WO2020111039A1 - Movement analysis device for fibers in resin, movement analysis method for fibers in resin, program, and storage medium - Google Patents

Movement analysis device for fibers in resin, movement analysis method for fibers in resin, program, and storage medium Download PDF

Info

Publication number
WO2020111039A1
WO2020111039A1 PCT/JP2019/046094 JP2019046094W WO2020111039A1 WO 2020111039 A1 WO2020111039 A1 WO 2020111039A1 JP 2019046094 W JP2019046094 W JP 2019046094W WO 2020111039 A1 WO2020111039 A1 WO 2020111039A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
fibers
flow velocity
node
Prior art date
Application number
PCT/JP2019/046094
Other languages
French (fr)
Japanese (ja)
Inventor
克哉 坂場
有司 岡田
彰 百濟
中野 亮
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2020111039A1 publication Critical patent/WO2020111039A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a fiber movement analysis device in a resin, a fiber movement analysis method in a resin, a program, and a storage medium.
  • Non-Patent Document 1 discloses an analysis method for analyzing the movement of fibers in resin during injection molding.
  • the flow state of the resin is predicted by the conventional technique.
  • the data of the velocity distribution of the resin for each time is formed.
  • the fibers in the resin are assumed to move freely according to the velocity distribution of the resin for each time described above.
  • the state of the fibers in the resin (bending, density, etc.) is calculated.
  • the effect of interference between fibers is neglected.
  • Patent Document 1 discloses a method for analyzing the motion of particles in a fluid substrate.
  • spheres aggregates of spheres
  • linear fibers particles
  • the degree of freedom of the bond length corresponding to the tensile elasticity between adjacent spheres and the degree of freedom of the bond angle corresponding to the bending elasticity of the collection of spheres are set.
  • the translation and rotation of each sphere are calculated.
  • the movement, deformation, orientation, etc. of the aggregate (particles) of spheres are analyzed.
  • Patent Document 1 when it is necessary to consider the interaction of particles (linear fibers), a step of directly calculating the repulsive force due to contact between particles is required when calculating the translation and rotation of each sphere. included. Thereby, the movement, deformation, orientation, etc. of the particles are analyzed while considering the interaction of the particles.
  • the method for analyzing the motion of particles in a fluidized substrate described in Patent Document 1 above includes a step of directly calculating the repulsive force due to contact between particles in order to consider the interaction of particles. Therefore, there is a problem in that the amount of calculation for analyzing the motion of particles in a fluidized substrate increases.
  • the present invention has been made to solve the above problems, and one object of the present invention is to provide a resin in a resin in which interference between fibers is considered while suppressing an increase in calculation amount. It is intended to provide a fiber movement analysis device in a resin, a fiber movement analysis method, a program, and a storage medium capable of analyzing movement of fibers.
  • a device for analyzing a movement of fibers in a resin includes a resin velocity analysis unit for analyzing at least a flow velocity of a resin flowing in a region, and a resin velocity analysis unit.
  • the fiber analysis unit Based on the analyzed flow rate of the resin, and comprising a fiber analysis unit for analyzing the flow of the fiber flowing with the resin, the fiber analysis unit, the fiber, a plurality of nodes, and a rod element connected by the nodes and The fiber modeling part to be modeled by, the resin velocity acquisition part that acquires the resin flow velocity analyzed by the resin velocity analysis part at the position corresponding to the node, and the fiber density and the fiber density at the position corresponding to the node Based on at least one of the degree of bending, the resin velocity correction unit that corrects the resin flow velocity at the position corresponding to the node acquired by the resin velocity acquisition unit, and the resin velocity correction unit that corrects the resin velocity corrected by the resin velocity correction unit And an analysis unit that analyzes the movement of fibers in the resin based on the flow velocity.
  • the fiber analysis unit is based on at least one of the density of the fiber and the degree of bending of the fiber at the position corresponding to the node.
  • the resin velocity correction unit that corrects the resin flow velocity at the position corresponding to the node acquired by the resin velocity acquisition unit, and the movement of the fiber in the resin based on the resin flow velocity corrected by the resin velocity correction unit And an analysis unit for analyzing.
  • the influence of the interference between fibers is indirectly (pseudo) included in the resin flow velocity based on at least one of the density of fibers and the degree of bending of fibers, which is a relatively small amount of calculation.
  • the resin velocity correction unit corrects the resin flow velocity so that the resin flow velocity changes as the fiber density at the position corresponding to the node changes,
  • the flow velocity of the resin is corrected so as to change as the degree of bending of the fiber at the position corresponding to the node changes.
  • the resin velocity correction unit corrects the resin flow velocity so as to decrease as the fiber density at the position corresponding to the node increases, and the degree of bending of the fiber at the position corresponding to the node increases.
  • the flow velocity of the resin is corrected so as to become smaller as it goes.
  • the fiber analysis unit calculates the density of the fibers based on the volume of the fibers in the region corresponding to the node analyzed by the analysis unit.
  • the calculation unit is further included. According to this structure, the fiber density can be easily calculated only by calculating the volume of the fiber in the region corresponding to the node.
  • the fiber analysis unit calculates the degree of bending of the fiber based on the position information of the node of the fiber analyzed by the analysis unit.
  • the calculation unit is further included. According to this structure, the degree of bending of the fiber can be easily calculated.
  • the resin velocity correction unit is provided at least at a node acquired by the resin velocity acquisition unit near a point where a plurality of resins meet in the region. It is configured to correct the flow velocity of the resin at the corresponding position. According to this structure, the flow velocity of the resin is corrected in the vicinity of the point where the plurality of resins, where the fibers relatively easily interfere with each other, join together, so that the interference between the fibers can be effectively considered.
  • the resin velocity analysis unit determines the density of the fiber and the bending of the fiber at the position corresponding to the node at one point in the analysis of the flow of the fiber.
  • the viscosity of the resin is corrected based on at least one of the degree and the flow velocity of the resin at one time point and the next time point is analyzed based on the corrected viscosity.
  • a device for analyzing the movement of fibers in a resin is a resin flow analysis unit that analyzes a flow state of a resin flowing in a region at a certain time point, and a resin calculated by the resin flow analysis unit. And a fiber analysis unit that analyzes the flow of a fiber flowing together with the resin based on the flow velocity of the fiber.
  • the fiber analysis unit models the fiber by a plurality of nodes and rod elements connected by the nodes. Includes a fiber modeling unit and a resin velocity acquisition unit that acquires the resin flow velocity analyzed by the resin flow analysis unit at the position corresponding to the node, and calculates the movement of the fiber based on the resin flow velocity.
  • a resin viscosity correction unit is further provided, and the resin flow analysis unit calculates the flow of the resin and the fiber at the next time point based on the viscosity of the resin corrected by the resin viscosity correction unit.
  • the movement of the fiber is calculated based on the flow velocity of the resin, and the density and bending of the fiber at the position corresponding to the node are calculated.
  • a resin viscosity correction unit that calculates the degree and corrects the viscosity of the resin at the next point in time based on at least one of the density of the fiber and the degree of bending of the fiber, and the resin flow analysis unit is configured to correct the resin viscosity. Calculate the resin and fiber flow at the next time point based on the resin viscosity corrected in parts.
  • the influence of the interference between fibers is indirectly (pseudo) included in the resin flow velocity based on at least one of the density of fibers and the degree of bending of fibers, which is a relatively small amount of calculation.
  • a method of analyzing movement of fibers in a resin includes a step of analyzing at least a flow velocity of a resin flowing in a region, a fiber flowing together with the resin is connected to a plurality of nodes, and the nodes are connected to each other.
  • the step of modeling with the rod element that was modeled the step of acquiring the analyzed resin flow velocity at the position corresponding to the node, and the density of the fiber and the degree of bending of the fiber at the position corresponding to the node.
  • a step of correcting the flow velocity of the resin at the position corresponding to the obtained node and a step of analyzing the movement of the fiber in the resin based on the corrected flow velocity of the resin .
  • the acquired nodes are based on at least one of the density of the fibers and the degree of bending of the fibers at the position corresponding to the node.
  • a step of analyzing the movement of the fiber in the resin based on the corrected resin flow velocity.
  • a program according to a fourth aspect of the present invention is a model in which at least a flow velocity of a resin flowing in a region is analyzed, and a fiber flowing with the resin is modeled by a plurality of nodes and a rod element connected by the nodes.
  • the method includes a step of correcting the resin flow velocity at the position corresponding to the acquired node, and a step of analyzing the movement of fibers in the resin based on the corrected resin flow velocity.
  • the resin at the position corresponding to the acquired node is The method includes a step of correcting the flow velocity and a step of analyzing the movement of fibers in the resin based on the corrected flow velocity of the resin.
  • the influence of the interference between fibers is indirectly (pseudo) included in the resin flow velocity based on at least one of the density of fibers and the degree of bending of fibers, which is a relatively small amount of calculation.
  • a storage medium includes a step of analyzing at least a flow velocity of a resin flowing in a region, a fiber flowing with the resin, a plurality of nodes, and a rod element connected by the nodes. Based on at least one of the step of modeling, the step of obtaining the analyzed resin flow velocity at the position corresponding to the node, and the density of the fiber and the degree of bending of the fiber at the position corresponding to the node.
  • a program is stored, which includes a step of correcting a resin flow velocity at a position corresponding to the acquired node, and a step of analyzing movement of fibers in the resin based on the corrected resin flow velocity.
  • the resin at the position corresponding to the acquired node is based on at least one of the density of the fiber at the position corresponding to the node and the degree of bending of the fiber.
  • storing a program that includes a step of correcting the flow velocity of the resin and a step of analyzing the movement of the fiber in the resin based on the corrected flow velocity of the resin.
  • FIG. 5 shows a modeled fiber.
  • (A) shows a linear fiber
  • (b) and (c) have shown the state of the fiber which bends with movement.
  • the movement analysis device 100 includes a resin velocity analysis unit 10.
  • the resin velocity analysis unit 10 is configured to analyze at least the flow velocity of the resin 210 (see FIG. 3) flowing in a certain region 200 (a mold or the like, see FIG. 2).
  • the resin velocity analysis unit 10 forms a three-dimensional model in which the region 200 (cavity) in which the resin 210 flows is divided into a plurality of minute elements.
  • the flow conductance of the resin in the minute element (resin flow characteristics such as viscosity) is determined.
  • the finite element method or the like is used to calculate the resin pressure, the pressure change, the flow velocity, etc. of the resin in the minute element based on the determined flow conductance.
  • the flow velocity (flow velocity vector, see “V” in FIG. 3) at a certain time (i step, i is a natural number) in the region 200 is calculated.
  • the resin velocity analysis unit 10 calculates the flow of the resin 210 on the assumption that the density of the fibers 220 contained in the resin 210 and the viscosity of the resin 210 are uniform. Further, the resin velocity analysis unit 10 calculates the flow velocity (flow velocity vector) for N steps (from the start to the end of the flow of the resin 210, N is a natural number).
  • the region 200 includes a substantially rectangular parallelepiped region portion 201 extending in the horizontal direction (X direction), and a region portion 202 and a region portion 203 extending vertically downward from the region portion 201.
  • the width W1 of the area portion 202 in the X direction is larger than the width W2 of the area portion 203 in the X direction.
  • the width W3 of the area portion 202 in the Y direction and the width W3 of the area portion 203 in the Y direction are equal to each other.
  • the resin 210 (and the fibers 220 included in the resin 210) move from the X1 direction side and the X2 direction side of the region portion 201 so as to approach each other.
  • the shape of the region 200 is not limited to the shape shown in FIG.
  • the movement analysis device 100 includes a fiber analysis unit 20.
  • the fiber analysis unit 20 is configured to analyze the flow of the fiber 220 flowing together with the resin 210 based on the flow velocity of the resin 210 analyzed by the resin velocity analysis unit 10.
  • a specific configuration of the fiber analysis unit 20 will be described.
  • the fiber analysis unit 20 includes a fiber modeling unit 21. As shown in FIG. 5A, the fiber modeling unit 21 is configured to model the fiber 220 with a plurality of nodes 221 and a rod element 222 connected by the nodes 221. It is also assumed that the bending and rotation between the rod elements 222 are free. Further, the rod element 222 is assumed to be a rigid body. 5(b) and 5(c) show the state of the fiber 220 that bends as it moves.
  • the movement analysis device 100 includes a resin speed acquisition unit 22.
  • the resin velocity acquisition unit 22 is configured to acquire the flow velocity of the resin 210 analyzed by the resin velocity analysis unit 10 at the position corresponding to the node 221. Specifically, the resin velocity acquisition unit 22 acquires the flow velocity vector (the flow velocity and direction of the resin 210, see FIG. 3) in the region 200 analyzed by the resin velocity analysis unit 10. Then, the flow velocity vector at the position corresponding to the node 221 in the region 200 is used as the flow velocity vector for calculating the movement of this node 221.
  • the movement analysis device 100 includes a density calculation unit 23.
  • the density calculation unit 23 is configured to calculate the density of the fibers 220 based on the volume of the fibers 220 in the region (small element of the divided region 200) corresponding to the node 221 analyzed by the analysis unit 26 described later. Has been done. That is, the density of the fibers 220 in the microelements is calculated by dividing the volume of the fibers 220 by the volume of the microelements.
  • the movement analysis device 100 also includes a bending degree calculation unit 24.
  • the bending degree calculation unit 24 is configured to calculate the bending degree of the fiber 220 based on the position information of the node 221 of the fiber 220 analyzed by the analysis unit 26. Then, the flow velocity is corrected as described later according to the degree of bending (see FIGS. 5A to 5C).
  • the movement analysis device 100 includes a resin speed correction unit 25.
  • the resin speed correction unit 25 determines the position corresponding to the node 221 acquired by the resin speed acquisition unit 22 based on at least one of the density of the fibers 220 and the degree of bending of the fibers 220 at the position corresponding to the node 221. Is configured to correct the flow velocity of the resin 210 at. Specifically, the resin speed correction unit 25 corrects so that the flow speed of the resin 210 changes as the density of the fibers 220 at the position corresponding to the node 221 changes. Specifically, the resin velocity correction unit 25 corrects the flow velocity of the resin 210 to decrease as the density of the fibers 220 at the position corresponding to the node 221 increases.
  • the amount of decrease in the flow velocity gradually increases.
  • the rate of change in the amount of decrease in the flow velocity is small. That is, as the density increases, the flow velocity decrease amount becomes saturated. Further, the decrease amount of the flow rate is measured in advance by an experiment of the flow of the resin 210 in a state where the resin 210 actually contains the fibers 220.
  • the movement analysis device 100 is configured to perform correction so that the flow velocity of the resin 210 changes as the degree of bending of the fiber 220 at the position corresponding to the node 221 changes.
  • the resin speed correction unit 25 corrects the flow speed of the resin 210 to decrease as the degree of bending of the fiber 220 at the position corresponding to the node 221 increases. For example, as shown in FIG. 7, the amount of decrease in the flow velocity gradually increases as the degree of bending increases. When the degree of bending is relatively large, the rate of change in the amount of decrease in the flow velocity is small. That is, as the degree of bending increases, the decrease amount of the flow velocity becomes saturated.
  • the decrease amount of the flow velocity is measured in advance by an experiment of the flow of the resin 210 in a state where the fiber 210 is actually included in the resin 210, as in the correction of the flow velocity with respect to the density of the fibers 220. ..
  • FIGS. 3 and 4 show correction of the flow velocity of the resin 210 with reference to FIGS. 3 and 4.
  • “arrows” represent flow velocity vectors.
  • an outer frame (rectangular frame) represents a region 200 in which the resin 210 flows.
  • FIG. 3 shows the flow velocity before correction
  • FIG. 4 shows the flow velocity after correction.
  • the flow velocity before correction is assumed to be uniform. Then, it is assumed that the density of the fibers 220 calculated in the i-1th (previous) step is relatively large in the area A1 and the degree of bending of the fibers 220 is relatively large in the area A2. As a result, as shown in FIG. 4, in the regions A1 and A2, the flow velocity is corrected to be small. The degree of decrease in the flow velocity is calculated based on the graphs of FIG. 6 (density) and FIG. 7 (degree of bending) described above.
  • the resin speed correction unit 25 includes a resin at a position corresponding to the node 221 acquired by the resin speed acquisition unit 22 at least in the vicinity of a point where a plurality of resins 210 merge in the area 200. It is configured to correct the flow rate of 210.
  • the vicinity of the point where the resin 210 merges refers to the vicinity of the area portion 202 and the area portion 203 where the resin 210 moving from the X1 direction side and the resin 210 moving from the X2 direction side merge.
  • the density of the fibers 220 increases, so that the flow velocity of the resin 210 is corrected to decrease.
  • the fibers 220 moving from the X1 direction side and the fibers 220 moving from the X2 direction side collide (tighten each other), and the area portion 202 and Inflow into the area portion 203 is suppressed.
  • Such an effect of collision (stretching) of the fibers 220 can be included in the correction of the flow velocity as a factor of the decrease in the flow velocity of the resin 210.
  • the flow velocity of the resin 210 is corrected at all positions within the area 200.
  • the fiber analysis unit 20 includes an analysis unit 26 that analyzes the movement of the fibers 220 in the resin 210.
  • the analysis unit 26 is configured to analyze the movement of the fibers 220 in the resin 210 based on the flow velocity (flow velocity vector V) of the resin 210 corrected by the resin velocity correction unit 25. ing.
  • the analysis unit 26 calculates the movement of the node 221 according to the flow velocity at the position corresponding to the node 221 acquired by the resin speed acquisition unit 22. The movement (movement amount, movement direction) of a plurality of nodes 221 of one fiber 220 is calculated.
  • FIG. 9 the analysis unit 26 calculates the movement of the node 221 according to the flow velocity at the position corresponding to the node 221 acquired by the resin speed acquisition unit 22. The movement (movement amount, movement direction) of a plurality of nodes 221 of one fiber 220 is calculated.
  • the analysis of the movement of the fiber 220 by the analysis unit 26 is performed from the start to the end of the flow of the resin 210 (for N steps). Note that the calculation of the density of the fibers 220 by the density calculation unit 23, the calculation of the degree of bending of the fibers 220 by the bending degree calculation unit 24, and the correction of the flow velocity of the resin 210 by the resin velocity correction unit 25 are performed in each step. It is done every time.
  • the resin velocity analysis unit 10 and the fiber analysis unit 20 are configured by a program 40 (software) stored in a storage medium 30 inside the movement analysis device 100.
  • the resin velocity analysis unit 10 analyzes the flow velocity of the resin 210.
  • step S1 the resin velocity analysis unit 10 forms a three-dimensional model in which the region 200 (cavity) in which the resin 210 flows is divided into a plurality of minute elements.
  • the three-dimensional CAD data of the area 200 created in advance is read from a storage device (not shown). Then, the area 200 is divided into a plurality of minute elements (mesh) based on the read three-dimensional CAD data of the area 200.
  • step S2 the flow velocity vector (flow velocity) (see FIG. 3) at a certain time (i step) in the region 200 is calculated using the finite element method or the like.
  • step S3 it is determined whether or not the calculation of the flow velocity vector for N steps is completed.
  • step S3 in the case of “Yes”, the calculation of the flow velocity vector ends.
  • step S3 the process returns to step S2 and the calculation of the flow velocity vector is continued.
  • step S11 the fiber 220 flowing together with the resin 210 is modeled by a plurality of nodes 221 and a rod element 222 connected by the nodes 221.
  • step S12 the analyzed flow velocity of the resin 210 (see FIG. 3) at the position corresponding to the node 221 calculated by the resin velocity analysis unit 10 is acquired.
  • step S13 the acquired node 221 is selected based on at least one (both in the first embodiment) of the density of the fiber 220 and the degree of bending of the fiber 220 at the position corresponding to the node 221.
  • step S14 the movement of the fibers 220 in the resin 210 is analyzed based on the corrected flow velocity of the resin 210 (see FIG. 9).
  • step S15 the degree of bending of the fiber 220 is calculated based on the analyzed position information of the node 221 after the movement, and the fiber 220 of the fiber 220 is calculated based on the volume of the fiber 220 at the position after the movement.
  • the density is calculated.
  • step S16 it is determined whether or not the flow of the resin 210 is completed (whether or not the analysis for N steps is completed).
  • step S16 in the case of “Yes”, the analysis of the movement of the fiber 220 ends. If “No” in step S16, the process returns to step S12, and the analysis of the movement of the fiber 220 is continued.
  • FIG. 12 shows the results when the flow velocity is not corrected (comparative example).
  • FIG. 13 shows the results when the flow velocity is corrected based on the density of the fibers 220 and the degree of bending of the fibers 220 (corresponding to the first embodiment).
  • the width W2 in the X direction ( ⁇ W1) narrower than the area portion 202 having the width W1 in the X direction. It was confirmed that the inflow of the fibers 220 was delayed in the region portion 203 having the. That is, since the density of the fibers 220 is higher in the region portion 203 having the smaller width W2, the flow velocity becomes slower. Therefore, the inflow of the fiber 220 is delayed. It was confirmed that the state close to the actual inflow of the fiber 220 was reproduced by correcting the flow velocity.
  • the fiber analysis unit 20 determines the resin speed acquisition unit 22 based on at least one of the density of the fibers 220 and the degree of bending of the fibers 220 at the position corresponding to the node 221.
  • the resin speed correction unit 25 that corrects the flow speed of the resin 210 at the position corresponding to the node 221 that has been acquired in the above, and the fibers 220 in the resin 210 based on the flow speed of the resin 210 that is corrected by the resin speed correction unit 25.
  • an analysis unit 26 that analyzes the movement of the.
  • the influence of interference between the fibers 220 is indirectly (pseudo) flowed by the resin 210 based on at least one of the density of the fibers 220 and the degree of bending of the fibers 220, which is a relatively small amount of calculation. Can be included in speed.
  • the movement of the fibers 220 can be analyzed.
  • the analysis of the movement of the fiber 220 in the resin 210 can be performed at high speed.
  • the resin speed correction unit 25 corrects so that the flow speed of the resin 210 changes as the density of the fibers 220 at the position corresponding to the node 221 changes.
  • the flow velocity of the resin 210 is corrected so as to change as the degree of bending of the fiber 220 at the position corresponding to changes. Accordingly, the movement of the fibers 220 in the resin 210 can be appropriately analyzed according to the change in the density of the fibers 220 and the change in the degree of bending of the fibers 220.
  • the resin speed correction unit 25 corrects the flow speed of the resin 210 to decrease as the density of the fibers 220 in the position corresponding to the node 221 increases, and thus the node 221.
  • the flow velocity of the resin 210 is corrected so as to decrease as the degree of bending of the fiber 220 at the position corresponding to is increased. This indirectly considers that the density of the fibers 220 increases and the interference between the fibers 220 increases, and that the degree of bending of the fibers 220 increases and the interference between the fibers 220 increases. Thus, the movement of the fiber 220 in the resin 210 can be analyzed.
  • the fiber analysis unit 20 calculates the density of the fibers 220 based on the volume of the fibers 220 in the region corresponding to the node 221 analyzed by the analysis unit 26.
  • the calculation unit 24 is included. This makes it possible to easily calculate the density of the fibers 220 simply by calculating the volume of the fibers 220 in the region corresponding to the node 221.
  • the fiber analysis unit 20 calculates the degree of bending of the fiber 220 based on the position information of the node 221 of the fiber 220 analyzed by the analysis unit 26. Including part 24. Accordingly, the degree of bending of the fiber 220 can be easily calculated.
  • the resin speed correction unit 25 corresponds to the node 221 acquired by the resin speed acquisition unit 22 at least in the vicinity of the point where the plurality of resins 210 merge in the region. It is configured to correct the flow velocity of the resin 210 at the position. According to this structure, since the flow velocity of the resin 210 is corrected in the vicinity of the point where the plurality of resins 210 where the fibers 220 are likely to interfere with each other is merged, the interference between the fibers 220 can be effectively considered. it can.
  • the resin viscosity correction unit 27 detects the fiber 220 at a position corresponding to the node 221 at one point (i ⁇ 1 step) in the analysis of the flow of the fiber 220.
  • the viscosity of the resin 210 is corrected based on at least one of the density and the degree of bending of the fiber 220 (both in the second embodiment).
  • the resin viscosity correction unit 27 is included in the fiber analysis unit 20.
  • the region 200 is modeled in step S1 as in the first embodiment. Further, in step S11, the fiber 220 is modeled.
  • step S31 the pressure of the resin in the minute element, the pressure change, the flow velocity, etc. are calculated based on the flow conductance of the resin in the minute element (the resin flow characteristic such as viscosity). As a result, the flow velocity (flow velocity vector) of the i-th step is calculated.
  • the viscosity which is the flow conductance, is corrected based on both the density of the fibers 220 and the degree of bending of the fibers 220 calculated in the previous (i-1)th step.
  • the resin flow velocity is calculated by the resin velocity calculation unit 320 included in the resin flow analysis unit 310. That is, the flow rate of the resin is sequentially calculated for each step in consideration of both the density of the fibers 220 and the degree of bending of the fibers 220, and the viscosity.
  • step S32 the viscosity, which is the flow conductance, is corrected based on both the density of the fibers 220 and the degree of bending of the fibers 220 calculated in the current (i-th) step.
  • the flow velocity and the like are calculated based on the corrected viscosity.
  • step S33 it is determined whether or not the calculated flow velocity has converged. If Yes in step S33, the process proceeds to step S16. If No in step S33, the process returns to step S31.
  • step S16 it is determined whether or not the flow of the resin 210 is completed (whether or not the analysis for N steps is completed).
  • the resin viscosity correction unit 27 determines the density of the fibers 220 and the degree of bending of the fibers 220 at the position corresponding to the node 221 at one point in the analysis of the flow of the fibers 220. Based on this, the viscosity of the resin 210 is corrected. As a result, the influence of the fibers 220 is taken into consideration in the analysis of the flow velocity of the resin 210, so that the accuracy of the analysis of the flow velocity of the resin 210 can be improved.
  • the flow velocity of the resin is corrected to decrease as the fiber density increases
  • the present invention is not limited to this.
  • the flow rate of the resin may be corrected to increase as the fiber density increases.
  • the flow rate of the resin is corrected to decrease as the degree of bending of the fiber increases is shown, but the present invention is not limited to this.
  • the flow rate of the resin may be corrected to increase as the degree of bending of the fiber increases.
  • the resin flow velocity is corrected based on both the fiber density and the fiber bending degree, but the present invention is not limited to this.
  • the resin flow rate may be corrected based on only one of the density of the fiber and the degree of bending of the fiber.
  • the fiber density is calculated based on the volume of the fiber in the region (microelement) corresponding to the node, but the present invention is not limited to this.
  • the fiber density may be calculated based on the number of nodes (the number of rod elements) existing in the minute element.
  • the present invention is not limited to this.
  • a simulation in which interference between fibers is directly taken into consideration is performed in advance, and graphs as shown in FIGS. 6 and 7 are created from the results of the simulation. Then, the amount of decrease in the flow velocity with respect to the density (degree of bending) may be calculated based on the created graph.
  • the present invention is not limited to this.
  • the resin flow velocity may be corrected only in the vicinity of the point where a plurality of resins merge in the region. This makes it possible to reduce the load on the movement analysis device.
  • the viscosity of the resin is corrected based on both the density of the fiber and the degree of bending of the fiber
  • the present invention is not limited to this.
  • the viscosity of the resin may be corrected based on only one of the density of the fiber and the degree of bending of the fiber. ..
  • the present invention is not limited to this. In the present invention, it may be configured not to determine whether or not the calculated flow velocity of the resin has converged.
  • the resin viscosity correction unit is included in the fiber analysis unit, but the present invention is not limited to this. In the present invention, the resin viscosity correction unit may be included in the resin flow analysis unit.
  • resin velocity analysis unit 20 fiber analysis unit 21 fiber modeling unit 22 resin velocity acquisition unit 23 density calculation unit 24 bending degree calculation unit 25 resin velocity correction unit 26 analysis unit 27 resin viscosity correction unit 30 storage medium 40 program 100, 300 movement Analysis device 200 Area 210 Resin 220 Fiber 221 Node 222 Rod element 310 Resin flow analysis unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a movement analysis device for fibers in a resin, the device being capable of, while reducing an increase in calculation amount, analyzing movement of fibers in a resin in which interference between the fibers is taken into consideration. Specifically, in a movement analysis device 100 for fibers 220 in a resin 210, a fiber analysis unit 20 comprises: a resin speed correction unit 25 that corrects a flow speed of the resin 210 at a position corresponding to a joint 221 acquired by a resin speed acquisition unit 22, on the basis of at least one of the density of the fibers 220 at the position corresponding to the joint 221 and the bending degree of the fibers 220; and an analysis unit 26 that analyzes movement of the fibers 220 in the resin 210 on the basis of the flow speed of the rein 210 corrected by the resin speed correction unit 25.

Description

樹脂中における繊維の移動解析装置、樹脂中における繊維の移動解析方法、プログラムおよび記憶媒体Fiber migration analysis device in resin, fiber migration analysis method in resin, program, and storage medium
 この発明は、樹脂中における繊維の移動解析装置、樹脂中における繊維の移動解析方法、プログラムおよび記憶媒体に関する。 The present invention relates to a fiber movement analysis device in a resin, a fiber movement analysis method in a resin, a program, and a storage medium.
 従来、樹脂中における繊維の移動を解析する解析方法が知られている(たとえば、非特許文献1参照、特許文献1参照)。 Conventionally, an analysis method for analyzing the movement of fibers in a resin is known (for example, see Non-Patent Document 1 and Patent Document 1).
 上記非特許文献1には、射出成形時などの樹脂中における繊維の移動を解析する解析方法が開示されている。この解析方法では、樹脂の流動状態は、従来の技術で予測される。そして、各時間毎の樹脂の速度分布のデータが形成される。そして、樹脂中の繊維は、上記の各時間毎の樹脂の速度分布に従って、自由に移動すると仮定される。これにより、樹脂中における繊維の状態(曲り、粗密など)が算出される。なお、上記非特許文献1では、繊維間の干渉の効果は無視されている。 The above Non-Patent Document 1 discloses an analysis method for analyzing the movement of fibers in resin during injection molding. In this analysis method, the flow state of the resin is predicted by the conventional technique. Then, the data of the velocity distribution of the resin for each time is formed. The fibers in the resin are assumed to move freely according to the velocity distribution of the resin for each time described above. As a result, the state of the fibers in the resin (bending, density, etc.) is calculated. In Non-Patent Document 1, the effect of interference between fibers is neglected.
 また、上記特許文献1には、流動基質中の粒子の運動解析方法が開示されている。この運動解析方法では、直線状の繊維(粒子)を模擬した互いに連結させた球体(球体の集合体)を解析モデルとして用いている。そして、球体の集合において、隣り合う球体との間の引っ張り弾性に相当する結合長の自由度や、球体の集合体の曲げ弾性の相当する結合角の自由度が設定される。そして、各球体の並進および回転が算出される。その結果、球体の集合体(粒子)の移動、変形、および、配向などが解析される。また、上記特許文献1では、粒子(直線状の繊維)の相互作用を考慮する必要があるときは、各球体の並進および回転の算出時に、粒子同士の接触による反発力を直接算出するステップが含まれる。これにより、粒子の相互作用を考慮しながら、粒子の移動、変形、および、配向などが解析される。 Also, Patent Document 1 above discloses a method for analyzing the motion of particles in a fluid substrate. In this motion analysis method, spheres (aggregates of spheres) that are connected to each other and imitate linear fibers (particles) are used as an analysis model. Then, in the collection of spheres, the degree of freedom of the bond length corresponding to the tensile elasticity between adjacent spheres and the degree of freedom of the bond angle corresponding to the bending elasticity of the collection of spheres are set. Then, the translation and rotation of each sphere are calculated. As a result, the movement, deformation, orientation, etc. of the aggregate (particles) of spheres are analyzed. Further, in Patent Document 1 described above, when it is necessary to consider the interaction of particles (linear fibers), a step of directly calculating the repulsive force due to contact between particles is required when calculating the translation and rotation of each sphere. included. Thereby, the movement, deformation, orientation, etc. of the particles are analyzed while considering the interaction of the particles.
特開平5-314091号公報Japanese Patent Laid-Open No. 5-314091
 しかしながら、上記特許文献1に記載の流動基質中の粒子の運動解析方法では、粒子の相互作用を考慮するために、粒子同士の接触による反発力を直接算出するステップが含まれている。このため、流動基質中の粒子の運動の解析のための計算量が増大するという問題点がある。 However, the method for analyzing the motion of particles in a fluidized substrate described in Patent Document 1 above includes a step of directly calculating the repulsive force due to contact between particles in order to consider the interaction of particles. Therefore, there is a problem in that the amount of calculation for analyzing the motion of particles in a fluidized substrate increases.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、計算量が増大するのを抑制しながら、繊維同士の干渉が考慮された樹脂中における繊維の移動を解析することが可能な、樹脂中における繊維の移動解析装置、樹脂中における繊維の移動解析方法、プログラムおよび記憶媒体を提供することである。 The present invention has been made to solve the above problems, and one object of the present invention is to provide a resin in a resin in which interference between fibers is considered while suppressing an increase in calculation amount. It is intended to provide a fiber movement analysis device in a resin, a fiber movement analysis method, a program, and a storage medium capable of analyzing movement of fibers.
 上記目的を達成するために、この発明の第1の局面による樹脂中における繊維の移動解析装置は、領域内を流動する樹脂の少なくとも流動速度を解析する樹脂速度解析部と、樹脂速度解析部に解析された樹脂の流動速度に基づいて、樹脂とともに流動する繊維の流動を解析する繊維解析部とを備え、繊維解析部は、繊維を、複数の節点と、節点同士により接続されたロッド要素とによってモデル化する繊維モデル化部と、節点に対応する位置における、樹脂速度解析部に解析された樹脂の流動速度を取得する樹脂速度取得部と、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、樹脂速度取得部に取得された節点に対応する位置における樹脂の流動速度を補正する樹脂速度補正部と、樹脂速度補正部に補正された樹脂の流動速度に基づいて、樹脂中における繊維の移動を解析する解析部とを含む。 In order to achieve the above object, a device for analyzing a movement of fibers in a resin according to a first aspect of the present invention includes a resin velocity analysis unit for analyzing at least a flow velocity of a resin flowing in a region, and a resin velocity analysis unit. Based on the analyzed flow rate of the resin, and comprising a fiber analysis unit for analyzing the flow of the fiber flowing with the resin, the fiber analysis unit, the fiber, a plurality of nodes, and a rod element connected by the nodes and The fiber modeling part to be modeled by, the resin velocity acquisition part that acquires the resin flow velocity analyzed by the resin velocity analysis part at the position corresponding to the node, and the fiber density and the fiber density at the position corresponding to the node Based on at least one of the degree of bending, the resin velocity correction unit that corrects the resin flow velocity at the position corresponding to the node acquired by the resin velocity acquisition unit, and the resin velocity correction unit that corrects the resin velocity corrected by the resin velocity correction unit And an analysis unit that analyzes the movement of fibers in the resin based on the flow velocity.
 この第1の局面による樹脂中における繊維の移動解析装置では、上記のように、繊維解析部は、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、樹脂速度取得部に取得された節点に対応する位置における樹脂の流動速度を補正する樹脂速度補正部と、樹脂速度補正部に補正された樹脂の流動速度に基づいて、樹脂中における繊維の移動を解析する解析部とを含む。これにより、比較的計算量の少ない、繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、繊維同士の干渉の影響を間接的(疑似的)に樹脂の流動速度に含めることができる。その結果、繊維同士の干渉(接触による反発力など)を直接的に算出する場合と比べて、計算量が増大するのを抑制しながら、繊維同士の干渉が考慮された樹脂中における繊維の移動を解析することができる。また、計算量の増大が抑制されるので、樹脂中における繊維の移動の解析を高速に行うことができる。 In the fiber movement analysis device in the resin according to the first aspect, as described above, the fiber analysis unit is based on at least one of the density of the fiber and the degree of bending of the fiber at the position corresponding to the node. , The resin velocity correction unit that corrects the resin flow velocity at the position corresponding to the node acquired by the resin velocity acquisition unit, and the movement of the fiber in the resin based on the resin flow velocity corrected by the resin velocity correction unit And an analysis unit for analyzing. As a result, the influence of the interference between fibers is indirectly (pseudo) included in the resin flow velocity based on at least one of the density of fibers and the degree of bending of fibers, which is a relatively small amount of calculation. You can As a result, compared to the case of directly calculating the interference between fibers (such as the repulsive force due to contact), the movement of the fibers in the resin that considers the interference between the fibers is suppressed while suppressing an increase in the calculation amount. Can be analyzed. Moreover, since the increase in the amount of calculation is suppressed, the analysis of the movement of the fiber in the resin can be performed at high speed.
 上記第1の局面による樹脂中における繊維の移動解析装置において、好ましくは、樹脂速度補正部は、節点に対応する位置における繊維の密度が変化するに従って樹脂の流動速度が変化するように補正し、節点に対応する位置における繊維の曲りの度合いが変化するに従って樹脂の流動速度が変化するように補正するように構成されている。このように構成すれば、繊維の密度の変化や、繊維の曲りの度合いの変化に応じて、適切に、樹脂中における繊維の移動を解析することができる。 In the fiber movement analysis device in the resin according to the first aspect, preferably, the resin velocity correction unit corrects the resin flow velocity so that the resin flow velocity changes as the fiber density at the position corresponding to the node changes, The flow velocity of the resin is corrected so as to change as the degree of bending of the fiber at the position corresponding to the node changes. According to this structure, it is possible to appropriately analyze the movement of the fiber in the resin according to the change in the density of the fiber and the change in the degree of bending of the fiber.
 この場合、好ましくは、樹脂速度補正部は、節点に対応する位置における繊維の密度が大きくなるに従って樹脂の流動速度を小さくなるように補正し、節点に対応する位置における繊維の曲りの度合いが大きくなるに従って樹脂の流動速度を小さくなるように補正するように構成されている。このように構成すれば、繊維の密度が大きくなることにより繊維同士の干渉が大きくなること、および、繊維の曲りの度合いが大きくなることにより繊維同士の干渉が大きくなることを間接的に考慮して、樹脂中における繊維の移動を解析することができる。 In this case, preferably, the resin velocity correction unit corrects the resin flow velocity so as to decrease as the fiber density at the position corresponding to the node increases, and the degree of bending of the fiber at the position corresponding to the node increases. The flow velocity of the resin is corrected so as to become smaller as it goes. With this configuration, indirectly considering that the interference between the fibers is increased due to the increase in the density of the fibers, and the interference between the fibers is increased due to the degree of the bending of the fibers is increased. Thus, the movement of fibers in the resin can be analyzed.
 上記第1の局面による樹脂中における繊維の移動解析装置において、好ましくは、繊維解析部は、解析部により解析された節点に対応する領域における繊維の体積に基づいて、繊維の密度を算出する密度算出部をさらに含む。このように構成すれば、節点に対応する領域における繊維の体積を算出するだけで、容易に、繊維の密度を算出することができる。 In the fiber movement analysis device in the resin according to the first aspect, preferably, the fiber analysis unit calculates the density of the fibers based on the volume of the fibers in the region corresponding to the node analyzed by the analysis unit. The calculation unit is further included. According to this structure, the fiber density can be easily calculated only by calculating the volume of the fiber in the region corresponding to the node.
 上記第1の局面による樹脂中における繊維の移動解析装置において、好ましくは、繊維解析部は、解析部により解析された繊維の節点の位置情報に基づいて、繊維の曲りの度合いを算出する曲り度合算出部をさらに含む。このように構成すれば、容易に、繊維の曲りの度合いを算出することができる。 In the fiber movement analysis device in resin according to the first aspect, preferably, the fiber analysis unit calculates the degree of bending of the fiber based on the position information of the node of the fiber analyzed by the analysis unit. The calculation unit is further included. According to this structure, the degree of bending of the fiber can be easily calculated.
 上記第1の局面による樹脂中における繊維の移動解析装置において、好ましくは、樹脂速度補正部は、少なくとも、領域内において複数の樹脂が合流する地点近傍において、樹脂速度取得部に取得された節点に対応する位置における樹脂の流動速度を補正するように構成されている。このように構成すれば、比較的繊維同士が干渉しやすい複数の樹脂が合流する地点近傍において樹脂の流動速度が補正されるので、繊維同士の干渉を効果的に考慮することができる。 In the fiber movement analysis device in the resin according to the first aspect, preferably, the resin velocity correction unit is provided at least at a node acquired by the resin velocity acquisition unit near a point where a plurality of resins meet in the region. It is configured to correct the flow velocity of the resin at the corresponding position. According to this structure, the flow velocity of the resin is corrected in the vicinity of the point where the plurality of resins, where the fibers relatively easily interfere with each other, join together, so that the interference between the fibers can be effectively considered.
 上記第1の局面による樹脂中における繊維の移動解析装置において、好ましくは、樹脂速度解析部は、繊維の流動の解析における一の時点の、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、樹脂の粘度を補正するとともに、補正された粘度に基づいて、一の時点の次の時点の、樹脂の流動速度を解析するように構成されている。このように構成すれば、樹脂の流動速度の解析に、繊維の影響が考慮されるので、樹脂の流動速度の解析の精度を向上させることができる。 In the fiber movement analysis device in the resin according to the first aspect, preferably, the resin velocity analysis unit determines the density of the fiber and the bending of the fiber at the position corresponding to the node at one point in the analysis of the flow of the fiber. The viscosity of the resin is corrected based on at least one of the degree and the flow velocity of the resin at one time point and the next time point is analyzed based on the corrected viscosity. According to this structure, since the influence of the fiber is taken into consideration in the analysis of the resin flow velocity, the accuracy of the resin flow velocity analysis can be improved.
 この発明の第2の局面による樹脂中における繊維の移動解析装置は、ある一時点において、領域内を流動する樹脂の流動状態を解析する樹脂流動解析部と、樹脂流動解析部で算出された樹脂の流動速度に基づいて、樹脂とともに流動する繊維の流動を解析する繊維解析部とを備え、繊維解析部は、繊維を、複数の節点と、節点同士により接続されたロッド要素とによってモデル化する繊維モデル化部と、節点に対応する位置における、樹脂流動解析部に解析された樹脂の流動速度を取得する樹脂速度取得部とを含み、樹脂の流動速度に基づいて繊維の移動を計算するとともに、節点に対応する位置における繊維の密度と繊維の曲がりの度合いを算出し、繊維の密度と繊維の曲がりの度合いとのうちの少なくともその一方に基づいて、次の時点における樹脂の粘度を補正する樹脂粘度補正部をさらに備え、樹脂流動解析部は、樹脂粘度補正部で補正された樹脂の粘度に基づいて、次の時点の樹脂および繊維の流動を計算する。 A device for analyzing the movement of fibers in a resin according to a second aspect of the present invention is a resin flow analysis unit that analyzes a flow state of a resin flowing in a region at a certain time point, and a resin calculated by the resin flow analysis unit. And a fiber analysis unit that analyzes the flow of a fiber flowing together with the resin based on the flow velocity of the fiber. The fiber analysis unit models the fiber by a plurality of nodes and rod elements connected by the nodes. Includes a fiber modeling unit and a resin velocity acquisition unit that acquires the resin flow velocity analyzed by the resin flow analysis unit at the position corresponding to the node, and calculates the movement of the fiber based on the resin flow velocity. , Calculates the density of the fiber and the degree of bending of the fiber at the position corresponding to the node, and corrects the viscosity of the resin at the next time based on at least one of the density of the fiber and the degree of bending of the fiber A resin viscosity correction unit is further provided, and the resin flow analysis unit calculates the flow of the resin and the fiber at the next time point based on the viscosity of the resin corrected by the resin viscosity correction unit.
 この第2の局面による樹脂中における繊維の移動解析装置では、上記のように、樹脂の流動速度に基づいて繊維の移動を計算するとともに、節点に対応する位置における繊維の密度と繊維の曲がりの度合いを算出し、繊維の密度と繊維の曲がりの度合いとのうちの少なくとも一方に基づいて、次の時点における樹脂の粘度を補正する樹脂粘度補正部を備え、樹脂流動解析部は、樹脂粘度補正部で補正された樹脂の粘度に基づいて、次の時点の樹脂および繊維の流動を計算する。これにより、比較的計算量の少ない、繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、繊維同士の干渉の影響を間接的(疑似的)に樹脂の流動速度に含めることができる。その結果、繊維同士の干渉(接触による反発力など)を直接的に算出する場合と比べて、計算量が増大するのを抑制しながら、繊維同士の干渉が考慮された樹脂中における繊維の移動を解析することができる。また、計算量の増大が抑制されるので、樹脂中における繊維の移動の解析を高速に行うことができる。 In the fiber movement analysis device in resin according to the second aspect, as described above, the movement of the fiber is calculated based on the flow velocity of the resin, and the density and bending of the fiber at the position corresponding to the node are calculated. A resin viscosity correction unit that calculates the degree and corrects the viscosity of the resin at the next point in time based on at least one of the density of the fiber and the degree of bending of the fiber, and the resin flow analysis unit is configured to correct the resin viscosity. Calculate the resin and fiber flow at the next time point based on the resin viscosity corrected in parts. As a result, the influence of the interference between fibers is indirectly (pseudo) included in the resin flow velocity based on at least one of the density of fibers and the degree of bending of fibers, which is a relatively small amount of calculation. You can As a result, compared to the case of directly calculating the interference between fibers (such as the repulsive force due to contact), the movement of the fibers in the resin that considers the interference between the fibers is suppressed while suppressing an increase in the calculation amount. Can be analyzed. Moreover, since the increase in the amount of calculation is suppressed, the analysis of the movement of the fiber in the resin can be performed at high speed.
 この発明の第3の局面による樹脂中における繊維の移動解析方法は、領域内を流動する樹脂の少なくとも流動速度を解析するステップと、樹脂とともに流動する繊維を、複数の節点と、節点同士により接続されたロッド要素とによってモデル化するステップと、節点に対応する位置における、解析された樹脂の流動速度を取得するステップと、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された節点に対応する位置における樹脂の流動速度を補正するステップと、補正された樹脂の流動速度に基づいて、樹脂中における繊維の移動を解析するステップとを備える。 A method of analyzing movement of fibers in a resin according to a third aspect of the present invention includes a step of analyzing at least a flow velocity of a resin flowing in a region, a fiber flowing together with the resin is connected to a plurality of nodes, and the nodes are connected to each other. Of the step of modeling with the rod element that was modeled, the step of acquiring the analyzed resin flow velocity at the position corresponding to the node, and the density of the fiber and the degree of bending of the fiber at the position corresponding to the node. Based on at least one of the above, a step of correcting the flow velocity of the resin at the position corresponding to the obtained node, and a step of analyzing the movement of the fiber in the resin based on the corrected flow velocity of the resin ..
 この第3の局面による樹脂中における繊維の移動解析方法では、上記のように、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された節点に対応する位置における樹脂の流動速度を補正するステップと、補正された樹脂の流動速度に基づいて、樹脂中における繊維の移動を解析するステップとを備える。これにより、比較的計算量の少ない、繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、繊維同士の干渉の影響を間接的(疑似的)に樹脂の流動速度に含めることができる。その結果、繊維同士の干渉(接触による反発力など)を直接的に算出する場合と比べて、計算量が増大するのを抑制しながら、繊維同士の干渉が考慮された樹脂中における繊維の移動を解析することが可能な移動解析方法を提供することができる。 In the method for analyzing the movement of fibers in the resin according to the third aspect, as described above, the acquired nodes are based on at least one of the density of the fibers and the degree of bending of the fibers at the position corresponding to the node. And a step of analyzing the movement of the fiber in the resin based on the corrected resin flow velocity. As a result, the influence of the interference between fibers is indirectly (pseudo) included in the resin flow velocity based on at least one of the density of fibers and the degree of bending of fibers, which is a relatively small amount of calculation. You can As a result, compared to the case of directly calculating the interference between fibers (such as the repulsive force due to contact), the movement of the fibers in the resin that considers the interference between the fibers is suppressed while suppressing an increase in the calculation amount. It is possible to provide a movement analysis method capable of analyzing
 この発明の第4の局面によるプログラムは、領域内を流動する樹脂の少なくとも流動速度を解析するステップと、樹脂とともに流動する繊維を、複数の節点と、節点同士により接続されたロッド要素とによってモデル化するステップと、節点に対応する位置における、解析された樹脂の流動速度を取得するステップと、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された節点に対応する位置における樹脂の流動速度を補正するステップと、補正された樹脂の流動速度に基づいて、樹脂中における繊維の移動を解析するステップとを備える。 A program according to a fourth aspect of the present invention is a model in which at least a flow velocity of a resin flowing in a region is analyzed, and a fiber flowing with the resin is modeled by a plurality of nodes and a rod element connected by the nodes. The step of liquefying, at the position corresponding to the node, the step of acquiring the flow velocity of the resin analyzed, based on at least one of the density of the fiber and the degree of bending of the fiber at the position corresponding to the node, The method includes a step of correcting the resin flow velocity at the position corresponding to the acquired node, and a step of analyzing the movement of fibers in the resin based on the corrected resin flow velocity.
 この第4の局面によるプログラムでは、上記のように、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された節点に対応する位置における樹脂の流動速度を補正するステップと、補正された樹脂の流動速度に基づいて、樹脂中における繊維の移動を解析するステップとを備える。これにより、比較的計算量の少ない、繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、繊維同士の干渉の影響を間接的(疑似的)に樹脂の流動速度に含めることができる。その結果、繊維同士の干渉(接触による反発力など)を直接的に算出する場合と比べて、計算量が増大するのを抑制しながら、繊維同士の干渉が考慮された樹脂中における繊維の移動を解析することが可能なプログラムを提供することができる。 In the program according to the fourth aspect, as described above, based on at least one of the density of the fiber at the position corresponding to the node and the degree of bending of the fiber, the resin at the position corresponding to the acquired node is The method includes a step of correcting the flow velocity and a step of analyzing the movement of fibers in the resin based on the corrected flow velocity of the resin. As a result, the influence of the interference between fibers is indirectly (pseudo) included in the resin flow velocity based on at least one of the density of fibers and the degree of bending of fibers, which is a relatively small amount of calculation. You can As a result, compared to the case of directly calculating the interference between fibers (such as the repulsive force due to contact), the movement of the fibers in the resin that considers the interference between the fibers is suppressed while suppressing an increase in the calculation amount. It is possible to provide a program capable of analyzing.
 この発明の第5の局面による記憶媒体は、領域内を流動する樹脂の少なくとも流動速度を解析するステップと、樹脂とともに流動する繊維を、複数の節点と、節点同士により接続されたロッド要素とによってモデル化するステップと、節点に対応する位置における、解析された樹脂の流動速度を取得するステップと、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された節点に対応する位置における樹脂の流動速度を補正するステップと、補正された樹脂の流動速度に基づいて、樹脂中における繊維の移動を解析するステップとを備える、プログラムを記憶する。 A storage medium according to a fifth aspect of the present invention includes a step of analyzing at least a flow velocity of a resin flowing in a region, a fiber flowing with the resin, a plurality of nodes, and a rod element connected by the nodes. Based on at least one of the step of modeling, the step of obtaining the analyzed resin flow velocity at the position corresponding to the node, and the density of the fiber and the degree of bending of the fiber at the position corresponding to the node. A program is stored, which includes a step of correcting a resin flow velocity at a position corresponding to the acquired node, and a step of analyzing movement of fibers in the resin based on the corrected resin flow velocity.
 この第5の局面による記憶媒体では、上記のように、節点に対応する位置における繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された節点に対応する位置における樹脂の流動速度を補正するステップと、補正された樹脂の流動速度に基づいて、樹脂中における繊維の移動を解析するステップとを備える、プログラムを記憶する。これにより、比較的計算量の少ない、繊維の密度と繊維の曲りの度合いとのうちの少なくとも一方に基づいて、繊維同士の干渉の影響を間接的(疑似的)に樹脂の流動速度に含めることができる。その結果、繊維同士の干渉(接触による反発力など)を直接的に算出する場合と比べて、計算量が増大するのを抑制しながら、繊維同士の干渉が考慮された樹脂中における繊維の移動を解析することが可能な記憶媒体を提供することができる。 In the storage medium according to the fifth aspect, as described above, the resin at the position corresponding to the acquired node is based on at least one of the density of the fiber at the position corresponding to the node and the degree of bending of the fiber. And storing a program that includes a step of correcting the flow velocity of the resin and a step of analyzing the movement of the fiber in the resin based on the corrected flow velocity of the resin. As a result, the influence of the interference between fibers is indirectly (pseudo) included in the resin flow velocity based on at least one of the density of fibers and the degree of bending of fibers, which is a relatively small amount of calculation. You can As a result, compared to the case of directly calculating the interference between fibers (such as the repulsive force due to contact), the movement of the fibers in the resin that considers the interference between the fibers is suppressed while suppressing an increase in the calculation amount. It is possible to provide a storage medium capable of analyzing.
 本発明によれば、上記のように、計算量が増大するのを抑制しながら、繊維同士の干渉が考慮された樹脂中における繊維の移動を解析することができる。 According to the present invention, as described above, it is possible to analyze the movement of fibers in a resin in which the interference between fibers is taken into consideration while suppressing an increase in the amount of calculation.
第1実施形態による樹脂中における繊維の移動解析装置の構成を示す図である。It is a figure which shows the structure of the movement analysis apparatus of the fiber in resin by 1st Embodiment. 樹脂が流動する領域と繊維とを示す図である。It is a figure which shows the area|region where resin flows, and a fiber. 補正される前の流動速度(流速ベクトル)を示す図である。It is a figure which shows the flow velocity (flow velocity vector) before correction. 補正された後の流動速度(流速ベクトル)を示す図である。It is a figure which shows the flow velocity after correction (flow velocity vector). モデル化された繊維を示す図である。(a)は、直線状の繊維を示し、(b)および(c)は、移動とともに折れ曲がる繊維の状態を示している。FIG. 5 shows a modeled fiber. (A) shows a linear fiber, (b) and (c) have shown the state of the fiber which bends with movement. 繊維の密度に対する樹脂の流動速度の低下量を示す図である。It is a figure which shows the reduction amount of the flow rate of resin with respect to the density of fiber. 繊維の曲りの度合いに対する樹脂の流動速度の低下量を示す図である。It is a figure which shows the fall amount of the flow rate of resin with respect to the degree of bending of a fiber. 樹脂(繊維)が合流する地点近傍の領域を示す図である。It is a figure which shows the area|region of the vicinity of the point where resin (fiber) merges. 繊維の移動を説明するための図である。It is a figure for demonstrating movement of a fiber. 第1実施形態による樹脂速度解析部の動作を説明するためのフロー図である。It is a flow diagram for explaining the operation of the resin velocity analysis unit according to the first embodiment. 第1実施形態による繊維解析部の動作を説明するためのフロー図である。It is a flow figure for explaining operation of a fiber analysis part by a 1st embodiment. シミュレーションにより解析された繊維の移動を示す模式図(樹脂の流動速度が補正されない場合)である。It is a schematic diagram which shows the movement of the fiber analyzed by simulation (when the flow velocity of resin is not corrected). シミュレーションにより解析された繊維の移動を示す模式図(樹脂の流動速度が補正された場合)である。It is a schematic diagram which shows the movement of the fiber analyzed by simulation (when the flow velocity of resin is corrected). 第2実施形態による樹脂中における繊維の移動解析装置の構成を示す図である。It is a figure which shows the structure of the movement analysis apparatus of the fiber in resin by 2nd Embodiment. 第2実施形態による移動解析装置の動作を説明するためのフロー図である。It is a flowchart for demonstrating operation|movement of the movement analysis apparatus by 2nd Embodiment.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
 [第1実施形態]
 (解析装置の構成)
 図1~図13を参照して、第1実施形態による移動解析装置100の構成について説明する。
[First Embodiment]
(Configuration of analyzer)
The configuration of the movement analysis device 100 according to the first embodiment will be described with reference to FIGS. 1 to 13.
 図1に示すように、移動解析装置100は、樹脂速度解析部10を備えている。樹脂速度解析部10は、ある領域200内(金型など、図2参照)を流動する樹脂210(図3参照)の少なくとも流動速度を解析するように構成されている。たとえば、樹脂速度解析部10は、樹脂210が流動する領域200(キャビティ)を複数の微小要素に分割した3次元モデルを形成する。次に、微小要素における樹脂の流動コンダクタンス(粘度などの樹脂の流動特性)が決定される。そして、有限要素法などを用いて、決定された流動コンダクタンスに基づいて、微小要素における樹脂の圧力、圧力変化、および、流動速度などが算出される。これにより、領域200における、ある時間(iステップ、iは自然数)の流動速度(流速ベクトル、図3の「V」参照)が算出される。なお、樹脂速度解析部10は、樹脂210に含まれる繊維220の密度、および、樹脂210の粘度は均一であると仮定して、樹脂210の流動を算出する。また、樹脂速度解析部10は、Nステップ分(樹脂210の流動の開始から終了まで、Nは自然数)の、流動速度(流速ベクトル)を算出する。 As shown in FIG. 1, the movement analysis device 100 includes a resin velocity analysis unit 10. The resin velocity analysis unit 10 is configured to analyze at least the flow velocity of the resin 210 (see FIG. 3) flowing in a certain region 200 (a mold or the like, see FIG. 2). For example, the resin velocity analysis unit 10 forms a three-dimensional model in which the region 200 (cavity) in which the resin 210 flows is divided into a plurality of minute elements. Next, the flow conductance of the resin in the minute element (resin flow characteristics such as viscosity) is determined. Then, the finite element method or the like is used to calculate the resin pressure, the pressure change, the flow velocity, etc. of the resin in the minute element based on the determined flow conductance. As a result, the flow velocity (flow velocity vector, see “V” in FIG. 3) at a certain time (i step, i is a natural number) in the region 200 is calculated. The resin velocity analysis unit 10 calculates the flow of the resin 210 on the assumption that the density of the fibers 220 contained in the resin 210 and the viscosity of the resin 210 are uniform. Further, the resin velocity analysis unit 10 calculates the flow velocity (flow velocity vector) for N steps (from the start to the end of the flow of the resin 210, N is a natural number).
 たとえば、図2に示すように、領域200は、水平方向(X方向)に延びる略直方体状の領域部分201と、領域部分201から鉛直下方に延びる領域部分202および領域部分203とを含む。また、領域部分202のX方向の幅W1は、領域部分203のX方向の幅W2よりも大きい。また、領域部分202のY方向の幅W3、および、領域部分203のY方向の幅W3は、互いに等しい。また、領域部分201のX1方向側とX2方向側とから、それぞれ、樹脂210(および、樹脂210に含まれる繊維220)が互いに近づくように移動する。なお、領域200の形状は、図2に示される形状に限られない。 For example, as shown in FIG. 2, the region 200 includes a substantially rectangular parallelepiped region portion 201 extending in the horizontal direction (X direction), and a region portion 202 and a region portion 203 extending vertically downward from the region portion 201. The width W1 of the area portion 202 in the X direction is larger than the width W2 of the area portion 203 in the X direction. The width W3 of the area portion 202 in the Y direction and the width W3 of the area portion 203 in the Y direction are equal to each other. In addition, the resin 210 (and the fibers 220 included in the resin 210) move from the X1 direction side and the X2 direction side of the region portion 201 so as to approach each other. The shape of the region 200 is not limited to the shape shown in FIG.
 また、図1に示すように、移動解析装置100は、繊維解析部20を備えている。繊維解析部20は、樹脂速度解析部10に解析された樹脂210の流動速度に基づいて、樹脂210とともに流動する繊維220の流動を解析するように構成されている。以下、繊維解析部20の具体的な構成について説明する。 Further, as shown in FIG. 1, the movement analysis device 100 includes a fiber analysis unit 20. The fiber analysis unit 20 is configured to analyze the flow of the fiber 220 flowing together with the resin 210 based on the flow velocity of the resin 210 analyzed by the resin velocity analysis unit 10. Hereinafter, a specific configuration of the fiber analysis unit 20 will be described.
 繊維解析部20は、繊維モデル化部21を含んでいる。図5(a)に示すように、繊維モデル化部21は、繊維220を、複数の節点221と、節点221同士により接続されたロッド要素222とによってモデル化するように構成されている。また、ロッド要素222の間の曲りおよび回転は自由であるとする。また、ロッド要素222は、剛体であるとする。なお、図5(b)および図5(c)は、移動とともに折れ曲がる繊維220の状態を示している。 The fiber analysis unit 20 includes a fiber modeling unit 21. As shown in FIG. 5A, the fiber modeling unit 21 is configured to model the fiber 220 with a plurality of nodes 221 and a rod element 222 connected by the nodes 221. It is also assumed that the bending and rotation between the rod elements 222 are free. Further, the rod element 222 is assumed to be a rigid body. 5(b) and 5(c) show the state of the fiber 220 that bends as it moves.
 また、図1に示すように、移動解析装置100は、樹脂速度取得部22を含む。樹脂速度取得部22は、節点221に対応する位置における、樹脂速度解析部10に解析された樹脂210の流動速度を取得するように構成されている。具体的には、樹脂速度取得部22は、樹脂速度解析部10に解析された領域200内の流速ベクトル(樹脂210の流動速度と向き、図3参照)を取得する。そして、領域200内における節点221に対応する位置における流速ベクトルが、この節点221の移動を算出するための流速ベクトルとして使用される。 Further, as shown in FIG. 1, the movement analysis device 100 includes a resin speed acquisition unit 22. The resin velocity acquisition unit 22 is configured to acquire the flow velocity of the resin 210 analyzed by the resin velocity analysis unit 10 at the position corresponding to the node 221. Specifically, the resin velocity acquisition unit 22 acquires the flow velocity vector (the flow velocity and direction of the resin 210, see FIG. 3) in the region 200 analyzed by the resin velocity analysis unit 10. Then, the flow velocity vector at the position corresponding to the node 221 in the region 200 is used as the flow velocity vector for calculating the movement of this node 221.
 また、図1に示すように、移動解析装置100は、密度算出部23を含む。密度算出部23は、後述する解析部26により解析された節点221に対応する領域(分割された領域200の微小要素)おける繊維220の体積に基づいて、繊維220の密度を算出するように構成されている。つまり、繊維220の体積を、微小要素の体積で除算することにより、微小要素中における繊維220の密度が算出される。 Further, as shown in FIG. 1, the movement analysis device 100 includes a density calculation unit 23. The density calculation unit 23 is configured to calculate the density of the fibers 220 based on the volume of the fibers 220 in the region (small element of the divided region 200) corresponding to the node 221 analyzed by the analysis unit 26 described later. Has been done. That is, the density of the fibers 220 in the microelements is calculated by dividing the volume of the fibers 220 by the volume of the microelements.
 また、移動解析装置100は、曲り度合算出部24を含む。曲り度合算出部24は、解析部26により解析された繊維220の節点221の位置情報に基づいて、繊維220の曲りの度合いを算出するように構成されている。そして、曲りの度合い(図5(a)~(c)参照)に応じて、後述するように流動速度が補正される。 The movement analysis device 100 also includes a bending degree calculation unit 24. The bending degree calculation unit 24 is configured to calculate the bending degree of the fiber 220 based on the position information of the node 221 of the fiber 220 analyzed by the analysis unit 26. Then, the flow velocity is corrected as described later according to the degree of bending (see FIGS. 5A to 5C).
 ここで、第1実施形態では、移動解析装置100は、樹脂速度補正部25を含む。樹脂速度補正部25は、節点221に対応する位置における繊維220の密度と繊維220の曲りの度合いとのうちの少なくとも一方に基づいて、樹脂速度取得部22に取得された節点221に対応する位置における樹脂210の流動速度を補正するように構成されている。具体的には、樹脂速度補正部25は、節点221に対応する位置における繊維220の密度が変化するに従って樹脂210の流動速度が変化するように補正する。詳細には、樹脂速度補正部25は、節点221に対応する位置における繊維220の密度が大きくなるに従って樹脂210の流動速度を小さくなるように補正する。たとえば、図6に示すように、密度の増加とともに、流動速度の低下量が徐々に大きくなる。なお、密度が比較的大きい場合には、流動速度の低下量の変化率は小さくなる。つまり、密度の増大とともに、流動速度の低下量は、飽和する。また、流動速度の低下量は、実際に樹脂210に繊維220を含ませた状態の樹脂210の流動の実験などによって、予め測定される。 Here, in the first embodiment, the movement analysis device 100 includes a resin speed correction unit 25. The resin speed correction unit 25 determines the position corresponding to the node 221 acquired by the resin speed acquisition unit 22 based on at least one of the density of the fibers 220 and the degree of bending of the fibers 220 at the position corresponding to the node 221. Is configured to correct the flow velocity of the resin 210 at. Specifically, the resin speed correction unit 25 corrects so that the flow speed of the resin 210 changes as the density of the fibers 220 at the position corresponding to the node 221 changes. Specifically, the resin velocity correction unit 25 corrects the flow velocity of the resin 210 to decrease as the density of the fibers 220 at the position corresponding to the node 221 increases. For example, as shown in FIG. 6, as the density increases, the amount of decrease in the flow velocity gradually increases. When the density is relatively high, the rate of change in the amount of decrease in the flow velocity is small. That is, as the density increases, the flow velocity decrease amount becomes saturated. Further, the decrease amount of the flow rate is measured in advance by an experiment of the flow of the resin 210 in a state where the resin 210 actually contains the fibers 220.
 また、移動解析装置100は、節点221に対応する位置における繊維220の曲りの度合いが変化するに従って樹脂210の流動速度が変化するように補正するように構成されている。具体的には、樹脂速度補正部25は、節点221に対応する位置における繊維220の曲りの度合いが大きくなるに従って樹脂210の流動速度を小さくなるように補正する。たとえば、図7に示すように、曲りの度合いの増加とともに、流動速度の低下量が徐々に大きくなる。なお、曲りの度合いが比較的大きい場合には、流動速度の低下量の変化率は小さくなる。つまり、曲りの度合いの増大とともに、流動速度の低下量は、飽和する。また、流動速度の低下量は、上記の繊維220の密度に対する流動速度の補正と同様に、実際に樹脂210に繊維220を含ませた状態の樹脂210の流動の実験などによって、予め測定される。 Further, the movement analysis device 100 is configured to perform correction so that the flow velocity of the resin 210 changes as the degree of bending of the fiber 220 at the position corresponding to the node 221 changes. Specifically, the resin speed correction unit 25 corrects the flow speed of the resin 210 to decrease as the degree of bending of the fiber 220 at the position corresponding to the node 221 increases. For example, as shown in FIG. 7, the amount of decrease in the flow velocity gradually increases as the degree of bending increases. When the degree of bending is relatively large, the rate of change in the amount of decrease in the flow velocity is small. That is, as the degree of bending increases, the decrease amount of the flow velocity becomes saturated. Further, the decrease amount of the flow velocity is measured in advance by an experiment of the flow of the resin 210 in a state where the fiber 210 is actually included in the resin 210, as in the correction of the flow velocity with respect to the density of the fibers 220. ..
 ここで、図3および図4を参照して、樹脂210の流動速度の補正について説明する。図3および図4において、「矢印」は、流動速度のベクトルを表している。また、図3および図4において、外枠(長方形の枠)は、樹脂210が流れる領域200を表している。また、図3は、補正前の流動速度であり、図4は、補正後の流動速度である。 Here, correction of the flow velocity of the resin 210 will be described with reference to FIGS. 3 and 4. In FIG. 3 and FIG. 4, “arrows” represent flow velocity vectors. 3 and 4, an outer frame (rectangular frame) represents a region 200 in which the resin 210 flows. Further, FIG. 3 shows the flow velocity before correction, and FIG. 4 shows the flow velocity after correction.
 図3に示すように、補正前の流動速度は、一様であるとする。そして、i-1番目(前回)のステップにおいて算出された繊維220の密度が領域A1において比較的大きくなるとともに、繊維220の曲りの度合いが領域A2において比較的大きくなったとする。その結果、図4に示すように、領域A1および領域A2において、流動速度が小さくなるように補正される。なお、流動速度の低下の度合いは、上記の図6(密度)および図7(曲りの度合)のグラフに基づいて算出される。 As shown in FIG. 3, the flow velocity before correction is assumed to be uniform. Then, it is assumed that the density of the fibers 220 calculated in the i-1th (previous) step is relatively large in the area A1 and the degree of bending of the fibers 220 is relatively large in the area A2. As a result, as shown in FIG. 4, in the regions A1 and A2, the flow velocity is corrected to be small. The degree of decrease in the flow velocity is calculated based on the graphs of FIG. 6 (density) and FIG. 7 (degree of bending) described above.
 また、図8に示すように、樹脂速度補正部25は、少なくとも、領域200内において複数の樹脂210が合流する地点近傍において、樹脂速度取得部22に取得された節点221に対応する位置における樹脂210の流動速度を補正するように構成される。樹脂210が合流する地点近傍とは、X1方向側から移動する樹脂210と、X2方向側から移動する樹脂210とが合流する領域部分202および領域部分203の近傍などである。また、複数の樹脂210(繊維220)が合流する地点近傍では、繊維220の密度が高くなるため、樹脂210の流動速度が低下するように補正される。また、複数の樹脂210(繊維220)が合流する地点近傍では、X1方向側から移動する繊維220と、X2方向側から移動する繊維220とが衝突して(突っ張り合って)、領域部分202および領域部分203に流入するのが抑制される。このような、繊維220の衝突(突っ張り合い)の効果も、樹脂210の流動速度の低下の要因として流動速度の補正に含めることも可能である。なお、第1実施形態では、領域200内の全ての位置において、樹脂210の流動速度が補正される。 In addition, as shown in FIG. 8, the resin speed correction unit 25 includes a resin at a position corresponding to the node 221 acquired by the resin speed acquisition unit 22 at least in the vicinity of a point where a plurality of resins 210 merge in the area 200. It is configured to correct the flow rate of 210. The vicinity of the point where the resin 210 merges refers to the vicinity of the area portion 202 and the area portion 203 where the resin 210 moving from the X1 direction side and the resin 210 moving from the X2 direction side merge. Further, in the vicinity of the point where the plurality of resins 210 (fibers 220) merge, the density of the fibers 220 increases, so that the flow velocity of the resin 210 is corrected to decrease. Further, in the vicinity of the point where the plurality of resins 210 (fibers 220) merge, the fibers 220 moving from the X1 direction side and the fibers 220 moving from the X2 direction side collide (tighten each other), and the area portion 202 and Inflow into the area portion 203 is suppressed. Such an effect of collision (stretching) of the fibers 220 can be included in the correction of the flow velocity as a factor of the decrease in the flow velocity of the resin 210. In the first embodiment, the flow velocity of the resin 210 is corrected at all positions within the area 200.
 また、図1に示すように、繊維解析部20は、樹脂210中における繊維220の移動を解析する解析部26を含む。図9に示すように、解析部26は、樹脂速度補正部25に補正された樹脂210の流動速度(流速ベクトルV)に基づいて、樹脂210中における繊維220の移動を解析するように構成されている。具体的には、解析部26は、樹脂速度取得部22によって取得された節点221に対応する位置における流動速度に応じて、節点221の移動を算出する。1つの繊維220の複数の節点221について移動(移動量、移動方向)が算出される。図9において、「黒丸」は、移動前の節点221であり、「白丸」は、移動後の節点221である。なお、ロッド要素222は、剛体として長さが一定に保たれていると仮定する。このため、複数の節点221の移動によって、節点221の間のロッド要素222の長さが変化してしまう場合には、ロッド要素222の長さが一定の長さに保たれるように節点221の位置が補正される。図9において、「点線の丸」は、位置が補正された後の節点221である。 Further, as shown in FIG. 1, the fiber analysis unit 20 includes an analysis unit 26 that analyzes the movement of the fibers 220 in the resin 210. As shown in FIG. 9, the analysis unit 26 is configured to analyze the movement of the fibers 220 in the resin 210 based on the flow velocity (flow velocity vector V) of the resin 210 corrected by the resin velocity correction unit 25. ing. Specifically, the analysis unit 26 calculates the movement of the node 221 according to the flow velocity at the position corresponding to the node 221 acquired by the resin speed acquisition unit 22. The movement (movement amount, movement direction) of a plurality of nodes 221 of one fiber 220 is calculated. In FIG. 9, “black circles” are the nodes 221 before the movement, and “white circles” are the nodes 221 after the movement. It is assumed that the rod element 222 is a rigid body and has a constant length. Therefore, when the length of the rod element 222 between the nodes 221 changes due to the movement of the plurality of nodes 221, the nodes 221 are kept so that the length of the rod element 222 is kept constant. The position of is corrected. In FIG. 9, the “dotted circle” is the node 221 whose position has been corrected.
 解析部26による繊維220の移動の解析は、樹脂210の流動の開始から終了まで(Nステップ分)行われる。なお、上記の密度算出部23による繊維220の密度の算出、曲り度合算出部24による繊維220の曲りの度合いの算出、および、樹脂速度補正部25による樹脂210の流動速度の補正は、各ステップ毎に行われる。 The analysis of the movement of the fiber 220 by the analysis unit 26 is performed from the start to the end of the flow of the resin 210 (for N steps). Note that the calculation of the density of the fibers 220 by the density calculation unit 23, the calculation of the degree of bending of the fibers 220 by the bending degree calculation unit 24, and the correction of the flow velocity of the resin 210 by the resin velocity correction unit 25 are performed in each step. It is done every time.
 なお、図1に示すように、樹脂速度解析部10、および、繊維解析部20(繊維モデル化部21、樹脂速度取得部22、密度算出部23、曲り度合算出部24、樹脂速度補正部25、および、解析部26)は、移動解析装置100の内部の記憶媒体30に記憶されたプログラム40(ソフトウェア)により構成されている。 As shown in FIG. 1, the resin velocity analysis unit 10 and the fiber analysis unit 20 (fiber modeling unit 21, resin velocity acquisition unit 22, density calculation unit 23, bending degree calculation unit 24, resin velocity correction unit 25). , And the analysis unit 26) are configured by a program 40 (software) stored in a storage medium 30 inside the movement analysis device 100.
 次に、図10を参照して、樹脂210の流動速度の解析について説明する。樹脂210の流動速度の解析は、樹脂速度解析部10によって行われる。 Next, referring to FIG. 10, the analysis of the flow rate of the resin 210 will be described. The resin velocity analysis unit 10 analyzes the flow velocity of the resin 210.
 ステップS1において、樹脂速度解析部10は、樹脂210が流動する領域200(キャビティ)を複数の微小要素に分割した3次元モデルを形成する。たとえば、予め作成された領域200の3次元CADデータが、記憶装置(図示せず)から読み込まれる。そして、読み込まれた領域200の3次元CADデータに基づいて、領域200が複数の微小要素(メッシュ)に分割される。 In step S1, the resin velocity analysis unit 10 forms a three-dimensional model in which the region 200 (cavity) in which the resin 210 flows is divided into a plurality of minute elements. For example, the three-dimensional CAD data of the area 200 created in advance is read from a storage device (not shown). Then, the area 200 is divided into a plurality of minute elements (mesh) based on the read three-dimensional CAD data of the area 200.
 そして、ステップS2において、有限要素法などを用いて、領域200における、ある時間(iステップ)の流速ベクトル(流動速度)(図3参照)が算出される。 Then, in step S2, the flow velocity vector (flow velocity) (see FIG. 3) at a certain time (i step) in the region 200 is calculated using the finite element method or the like.
 次に、ステップS3において、Nステップ分の流速ベクトルの算出が終了したか否かが判定される。ステップS3において、「Yes」の場合、流速ベクトルの算出が終了する。ステップS3において、「No」の場合、ステップS2に戻って、流速ベクトルの算出が継続される。 Next, in step S3, it is determined whether or not the calculation of the flow velocity vector for N steps is completed. In step S3, in the case of “Yes”, the calculation of the flow velocity vector ends. In the case of “No” in step S3, the process returns to step S2 and the calculation of the flow velocity vector is continued.
 次に、図11を参照して、樹脂210中における繊維220の移動解析方法について説明する。 Next, referring to FIG. 11, a method of analyzing the movement of the fiber 220 in the resin 210 will be described.
 まず、ステップS11において、樹脂210とともに流動する繊維220を、複数の節点221と、節点221同士により接続されたロッド要素222とによってモデル化する。 First, in step S11, the fiber 220 flowing together with the resin 210 is modeled by a plurality of nodes 221 and a rod element 222 connected by the nodes 221.
 次に、ステップS12において、樹脂速度解析部10によって算出された、節点221に対応する位置における、解析された樹脂210の流動速度(図3参照)を取得する。 Next, in step S12, the analyzed flow velocity of the resin 210 (see FIG. 3) at the position corresponding to the node 221 calculated by the resin velocity analysis unit 10 is acquired.
 次に、ステップS13において、節点221に対応する位置における繊維220の密度と繊維220の曲りの度合いとのうちの少なくとも一方(第1実施形態では、両方)に基づいて、取得された節点221に対応する位置における樹脂210の流動速度を補正(図4参照)する。なお、現在のステップがi番目であるとすると、i-1番目(前回)のステップにおいて算出された繊維220の密度と繊維220の曲りの度合いとに基づいて樹脂210の流動速度が補正される。また、ステップが1(i=1)の際には、たとえば、密度は、均一であると仮定される。 Next, in step S13, the acquired node 221 is selected based on at least one (both in the first embodiment) of the density of the fiber 220 and the degree of bending of the fiber 220 at the position corresponding to the node 221. The flow velocity of the resin 210 at the corresponding position is corrected (see FIG. 4). If the current step is the i-th step, the flow velocity of the resin 210 is corrected based on the density of the fibers 220 and the degree of bending of the fibers 220 calculated in the (i-1)th (previous) step. .. Also, when the step is 1 (i=1), for example, the density is assumed to be uniform.
 次に、ステップS14において、補正された樹脂210の流動速度に基づいて、樹脂210中における繊維220の移動を解析(図9参照)する。 Next, in step S14, the movement of the fibers 220 in the resin 210 is analyzed based on the corrected flow velocity of the resin 210 (see FIG. 9).
 次に、ステップS15において、解析された移動後の節点221の位置情報に基づいて、繊維220の曲りの度合いが算出されるとともに、移動後の位置における繊維220の体積に基づいて、繊維220の密度が算出される。 Next, in step S15, the degree of bending of the fiber 220 is calculated based on the analyzed position information of the node 221 after the movement, and the fiber 220 of the fiber 220 is calculated based on the volume of the fiber 220 at the position after the movement. The density is calculated.
 次に、ステップS16において、樹脂210の流動が終了したか否か(Nステップ分の解析が終了したか否か)が判定される。ステップS16において、「Yes」の場合、繊維220の移動の解析が終了する。ステップS16において、「No」の場合、ステップS12に戻って、繊維220の移動の解析が継続される。 Next, in step S16, it is determined whether or not the flow of the resin 210 is completed (whether or not the analysis for N steps is completed). In step S16, in the case of “Yes”, the analysis of the movement of the fiber 220 ends. If “No” in step S16, the process returns to step S12, and the analysis of the movement of the fiber 220 is continued.
 次に、図12および図13を参照して、繊維220の移動の解析のシミュレーションについて説明する。図12は、流動速度の補正を行っていない場合(比較例)の結果である。また、図13は、繊維220の密度と繊維220の曲りの度合いとに基づいた流動速度の補正を行った場合(第1実施形態に相当)の結果である。 Next, the simulation of the analysis of the movement of the fiber 220 will be described with reference to FIGS. 12 and 13. FIG. 12 shows the results when the flow velocity is not corrected (comparative example). Further, FIG. 13 shows the results when the flow velocity is corrected based on the density of the fibers 220 and the degree of bending of the fibers 220 (corresponding to the first embodiment).
 図12に示すように、流動速度の補正を行っていない場合(比較例)では、X方向の幅W1を有する領域部分202(リブ部)と、X方向の幅W2(<W1)を有する領域部分203(リブ部)とに、繊維220が略同等に流入していることが確認された。つまり、領域部分203の幅W2が、領域部分202の幅W1よりも小さいにもかかわらず、領域部分203と領域部分202とに繊維220が略同等に流入していることが確認された。 As shown in FIG. 12, when the flow velocity is not corrected (comparative example), an area portion 202 (rib portion) having a width W1 in the X direction and an area portion having a width W2 (<W1) in the X direction. It was confirmed that the fibers 220 flow into the portion 203 (rib portion) in a substantially equal manner. That is, although the width W2 of the region portion 203 is smaller than the width W1 of the region portion 202, it was confirmed that the fibers 220 flow into the region portion 203 and the region portion 202 substantially equally.
 一方、図13に示すように、流動速度の補正を行った場合(第1実施形態に相当)では、X方向の幅W1を有する領域部分202よりも、狭いX方向の幅W2(<W1)を有する領域部分203の方が、繊維220の流入が遅れていることが確認された。つまり、幅W2の小さい領域部分203の方が、繊維220の密度が高くなるため、流動速度が遅くなる。このため、繊維220の流入が遅れる。流動速度の補正を行うことにより、実際の繊維220の流入に近い状態が再現されることが確認された。 On the other hand, as shown in FIG. 13, when the flow velocity is corrected (corresponding to the first embodiment), the width W2 in the X direction (<W1) narrower than the area portion 202 having the width W1 in the X direction. It was confirmed that the inflow of the fibers 220 was delayed in the region portion 203 having the. That is, since the density of the fibers 220 is higher in the region portion 203 having the smaller width W2, the flow velocity becomes slower. Therefore, the inflow of the fiber 220 is delayed. It was confirmed that the state close to the actual inflow of the fiber 220 was reproduced by correcting the flow velocity.
 (第1実施形態の効果)
 次に、第1実施形態の効果について説明する。
(Effects of the first embodiment)
Next, the effect of the first embodiment will be described.
 第1実施形態では、上記のように、繊維解析部20は、節点221に対応する位置における繊維220の密度と繊維220の曲りの度合いとのうちの少なくとも一方に基づいて、樹脂速度取得部22に取得された節点221に対応する位置における樹脂210の流動速度を補正する樹脂速度補正部25と、樹脂速度補正部25に補正された樹脂210の流動速度に基づいて、樹脂210中における繊維220の移動を解析する解析部26とを含む。これにより、比較的計算量の少ない、繊維220の密度と繊維220の曲りの度合いとのうちの少なくとも一方に基づいて、繊維220同士の干渉の影響を間接的(疑似的)に樹脂210の流動速度に含めることができる。その結果、繊維220同士の干渉(接触による反発力など)を直接的に算出する場合と比べて、計算量が増大するのを抑制しながら、繊維220同士の干渉が考慮された樹脂210中における繊維220の移動を解析することができる。また、計算量の増大が抑制されるので、樹脂210中における繊維220の移動の解析を高速に行うことができる。 In the first embodiment, as described above, the fiber analysis unit 20 determines the resin speed acquisition unit 22 based on at least one of the density of the fibers 220 and the degree of bending of the fibers 220 at the position corresponding to the node 221. The resin speed correction unit 25 that corrects the flow speed of the resin 210 at the position corresponding to the node 221 that has been acquired in the above, and the fibers 220 in the resin 210 based on the flow speed of the resin 210 that is corrected by the resin speed correction unit 25. And an analysis unit 26 that analyzes the movement of the. As a result, the influence of interference between the fibers 220 is indirectly (pseudo) flowed by the resin 210 based on at least one of the density of the fibers 220 and the degree of bending of the fibers 220, which is a relatively small amount of calculation. Can be included in speed. As a result, in the resin 210 in which the interference between the fibers 220 is taken into consideration while suppressing an increase in the calculation amount as compared with the case where the interference between the fibers 220 (such as a repulsive force due to contact) is directly calculated. The movement of the fibers 220 can be analyzed. Moreover, since the increase in the amount of calculation is suppressed, the analysis of the movement of the fiber 220 in the resin 210 can be performed at high speed.
 また、第1実施形態では、上記のように、樹脂速度補正部25は、節点221に対応する位置における繊維220の密度が変化するに従って樹脂210の流動速度が変化するように補正し、節点221に対応する位置における繊維220の曲りの度合いが変化するに従って樹脂210の流動速度が変化するように補正するように構成されている。これにより、繊維220の密度の変化や、繊維220の曲りの度合いの変化に応じて、適切に、樹脂210中における繊維220の移動を解析することができる。 Further, in the first embodiment, as described above, the resin speed correction unit 25 corrects so that the flow speed of the resin 210 changes as the density of the fibers 220 at the position corresponding to the node 221 changes. The flow velocity of the resin 210 is corrected so as to change as the degree of bending of the fiber 220 at the position corresponding to changes. Accordingly, the movement of the fibers 220 in the resin 210 can be appropriately analyzed according to the change in the density of the fibers 220 and the change in the degree of bending of the fibers 220.
 また、第1実施形態では、上記のように、樹脂速度補正部25は、節点221に対応する位置における繊維220の密度が大きくなるに従って樹脂210の流動速度を小さくなるように補正し、節点221に対応する位置における繊維220の曲りの度合いが大きくなるに従って樹脂210の流動速度を小さくなるように補正するように構成されている。これにより、繊維220の密度が大きくなることにより繊維220同士の干渉が大きくなること、および、繊維220の曲りの度合いが大きくなることにより繊維220同士の干渉が大きくなることを間接的に考慮して、樹脂210中における繊維220の移動を解析することができる。 Further, in the first embodiment, as described above, the resin speed correction unit 25 corrects the flow speed of the resin 210 to decrease as the density of the fibers 220 in the position corresponding to the node 221 increases, and thus the node 221. The flow velocity of the resin 210 is corrected so as to decrease as the degree of bending of the fiber 220 at the position corresponding to is increased. This indirectly considers that the density of the fibers 220 increases and the interference between the fibers 220 increases, and that the degree of bending of the fibers 220 increases and the interference between the fibers 220 increases. Thus, the movement of the fiber 220 in the resin 210 can be analyzed.
 また、第1実施形態では、上記のように、繊維解析部20は、解析部26により解析された節点221に対応する領域における繊維220の体積に基づいて、繊維220の密度を算出する曲り度合算出部24を含む。これにより、節点221に対応する領域における繊維220の体積を算出するだけで、容易に、繊維220の密度を算出することができる。 Further, in the first embodiment, as described above, the fiber analysis unit 20 calculates the density of the fibers 220 based on the volume of the fibers 220 in the region corresponding to the node 221 analyzed by the analysis unit 26. The calculation unit 24 is included. This makes it possible to easily calculate the density of the fibers 220 simply by calculating the volume of the fibers 220 in the region corresponding to the node 221.
 また、第1実施形態では、上記のように、繊維解析部20は、解析部26により解析された繊維220の節点221の位置情報に基づいて、繊維220の曲りの度合いを算出する曲り度合算出部24を含む。これにより、容易に、繊維220の曲りの度合いを算出することができる。 In addition, in the first embodiment, as described above, the fiber analysis unit 20 calculates the degree of bending of the fiber 220 based on the position information of the node 221 of the fiber 220 analyzed by the analysis unit 26. Including part 24. Accordingly, the degree of bending of the fiber 220 can be easily calculated.
 また、第1実施形態では、上記のように、樹脂速度補正部25は、少なくとも、領域内において複数の樹脂210が合流する地点近傍において、樹脂速度取得部22に取得された節点221に対応する位置における樹脂210の流動速度を補正するように構成されている。このように構成すれば、比較的繊維220同士が干渉しやすい複数の樹脂210が合流する地点近傍において樹脂210の流動速度が補正されるので、繊維220同士の干渉を効果的に考慮することができる。 Further, in the first embodiment, as described above, the resin speed correction unit 25 corresponds to the node 221 acquired by the resin speed acquisition unit 22 at least in the vicinity of the point where the plurality of resins 210 merge in the region. It is configured to correct the flow velocity of the resin 210 at the position. According to this structure, since the flow velocity of the resin 210 is corrected in the vicinity of the point where the plurality of resins 210 where the fibers 220 are likely to interfere with each other is merged, the interference between the fibers 220 can be effectively considered. it can.
 [第2実施形態]
 図14および図15を参照して、第2実施形態による移動解析装置300の構成について説明する。移動解析装置300では、樹脂210の流動速度(流速ベクトル)の算出に繊維220の影響が考慮されない上記第1実施形態と異なり、樹脂210の流動速度(流速ベクトル)の算出に繊維220の影響が考慮されている。
[Second Embodiment]
The configuration of the movement analysis device 300 according to the second embodiment will be described with reference to FIGS. 14 and 15. In the movement analysis device 300, unlike the first embodiment in which the influence of the fiber 220 is not considered in the calculation of the flow velocity (flow velocity vector) of the resin 210, the influence of the fiber 220 in the calculation of the flow velocity (flow velocity vector) of the resin 210 is affected. Is being considered.
 第2実施形態では、図14に示すように、樹脂粘度補正部27は、繊維220の流動の解析における一の時点(i-1番目のステップ)の、節点221に対応する位置における繊維220の密度と繊維220の曲りの度合いとのうちの少なくとも一方(第2実施形態では両方)に基づいて、樹脂210の粘度を補正するように構成されている。なお、樹脂粘度補正部27は、繊維解析部20に含まれている。 In the second embodiment, as shown in FIG. 14, the resin viscosity correction unit 27 detects the fiber 220 at a position corresponding to the node 221 at one point (i−1 step) in the analysis of the flow of the fiber 220. The viscosity of the resin 210 is corrected based on at least one of the density and the degree of bending of the fiber 220 (both in the second embodiment). The resin viscosity correction unit 27 is included in the fiber analysis unit 20.
 具体的には、図15に示されるように、上記第1実施形態と同様に、ステップS1において、領域200のモデル化が行われる。また、ステップS11において、繊維220のモデル化が行われる。次に、ステップS31において、微小要素における樹脂の流動コンダクタンス(粘度などの樹脂の流動特性)に基づいて、微小要素における樹脂の圧力、圧力変化、および、流動速度などが算出される。これにより、i番目のステップの流動速度(流速ベクトル)が算出される。なお、流動コンダクタンスである粘度は、前回(i-1番目)のステップにおいて算出された繊維220の密度と繊維220の曲りの度合いとの両方に基づいて、補正されている。また、樹脂の流動速度は、樹脂流動解析部310に含まれる樹脂速度算出部320によって算出される。つまり、樹脂の流動速度は、繊維220の密度と繊維220の曲りの度合いとの両方と、粘度とを考慮して、ステップ毎に、逐次的に算出される。 Specifically, as shown in FIG. 15, the region 200 is modeled in step S1 as in the first embodiment. Further, in step S11, the fiber 220 is modeled. Next, in step S31, the pressure of the resin in the minute element, the pressure change, the flow velocity, etc. are calculated based on the flow conductance of the resin in the minute element (the resin flow characteristic such as viscosity). As a result, the flow velocity (flow velocity vector) of the i-th step is calculated. The viscosity, which is the flow conductance, is corrected based on both the density of the fibers 220 and the degree of bending of the fibers 220 calculated in the previous (i-1)th step. Further, the resin flow velocity is calculated by the resin velocity calculation unit 320 included in the resin flow analysis unit 310. That is, the flow rate of the resin is sequentially calculated for each step in consideration of both the density of the fibers 220 and the degree of bending of the fibers 220, and the viscosity.
 次に、上記第1実施形態と同様に、ステップS12~S15の計算が行われる。 Next, as in the first embodiment, the calculations in steps S12 to S15 are performed.
 次に、ステップS32において、今回(i番目)のステップにおいて算出された繊維220の密度と繊維220の曲りの度合いとの両方に基づいて、流動コンダクタンスである粘度が補正される。これにより、次回(i+1番目)のステップにおいて、補正された粘度に基づいて、流動速度などが算出される。 Next, in step S32, the viscosity, which is the flow conductance, is corrected based on both the density of the fibers 220 and the degree of bending of the fibers 220 calculated in the current (i-th) step. Thus, in the next (i+1)th step, the flow velocity and the like are calculated based on the corrected viscosity.
 次に、ステップS33において、算出された流動速度が収束したか否かが判定される。ステップS33において、Yesの場合には、ステップS16に進む。ステップS33において、Noの場合には、ステップS31に戻る。 Next, in step S33, it is determined whether or not the calculated flow velocity has converged. If Yes in step S33, the process proceeds to step S16. If No in step S33, the process returns to step S31.
 次に、ステップS16において、樹脂210の流動が終了したか否か(Nステップ分の解析が終了したか否か)が判定される。 Next, in step S16, it is determined whether or not the flow of the resin 210 is completed (whether or not the analysis for N steps is completed).
 (第2実施形態の効果)
 次に、第2実施形態の効果について説明する。
(Effects of Second Embodiment)
Next, the effect of the second embodiment will be described.
 第2実施形態では、上記のように、樹脂粘度補正部27は、繊維220の流動の解析における一の時点の、節点221に対応する位置における繊維220の密度と繊維220の曲りの度合いとに基づいて、樹脂210の粘度を補正する。これにより、樹脂210の流動速度の解析に、繊維220の影響が考慮されるので、樹脂210の流動速度の解析の精度を向上させることができる。 In the second embodiment, as described above, the resin viscosity correction unit 27 determines the density of the fibers 220 and the degree of bending of the fibers 220 at the position corresponding to the node 221 at one point in the analysis of the flow of the fibers 220. Based on this, the viscosity of the resin 210 is corrected. As a result, the influence of the fibers 220 is taken into consideration in the analysis of the flow velocity of the resin 210, so that the accuracy of the analysis of the flow velocity of the resin 210 can be improved.
 [変形例]
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
The embodiments and examples disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments and examples but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications (modifications) within the scope.
 たとえば、上記第1および第2実施形態では、繊維の密度が大きくなるに従って樹脂の流動速度が小さくなるように補正する例を示したが、本発明はこれに限られない。たとえば、繊維の密度が大きくなるに従って樹脂の流動速度が大きくなるように補正してもよい。 For example, in the above-mentioned first and second embodiments, an example in which the flow velocity of the resin is corrected to decrease as the fiber density increases has been shown, but the present invention is not limited to this. For example, the flow rate of the resin may be corrected to increase as the fiber density increases.
 また、上記第1および第2実施形態では、繊維の曲りの度合いが大きくなるに従って樹脂の流動速度が小さくなるように補正する例を示したが、本発明はこれに限られない。たとえば、繊維の曲りの度合いが大きくなるに従って樹脂の流動速度が大きくなるように補正してもよい。 Further, in the first and second embodiments, the example in which the flow rate of the resin is corrected to decrease as the degree of bending of the fiber increases is shown, but the present invention is not limited to this. For example, the flow rate of the resin may be corrected to increase as the degree of bending of the fiber increases.
 また、上記第1および第2実施形態では、繊維の密度と繊維の曲りの度合いとの両方に基づいて、樹脂の流動速度を補正する例を示したが、本発明はこれに限られない。たとえば、繊維の密度と繊維の曲りの度合いとのうちの一方のみに基づいて樹脂の流動速度を補正してもよい。 In the first and second embodiments, the resin flow velocity is corrected based on both the fiber density and the fiber bending degree, but the present invention is not limited to this. For example, the resin flow rate may be corrected based on only one of the density of the fiber and the degree of bending of the fiber.
 また、上記第1および第2実施形態では、節点に対応する領域(微小要素)おける繊維の体積に基づいて繊維の密度が算出される例を示したが、本発明はこれに限られない。たとえば、微小要素に存在する節点の数(ロッド要素の数)などに基づいて、繊維の密度を算出してもよい。 In the first and second embodiments described above, the example in which the fiber density is calculated based on the volume of the fiber in the region (microelement) corresponding to the node is shown, but the present invention is not limited to this. For example, the fiber density may be calculated based on the number of nodes (the number of rod elements) existing in the minute element.
 また、上記第1および第2実施形態では、密度(曲りの度合い)に対する流動速度の低下量が実験によって測定される例を示したが、本発明はこれに限られない。たとえば、繊維同士の干渉を直接的に考慮したシミュレーションを予め行うとともに、シミュレーションの結果から図6および図7のようなグラフを作成する。そして、作成されたグラフに基づいて、密度(曲りの度合い)に対する流動速度の低下量を求めてもよい。 In the first and second embodiments, an example in which the amount of decrease in the flow velocity with respect to the density (degree of bending) is measured by an experiment has been shown, but the present invention is not limited to this. For example, a simulation in which interference between fibers is directly taken into consideration is performed in advance, and graphs as shown in FIGS. 6 and 7 are created from the results of the simulation. Then, the amount of decrease in the flow velocity with respect to the density (degree of bending) may be calculated based on the created graph.
 また、上記第1および第2実施形態では、領域内の全ての位置において樹脂の流動速度が補正される例を示したが、本発明はこれに限られない。本発明では、領域内において複数の樹脂が合流する地点近傍においてのみ、樹脂の流動速度を補正してもよい。これにより、移動解析装置の負荷を軽減することが可能になる。 Further, in the above-mentioned first and second embodiments, an example in which the flow velocity of the resin is corrected at all positions in the area has been shown, but the present invention is not limited to this. In the present invention, the resin flow velocity may be corrected only in the vicinity of the point where a plurality of resins merge in the region. This makes it possible to reduce the load on the movement analysis device.
 また、上記第2実施形態では、繊維の密度と繊維の曲りの度合いとの両方に基づいて、樹脂の粘度が補正される例を示したが、本発明はこれに限られない。たとえば、繊維の密度と繊維の曲りの度合いとのうちの一方のみに基づいて、樹脂の粘度を補正してもよい。  Further, in the second embodiment described above, an example in which the viscosity of the resin is corrected based on both the density of the fiber and the degree of bending of the fiber has been shown, but the present invention is not limited to this. For example, the viscosity of the resin may be corrected based on only one of the density of the fiber and the degree of bending of the fiber. ‥
 また、上記第2実施形態では、算出された樹脂の流動速度が収束しているか否かが判定される例を示したが、本発明はこれに限られない。本発明では、算出された樹脂の流動速度が収束しているか否かを判定しないように構成してもよい。 Further, in the second embodiment, an example in which it is determined whether or not the calculated flow velocity of the resin has converged has been shown, but the present invention is not limited to this. In the present invention, it may be configured not to determine whether or not the calculated flow velocity of the resin has converged.
 また、上記第2実施形態では、樹脂粘度補正部が、繊維解析部に含まれている例を示したが、本発明はこれに限られない。本発明では、樹脂粘度補正部が樹脂流動解析部に含まれていてもよい。 In the second embodiment, the resin viscosity correction unit is included in the fiber analysis unit, but the present invention is not limited to this. In the present invention, the resin viscosity correction unit may be included in the resin flow analysis unit.
 10 樹脂速度解析部
 20 繊維解析部
 21 繊維モデル化部
 22 樹脂速度取得部
 23 密度算出部
 24 曲り度合算出部
 25 樹脂速度補正部
 26 解析部
 27 樹脂粘度補正部
 30 記憶媒体
 40 プログラム
 100、300 移動解析装置
 200 領域
 210 樹脂
 220 繊維
 221 節点
 222 ロッド要素
 310 樹脂流動解析部
10 resin velocity analysis unit 20 fiber analysis unit 21 fiber modeling unit 22 resin velocity acquisition unit 23 density calculation unit 24 bending degree calculation unit 25 resin velocity correction unit 26 analysis unit 27 resin viscosity correction unit 30 storage medium 40 program 100, 300 movement Analysis device 200 Area 210 Resin 220 Fiber 221 Node 222 Rod element 310 Resin flow analysis unit

Claims (10)

  1.  領域内を流動する樹脂の少なくとも流動速度を解析する樹脂速度解析部と、
     前記樹脂速度解析部に解析された前記樹脂の流動速度に基づいて、前記樹脂とともに流動する繊維の流動を解析する繊維解析部とを備え、
     前記繊維解析部は、
     前記繊維を、複数の節点と、前記節点同士により接続されたロッド要素とによってモデル化する繊維モデル化部と、
     前記節点に対応する位置における、前記樹脂速度解析部に解析された前記樹脂の流動速度を取得する樹脂速度取得部と、
     前記節点に対応する位置における前記繊維の密度と前記繊維の曲りの度合いとのうちの少なくとも一方に基づいて、前記樹脂速度取得部に取得された前記節点に対応する位置における前記樹脂の流動速度を補正する樹脂速度補正部と、
     前記樹脂速度補正部に補正された前記樹脂の流動速度に基づいて、前記樹脂中における前記繊維の移動を解析する解析部とを含む、樹脂中における繊維の移動解析装置。
    A resin velocity analysis unit that analyzes at least the flow velocity of the resin flowing in the region,
    Based on the flow velocity of the resin analyzed by the resin velocity analysis unit, a fiber analysis unit for analyzing the flow of fibers flowing with the resin,
    The fiber analysis unit,
    The fiber, a plurality of nodes, a fiber modeling unit for modeling by a rod element connected by the nodes,
    At a position corresponding to the node, a resin velocity acquisition unit that acquires the flow velocity of the resin analyzed by the resin velocity analysis unit,
    Based on at least one of the density of the fibers at the position corresponding to the node and the degree of bending of the fiber, the flow velocity of the resin at the position corresponding to the node acquired by the resin velocity acquisition unit, A resin speed correction unit for correction,
    A movement analysis device for fibers in resin, comprising: an analysis unit that analyzes movement of the fibers in the resin based on the flow velocity of the resin corrected by the resin velocity correction unit.
  2.  前記樹脂速度補正部は、前記節点に対応する位置における前記繊維の密度が変化するに従って前記樹脂の流動速度が変化するように補正し、前記節点に対応する位置における前記繊維の曲りの度合いが変化するに従って前記樹脂の流動速度が変化するように補正するように構成されている、請求項1に記載の樹脂中における繊維の移動解析装置。 The resin velocity correction unit corrects the flow velocity of the resin so as to change as the density of the fiber at the position corresponding to the node changes, and the degree of bending of the fiber at the position corresponding to the node changes. The fiber movement analysis device in the resin according to claim 1, wherein the flow velocity of the resin is corrected so as to change as the temperature changes.
  3.  前記樹脂速度補正部は、前記節点に対応する位置における前記繊維の密度が大きくなるに従って前記樹脂の流動速度を小さくなるように補正し、前記節点に対応する位置における前記繊維の曲りの度合いが大きくなるに従って前記樹脂の流動速度を小さくなるように補正するように構成されている、請求項2に記載の樹脂中における繊維の移動解析装置。 The resin velocity correction unit corrects the flow velocity of the resin to decrease as the density of the fibers at the position corresponding to the node increases, and the degree of bending of the fiber at the position corresponding to the node increases. The fiber movement analysis device in a resin according to claim 2, which is configured to correct the flow velocity of the resin so as to be smaller.
  4.  前記繊維解析部は、前記解析部により解析された前記節点に対応する領域における前記繊維の体積に基づいて、前記繊維の密度を算出する密度算出部をさらに含む、請求項1~3のいずれか1項に記載の樹脂中における繊維の移動解析装置。 4. The fiber analysis unit according to claim 1, further comprising a density calculation unit that calculates a density of the fiber based on a volume of the fiber in a region corresponding to the node analyzed by the analysis unit. 2. A device for analyzing the movement of fibers in a resin according to item 1.
  5.  前記繊維解析部は、前記解析部により解析された前記繊維の前記節点の位置情報に基づいて、前記繊維の曲りの度合いを算出する曲り度合算出部をさらに含む、請求項1~4のいずれか1項に記載の樹脂中における繊維の移動解析装置。 5. The fiber analysis unit further includes a bending degree calculation unit that calculates a degree of bending of the fiber based on position information of the nodes of the fiber analyzed by the analysis unit. 2. A device for analyzing the movement of fibers in a resin according to item 1.
  6.  前記樹脂速度補正部は、少なくとも、前記領域内において複数の前記樹脂が合流する地点近傍において、前記樹脂速度取得部に取得された前記節点に対応する位置における前記樹脂の流動速度を補正するように構成されている、請求項1~5のいずれか1項に記載の樹脂中における繊維の移動解析装置。 The resin velocity correction unit, at least in the vicinity of a point where the plurality of resins merge in the region, corrects the resin flow velocity at a position corresponding to the node acquired by the resin velocity acquisition unit. 6. A fiber movement analysis device in a resin according to claim 1, which is configured.
  7.  ある一時点において、領域内を流動する樹脂の流動状態を解析する樹脂流動解析部と、 前記樹脂流動解析部で算出された前記樹脂の流動速度に基づいて、前記樹脂とともに流動する繊維の流動を解析する繊維解析部とを備え、
     前記繊維解析部は、
     前記繊維を、複数の節点と、前記節点同士により接続されたロッド要素とによってモデル化する繊維モデル化部と、
     前記節点に対応する位置における、前記樹脂流動解析部に解析された前記樹脂の流動速度を取得する樹脂速度取得部とを含み、
     前記樹脂の流動速度に基づいて前記繊維の移動を計算するとともに、前記節点に対応する位置における前記繊維の密度と前記繊維の曲がりの度合いを算出し、前記繊維の密度と前記繊維の曲がりの度合いとのうちの少なくとも一方に基づいて、次の時点における前記樹脂の粘度を補正する樹脂粘度補正部をさらに備え、
     前記樹脂流動解析部は、前記樹脂粘度補正部で補正された前記樹脂の粘度に基づいて、次の時点の前記樹脂および前記繊維の流動を計算する、樹脂中における繊維の移動解析装置。
    At a certain point of time, based on the resin flow analysis unit that analyzes the flow state of the resin flowing in the region, and the resin flow velocity calculated by the resin flow analysis unit, the flow of the fiber flowing together with the resin is determined. With a fiber analysis unit for analysis,
    The fiber analysis unit,
    The fiber, a plurality of nodes, a fiber modeling unit for modeling by a rod element connected by the nodes,
    At a position corresponding to the node, including a resin velocity acquisition unit that acquires the flow velocity of the resin analyzed by the resin flow analysis unit,
    While calculating the movement of the fiber based on the flow velocity of the resin, the density of the fiber and the degree of bending of the fiber at the position corresponding to the node is calculated, the density of the fiber and the degree of bending of the fiber. Based on at least one of the above, further comprising a resin viscosity correction unit for correcting the viscosity of the resin at the next time point,
    The resin flow analysis unit calculates the flow of the resin and the fiber at the next point in time based on the viscosity of the resin corrected by the resin viscosity correction unit, and a fiber movement analysis device in the resin.
  8.  領域内を流動する樹脂の少なくとも流動速度を解析するステップと、
     前記樹脂とともに流動する繊維を、複数の節点と、前記節点同士により接続されたロッド要素とによってモデル化するステップと、
     前記節点に対応する位置における、解析された前記樹脂の流動速度を取得するステップと、
     前記節点に対応する位置における前記繊維の密度と前記繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された前記節点に対応する位置における前記樹脂の流動速度を補正するステップと、
     補正された前記樹脂の流動速度に基づいて、前記樹脂中における前記繊維の移動を解析するステップとを備える、樹脂中における繊維の移動解析方法。
    Analyzing at least the flow velocity of the resin flowing in the region,
    A step of modeling a fiber flowing with the resin by a plurality of nodes and a rod element connected by the nodes;
    Acquiring the analyzed flow velocity of the resin at a position corresponding to the node,
    Based on at least one of the density of the fibers at the position corresponding to the node and the degree of bending of the fiber, correcting the flow velocity of the resin at the position corresponding to the acquired node,
    Analyzing the movement of the fiber in the resin based on the corrected flow velocity of the resin, the method for analyzing the movement of the fiber in the resin.
  9.  領域内を流動する樹脂の少なくとも流動速度を解析するステップと、
     前記樹脂とともに流動する繊維を、複数の節点と、前記節点同士により接続されたロッド要素とによってモデル化するステップと、
     前記節点に対応する位置における、解析された前記樹脂の流動速度を取得するステップと、
     前記節点に対応する位置における前記繊維の密度と前記繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された前記節点に対応する位置における前記樹脂の流動速度を補正するステップと、
     補正された前記樹脂の流動速度に基づいて、前記樹脂中における前記繊維の移動を解析するステップとを備える、プログラム。
    Analyzing at least the flow velocity of the resin flowing in the region,
    A step of modeling a fiber flowing with the resin by a plurality of nodes and a rod element connected by the nodes;
    Acquiring the analyzed flow velocity of the resin at a position corresponding to the node,
    Based on at least one of the density of the fibers at the position corresponding to the node and the degree of bending of the fiber, correcting the flow velocity of the resin at the position corresponding to the acquired node,
    Analyzing the movement of the fibers in the resin based on the corrected flow velocity of the resin.
  10.  領域内を流動する樹脂の少なくとも流動速度を解析するステップと、
     前記樹脂とともに流動する繊維を、複数の節点と、前記節点同士により接続されたロッド要素とによってモデル化するステップと、
     前記節点に対応する位置における、解析された前記樹脂の流動速度を取得するステップと、
     前記節点に対応する位置における前記繊維の密度と前記繊維の曲りの度合いとのうちの少なくとも一方に基づいて、取得された前記節点に対応する位置における前記樹脂の流動速度を補正するステップと、
     補正された前記樹脂の流動速度に基づいて、前記樹脂中における前記繊維の移動を解析するステップとを備える、プログラムを記憶する、記憶媒体。
    Analyzing at least the flow velocity of the resin flowing in the region,
    A step of modeling a fiber flowing with the resin by a plurality of nodes and a rod element connected by the nodes;
    Acquiring the analyzed flow velocity of the resin at a position corresponding to the node,
    Based on at least one of the density of the fibers at the position corresponding to the node and the degree of bending of the fiber, correcting the flow velocity of the resin at the position corresponding to the acquired node,
    Storing the program, and analyzing the movement of the fibers in the resin based on the corrected flow velocity of the resin.
PCT/JP2019/046094 2018-11-29 2019-11-26 Movement analysis device for fibers in resin, movement analysis method for fibers in resin, program, and storage medium WO2020111039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018224002A JP2020082620A (en) 2018-11-29 2018-11-29 Device for analyzing movement of fibers in resin, method for analyzing movement of fibers in resin, program and storage medium
JP2018-224002 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111039A1 true WO2020111039A1 (en) 2020-06-04

Family

ID=70853267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046094 WO2020111039A1 (en) 2018-11-29 2019-11-26 Movement analysis device for fibers in resin, movement analysis method for fibers in resin, program, and storage medium

Country Status (2)

Country Link
JP (1) JP2020082620A (en)
WO (1) WO2020111039A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014226871A (en) * 2013-05-24 2014-12-08 東レエンジニアリング株式会社 Method for simulating behavior of filler, and method for analyzing physical property of composite material
JP2016198997A (en) * 2015-04-14 2016-12-01 本田技研工業株式会社 Computer-aided resin behavior analysis device
JP2017013437A (en) * 2015-07-03 2017-01-19 本田技研工業株式会社 Computer-aided resin behavior analysis device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014226871A (en) * 2013-05-24 2014-12-08 東レエンジニアリング株式会社 Method for simulating behavior of filler, and method for analyzing physical property of composite material
JP2016198997A (en) * 2015-04-14 2016-12-01 本田技研工業株式会社 Computer-aided resin behavior analysis device
JP2017013437A (en) * 2015-07-03 2017-01-19 本田技研工業株式会社 Computer-aided resin behavior analysis device

Also Published As

Publication number Publication date
JP2020082620A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US11173665B2 (en) Systems and methods of simulating intermediate forms for additive fabrication
US8401827B2 (en) Processing device and method for structure data representing a physical structure
TW201537314A (en) Method and controller for controlling operation of machine
US10242498B1 (en) Physics based garment simulation systems and methods
JP6353290B2 (en) Polymer material model creation method
KR101319996B1 (en) Method for simulating fluid
US10373373B2 (en) Systems and methods for reducing the stimulation time of physics based garment simulations
Tam et al. Robotics-enabled stress line additive manufacturing
WO2020111039A1 (en) Movement analysis device for fibers in resin, movement analysis method for fibers in resin, program, and storage medium
Tonneau et al. Character contact re‐positioning under large environment deformation
JP2020064450A (en) Fiber behavior calculation device, method, and program
CN110348141A (en) A kind of method of aero-engine external pipeline system fast vibration analysis
Dagenais et al. A prediction-correction approach for stable sph fluid simulation from liquid to rigid
JP2005169766A (en) Mold optimizing apparatus, mold optimizing program and mold optimizing control program
JP4774855B2 (en) Assembly state prediction method for resin molded product, assembly state prediction device for resin molded product, and assembly state prediction program for resin molded product
Lu et al. A Rigging‐Skinning Scheme to Control Fluid Simulation
JP2020095400A (en) Simulation device, simulation method, and program
CN105224770B (en) High speed light loading mechanism nonlinear dynamic system structural topological optimization method
JP2009134369A (en) Harness design device
JP5573276B2 (en) Flow analysis method, flow analysis apparatus and flow analysis program for resin molded product
JP2009176185A (en) Numerical analysis model creation method and numerical analysis model creation device
JP2008001088A (en) Prediction method, apparatus, its program, storage medium for secondary weld line, manufacturing method of moldings by using them
Ospald et al. SIMP based topology optimization for injection molding of SFRPs
JP2008207440A (en) Quality forecasting apparatus, method, and program of injection-molded product
Hong et al. DeepJEB: 3D Deep Learning-based Synthetic Jet Engine Bracket Dataset

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891639

Country of ref document: EP

Kind code of ref document: A1