distance between the tip of the propulsion shaft 18 and the piston 19.
  • the brake pad 11 is braked by moving the piston 19 leftward on the paper surface based on the W/C pressure generated thereby.
  • the disc 12 is pressed to generate a service braking force.
  • the spur gear 15 is rotated by driving the motor 10, and the spur gear 16 and the rotary shaft 17 are accordingly rotated. Therefore, the male screw groove 17a and the female screw groove 18a are rotated.
  • the propulsion shaft 18 is moved to the side of the brake disc 12 (to the left in the drawing) based on the meshing of.
  • the vehicle brake device of the first embodiment by confirming the current detection value by the current sensor (not shown) that detects the current of the motor 10, it is possible to confirm the generation state of the electric braking force by the EPB 2 and The current detection value can be recognized.
  • the front-rear G sensor 25 detects G (acceleration) in the front-rear direction (travel direction) of the vehicle and transmits a detection signal to the EPB-ECU 9.
  • the M/C pressure sensor 26 detects the M/C pressure in the M/C 5 and sends a detection signal to the EPB-ECU 9.
  • the temperature sensor 28 detects the temperature of a wheel brake mechanism (for example, a brake disc) and sends a detection signal to the EPB-ECU 9.
  • a wheel brake mechanism for example, a brake disc
  • the wheel speed sensor 29 detects the rotation speed of each wheel and sends a detection signal to the EPB-ECU 9.
  • the wheel speed sensors 29 are actually provided one by one for each wheel, but detailed illustration and description thereof are omitted here.
  • the EPB-ECU 9 is composed of a well-known microcomputer including a CPU, a ROM, a RAM, an I/O, etc., and controls the rotation of the motor 10 according to a program stored in the ROM or the like to perform parking brake control. Is. Further, the EPB-ECU 9 generates an electric braking force on the left wheel by driving a left motor (motor 10) provided on the left wheel (for example, left rear wheel) side, and the right wheel (for example, right rear wheel) side.
  • the braking control device is applied to a vehicle including an electric braking device that generates an electric braking force on a right wheel by driving a right motor (motor 10) provided in the vehicle.
  • the EPB-ECU 9 inputs, for example, a signal according to the operation state of an operation SW (switch) 23 provided on an instrument panel (not shown) in the vehicle compartment, and operates the motor 10 according to the operation state of the operation SW 23. To drive. Further, the EPB-ECU 9 executes lock control, release control, etc. based on the current detection value of the motor 10. Based on the control state, the EPB-ECU 9 indicates that the lock control is being performed or the wheels are locked by the lock control. It is recognized that there is a release control, and that the wheel is in the release state (EPB release state) by the release control. Then, the EPB-ECU 9 outputs a signal for performing various displays to the display lamp 24 provided on the instrument panel.
  • an operation SW switch
  • the EPB-ECU 9 executes lock control, release control, etc. based on the current detection value of the motor 10. Based on the control state, the EPB-ECU 9 indicates that the lock control is being performed or the wheels are locked by the lock control. It
  • the vehicle brake device configured as described above basically performs an operation of generating a braking force on the vehicle by generating the service braking force by the service brake 1 when the vehicle is traveling. Further, when the vehicle is stopped by the service brake 1, the driver presses the operation SW 23 to operate the EPB 2 to generate the electric braking force to maintain the stopped state, and thereafter release the electric braking force. Performs the action of That is, as the operation of the service brake 1, when the driver operates the brake pedal 3 while the vehicle is traveling, the brake fluid pressure generated in the M/C 5 is transmitted to the W/C 6 to generate the service brake force. ..
  • the piston 19 is moved, and the brake pad 11 is pressed against the brake disc 12 to generate an electric braking force to lock the wheels or to lock the brake pad 11.
  • the electric braking force is released and the wheels are released.
  • the lock/release control is used to generate or release the electric braking force.
  • the EPB 2 is operated by rotating the motor 10 in the forward direction, the rotation of the motor 10 is stopped at a position where the desired electric braking force is generated by the EPB 2, and this state is maintained. As a result, a desired electric braking force is generated.
  • the release control the EPB 2 is operated by rotating the motor 10 in the reverse direction, and the electric braking force generated in the EPB 2 is released.
  • the EPB2 is used in those situations. Good.
  • the EPB-ECU 9 performs the following processing in order to reduce discomfort and discomfort caused by different stop timings of the left motor and the right motor during execution of braking by the EPB 2.
  • the cause of the difference in stop timing between the left motor and the right motor is, for example, that the left motor and the right motor have different characteristics such as rotation speed, or the clearances C1 and C2 at the start of operation are different. And so on.
  • the EPB-ECU 9 calculates the target braking force required to maintain the vehicle stopped, and the left target current value that is the target current value for the left motor to generate the target braking force and the right target value.
  • a right target current value which is a target current value for the motor, is calculated.
  • the EPB-ECU 9 drives the left motor and the right motor, and the actual current value of the left motor reaches the left target current value or more, and the actual current value of the right motor reaches the right target current value or more.
  • stop control is performed to stop both the left motor and the right motor at the same time.
  • the EPB-ECU 9 determines whether the condition that the actual current value of the other left motor or the right motor has reached the target current value or more is satisfied. When it is determined that the conditions are not met, execution of stop control is prohibited, and the stop current is allowed after the actual current value of the other left motor or right motor has reached the target current value or more. You may make it stop both a left motor and a right motor simultaneously.
  • the EPB-ECU 9 corrects the target braking force to be high, and the left motor and the right motor are controlled so as to generate the corrected target braking force. At least one of them may be driven. In that case, the EPB-ECU 9 can detect the vehicle slipping down, for example, based on the detection signal from the wheel speed sensor 29.
  • the EPB-ECU 9 drives at least one of the left motor and the right motor to drive the target control if the total braking force generated at the left wheel and the right wheel is lower than the target braking force. Adjustment control for generating power may be executed. In that case, the EPB-ECU 9 prohibits the adjustment control until a predetermined vehicle operation for estimating that the occupant has exited the vehicle is detected, and executes the adjustment control when the predetermined vehicle operation is detected. Good.
  • the predetermined vehicle operation is, for example, the shift lever being in the parking position, the ignition switch being turned off, the seat belt being released, the door being opened, and the like.
  • the EPB-ECU 9 may execute the notification control for notifying the occupant when the adjustment control cannot be executed.
  • the case where the adjustment control cannot be executed is, for example, the case where the adjustment control cannot be started due to a failure, or the case where the adjustment control is started but is not completed within a predetermined time and the adjustment control cannot be completed. In that case, for example, by blinking the display lamp 24, the occupant may be notified that the adjustment control cannot be executed.
  • the cause of the adjustment control not ending within a predetermined time is, for example, a decrease in supply voltage.
  • FIG. 3 is a flowchart showing the overall processing by the braking control device of the first embodiment.
  • step S1 the EPB-ECU 9 determines whether or not there is a lock control request by the EPB2. If Yes, the process proceeds to step S2, and if No, the process returns to step S1. For example, when the driver operates the operation SW 23 to operate the EPB 2 after the vehicle has stopped, the result in step S1 is Yes.
  • step S2 the EPB-ECU 9 executes lock control processing.
  • FIG. 4 is a flowchart showing a process of lock control by the braking control device of the first embodiment.
  • step S201 the EPB-ECU 9 calculates the target braking force required to maintain the vehicle stopped.
  • step S202 the EPB-ECU 9 calculates the left target current value for the left motor and the right target current value for the right motor for generating the target braking force.
  • step S203 the EPB-ECU 9 drives the left motor and the right motor to the lock side.
  • step S204 the EPB-ECU 9 determines whether or not the actual current value of the left motor (left actual current value) has reached the left target current value, and if Yes, the process proceeds to step S206 and No In this case, the process proceeds to step S205.
  • step S205 the EPB-ECU 9 determines whether or not the actual current value of the right motor (right actual current value) has reached the right target current value. If Yes, the process proceeds to step S206, and if No, the step is performed. Return to S204.
  • step S206 the EPB-ECU 9 executes stop control for stopping both the left motor and the right motor.
  • step S207 the EPB-ECU 9 substitutes the left actual current value into the left reaching current value of the parameter.
  • step S208 the EPB-ECU 9 substitutes the right actual current value for the right reaching current value of the parameter.
  • step S209 the EPB-ECU 9 lights the display lamp 24 (for example, lights in red). This completes the lock control process.
  • FIG. 5 is a flowchart showing a process of estimating an actual axial force by the braking control device of the first embodiment.
  • step S31 the EPB-ECU 9 calculates the left estimated axial force based on the left reaching current value. Specifically, for example, it is calculated using the following formula (1).
  • Left estimated axial force Left reaching current value x ⁇ + ⁇ ... Equation (1)
  • ⁇ and ⁇ are coefficients, and are determined in consideration of fixed values due to variations in the structure of each component and variable values due to deterioration of each component, environment (temperature, etc.), etc. Further, in estimating the axial force, it is preferable to adopt a lower value from the safety side in consideration of the deterioration of parts and the environment (temperature, etc.) among the widths of the estimated axial force. Not limited to. Further, the calculation may be performed based on information such as a map or a table instead of the formula.
  • step S32 the EPB-ECU 9 calculates the right estimated axial force based on the right reaching current value.
  • the specific calculation method is the same as in step S31.
  • step S33 the EPB-ECU 9 calculates the total estimated axial force by summing the left estimated axial force and the right estimated axial force. This completes the process of estimating the actual axial force.
  • FIG. 6 is a flowchart showing the process of calculating the required axial force by the braking control device of the first embodiment.
  • EPB-ECU9 acquires each information in step S41.
  • the information includes, for example, vehicle weight (specification or estimation), tire diameter (specification or estimation), pad (brake pad 11) ⁇ (friction coefficient) (design value or estimation), cylinder effective diameter (design value), road The slope (detection value or estimation).
  • step S42 the EPB-ECU 9 calculates the required braking force based on each information. Specifically, for example, it is calculated using the following formula (2).
  • Required braking force 9.8 (gravitational acceleration) x vehicle weight x Arcsin (tan value of road gradient) x tire diameter (2)
  • step S43 the EPB-ECU 9 calculates the required axial force based on the required braking force calculated in step S42. Specifically, for example, it is calculated using the following formula (3).
  • Required axial force Required braking force/(2 (Number of pads) x Pad ⁇ x Effective cylinder diameter) ...Formula (3) This completes the process of calculating the required axial force.
  • FIG. 7 is a flowchart showing a process of follow control by the braking control device of the first embodiment.
  • step S501 the EPB-ECU 9 determines whether or not the total estimated axial force calculated in step S33 of FIG. 5 is equal to or greater than the required axial force calculated in step S43 of FIG. 6, and if Yes, the follow control ends. If No, the process proceeds to step S503.
  • step S503 the EPB-ECU 9 determines whether or not adjustment control is possible. If Yes, the process proceeds to step S504, and if No, the process proceeds to step S502. For example, if the device for performing the adjustment control is out of order, the result in step S503 is No.
  • step S504 the EPB-ECU 9 determines whether or not a predetermined vehicle operation for estimating that the occupant has exited the vehicle is detected. If Yes, the process proceeds to step S505, and if No, the process returns to step S504. ..
  • step S505 the EPB-ECU 9 starts adjustment control.
  • step S506 the EPB-ECU 9 determines whether or not the total actual current value obtained by summing the left actual current value and the right actual current value is greater than or equal to the target current value, and if Yes, the process proceeds to step S509, No. In this case, the process proceeds to step S507.
  • step S509 the EPB-ECU 9 ends the adjustment control and the follow control process.
  • step S507 the EPB-ECU 9 determines whether or not a predetermined time has elapsed from the start of adjustment control (step S505), the process proceeds to step S508 if Yes, and the process returns to step S506 if no.
  • step S508 the EPB-ECU 9 ends the adjustment control.
  • step S502 the EPB-ECU 9 changes the indicator lamp 24 from lighting to blinking (for example, blinking in red), and ends the follow control process.
  • step S6 the EPB-ECU 9 determines whether or not the vehicle has slipped down. If Yes, the process proceeds to step S7, and if No, the process returns to step S6. ..
  • step S7 the EPB-ECU 9 executes relock control processing.
  • step S6 is executed after step S5.
  • the process of step S7 in the case of Yes at step S6 and step S6 is always performed. It may be executed.
  • the EPB-ECU 9 drives at least one of the left motor and the right motor to increase the braking force so that the vehicle can be prevented from rolling down.
  • the re-lock control process may be executed with the target braking force unchanged. If the vehicle is slipping down despite the actual braking force reaching the target braking force, the target braking force is corrected to a higher value if necessary, and the corrected target braking force is corrected.
  • the re-lock control process may be executed based on the power.
  • the left motor and the right motor are stopped at the same time in the first lock control (step S2 in FIGS. 3 and 4) at the time of executing the braking by the EPB 2 (step in FIG. 4). Since S206), there is no left-right difference in the operating sound, and it is possible to avoid a situation in which the occupant feels strange or uncomfortable.
  • FIG. 8 is a time chart showing a first control example in the first embodiment. It is assumed that the vehicle is stopped at the start.
  • the lock control starts at time t1. After that, at time t2, the right actual current value and the left actual current value enter the stable state after the inrush current. After that, the right actual current value starts increasing at time t3 and reaches the right target current value at time t5 (Yes in step S205 of FIG. 4). The left actual current value starts to rise at time t4, which is later than time t3, and has not yet reached the left target current value at time t5.
  • the right estimated axial force rises from time t3 to time t5
  • the left estimated axial force rises from time t4 to time t5
  • the total estimated axial force which is the sum of the estimated axial force and the left estimated axial force, has not reached the required axial force at time t5.
  • step S504 in FIG. 7 it is assumed that step S504 in FIG. 7 is not provided and the adjustment control is started immediately (step S505 in FIG. 7).
  • the left actual current value of the left motor sharply increases due to the inrush current at time t6 immediately after time t5, enters a stable state at time t7, and then increases, and reaches the left target current value at time t8. Falls to zero.
  • the left estimated axial force increases from time t7 to time t8, and the total estimated axial force, which is the sum of the right estimated axial force and the left estimated axial force, exceeds the required axial force at time t8.
  • the display lamp 24 changes from off to on at the time t5 when the first lock control is completed (step S209 in FIG. 4).
  • the left motor and the right motor are stopped at the time t5 at the same time. Therefore, it is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
  • the total estimated axial force has not reached the required axial force at time t5
  • the total estimated axial force can reach the required axial force by performing adjustment control immediately after that at time t6. Can be further improved.
  • FIG. 9 is a time chart showing a second control example in the first embodiment. Since the time t1 to t5 is the same as the first control example, the description thereof is omitted.
  • step S7 of FIG. 3 the left actual current value of the left motor sharply rises due to the inrush current at time t11, enters a stable state at time t12, and then rises, and then decreases to zero after reaching the right target current value at time t13. To do.
  • the left estimated axial force increases from time t12 to time t13, and the total estimated axial force, which is the sum of the right estimated axial force and the left estimated axial force, exceeds the required axial force at time t13.
  • the left motor and the right motor are stopped at the time t5 at the same time. Therefore, it is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
  • FIG. 10 is a time chart showing a third control example in the first embodiment. Since the time t1 to t5 is the same as the first control example, the description thereof is omitted.
  • the left motor and the right motor are stopped at the time t5 at the same time. Therefore, it is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
  • the display by the display lamp 24 changes from lighting to blinking, so that the occupant can recognize that there is a situation where the adjustment control cannot be executed and take measures accordingly.
  • FIG. 11 is a time chart showing a fourth control example in the first embodiment. Since the time t1 to t5 is the same as the first control example, the description thereof is omitted.
  • the adjustment control is executed after the time t5 when the first lock control is completed, but cannot be completed within a predetermined time.
  • the left actual current value of the left motor sharply rises due to the inrush current at time t6 immediately after time t5, enters a stable state at time t7, and then rises. Since the value has not reached the value, the adjustment control ends and the value decreases to zero (Yes in step S507 in FIG. 7 ⁇ step S508).
  • the left estimated axial force slightly increases from time t7 to time t31, but the total estimated axial force, which is the sum of the right estimated axial force and the left estimated axial force, has not reached the required axial force at time t31.
  • the display lamp 24 changes from off to lighting at time t5 when the first lock control is completed, and further changes from lighting to blinking at time t31 (step S502 after step S508 in FIG. 7).
  • the left motor and the right motor are stopped at the time t5 at the same time. Therefore, it is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
  • the display by the display lamp 24 changes from lighting to blinking at time t31 in response to the adjustment control not being completed, the occupant recognizes that there is a situation in which the adjustment control cannot be executed, and responds. can do.
  • stopping the left motor early has the following effects. First, the next release operation time can be shortened. In addition, power consumption can be reduced. Further, the load on the caliper 13 can be reduced.
  • FIG. 12 is a flowchart showing a lock control process by the braking control device of the second embodiment.
  • the flowchart of FIG. 12 differs from the flowchart of FIG. 4 in that step S204 is replaced with step S204a and step S205 is deleted. Only the differences will be described below.
  • step S204a the EPB-ECU 9 determines that the actual current value of the left motor (left actual current value) has reached the left target current value and that the actual current value of the right motor (right actual current value) is It is determined whether or not both of reaching the right target current value are satisfied. If Yes, the process proceeds to step S206, and if No, the process returns to step S204a.
  • FIG. 13 is a time chart showing a control example in the second embodiment.
  • the required axial force (no variation) is a required axial force when aging deterioration of each component and individual variation are not taken into consideration, and is set as a value on the safest side, for example.
  • the required axial force (with variations) is the required axial force in consideration of aging deterioration of individual parts and individual variations. For example, it is calculated appropriately based on each information or each condition is taken into consideration. Is set. Therefore, in general, the required axial force (with variations) has a larger value than the required axial force (without variations).
  • the right actual current value starts increasing at time t3 and reaches the right target current value at time t5, but continues increasing thereafter.
  • the left actual current value starts rising at time t4 and reaches the left target current value at time t42 after time t5 (Yes in step S204a of FIG. 12).
  • the right estimated axial force increases from time t3 to time t42
  • the left estimated axial force increases from time t4 to time t42
  • the total estimated axial force is the required axial force (no variation) and the required axial force at time t42. It has reached all of (variable). Therefore, it is not necessary to execute the adjustment control thereafter.
  • the left motor and the right motor are stopped at the time t42 at the same time. It is possible to avoid a situation where the occupant feels uncomfortable or uncomfortable.
  • both the left motor and the right motor are stopped at the same time, so the total estimated axial force is required. Both axial force (no variation) and required axial force (variation) are reached, and safety can be further improved.
  • FIG. 14 is a flowchart showing a lock control process by the braking control device of the third embodiment.
  • the flowchart of FIG. 14 differs from the flowchart of FIG. 12 in that steps S211 to S213 are added. Only the differences will be described below.
  • step S211 the EPB-ECU 9 estimates the current axial force.
  • FIG. 15 is a flowchart showing the process of estimating the current axial force by the braking control device of the third embodiment.
  • step S2111 the EPB-ECU 9 calculates the current left estimated axial force based on the left actual current value.
  • the EPB-ECU 9 calculates the current right estimated axial force based on the right actual current value.
  • the EPB-ECU 9 calculates the total estimated axial force by adding the current left estimated axial force and the current right estimated axial force. This completes the process of estimating the current axial force.
  • FIG. 16 is a flowchart showing a process of estimating a required axial force (variation) by the braking control device of the third embodiment.
  • step S212 the EPB-ECU 9 acquires each information (see step S41 in FIG. 6).
  • step S2122 the EPB-ECU 9 calculates the required braking force (variation) based on each information.
  • step S2123 the EPB-ECU 9 calculates the required axial force (variation) based on the required braking force (variation) calculated in step S42. This completes the process of estimating the required axial force (variation).
  • step S213 the EPB-ECU 9 determines whether or not the current total estimated axial force is greater than or equal to the required axial force (variation), and if Yes, the process proceeds to step S206, In No, it returns to step S204a.
  • the current total estimated axial force reaches the required axial force (variation) at time 41 before time t42, and the right motor and the left motor are operated.
  • the motors can be stopped at the same time. Therefore, it is possible to suppress the generation of an excessive axial force while generating a necessary axial force, suppress an excessive load on each component, and prolong the life of each component.
  • FIG. 17 is a flowchart showing a lock control process by the braking control device of the fourth embodiment.
  • the flowchart of FIG. 17 differs from the flowchart of FIG. 12 in that step S221 is added. Only the differences will be described below.
  • step S221 the EPB-ECU 9 determines that the actual current value of the left motor has reached the left limit current value and that the actual current value of the right motor has reached the right limit current value. It is determined whether or not at least one of them is satisfied. If Yes, the process proceeds to step S206, and if No, the process returns to step S204a.
  • FIG. 18 is a time chart showing a control example in the fourth embodiment. Since the time t1 to t3 is the same as that in FIG. 13, the description is omitted. The right actual current value starts increasing at time t3 and reaches the right target current value at time t5, but continues to increase thereafter and reaches the right limit current value at time t51 (Yes in step S221 of FIG. 17). ).
  • the right estimated axial force increases from time t3 to time t51
  • the left estimated axial force increases from time t4 to time t51
  • the total estimated axial force is the required axial force (no variation) and the required axial force at time t51. It has reached all of (variable). Therefore, it is not necessary to execute the adjustment control thereafter. Note that, for example, when the total estimated axial force does not reach the required axial force (with variations), the adjustment control may be executed.
  • the left motor and the right motor are stopped at the time t51 at the same time. It is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
  • both the left motor and the right motor are stopped at the same time. It is possible to suppress deterioration and deterioration.
  • a limit axial force shown in FIG. The left motor and the right motor may be stopped at the same time when the limit axial force is reached.
  • a process of stopping the right motor and the left motor at the same time when the current total estimated axial force reaches the required axial force may be used together.
  • FIG. 19 is a flowchart showing a lock control process by the braking control device of the fifth embodiment.
  • Steps S201 to S205 are the same as in FIG.
  • Steps S211 to S213 are the same as in FIG.
  • Steps S204a, S221, and S206 to 209 are the same as in FIG.
  • FIG. 20 is a time chart showing a control example in the fifth embodiment. Since the time t1 to t3 is the same as that in FIG. 13, the description is omitted. The right actual current value starts rising at time t3. The left actual current value starts rising at time t4. Then, at time t41, the total estimated axial force reaches the required axial force (with variations) (Yes in step S213 in FIG. 19).
  • the right estimated axial force increases from time t3 to time t41
  • the left estimated axial force increases from time t4 to time t41
  • the total estimated axial force reaches the necessary axial force (variation) at time t41. There is. Therefore, it is not necessary to execute the adjustment control thereafter.
  • the left motor and the right motor are stopped at the time t41 at the same time. It is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
  • the left motor and the right motor are stopped at the same time, so the axial force becomes more appropriate without excess or deficiency.
  • the present invention is not limited to this, and only the right motor may be driven, or the left motor and the right motor may be driven. Both motors may be driven.
  • the color when the display lamp 24 lights up or blinks is not limited to red, and may be another color such as yellow.
  • the notification method in the above notification control is not limited to the display by the display lamp 24, and another method such as voice or screen display may be used.
  • the wheels subject to braking by the EPB are not limited to the rear wheels, but may be the front wheels. Further, the number of wheels of the vehicle to which the present invention is applied is not limited to four wheels, and may be six wheels or more.
  • step S213 of FIG. 14 the required axial force (without variation) may be used instead of the required axial force (with variation).

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

The present invention relates to a braking control device applicable to a vehicle provided with an electric brake device which causes an electric braking force to be generated in a left wheel by driving a left motor provided on a left wheel side, and causes an electric braking force to be generated in a right wheel by driving a right motor provided on a right wheel side. If a drive request has been issued with respect to the electric brake device, an electric brake control unit: calculates a target braking force required to hold a stopped vehicle; calculates a left target current value, which is a target current value with respect to the left motor, and a right target current value, which is a target current value with respect to the right motor, for generating the target braking force; drives the left motor and the right motor; and carries out stopping control to stop both the left motor and the right motor simultaneously when either an actual current value of the left motor has reached to or above the left target current value, or an actual current value of the right motor has reached to or above the right target current value.

Description

制動制御装置Braking control device
 本発明は、制動制御装置に関する。 The present invention relates to a braking control device.
 近年、乗用車等の各種の車両に電動駐車ブレーキ(以下、EPB(Electric Parking Brake)または電動ブレーキ装置という。)が多く採用されている。EPBによる制動を実行する制動制御装置は、例えば、モータを制御して車輪ブレーキ機構を駆動することで電動制動力を発生させる。 In recent years, electric parking brakes (hereinafter referred to as EPBs (Electric Parking Brakes) or electric brake devices) have been widely used in various vehicles such as passenger cars. A braking control device that executes braking by EPB generates electric braking force by controlling a motor to drive a wheel braking mechanism, for example.
 また、EPBによる制動を実行すると、様々な理由により、左車輪側に設けられた左モータと右車輪側に設けられた右モータの停止タイミングが異なる場合がある。 Also, when the braking by the EPB is executed, the stop timings of the left motor provided on the left wheel side and the right motor provided on the right wheel side may be different for various reasons.
特開2014-46824号公報JP, 2014-46824, A
 しかしながら、EPBによる制動の実行時に、左モータと右モータの停止タイミングが異なっていると、作動音の左右差が生じ、乗員に違和感や不快感を与えてしまう場合があった。 However, when the stop timing of the left motor and the right motor is different when braking by the EPB, there is a case where the left and right operating noises are different and the passengers feel uncomfortable and uncomfortable.
 そこで、本発明の課題の一つは、例えば、EPBによる制動の実行時に作動音による違和感や不快感を低減することができる制動制御装置を提供することである。 Therefore, one of the objects of the present invention is to provide, for example, a braking control device that can reduce the uncomfortable feeling and the discomfort caused by the operating noise when the braking by the EPB is executed.
 本発明は、例えば、左車輪側に設けられた左モータを駆動することによって左車輪に電動制動力を発生させ、右車輪側に設けられた右モータを駆動することによって右車輪に電動制動力を発生させる電動ブレーキ装置を備える車両に適用される制動制御装置であって、前記電動ブレーキ装置に対する駆動要求があった場合、停車保持に必要な目標制動力を算出するとともに、前記目標制動力を発生させるための前記左モータに対する目標電流値である左目標電流値と前記右モータに対する目標電流値である右目標電流値とを算出し、前記左モータと前記右モータを駆動して、前記左モータの実電流値が前記左目標電流値以上に到達したことと、前記右モータの実電流値が前記右目標電流値以上に到達したこととの一方が成立したときに、前記左モータと前記右モータの両方を同時に停止させる停止制御を実行する電動ブレーキ制御部を備える。 The present invention, for example, generates an electric braking force on the left wheel by driving a left motor provided on the left wheel side, and an electric braking force on the right wheel by driving a right motor provided on the right wheel side. A braking control device applied to a vehicle including an electric brake device for generating a vehicle, when a drive request for the electric brake device is made, a target braking force required to hold a vehicle is calculated, and the target braking force is calculated. A left target current value that is a target current value for the left motor to generate and a right target current value that is a target current value for the right motor are calculated, and the left motor and the right motor are driven to generate the left target current value. When one of the fact that the actual current value of the motor reaches or exceeds the left target current value and the actual current value of the right motor reaches or exceeds the right target current value, the left motor and the An electric brake control unit that executes stop control for stopping both of the right motors at the same time is provided.
図1は、第1実施形態の車両用ブレーキ装置の全体概要を示す模式図である。FIG. 1 is a schematic diagram showing an overall outline of the vehicle brake device of the first embodiment. 図2は、第1実施形態の車両用ブレーキ装置に備えられる後輪系の車輪ブレーキ機構の断面模式図である。FIG. 2 is a schematic cross-sectional view of a rear wheel wheel brake mechanism provided in the vehicle brake device of the first embodiment. 図3は、第1実施形態の制動制御装置による全体処理を示すフローチャートである。FIG. 3 is a flowchart showing the overall processing by the braking control device of the first embodiment. 図4は、第1実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。FIG. 4 is a flowchart showing a lock control process by the braking control device of the first embodiment. 図5は、第1実施形態の制動制御装置による実軸力推定の処理を示すフローチャートである。FIG. 5 is a flowchart showing a process of estimating an actual axial force by the braking control device of the first embodiment. 図6は、第1実施形態の制動制御装置による必要軸力算出の処理を示すフローチャートである。FIG. 6 is a flowchart showing a process of calculating the required axial force by the braking control device of the first embodiment. 図7は、第1実施形態の制動制御装置によるフォロー制御の処理を示すフローチャートである。FIG. 7 is a flowchart showing a follow control process by the braking control device of the first embodiment. 図8は、第1実施形態における第1の制御例を示すタイムチャートである。FIG. 8 is a time chart showing a first control example in the first embodiment. 図9は、第1実施形態における第2の制御例を示すタイムチャートである。FIG. 9 is a time chart showing a second control example in the first embodiment. 図10は、第1実施形態における第3の制御例を示すタイムチャートである。FIG. 10 is a time chart showing a third control example in the first embodiment. 図11は、第1実施形態における第4の制御例を示すタイムチャートである。FIG. 11 is a time chart showing a fourth control example in the first embodiment. 図12は、第2実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。FIG. 12 is a flowchart showing a lock control process by the braking control device of the second embodiment. 図13は、第2実施形態における制御例を示すタイムチャートである。FIG. 13 is a time chart showing a control example in the second embodiment. 図14は、第3実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。FIG. 14 is a flowchart showing a lock control process by the braking control device of the third embodiment. 図15は、第3実施形態の制動制御装置による現軸力推定の処理を示すフローチャートである。FIG. 15 is a flowchart showing the process of estimating the current axial force by the braking control device of the third embodiment. 図16は、第3実施形態の制動制御装置による必要軸力(バラツキあり)推定の処理を示すフローチャートである。FIG. 16 is a flowchart showing a process of estimating a required axial force (variation) by the braking control device of the third embodiment. 図17は、第4実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。FIG. 17 is a flowchart showing a lock control process by the braking control device of the fourth embodiment. 図18は、第4実施形態における制御例を示すタイムチャートである。FIG. 18 is a time chart showing a control example in the fourth embodiment. 図19は、第5実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。FIG. 19 is a flowchart showing a lock control process by the braking control device of the fifth embodiment. 図20は、第5実施形態における制御例を示すタイムチャートである。FIG. 20 is a time chart showing a control example in the fifth embodiment.
 以下、本発明の例示的な実施形態(第1実施形態~第5実施形態)が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、以下の構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。 Hereinafter, exemplary embodiments (first to fifth embodiments) of the present invention will be disclosed. The configurations of the embodiments shown below, and the actions and results (effects) provided by the configurations are examples. The present invention can be realized by a configuration other than the configurations disclosed in the following embodiments. Further, according to the present invention, it is possible to obtain at least one of various effects (including derivative effects) obtained by the following configurations.
(第1実施形態)
 第1実施形態では、後輪系にディスクブレーキタイプのEPBを適用している車両用ブレーキ装置を例に挙げて説明する。図1は、第1実施形態の車両用ブレーキ装置の全体概要を示す模式図である。図2は、第1実施形態の車両用ブレーキ装置に備えられる後輪系の車輪ブレーキ機構の断面模式図である。以下、これらの図を参照して説明する。
(First embodiment)
In the first embodiment, a vehicle brake device in which a disc brake type EPB is applied to a rear wheel system will be described as an example. FIG. 1 is a schematic diagram showing an overall outline of the vehicle brake device of the first embodiment. FIG. 2 is a schematic cross-sectional view of a rear wheel wheel brake mechanism provided in the vehicle brake device of the first embodiment. Hereinafter, description will be given with reference to these figures.
 図1に示すように、第1実施形態の車両用ブレーキ装置は、サービスブレーキ1(液圧ブレーキ装置)と、EPB2(電動ブレーキ装置)と、を備えている。 As shown in FIG. 1, the vehicle brake device of the first embodiment includes a service brake 1 (hydraulic brake device) and an EPB 2 (electric brake device).
 サービスブレーキ1は、運転者によるブレーキペダル3の踏み込みに基いて、車輪と一体に回転する被制動部材(図2のブレーキディスク12)に向けて、液圧によって制動部材(図2のブレーキパッド11)を押圧して、サービスブレーキ力(液圧制動力)を発生させる液圧ブレーキ機構である。具体的には、サービスブレーキ1は、運転者によるブレーキペダル3の踏み込みに応じた踏力を倍力装置4にて倍力したのち、この倍力された踏力に応じたブレーキ液圧をマスタシリンダ(以下、M/Cという。)5内に発生させる。そして、このブレーキ液圧を各車輪の車輪ブレーキ機構に備えられたホイールシリンダ(以下、W/Cという。)6に伝えることでサービスブレーキ力を発生させる。また、M/C5とW/C6との間にブレーキ液圧制御用のアクチュエータ7が備えられている。アクチュエータ7は、サービスブレーキ1により発生させるサービスブレーキ力を調整し、車両の安全性を向上させるための各種制御(例えば、アンチスキッド制御等)を行う。 The service brake 1 is hydraulically applied toward the braked member (the brake disc 12 in FIG. 2) that rotates integrally with the wheels based on the driver's depression of the brake pedal 3 (the brake pad 11 in FIG. 2). ) To generate a service braking force (hydraulic braking force). Specifically, the service brake 1 boosts the pedal effort corresponding to the depression of the brake pedal 3 by the driver with the booster 4, and then applies the brake fluid pressure corresponding to the boosted pedal effort to the master cylinder ( Hereinafter, it is generated within 5). Then, the brake hydraulic pressure is transmitted to a wheel cylinder (hereinafter, referred to as W/C) 6 provided in a wheel brake mechanism of each wheel to generate a service brake force. Further, an actuator 7 for controlling brake fluid pressure is provided between M/C5 and W/C6. The actuator 7 adjusts the service brake force generated by the service brake 1 and performs various controls (for example, anti-skid control) for improving the safety of the vehicle.
 アクチュエータ7を用いた各種制御は、サービスブレーキ力を制御するESC(Electronic Stability Control)-ECU8にて実行される。例えば、アクチュエータ7に備えられる図示しない各種制御弁やポンプ駆動用のモータを制御するための制御電流をESC-ECU8が出力することにより、アクチュエータ7に備えられる液圧回路を制御し、W/C6に伝えられるW/C圧を制御する。これにより、車輪スリップの回避などを行い、車両の安全性を向上させる。 Various controls using the actuator 7 are executed by ESC (Electronic Stability Control)-ECU 8 that controls the service braking force. For example, the ESC-ECU 8 outputs a control current for controlling various control valves (not shown) provided in the actuator 7 and a motor for driving the pump, thereby controlling the hydraulic circuit provided in the actuator 7, and the W/C 6 It controls the W/C pressure transmitted to. As a result, wheel slip is avoided and the safety of the vehicle is improved.
 例えば、アクチュエータ7は、各車輪毎に、W/C6に対してM/C5内に発生させられたブレーキ液圧もしくはポンプ駆動により発生させられたブレーキ液圧が加えられることを制御する増圧制御弁や、各W/C6内のブレーキ液をリザーバに供給することでW/C圧を減少させる減圧制御弁等を備えており、W/C圧を増圧・保持・減圧制御できる構成とされている。また、アクチュエータ7は、サービスブレーキ1の自動加圧機能を実現可能にしており、ポンプ駆動および各種制御弁の制御に基いて、ブレーキ操作がない状態であっても自動的にW/C6を加圧できる。 For example, the actuator 7 controls, for each wheel, a pressure increase control that controls whether the brake fluid pressure generated in the M/C5 or the brake fluid pressure generated by the pump drive is applied to the W/C6. It is equipped with a valve and a pressure reduction control valve that reduces the W/C pressure by supplying the brake fluid in each W/C 6 to the reservoir, and is configured to increase/hold/depress the W/C pressure. ing. Further, the actuator 7 can realize the automatic pressurizing function of the service brake 1, and automatically applies the W/C 6 based on the control of the pump drive and various control valves even when the brake is not operated. You can press.
 一方、EPB2は、モータ10によって車輪ブレーキ機構を駆動させることで電動制動力を発生させるものであり、モータ10の駆動を制御するEPB-ECU9(制動制御装置。電動ブレーキ制御部)を有して構成されている。具体的には、例えば、EPB2は、駐車時に車両が意図しない移動をしないように、被制動部材(図2のブレーキディスク12)に向けて、モータ10を駆動することによって制動部材(図2のブレーキパッド11)を押圧して、電動制動力を発生させる。なお、EPB-ECU9とESC-ECU8は、例えばCAN(Controller Area Network)通信によって情報の送受信を行う。 On the other hand, the EPB 2 is for generating an electric braking force by driving the wheel braking mechanism by the motor 10, and has an EPB-ECU 9 (braking control device. electric braking control unit) for controlling the driving of the motor 10. It is configured. Specifically, for example, the EPB 2 drives the motor 10 toward the braked member (the brake disc 12 in FIG. 2) so that the vehicle does not move unintentionally during parking, and thus the brake member (in FIG. 2). The brake pad 11) is pressed to generate an electric braking force. The EPB-ECU 9 and the ESC-ECU 8 send and receive information by CAN (Controller Area Network) communication, for example.
 車輪ブレーキ機構は、第1実施形態の車両用ブレーキ装置においてブレーキ力を発生させる機械的構造であり、まず、前輪系の車輪ブレーキ機構はサービスブレーキ1の操作によってサービスブレーキ力を発生させる構造とされている。一方、後輪系の車輪ブレーキ機構は、サービスブレーキ1の操作とEPB2の操作の双方に対してブレーキ力を発生させる共用の構造とされている。前輪系の車輪ブレーキ機構は、後輪系の車輪ブレーキ機構に対して、EPB2の操作に基いて電動制動力を発生させる機構をなくした従来から一般的に用いられている車輪ブレーキ機構であるため、ここでは説明を省略し、以下では後輪系の車輪ブレーキ機構について説明する。 The wheel brake mechanism is a mechanical structure that generates a braking force in the vehicle brake device of the first embodiment. First, the front wheel system wheel brake mechanism has a structure that generates a service braking force by operating the service brake 1. ing. On the other hand, the wheel brake mechanism of the rear wheel system has a common structure that generates a braking force for both the operation of the service brake 1 and the operation of the EPB 2. The front wheel brake mechanism is a wheel brake mechanism that has been generally used since the rear wheel brake mechanism does not include a mechanism that generates an electric braking force based on the operation of EPB2. The description is omitted here, and the wheel brake mechanism of the rear wheel system will be described below.
 後輪系の車輪ブレーキ機構では、サービスブレーキ1を作動させたときだけでなくEPB2を作動させたときにも、図2に示す摩擦材であるブレーキパッド11を押圧し、ブレーキパッド11によって被摩擦材であるブレーキディスク12(12RL、12RR、12FR、12FL)を挟み込むことにより、ブレーキパッド11とブレーキディスク12との間に摩擦力を発生させ、ブレーキ力を発生させる。 In the wheel brake mechanism of the rear wheel system, not only when the service brake 1 is operated but also when the EPB 2 is operated, the brake pad 11 which is a friction material shown in FIG. By sandwiching the brake disc 12 (12RL, 12RR, 12FR, 12FL) which is a material, a frictional force is generated between the brake pad 11 and the brake disc 12, and a braking force is generated.
 具体的には、車輪ブレーキ機構は、図1に示すキャリパ13内において、図2に示すようにブレーキパッド11を押圧するためのW/C6のボディ14に直接固定されているモータ10を回転させることにより、モータ10の駆動軸10aに備えられた平歯車15を回転させる。そして、平歯車15に噛合わされた平歯車16にモータ10の回転力(出力)を伝えることによりブレーキパッド11を移動させ、EPB2による電動制動力を発生させる。 Specifically, the wheel brake mechanism rotates the motor 10 directly fixed to the body 14 of the W/C 6 for pressing the brake pad 11 as shown in FIG. 2 in the caliper 13 shown in FIG. As a result, the spur gear 15 provided on the drive shaft 10a of the motor 10 is rotated. Then, by transmitting the rotational force (output) of the motor 10 to the spur gear 16 meshed with the spur gear 15, the brake pad 11 is moved to generate the electric braking force by the EPB 2.
 キャリパ13内には、W/C6およびブレーキパッド11に加えて、ブレーキパッド11に挟み込まれるようにしてブレーキディスク12の端面の一部が収容されている。W/C6は、シリンダ状のボディ14の中空部14a内に通路14bを通じてブレーキ液圧を導入することで、ブレーキ液収容室である中空部14a内にW/C圧を発生させられるようになっており、中空部14a内に回転軸17、推進軸18、ピストン19などを備えて構成されている。 In addition to the W/C 6 and the brake pad 11, a part of the end surface of the brake disc 12 is housed in the caliper 13 so as to be sandwiched by the brake pad 11. The W/C 6 can generate the W/C pressure in the hollow portion 14a which is the brake fluid storage chamber by introducing the brake fluid pressure into the hollow portion 14a of the cylindrical body 14 through the passage 14b. The hollow portion 14a is provided with a rotary shaft 17, a propulsion shaft 18, a piston 19 and the like.
 回転軸17は、一端がボディ14に形成された挿入孔14cを通じて平歯車16に連結され、平歯車16が回動させられると、平歯車16の回動に伴って回動させられる。この回転軸17における平歯車16と連結された端部とは反対側の端部において、回転軸17の外周面には雄ネジ溝17aが形成されている。一方、回転軸17の他端は、挿入孔14cに挿入されることで軸支されている。具体的には、挿入孔14cには、Oリング20と共に軸受け21が備えられており、Oリング20にて回転軸17と挿入孔14cの内壁面との間を通じてブレーキ液が漏れ出さないようにされながら、軸受け21により回転軸17の他端を軸支持している。 The rotary shaft 17 has one end connected to the spur gear 16 through an insertion hole 14c formed in the body 14, and when the spur gear 16 is rotated, it is rotated together with the rotation of the spur gear 16. A male screw groove 17a is formed on the outer peripheral surface of the rotary shaft 17 at the end of the rotary shaft 17 opposite to the end connected to the spur gear 16. On the other hand, the other end of the rotary shaft 17 is supported by being inserted into the insertion hole 14c. Specifically, the insertion hole 14c is provided with a bearing 21 together with the O-ring 20, and the O-ring 20 prevents the brake fluid from leaking out between the rotary shaft 17 and the inner wall surface of the insertion hole 14c. Meanwhile, the other end of the rotary shaft 17 is axially supported by the bearing 21.
 推進軸18は、中空状の筒部材からなるナットにて構成され、内壁面に回転軸17の雄ネジ溝17aと螺合する雌ネジ溝18aが形成されている。この推進軸18は、例えば回転防止用のキーを備えた円柱状もしくは多角柱状に構成されることで、回転軸17が回動しても回転軸17の回動中心を中心として回動させられない構造になっている。このため、回転軸17が回動させられると、雄ネジ溝17aと雌ネジ溝18aとの噛合いにより、回転軸17の回転力を回転軸17の軸方向に推進軸18を移動させる力に変換する。推進軸18は、モータ10の駆動が停止されると、雄ネジ溝17aと雌ネジ溝18aとの噛合いによる摩擦力により同じ位置で止まるようになっており、目標とする電動制動力になったときにモータ10の駆動を停止すれば、推進軸18がその位置で保持され、所望の電動制動力を保持してセルフロック(以下、単に「ロック」という。)できるようになっている。 The propulsion shaft 18 is composed of a nut made of a hollow cylindrical member, and has an internal wall surface formed with a female screw groove 18a that is screwed into the male screw groove 17a of the rotary shaft 17. The propulsion shaft 18 is configured to have, for example, a columnar shape or a polygonal columnar shape provided with a key for preventing rotation, so that even if the rotation shaft 17 rotates, the propulsion shaft 18 is rotated about the rotation center of the rotation shaft 17. There is no structure. Therefore, when the rotating shaft 17 is rotated, the rotational force of the rotating shaft 17 becomes a force for moving the propulsion shaft 18 in the axial direction of the rotating shaft 17 due to the engagement between the male screw groove 17a and the female screw groove 18a. Convert. When the driving of the motor 10 is stopped, the propulsion shaft 18 stops at the same position due to the frictional force due to the engagement between the male screw groove 17a and the female screw groove 18a, and the target electric braking force is obtained. If the drive of the motor 10 is stopped at that time, the propulsion shaft 18 is held at that position, and a desired electric braking force can be held and self-locking (hereinafter simply referred to as "lock") can be performed.
 ピストン19は、推進軸18の外周を囲むように配置されるもので、有底の円筒部材もしくは多角筒部材にて構成され、外周面がボディ14に形成された中空部14aの内壁面と接するように配置されている。ピストン19の外周面とボディ14の内壁面との間のブレーキ液漏れが生じないように、ボディ14の内壁面にシール部材22が備えられ、ピストン19の端面にW/C圧を付与できる構造とされている。シール部材22は、ロック制御後のリリース制御時にピストン19を引き戻すための反力を発生させるために用いられる。このシール部材22を備えてあるため、基本的には旋回中に傾斜したブレーキディスク12によってブレーキパッド11およびピストン19がシール部材22の弾性変形量を超えない範囲で押し込まれても、それらをブレーキディスク12側に押し戻してブレーキディスク12とブレーキパッド11との間が所定のクリアランス(図2のクリアランスC2)で保持されるようにできる。 The piston 19 is arranged so as to surround the outer periphery of the propulsion shaft 18, is configured by a bottomed cylindrical member or a polygonal cylindrical member, and has an outer peripheral surface in contact with the inner wall surface of the hollow portion 14 a formed in the body 14. Are arranged as follows. A structure in which a seal member 22 is provided on the inner wall surface of the body 14 so that the brake fluid does not leak between the outer peripheral surface of the piston 19 and the inner wall surface of the body 14, and W/C pressure can be applied to the end surface of the piston 19. It is said that. The seal member 22 is used to generate a reaction force for returning the piston 19 during release control after lock control. Since this seal member 22 is provided, basically, even if the brake pad 11 and the piston 19 are pushed in by the tilted brake disc 12 within a range not exceeding the elastic deformation amount of the seal member 22, they are braked. It can be pushed back to the side of the disc 12 so that the space between the brake disc 12 and the brake pad 11 is maintained with a predetermined clearance (clearance C2 in FIG. 2).
 また、ピストン19は、回転軸17が回転しても回転軸17の回動中心を中心として回動させられないように、推進軸18に回転防止用のキーが備えられる場合にはそのキーが摺動するキー溝が備えられ、推進軸18が多角柱状とされる場合にはそれと対応する形状の多角筒状とされる。 Further, the piston 19 does not rotate about the center of rotation of the rotary shaft 17 even if the rotary shaft 17 rotates, so that if the propulsion shaft 18 is provided with a key for preventing rotation, the key is When the propulsion shaft 18 has a polygonal column shape, it is provided with a sliding key groove, and has a polygonal cylindrical shape having a shape corresponding thereto.
 このピストン19の先端にブレーキパッド11が配置され、ピストン19の移動に伴ってブレーキパッド11を紙面左右方向に移動させるようになっている。具体的には、ピストン19は、推進軸18の移動に伴って紙面左方向に移動可能で、かつ、ピストン19の端部(ブレーキパッド11が配置された端部と反対側の端部)にW/C圧が付与されることで推進軸18から独立して紙面左方向に移動可能な構成とされている。そして、推進軸18が通常リリースのときの待機位置であるリリース位置(モータ10が回転させられる前の状態)のときに、中空部14a内のブレーキ液圧が付与されていない状態(W/C圧=0)であれば、後述するシール部材22の弾性力によりピストン19が紙面右方向に移動させられ、ブレーキパッド11をブレーキディスク12から離間させられるようになっている。 The brake pad 11 is arranged at the tip of the piston 19, and the brake pad 11 is moved in the left-right direction on the paper surface as the piston 19 moves. Specifically, the piston 19 is movable to the left in the drawing with the movement of the propulsion shaft 18, and is located at the end of the piston 19 (the end opposite to the end where the brake pad 11 is arranged). By applying W/C pressure, it is configured to be able to move to the left side of the drawing independently of the propulsion shaft 18. Then, when the propulsion shaft 18 is at the release position (the state before the motor 10 is rotated) which is the standby position at the time of the normal release, the brake fluid pressure in the hollow portion 14a is not applied (W/C). If the pressure is 0), the piston 19 is moved to the right in the drawing by the elastic force of the seal member 22 described later, and the brake pad 11 can be separated from the brake disc 12.
 また、モータ10が回転させられて推進軸18が初期位置から紙面左方向に移動させられているときには、W/C圧がゼロになっても、移動した推進軸18によってピストン19の紙面右方向への移動が規制され、ブレーキパッド11がその場所で保持される。なお、図2のクリアランスC1は、推進軸18の先端とピストン19の間の距離を示す。EPBのリリース完了後、推進軸18は、ボディ14に対し位置固定される。 Further, when the motor 10 is rotated and the propulsion shaft 18 is moved leftward from the initial position on the paper surface, even if the W/C pressure becomes zero, the moved propulsion shaft 18 moves the piston 19 rightward on the paper surface. Movement is restricted and the brake pad 11 is held in place. The clearance C1 in FIG. 2 indicates the distance between the tip of the propulsion shaft 18 and the piston 19. After the release of the EPB is completed, the propulsion shaft 18 is fixed in position with respect to the body 14.
 このように構成された車輪ブレーキ機構では、サービスブレーキ1が操作されると、それにより発生させられたW/C圧に基いてピストン19が紙面左方向に移動させられることでブレーキパッド11がブレーキディスク12に押圧され、サービスブレーキ力を発生させる。また、EPB2が操作されると、モータ10が駆動されることで平歯車15が回転させられ、それに伴って平歯車16および回転軸17が回転させられるため、雄ネジ溝17aおよび雌ネジ溝18aの噛合いに基いて推進軸18がブレーキディスク12側(紙面左方向)に移動させられる。そして、それに伴って推進軸18の先端がピストン19に当接してピストン19を押圧し、ピストン19も同方向に移動させられることでブレーキパッド11がブレーキディスク12に押圧され、電動制動力を発生させる。このため、サービスブレーキ1の操作とEPB2の操作の双方に対してブレーキ力を発生させる共用の車輪ブレーキ機構とすることが可能となる。 In the wheel brake mechanism configured as described above, when the service brake 1 is operated, the brake pad 11 is braked by moving the piston 19 leftward on the paper surface based on the W/C pressure generated thereby. The disc 12 is pressed to generate a service braking force. When the EPB 2 is operated, the spur gear 15 is rotated by driving the motor 10, and the spur gear 16 and the rotary shaft 17 are accordingly rotated. Therefore, the male screw groove 17a and the female screw groove 18a are rotated. The propulsion shaft 18 is moved to the side of the brake disc 12 (to the left in the drawing) based on the meshing of. Along with that, the tip of the propulsion shaft 18 contacts the piston 19 and presses the piston 19, and the piston 19 is also moved in the same direction, so that the brake pad 11 is pressed by the brake disc 12 and an electric braking force is generated. Let Therefore, it is possible to provide a shared wheel brake mechanism that generates a braking force for both the operation of the service brake 1 and the operation of the EPB 2.
 なお、第1実施形態の車両用ブレーキ装置では、モータ10の電流を検出する電流センサ(不図示)による電流検出値を確認することにより、EPB2による電動制動力の発生状態を確認したり、その電流検出値を認識したりすることができるようになっている。 In the vehicle brake device of the first embodiment, by confirming the current detection value by the current sensor (not shown) that detects the current of the motor 10, it is possible to confirm the generation state of the electric braking force by the EPB 2 and The current detection value can be recognized.
 前後Gセンサ25は、車両の前後方向(進行方向)のG(加速度)を検出し、検出信号をEPB-ECU9に送信する。 The front-rear G sensor 25 detects G (acceleration) in the front-rear direction (travel direction) of the vehicle and transmits a detection signal to the EPB-ECU 9.
 M/C圧センサ26は、M/C5におけるM/C圧を検出して、検出信号をEPB-ECU9に送信する。 The M/C pressure sensor 26 detects the M/C pressure in the M/C 5 and sends a detection signal to the EPB-ECU 9.
 温度センサ28は、車輪ブレーキ機構(例えばブレーキディスク)の温度を検出して、検出信号をEPB-ECU9に送信する。 The temperature sensor 28 detects the temperature of a wheel brake mechanism (for example, a brake disc) and sends a detection signal to the EPB-ECU 9.
 車輪速センサ29は、各車輪の回転速度を検出し、検出信号をEPB-ECU9に送信する。なお、車輪速センサ29は、実際には各車輪に対応して1つずつ設けられるが、ここでは、詳細な図示や説明を省略する。 The wheel speed sensor 29 detects the rotation speed of each wheel and sends a detection signal to the EPB-ECU 9. The wheel speed sensors 29 are actually provided one by one for each wheel, but detailed illustration and description thereof are omitted here.
 EPB-ECU9は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムにしたがってモータ10の回転を制御することにより駐車ブレーキ制御を行うものである。また、EPB-ECU9は、左車輪(例えば左後輪)側に設けられた左モータ(モータ10)を駆動することによって左車輪に電動制動力を発生させ、右車輪(例えば右後輪)側に設けられた右モータ(モータ10)を駆動することによって右車輪に電動制動力を発生させる電動ブレーキ装置を備える車両に適用される制動制御装置である。 The EPB-ECU 9 is composed of a well-known microcomputer including a CPU, a ROM, a RAM, an I/O, etc., and controls the rotation of the motor 10 according to a program stored in the ROM or the like to perform parking brake control. Is. Further, the EPB-ECU 9 generates an electric braking force on the left wheel by driving a left motor (motor 10) provided on the left wheel (for example, left rear wheel) side, and the right wheel (for example, right rear wheel) side. The braking control device is applied to a vehicle including an electric braking device that generates an electric braking force on a right wheel by driving a right motor (motor 10) provided in the vehicle.
 EPB-ECU9は、例えば車室内のインストルメントパネル(図示せず)に備えられた操作SW(スイッチ)23の操作状態に応じた信号等を入力し、操作SW23の操作状態に応じてモータ10を駆動する。さらに、EPB-ECU9は、モータ10の電流検出値に基いてロック制御やリリース制御などを実行するものであり、その制御状態に基いてロック制御中であることやロック制御によって車輪がロック状態であること、および、リリース制御中であることやリリース制御によって車輪がリリース状態(EPB解除状態)であることを認識する。そして、EPB-ECU9は、インストルメントパネルに備えられた表示ランプ24に対し、各種表示を行わせるための信号を出力する。 The EPB-ECU 9 inputs, for example, a signal according to the operation state of an operation SW (switch) 23 provided on an instrument panel (not shown) in the vehicle compartment, and operates the motor 10 according to the operation state of the operation SW 23. To drive. Further, the EPB-ECU 9 executes lock control, release control, etc. based on the current detection value of the motor 10. Based on the control state, the EPB-ECU 9 indicates that the lock control is being performed or the wheels are locked by the lock control. It is recognized that there is a release control, and that the wheel is in the release state (EPB release state) by the release control. Then, the EPB-ECU 9 outputs a signal for performing various displays to the display lamp 24 provided on the instrument panel.
 以上のように構成された車両用ブレーキ装置では、基本的には、車両走行時にサービスブレーキ1によってサービスブレーキ力を発生させることで車両に制動力を発生させるという動作を行う。また、サービスブレーキ1によって車両が停車した際に、運転者が操作SW23を押下してEPB2を作動させて電動制動力を発生させることで停車状態を維持したり、その後に電動制動力を解除したりするという動作を行う。すなわち、サービスブレーキ1の動作としては、車両走行時に運転者によるブレーキペダル3の操作が行われると、M/C5に発生したブレーキ液圧がW/C6に伝えられることでサービスブレーキ力を発生させる。また、EPB2の動作としては、モータ10を駆動することでピストン19を移動させ、ブレーキパッド11をブレーキディスク12に押し付けることで電動制動力を発生させて車輪をロック状態にしたり、ブレーキパッド11をブレーキディスク12から離すことで電動制動力を解除して車輪をリリース状態にしたりする。 The vehicle brake device configured as described above basically performs an operation of generating a braking force on the vehicle by generating the service braking force by the service brake 1 when the vehicle is traveling. Further, when the vehicle is stopped by the service brake 1, the driver presses the operation SW 23 to operate the EPB 2 to generate the electric braking force to maintain the stopped state, and thereafter release the electric braking force. Performs the action of That is, as the operation of the service brake 1, when the driver operates the brake pedal 3 while the vehicle is traveling, the brake fluid pressure generated in the M/C 5 is transmitted to the W/C 6 to generate the service brake force. .. Further, as the operation of the EPB 2, by driving the motor 10, the piston 19 is moved, and the brake pad 11 is pressed against the brake disc 12 to generate an electric braking force to lock the wheels or to lock the brake pad 11. When the wheel is released from the brake disc 12, the electric braking force is released and the wheels are released.
 具体的には、ロック・リリース制御により、電動制動力を発生させたり解除したりする。ロック制御では、モータ10を正回転させることによりEPB2を作動させ、EPB2にて所望の電動制動力を発生させられる位置でモータ10の回転を停止し、この状態を維持する。これにより、所望の電動制動力を発生させる。リリース制御では、モータ10を逆回転させることによりEPB2を作動させ、EPB2にて発生させられている電動制動力を解除する。 Specifically, the lock/release control is used to generate or release the electric braking force. In the lock control, the EPB 2 is operated by rotating the motor 10 in the forward direction, the rotation of the motor 10 is stopped at a position where the desired electric braking force is generated by the EPB 2, and this state is maintained. As a result, a desired electric braking force is generated. In the release control, the EPB 2 is operated by rotating the motor 10 in the reverse direction, and the electric braking force generated in the EPB 2 is released.
 また、車両の走行時であっても、例えば、緊急時、自動運転時、サービスブレーキ1の故障時等、EPB2を使用することが有効な場面もあるので、それらの場面ではEPB2を使用してもよい。 Further, even when the vehicle is running, there are situations where it is effective to use the EPB2, for example, in an emergency, during automatic driving, when the service brake 1 fails, etc. Therefore, the EPB2 is used in those situations. Good.
 また、EPB-ECU9は、EPB2による制動の実行時における左モータと右モータの停止タイミングが異なることによる違和感や不快感を低減するために、以下の処理を行う。なお、左モータと右モータの停止タイミングが異なる原因は、例えば、左モータと右モータに関して、回転速度等の特性に違いがあることや、作動開始時のクリアランスC1、C2が違っていたりすることなどである。 Further, the EPB-ECU 9 performs the following processing in order to reduce discomfort and discomfort caused by different stop timings of the left motor and the right motor during execution of braking by the EPB 2. The cause of the difference in stop timing between the left motor and the right motor is, for example, that the left motor and the right motor have different characteristics such as rotation speed, or the clearances C1 and C2 at the start of operation are different. And so on.
 EPB-ECU9は、EPB2に対する駆動要求があった場合、停車保持に必要な目標制動力を算出するとともに、目標制動力を発生させるための左モータに対する目標電流値である左目標電流値と、右モータに対する目標電流値である右目標電流値とを算出する。また、EPB-ECU9は、左モータと右モータを駆動して、左モータの実電流値が左目標電流値以上に到達したことと、右モータの実電流値が右目標電流値以上に到達したこととの一方が成立したときに、左モータと右モータの両方を同時に停止させる停止制御を実行する。 When there is a drive request to the EPB 2, the EPB-ECU 9 calculates the target braking force required to maintain the vehicle stopped, and the left target current value that is the target current value for the left motor to generate the target braking force and the right target value. A right target current value, which is a target current value for the motor, is calculated. Further, the EPB-ECU 9 drives the left motor and the right motor, and the actual current value of the left motor reaches the left target current value or more, and the actual current value of the right motor reaches the right target current value or more. When one of the above is satisfied, stop control is performed to stop both the left motor and the right motor at the same time.
 また、EPB-ECU9は、停止制御を実行する前に、他方の左モータ、または、右モータの実電流値が目標電流値以上に到達しているという条件が満たされているか否かを判断し、条件が満たされていないと判断した場合、停止制御の実行を禁止し、他方の左モータ、または、右モータの実電流値を目標電流値以上に到達させた後、停止制御を許可して左モータと右モータの両方を同時に停止させるようにしてもよい。 Before executing the stop control, the EPB-ECU 9 determines whether the condition that the actual current value of the other left motor or the right motor has reached the target current value or more is satisfied. When it is determined that the conditions are not met, execution of stop control is prohibited, and the stop current is allowed after the actual current value of the other left motor or right motor has reached the target current value or more. You may make it stop both a left motor and a right motor simultaneously.
 また、EPB-ECU9は、停止制御の実行後、車両のずり下がりを検知した場合、目標制動力を高くするよう補正し、補正後の前記目標制動力を発生させるように左モータと右モータの少なくとも一方を駆動させるようにしてもよい。その場合、EPB-ECU9は、車両のずり下がりを、例えば、車輪速センサ29による検出信号に基いて検知することができる。 Further, when the vehicle slips down is detected after the stop control is executed, the EPB-ECU 9 corrects the target braking force to be high, and the left motor and the right motor are controlled so as to generate the corrected target braking force. At least one of them may be driven. In that case, the EPB-ECU 9 can detect the vehicle slipping down, for example, based on the detection signal from the wheel speed sensor 29.
 また、EPB-ECU9は、停止制御の実行後、左車輪と右車輪において発生している制動力の合計が目標制動力よりも低い場合、左モータと右モータの少なくとも一方を駆動して目標制動力を発生させる調整制御を実行してもよい。その場合、EPB-ECU9は、乗員が降車したことを推定するための所定の車両操作を検知するまでは調整制御を禁止し、所定の車両操作を検知した場合に調整制御を実行するようにしてもよい。所定の車両操作とは、例えば、シフトレバーがパーキング位置になったことや、イグニッションスイッチがオフにされたことや、シートベルトが解除されたことや、ドアが開放されたことなどである。 After the stop control is executed, the EPB-ECU 9 drives at least one of the left motor and the right motor to drive the target control if the total braking force generated at the left wheel and the right wheel is lower than the target braking force. Adjustment control for generating power may be executed. In that case, the EPB-ECU 9 prohibits the adjustment control until a predetermined vehicle operation for estimating that the occupant has exited the vehicle is detected, and executes the adjustment control when the predetermined vehicle operation is detected. Good. The predetermined vehicle operation is, for example, the shift lever being in the parking position, the ignition switch being turned off, the seat belt being released, the door being opened, and the like.
 また、EPB-ECU9は、調整制御を実行できない場合、乗員に報知する報知制御を実行してもよい。調整制御を実行できない場合とは、例えば、故障によって調整制御を開始できない場合や、調整制御を開始したが所定時間内に終了せず、調整制御を完了できなかったものとする場合である。その場合、例えば、表示ランプ24を点滅表示させることによって、調整制御を実行できないことを乗員に報知すればよい。なお、調整制御が所定時間内に終了しない原因としては、例えば、供給電圧低下等が考えられる。 Also, the EPB-ECU 9 may execute the notification control for notifying the occupant when the adjustment control cannot be executed. The case where the adjustment control cannot be executed is, for example, the case where the adjustment control cannot be started due to a failure, or the case where the adjustment control is started but is not completed within a predetermined time and the adjustment control cannot be completed. In that case, for example, by blinking the display lamp 24, the occupant may be notified that the adjustment control cannot be executed. The cause of the adjustment control not ending within a predetermined time is, for example, a decrease in supply voltage.
 次に、図3を参照して、第1実施形態の制動制御装置による全体処理について説明する。図3は、第1実施形態の制動制御装置による全体処理を示すフローチャートである。 Next, the overall processing by the braking control device of the first embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing the overall processing by the braking control device of the first embodiment.
 まず、ステップS1において、EPB-ECU9は、EPB2によるロック制御の要求があったか否かを判定し、Yesの場合はステップS2に進み、Noの場合はステップS1に戻る。例えば、運転者が停車後にEPB2の作動のために操作SW23の操作を行った場合、ステップS1でYesとなる。 First, in step S1, the EPB-ECU 9 determines whether or not there is a lock control request by the EPB2. If Yes, the process proceeds to step S2, and if No, the process returns to step S1. For example, when the driver operates the operation SW 23 to operate the EPB 2 after the vehicle has stopped, the result in step S1 is Yes.
 ステップS2において、EPB-ECU9は、ロック制御の処理を実行する。ここで、図4は、第1実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。ステップS201において、EPB-ECU9は、停車保持に必要な目標制動力を算出する。 In step S2, the EPB-ECU 9 executes lock control processing. Here, FIG. 4 is a flowchart showing a process of lock control by the braking control device of the first embodiment. In step S201, the EPB-ECU 9 calculates the target braking force required to maintain the vehicle stopped.
 次に、ステップS202において、EPB-ECU9は、目標制動力を発生させるための左モータに対する左目標電流値と、右モータに対する右目標電流値を算出する。 Next, in step S202, the EPB-ECU 9 calculates the left target current value for the left motor and the right target current value for the right motor for generating the target braking force.
 次に、ステップS203において、EPB-ECU9は、左モータと右モータをロック側に駆動する。 Next, in step S203, the EPB-ECU 9 drives the left motor and the right motor to the lock side.
 次に、ステップS204において、EPB-ECU9は、左モータの実電流値(左実電流値)が左目標電流値に到達したか否かを判定し、Yesの場合はステップS206に進み、Noの場合はステップS205に進む。 Next, in step S204, the EPB-ECU 9 determines whether or not the actual current value of the left motor (left actual current value) has reached the left target current value, and if Yes, the process proceeds to step S206 and No In this case, the process proceeds to step S205.
 ステップS205において、EPB-ECU9は、右モータの実電流値(右実電流値)が右目標電流値に到達したか否かを判定し、Yesの場合はステップS206に進み、Noの場合はステップS204に戻る。 In step S205, the EPB-ECU 9 determines whether or not the actual current value of the right motor (right actual current value) has reached the right target current value. If Yes, the process proceeds to step S206, and if No, the step is performed. Return to S204.
 ステップS206において、EPB-ECU9は、左モータと右モータの両方を停止させる停止制御を実行する。 In step S206, the EPB-ECU 9 executes stop control for stopping both the left motor and the right motor.
 次に、ステップS207において、EPB-ECU9は、左実電流値をパラメータの左到達電流値に代入する。 Next, in step S207, the EPB-ECU 9 substitutes the left actual current value into the left reaching current value of the parameter.
 次に、ステップS208において、EPB-ECU9は、右実電流値をパラメータの右到達電流値に代入する。 Next, in step S208, the EPB-ECU 9 substitutes the right actual current value for the right reaching current value of the parameter.
 次に、ステップS209において、EPB-ECU9は、表示ランプ24を点灯(例えば赤色に点灯)させる。これで、ロック制御の処理を終了する。 Next, in step S209, the EPB-ECU 9 lights the display lamp 24 (for example, lights in red). This completes the lock control process.
 図3に戻って、ステップS2の後、ステップS3において、EPB-ECU9は、実軸力推定の処理を実行する。ここで、図5は、第1実施形態の制動制御装置による実軸力推定の処理を示すフローチャートである。 Returning to FIG. 3, after step S2, in step S3, the EPB-ECU 9 executes the actual axial force estimation process. Here, FIG. 5 is a flowchart showing a process of estimating an actual axial force by the braking control device of the first embodiment.
 ステップS31において、EPB-ECU9は、左到達電流値に基いて左推定軸力を算出する。具体的には、例えば、以下の式(1)を用いて算出する。
 左推定軸力=左到達電流値×α+β・・・式(1)
In step S31, the EPB-ECU 9 calculates the left estimated axial force based on the left reaching current value. Specifically, for example, it is calculated using the following formula (1).
Left estimated axial force = Left reaching current value x α + β ... Equation (1)
 ここで、αとβは、係数であり、各部品の構造のバラツキによる固定値や、各部品の劣化や環境(温度等)等による可変値を考慮して決定される。また、この軸力の推定では、推定される軸力の幅のうち、例えば、部品劣化や環境(温度等)を考慮して安全側にたって低いほうの値を採用することが好ましいが、これに限定されない。また、式ではなくマップやテーブル等の情報に基いて算出してもよい。 Here, α and β are coefficients, and are determined in consideration of fixed values due to variations in the structure of each component and variable values due to deterioration of each component, environment (temperature, etc.), etc. Further, in estimating the axial force, it is preferable to adopt a lower value from the safety side in consideration of the deterioration of parts and the environment (temperature, etc.) among the widths of the estimated axial force. Not limited to. Further, the calculation may be performed based on information such as a map or a table instead of the formula.
 次に、ステップS32において、EPB-ECU9は、右到達電流値に基いて右推定軸力を算出する。具体的な算出法はステップS31と同様である。 Next, in step S32, the EPB-ECU 9 calculates the right estimated axial force based on the right reaching current value. The specific calculation method is the same as in step S31.
 次に、ステップS33において、EPB-ECU9は、左推定軸力と右推定軸力を合計して総推定軸力を算出する。これで、実軸力推定の処理を終了する。 Next, in step S33, the EPB-ECU 9 calculates the total estimated axial force by summing the left estimated axial force and the right estimated axial force. This completes the process of estimating the actual axial force.
 図3に戻って、ステップS3の後、ステップS4において、EPB-ECU9は、必要軸力算出の処理を実行する。ここで、図6は、第1実施形態の制動制御装置による必要軸力算出の処理を示すフローチャートである。 Returning to FIG. 3, after step S3, in step S4, the EPB-ECU 9 executes the process of calculating the required axial force. Here, FIG. 6 is a flowchart showing the process of calculating the required axial force by the braking control device of the first embodiment.
 ステップS41において、EPB-ECU9は、各情報を取得する。各情報とは、例えば、車両重量(仕様または推定)、タイヤ径(仕様または推定)、パッド(ブレーキパッド11)μ(摩擦係数)(設計値または推定)、シリンダ有効径(設計値)、道路勾配(検出値または推定)である。 EPB-ECU9 acquires each information in step S41. The information includes, for example, vehicle weight (specification or estimation), tire diameter (specification or estimation), pad (brake pad 11) μ (friction coefficient) (design value or estimation), cylinder effective diameter (design value), road The slope (detection value or estimation).
 次に、ステップS42において、EPB-ECU9は、各情報に基いて必要制動力を算出する。具体的には、例えば、以下の式(2)を用いて算出する。
 必要制動力=9.8(重力加速度)×車両重量×
       Arcsin(道路勾配のtan値)×タイヤ径・・・式(2)
Next, in step S42, the EPB-ECU 9 calculates the required braking force based on each information. Specifically, for example, it is calculated using the following formula (2).
Required braking force = 9.8 (gravitational acceleration) x vehicle weight x
Arcsin (tan value of road gradient) x tire diameter (2)
 次に、ステップS43において、EPB-ECU9は、ステップS42で算出した必要制動力に基いて、必要軸力を算出する。具体的には、例えば、以下の式(3)を用いて算出する。
 必要軸力=必要制動力/(2(パッド数)×パッドμ×シリンダ有効径)
                                       ・・・式(3)
 これで、必要軸力算出の処理を終了する。
Next, in step S43, the EPB-ECU 9 calculates the required axial force based on the required braking force calculated in step S42. Specifically, for example, it is calculated using the following formula (3).
Required axial force = Required braking force/(2 (Number of pads) x Pad μ x Effective cylinder diameter)
...Formula (3)
This completes the process of calculating the required axial force.
 図3に戻って、ステップS4の後、ステップS5において、EPB-ECU9は、フォロー制御の処理を実行する。ここで、図7は、第1実施形態の制動制御装置によるフォロー制御の処理を示すフローチャートである。 Returning to FIG. 3, after step S4, in step S5, the EPB-ECU 9 executes the follow control process. Here, FIG. 7 is a flowchart showing a process of follow control by the braking control device of the first embodiment.
 ステップS501において、EPB-ECU9は、図5のステップS33で算出した総推定軸力が、図6のステップS43で算出した必要軸力以上か否かを判定し、Yesの場合はフォロー制御を終了し、Noの場合はステップS503に進む。 In step S501, the EPB-ECU 9 determines whether or not the total estimated axial force calculated in step S33 of FIG. 5 is equal to or greater than the required axial force calculated in step S43 of FIG. 6, and if Yes, the follow control ends. If No, the process proceeds to step S503.
 ステップS503において、EPB-ECU9は、調整制御が可能か否かを判定し、Yesの場合はステップS504に進み、Noの場合はステップS502に進む。例えば、調整制御を行うための装置が故障している場合、ステップS503でNoとなる。 In step S503, the EPB-ECU 9 determines whether or not adjustment control is possible. If Yes, the process proceeds to step S504, and if No, the process proceeds to step S502. For example, if the device for performing the adjustment control is out of order, the result in step S503 is No.
 ステップS504において、EPB-ECU9は、乗員が降車したことを推定するための所定の車両操作を検知したか否かを判定し、Yesの場合はステップS505に進み、Noの場合はステップS504に戻る。 In step S504, the EPB-ECU 9 determines whether or not a predetermined vehicle operation for estimating that the occupant has exited the vehicle is detected. If Yes, the process proceeds to step S505, and if No, the process returns to step S504. ..
 ステップS505において、EPB-ECU9は、調整制御を開始する。 In step S505, the EPB-ECU 9 starts adjustment control.
 次に、ステップS506において、EPB-ECU9は、左実電流値と右実電流値を合計した総実電流値が目標電流値以上か否かを判定し、Yesの場合はステップS509に進み、Noの場合はステップS507に進む。 Next, in step S506, the EPB-ECU 9 determines whether or not the total actual current value obtained by summing the left actual current value and the right actual current value is greater than or equal to the target current value, and if Yes, the process proceeds to step S509, No. In this case, the process proceeds to step S507.
 ステップS509において、EPB-ECU9は、調整制御を終了し、フォロー制御の処理を終了する。 In step S509, the EPB-ECU 9 ends the adjustment control and the follow control process.
 ステップS507において、EPB-ECU9は、調整制御の開始(ステップS505)から所定時間が経過したか否かを判定し、Yesの場合はステップS508に進み、Noの場合はステップS506に戻る。 In step S507, the EPB-ECU 9 determines whether or not a predetermined time has elapsed from the start of adjustment control (step S505), the process proceeds to step S508 if Yes, and the process returns to step S506 if no.
 ステップS508において、EPB-ECU9は、調整制御を終了する。ステップS502において、EPB-ECU9は、表示ランプ24を点灯から点滅(例えば赤色の点滅)に変更し、フォロー制御の処理を終了する。 In step S508, the EPB-ECU 9 ends the adjustment control. In step S502, the EPB-ECU 9 changes the indicator lamp 24 from lighting to blinking (for example, blinking in red), and ends the follow control process.
 図3に戻って、ステップS5の後、ステップS6において、EPB-ECU9は、車両のずり下がりを検知したか否かを判定し、Yesの場合はステップS7進み、Noの場合はステップS6に戻る。 Returning to FIG. 3, after step S5, in step S6, the EPB-ECU 9 determines whether or not the vehicle has slipped down. If Yes, the process proceeds to step S7, and if No, the process returns to step S6. ..
 ステップS7において、EPB-ECU9は、再ロック制御の処理を実行する。なお、説明の都合上、ステップS5の後にステップS6を実行するものとしたが、実際には、ステップS2の終了後は、常に、このステップS6およびステップS6でYesの場合のステップS7の処理を実行するようにしてもよい。 In step S7, the EPB-ECU 9 executes relock control processing. For convenience of description, step S6 is executed after step S5. However, in reality, after step S2 is completed, the process of step S7 in the case of Yes at step S6 and step S6 is always performed. It may be executed.
 具体的には、ステップS7において、EPB-ECU9は、車両のずり下がりが停止するように、左モータと右モータの少なくとも一方を駆動させ、制動力を大きくする。その場合、実制動力が目標制動力に達していない場合は、例えば、目標制動力をそのままとして再ロック制御の処理を実行すればよい。また、実制動力が目標制動力に達しているにもかかわらず車両のずり下がりが発生している場合は、必要に応じて目標制動力を高くするように補正し、その補正後の目標制動力に基いて再ロック制御の処理を実行すればよい。 Specifically, in step S7, the EPB-ECU 9 drives at least one of the left motor and the right motor to increase the braking force so that the vehicle can be prevented from rolling down. In that case, if the actual braking force has not reached the target braking force, for example, the re-lock control process may be executed with the target braking force unchanged. If the vehicle is slipping down despite the actual braking force reaching the target braking force, the target braking force is corrected to a higher value if necessary, and the corrected target braking force is corrected. The re-lock control process may be executed based on the power.
 このようにして、第1実施形態によれば、EPB2による制動の実行時に、最初のロック制御(図3、図4のステップS2)において、左モータと右モータを同時に停止させる(図4のステップS206)ので、作動音の左右差が生じることがなく、乗員に違和感や不快感を与えてしまう事態を回避できる。 Thus, according to the first embodiment, the left motor and the right motor are stopped at the same time in the first lock control (step S2 in FIGS. 3 and 4) at the time of executing the braking by the EPB 2 (step in FIG. 4). Since S206), there is no left-right difference in the operating sound, and it is possible to avoid a situation in which the occupant feels strange or uncomfortable.
 次に、図8~図11を参照して、第1の制御例~第4の制御例について説明する。図8は、第1実施形態における第1の制御例を示すタイムチャートである。開始時において、車両は停止しているものとする。 Next, the first to fourth control examples will be described with reference to FIGS. 8 to 11. FIG. 8 is a time chart showing a first control example in the first embodiment. It is assumed that the vehicle is stopped at the start.
 まず、時刻t1においてロック制御(ステップS2)が開始する。その後、時刻t2において、右実電流値と左実電流値が突入電流後の安定状態に入る。その後、右実電流値は、時刻t3で上昇を開始し、時刻t5で右目標電流値に到達する(図4のステップS205でYes)。また、左実電流値は、時刻t3よりも遅い時刻t4で上昇を開始し、時刻t5ではまだ左目標電流値に到達していない。 First, the lock control (step S2) starts at time t1. After that, at time t2, the right actual current value and the left actual current value enter the stable state after the inrush current. After that, the right actual current value starts increasing at time t3 and reaches the right target current value at time t5 (Yes in step S205 of FIG. 4). The left actual current value starts to rise at time t4, which is later than time t3, and has not yet reached the left target current value at time t5.
 この状態で、左モータと右モータが停止する(図4のステップS206)ので、時刻t5で右実電流値と左実電流値はゼロまで低下する。 In this state, the left motor and the right motor stop (step S206 in FIG. 4), so the right actual current value and the left actual current value decrease to zero at time t5.
 この場合、右推定軸力は時刻t3から時刻t5まで上昇し、左推定軸力は時刻t4から時刻t5まで上昇するが、左実電流値が左目標電流値に到達していないことから、右推定軸力と左推定軸力を合計した総推定軸力は時刻t5において必要軸力に到達していない。 In this case, the right estimated axial force rises from time t3 to time t5, and the left estimated axial force rises from time t4 to time t5, but since the left actual current value has not reached the left target current value, The total estimated axial force, which is the sum of the estimated axial force and the left estimated axial force, has not reached the required axial force at time t5.
 そして、この第1の制御例では、図7のステップS504がないものとし、すぐに調整制御を開始する(図7のステップS505)ものとする。その場合、左モータの左実電流値は、時刻t5の直後の時刻t6において突入電流によって急上昇し、時刻t7で安定状態に入ってその後上昇し、時刻t8で左目標電流値に到達してからゼロまで低下する。 Then, in this first control example, it is assumed that step S504 in FIG. 7 is not provided and the adjustment control is started immediately (step S505 in FIG. 7). In this case, the left actual current value of the left motor sharply increases due to the inrush current at time t6 immediately after time t5, enters a stable state at time t7, and then increases, and reaches the left target current value at time t8. Falls to zero.
 これにより、左推定軸力が時刻t7から時刻t8まで上昇し、右推定軸力と左推定軸力を合計した総推定軸力は時刻t8において必要軸力を上回っている。 Due to this, the left estimated axial force increases from time t7 to time t8, and the total estimated axial force, which is the sum of the right estimated axial force and the left estimated axial force, exceeds the required axial force at time t8.
 また、表示ランプ24は、最初のロック制御が完了した時刻t5に消灯から点灯に変わる(図4のステップS209)。 Further, the display lamp 24 changes from off to on at the time t5 when the first lock control is completed (step S209 in FIG. 4).
 このようにして、第1の制御例によれば、まず、最初のロック制御(時刻t1~t5)において、時刻t5で左モータと右モータを同時に停止させるので、作動音の左右差が生じることがなく、乗員に違和感や不快感を与えてしまう事態を回避できる。 In this way, according to the first control example, first, in the first lock control (time t1 to t5), the left motor and the right motor are stopped at the time t5 at the same time. Therefore, it is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
 また、時刻t5において総推定軸力が必要軸力に到達していないが、その直後の時刻t6から調整制御を行うことで、総推定軸力を必要軸力に到達させることができ、安全性をより向上させることができる。 Although the total estimated axial force has not reached the required axial force at time t5, the total estimated axial force can reach the required axial force by performing adjustment control immediately after that at time t6. Can be further improved.
 また、表示ランプ24による表示が、消灯から点灯に変わるだけで、調整制御を実行できない場合を示す点滅に変わらないので、乗員は、調整制御を実行できない事態が発生していないことを認識することができる。 Further, since the display by the display lamp 24 only changes from off to on and does not change to blinking indicating that the adjustment control cannot be executed, the occupant recognizes that the adjustment control cannot be executed. You can
 次に、第2の制御例について説明する。図9は、第1実施形態における第2の制御例を示すタイムチャートである。時刻t1~t5については第1の制御例と同様なので、説明を省略する。 Next, the second control example will be described. FIG. 9 is a time chart showing a second control example in the first embodiment. Since the time t1 to t5 is the same as the first control example, the description thereof is omitted.
 この第2の制御例では、最初のロック制御が完了した時刻t5の後に車両のずり下がりが発生した場合を想定する。その場合、時刻t11に車両のずり下がりが検知されると(図3のステップS6でYes)、再ロック制御が実行される(図3のステップS7)。具体的には、左モータの左実電流値は、時刻t11において突入電流によって急上昇し、時刻t12で安定状態に入ってその後上昇し、時刻t13で右目標電流値に到達してからゼロまで低下する。 In this second control example, it is assumed that the vehicle slips after time t5 when the first lock control is completed. In that case, when the vehicle slips down is detected at time t11 (Yes in step S6 of FIG. 3 ), relock control is executed (step S7 of FIG. 3 ). Specifically, the left actual current value of the left motor sharply rises due to the inrush current at time t11, enters a stable state at time t12, and then rises, and then decreases to zero after reaching the right target current value at time t13. To do.
 これにより、左推定軸力が時刻t12から時刻t13まで上昇し、右推定軸力と左推定軸力を合計した総推定軸力は時刻t13において必要軸力を上回っている。 As a result, the left estimated axial force increases from time t12 to time t13, and the total estimated axial force, which is the sum of the right estimated axial force and the left estimated axial force, exceeds the required axial force at time t13.
 このようにして、第2の制御例によれば、まず、最初のロック制御(時刻t1~t5)において、時刻t5で左モータと右モータを同時に停止させるので、作動音の左右差が生じることがなく、乗員に違和感や不快感を与えてしまう事態を回避できる。 As described above, according to the second control example, first, in the first lock control (time t1 to t5), the left motor and the right motor are stopped at the time t5 at the same time. Therefore, it is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
 また、車両のずり下がりの発生に対応して制動力を増加させるので、安全性の面でも問題がない。 Also, since the braking force is increased in response to the occurrence of the vehicle rolling down, there is no problem in terms of safety.
 また、表示ランプ24による表示が、消灯から点灯に変わるだけで、調整制御を実行できない場合を示す点滅に変わらないので、乗員は、調整制御を実行できない事態が発生していないことを認識することができる。 Further, since the display by the display lamp 24 only changes from off to on and does not change to blinking indicating that the adjustment control cannot be executed, the occupant recognizes that the adjustment control cannot be executed. You can
 次に、第3の制御例について説明する。図10は、第1実施形態における第3の制御例を示すタイムチャートである。時刻t1~t5については第1の制御例と同様なので、説明を省略する。 Next, the third control example will be described. FIG. 10 is a time chart showing a third control example in the first embodiment. Since the time t1 to t5 is the same as the first control example, the description thereof is omitted.
 この第3の制御例では、最初のロック制御が完了した時刻t5の後に故障により調整制御が不能になった場合を想定する。その場合、時刻t21に故障により調整制御が不能になったことが検知されると(図7のステップS503でNo)、表示ランプ24が点灯から点滅に変わる(図7のステップS502)。 In this third control example, it is assumed that the adjustment control is disabled due to a failure after the time t5 when the first lock control is completed. In that case, when it is detected that the adjustment control is disabled due to a failure at time t21 (No in step S503 in FIG. 7), the display lamp 24 changes from lighting to blinking (step S502 in FIG. 7).
 このようにして、第3の制御例によれば、まず、最初のロック制御(時刻t1~t5)において、時刻t5で左モータと右モータを同時に停止させるので、作動音の左右差が生じることがなく、乗員に違和感や不快感を与えてしまう事態を回避できる。 In this way, according to the third control example, first, in the first lock control (time t1 to t5), the left motor and the right motor are stopped at the time t5 at the same time. Therefore, it is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
 また、表示ランプ24による表示が、故障により調整制御が不能になると点灯から点滅に変わるので、乗員は、調整制御を実行できない事態が発生していることを認識し、対応することができる。 Further, when the adjustment control cannot be performed due to a failure, the display by the display lamp 24 changes from lighting to blinking, so that the occupant can recognize that there is a situation where the adjustment control cannot be executed and take measures accordingly.
 次に、第4の制御例について説明する。図11は、第1実施形態における第4の制御例を示すタイムチャートである。時刻t1~t5については第1の制御例と同様なので、説明を省略する。 Next, the fourth control example will be described. FIG. 11 is a time chart showing a fourth control example in the first embodiment. Since the time t1 to t5 is the same as the first control example, the description thereof is omitted.
 この第4の制御例では、最初のロック制御が完了した時刻t5の後に調整制御を実行するが所定時間内に完了できない場合を想定する。その場合、左モータの左実電流値は、時刻t5の直後の時刻t6において突入電流によって急上昇し、時刻t7で安定状態に入ってその後上昇するが、所定時間が経過した時刻t31で左目標電流値に到達していないため調整制御終了となりゼロまで低下する(図7のステップS507でYes→ステップS508)。 In this fourth control example, it is assumed that the adjustment control is executed after the time t5 when the first lock control is completed, but cannot be completed within a predetermined time. In that case, the left actual current value of the left motor sharply rises due to the inrush current at time t6 immediately after time t5, enters a stable state at time t7, and then rises. Since the value has not reached the value, the adjustment control ends and the value decreases to zero (Yes in step S507 in FIG. 7→step S508).
 これにより、左推定軸力が時刻t7から時刻t31までわずかに上昇するが、右推定軸力と左推定軸力を合計した総推定軸力は時刻t31において必要軸力に到達していない。 Due to this, the left estimated axial force slightly increases from time t7 to time t31, but the total estimated axial force, which is the sum of the right estimated axial force and the left estimated axial force, has not reached the required axial force at time t31.
 また、表示ランプ24は、最初のロック制御が完了した時刻t5に消灯から点灯に変わり、さらに、時刻t31において点灯から点滅に変わる(図7のステップS508の後のステップS502)。 Further, the display lamp 24 changes from off to lighting at time t5 when the first lock control is completed, and further changes from lighting to blinking at time t31 (step S502 after step S508 in FIG. 7).
 このようにして、第4の制御例によれば、まず、最初のロック制御(時刻t1~t5)において、時刻t5で左モータと右モータを同時に停止させるので、作動音の左右差が生じることがなく、乗員に違和感や不快感を与えてしまう事態を回避できる。 In this way, according to the fourth control example, first, in the first lock control (time t1 to t5), the left motor and the right motor are stopped at the time t5 at the same time. Therefore, it is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
 また、調整制御が完了しなかったことに対応して時刻t31において表示ランプ24による表示が点灯から点滅に変わるので、乗員は、調整制御を実行できない事態が発生していることを認識し、対応することができる。 In addition, since the display by the display lamp 24 changes from lighting to blinking at time t31 in response to the adjustment control not being completed, the occupant recognizes that there is a situation in which the adjustment control cannot be executed, and responds. can do.
 また、第1の制御例~第4の制御例に共通して、左モータを早く停止させることによって、次のような効果もある。まず、次のリリース動作時間を短くすることができる。また、消費電力を小さく抑えることができる。また、キャリパ13への負担を低減することができる。 Also, in common with the first to fourth control examples, stopping the left motor early has the following effects. First, the next release operation time can be shortened. In addition, power consumption can be reduced. Further, the load on the caliper 13 can be reduced.
(第2実施形態)
 次に、第2実施形態について説明する。第1実施形態と同様の事項については説明を適宜省略する。第1実施形態では、左実電流値が左目標電流値に到達したことと、右実電流値が右目標電流値に到達したことの、一方が成立したときに、左モータと右モータの両方を同時に停止させることとした。第2実施形態では、その一方だけではなく両方が成立したときに、左モータと右モータの両方を同時に停止させる。
(Second embodiment)
Next, a second embodiment will be described. Descriptions of the same items as those in the first embodiment will be appropriately omitted. In the first embodiment, when one of the fact that the left actual current value reaches the left target current value and the right actual current value reaches the right target current value, both the left motor and the right motor are satisfied. It was decided to stop at the same time. In the second embodiment, both the left motor and the right motor are stopped at the same time when not only one of them but also both of them are satisfied.
 図12は、第2実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。図12のフローチャートは、図4のフローチャートと比較して、ステップS204がステップS204aに置き換えられ、また、ステップS205が削除されている点で異なっている。以下、相違点についてのみ説明する。 FIG. 12 is a flowchart showing a lock control process by the braking control device of the second embodiment. The flowchart of FIG. 12 differs from the flowchart of FIG. 4 in that step S204 is replaced with step S204a and step S205 is deleted. Only the differences will be described below.
 ステップS203の後、ステップS204aにおいて、EPB-ECU9は、左モータの実電流値(左実電流値)が左目標電流値に到達したことと、右モータの実電流値(右実電流値)が右目標電流値に到達したことの、両方が成立したか否かを判定し、Yesの場合はステップS206に進み、Noの場合はステップS204aに戻る。 After step S203, in step S204a, the EPB-ECU 9 determines that the actual current value of the left motor (left actual current value) has reached the left target current value and that the actual current value of the right motor (right actual current value) is It is determined whether or not both of reaching the right target current value are satisfied. If Yes, the process proceeds to step S206, and if No, the process returns to step S204a.
 図13は、第2実施形態における制御例を示すタイムチャートである。なお、必要軸力(バラツキなし)とは、各部品の経年劣化や個体バラツキを考慮しない場合の必要軸力であり、例えば、一番安全側にたった値として設定される。また、必要軸力(バラツキあり)とは、各部品の経年劣化や個体バラツキを考慮した場合の必要軸力であり、例えば、各情報に基いて適宜算出されるか、あるいは、各条件を考慮して設定される。したがって、一般的に、必要軸力(バラツキなし)よりも必要軸力(バラツキあり)のほうが大きい値となる。 FIG. 13 is a time chart showing a control example in the second embodiment. The required axial force (no variation) is a required axial force when aging deterioration of each component and individual variation are not taken into consideration, and is set as a value on the safest side, for example. The required axial force (with variations) is the required axial force in consideration of aging deterioration of individual parts and individual variations. For example, it is calculated appropriately based on each information or each condition is taken into consideration. Is set. Therefore, in general, the required axial force (with variations) has a larger value than the required axial force (without variations).
 時刻t1~t3については図8と同様なので、説明を省略する。右実電流値は、時刻t3で上昇を開始し、時刻t5で右目標電流値に到達するが、その後も上昇を続ける。また、左実電流値は、時刻t4で上昇を開始し、時刻t5を過ぎて時刻t42で左目標電流値に到達する(図12のステップS204aでYes)。 Since the time t1 to t3 is the same as that in FIG. 8, the description is omitted. The right actual current value starts increasing at time t3 and reaches the right target current value at time t5, but continues increasing thereafter. The left actual current value starts rising at time t4 and reaches the left target current value at time t42 after time t5 (Yes in step S204a of FIG. 12).
 この状態で、左モータと右モータが停止する(図12のステップS206)ので、時刻t42で右実電流値と左実電流値はゼロまで低下する。 In this state, the left motor and the right motor stop (step S206 in FIG. 12), so that the right actual current value and the left actual current value decrease to zero at time t42.
 この場合、右推定軸力は時刻t3から時刻t42まで上昇し、左推定軸力は時刻t4から時刻t42まで上昇し、総推定軸力は時刻t42において必要軸力(バラツキなし)と必要軸力(バラツキあり)のいずれにも到達している。したがって、その後に調整制御を実行する必要がない。 In this case, the right estimated axial force increases from time t3 to time t42, the left estimated axial force increases from time t4 to time t42, and the total estimated axial force is the required axial force (no variation) and the required axial force at time t42. It has reached all of (variable). Therefore, it is not necessary to execute the adjustment control thereafter.
 このようにして、第2実施形態によれば、最初のロック制御(時刻t1~t42)において、時刻t42で左モータと右モータを同時に停止させるので、作動音の左右差が生じることがなく、乗員に違和感や不快感を与えてしまう事態を回避できる。 As described above, according to the second embodiment, in the first lock control (time t1 to t42), the left motor and the right motor are stopped at the time t42 at the same time. It is possible to avoid a situation where the occupant feels uncomfortable or uncomfortable.
 また、左実電流値が左目標電流値に到達し、かつ、右実電流値が右目標電流値に到達した場合に左モータと右モータの両方を同時に停止させるので、総推定軸力が必要軸力(バラツキなし)と必要軸力(バラツキあり)のいずれにも到達しており、安全性をより向上させることができる。 When the left actual current value reaches the left target current value and the right actual current value reaches the right target current value, both the left motor and the right motor are stopped at the same time, so the total estimated axial force is required. Both axial force (no variation) and required axial force (variation) are reached, and safety can be further improved.
(第3実施形態)
 次に、第3実施形態について説明する。第2実施形態と同様の事項については説明を適宜省略する。第2実施形態では、左実電流値が左目標電流値に到達したことと、右実電流値が右目標電流値に到達したことの、両方が成立したときに、左モータと右モータの両方を同時に停止させることとした。第3実施形態では、その両方が成立する前でも、現総推定軸力が必要軸力(バラツキあり)に到達したときに、左モータと右モータの両方を同時に停止させる。
(Third Embodiment)
Next, a third embodiment will be described. Description of the same items as those in the second embodiment will be appropriately omitted. In the second embodiment, when both the left actual current value has reached the left target current value and the right actual current value has reached the right target current value, both the left motor and the right motor are satisfied. It was decided to stop at the same time. In the third embodiment, both the left motor and the right motor are stopped at the same time when the current total estimated axial force reaches the required axial force (with variations) even before both of them are satisfied.
 図14は、第3実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。図14のフローチャートは、図12のフローチャートと比較して、ステップS211~S213が追加されている点で異なっている。以下、相違点についてのみ説明する。 FIG. 14 is a flowchart showing a lock control process by the braking control device of the third embodiment. The flowchart of FIG. 14 differs from the flowchart of FIG. 12 in that steps S211 to S213 are added. Only the differences will be described below.
 ステップS204aでNoの場合、ステップS211において、EPB-ECU9は、現軸力推定を行う。図15は、第3実施形態の制動制御装置による現軸力推定の処理を示すフローチャートである。 If No in step S204a, in step S211, the EPB-ECU 9 estimates the current axial force. FIG. 15 is a flowchart showing the process of estimating the current axial force by the braking control device of the third embodiment.
 ステップS2111において、EPB-ECU9は、左実電流値に基いて現左推定軸力を算出する。次に、ステップS2112において、EPB-ECU9は、右実電流値に基いて現右推定軸力を算出する。次に、ステップS2113において、EPB-ECU9は、現左推定軸力と現右推定軸力を加算することで、総推定軸力を算出する。これで、現軸力推定の処理を終了する。 In step S2111, the EPB-ECU 9 calculates the current left estimated axial force based on the left actual current value. Next, in step S2112, the EPB-ECU 9 calculates the current right estimated axial force based on the right actual current value. Next, in step S2113, the EPB-ECU 9 calculates the total estimated axial force by adding the current left estimated axial force and the current right estimated axial force. This completes the process of estimating the current axial force.
 図14に戻って、ステップS211の後、ステップS212において、EPB-ECU9は、必要軸力(バラツキあり)推定を行う。図16は、第3実施形態の制動制御装置による必要軸力(バラツキあり)推定の処理を示すフローチャートである。 Returning to FIG. 14, in step S212 after step S211, the EPB-ECU 9 estimates the required axial force (variation). FIG. 16 is a flowchart showing a process of estimating a required axial force (variation) by the braking control device of the third embodiment.
 ステップS212において、EPB-ECU9は、各情報(図6のステップS41参照)を取得する。次に、ステップS2122において、EPB-ECU9は、各情報に基いて必要制動力(バラツキあり)を算出する。次に、ステップS2123において、EPB-ECU9は、ステップS42で算出した必要制動力(バラツキあり)に基いて、必要軸力(バラツキあり)を算出する。これで、必要軸力(バラツキあり)推定の処理を終了する。 In step S212, the EPB-ECU 9 acquires each information (see step S41 in FIG. 6). Next, in step S2122, the EPB-ECU 9 calculates the required braking force (variation) based on each information. Next, in step S2123, the EPB-ECU 9 calculates the required axial force (variation) based on the required braking force (variation) calculated in step S42. This completes the process of estimating the required axial force (variation).
 図14に戻って、ステップS212の後、ステップS213において、EPB-ECU9は、現総推定軸力が必要軸力(バラツキあり)以上か否かを判定し、Yesの場合はステップS206に進み、Noの場合はステップS204aに戻る。 Returning to FIG. 14, after step S212, in step S213, the EPB-ECU 9 determines whether or not the current total estimated axial force is greater than or equal to the required axial force (variation), and if Yes, the process proceeds to step S206, In No, it returns to step S204a.
 このような処理を実行することにより、例えば、図13の例では、時刻t42よりも前の時刻41に、現総推定軸力が必要軸力(バラツキあり)に到達して、右モータと左モータを同時に停止させることができる。したがって、必要な軸力を発生しつつ、過度な軸力の発生を抑制でき、各部品に対する過剰な負荷を抑制し、各部品の長寿命化を図ることができる。 By performing such processing, for example, in the example of FIG. 13, the current total estimated axial force reaches the required axial force (variation) at time 41 before time t42, and the right motor and the left motor are operated. The motors can be stopped at the same time. Therefore, it is possible to suppress the generation of an excessive axial force while generating a necessary axial force, suppress an excessive load on each component, and prolong the life of each component.
(第4実施形態)
 次に、第4実施形態について説明する。第2実施形態と同様の事項については説明を適宜省略する。第2実施形態では、左実電流値が左目標電流値に到達したことと、右実電流値が右目標電流値に到達したことの、両方が成立したときに、左モータと右モータの両方を同時に停止させることとした。第4実施形態では、その両方が成立する前でも、EPB-ECU9は、左モータの実電流値が左目標電流値よりも大きく設定される左限界電流値に到達したとき、または、右モータの実電流値が右目標電流値よりも大きく設定される右限界電流値に到達したときに、左モータと右モータの両方を同時に停止させる。なお、左限界電流値と右限界電流値は、各部品の耐久性や環境等に基いて、算出または設定される。
(Fourth Embodiment)
Next, a fourth embodiment will be described. Description of the same items as those in the second embodiment will be appropriately omitted. In the second embodiment, when both the left actual current value has reached the left target current value and the right actual current value has reached the right target current value, both the left motor and the right motor are satisfied. It was decided to stop at the same time. In the fourth embodiment, even before both of them are established, the EPB-ECU 9 determines whether the actual current value of the left motor reaches the left limit current value set to be larger than the left target current value or the right motor. When the actual current value reaches the right limit current value that is set larger than the right target current value, both the left motor and the right motor are stopped at the same time. The left limit current value and the right limit current value are calculated or set based on the durability and environment of each component.
 図17は、第4実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。図17のフローチャートは、図12のフローチャートと比較して、ステップS221が追加されている点で異なっている。以下、相違点についてのみ説明する。 FIG. 17 is a flowchart showing a lock control process by the braking control device of the fourth embodiment. The flowchart of FIG. 17 differs from the flowchart of FIG. 12 in that step S221 is added. Only the differences will be described below.
 ステップS204aでNoの場合、ステップS221において、EPB-ECU9は、左モータの実電流値が左限界電流値に到達したことと、右モータの実電流値が右限界電流値に到達したこと、の少なくとも一方が成立したか否かを判定し、Yesの場合はステップS206に進み、Noの場合はステップS204aに戻る。 In the case of No in step S204a, in step S221 the EPB-ECU 9 determines that the actual current value of the left motor has reached the left limit current value and that the actual current value of the right motor has reached the right limit current value. It is determined whether or not at least one of them is satisfied. If Yes, the process proceeds to step S206, and if No, the process returns to step S204a.
 図18は、第4実施形態における制御例を示すタイムチャートである。時刻t1~t3については図13と同様なので、説明を省略する。右実電流値は、時刻t3で上昇を開始し、時刻t5で右目標電流値に到達するが、その後も上昇を続け、時刻t51で右限界電流値に到達する(図17のステップS221でYes)。 FIG. 18 is a time chart showing a control example in the fourth embodiment. Since the time t1 to t3 is the same as that in FIG. 13, the description is omitted. The right actual current value starts increasing at time t3 and reaches the right target current value at time t5, but continues to increase thereafter and reaches the right limit current value at time t51 (Yes in step S221 of FIG. 17). ).
 この状態で、左モータと右モータが停止する(図17のステップS206)ので、時刻t51で右実電流値と左実電流値はゼロまで低下する。 In this state, the left motor and the right motor stop (step S206 in FIG. 17), so the right actual current value and the left actual current value decrease to zero at time t51.
 この場合、右推定軸力は時刻t3から時刻t51まで上昇し、左推定軸力は時刻t4から時刻t51まで上昇し、総推定軸力は時刻t51において必要軸力(バラツキなし)と必要軸力(バラツキあり)のいずれにも到達している。したがって、その後に調整制御を実行する必要がない。なお、例えば、総推定軸力が必要軸力(バラツキあり)に到達していない場合は、調整制御を実行してもよい。 In this case, the right estimated axial force increases from time t3 to time t51, the left estimated axial force increases from time t4 to time t51, and the total estimated axial force is the required axial force (no variation) and the required axial force at time t51. It has reached all of (variable). Therefore, it is not necessary to execute the adjustment control thereafter. Note that, for example, when the total estimated axial force does not reach the required axial force (with variations), the adjustment control may be executed.
 このようにして、第4実施形態によれば、最初のロック制御(時刻t1~t51)において、時刻t51で左モータと右モータを同時に停止させるので、作動音の左右差が生じることがなく、乗員に違和感や不快感を与えてしまう事態を回避できる。 As described above, according to the fourth embodiment, in the first lock control (time t1 to t51), the left motor and the right motor are stopped at the time t51 at the same time. It is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
 また、左実電流値が左限界電流値に到達するか、あるいは、右実電流値が右限界電流値に到達したときに、左モータと右モータの両方を同時に停止させるので、各部品が破損したり劣化したりすることを抑制できる。 Also, when the left actual current value reaches the left limit current value or the right actual current value reaches the right limit current value, both the left motor and the right motor are stopped at the same time. It is possible to suppress deterioration and deterioration.
 なお、右限界電流値や左限界電流値に代えて、図18に示す限界軸力(一例として左右モータ共通とする。)を用いて、左推定軸力と右推定軸力のいずれかがその限界軸力に到達した場合に左モータと右モータを同時に停止させるようにしてもよい。 Note that, instead of the right limit current value and the left limit current value, a limit axial force shown in FIG. The left motor and the right motor may be stopped at the same time when the limit axial force is reached.
 また、第3実施形態の場合と同様に、現総推定軸力が必要軸力(バラツキあり)に到達した場合は右モータと左モータを同時に停止させる、という処理を併用してもよい。 Also, as in the case of the third embodiment, a process of stopping the right motor and the left motor at the same time when the current total estimated axial force reaches the required axial force (with variations) may be used together.
(第5実施形態)
 次に、第5実施形態について説明する。第1実施形態~第4実施形態の少なくともいずれかと同様の事項については説明を適宜省略する。第5実施形態の処理は、第1実施形態~第4実施形態の処理を組み合わせたものである。
(Fifth Embodiment)
Next, a fifth embodiment will be described. Descriptions of the same items as at least one of the first to fourth embodiments will be appropriately omitted. The process of the fifth embodiment is a combination of the processes of the first to fourth embodiments.
 図19は、第5実施形態の制動制御装置によるロック制御の処理を示すフローチャートである。ステップS201~S205については、図4と同様である。ステップS211~S213は図14と同様である。ステップS204a、S221、S206~209については、図17と同様である。 FIG. 19 is a flowchart showing a lock control process by the braking control device of the fifth embodiment. Steps S201 to S205 are the same as in FIG. Steps S211 to S213 are the same as in FIG. Steps S204a, S221, and S206 to 209 are the same as in FIG.
 つまり、この図19の処理では、ステップS204、S205のいずれかでYesになってステップS211に移行した後、ステップS213、S204a、S221のいずれかでYesになった場合に、ステップS206に移行する。これによって、よりきめ細かい処理を実現できる。 In other words, in the processing of FIG. 19, if Yes in any of Steps S204 and S205 and moves to Step S211, and if Yes in any of Steps S213, S204a, and S221, moves to Step S206. . As a result, more detailed processing can be realized.
 図20は、第5実施形態における制御例を示すタイムチャートである。時刻t1~t3については図13と同様なので、説明を省略する。右実電流値は、時刻t3で上昇を開始する。また、左実電流値は、時刻t4で上昇を開始する。そして、時刻t41で、総推定軸力が必要軸力(バラツキあり)に到達する(図19のステップS213でYes)。 FIG. 20 is a time chart showing a control example in the fifth embodiment. Since the time t1 to t3 is the same as that in FIG. 13, the description is omitted. The right actual current value starts rising at time t3. The left actual current value starts rising at time t4. Then, at time t41, the total estimated axial force reaches the required axial force (with variations) (Yes in step S213 in FIG. 19).
 この状態で、左モータと右モータが停止する(図19のステップS206)ので、時刻t41で右実電流値と左実電流値はゼロまで低下する。 In this state, the left motor and the right motor stop (step S206 in FIG. 19), so that the right actual current value and the left actual current value decrease to zero at time t41.
 この場合、右推定軸力は時刻t3から時刻t41まで上昇し、左推定軸力は時刻t4から時刻t41まで上昇し、総推定軸力は時刻t41において必要軸力(バラツキあり)に到達している。したがって、その後に調整制御を実行する必要がない。 In this case, the right estimated axial force increases from time t3 to time t41, the left estimated axial force increases from time t4 to time t41, and the total estimated axial force reaches the necessary axial force (variation) at time t41. There is. Therefore, it is not necessary to execute the adjustment control thereafter.
 このようにして、第5実施形態によれば、最初のロック制御(時刻t1~t41)において、時刻t41で左モータと右モータを同時に停止させるので、作動音の左右差が生じることがなく、乗員に違和感や不快感を与えてしまう事態を回避できる。 In this way, according to the fifth embodiment, in the first lock control (time t1 to t41), the left motor and the right motor are stopped at the time t41 at the same time. It is possible to avoid a situation in which the occupant feels uncomfortable or uncomfortable.
 また、総推定軸力が必要軸力(バラツキあり)に到達したときに左モータと右モータを同時に停止させるので、軸力が過不足なくより適切となる。 Also, when the total estimated axial force reaches the required axial force (varied), the left motor and the right motor are stopped at the same time, so the axial force becomes more appropriate without excess or deficiency.
 以上、本発明の実施形態が例示されたが、上記実施形態はあくまで例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、数等)は、適宜に変更して実施することができる。 Although the embodiments of the present invention have been illustrated above, the above embodiments are merely examples, and are not intended to limit the scope of the invention. The above-described embodiment can be implemented in various other forms, and various omissions, replacements, combinations, and changes can be made without departing from the spirit of the invention. In addition, the specifications (structure, type, number, etc.) such as each configuration and shape can be appropriately changed and implemented.
 例えば、上述の第1実施形態では、調整制御や再ロック制御において、左モータだけを駆動することとしたが、これに限定されず、右モータだけを駆動してもよいし、左モータと右モータの両方を駆動してもよい。 For example, in the above-described first embodiment, only the left motor is driven in the adjustment control and the relock control, but the present invention is not limited to this, and only the right motor may be driven, or the left motor and the right motor may be driven. Both motors may be driven.
 また、表示ランプ24による点灯や点滅のときの色は、赤色に限定されず、黄色等の他の色であってもよい。 Also, the color when the display lamp 24 lights up or blinks is not limited to red, and may be another color such as yellow.
 また、上述の報知制御における報知の手法は、表示ランプ24による表示に限定されず、音声や画面表示等の別の手法であってもよい。 The notification method in the above notification control is not limited to the display by the display lamp 24, and another method such as voice or screen display may be used.
 また、EPBによる制動の対象となる車輪は、後輪に限定されず、前輪であってもよい。また、本発明の対象となる車両の車輪数は、四輪に限定されず、六輪以上であってもよい。 Also, the wheels subject to braking by the EPB are not limited to the rear wheels, but may be the front wheels. Further, the number of wheels of the vehicle to which the present invention is applied is not limited to four wheels, and may be six wheels or more.
 また、図14のステップS213において、必要軸力(バラツキあり)の代わりに必要軸力(バラツキなし)を用いてもよい。 Further, in step S213 of FIG. 14, the required axial force (without variation) may be used instead of the required axial force (with variation).

Claims (7)

  1.  左車輪側に設けられた左モータを駆動することによって左車輪に電動制動力を発生させ、右車輪側に設けられた右モータを駆動することによって右車輪に電動制動力を発生させる電動ブレーキ装置を備える車両に適用される制動制御装置であって、
     前記電動ブレーキ装置に対する駆動要求があった場合、停車保持に必要な目標制動力を算出するとともに、前記目標制動力を発生させるための前記左モータに対する目標電流値である左目標電流値と前記右モータに対する目標電流値である右目標電流値とを算出し、前記左モータと前記右モータを駆動して、前記左モータの実電流値が前記左目標電流値以上に到達したことと、前記右モータの実電流値が前記右目標電流値以上に到達したこととの一方が成立したときに、前記左モータと前記右モータの両方を同時に停止させる停止制御を実行する電動ブレーキ制御部を備える制動制御装置。
    An electric brake device that drives the left motor provided on the left wheel side to generate electric braking force on the left wheel, and drives the right motor provided on the right wheel side to generate electric braking force on the right wheel. A braking control device applied to a vehicle including:
    When there is a drive request to the electric brake device, a target braking force required to hold the vehicle is calculated, and a left target current value and a right target current value for the left motor for generating the target braking force are calculated. A right target current value that is a target current value for the motor is calculated, the left motor and the right motor are driven, and the actual current value of the left motor reaches or exceeds the left target current value, and the right Braking provided with an electric brake control unit that executes stop control for simultaneously stopping both the left motor and the right motor when one of the fact that the actual current value of the motor has reached the right target current value or more is satisfied. Control device.
  2.  前記電動ブレーキ制御部は、前記停止制御を実行する前に、他方の前記左モータ、または、前記右モータの実電流値が前記目標電流値以上に到達しているという条件が満たされているか否かを判断し、前記条件が満たされていないと判断した場合、前記停止制御の実行を禁止し、前記他方の前記左モータ、または、前記右モータの実電流値を前記目標電流値以上に到達させた後、前記停止制御を許可して前記左モータと前記右モータの両方を同時に停止させる、請求項1に記載の制動制御装置。 Before executing the stop control, the electric brake control unit determines whether a condition that the actual current value of the other left motor or the right motor reaches or exceeds the target current value is satisfied. If it is determined that the condition is not satisfied, execution of the stop control is prohibited, and the actual current value of the other left motor or the right motor reaches the target current value or more. The braking control device according to claim 1, wherein after the control is performed, the stop control is permitted to stop both the left motor and the right motor at the same time.
  3.  前記電動ブレーキ制御部は、前記左モータの実電流値が前記左目標電流値よりも大きく設定される左限界電流値に到達したとき、または、前記右モータの実電流値が前記右目標電流値よりも大きく設定される右限界電流値に到達したときに、前記左モータと前記右モータの両方を同時に停止させる、請求項1または請求項2に記載の制動制御装置。 The electric brake control unit, when the actual current value of the left motor reaches a left limit current value that is set larger than the left target current value, or the actual current value of the right motor is the right target current value. The braking control device according to claim 1 or 2, wherein both of the left motor and the right motor are stopped at the same time when a right limit current value that is set to be larger than the right limit current value is reached.
  4.  前記電動ブレーキ制御部は、前記停止制御の実行後、前記車両のずり下がりを検知した場合、前記目標制動力を高くするよう補正し、補正後の前記目標制動力を発生させるように前記左モータと前記右モータの少なくとも一方を駆動させる、請求項1から請求項3のいずれか一項に記載の制動制御装置。 After the stop control is performed, the electric brake control unit corrects the target braking force so as to be high when the vehicle is slipping down, and the left motor is generated so as to generate the corrected target braking force. The braking control device according to any one of claims 1 to 3, which drives at least one of the right motor and the right motor.
  5.  前記電動ブレーキ制御部は、前記停止制御の実行後、前記左車輪と前記右車輪において発生している制動力の合計が前記目標制動力よりも低い場合、前記左モータと前記右モータの少なくとも一方を駆動して前記目標制動力を発生させる調整制御を実行する、請求項1から請求項4のいずれか一項に記載の制動制御装置。 After the execution of the stop control, the electric brake control unit, if the total braking force generated in the left wheel and the right wheel is lower than the target braking force, at least one of the left motor and the right motor. The braking control device according to any one of claims 1 to 4, which executes an adjustment control for driving the engine to generate the target braking force.
  6.  前記電動ブレーキ制御部は、乗員が降車したことを推定するための所定の車両操作を検知するまでは前記調整制御を禁止し、前記所定の車両操作を検知した場合に前記調整制御を実行する、請求項5に記載の制動制御装置。 The electric brake control unit prohibits the adjustment control until it detects a predetermined vehicle operation for estimating that the occupant has exited the vehicle, and executes the adjustment control when the predetermined vehicle operation is detected, The braking control device according to claim 5.
  7.  前記電動ブレーキ制御部は、前記調整制御を実行できない場合、乗員に報知する報知制御を実行する、請求項5に記載の制動制御装置。
     
     
     
    The braking control device according to claim 5, wherein the electric brake control unit executes notification control to notify an occupant when the adjustment control cannot be executed.


PCT/JP2019/046483 2018-11-30 2019-11-28 Braking control device WO2020111163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018226118A JP7222233B2 (en) 2018-11-30 2018-11-30 Braking control device
JP2018-226118 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111163A1 true WO2020111163A1 (en) 2020-06-04

Family

ID=70852903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046483 WO2020111163A1 (en) 2018-11-30 2019-11-28 Braking control device

Country Status (2)

Country Link
JP (1) JP7222233B2 (en)
WO (1) WO2020111163A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013971A1 (en) * 2012-07-16 2014-01-23 株式会社アドヴィックス Electric parking brake control device
WO2015163179A1 (en) * 2014-04-22 2015-10-29 Ntn株式会社 Brake device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013971A1 (en) * 2012-07-16 2014-01-23 株式会社アドヴィックス Electric parking brake control device
WO2015163179A1 (en) * 2014-04-22 2015-10-29 Ntn株式会社 Brake device

Also Published As

Publication number Publication date
JP2020083287A (en) 2020-06-04
JP7222233B2 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
US9260094B2 (en) Vehicle brake device
CN107249941B (en) Brake device
US9517754B2 (en) Electric parking brake control device
US20140015310A1 (en) Parking brake control device
US8322798B2 (en) Parking brake control unit
US11919493B2 (en) Brake control device
US11440524B2 (en) Brake control device
WO2020111163A1 (en) Braking control device
JP6743780B2 (en) Braking control device
CN113474224B (en) vehicle control device
JP2022173338A (en) Brake control device
CN111051167A (en) Brake control device
JP7230523B2 (en) brake controller
JP7091887B2 (en) Braking control device
JP7310304B2 (en) brake controller
US20220410721A1 (en) Braking control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889706

Country of ref document: EP

Kind code of ref document: A1