WO2020111004A1 - Vehicle-mounted cooling system control device and vehicle-mounted cooling system - Google Patents
Vehicle-mounted cooling system control device and vehicle-mounted cooling system Download PDFInfo
- Publication number
- WO2020111004A1 WO2020111004A1 PCT/JP2019/045989 JP2019045989W WO2020111004A1 WO 2020111004 A1 WO2020111004 A1 WO 2020111004A1 JP 2019045989 W JP2019045989 W JP 2019045989W WO 2020111004 A1 WO2020111004 A1 WO 2020111004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- air conditioning
- vehicle
- battery
- request
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
- B60K11/04—Arrangement or mounting of radiators, radiator shutters, or radiator blinds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present disclosure relates to a control device for a vehicle-mounted cooling system and a vehicle-mounted cooling system.
- a battery refrigerant loop that cools a battery with a battery refrigerant is provided, and air in the vehicle compartment is provided in the battery refrigerant loop.
- a heat exchanger for exchanging heat between the air in the ventilation drafter discharged to the outside of the vehicle and the refrigerant for the battery is provided.
- the state in which the battery refrigerant flows through the heat exchanger and the state in which the battery refrigerant bypasses the heat exchanger can be switched by the switching means.
- the battery refrigerant loop is switched to a state in which the battery refrigerant flows through the heat exchanger, whereby the battery refrigerant is cooled by the heat exchanger. Is released to the air in the drafter, thereby suppressing the temperature rise of the battery when the compressor fails.
- Patent Document 1 As a countermeasure when an abnormality occurs in the cooling system, a heat exchanger that causes the battery refrigerant loop to exchange heat between the air in the ventilation drafter and the battery refrigerant is provided. Since it is indispensable to install it, there is a concern that it may cause an increase in physique due to the addition of parts. Further, as the abnormality in the cooling system, not only an abnormality in the compressor but also an abnormality in each part of the air conditioning refrigerant circuit is assumed.
- a condenser for condensing the air conditioner refrigerant is provided with a heat dissipation fan, and when the heat dissipation fan fails, the heat dissipation performance of the condenser deteriorates. It is desired to continuously cool the battery even when such a failure of the heat radiation fan occurs.
- the present disclosure has been made in view of the above problems, and its main purpose is to provide a vehicle-mounted cooling that can appropriately cool a battery when an abnormality occurs in an air conditioning refrigerant circuit while simplifying the configuration. It is to provide a control device for the system and a vehicle-mounted cooling system.
- Means 1 An air conditioning refrigerant circuit including a refrigerant passage for circulating a refrigerant, a compressor for compressing the refrigerant, a heat source side heat exchanger, and a use side heat exchanger, A battery that supplies electric power to in-vehicle electrical equipment, A battery cooling unit that cools the battery by circulating the refrigerant in the refrigerant passage, A control device that is applied to a vehicle-mounted cooling system that includes, based on an air conditioning request and a battery cooling request, a control device that controls a driving state of the compressor, An abnormality determination unit that determines that an abnormality has occurred in the air conditioning refrigerant circuit, Under the situation where the battery cooling request is generated and it is determined that the abnormality is occurring, the control mode of the refrigerant circulation in the air conditioning refrigerant circuit is changed while continuing the cooling of the battery by the battery cooling unit. A control mode changing unit for Equipped with.
- an abnormality of the air conditioning refrigerant circuit occurs due to, for example, a stop failure of a heat dissipation fan or a failure of output reduction
- the circulation of the refrigerant in the air conditioning refrigerant circuit is stopped
- the battery is circulated by the refrigerant. Can no longer be cooled and there is concern that the battery temperature will rise excessively.
- the battery cooling unit continues to cool the battery and the air conditioning refrigerant circuit operates. The control mode of the refrigerant circulation of is changed.
- the refrigerant can be circulated in a mode according to the occurrence of the abnormality.
- the battery can be properly cooled when an abnormality occurs in the air conditioning refrigerant circuit while simplifying the configuration.
- control of the refrigerant circulation in the air-conditioning refrigerant circuit may include drive control of the compressor and control of an expansion valve that adjusts the amount of refrigerant circulation in the refrigerant passage.
- Changes in the control mode include changes in the rotation speed of the compressor and changes in the refrigerant circulation amount by the expansion valve.
- control mode changing unit limits the increase in the refrigerant pressure in the refrigerant passage as compared with the time before the abnormality occurs, as the control mode is changed.
- the refrigerant pressure in the refrigerant passage increases due to a decrease in heat dissipation performance in the condenser (condenser) of the air-conditioning refrigerant circuit, and the piping forming the refrigerant passage is There is concern about damage.
- the control mode is changed so that the refrigerant passage is different from that before the abnormality.
- the rise in refrigerant pressure at is limited. Accordingly, when an abnormality occurs in the air conditioning refrigerant circuit, it is possible to continuously cool the battery while protecting the pipes and the like forming the refrigerant passage.
- the control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as a change of the control mode, and the refrigerant pressure in the refrigerant passage is a predetermined high pressure.
- the drive of the compressor is limited in order to suppress the pressure increase exceeding the upper limit value.
- the means 2 or 3 is provided with an air-conditioning restriction unit that restricts the execution of air conditioning by the air-conditioning refrigerant circuit when the increase in the refrigerant pressure in the refrigerant passage is restricted as a change of the control mode.
- the execution of air conditioning by the air conditioning refrigerant circuit is restricted.
- the battery cooling request is prioritized. That is, the coolant is circulated in the coolant passage to cool the battery. Thereby, the deterioration of the battery due to the excessive rise of the battery temperature can be suitably suppressed.
- the refrigerant passage has a bypass passage which is provided in parallel with the utilization side heat exchanger and supplies the refrigerant to the battery cooling part. It is possible to switch which circulation path of the first circulation path including the first circulation path and the second circulation path that does not include the use-side heat exchanger and includes the bypass passage, in which the refrigerant flows. As a restriction of the air conditioning, the section makes the refrigerant flow in the second circulation path and restricts the refrigerant flow in the first circulation path.
- the bypass path (battery cooling section) is included as the air conditioning restriction.
- the refrigerant is allowed to flow in the second circulation path, and the refrigerant is restricted from flowing in the first circulation path including the utilization side heat exchanger.
- battery cooling can be preferably performed while restricting air conditioning by suppressing heat exchange in the use side heat exchanger.
- the air conditioning limiting unit controls the amount of the refrigerant flowing through the first circulation path and the second circulation path based on the temperature of the battery when the air conditioning is restricted. Adjust the distribution with the amount of flowing refrigerant.
- the air conditioning restriction unit releases the restriction of the air conditioning based on that the vehicle speed, which is the traveling speed of the vehicle, is higher than a predetermined speed threshold value. Alternatively, the degree of restriction of the air conditioning is reduced.
- the control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as the change of the control mode, and the traveling speed of the vehicle. And the vehicle speed is higher than a predetermined first speed threshold, the degree of restriction of the refrigerant pressure is reduced, and the air conditioning restriction unit uses the second speed threshold where the vehicle speed is higher than the first speed threshold. The degree of restriction of the air conditioning is reduced based on the fact that it is greater than.
- the degree of limitation of the refrigerant pressure and the degree of limitation of the air conditioning are reduced according to the vehicle speed.
- the degree of restriction of the refrigerant pressure is reduced first, and then the degree of air conditioning restriction is reduced. Therefore, when an abnormality occurs in the air conditioning refrigerant circuit, it is possible to perform appropriate air conditioning while prioritizing battery cooling.
- control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as the change of the control mode, and the traveling speed of the vehicle. Based on the vehicle speed being greater than a predetermined speed threshold value, the degree of restriction of the refrigerant pressure is reduced.
- any one of the means 1 to 9 when it is determined that the abnormality occurs in the situation where the battery cooling request is not generated, based on the vehicle traveling prediction after the present time, A predicting unit that predicts whether or not a situation in which the battery cooling request will be generated is provided, and the control mode changing unit, when the predicting unit predicts that the battery cooling request will be in a situation, Make changes.
- the electric device is a rotating electric machine that serves as a power source for traveling the vehicle, and the predicting unit is in a situation where the battery cooling request is generated based on the traveling destination of the vehicle. Predict whether or not.
- the traveling destination of the vehicle when the traveling destination of the vehicle is far, the driving load of the rotating electric machine is higher than when the destination is near, and the temperature of the battery is likely to rise.
- the traveling route to the traveling destination includes an uphill road, the driving load of the rotating electric machine also increases, and the temperature of the battery is likely to rise.
- the traveling destination of the vehicle by predicting whether or not the battery cooling request will be generated based on the traveling destination of the vehicle, it is possible to preferably cope with the rise in the battery temperature due to the sudden change in the traveling load.
- the control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as the change of the control mode, and it is predicted that the battery cooling request will be generated.
- the refrigerant pressure is limited based on this, the degree of restriction of the refrigerant pressure is increased as compared with the case where the refrigerant pressure is limited based on the fact that the battery cooling request is actually generated.
- the compressor rotation speed is limited to low rotation, and battery cooling is reduced.
- the degree is reduced.
- battery cooling can be appropriately performed while suppressing excessive battery cooling and excessive air conditioning restriction.
- control mode changing unit includes an air conditioning restricting unit that restricts execution of air conditioning by the air conditioning refrigerant circuit as a change of the control mode.
- the heat conversion capacity in the air-conditioning refrigerant circuit may be reduced. Can be supplemented. As a result, the battery can be cooled in the most appropriate state when an abnormality occurs.
- the air conditioning limiting unit increases the output of the compressor under the situation where the air conditioning request and the battery cooling request are generated and the abnormality is determined to occur. Also restricts the execution of the air conditioning on the condition that the air conditioning request and the battery cooling request are not satisfied.
- the abnormality is determined, based on the vehicle traveling prediction after the current time point.
- a prediction unit that predicts whether or not both the air conditioning request and the battery cooling request will occur, and the control mode changing unit causes the prediction unit to generate both the air conditioning request and the battery cooling request.
- the surplus air conditioning for the current request is performed before both the air conditioning request and the battery cooling request occur.
- both air conditioning demand and battery cooling demand will occur in the future due to changes in the outside air temperature from the present time onward and running conditions such as high-speed running. Further, it can be predicted that, at the time of occurrence of an abnormality in the air conditioning refrigerant circuit, it becomes impossible to satisfy both the future air conditioning request and the battery cooling request. In this case, before the air-conditioning request and the battery cooling request both occur, the surplus air-conditioning (excessive air-conditioning) is performed for the current request, so that the vehicle interior environment can be improved.
- the refrigerant passage has a bypass passage which is provided in parallel with the utilization side heat exchanger and which supplies the refrigerant to the battery cooling part. Switching between which of the first circulation path including the use-side heat exchanger and the second circulation path including the bypass passage that does not include the use-side heat exchanger can be switched to the state in which the refrigerant flows. It is possible that the air-conditioning restriction unit limits the air-conditioning so that the refrigerant flows in the second circulation path and restricts the refrigerant flowing in the first circulation path.
- the bypass path (battery cooling section) is included as the air conditioning restriction.
- the refrigerant is allowed to flow in the second circulation path, and the refrigerant is restricted from flowing in the first circulation path including the utilization side heat exchanger.
- battery cooling can be preferably performed while restricting air conditioning by suppressing heat exchange in the use side heat exchanger.
- the air conditioning restriction unit determines the amount of the refrigerant flowing through the first circulation path and the second circulation path based on the temperature of the battery when the air conditioning is restricted. Adjust the distribution with the amount of flowing refrigerant.
- the air conditioning limiting unit releases the air conditioning limitation based on that the vehicle speed, which is the traveling speed of the vehicle, is higher than a predetermined speed threshold value. Alternatively, the degree of restriction of the air conditioning is reduced.
- Means 19 includes a parameter acquisition unit for acquiring the drive state of the compressor or the refrigerant pressure in the refrigerant passage as a control parameter in any one of the means 1 to 18, and the control mode changing unit is the abnormal condition.
- the control mode is changed based on the control parameter after the occurrence of.
- the heat exchange state (heat dissipation state) in the heat source side heat exchanger differs from that in the normal state of the air conditioning refrigerant circuit, and the drive state of the compressor and the refrigerant passage A change occurs in the refrigerant pressure inside.
- the change in the refrigerant pressure after the occurrence of the abnormality in the air conditioning refrigerant circuit is grasped and the control of the refrigerant circulation in the air conditioning refrigerant circuit is performed.
- battery cooling can be appropriately performed according to the driving state of the compressor, and thus the magnitude of the refrigerant pressure.
- the abnormality determining unit is configured such that the abnormality determination unit stops the radiating fan that blows air to the heat source side heat exchanger in the air conditioning refrigerant circuit or reduces the output, the heat source side. It is determined that an abnormality has occurred in the air conditioning refrigerant circuit based on at least one of heat radiation abnormality due to clogging in the heat exchanger and refrigerant leakage abnormality in the air conditioning refrigerant circuit.
- the causes of abnormalities in the air conditioning refrigerant circuit are that the heat dissipation fan has stopped or the output is reduced, and that there is heat dissipation abnormality due to clogging of the heat source side heat exchanger. It is conceivable that there is a refrigerant leakage abnormality. Therefore, by determining the occurrence of an abnormality in the air conditioning refrigerant circuit based on the occurrence of an abnormality caused by these factors, it is possible to properly understand the occurrence of the abnormality, and to appropriately perform the battery cooling at the time of the abnormality. can do.
- the air conditioning refrigerant circuit In an in-vehicle cooling system including the air conditioning refrigerant circuit, the battery, the battery cooling unit, and the control device according to any one of means 1 to 20, while simplifying the configuration, the air conditioning refrigerant circuit
- the battery can be properly cooled when an abnormality occurs in the.
- FIG. 1 is a configuration diagram showing a cooling water circuit and an air conditioning refrigerant circuit in a vehicle
- FIG. 2 is a block diagram showing an electrical configuration relating to battery cooling
- FIG. 3 is a flowchart showing a procedure for battery cooling
- FIG. 4 is a diagram showing the relationship between the refrigerant pressure and the compressor rotation speed
- 5A is a diagram showing the relationship between the vehicle speed and the rotation speed correction value ⁇ N1
- FIG. 5B is a diagram showing the relationship between the vehicle speed and the rotation speed correction value ⁇ N2.
- FIG. 6 is a time chart for explaining the battery cooling process more specifically, FIG.
- FIG. 7 is a flowchart showing a battery cooling process procedure according to the second embodiment.
- FIG. 8 is a diagram showing a distribution ratio between the amount of the refrigerant flowing through the first circulation path and the amount of the refrigerant flowing through the second circulation path
- FIG. 9 is a time chart for specifically explaining the battery cooling process in another example
- FIG. 10 is a flowchart showing a processing procedure of battery cooling in another example
- FIG. 11 is a time chart for specifically explaining the battery cooling process in another example
- FIG. 12 is a flowchart showing a processing procedure of battery cooling in another example
- FIG. 13 is a time chart for specifically explaining the battery cooling process in another example
- FIG. 14 is a flowchart showing a processing procedure of battery cooling in another example
- FIG. 15 is a flowchart showing a processing procedure of battery cooling in another example
- FIG. 16 is a flowchart showing a processing procedure of battery cooling in another example.
- the present embodiment is embodied as a vehicle-mounted cooling system that cools a battery that supplies electric power to a rotating electric machine in a hybrid vehicle that has an engine (internal combustion engine) and a rotating electric machine as power sources.
- an engine internal combustion engine
- a rotating electric machine as power sources.
- an engine mode in which an engine is used as a running power source an EV mode in which a rotating electrical machine is used as a running power source, and an engine and a rotating electrical machine are used as running power sources. It is possible to switch to the running HV mode.
- FIG. 1 is a configuration diagram showing cooling water circuits 12 and 22 for cooling an engine 11 and a rotating electric machine 21 in a vehicle 10, and an air conditioning refrigerant circuit 31 using an air conditioning refrigerant.
- the rotary electric machine 21 corresponds to an in-vehicle electric device.
- the vehicle 10 has a first cooling water circuit 12 that cools the engine 11 and a second cooling water circuit 22 that cools the rotating electric machine 21 as a cooling water cooling system.
- the first cooling water circuit 12 has a cooling water passage 13 for circulating engine cooling water, a cooling water pump 14 and a radiator 15 provided in the cooling water passage 13.
- the second cooling water circuit 22 also has a cooling water passage 23 for circulating the motor cooling water, a cooling water pump 24 and a radiator 25 provided in the cooling water passage 23.
- the second cooling water circuit 22 may cool the inverter that drives the rotary electric machine 21 mainly by battery power.
- the heat generating portion such as the armature winding in the rotating electric machine body may be cooled.
- the air conditioning refrigerant circuit 31 includes a refrigerant passage 32 for circulating a refrigerant such as a CFC-based refrigerant, an electric compressor 33 for compressing the refrigerant, and a condenser 34 (condenser) for cooling and liquefying the refrigerant. And an evaporator 35 (evaporator) that vaporizes the refrigerant.
- the condenser 34 is provided with a heat radiation fan 36 that blows air for heat radiation in the condenser 34.
- the condenser 34 corresponds to a “heat source side heat exchanger”, and the evaporator 35 corresponds to a “use side heat exchanger”.
- An expansion valve 38 may be provided on the downstream side of the condenser 34 in the refrigerant passage 32.
- a refrigerant pressure sensor 37 that detects the refrigerant pressure is provided in the refrigerant passage 32.
- the radiators 15 and 25 are integrated as a heat radiation unit, or the condensers 34 are integrated as a heat radiation unit in addition to the radiators 15 and 25.
- the heat radiation fan 36 may radiate heat in these heat radiation unit units.
- the air conditioning refrigerant circuit 31 is provided not only for air conditioning (cooling/heating) of the vehicle interior but also for cooling the battery 51 that supplies electric power to the vehicle-mounted electric equipment.
- the electric device mounted on the vehicle includes the rotating electric machine 21.
- the battery 51 is provided as a part of the battery pack 50, and the battery pack 50 is provided with a temperature adjustment unit 52 that adjusts the battery temperature.
- the temperature adjustment unit 52 corresponds to a battery cooling unit that cools the battery 51 by circulating the refrigerant in the refrigerant passage 32, and has, for example, a heat conversion unit that cools the battery 51 by heat conversion of the refrigerant.
- the refrigerant passage 32 has a bypass passage 41 in parallel with the evaporator 35 on the upstream side of the compressor 33, and the temperature adjustment unit of the battery pack 50 is provided in the bypass passage 41. 52 is provided.
- An electromagnetic valve 42 is provided in the refrigerant passage 32, and by the electromagnetic valve 42, a first circulation path L1 including the evaporator 35 and a second circulation path L2 including the bypass passage 41 not including the evaporator 35 are provided. It is possible to switch which of the above circulation paths is used to flow the refrigerant.
- the refrigerant flows only through the second circulation path L2 or the refrigerant flows through the first circulation path L1 and the second circulation path L2 so that the refrigerant flows through the bypass passage 41.
- the refrigerant circulates.
- the battery 51 is cooled by heat exchange in the temperature control unit 52.
- the temperature control unit 52 may be composed of a chiller having a circulation passage for circulating a heat fluid such as cooling water.
- a heat fluid such as cooling water.
- an evaporator provided on the bypass passage 41 and the evaporator.
- the battery 51 may be cooled by a circulation passage that circulates a thermal fluid (cooling water or the like) that is cooled by heat exchange, and the thermal fluid that circulates in the circulation path.
- FIG. 2 is a block diagram showing an electrical configuration relating to battery cooling.
- the control device 60 includes a microcomputer having a CPU and various memories, as is well known, and controls driving of the compressor 33, the heat radiation fan 36, and the solenoid valve 42 based on input signals from various sensors. To do.
- the sensors include an outside air temperature sensor 61 that detects the outside air temperature, a vehicle interior temperature sensor 62 that detects the vehicle interior temperature, a rotation speed sensor 63 that detects the rotation speed of the compressor 33, and a battery temperature.
- a battery temperature sensor 64 for detecting, a current sensor 65 for detecting a current flowing through the compressor 33, a vehicle speed sensor 66 for detecting the speed (vehicle speed) of the vehicle 10 and the like are included.
- the control device 60 controls the drive state of the compressor 33 based on the air conditioning request and the battery cooling request. That is, the control device 60 performs the rotation speed control of the compressor 33 based on the air conditioning control parameters such as the outside air temperature, the vehicle interior temperature, the set temperature, and the set air volume when the air conditioning request is made. Further, the controller 60 controls the rotation speed of the compressor 33 based on the battery temperature when the battery cooling request is generated. At this time, the control device 60 sets the target rotation speed of the compressor 33 based on the air conditioning control parameter and the battery temperature, and performs feedback control so that the actual rotation speed detected by the rotation speed sensor 63 matches the target rotation speed. Should be implemented.
- control device 60 controls the heat radiation state in the condenser 34 by driving the heat radiation fan 36 when the compressor 33 is driven in response to the air conditioning request and the battery cooling request.
- the heat radiation fan 36 controls on/off of the driving state.
- the driving state of the heat radiation fan 36 can be adjusted in a plurality of stages (for example, three stages of low, middle, and high)
- the driving state of the heat radiation fan 36 is controlled in one of a plurality of stages.
- the refrigerant passage 32 is deteriorated due to a decrease in heat radiation performance of the condenser 34 of the air conditioning refrigerant circuit 31.
- the refrigerant pressure inside rises.
- the battery 51 cannot be cooled by the circulation of the refrigerant, and there is a concern that the battery temperature may excessively rise.
- the present embodiment it is determined that an abnormality has occurred in the air conditioning refrigerant circuit 31 based on the fact that the heat dissipation fan 36 is stopped or has a failure that reduces the output. Then, under the situation where the battery cooling request is generated and it is determined that the air conditioning refrigerant circuit 31 is abnormal, the refrigerant pressure in the refrigerant passage 32 is suppressed while increasing the pressure exceeding the predetermined high pressure upper limit value. The compressor 33 is driven with the drive being restricted. This process is a fail-safe process when a failure occurs in the heat dissipation fan 36.
- the cooling of the battery 51 by the temperature control unit 52 is continued in a state where the control mode of the refrigerant circulation in the air conditioning refrigerant circuit 31 is changed. ..
- the increase in the refrigerant pressure in the refrigerant passage 32 is restricted as compared with before the abnormality occurred in the air conditioning refrigerant circuit 31.
- the drive state of the compressor 33 or the refrigerant pressure in the refrigerant passage 32 during the compressor drive is acquired as a control parameter, and the compressor is determined based on the control parameter after the stop failure of the heat radiation fan 36 occurs.
- the degree of drive restriction of 33 may be adjusted. At this time, for example, based on the refrigerant pressure detected by the refrigerant pressure sensor 37, it is grasped that the refrigerant pressure is changing up or down after the occurrence of the stop failure of the heat dissipation fan 36, and based on the result, the compressor 33 is changed. It is advisable to adjust the degree of the drive limitation, that is, the limit rotation speed of the compressor 33.
- the refrigerant pressure may be estimated based on the compressor energization current detected by the current sensor 65.
- the electromagnetic valve 42 causes the refrigerant to flow in the first circulation path L1 including the evaporator 35 and the second circulation path L2 including the bypass passage 41 not including the evaporator 35. It is possible to switch to a state in which the refrigerant flows. Then, as the restriction of the air conditioning, the refrigerant is allowed to flow in the second circulation path L2 and the refrigerant is restricted from flowing in the first circulation path L1.
- FIG. 3 is a flowchart showing a battery cooling processing procedure, and this processing is repeatedly executed by the control device 60 at a predetermined cycle.
- step S11 it is determined whether or not there is a failure in the radiating fan 36 that causes a stop or output reduction as an abnormality in the air conditioning refrigerant circuit 31.
- this failure determination for example, when the heat dissipation fan 36 is not energized even though a drive command is issued to the heat dissipation fan 36, it is determined that there is a stop failure.
- step S11 corresponds to the “abnormality determination unit”.
- step S11 is denied and the process proceeds to step S12 to drive the compressor 33 normally.
- the control device 60 executes the rotation speed control of the compressor 33 based on the air conditioning request and the battery cooling request.
- step S13 it is determined whether a battery cooling request has been issued. In step S13, for example, if the battery temperature is equal to or higher than the predetermined temperature, it is determined that the battery cooling request is generated.
- the predetermined temperature is a temperature determined based on the temperature at which the output of the battery 51 is limited, and is 40° C., for example. If the battery cooling request has not been issued, the process proceeds to step S14, and the compressor 33 is brought into a non-driving state. At this time, if air conditioning is being performed according to the air conditioning request at the time when the radiation fan 36 fails, the air conditioning is stopped by stopping the driving of the compressor 33.
- the process proceeds to step S15, and it is determined whether the refrigerant pressure is equal to or higher than the first threshold value TH1.
- the first threshold value TH1 is, for example, a high pressure upper limit value within a range that suppresses high pressure breakage of the refrigerant pipe.
- the first threshold value TH1 is determined based on the valve opening pressure of the safety valve and is a pressure slightly lower than the valve opening pressure. If the refrigerant pressure is equal to or higher than the first threshold value TH1, the process proceeds to step S16, and the compressor rotation speed is limited to the limited rotation speed N1.
- the control device 60 performs the rotation speed feedback control with the target rotation speed of the compressor 33 as the limited rotation speed N1.
- the limited rotation speed N1 is preferably a rotation speed lower than the compressor rotation speed when only the battery cooling request is generated among the air conditioning request and the battery cooling request.
- step S17 if an air conditioning request is made, the air conditioning is stopped. Specifically, in the air conditioning refrigerant circuit 31, the refrigerant is allowed to flow in the second circulation path L2 and the refrigerant is stopped from flowing in the first circulation path L1. This limits the implementation of air conditioning. For example, by controlling the electromagnetic valve 42, it is preferable that the refrigerant flow in the first circulation path L1 in addition to the second circulation path L2 while limiting the refrigerant flow rate. In addition, in step S17, instead of stopping the air conditioning, the degree of air conditioning may be limited (reduced) while continuing the air conditioning. Step S17 corresponds to the "air conditioning restriction unit".
- the process proceeds to step S18, and it is determined whether the refrigerant pressure is the second threshold TH2 or more.
- the second threshold TH2 is a pressure threshold lower than the first threshold TH1.
- the process proceeds to step S19, and the limiting rotation speed of the compressor 33 is set based on the refrigerant pressure.
- the limiting rotation speed of the compressor 33 may be set using the relationship of FIG. In FIG. 4, the relationship between the refrigerant pressure and the compressor rotation speed is defined.
- the compressor rotation speed is set to the limit rotation speed N1 and the refrigerant pressure is set to the second threshold value.
- the limited rotation speed is variably set within the range of N1 to N2.
- the limited rotation speed is set such that the higher the refrigerant pressure, the lower the rotation speed.
- the compressor rotation speed is controlled such that the higher the refrigerant pressure, the higher the limitation degree.
- the compressor rotation speed is limited to a low rotation speed as compared with the normal time before the abnormality occurs in the air conditioning refrigerant circuit 31, whereby the increase in the refrigerant pressure in the refrigerant passage 32 is restricted. That is, as a result, the control mode of the refrigerant circulation in the air conditioning refrigerant circuit 31 is changed when an abnormality occurs in the air conditioning refrigerant circuit 31.
- the limit rotation speed of the compressor 33 is corrected based on the vehicle speed.
- the limiting rotation speed of the compressor 33 may be corrected using the relationship shown in FIG.
- the relationship between the vehicle speed and the rotation speed correction value ⁇ N1 is defined, and the rotation speed correction value ⁇ N1 is set as a positive value in the range where the vehicle speed is equal to or higher than the speed threshold THA.
- the higher the vehicle speed the larger the rotation speed correction value ⁇ N1 may be set.
- the rotation speed correction value ⁇ N1 is added to the rotation speed limit set in step S19, whereby the rotation speed limit is increased and corrected.
- the correction degree for reducing the limitation speed of the compressor rotation speed is performed based on the vehicle speed being higher than the speed threshold value THA.
- step S21 it is determined whether an air conditioning request is currently made and the vehicle speed is equal to or higher than the speed threshold THB.
- the speed threshold THB is a speed value higher than the speed threshold THA. And when step S21 is affirmed, it progresses to step S22 and makes an air conditioning into an operating state.
- the air conditioning is activated by setting the refrigerant to flow in the first circulation path L1 in addition to the second circulation path L2. This releases the air conditioning restriction.
- the limiting rotation speed of the compressor 33 is corrected.
- the limiting rotation speed of the compressor 33 may be corrected using the relationship shown in FIG.
- FIG. 5B the relationship between the vehicle speed and the rotation speed correction value ⁇ N2 is defined, and the rotation speed correction value ⁇ N2 is set as a positive value in the range where the vehicle speed is equal to or higher than the speed threshold value THB. Further, as shown in the figure, the higher the vehicle speed, the larger the rotation speed correction value ⁇ N2 may be set.
- the rotational speed correction value ⁇ N2 is added to the rotational speed limit set in step S19 or the rotational speed limit corrected in step S20, whereby the rotational speed limit is increased and corrected.
- the correction degree for reducing the limitation speed of the compressor rotation speed is performed based on that the vehicle speed is higher than the speed threshold value THB.
- the speed thresholds THA and THB have a relationship of THA ⁇ THB. Therefore, when the vehicle speed increases, the degree of drive limitation of the compressor 33 is reduced first, and then the degree of air conditioning limitation is reduced.
- step S22 a process of reducing the degree of air conditioning restriction may be performed instead of the process of releasing the air conditioning restriction.
- a process for reducing the degree of air conditioning restriction for example, the amount of the refrigerant flowing through the first circulation path L1 may be increased by controlling the solenoid valve 42.
- step S21 If step S21 is negative, the process proceeds to step S17, and the process of stopping the air conditioning or the process of restricting the implementation of the air conditioning is performed. Note that steps S15 to S22 correspond to the "control mode changing unit".
- FIG. 6 is a time chart for explaining the battery cooling process more specifically.
- the ignition switch of the vehicle 10 is turned on, an initial process is performed to enable the vehicle to travel, and then at timing t2, air conditioning is started in response to an air conditioning request.
- the compressor rotation speed is feedback-controlled to the target rotation speed determined according to the content of the air conditioning request each time. As a result, the refrigerant pressure gradually rises. Further, the driving of the heat radiation fan 36 is started. In FIG. 6, the driving state of the heat radiation fan 36 is shown as ON/OFF.
- a battery cooling request is generated when the battery temperature exceeds a predetermined value, and battery cooling is started in accordance with the battery cooling request.
- the compressor rotation speed is controlled according to the air conditioning request and the battery cooling request each time. As a result, the compressor rotation speed and the refrigerant pressure increase in response to the battery cooling request.
- the refrigerant pressure becomes higher than the second threshold value TH2, and after that timing t5, the rotation speed of the compressor 33 is controlled by the limited rotation speed set based on the refrigerant pressure.
- the higher the refrigerant pressure the lower the rotational speed of the compressor 33 is set as the rotational speed limit.
- the air conditioning is stopped regardless of the fact that the air conditioning request is generated.
- the battery temperature gradually rises, but an excessive rise is suppressed.
- the refrigerant pressure is maintained at a pressure lower than the first threshold TH1 which is the high pressure upper limit value.
- this embodiment assumes that the cooling performance of the cooling system is higher than the temperature rise.
- the limit rotation speed of the compressor 33 is increased and corrected as the vehicle speed increases to the speed threshold THA.
- the heat radiation of the condenser 34 is promoted by the traveling wind of the vehicle 10, so that the compressor rotation speed can be increased correspondingly without the increase of the refrigerant pressure.
- the air conditioning refrigerant circuit 31 is continuously cooled by the temperature adjustment unit 52.
- the control mode of the refrigerant circulation in 31 is changed.
- the increase in the refrigerant pressure in the refrigerant passage 32 is limited as compared with that before the abnormality in the air conditioning refrigerant circuit 31. More specifically, in order to suppress the pressure increase in which the refrigerant pressure in the refrigerant passage 32 exceeds a predetermined high-pressure upper limit value, the compressor 33 is driven in a drive-restricted state.
- the refrigerant can be circulated in a manner according to the occurrence of the abnormality.
- the battery can be properly cooled when an abnormality occurs in the air conditioning refrigerant circuit 31 while simplifying the configuration.
- the heat radiation fan 36 fails, it is possible to continuously cool the battery 51 while protecting the pipes and the like forming the refrigerant passage 32.
- the air conditioning by the air conditioning refrigerant circuit 31 is restricted.
- the battery cooling request is prioritized. That is, in order to cool the battery 51, the refrigerant is circulated in the refrigerant passage 32. Thereby, the deterioration of the battery 51 due to the excessive rise in the battery temperature can be suitably suppressed.
- the air conditioning limitation is such that the refrigerant flows in the second circulation path L2 including the bypass passage 41 (the temperature adjustment unit 52).
- the refrigerant is restricted from flowing in the first circulation path L1 including the evaporator 35.
- battery cooling can be suitably performed while restricting air conditioning by suppressing vaporization of the refrigerant in the evaporator 35.
- the restriction of air conditioning is released or the degree of restriction of air conditioning is decreased based on the vehicle speed being higher than a predetermined speed threshold THB. I decided to do it.
- THB a predetermined speed threshold
- the vehicle speed is high, it is possible to perform the air conditioning in addition to the battery cooling, even in the situation where the driving of the compressor 33 is limited, by taking into consideration that the condenser 34 dissipates heat by the traveling wind. It will be possible. In this case, for example, it is possible to switch from a state in which the air conditioning is stopped to a state in which the air conditioning is performed as the air conditioning restriction.
- the degree of the drive restriction of the compressor 33 is reduced based on the vehicle speed being higher than the speed threshold THA.
- the vehicle speed is high, it is possible to reduce the degree of drive limitation of the compressor 33 and increase the degree of battery cooling by taking into consideration that heat is dissipated by the condenser 34 due to traveling wind.
- the degree of the drive restriction of the compressor 33 is reduced based on the vehicle speed being higher than the speed threshold THA (first speed threshold) so that the vehicle speed is lower than the speed threshold THA.
- the degree of air conditioning restriction is reduced based on the fact that it is larger than the large speed threshold THB (second speed threshold). This makes it possible to reduce the degree of drive limitation of the compressor 33 and reduce the degree of air conditioning limitation according to the magnitude of the vehicle speed. In this case, when the vehicle speed increases, the degree of drive limitation of the compressor 33 is first reduced, and then the degree of air conditioning limitation is reduced. Therefore, when the heat radiation fan 36 fails, it is possible to appropriately perform air conditioning while giving priority to battery cooling.
- the cooling state of the refrigerant in the condenser 34 is different from that in the normal state of the radiation fan 36, and the driving state of the compressor 33 or the refrigerant when the compressor 33 is driven is different. Changes in pressure occur. In this case, based on the drive state of the compressor 33 or a control parameter indicating the refrigerant pressure when the compressor 33 is driven, the change in the refrigerant pressure after the occurrence of the stop failure of the heat radiation fan 36 is grasped to limit the drive of the compressor 33.
- the battery cooling can be appropriately performed according to the driving state of the compressor 33, and thus the magnitude of the refrigerant pressure, by adjusting the degree.
- the abnormality determination unit that determines whether or not there is an abnormality in the air conditioning refrigerant circuit 31 may use a configuration that determines that a heat radiation abnormality due to clogging in the condenser 34 (clogging abnormality) has occurred.
- This abnormality is, for example, a clogging of the condenser fin.
- the presence or absence of clogging abnormality in the condenser 34 is determined based on the refrigerant pressure on the upstream side of the condenser 34.
- FIG. 7 is a flowchart showing a processing procedure of battery cooling in the present embodiment, and this processing is executed by replacing the processing of FIG. Note that, in FIG. 7, the same steps as those in FIG. 3 are given the same step numbers.
- step S31 it is predicted based on the vehicle traveling prediction after the present time whether or not a situation in which a battery cooling request occurs will occur.
- the control device 60 predicts whether or not a situation in which a battery cooling request occurs will be based on the traveling destination of the vehicle 10 registered in advance in the navigation device or the like. More specifically, the presence/absence of a battery cooling request in the future is predicted based on the traveling distance to the traveling destination, the required time, the road surface inclination on the traveling route, and the like.
- the outside temperature and the weight of the vehicle 10 loaded may be taken into consideration.
- step S32 it is determined whether or not the prediction result of step S31 is a prediction result that a battery cooling request will occur. Then, if it is not the prediction result that the battery cooling request is generated, the process proceeds to step S14, and the compressor 33 is brought into the non-driving state.
- step S15 the process of limiting the compressor rotation speed is performed based on the refrigerant pressure as described above.
- the processing after step S15 is as already described.
- step S31 if it is predicted in step S31 that a battery cooling request will occur, it is better to increase the degree of drive restriction in the drive state of the compressor 33 than when the battery cooling request is currently occurring. Specifically, in the case where the drive restriction of the compressor 33 is implemented due to the affirmative determination in step S13, the step S16 is performed more than in the case where the drive restriction of the compressor 33 is implemented due to the affirmative determination in step S32. Alternatively, it is advisable to set the limit rotation speed set in step S19 to a small value.
- the battery cooling can be preliminarily performed based on the necessity of battery cooling after the present time. ..
- the increase in the battery temperature can be suppressed. That is, even when the cooling is insufficient and the temperature rises, it is possible to suppress the excessive rise of the battery temperature during traveling. As a result, the battery 51 can be protected.
- the drive limit of the compressor 33 is limited on the basis that it is predicted that a battery cooling request will occur, compared to the case where the drive limit of the compressor is limited based on the actual battery cooling request being generated, The degree of drive restriction in the drive state of is increased. In this case, battery cooling can be appropriately performed while suppressing excessive battery cooling and excessive air conditioning restriction.
- the drive of the compressor 33 is restricted when an abnormality occurs in the air conditioning refrigerant circuit 31, but this may be changed.
- the control device 60 may control the expansion valve 38, and the expansion valve 38 may be controlled to limit an increase in the refrigerant pressure in the refrigerant passage 32. In this case, the amount of refrigerant passing through the expansion valve 38 is adjusted, and the refrigerant pressure is limited accordingly.
- the upper limit value of the refrigerant pressure in the normal time and the abnormality occurrence time is set as a configuration for limiting the increase in the refrigerant pressure in the refrigerant passage 32 compared to the normal time before the occurrence of the abnormality.
- the upper limit value of the compressor rotation speed corresponding to the upper limit value of the refrigerant pressure may be made different so that the upper limit value of the refrigerant pressure or the upper limit value of the compressor rotation speed when an abnormality occurs is smaller than the upper limit value at the normal time.
- the upper limit value of the compressor rotation speed when an abnormality occurs is set to be smaller than the upper limit value of the compressor rotation speed when normal.
- the compressor rotation speed at that time is relatively low, it is not always necessary to immediately reduce the compressor rotation speed, and the rotation speed is lower than that in normal operation.
- the compressor rotation speed may be limited by the upper limit value.
- the distribution of the amount of the refrigerant flowing through the first circulation route L1 and the amount of the refrigerant flowing through the second circulation route L2 may be adjusted based on the battery temperature. Specifically, when a failure occurs in the heat radiation fan 36, the control device 60 flows through the second circulation path L2 and the amount of refrigerant flowing through the first circulation path L1 based on the relationship of FIG. The distribution with the amount of refrigerant (L2 refrigerant amount) is adjusted. In FIG. 8, the distribution ratio is adjusted so that the higher the battery temperature, the less the L2 refrigerant amount relative to the L1 refrigerant amount. It should be noted that this processing may be performed in step S17 of FIG. 3, for example.
- the control mode of the refrigerant circulation in the air conditioning refrigerant circuit 31 may be changed by the following methods. Note that, here, a configuration will be described in which the drive of the compressor 33 is restricted when a failure of the heat radiation fan 36 occurs.
- FIG. 9 the time chart in which the drive of the compressor 33 is restricted when a failure of the heat radiation fan 36 occurs.
- the first method will be explained. As shown in FIG. 9, when the heat dissipation fan 36 fails at timing t11, the refrigerant pressure rises, and at timing t12, the refrigerant pressure rises to the first threshold value TH1. As a result, after the timing t12, the compressor rotation speed is controlled at the limited rotation speed N1. As described above, the first threshold value TH1 is a pressure threshold value determined based on the high-pressure upper limit value within the range that suppresses high-pressure breakage of the refrigerant pipe or the valve opening pressure of the safety valve.
- step S41 in FIG. 10 it is determined whether or not the heat dissipation fan 36 has a failure that causes a stop or an output reduction. If the heat dissipation fan 36 has not failed, the process proceeds to step S42, and the compressor 33 is normally driven.
- step S43 it is determined whether the refrigerant pressure is equal to or higher than the first threshold value TH1. If the refrigerant pressure is equal to or higher than the first threshold value TH1, the process proceeds to step S44, and the compressor rotation speed is limited to the limited rotation speed N1. If the refrigerant pressure is less than the first threshold value TH1, the process proceeds to step S45 and the current drive state of the compressor 33 is maintained. That is, the target rotation speed of the compressor 33 is left as it is (that is, in the normal drive state or the drive limited state).
- the compressor rotation speed is controlled at the limited rotation speed N1, and thereafter, the refrigerant pressure falls and drops to the second threshold value TH2 at the timing t25.
- the limited rotation speed of the compressor 33 is updated to NA2 that is larger than N1 and smaller than NA1 (that is, the rotation speed that has a larger degree of limitation than when TH2 was reached last time). After that, the same processing is repeated as necessary.
- step S51 in FIG. 12 it is determined in step S51 in FIG. 12 whether or not the heat dissipation fan 36 has a failure that causes a stop or an output reduction. If the heat dissipation fan 36 has not failed, the process proceeds to step S52, and the compressor 33 is normally driven.
- step S53 it is determined whether the refrigerant pressure is equal to or higher than the first threshold value TH1. If the refrigerant pressure is equal to or higher than the first threshold value TH1, the process proceeds to step S54, and the compressor rotation speed is limited to the limited rotation speed N1. If the refrigerant pressure is less than the first threshold TH1, the process proceeds to step S55, and it is determined whether the refrigerant pressure is the second threshold TH2 or more. Then, if the refrigerant pressure is equal to or higher than the second threshold value TH2, the process proceeds to step S56, and the current drive state of the compressor 33 is held.
- step S57 the limit rotation speed of the compressor 33 that is higher than the limit rotation speed N1 is set in order to reduce the degree of the drive limit of the compressor 33.
- NA1 and NA2 are set as the limiting rotation speeds, respectively.
- the limiting rotation speed NAi is set according to the number of repetitions i, and the larger the number of repetitions i, the smaller the limiting rotation speed NAi compared to the previous value (that is, It is set to a value with a greater degree of restriction than the previous value).
- the drive limitation of the compressor 33 is started on condition that the refrigerant pressure has risen to the first threshold value TH1.
- the limiting rotation speed of the compressor 33 is gradually updated to a small value (that is, a value having a large limiting degree) while suppressing the refrigerant pressure from exceeding the first threshold value TH1.
- the limited rotation speed set in step S57 of FIG. 12 may be the same rotation speed each time (that is, the rotation speed of the same degree of limitation).
- a configuration may be adopted in which a rotation speed that is not limited is set.
- the change in increase in the refrigerant pressure is monitored at a predetermined time interval ⁇ T, and, for example, at timings t34 and t35, the limiting rotation speed of the compressor 33 is gradually updated to a large value (that is, a value with a small limiting degree).
- the time interval ⁇ T may be a constant time or a gradually decreasing time.
- the update width ⁇ Nx for gradually increasing the limited rotation speed may be a constant value or a value that gradually decreases.
- the speed limit is updated to a small value based on the refrigerant pressure rising to the first threshold value TH1. After that, the same processing is repeated.
- step S61 in FIG. 14 it is determined in step S61 in FIG. 14 whether or not the heat dissipation fan 36 has a failure that causes a stop or an output reduction. If no failure has occurred in the heat radiation fan 36, the process proceeds to step S62, and the compressor 33 is normally driven.
- step S63 it is determined whether the refrigerant pressure is equal to or higher than the first threshold value TH1. If the refrigerant pressure is equal to or higher than the first threshold value TH1, the process proceeds to step S64, and it is determined whether or not the refrigerant pressure becomes equal to or higher than the first threshold value TH1 for the first time after the failure of the heat radiation fan 36 occurs. .. If it is the first time, the process proceeds to step S65, and the compressor rotation speed is limited to the limited rotation speed N1 (timing t32 in FIG. 13). If it is not the first time, the limit rotation speed is reduced by a predetermined value in order to increase the degree of drive limitation of the compressor 33 from the previous value (timing t36 in FIG. 13).
- step S67 If the refrigerant pressure is less than the first threshold TH1, the process proceeds to step S67, and it is determined whether the refrigerant pressure is the second threshold TH2 or more. Then, if the refrigerant pressure is equal to or higher than the second threshold value TH2, the process proceeds to step S68, and after the refrigerant pressure reaches the first threshold value TH1, a predetermined time has elapsed since the last time it was updated to the side in which the speed limit is increased. It is determined whether or not. When the result in step S68 is affirmative, the process proceeds to step S69, and the limit rotation speed is increased by a predetermined value (timings t34 and t35 in FIG. 13).
- step S70 the current drive state of the compressor 33 is held.
- the drive limitation of the compressor 33 is started on condition that the refrigerant pressure rises to the first threshold value TH1.
- the limiting rotation speed of the compressor 33 is gradually updated from the limiting rotation speed N1 having a large degree of limitation to a large value while suppressing the refrigerant pressure from exceeding the first threshold value TH1.
- the abnormality determination in the air conditioning refrigerant circuit 31 it may be configured to determine that the refrigerant leakage is occurring in the air conditioning refrigerant circuit 31.
- the processing procedure of battery cooling in this configuration will be described with reference to FIG.
- the implementation of air conditioning is limited to compensate for the shortage of battery cooling.
- step S81 it is determined whether a refrigerant leak has occurred in the air conditioning refrigerant circuit 31 as an abnormality in the air conditioning refrigerant circuit 31. For example, based on the detection value of the refrigerant pressure sensor 37, the presence/absence of refrigerant leakage abnormality is determined. It is also possible to determine the presence/absence of a refrigerant leakage abnormality based on the detection value of the refrigerant pressure sensor 37 while taking into consideration the driving state of the compressor 33 such as the compressor rotation speed.
- step S81 is denied and the process proceeds to step S82 to drive the compressor 33 normally.
- the control device 60 executes the rotation speed control of the compressor 33 based on the air conditioning request and the battery cooling request.
- step S81 If a refrigerant leakage abnormality has occurred, the affirmative decision is made in step S81 and the operation proceeds to step S83.
- step S83 it is determined whether a battery cooling request has been issued. If the battery cooling request is not generated, the process proceeds to step S85, and the compressor 33 is brought into a non-driving state. At this time, if air conditioning is being performed in response to the air conditioning request at the time when the refrigerant leakage abnormality occurs, the air conditioning is stopped as the drive of the compressor 33 is stopped.
- step S84 it is determined whether the refrigerant pressure is equal to or higher than a predetermined threshold value TH11.
- the threshold value TH11 is, for example, a pressure lower limit value that allows the temperature control unit 52 to cool the battery.
- the threshold value TH11 may be determined based on the relationship between the refrigerant pressure and the heat exchange capacity of the temperature adjustment unit 52. Then, if the refrigerant pressure is less than the threshold value TH11 in step S84, the process proceeds to step S85, and the compressor 33 is brought into a non-driving state. That is, when the refrigerant pressure is excessively reduced, battery cooling becomes impossible, and the drive of the compressor 33 is stopped.
- step S86 the refrigerant pressure is maintained at a pressure equal to or higher than the predetermined pressure Pa by driving the compressor 33 in order to continue the battery cooling even in the situation where the refrigerant leakage abnormality occurs. That is, the control of the refrigerant pressure is performed at a level at which the heat conversion in the temperature adjustment unit 52 is possible.
- the predetermined pressure Pa is a pressure that enables at least the minimum battery cooling, and may be a pressure of “TH11+ ⁇ ” with the threshold TH11 as a reference, for example.
- step S87 it is determined whether or not an air conditioning request is currently made.
- step S87 is positive, the process proceeds to step S88. At this time, if both the air conditioning request and the battery cooling request are generated, step S87 is affirmed. If step S87 is denied, this process ends.
- step S88 it is determined whether or not the current situation is such that the air conditioning request and the battery cooling request are not satisfied even if the output of the compressor 33 is increased. Then, when step S88 is denied, that is, when both requests can be satisfied, the process proceeds to step S90 to activate the air conditioning.
- step S90 in the air conditioning refrigerant circuit 31, the air conditioning is activated by setting the refrigerant to flow in the first circulation path L1 in addition to the second circulation path L2.
- step S88 If step S88 is positive, the process proceeds to step S89.
- step S89 it is determined whether the vehicle speed is equal to or higher than the speed threshold THC. If the result at step S89 is affirmative, the process proceeds to step S90 to activate the air conditioning.
- step S89 If step S89 is denied, the process proceeds to step S91 to stop the air conditioning. At this time, in the air conditioning refrigerant circuit 31, the refrigerant is allowed to flow in the second circulation path L2, and the refrigerant is stopped from flowing in the first circulation path L1. This limits the implementation of air conditioning.
- step S91 If the vehicle speed becomes equal to or higher than the speed threshold value THC under the condition that the air conditioning is stopped in step S91, that is, the step S88 is affirmative and the step S89 is negative, the step S89 is affirmative and the step S90 is affirmative.
- the air conditioning is activated (the restriction on the air conditioning is lifted).
- the degree of air conditioning restriction may be reduced instead of canceling the air conditioning restriction.
- the air conditioning restriction is released or the degree of air conditioning restriction is reduced. Considering that when the vehicle speed is high, heat is dissipated from the condenser 34 by the traveling wind, it is possible to switch from a state in which the air conditioning is stopped to a state in which the air conditioning is performed as the air conditioning restriction.
- the following processing may be performed as a response when a refrigerant leakage abnormality occurs.
- the distribution of the amount of the refrigerant flowing through the first circulation path L1 and the amount of the refrigerant flowing through the second circulation path L2 may be adjusted based on the battery temperature.
- the control device 60 based on the relationship of FIG. 8, the amount of the refrigerant flowing through the first circulation path L1 (L1 refrigerant quantity) and the refrigerant flowing through the second circulation path L2.
- the distribution with the amount (L2 refrigerant amount) is adjusted. Note that this process may be performed in step S91 of FIG. 15, for example.
- FIG. 16 is a flowchart for explaining such processing. This process is performed by the control device 60 at a predetermined cycle.
- step S101 it is determined whether or not one or both of the air conditioning request and the battery cooling request are currently occurring, and in the following step S102, it is determined whether a refrigerant leakage abnormality has occurred. To judge. When both steps S101 and S102 are affirmed, the process proceeds to step S103.
- step S103 it is predicted whether or not both the air-conditioning request and the battery cooling request will occur based on the vehicle traveling prediction after the present time. At this time, when the vehicle is traveling, it is possible to predict that both an air conditioning request and a battery cooling request will occur in the future due to changes in the outside air temperature after the present time and traveling conditions such as high speed traveling. It is also possible to predict that at the time of occurrence of the refrigerant leakage abnormality (abnormality of the air conditioning refrigerant circuit 31), both future air conditioning demand and battery cooling demand cannot be satisfied.
- step S104 surplus air conditioning is performed with respect to the current request before both the air conditioning request and the battery cooling request occur.
- the vehicle interior air conditioning (cooling) is made stronger than at the present time, for example, by lowering the set temperature of the air conditioning. If the air conditioning is not performed, the air conditioning (cooling) is started regardless of whether or not there is a current air conditioning request. It is also possible to estimate the future timing at which both the air conditioning request and the battery cooling request occur based on the vehicle travel prediction, and to start the surplus air conditioning at a timing that is a predetermined time back from the timing.
- the excess air conditioning (excess air conditioning) for the current request is performed to improve the vehicle interior environment.
- the compressor energizing current may be acquired as a control parameter.
- the configuration may be such that the compressor torque or the compressor output is acquired as the control parameter.
- the electric compressor 33 has a structure in which the driving state is controlled by changing the rotation speed, and the driving state is controlled by changing the refrigerant discharge amount per one rotation. It may be configured.
- a mechanical compressor driven by the power of the engine 11 may be used instead of the electric compressor 33.
- the rotating shaft of the compressor is connected to the output shaft of the engine 11 via a connecting member such as a belt, and the compressor is driven as the engine 11 rotates.
- a multistage or continuously variable transmission is provided in the rotation input section of the compressor, and the rotational speed of the compressor can be controlled by controlling the transmission. Then, under the situation where the battery cooling request is generated and it is determined that the abnormality has occurred in the air conditioning refrigerant circuit 31, it is preferable to drive the compressor in a drive limited state (a state in which the rotation speed is limited).
- the on-vehicle electric equipment supplied with power from the battery 51 may be other than the rotating electric machine 21, and may be, for example, a heater for heating the interior of the vehicle, a heater for heating an exhaust purification catalyst, or various auxiliary equipment such as an electric pump. May be
- the vehicle applicable in the present disclosure may be other than a hybrid vehicle, and may be, for example, a vehicle including an internal combustion engine as a traveling power source, an electric vehicle including a rotating electric machine as a traveling power source, or a fuel cell vehicle. Good.
- control unit and the method thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be done.
- control unit and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
- control unit and the method thereof described in the present disclosure are based on a combination of a processor and a memory programmed to execute one or a plurality of functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured.
- the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
This vehicle-mounted cooling system comprises: an air-conditioning refrigerant circuit (31) that is provided with a refrigerant passage (32), a compressor (33), a heat-source-side heat exchanger (34), and a use-side heat exchanger (35); a battery (51); and a battery cooling unit (52) that cools the battery by circulating a refrigerant. The control device (60) controls the driving state of the compressor on the basis of an air conditioning request and a battery cooling request. The control device is provided with: an abnormality determination unit that determines if an abnormality has occurred in the air conditioning refrigerant circuit; and a control mode change unit that changes the control mode of the refrigerant circulation in the air-conditioning refrigerant circuit while continuing to cool the battery with the battery cooling unit under a situation where there is a battery cooling request and it is determined that the abnormality has occurred.
Description
本出願は、2018年11月29日に出願された日本出願番号2018-224234号と、2019年10月29日に出願された日本出願番号2019-196040号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese application No. 2018-224234 filed on November 29, 2018 and Japanese application No. 2019-196040 filed on October 29, 2019, and the description content is here. Is used.
本開示は、車載冷却システムの制御装置、及び車載冷却システムに関するものである。
The present disclosure relates to a control device for a vehicle-mounted cooling system and a vehicle-mounted cooling system.
従来、車室内の空調を行う空調冷媒回路を有する車両において、その空調冷媒回路を循環する冷媒を利用してバッテリを冷却する技術が提案されている。また、バッテリを冷却する冷却システムでの異常発生によりバッテリの冷却が不可になると、バッテリ温度の過上昇に起因するバッテリの劣化が懸念されることから、その対策が提案されている。
Conventionally, in a vehicle having an air-conditioning refrigerant circuit for air-conditioning a vehicle interior, a technology has been proposed for cooling a battery by using a refrigerant circulating in the air-conditioning refrigerant circuit. Further, if the battery cannot be cooled due to the occurrence of an abnormality in the cooling system that cools the battery, there is concern that the battery may deteriorate due to an excessive rise in the battery temperature. Therefore, measures have been proposed.
例えば特許文献1に記載の技術では、電動車両に用いられる車両用熱管理システムにおいて、バッテリ用冷媒によりバッテリを冷却するバッテリ用冷媒ループを設けるとともに、そのバッテリ用冷媒ループに、車室内の空気を車室外に放出する換気用ドラフタ内の空気とバッテリ用冷媒との間で熱交換を行わせる熱交換器を設ける構成としている。また、バッテリ用冷媒ループにおいて、バッテリ用冷媒が熱交換器を流れる状態と、バッテリ用冷媒が熱交換器を迂回する状態とを切替手段により切り替え可能としている。そして、コンプレッサ(圧縮部)がエアコン用冷媒を圧縮することができなくなった場合に、バッテリ用冷媒ループを、バッテリ用冷媒が熱交換器を流れる状態に切り替えることにより、熱交換器によってバッテリ用冷媒の熱をドラフタ内の空気に放出し、これにより、コンプレッサが故障した場合におけるバッテリの温度上昇を抑制するようにしている。
For example, in the technology described in Patent Document 1, in a vehicle thermal management system used for an electric vehicle, a battery refrigerant loop that cools a battery with a battery refrigerant is provided, and air in the vehicle compartment is provided in the battery refrigerant loop. A heat exchanger for exchanging heat between the air in the ventilation drafter discharged to the outside of the vehicle and the refrigerant for the battery is provided. Further, in the battery refrigerant loop, the state in which the battery refrigerant flows through the heat exchanger and the state in which the battery refrigerant bypasses the heat exchanger can be switched by the switching means. When the compressor (compression unit) cannot compress the air-conditioner refrigerant, the battery refrigerant loop is switched to a state in which the battery refrigerant flows through the heat exchanger, whereby the battery refrigerant is cooled by the heat exchanger. Is released to the air in the drafter, thereby suppressing the temperature rise of the battery when the compressor fails.
しかしながら、上記特許文献1の技術は、冷却システムでの異常発生時の対策として、バッテリ用冷媒ループに、換気用ドラフタ内の空気とバッテリ用冷媒との間で熱交換を行わせる熱交換器を設けることを必須とするものであり、部品追加による体格増加を招く等の問題が懸念される。また、冷却システムでの異常としては、コンプレッサでの異常だけでなく空調冷媒回路の各部での異常が想定される。例えば、エアコン用冷媒を凝縮させる凝縮器(コンデンサ)には放熱ファンが設けられており、その放熱ファンの故障時には凝縮器における放熱性能の低下が生じる。こうした放熱ファンの故障などが生じた状態にあっても、バッテリの冷却を継続的に実施することが望まれる。
However, in the technique of Patent Document 1, as a countermeasure when an abnormality occurs in the cooling system, a heat exchanger that causes the battery refrigerant loop to exchange heat between the air in the ventilation drafter and the battery refrigerant is provided. Since it is indispensable to install it, there is a concern that it may cause an increase in physique due to the addition of parts. Further, as the abnormality in the cooling system, not only an abnormality in the compressor but also an abnormality in each part of the air conditioning refrigerant circuit is assumed. For example, a condenser (condenser) for condensing the air conditioner refrigerant is provided with a heat dissipation fan, and when the heat dissipation fan fails, the heat dissipation performance of the condenser deteriorates. It is desired to continuously cool the battery even when such a failure of the heat radiation fan occurs.
本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、構成の簡易化を図りつつ、空調冷媒回路での異常の発生時にバッテリの冷却を適正に実施することができる車載冷却システムの制御装置、及び車載冷却システムを提供することにある。
The present disclosure has been made in view of the above problems, and its main purpose is to provide a vehicle-mounted cooling that can appropriately cool a battery when an abnormality occurs in an air conditioning refrigerant circuit while simplifying the configuration. It is to provide a control device for the system and a vehicle-mounted cooling system.
以下、上記課題を解決するための手段、及びその作用効果について説明する。
The following describes the means for solving the above problems and their effects.
手段1は、
冷媒を循環させる冷媒通路と、前記冷媒を圧縮するコンプレッサと、熱源側熱交換器と、利用側熱交換器とを備える空調冷媒回路と、
車載の電気機器に対して電力を供給するバッテリと、
前記冷媒通路における前記冷媒の循環により前記バッテリを冷却するバッテリ冷却部と、
を備える車載冷却システムに適用され、空調要求及びバッテリ冷却要求に基づいて、前記コンプレッサの駆動状態を制御する制御装置であって、
前記空調冷媒回路で異常が生じていることを判定する異常判定部と、
前記バッテリ冷却要求が生じており、かつ前記異常が生じていると判定された状況下において、前記バッテリ冷却部による前記バッテリの冷却を継続しつつ前記空調冷媒回路での冷媒循環の制御態様を変更する制御態様変更部と、
を備える。 Means 1
An air conditioning refrigerant circuit including a refrigerant passage for circulating a refrigerant, a compressor for compressing the refrigerant, a heat source side heat exchanger, and a use side heat exchanger,
A battery that supplies electric power to in-vehicle electrical equipment,
A battery cooling unit that cools the battery by circulating the refrigerant in the refrigerant passage,
A control device that is applied to a vehicle-mounted cooling system that includes, based on an air conditioning request and a battery cooling request, a control device that controls a driving state of the compressor,
An abnormality determination unit that determines that an abnormality has occurred in the air conditioning refrigerant circuit,
Under the situation where the battery cooling request is generated and it is determined that the abnormality is occurring, the control mode of the refrigerant circulation in the air conditioning refrigerant circuit is changed while continuing the cooling of the battery by the battery cooling unit. A control mode changing unit for
Equipped with.
冷媒を循環させる冷媒通路と、前記冷媒を圧縮するコンプレッサと、熱源側熱交換器と、利用側熱交換器とを備える空調冷媒回路と、
車載の電気機器に対して電力を供給するバッテリと、
前記冷媒通路における前記冷媒の循環により前記バッテリを冷却するバッテリ冷却部と、
を備える車載冷却システムに適用され、空調要求及びバッテリ冷却要求に基づいて、前記コンプレッサの駆動状態を制御する制御装置であって、
前記空調冷媒回路で異常が生じていることを判定する異常判定部と、
前記バッテリ冷却要求が生じており、かつ前記異常が生じていると判定された状況下において、前記バッテリ冷却部による前記バッテリの冷却を継続しつつ前記空調冷媒回路での冷媒循環の制御態様を変更する制御態様変更部と、
を備える。 Means 1
An air conditioning refrigerant circuit including a refrigerant passage for circulating a refrigerant, a compressor for compressing the refrigerant, a heat source side heat exchanger, and a use side heat exchanger,
A battery that supplies electric power to in-vehicle electrical equipment,
A battery cooling unit that cools the battery by circulating the refrigerant in the refrigerant passage,
A control device that is applied to a vehicle-mounted cooling system that includes, based on an air conditioning request and a battery cooling request, a control device that controls a driving state of the compressor,
An abnormality determination unit that determines that an abnormality has occurred in the air conditioning refrigerant circuit,
Under the situation where the battery cooling request is generated and it is determined that the abnormality is occurring, the control mode of the refrigerant circulation in the air conditioning refrigerant circuit is changed while continuing the cooling of the battery by the battery cooling unit. A control mode changing unit for
Equipped with.
車載冷却システムにおいて、例えば放熱ファンの停止故障又は出力低減の故障などに起因して空調冷媒回路の異常が生じた場合に、空調冷媒回路における冷媒の循環が停止されると、冷媒の循環によるバッテリの冷却ができなくなり、バッテリ温度の過上昇が懸念される。この点、上記構成によれば、バッテリ冷却要求が生じており、かつ空調冷媒回路で異常が生じていると判定された状況下において、バッテリ冷却部によるバッテリの冷却を継続しつつ空調冷媒回路での冷媒循環の制御態様が変更される。この場合、空調冷媒回路で異常が発生していても、その異常発生に応じた態様で、冷媒を循環させることができる。その結果、構成の簡易化を図りつつ、空調冷媒回路での異常の発生時にバッテリの冷却を適正に実施することができる。
In an in-vehicle cooling system, when an abnormality of the air conditioning refrigerant circuit occurs due to, for example, a stop failure of a heat dissipation fan or a failure of output reduction, when the circulation of the refrigerant in the air conditioning refrigerant circuit is stopped, the battery is circulated by the refrigerant. Can no longer be cooled and there is concern that the battery temperature will rise excessively. In this respect, according to the above configuration, in the situation where it is determined that the battery cooling request is generated and the abnormality is generated in the air conditioning refrigerant circuit, the battery cooling unit continues to cool the battery and the air conditioning refrigerant circuit operates. The control mode of the refrigerant circulation of is changed. In this case, even if an abnormality occurs in the air-conditioning refrigerant circuit, the refrigerant can be circulated in a mode according to the occurrence of the abnormality. As a result, the battery can be properly cooled when an abnormality occurs in the air conditioning refrigerant circuit while simplifying the configuration.
なお、空調冷媒回路での冷媒循環の制御としては、コンプレッサの駆動制御や、冷媒通路での冷媒循環量を調整する膨張弁等の制御が考えられる。制御態様の変更としては、コンプレッサの回転速度を変更したり、膨張弁による冷媒循環量を変更したりするものが含まれる。
Note that control of the refrigerant circulation in the air-conditioning refrigerant circuit may include drive control of the compressor and control of an expansion valve that adjusts the amount of refrigerant circulation in the refrigerant passage. Changes in the control mode include changes in the rotation speed of the compressor and changes in the refrigerant circulation amount by the expansion valve.
手段2では、手段1において、前記制御態様変更部は、前記制御態様の変更として、前記異常が生じる前に比べて前記冷媒通路での冷媒圧力の上昇を制限する。
In the means 2, in the means 1, the control mode changing unit limits the increase in the refrigerant pressure in the refrigerant passage as compared with the time before the abnormality occurs, as the control mode is changed.
車載冷却システムにおいて空調冷媒回路で異常が生じた場合には、例えば空調冷媒回路の凝縮部(コンデンサ)における放熱性能の低下に伴い冷媒通路内の冷媒圧力が上昇し、冷媒通路を形成する配管の破損等が懸念される。この点、上記構成によれば、バッテリ冷却要求が生じており、かつ空調冷媒回路で異常が生じていると判定された場合に、制御態様の変更として、当該異常が生じる前に比べて冷媒通路での冷媒圧力の上昇が制限される。これにより、空調冷媒回路での異常発生時において、冷媒通路を形成する配管等の保護を行いつつ、バッテリの冷却を継続的に実施することができる。
When an abnormality occurs in the air-conditioning refrigerant circuit in the vehicle-mounted cooling system, for example, the refrigerant pressure in the refrigerant passage increases due to a decrease in heat dissipation performance in the condenser (condenser) of the air-conditioning refrigerant circuit, and the piping forming the refrigerant passage is There is concern about damage. In this respect, according to the above configuration, when a battery cooling request is made and it is determined that an abnormality has occurred in the air conditioning refrigerant circuit, the control mode is changed so that the refrigerant passage is different from that before the abnormality. The rise in refrigerant pressure at is limited. Accordingly, when an abnormality occurs in the air conditioning refrigerant circuit, it is possible to continuously cool the battery while protecting the pipes and the like forming the refrigerant passage.
手段3では、手段1又は2において、前記制御態様変更部は、前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇を制限するものであり、前記冷媒通路内の冷媒圧力が所定の高圧上限値を超える圧力上昇を抑えるべく前記コンプレッサの駆動を制限する。
In the means 3, in the means 1 or 2, the control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as a change of the control mode, and the refrigerant pressure in the refrigerant passage is a predetermined high pressure. The drive of the compressor is limited in order to suppress the pressure increase exceeding the upper limit value.
上記構成によれば、コンプレッサの駆動制限により、冷媒通路内の冷媒圧力が所定の高圧上限値を超える圧力上昇が抑制される。これにより、冷媒通路を形成する配管等の保護を適正に行わせることができる。
According to the above configuration, due to the drive limitation of the compressor, the pressure increase of the refrigerant pressure in the refrigerant passage exceeding the predetermined high pressure upper limit value is suppressed. This makes it possible to properly protect the pipes and the like that form the refrigerant passage.
手段4では、手段2又は3において、前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇が制限される場合に、前記空調冷媒回路による空調の実施を制限する空調制限部を備える。
In the means 4, the means 2 or 3 is provided with an air-conditioning restriction unit that restricts the execution of air conditioning by the air-conditioning refrigerant circuit when the increase in the refrigerant pressure in the refrigerant passage is restricted as a change of the control mode.
上記構成によれば、空調冷媒回路での異常発生に伴い冷媒通路での冷媒圧力の上昇が制限される場合に、空調冷媒回路による空調の実施が制限される。この場合、例えば空調要求とバッテリ冷却要求とが共に生じている状況では、バッテリ冷却要求が優先される。つまり、バッテリの冷却を行うべく、冷媒通路での冷媒の循環が行われる。これにより、バッテリ温度が過上昇することに伴うバッテリの劣化を好適に抑制できる。
According to the above configuration, when the increase in the refrigerant pressure in the refrigerant passage is restricted due to the occurrence of an abnormality in the air conditioning refrigerant circuit, the execution of air conditioning by the air conditioning refrigerant circuit is restricted. In this case, for example, when both the air conditioning request and the battery cooling request are generated, the battery cooling request is prioritized. That is, the coolant is circulated in the coolant passage to cool the battery. Thereby, the deterioration of the battery due to the excessive rise of the battery temperature can be suitably suppressed.
手段5では、手段4において、前記冷媒通路は、前記利用側熱交換器に対して並列に設けられ前記バッテリ冷却部に前記冷媒を供給するバイパス通路を有しており、前記利用側熱交換器を含む第1循環経路と前記利用側熱交換器を含まず前記バイパス通路を含む第2循環経路とのいずれの循環経路で前記冷媒を流す状態とするかの切り替えが可能であり、前記空調制限部は、前記空調の制限として、前記第2循環経路で前記冷媒が流れる状態とし、かつ前記第1循環経路で前記冷媒が流れることを制限する。
In the means 5, in the means 4, the refrigerant passage has a bypass passage which is provided in parallel with the utilization side heat exchanger and supplies the refrigerant to the battery cooling part. It is possible to switch which circulation path of the first circulation path including the first circulation path and the second circulation path that does not include the use-side heat exchanger and includes the bypass passage, in which the refrigerant flows. As a restriction of the air conditioning, the section makes the refrigerant flow in the second circulation path and restricts the refrigerant flow in the first circulation path.
上記構成によれば、空調冷媒回路での異常発生に伴い、バッテリ冷却部での冷却が優先された状態で空調制限が行われる場合に、その空調制限として、バイパス通路(バッテリ冷却部)を含む第2循環経路で冷媒が流れる状態とされ、かつ利用側熱交換器を含む第1循環経路で冷媒が流れることが制限される。この場合、利用側熱交換器での熱交換を抑制することで空調を制限しつつ、バッテリ冷却を好適に実施できる。
According to the above configuration, when the air conditioning restriction is performed in a state where the cooling in the battery cooling section is prioritized due to the occurrence of an abnormality in the air conditioning refrigerant circuit, the bypass path (battery cooling section) is included as the air conditioning restriction. The refrigerant is allowed to flow in the second circulation path, and the refrigerant is restricted from flowing in the first circulation path including the utilization side heat exchanger. In this case, battery cooling can be preferably performed while restricting air conditioning by suppressing heat exchange in the use side heat exchanger.
手段6では、手段5において、前記空調制限部は、前記空調の制限が実施される場合に、前記バッテリの温度に基づいて、前記第1循環経路を流れる冷媒の量と前記第2循環経路を流れる冷媒の量との配分を調整する。
In the means 6, in the means 5, the air conditioning limiting unit controls the amount of the refrigerant flowing through the first circulation path and the second circulation path based on the temperature of the battery when the air conditioning is restricted. Adjust the distribution with the amount of flowing refrigerant.
上記構成によれば、バッテリ冷却として必要となる程度を考慮しつつ、バッテリ冷却だけでなく空調も好適に実施することができる。
According to the above configuration, not only the battery cooling but also the air conditioning can be suitably performed while considering the degree required for battery cooling.
手段7では、手段4乃至6のいずれか1つにおいて、前記空調制限部は、車両の走行速度である車速が所定の速度閾値よりも大きいことに基づいて、前記空調の制限を解除するか、又は前記空調の制限の度合いを小さくする。
In the means 7, in any one of the means 4 to 6, the air conditioning restriction unit releases the restriction of the air conditioning based on that the vehicle speed, which is the traveling speed of the vehicle, is higher than a predetermined speed threshold value. Alternatively, the degree of restriction of the air conditioning is reduced.
車速が大きい場合には、熱源側熱交換器において走行風による熱交換(放熱)が行われることにより、仮に冷媒循環の制御態様の変更としてコンプレッサの駆動制限が実施されていても、バッテリ冷却に加えて空調を実施することが可能となる。この場合、例えば空調制限として空調を停止した状態から、空調を実施する状態への切り替えが可能である。
When the vehicle speed is high, heat is exchanged (radiated) by the running wind in the heat source side heat exchanger, so even if the drive limitation of the compressor is restricted as a change of the control mode of the refrigerant circulation, the battery is cooled. In addition, it becomes possible to perform air conditioning. In this case, for example, it is possible to switch from a state in which the air conditioning is stopped to a state in which the air conditioning is performed as the air conditioning restriction.
手段8では、手段4乃至6のいずれか1つにおいて、前記制御態様変更部は、前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇を制限している状態下で、車両の走行速度である車速が所定の第1速度閾値よりも大きいことに基づいて、前記冷媒圧力の制限の度合いを小さくし、前記空調制限部は、前記車速が前記第1速度閾値よりも大きい第2速度閾値よりも大きいことに基づいて、前記空調の制限の度合いを小さくする。
In the means 8, in any one of the means 4 to 6, the control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as the change of the control mode, and the traveling speed of the vehicle. And the vehicle speed is higher than a predetermined first speed threshold, the degree of restriction of the refrigerant pressure is reduced, and the air conditioning restriction unit uses the second speed threshold where the vehicle speed is higher than the first speed threshold. The degree of restriction of the air conditioning is reduced based on the fact that it is greater than.
上記構成によれば、車速の大きさに応じて、冷媒圧力の制限の度合いを小さくすることと、空調制限の度合いを小さくすることとが実施される。この場合、車速が上昇する際には、先に冷媒圧力の制限の度合いが小さくされ、その後に、空調制限の度合いが小さくされる。したがって、空調冷媒回路での異常発生時には、バッテリ冷却を優先しつつ、適宜の空調の実施が可能となる。
According to the above configuration, the degree of limitation of the refrigerant pressure and the degree of limitation of the air conditioning are reduced according to the vehicle speed. In this case, when the vehicle speed increases, the degree of restriction of the refrigerant pressure is reduced first, and then the degree of air conditioning restriction is reduced. Therefore, when an abnormality occurs in the air conditioning refrigerant circuit, it is possible to perform appropriate air conditioning while prioritizing battery cooling.
手段9では、手段1乃至8のいずれか1つにおいて、前記制御態様変更部は、前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇を制限している状態下で、車両の走行速度である車速が所定の速度閾値よりも大きいことに基づいて、前記冷媒圧力の制限の度合いを小さくする。
In the means 9, in any one of the means 1 to 8, the control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as the change of the control mode, and the traveling speed of the vehicle. Based on the vehicle speed being greater than a predetermined speed threshold value, the degree of restriction of the refrigerant pressure is reduced.
車速が大きい場合には、熱源側熱交換器において走行風による熱交換(放熱)が行われることにより、冷媒圧力の制限の度合いを小さくしてバッテリ冷却の度合いを大きくすることが可能となる。
When the vehicle speed is high, heat is exchanged (radiated) by the running wind in the heat source side heat exchanger, which makes it possible to reduce the degree of refrigerant pressure limitation and increase the degree of battery cooling.
手段10では、手段1乃至9のいずれか1つにおいて、前記バッテリ冷却要求が生じていない状況下において、前記異常が生じていると判定された場合に、現時点以降の車両走行予測に基づいて、前記バッテリ冷却要求が生じる状況になるか否かを予測する予測部を備え、前記制御態様変更部は、前記予測部により前記バッテリ冷却要求が生じる状況になると予測された場合に、前記制御態様の変更を実施する。
In the means 10, in any one of the means 1 to 9, when it is determined that the abnormality occurs in the situation where the battery cooling request is not generated, based on the vehicle traveling prediction after the present time, A predicting unit that predicts whether or not a situation in which the battery cooling request will be generated is provided, and the control mode changing unit, when the predicting unit predicts that the battery cooling request will be in a situation, Make changes.
上記構成によれば、空調冷媒回路での異常発生等において、バッテリ冷却要求が生じていない状況下にあっても、現時点以降のバッテリ冷却の要否に基づいて、予備的にバッテリ冷却を実施できる。この場合、空調冷媒回路で異常が生じている状況下において急激な電気負荷の増大等に伴いバッテリ発熱量が急上昇したとしても、バッテリ温度の上昇を抑制できる。つまり、冷却が不十分となり温度上昇が生じうる場合にも、走行中のバッテリ温度の過上昇を抑制できる。これにより、バッテリの保護を図ることができる。
According to the above configuration, even if the battery cooling request is not generated due to the occurrence of an abnormality in the air conditioning refrigerant circuit or the like, preliminary battery cooling can be performed based on the necessity of battery cooling after the present time. .. In this case, even if the amount of heat generated by the battery suddenly increases due to a sudden increase in electric load or the like in a situation where an abnormality has occurred in the air-conditioning refrigerant circuit, the increase in battery temperature can be suppressed. That is, even when the cooling is insufficient and the temperature may rise, it is possible to suppress the excessive rise of the battery temperature during traveling. This can protect the battery.
手段11では、手段10において、前記電気機器は、車両走行のための動力源となる回転電機であり、前記予測部は、車両の走行目的地に基づいて、前記バッテリ冷却要求が生じる状況になるか否かを予測する。
In the means 11, in the means 10, the electric device is a rotating electric machine that serves as a power source for traveling the vehicle, and the predicting unit is in a situation where the battery cooling request is generated based on the traveling destination of the vehicle. Predict whether or not.
例えば車両の走行目的地が遠い場合には、近い場合に比べて回転電機の駆動負荷が高くなり、バッテリの温度上昇が生じる可能性が高くなると考えられる。また、走行目的地までの走行経路に上り坂路が含まれる場合には、やはり回転電機の駆動負荷が高くなり、バッテリの温度上昇が生じる可能性が高くなると考えられる。この場合、車両の走行目的地に基づいて、バッテリ冷却要求が生じる状況になるか否かを予測することで、走行負荷の急変に伴うバッテリ温度の上昇にも好適に対処できる。
For example, when the traveling destination of the vehicle is far, the driving load of the rotating electric machine is higher than when the destination is near, and the temperature of the battery is likely to rise. In addition, when the traveling route to the traveling destination includes an uphill road, the driving load of the rotating electric machine also increases, and the temperature of the battery is likely to rise. In this case, by predicting whether or not the battery cooling request will be generated based on the traveling destination of the vehicle, it is possible to preferably cope with the rise in the battery temperature due to the sudden change in the traveling load.
手段12では、手段10又は11において、前記制御態様変更部は、前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇を制限するものであり、前記バッテリ冷却要求が生じる状況になると予測されたことに基づき前記冷媒圧力の制限を行う場合に、実際に前記バッテリ冷却要求が生じていることに基づき前記冷媒圧力の制限を行う場合に比べて、前記冷媒圧力の制限の度合いを大きくする。
In the means 12, in the means 10 or 11, the control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as the change of the control mode, and it is predicted that the battery cooling request will be generated. When the refrigerant pressure is limited based on this, the degree of restriction of the refrigerant pressure is increased as compared with the case where the refrigerant pressure is limited based on the fact that the battery cooling request is actually generated.
上記構成によれば、バッテリ冷却要求が生じる状況になると予測された場合において、冷媒通路での冷媒圧力の制限の度合いを大きくすることにより、例えばコンプレッサ回転速度が低回転で制限され、バッテリ冷却の度合いが小さくされる。この場合、バッテリ冷却を過剰に実施することや、空調制限を過剰に実施することを抑制しつつ、バッテリ冷却を適度に実施することができる。
According to the above configuration, when it is predicted that a battery cooling request will be generated, by increasing the degree of restriction of the refrigerant pressure in the refrigerant passage, for example, the compressor rotation speed is limited to low rotation, and battery cooling is reduced. The degree is reduced. In this case, battery cooling can be appropriately performed while suppressing excessive battery cooling and excessive air conditioning restriction.
手段13では、手段1において、前記制御態様変更部は、前記制御態様の変更として前記空調冷媒回路による空調の実施を制限する空調制限部を備える。
In the means 13, in the means 1, the control mode changing unit includes an air conditioning restricting unit that restricts execution of air conditioning by the air conditioning refrigerant circuit as a change of the control mode.
仮に空調冷媒回路での異常として冷媒漏れが生じている場合には、空調冷媒回路での熱変換の能力が低下することが考えられるが、空調の実施を制限することで、バッテリ冷却の不足分を補うことができる。これにより、異常発生時において極力適正な状態でのバッテリ冷却を実施できる。
If a refrigerant leak occurs as an abnormality in the air-conditioning refrigerant circuit, the heat conversion capacity in the air-conditioning refrigerant circuit may be reduced. Can be supplemented. As a result, the battery can be cooled in the most appropriate state when an abnormality occurs.
手段14では、手段13において、前記空調制限部は、前記空調要求及び前記バッテリ冷却要求が生じており、かつ前記異常が生じていると判定された状況下において、前記コンプレッサの出力を増加させても前記空調要求及び前記バッテリ冷却要求が満たされないことを条件に、前記空調の実施を制限する。
In the means 14, in the means 13, the air conditioning limiting unit increases the output of the compressor under the situation where the air conditioning request and the battery cooling request are generated and the abnormality is determined to occur. Also restricts the execution of the air conditioning on the condition that the air conditioning request and the battery cooling request are not satisfied.
この場合、空調要求及びバッテリ冷却要求が生じる状況とコンプレッサ駆動の状態とを考慮することで、バッテリ冷却を継続しつつ適正な空調制限を実施することができる。
In this case, by considering the situation where the air conditioning request and the battery cooling request occur and the compressor driving state, it is possible to implement the appropriate air conditioning restriction while continuing the battery cooling.
手段15では、手段14において、前記空調要求及び前記バッテリ冷却要求の一方又は両方が生じていない状況下において、前記異常が生じていると判定された場合に、現時点以降の車両走行予測に基づいて、前記空調要求及び前記バッテリ冷却要求の両方が生じる状況になるか否かを予測する予測部を備え、前記制御態様変更部は、前記予測部により前記空調要求及び前記バッテリ冷却要求の両方が生じる状況になると予測された場合に、前記空調要求及び前記バッテリ冷却要求の両方が生じる前に、現時点の要求に対して余剰となる前記空調を実施する。
In the means 15, when it is determined in the means 14 that one or both of the air conditioning request and the battery cooling request have not occurred, the abnormality is determined, based on the vehicle traveling prediction after the current time point. A prediction unit that predicts whether or not both the air conditioning request and the battery cooling request will occur, and the control mode changing unit causes the prediction unit to generate both the air conditioning request and the battery cooling request. When it is predicted that the situation will occur, the surplus air conditioning for the current request is performed before both the air conditioning request and the battery cooling request occur.
車両走行時には、現時点以降の外気温度の変化や、高速走行などの走行条件により、将来的に空調要求及びバッテリ冷却要求の両方が生じることを予測することができる。また、空調冷媒回路の異常発生の時点で、将来の空調要求及びバッテリ冷却要求の両方を満たすことができなくなることも予測できる。この場合、空調要求及びバッテリ冷却要求の両方が生じる前に、現時点の要求に対して余剰となる空調(余剰空調)を実施することで、車室環境の良化を図ることができる。
When the vehicle is running, it can be predicted that both air conditioning demand and battery cooling demand will occur in the future due to changes in the outside air temperature from the present time onward and running conditions such as high-speed running. Further, it can be predicted that, at the time of occurrence of an abnormality in the air conditioning refrigerant circuit, it becomes impossible to satisfy both the future air conditioning request and the battery cooling request. In this case, before the air-conditioning request and the battery cooling request both occur, the surplus air-conditioning (excessive air-conditioning) is performed for the current request, so that the vehicle interior environment can be improved.
手段16では、手段13乃至15のいずれか1つにおいて、前記冷媒通路は、前記利用側熱交換器に対して並列に設けられ前記バッテリ冷却部に前記冷媒を供給するバイパス通路を有しており、前記利用側熱交換器を含む第1循環経路と前記利用側熱交換器を含まず前記バイパス通路を含む第2循環経路とのいずれの循環経路で前記冷媒を流す状態とするかの切り替えが可能であり、前記空調制限部は、前記空調の制限として、前記第2循環経路で前記冷媒が流れる状態とし、かつ前記第1循環経路で前記冷媒が流れることを制限する。
In the means 16, in any one of the means 13 to 15, the refrigerant passage has a bypass passage which is provided in parallel with the utilization side heat exchanger and which supplies the refrigerant to the battery cooling part. Switching between which of the first circulation path including the use-side heat exchanger and the second circulation path including the bypass passage that does not include the use-side heat exchanger can be switched to the state in which the refrigerant flows. It is possible that the air-conditioning restriction unit limits the air-conditioning so that the refrigerant flows in the second circulation path and restricts the refrigerant flowing in the first circulation path.
上記構成によれば、空調冷媒回路での異常発生に伴い、バッテリ冷却部での冷却が優先された状態で空調制限が行われる場合に、その空調制限として、バイパス通路(バッテリ冷却部)を含む第2循環経路で冷媒が流れる状態とされ、かつ利用側熱交換器を含む第1循環経路で冷媒が流れることが制限される。この場合、利用側熱交換器での熱交換を抑制することで空調を制限しつつ、バッテリ冷却を好適に実施できる。
According to the above configuration, when the air conditioning restriction is performed in a state where the cooling in the battery cooling section is prioritized due to the occurrence of an abnormality in the air conditioning refrigerant circuit, the bypass path (battery cooling section) is included as the air conditioning restriction. The refrigerant is allowed to flow in the second circulation path, and the refrigerant is restricted from flowing in the first circulation path including the utilization side heat exchanger. In this case, battery cooling can be preferably performed while restricting air conditioning by suppressing heat exchange in the use side heat exchanger.
手段17では、手段16において、前記空調制限部は、前記空調の制限が実施される場合に、前記バッテリの温度に基づいて、前記第1循環経路を流れる冷媒の量と前記第2循環経路を流れる冷媒の量との配分を調整する。
In the means 17, in the means 16, the air conditioning restriction unit determines the amount of the refrigerant flowing through the first circulation path and the second circulation path based on the temperature of the battery when the air conditioning is restricted. Adjust the distribution with the amount of flowing refrigerant.
上記構成によれば、バッテリ冷却として必要となる程度を考慮しつつ、バッテリ冷却だけでなく空調も好適に実施することができる。
According to the above configuration, not only the battery cooling but also the air conditioning can be suitably performed while considering the degree required for battery cooling.
手段18では、手段13乃至17のいずれか1つにおいて、前記空調制限部は、車両の走行速度である車速が所定の速度閾値よりも大きいことに基づいて、前記空調の制限を解除するか、又は前記空調の制限の度合いを小さくする。
In the means 18, in any one of the means 13 to 17, the air conditioning limiting unit releases the air conditioning limitation based on that the vehicle speed, which is the traveling speed of the vehicle, is higher than a predetermined speed threshold value. Alternatively, the degree of restriction of the air conditioning is reduced.
車速が大きい場合には、熱源側熱交換器において走行風による熱交換(放熱)が行われることにより、仮に冷媒循環の制御態様の変更としてコンプレッサの駆動制限が実施されていても、バッテリ冷却に加えて空調を実施することが可能となる。この場合、例えば空調制限として空調を停止した状態から、空調を実施する状態への切り替えが可能である。
When the vehicle speed is high, heat is exchanged (radiated) by the running wind in the heat source side heat exchanger, so even if the drive limitation of the compressor is restricted as a change of the control mode of the refrigerant circulation, the battery is cooled. In addition, it becomes possible to perform air conditioning. In this case, for example, it is possible to switch from a state in which the air conditioning is stopped to a state in which the air conditioning is performed as the air conditioning restriction.
手段19では、手段1乃至18のいずれか1つにおいて、前記コンプレッサの駆動状態、又は前記冷媒通路内の冷媒圧力を制御パラメータとして取得するパラメータ取得部を備え、前記制御態様変更部は、前記異常の発生後における前記制御パラメータに基づいて、前記制御態様を変更する。
Means 19 includes a parameter acquisition unit for acquiring the drive state of the compressor or the refrigerant pressure in the refrigerant passage as a control parameter in any one of the means 1 to 18, and the control mode changing unit is the abnormal condition. The control mode is changed based on the control parameter after the occurrence of.
空調冷媒回路で異常が生じた場合には、空調冷媒回路の正常時と比べて、熱源側熱交換器での熱交換の状態(放熱状態)が異なることになり、コンプレッサの駆動状態や冷媒通路内の冷媒圧力に変化が生じる。この場合、コンプレッサの駆動状態、又は冷媒通路内の冷媒圧力を示す制御パラメータに基づいて、空調冷媒回路での異常発生後における冷媒圧力の変化を把握して、空調冷媒回路での冷媒循環の制御態様を変更することにより、コンプレッサの駆動状態、ひいては冷媒圧力の大きさに応じて、バッテリ冷却を適宜に実施することができる。
When an abnormality occurs in the air conditioning refrigerant circuit, the heat exchange state (heat dissipation state) in the heat source side heat exchanger differs from that in the normal state of the air conditioning refrigerant circuit, and the drive state of the compressor and the refrigerant passage A change occurs in the refrigerant pressure inside. In this case, on the basis of the drive condition of the compressor or the control parameter indicating the refrigerant pressure in the refrigerant passage, the change in the refrigerant pressure after the occurrence of the abnormality in the air conditioning refrigerant circuit is grasped and the control of the refrigerant circulation in the air conditioning refrigerant circuit is performed. By changing the mode, battery cooling can be appropriately performed according to the driving state of the compressor, and thus the magnitude of the refrigerant pressure.
手段20では、手段1乃至19のいずれか1つにおいて、前記異常判定部は、前記空調冷媒回路において前記熱源側熱交換器に送風を行う放熱ファンが停止又は出力低減となる異常、前記熱源側熱交換器での目詰まりによる放熱異常、前記空調冷媒回路での冷媒漏れ異常の少なくともいずれかが生じていることに基づいて、前記空調冷媒回路で異常が生じていることを判定する。
In the means 20, in any one of the means 1 to 19, the abnormality determining unit is configured such that the abnormality determination unit stops the radiating fan that blows air to the heat source side heat exchanger in the air conditioning refrigerant circuit or reduces the output, the heat source side. It is determined that an abnormality has occurred in the air conditioning refrigerant circuit based on at least one of heat radiation abnormality due to clogging in the heat exchanger and refrigerant leakage abnormality in the air conditioning refrigerant circuit.
空調冷媒回路で生じる異常の要因としては、放熱ファンが停止又は出力低減となる故障が生じていることや、熱源側熱交換器での目詰まりによる放熱異常が生じていること、空調冷媒回路での冷媒漏れ異常が生じていることが考えられる。したがって、これらを要因とする異常が生じていることに基づいて、空調冷媒回路での異常発生を判定することで、異常発生を適正に把握し、ひいては当該異常時においてバッテリの冷却を好適に実施することができる。
The causes of abnormalities in the air conditioning refrigerant circuit are that the heat dissipation fan has stopped or the output is reduced, and that there is heat dissipation abnormality due to clogging of the heat source side heat exchanger. It is conceivable that there is a refrigerant leakage abnormality. Therefore, by determining the occurrence of an abnormality in the air conditioning refrigerant circuit based on the occurrence of an abnormality caused by these factors, it is possible to properly understand the occurrence of the abnormality, and to appropriately perform the battery cooling at the time of the abnormality. can do.
前記空調冷媒回路と、前記バッテリと、前記バッテリ冷却部と、手段1乃至20のいずれか1つに記載の制御装置と、を備える車載冷却システムにおいて、構成の簡易化を図りつつ、空調冷媒回路での異常発生時にバッテリの冷却を適正に実施することができる。
In an in-vehicle cooling system including the air conditioning refrigerant circuit, the battery, the battery cooling unit, and the control device according to any one of means 1 to 20, while simplifying the configuration, the air conditioning refrigerant circuit The battery can be properly cooled when an abnormality occurs in the.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両において冷却水回路と空調冷媒回路とを示す構成図であり、
図2は、バッテリ冷却に関する電気的な構成を示すブロック図であり、
図3は、バッテリ冷却の処理手順を示すフローチャートであり、
図4は、冷媒圧力とコンプレッサ回転速度との関係を示す図であり、
図5は、(a)は車速と回転速度補正値ΔN1との関係を示す図、(b)は車速と回転速度補正値ΔN2との関係を示す図であり、
図6は、バッテリ冷却処理をより具体的に説明するためのタイムチャートであり、
図7は、第2実施形態におけるバッテリ冷却の処理手順を示すフローチャートであり、
図8は、第1循環経路を流れる冷媒の量と第2循環経路を流れる冷媒の量との配分比率を示す図であり、
図9は、別例においてバッテリ冷却処理を具体的に説明するためのタイムチャートであり、
図10は、別例においてバッテリ冷却の処理手順を示すフローチャートであり、
図11は、別例においてバッテリ冷却処理を具体的に説明するためのタイムチャートであり、
図12は、別例においてバッテリ冷却の処理手順を示すフローチャートであり、
図13は、別例においてバッテリ冷却処理を具体的に説明するためのタイムチャートであり、
図14は、別例においてバッテリ冷却の処理手順を示すフローチャートであり、
図15は、別例においてバッテリ冷却の処理手順を示すフローチャートであり、
図16は、別例においてバッテリ冷却の処理手順を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a configuration diagram showing a cooling water circuit and an air conditioning refrigerant circuit in a vehicle, FIG. 2 is a block diagram showing an electrical configuration relating to battery cooling, FIG. 3 is a flowchart showing a procedure for battery cooling, FIG. 4 is a diagram showing the relationship between the refrigerant pressure and the compressor rotation speed, 5A is a diagram showing the relationship between the vehicle speed and the rotation speed correction value ΔN1, and FIG. 5B is a diagram showing the relationship between the vehicle speed and the rotation speed correction value ΔN2. FIG. 6 is a time chart for explaining the battery cooling process more specifically, FIG. 7 is a flowchart showing a battery cooling process procedure according to the second embodiment. FIG. 8 is a diagram showing a distribution ratio between the amount of the refrigerant flowing through the first circulation path and the amount of the refrigerant flowing through the second circulation path, FIG. 9 is a time chart for specifically explaining the battery cooling process in another example, FIG. 10 is a flowchart showing a processing procedure of battery cooling in another example, FIG. 11 is a time chart for specifically explaining the battery cooling process in another example, FIG. 12 is a flowchart showing a processing procedure of battery cooling in another example, FIG. 13 is a time chart for specifically explaining the battery cooling process in another example, FIG. 14 is a flowchart showing a processing procedure of battery cooling in another example, FIG. 15 is a flowchart showing a processing procedure of battery cooling in another example, FIG. 16 is a flowchart showing a processing procedure of battery cooling in another example.
(第1実施形態)
以下、実施形態を図面に基づいて説明する。本実施形態は、動力源としてエンジン(内燃機関)と回転電機とを有するハイブリッド車両において、回転電機に対して電力を供給するバッテリを冷却する車載冷却システムとして具現化されるものとなっている。周知のとおりハイブリッド車両では、例えば、車両走行状態に基づいて、エンジンを走行動力源として走行するエンジンモードと、回転電機を走行動力源として走行するEVモードと、エンジン及び回転電機を走行動力源として走行するHVモードとの切り替えが可能となっている。 (First embodiment)
Embodiments will be described below with reference to the drawings. The present embodiment is embodied as a vehicle-mounted cooling system that cools a battery that supplies electric power to a rotating electric machine in a hybrid vehicle that has an engine (internal combustion engine) and a rotating electric machine as power sources. As is well known, in a hybrid vehicle, for example, based on the vehicle running state, an engine mode in which an engine is used as a running power source, an EV mode in which a rotating electrical machine is used as a running power source, and an engine and a rotating electrical machine are used as running power sources. It is possible to switch to the running HV mode.
以下、実施形態を図面に基づいて説明する。本実施形態は、動力源としてエンジン(内燃機関)と回転電機とを有するハイブリッド車両において、回転電機に対して電力を供給するバッテリを冷却する車載冷却システムとして具現化されるものとなっている。周知のとおりハイブリッド車両では、例えば、車両走行状態に基づいて、エンジンを走行動力源として走行するエンジンモードと、回転電機を走行動力源として走行するEVモードと、エンジン及び回転電機を走行動力源として走行するHVモードとの切り替えが可能となっている。 (First embodiment)
Embodiments will be described below with reference to the drawings. The present embodiment is embodied as a vehicle-mounted cooling system that cools a battery that supplies electric power to a rotating electric machine in a hybrid vehicle that has an engine (internal combustion engine) and a rotating electric machine as power sources. As is well known, in a hybrid vehicle, for example, based on the vehicle running state, an engine mode in which an engine is used as a running power source, an EV mode in which a rotating electrical machine is used as a running power source, and an engine and a rotating electrical machine are used as running power sources. It is possible to switch to the running HV mode.
図1は、車両10においてエンジン11や回転電機21を冷却する冷却水回路12,22と、空調用冷媒による空調冷媒回路31とを示す構成図である。本実施形態では、回転電機21が車載電気機器に相当する。
FIG. 1 is a configuration diagram showing cooling water circuits 12 and 22 for cooling an engine 11 and a rotating electric machine 21 in a vehicle 10, and an air conditioning refrigerant circuit 31 using an air conditioning refrigerant. In the present embodiment, the rotary electric machine 21 corresponds to an in-vehicle electric device.
図1に示すように、車両10は、冷却水による冷却系統として、エンジン11を冷却する第1冷却水回路12と、回転電機21を冷却する第2冷却水回路22とを有している。第1冷却水回路12は、エンジン冷却水を循環させる冷却水通路13と、その冷却水通路13に設けられた冷却水ポンプ14及びラジエータ15とを有している。また、第2冷却水回路22は、モータ冷却水を循環させる冷却水通路23と、その冷却水通路23に設けられた冷却水ポンプ24及びラジエータ25とを有している。なお、第2冷却水回路22は、主にバッテリ電力により回転電機21を駆動させるインバータを冷却するものであるとよい。ただし、インバータに加えて、回転電機本体における電機子巻線等の発熱部を冷却するものであってもよい。
As shown in FIG. 1, the vehicle 10 has a first cooling water circuit 12 that cools the engine 11 and a second cooling water circuit 22 that cools the rotating electric machine 21 as a cooling water cooling system. The first cooling water circuit 12 has a cooling water passage 13 for circulating engine cooling water, a cooling water pump 14 and a radiator 15 provided in the cooling water passage 13. The second cooling water circuit 22 also has a cooling water passage 23 for circulating the motor cooling water, a cooling water pump 24 and a radiator 25 provided in the cooling water passage 23. Note that the second cooling water circuit 22 may cool the inverter that drives the rotary electric machine 21 mainly by battery power. However, in addition to the inverter, the heat generating portion such as the armature winding in the rotating electric machine body may be cooled.
また、車両10において、空調冷媒回路31は、フロン系冷媒等の冷媒を循環させる冷媒通路32と、冷媒を圧縮する電動式のコンプレッサ33と、冷媒を冷却して液化させる凝縮器34(コンデンサ)と、冷媒を気化させる蒸発器35(エバポレータ)とを備えている。また、空調冷媒回路31において、凝縮器34には、凝縮器34での放熱のための送風を行う放熱ファン36が設けられている。凝縮器34が「熱源側熱交換器」に相当し、蒸発器35が「利用側熱交換器」に相当する。冷媒通路32において、凝縮器34の下流側には膨張弁38が設けられていてもよい。また、冷媒通路32には、冷媒圧力を検出する冷媒圧センサ37が設けられている。
In the vehicle 10, the air conditioning refrigerant circuit 31 includes a refrigerant passage 32 for circulating a refrigerant such as a CFC-based refrigerant, an electric compressor 33 for compressing the refrigerant, and a condenser 34 (condenser) for cooling and liquefying the refrigerant. And an evaporator 35 (evaporator) that vaporizes the refrigerant. Further, in the air conditioning refrigerant circuit 31, the condenser 34 is provided with a heat radiation fan 36 that blows air for heat radiation in the condenser 34. The condenser 34 corresponds to a “heat source side heat exchanger”, and the evaporator 35 corresponds to a “use side heat exchanger”. An expansion valve 38 may be provided on the downstream side of the condenser 34 in the refrigerant passage 32. A refrigerant pressure sensor 37 that detects the refrigerant pressure is provided in the refrigerant passage 32.
なお、上述した各冷却水回路12,22においてラジエータ15,25を放熱部ユニットとして一体化した構成や、これらラジエータ15,25に加えて凝縮器34を放熱部ユニットとして一体化した構成とすることも可能であり、放熱ファン36は、これらの放熱部ユニットでの放熱を行うものであってもよい。
In addition, in each of the cooling water circuits 12 and 22 described above, the radiators 15 and 25 are integrated as a heat radiation unit, or the condensers 34 are integrated as a heat radiation unit in addition to the radiators 15 and 25. The heat radiation fan 36 may radiate heat in these heat radiation unit units.
本実施形態において、空調冷媒回路31は、車室内の空調(冷暖房)だけでなく、車載の電気機器に対して電力を供給するバッテリ51の冷却を行うものとして設けられている。車載の電気機器には回転電機21が含まれる。バッテリ51は、バッテリパック50の一部として設けられており、そのバッテリパック50には、バッテリ温度を調整する温調ユニット52が設けられている。温調ユニット52は、冷媒通路32における冷媒の循環によりバッテリ51を冷却するバッテリ冷却部に相当し、例えば冷媒の熱変換によりバッテリ51を冷却する熱変換部を有している。
In the present embodiment, the air conditioning refrigerant circuit 31 is provided not only for air conditioning (cooling/heating) of the vehicle interior but also for cooling the battery 51 that supplies electric power to the vehicle-mounted electric equipment. The electric device mounted on the vehicle includes the rotating electric machine 21. The battery 51 is provided as a part of the battery pack 50, and the battery pack 50 is provided with a temperature adjustment unit 52 that adjusts the battery temperature. The temperature adjustment unit 52 corresponds to a battery cooling unit that cools the battery 51 by circulating the refrigerant in the refrigerant passage 32, and has, for example, a heat conversion unit that cools the battery 51 by heat conversion of the refrigerant.
バッテリ冷却に関する構成として具体的には、冷媒通路32は、コンプレッサ33の上流側において蒸発器35に並列となるバイパス通路41を有しており、そのバイパス通路41に、バッテリパック50の温調ユニット52が設けられている。また、冷媒通路32には電磁弁42が設けられており、この電磁弁42により、蒸発器35を含む第1循環経路L1と蒸発器35を含まずバイパス通路41を含む第2循環経路L2とのいずれの循環経路で冷媒を流す状態とするかの切り替えが可能となっている。これにより、冷媒通路32は、第1循環経路L1のみで冷媒が流れる状態と、第2循環経路L2のみで冷媒が流れる状態と、第1循環経路L1及び第2循環経路L2で冷媒が流れる状態との切り替えが可能となっている。
Specifically, as a configuration related to battery cooling, the refrigerant passage 32 has a bypass passage 41 in parallel with the evaporator 35 on the upstream side of the compressor 33, and the temperature adjustment unit of the battery pack 50 is provided in the bypass passage 41. 52 is provided. An electromagnetic valve 42 is provided in the refrigerant passage 32, and by the electromagnetic valve 42, a first circulation path L1 including the evaporator 35 and a second circulation path L2 including the bypass passage 41 not including the evaporator 35 are provided. It is possible to switch which of the above circulation paths is used to flow the refrigerant. Accordingly, in the refrigerant passage 32, a state in which the refrigerant flows only in the first circulation path L1, a state in which the refrigerant flows only in the second circulation path L2, and a state in which the refrigerant flows in the first circulation path L1 and the second circulation path L2. It is possible to switch between and.
バッテリ冷却が行われる場合には、第2循環経路L2のみで冷媒が流れる状態か、又は第1循環経路L1及び第2循環経路L2で冷媒が流れる状態とされることで、バイパス通路41を通って冷媒が循環する。そしてこの場合、温調ユニット52での熱交換によりバッテリ51が冷却される。なお、温調ユニット52は、冷却水等の熱流体を循環させる循環通路を有するチラーにて構成されていてもよく、例えば、バイパス通路41上に設けられた蒸発器と、その蒸発器との熱交換により冷却される熱流体(冷却水等)を循環させる循環通路とを有し、循環経路を循環する熱流体によりバッテリ51を冷却する構成であってもよい。
When the battery is cooled, the refrigerant flows only through the second circulation path L2 or the refrigerant flows through the first circulation path L1 and the second circulation path L2 so that the refrigerant flows through the bypass passage 41. The refrigerant circulates. In this case, the battery 51 is cooled by heat exchange in the temperature control unit 52. The temperature control unit 52 may be composed of a chiller having a circulation passage for circulating a heat fluid such as cooling water. For example, an evaporator provided on the bypass passage 41 and the evaporator. The battery 51 may be cooled by a circulation passage that circulates a thermal fluid (cooling water or the like) that is cooled by heat exchange, and the thermal fluid that circulates in the circulation path.
図2は、バッテリ冷却に関する電気的な構成を示すブロック図である。図2において、制御装置60は、周知のとおりCPUや各種メモリを有するマイクロコンピュータを備えており、各種センサからの入力信号等に基づいて、コンプレッサ33や放熱ファン36、電磁弁42の駆動を制御する。センサには、冷媒圧センサ37の他に、外気温度を検出する外気温センサ61、車室内温度を検出する車室温度センサ62、コンプレッサ33の回転速度を検出する回転速度センサ63、バッテリ温度を検出するバッテリ温度センサ64、コンプレッサ33に流れる電流を検出する電流センサ65、車両10の速度(車速)を検出する車速センサ66等が含まれている。
FIG. 2 is a block diagram showing an electrical configuration relating to battery cooling. In FIG. 2, the control device 60 includes a microcomputer having a CPU and various memories, as is well known, and controls driving of the compressor 33, the heat radiation fan 36, and the solenoid valve 42 based on input signals from various sensors. To do. In addition to the refrigerant pressure sensor 37, the sensors include an outside air temperature sensor 61 that detects the outside air temperature, a vehicle interior temperature sensor 62 that detects the vehicle interior temperature, a rotation speed sensor 63 that detects the rotation speed of the compressor 33, and a battery temperature. A battery temperature sensor 64 for detecting, a current sensor 65 for detecting a current flowing through the compressor 33, a vehicle speed sensor 66 for detecting the speed (vehicle speed) of the vehicle 10 and the like are included.
制御装置60は、空調要求及びバッテリ冷却要求に基づいて、コンプレッサ33の駆動状態を制御する。すなわち、制御装置60は、空調要求が生じている場合に、外気温や車室内温度、設定温度、設定風量といった空調制御パラメータに基づいて、コンプレッサ33の回転速度制御を実施する。また、制御装置60は、バッテリ冷却要求が生じている場合に、バッテリ温度に基づいて、コンプレッサ33の回転速度制御を実施する。このとき、制御装置60は、空調制御パラメータやバッテリ温度に基づいて、コンプレッサ33の目標回転速度を設定し、回転速度センサ63により検出された実回転速度が目標回転速度に一致するようにフィードバック制御を実施するとよい。
The control device 60 controls the drive state of the compressor 33 based on the air conditioning request and the battery cooling request. That is, the control device 60 performs the rotation speed control of the compressor 33 based on the air conditioning control parameters such as the outside air temperature, the vehicle interior temperature, the set temperature, and the set air volume when the air conditioning request is made. Further, the controller 60 controls the rotation speed of the compressor 33 based on the battery temperature when the battery cooling request is generated. At this time, the control device 60 sets the target rotation speed of the compressor 33 based on the air conditioning control parameter and the battery temperature, and performs feedback control so that the actual rotation speed detected by the rotation speed sensor 63 matches the target rotation speed. Should be implemented.
また、制御装置60は、空調要求及びバッテリ冷却要求に応じたコンプレッサ33の駆動時において、放熱ファン36を駆動させることで、凝縮器34での放熱状態を制御する。このとき、放熱ファン36では、駆動状態のオンオフが制御される。又は、放熱ファン36の駆動状態が複数段階(例えば低中高の3段階)で調整可能となっている構成では、放熱ファン36の駆動状態が複数段階のいずれかで制御される。
Further, the control device 60 controls the heat radiation state in the condenser 34 by driving the heat radiation fan 36 when the compressor 33 is driven in response to the air conditioning request and the battery cooling request. At this time, the heat radiation fan 36 controls on/off of the driving state. Alternatively, in a configuration in which the driving state of the heat radiation fan 36 can be adjusted in a plurality of stages (for example, three stages of low, middle, and high), the driving state of the heat radiation fan 36 is controlled in one of a plurality of stages.
ところで、車載冷却システムにおいて、空調冷媒回路31での異常として、例えば放熱ファン36の停止故障又は出力低減の故障が生じると、空調冷媒回路31の凝縮器34における放熱性能の低下に伴い冷媒通路32内の冷媒圧力が上昇する。このとき、冷媒通路32を構成する冷媒配管での冷媒圧力の過上昇を抑制すべく、コンプレッサ33の駆動を停止することが考えられる。ただし、コンプレッサ33の駆動を停止すると、冷媒の循環によるバッテリ51の冷却ができなくなり、バッテリ温度の過上昇が懸念される。
By the way, in the vehicle-mounted cooling system, when an abnormality in the air conditioning refrigerant circuit 31, for example, a stop failure of the heat radiating fan 36 or a failure of output reduction occurs, the refrigerant passage 32 is deteriorated due to a decrease in heat radiation performance of the condenser 34 of the air conditioning refrigerant circuit 31. The refrigerant pressure inside rises. At this time, it is conceivable to stop the driving of the compressor 33 in order to suppress an excessive rise in the refrigerant pressure in the refrigerant pipe forming the refrigerant passage 32. However, when the driving of the compressor 33 is stopped, the battery 51 cannot be cooled by the circulation of the refrigerant, and there is a concern that the battery temperature may excessively rise.
そこで本実施形態では、放熱ファン36が停止又は出力低減となる故障が生じていることに基づいて、空調冷媒回路31で異常が生じていることを判定する。そして、バッテリ冷却要求が生じており、かつ空調冷媒回路31で異常が生じていると判定された状況下において、冷媒通路32内の冷媒圧力が所定の高圧上限値を超える圧力上昇を抑えつつ、駆動制限した状態でコンプレッサ33を駆動させることとしている。本処理は、放熱ファン36の故障発生時におけるフェイルセーフ処理である。
Therefore, in the present embodiment, it is determined that an abnormality has occurred in the air conditioning refrigerant circuit 31 based on the fact that the heat dissipation fan 36 is stopped or has a failure that reduces the output. Then, under the situation where the battery cooling request is generated and it is determined that the air conditioning refrigerant circuit 31 is abnormal, the refrigerant pressure in the refrigerant passage 32 is suppressed while increasing the pressure exceeding the predetermined high pressure upper limit value. The compressor 33 is driven with the drive being restricted. This process is a fail-safe process when a failure occurs in the heat dissipation fan 36.
空調冷媒回路31での異常発生時におけるコンプレッサ33の駆動制限によれば、空調冷媒回路31での冷媒循環の制御態様が変更された状態で、温調ユニット52によるバッテリ51の冷却が継続される。このとき、コンプレッサ33の駆動制限により、空調冷媒回路31での異常が生じる前に比べて冷媒通路32での冷媒圧力の上昇が制限される。
According to the drive limitation of the compressor 33 when an abnormality occurs in the air conditioning refrigerant circuit 31, the cooling of the battery 51 by the temperature control unit 52 is continued in a state where the control mode of the refrigerant circulation in the air conditioning refrigerant circuit 31 is changed. .. At this time, due to the drive restriction of the compressor 33, the increase in the refrigerant pressure in the refrigerant passage 32 is restricted as compared with before the abnormality occurred in the air conditioning refrigerant circuit 31.
コンプレッサ駆動制限の実施に際しては、コンプレッサ33の駆動状態、又はコンプレッサ駆動時における冷媒通路32内の冷媒圧力を制御パラメータとして取得し、放熱ファン36の停止故障の発生後における制御パラメータに基づいて、コンプレッサ33の駆動制限の度合いを調整するとよい。このとき、例えば冷媒圧センサ37により検出した冷媒圧力に基づいて、放熱ファン36の停止故障の発生後に冷媒圧力が上昇変化又は下降変化していることを把握し、その結果に基づいて、コンプレッサ33の駆動制限の度合い、すなわちコンプレッサ33の制限回転速度を調整するとよい。なお、冷媒圧力を、電流センサ65により検出されたコンプレッサ通電電流に基づいて推定する構成であってもよい。
When performing the compressor drive restriction, the drive state of the compressor 33 or the refrigerant pressure in the refrigerant passage 32 during the compressor drive is acquired as a control parameter, and the compressor is determined based on the control parameter after the stop failure of the heat radiation fan 36 occurs. The degree of drive restriction of 33 may be adjusted. At this time, for example, based on the refrigerant pressure detected by the refrigerant pressure sensor 37, it is grasped that the refrigerant pressure is changing up or down after the occurrence of the stop failure of the heat dissipation fan 36, and based on the result, the compressor 33 is changed. It is advisable to adjust the degree of the drive limitation, that is, the limit rotation speed of the compressor 33. The refrigerant pressure may be estimated based on the compressor energization current detected by the current sensor 65.
また本実施形態では、コンプレッサ33の駆動制限が行われる場合に、空調冷媒回路31による空調の実施を制限することとしている。具体的には、空調冷媒回路31は、電磁弁42により、蒸発器35を含む第1循環経路L1で冷媒が流れる状態と、蒸発器35を含まずバイパス通路41を含む第2循環経路L2で冷媒が流れる状態との切り替えが可能となっている。そして、空調の制限として、第2循環経路L2で冷媒が流れる状態とし、かつ第1循環経路L1で冷媒が流れることを制限することとしている。
Further, in the present embodiment, when the drive of the compressor 33 is restricted, the execution of air conditioning by the air conditioning refrigerant circuit 31 is restricted. Specifically, in the air-conditioning refrigerant circuit 31, the electromagnetic valve 42 causes the refrigerant to flow in the first circulation path L1 including the evaporator 35 and the second circulation path L2 including the bypass passage 41 not including the evaporator 35. It is possible to switch to a state in which the refrigerant flows. Then, as the restriction of the air conditioning, the refrigerant is allowed to flow in the second circulation path L2 and the refrigerant is restricted from flowing in the first circulation path L1.
図3は、バッテリ冷却の処理手順を示すフローチャートであり、本処理は、制御装置60により所定周期で繰り返し実施される。
FIG. 3 is a flowchart showing a battery cooling processing procedure, and this processing is repeatedly executed by the control device 60 at a predetermined cycle.
図3において、ステップS11では、空調冷媒回路31での異常として、放熱ファン36において停止又は出力低減となる故障が生じているか否かを判定する。この故障判定では、例えば、放熱ファン36に対して駆動指令が出されているにもかかわらず、放熱ファン36が通電されていない状況である場合に、停止故障である旨が判定される。また、放熱ファン36の駆動が複数段階で制御される構成において、高速駆動の指令が出されているにもかかわらず、放熱ファン36が低速駆動されている状況である場合に、出力低減故障である旨が判定される。なお、ステップS11が「異常判定部」に相当する。
In FIG. 3, in step S11, it is determined whether or not there is a failure in the radiating fan 36 that causes a stop or output reduction as an abnormality in the air conditioning refrigerant circuit 31. In this failure determination, for example, when the heat dissipation fan 36 is not energized even though a drive command is issued to the heat dissipation fan 36, it is determined that there is a stop failure. Further, in the configuration in which the drive of the heat radiation fan 36 is controlled in a plurality of stages, if the heat radiation fan 36 is driven at a low speed even though a high speed drive command is issued, an output reduction failure may occur. It is determined that there is. Note that step S11 corresponds to the “abnormality determination unit”.
放熱ファン36に故障が生じていない場合、ステップS11を否定してステップS12に進み、コンプレッサ33を通常駆動させる。このとき、制御装置60は、空調要求及びバッテリ冷却要求に基づいて、コンプレッサ33の回転速度制御を実施する。
If no failure has occurred in the heat radiation fan 36, step S11 is denied and the process proceeds to step S12 to drive the compressor 33 normally. At this time, the control device 60 executes the rotation speed control of the compressor 33 based on the air conditioning request and the battery cooling request.
また、放熱ファン36に故障が生じている場合、ステップS11を肯定してステップS13に進む。ステップS13では、バッテリ冷却要求が生じているか否かを判定する。本ステップS13では、例えばバッテリ温度が所定温度以上であれば、バッテリ冷却要求が生じている旨を判定する。所定温度は、バッテリ51の出力が制限される温度に基づき定められる温度であり、例えば40℃である。バッテリ冷却要求が生じていなければ、ステップS14に進み、コンプレッサ33を非駆動状態とする。このとき、放熱ファン36に故障が生じた時点で空調要求に応じた空調が実施されていれば、コンプレッサ33の駆動を停止することに伴い空調が停止される。
If the heat dissipation fan 36 has a failure, affirmative determination is made in step S11 and the process proceeds to step S13. In step S13, it is determined whether a battery cooling request has been issued. In step S13, for example, if the battery temperature is equal to or higher than the predetermined temperature, it is determined that the battery cooling request is generated. The predetermined temperature is a temperature determined based on the temperature at which the output of the battery 51 is limited, and is 40° C., for example. If the battery cooling request has not been issued, the process proceeds to step S14, and the compressor 33 is brought into a non-driving state. At this time, if air conditioning is being performed according to the air conditioning request at the time when the radiation fan 36 fails, the air conditioning is stopped by stopping the driving of the compressor 33.
また、バッテリ冷却要求が生じていれば、ステップS15に進み、冷媒圧力が第1閾値TH1以上であるか否かを判定する。第1閾値TH1は、例えば冷媒配管の高圧破損を抑制する範囲内の高圧上限値である。又は、冷媒配管に安全弁が設けられている場合において、第1閾値TH1は、安全弁の開弁圧に基づいて定められ、その開弁圧よりも僅かに低い圧力である。そして、冷媒圧力が第1閾値TH1以上であれば、ステップS16に進み、コンプレッサ回転速度を制限回転速度N1にて制限する。このとき、制御装置60は、コンプレッサ33の目標回転速度を制限回転速度N1として、回転速度フィードバック制御を実施する。制限回転速度N1は、空調要求とバッテリ冷却要求とのうちバッテリ冷却要求のみが生じている場合におけるコンプレッサ回転速度よりも低い回転速度であるとよい。
If a battery cooling request is made, the process proceeds to step S15, and it is determined whether the refrigerant pressure is equal to or higher than the first threshold value TH1. The first threshold value TH1 is, for example, a high pressure upper limit value within a range that suppresses high pressure breakage of the refrigerant pipe. Alternatively, when the safety valve is provided in the refrigerant pipe, the first threshold value TH1 is determined based on the valve opening pressure of the safety valve and is a pressure slightly lower than the valve opening pressure. If the refrigerant pressure is equal to or higher than the first threshold value TH1, the process proceeds to step S16, and the compressor rotation speed is limited to the limited rotation speed N1. At this time, the control device 60 performs the rotation speed feedback control with the target rotation speed of the compressor 33 as the limited rotation speed N1. The limited rotation speed N1 is preferably a rotation speed lower than the compressor rotation speed when only the battery cooling request is generated among the air conditioning request and the battery cooling request.
その後、ステップS17では、空調要求が生じている場合に空調を停止させる。具体的には、空調冷媒回路31において、第2循環経路L2で冷媒が流れる状態とし、かつ第1循環経路L1で冷媒が流れることを停止する。これにより、空調の実施が制限される。例えば、電磁弁42の制御により、第2循環経路L2に加えて、冷媒流量を制限しつつ第1循環経路L1でも冷媒が流れる状態にするとよい。なお、ステップS17において、空調を停止させることに代えて、空調を継続しつつ空調の度合いを制限する(低減させる)構成としてもよい。ステップS17が「空調制限部」に相当する。
After that, in step S17, if an air conditioning request is made, the air conditioning is stopped. Specifically, in the air conditioning refrigerant circuit 31, the refrigerant is allowed to flow in the second circulation path L2 and the refrigerant is stopped from flowing in the first circulation path L1. This limits the implementation of air conditioning. For example, by controlling the electromagnetic valve 42, it is preferable that the refrigerant flow in the first circulation path L1 in addition to the second circulation path L2 while limiting the refrigerant flow rate. In addition, in step S17, instead of stopping the air conditioning, the degree of air conditioning may be limited (reduced) while continuing the air conditioning. Step S17 corresponds to the "air conditioning restriction unit".
また、冷媒圧力が第1閾値TH1未満であれば、ステップS18に進み、冷媒圧力が第2閾値TH2以上であるか否かを判定する。第2閾値TH2は、第1閾値TH1よりも低い圧力閾値である。そして、冷媒圧力が第2閾値TH2以上であれば、ステップS19に進み、冷媒圧力に基づいて、コンプレッサ33の制限回転速度を設定する。このとき、例えば図4の関係を用いてコンプレッサ33の制限回転速度を設定するとよい。図4では、冷媒圧力とコンプレッサ回転速度との関係が定められており、冷媒圧力が第1閾値TH1以上となる範囲では、コンプレッサ回転速度が制限回転速度N1に設定され、冷媒圧力が第2閾値TH2以上でありかつ第1閾値TH1未満となる範囲では、制限回転速度がN1~N2の範囲内で可変に設定される。このN1~N2の範囲では、冷媒圧力が高いほど、制限回転速度が低回転となるように、制限回転速度が設定される。コンプレッサ回転速度の制限度合いで言えば、冷媒圧力が高いほど、制限度合いが大きくなるように、コンプレッサ回転速度が制御されることとなる。
If the refrigerant pressure is less than the first threshold TH1, the process proceeds to step S18, and it is determined whether the refrigerant pressure is the second threshold TH2 or more. The second threshold TH2 is a pressure threshold lower than the first threshold TH1. Then, if the refrigerant pressure is equal to or higher than the second threshold value TH2, the process proceeds to step S19, and the limiting rotation speed of the compressor 33 is set based on the refrigerant pressure. At this time, for example, the limiting rotation speed of the compressor 33 may be set using the relationship of FIG. In FIG. 4, the relationship between the refrigerant pressure and the compressor rotation speed is defined. In the range where the refrigerant pressure is equal to or higher than the first threshold value TH1, the compressor rotation speed is set to the limit rotation speed N1 and the refrigerant pressure is set to the second threshold value. In the range that is equal to or higher than TH2 and lower than the first threshold value TH1, the limited rotation speed is variably set within the range of N1 to N2. In the range of N1 to N2, the limited rotation speed is set such that the higher the refrigerant pressure, the lower the rotation speed. In terms of the degree of limitation of the compressor rotation speed, the compressor rotation speed is controlled such that the higher the refrigerant pressure, the higher the limitation degree.
ステップS16,S19では、空調冷媒回路31での異常が生じる前の正常時に比べてコンプレッサ回転速度が低回転に制限され、これにより、冷媒通路32での冷媒圧力の上昇が制限される。つまりこれにより、空調冷媒回路31の異常発生時に空調冷媒回路31での冷媒循環の制御態様が変更される。
In steps S16 and S19, the compressor rotation speed is limited to a low rotation speed as compared with the normal time before the abnormality occurs in the air conditioning refrigerant circuit 31, whereby the increase in the refrigerant pressure in the refrigerant passage 32 is restricted. That is, as a result, the control mode of the refrigerant circulation in the air conditioning refrigerant circuit 31 is changed when an abnormality occurs in the air conditioning refrigerant circuit 31.
その後、ステップS20では、車速に基づいて、コンプレッサ33の制限回転速度を補正する。例えば図5(a)の関係を用いてコンプレッサ33の制限回転速度を補正するとよい。図5(a)では、車速と回転速度補正値ΔN1との関係が定められており、車速が速度閾値THA以上となる範囲において、回転速度補正値ΔN1が正の値として設定される。また、図示のとおり、車速が高いほど、回転速度補正値ΔN1が大きい値に定められるとよい。そして、ステップS19で設定された制限回転速度に回転速度補正値ΔN1が加算されることで、制限回転速度が増加補正される。こうした制限回転速度の補正によれば、車速が速度閾値THAよりも大きいことに基づいて、コンプレッサ回転速度の制限度合いを小さくする補正が行われる。
After that, in step S20, the limit rotation speed of the compressor 33 is corrected based on the vehicle speed. For example, the limiting rotation speed of the compressor 33 may be corrected using the relationship shown in FIG. In FIG. 5A, the relationship between the vehicle speed and the rotation speed correction value ΔN1 is defined, and the rotation speed correction value ΔN1 is set as a positive value in the range where the vehicle speed is equal to or higher than the speed threshold THA. Further, as shown in the figure, the higher the vehicle speed, the larger the rotation speed correction value ΔN1 may be set. Then, the rotation speed correction value ΔN1 is added to the rotation speed limit set in step S19, whereby the rotation speed limit is increased and corrected. According to the correction of the limited rotation speed, the correction degree for reducing the limitation speed of the compressor rotation speed is performed based on the vehicle speed being higher than the speed threshold value THA.
ステップS21では、今現在、空調要求が生じており、かつ車速が速度閾値THB以上であるか否かを判定する。速度閾値THBは、速度閾値THAよりも高速の速度値である。そして、ステップS21が肯定される場合に、ステップS22に進み、空調を作動状態とする。
In step S21, it is determined whether an air conditioning request is currently made and the vehicle speed is equal to or higher than the speed threshold THB. The speed threshold THB is a speed value higher than the speed threshold THA. And when step S21 is affirmed, it progresses to step S22 and makes an air conditioning into an operating state.
具体的には、空調冷媒回路31において、第2循環経路L2に加えて第1循環経路L1でも冷媒が流れる状態とすることで、空調を作動状態とする。これにより、空調の制限が解除される。コンプレッサ33の回転速度制御においては、コンプレッサ33の制限回転速度を補正する。例えば図5(b)の関係を用いてコンプレッサ33の制限回転速度を補正するとよい。図5(b)では、車速と回転速度補正値ΔN2との関係が定められており、車速が速度閾値THB以上となる範囲において、回転速度補正値ΔN2が正の値として設定される。また、図示のとおり、車速が高いほど、回転速度補正値ΔN2が大きい値に定められるとよい。そして、ステップS19で設定された制限回転速度、又はステップS20で補正された制限回転速度に回転速度補正値ΔN2が加算されることで、制限回転速度が増加補正される。こうした制限回転速度の補正によれば、車速が速度閾値THBよりも大きいことに基づいて、コンプレッサ回転速度の制限度合いを小さくする補正が行われる。
Specifically, in the air-conditioning refrigerant circuit 31, the air conditioning is activated by setting the refrigerant to flow in the first circulation path L1 in addition to the second circulation path L2. This releases the air conditioning restriction. In controlling the rotation speed of the compressor 33, the limiting rotation speed of the compressor 33 is corrected. For example, the limiting rotation speed of the compressor 33 may be corrected using the relationship shown in FIG. In FIG. 5B, the relationship between the vehicle speed and the rotation speed correction value ΔN2 is defined, and the rotation speed correction value ΔN2 is set as a positive value in the range where the vehicle speed is equal to or higher than the speed threshold value THB. Further, as shown in the figure, the higher the vehicle speed, the larger the rotation speed correction value ΔN2 may be set. Then, the rotational speed correction value ΔN2 is added to the rotational speed limit set in step S19 or the rotational speed limit corrected in step S20, whereby the rotational speed limit is increased and corrected. According to the correction of the limited rotation speed, the correction degree for reducing the limitation speed of the compressor rotation speed is performed based on that the vehicle speed is higher than the speed threshold value THB.
図5(a)と図5(b)との関係において、速度閾値THA,THBがTHA<THBの関係にある。そのため、車速が上昇する際には、先にコンプレッサ33の駆動制限の度合いが小さくされ、その後に、空調制限の度合いが小さくされる。
In the relationship between FIG. 5(a) and FIG. 5(b), the speed thresholds THA and THB have a relationship of THA<THB. Therefore, when the vehicle speed increases, the degree of drive limitation of the compressor 33 is reduced first, and then the degree of air conditioning limitation is reduced.
なお、ステップS22では、空調の制限を解除する処理に代えて、空調の制限の度合いを小さくする処理が行われてもよい。空調の制限の度合いを小さくする処理としては、例えば、電磁弁42の制御により、第1循環経路L1を流れる冷媒量を増加させるとよい。
Note that in step S22, a process of reducing the degree of air conditioning restriction may be performed instead of the process of releasing the air conditioning restriction. As a process for reducing the degree of air conditioning restriction, for example, the amount of the refrigerant flowing through the first circulation path L1 may be increased by controlling the solenoid valve 42.
また、ステップS21が否定される場合には、ステップS17に進み、空調を停止させる処理、又は空調の実施を制限する処理を実施する。なお、ステップS15~S22が「制御態様変更部」に相当する。
If step S21 is negative, the process proceeds to step S17, and the process of stopping the air conditioning or the process of restricting the implementation of the air conditioning is performed. Note that steps S15 to S22 correspond to the "control mode changing unit".
図6は、バッテリ冷却処理をより具体的に説明するためのタイムチャートである。
FIG. 6 is a time chart for explaining the battery cooling process more specifically.
図6において、タイミングt1では、車両10のイグニッションスイッチがオンされ、車両走行を可能とするイニシャル処理が行われた後、タイミングt2では、空調要求に伴い空調が開始される。タイミングt2以降、コンプレッサ回転速度が、都度の空調要求の内容に応じて定められた目標回転速度にフィードバック制御される。これにより、冷媒圧力が徐々に上昇する。また、放熱ファン36の駆動が開始される。なお、図6では、放熱ファン36の駆動状態をオン/オフで示している。
In FIG. 6, at timing t1, the ignition switch of the vehicle 10 is turned on, an initial process is performed to enable the vehicle to travel, and then at timing t2, air conditioning is started in response to an air conditioning request. After the timing t2, the compressor rotation speed is feedback-controlled to the target rotation speed determined according to the content of the air conditioning request each time. As a result, the refrigerant pressure gradually rises. Further, the driving of the heat radiation fan 36 is started. In FIG. 6, the driving state of the heat radiation fan 36 is shown as ON/OFF.
その後、車両走行に伴いバッテリ温度が次第に上昇する。そして、タイミングt3では、バッテリ温度が所定値を上回ることによりバッテリ冷却要求が生じ、そのバッテリ冷却要求に伴いバッテリ冷却が開始される。タイミングt3以降、コンプレッサ回転速度が、都度の空調要求とバッテリ冷却要求とに応じて制御される。これにより、バッテリ冷却要求に応じて、コンプレッサ回転速度と冷媒圧力とが上昇する。
After that, the battery temperature gradually rises as the vehicle runs. Then, at timing t3, a battery cooling request is generated when the battery temperature exceeds a predetermined value, and battery cooling is started in accordance with the battery cooling request. After the timing t3, the compressor rotation speed is controlled according to the air conditioning request and the battery cooling request each time. As a result, the compressor rotation speed and the refrigerant pressure increase in response to the battery cooling request.
その後、タイミングt4では、放熱ファン36の停止故障(オフ故障)に伴い空調冷媒回路31での異常が生じ、空調冷媒回路31の凝縮器34における放熱性能の低下に伴い冷媒通路32内の冷媒圧力が上昇する。
After that, at timing t4, an abnormality occurs in the air conditioning refrigerant circuit 31 due to the stop failure (OFF failure) of the heat dissipation fan 36, and the refrigerant pressure in the refrigerant passage 32 decreases as the heat dissipation performance of the condenser 34 of the air conditioning refrigerant circuit 31 decreases. Rises.
タイミングt5では、冷媒圧力が第2閾値TH2よりも高くなり、そのタイミングt5以降において、冷媒圧力に基づき設定された制限回転速度によりコンプレッサ33の回転速度が制御される。このとき、冷媒圧力が高くなるほど、コンプレッサ33の制限回転速度として低い回転速度が設定される。また、タイミングt5では、空調要求が生じていることに関わらず空調が停止される。タイミングt5以降、バッテリ温度は徐々に上昇するものの、過剰な上昇が抑制される。冷媒圧力は、高圧上限値である第1閾値TH1よりも低い圧力で維持される。不図示としているが、仮に冷媒圧力が第1閾値TH1に到達した場合には、コンプレッサ回転速度が制限回転速度N1に引き下げられる。
At timing t5, the refrigerant pressure becomes higher than the second threshold value TH2, and after that timing t5, the rotation speed of the compressor 33 is controlled by the limited rotation speed set based on the refrigerant pressure. At this time, the higher the refrigerant pressure, the lower the rotational speed of the compressor 33 is set as the rotational speed limit. Further, at the timing t5, the air conditioning is stopped regardless of the fact that the air conditioning request is generated. After the timing t5, the battery temperature gradually rises, but an excessive rise is suppressed. The refrigerant pressure is maintained at a pressure lower than the first threshold TH1 which is the high pressure upper limit value. Although not shown, if the refrigerant pressure reaches the first threshold value TH1, the compressor rotation speed is reduced to the limit rotation speed N1.
なお、コンプレッサ33の駆動時には通電電流によるバッテリ温度の上昇が生じると考えられるが、本実施形態では、その温度上昇分よりも、冷却系による冷却性能の方が高いことを前提としている。
Although it is considered that the battery temperature rises due to the energizing current when the compressor 33 is driven, this embodiment assumes that the cooling performance of the cooling system is higher than the temperature rise.
その後、タイミングt6では、車速が速度閾値THAまで上昇することに伴い、コンプレッサ33の制限回転速度が増加補正される。このとき、車両10の走行風により凝縮器34の放熱が促されるため、その分、冷媒圧力の上昇を伴うことなくコンプレッサ回転速度を上昇させることが可能となっている。
After that, at timing t6, the limit rotation speed of the compressor 33 is increased and corrected as the vehicle speed increases to the speed threshold THA. At this time, the heat radiation of the condenser 34 is promoted by the traveling wind of the vehicle 10, so that the compressor rotation speed can be increased correspondingly without the increase of the refrigerant pressure.
その後、タイミングt7では、車速がさらに速度閾値THBまで上昇することに伴い、空調が開始される。このとき、車両10が高速走行していることにより、空調作動のために要する凝縮器34の放熱が可能となり、空調の開始が許容される。
After that, at timing t7, air conditioning is started as the vehicle speed further increases to the speed threshold value THB. At this time, since the vehicle 10 is traveling at a high speed, it is possible to dissipate heat from the condenser 34 required for air conditioning operation, and start of air conditioning is permitted.
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
According to this embodiment described in detail above, the following excellent effects can be obtained.
バッテリ冷却要求が生じており、かつ放熱ファン36の故障に伴い空調冷媒回路31で異常が生じていると判定された状況下において、温調ユニット52によるバッテリ51の冷却を継続しつつ空調冷媒回路31での冷媒循環の制御態様を変更する構成とした。この場合、空調冷媒回路31での異常が生じる前に比べて冷媒通路32での冷媒圧力の上昇を制限するようにした。より具体的には、冷媒通路32内の冷媒圧力が所定の高圧上限値を超える圧力上昇を抑えるべく、駆動制限した状態でコンプレッサ33を駆動する構成とした。これにより、空調冷媒回路31で異常が発生していても、その異常発生に応じた態様で、冷媒を循環させることができる。その結果、構成の簡易化を図りつつ、空調冷媒回路31での異常の発生時にバッテリの冷却を適正に実施することができる。また、放熱ファン36の故障時に、冷媒通路32を形成する配管等の保護を行いつつ、バッテリ51の冷却を継続的に実施することができる。
Under the situation where the battery cooling request is generated and it is determined that the air conditioning refrigerant circuit 31 is abnormal due to the failure of the heat radiation fan 36, the air conditioning refrigerant circuit is continuously cooled by the temperature adjustment unit 52. The control mode of the refrigerant circulation in 31 is changed. In this case, the increase in the refrigerant pressure in the refrigerant passage 32 is limited as compared with that before the abnormality in the air conditioning refrigerant circuit 31. More specifically, in order to suppress the pressure increase in which the refrigerant pressure in the refrigerant passage 32 exceeds a predetermined high-pressure upper limit value, the compressor 33 is driven in a drive-restricted state. As a result, even if an abnormality occurs in the air conditioning refrigerant circuit 31, the refrigerant can be circulated in a manner according to the occurrence of the abnormality. As a result, the battery can be properly cooled when an abnormality occurs in the air conditioning refrigerant circuit 31 while simplifying the configuration. Further, when the heat radiation fan 36 fails, it is possible to continuously cool the battery 51 while protecting the pipes and the like forming the refrigerant passage 32.
放熱ファン36の故障発生に伴いコンプレッサ33の駆動制限が行われる場合に、空調冷媒回路31による空調の実施を制限するようにした。この場合、例えば空調要求とバッテリ冷却要求とが共に生じている状況では、バッテリ冷却要求が優先される。つまり、バッテリ51の冷却を行うべく、冷媒通路32での冷媒の循環が行われる。これにより、バッテリ温度が過上昇することに伴うバッテリ51の劣化を好適に抑制できる。
When the drive of the compressor 33 is restricted due to the failure of the heat dissipation fan 36, the air conditioning by the air conditioning refrigerant circuit 31 is restricted. In this case, for example, when both the air conditioning request and the battery cooling request are generated, the battery cooling request is prioritized. That is, in order to cool the battery 51, the refrigerant is circulated in the refrigerant passage 32. Thereby, the deterioration of the battery 51 due to the excessive rise in the battery temperature can be suitably suppressed.
放熱ファン36の故障発生に伴いコンプレッサ33の駆動制限と空調制限とが行われる場合に、その空調制限として、バイパス通路41(温調ユニット52)を含む第2循環経路L2で冷媒が流れる状態とし、かつ蒸発器35を含む第1循環経路L1で冷媒が流れることを制限するようにした。この場合、蒸発器35での冷媒の気化を抑制することで空調を制限しつつ、バッテリ冷却を好適に実施できる。
When the drive limitation and the air conditioning limitation of the compressor 33 are performed due to the failure of the heat radiation fan 36, the air conditioning limitation is such that the refrigerant flows in the second circulation path L2 including the bypass passage 41 (the temperature adjustment unit 52). In addition, the refrigerant is restricted from flowing in the first circulation path L1 including the evaporator 35. In this case, battery cooling can be suitably performed while restricting air conditioning by suppressing vaporization of the refrigerant in the evaporator 35.
放熱ファン36の故障発生に伴いコンプレッサ33の駆動制限が行われる場合に、車速が所定の速度閾値THBよりも大きいことに基づいて、空調の制限を解除するか、又は空調の制限の度合いを小さくするようにした。車速が大きい場合には、走行風による凝縮器34の放熱が行われることを考慮することにより、コンプレッサ33の駆動を制限した状況下にあっても、バッテリ冷却に加えて空調を実施することが可能となる。この場合、例えば空調制限として空調を停止した状態から、空調を実施する状態への切り替えが可能となっている。
When the drive of the compressor 33 is restricted due to the failure of the heat dissipation fan 36, the restriction of air conditioning is released or the degree of restriction of air conditioning is decreased based on the vehicle speed being higher than a predetermined speed threshold THB. I decided to do it. When the vehicle speed is high, it is possible to perform the air conditioning in addition to the battery cooling, even in the situation where the driving of the compressor 33 is limited, by taking into consideration that the condenser 34 dissipates heat by the traveling wind. It will be possible. In this case, for example, it is possible to switch from a state in which the air conditioning is stopped to a state in which the air conditioning is performed as the air conditioning restriction.
コンプレッサ33の駆動制限を行っている状態下で、車速が速度閾値THAよりも大きいことに基づいて、コンプレッサ33の駆動制限の度合いを小さくするようにした。車速が大きい場合には走行風による凝縮器34の放熱が行われることを考慮することにより、コンプレッサ33の駆動制限の度合いを小さくしてバッテリ冷却の度合いを大きくすることが可能となる。
Under the condition that the drive of the compressor 33 is restricted, the degree of the drive restriction of the compressor 33 is reduced based on the vehicle speed being higher than the speed threshold THA. When the vehicle speed is high, it is possible to reduce the degree of drive limitation of the compressor 33 and increase the degree of battery cooling by taking into consideration that heat is dissipated by the condenser 34 due to traveling wind.
コンプレッサ33の駆動制限を行っている状態下で、車速が速度閾値THA(第1速度閾値)よりも大きいことに基づいて、コンプレッサ33の駆動制限の度合いを小さくし、車速が速度閾値THAよりも大きい速度閾値THB(第2速度閾値)よりも大きいことに基づいて、空調の制限の度合いを小さくするようにした。これにより、車速の大きさに応じて、コンプレッサ33の駆動制限の度合いを小さくすることと、空調制限の度合いを小さくすることとを実施できる。この場合、車速が上昇する際には、先にコンプレッサ33の駆動制限の度合いが小さくされ、その後に、空調制限の度合いが小さくされる。したがって、放熱ファン36の故障時には、バッテリ冷却を優先しつつ、適宜の空調の実施が可能となる。
Under the condition that the drive of the compressor 33 is restricted, the degree of the drive restriction of the compressor 33 is reduced based on the vehicle speed being higher than the speed threshold THA (first speed threshold) so that the vehicle speed is lower than the speed threshold THA. The degree of air conditioning restriction is reduced based on the fact that it is larger than the large speed threshold THB (second speed threshold). This makes it possible to reduce the degree of drive limitation of the compressor 33 and reduce the degree of air conditioning limitation according to the magnitude of the vehicle speed. In this case, when the vehicle speed increases, the degree of drive limitation of the compressor 33 is first reduced, and then the degree of air conditioning limitation is reduced. Therefore, when the heat radiation fan 36 fails, it is possible to appropriately perform air conditioning while giving priority to battery cooling.
放熱ファン36の故障が生じた場合には、放熱ファン36の正常時と比べて、凝縮器34における冷媒の冷却状態が異なることになり、コンプレッサ33の駆動状態、又はコンプレッサ33の駆動時における冷媒圧力に変化が生じる。この場合、コンプレッサ33の駆動状態、又はコンプレッサ33の駆動時における冷媒圧力を示す制御パラメータに基づいて、放熱ファン36の停止故障の発生後における冷媒圧力の変化を把握して、コンプレッサ33の駆動制限の度合いを調整することにより、コンプレッサ33の駆動状態、ひいては冷媒圧力の大きさに応じて、バッテリ冷却を適宜に実施することができる。
When the radiation fan 36 fails, the cooling state of the refrigerant in the condenser 34 is different from that in the normal state of the radiation fan 36, and the driving state of the compressor 33 or the refrigerant when the compressor 33 is driven is different. Changes in pressure occur. In this case, based on the drive state of the compressor 33 or a control parameter indicating the refrigerant pressure when the compressor 33 is driven, the change in the refrigerant pressure after the occurrence of the stop failure of the heat radiation fan 36 is grasped to limit the drive of the compressor 33. The battery cooling can be appropriately performed according to the driving state of the compressor 33, and thus the magnitude of the refrigerant pressure, by adjusting the degree.
なお、空調冷媒回路31での異常の有無を判定する異常判定部として、凝縮器34での目詰まりによる放熱異常(目詰まり異常)が生じていることを判定する構成を用いてもよい。この異常は、例えばコンデンサフィンの目詰まり異常である。例えば、図3のステップS11において、凝縮器34の上流側の冷媒圧力に基づいて、凝縮器34での目詰まり異常の有無を判定する。図3のステップS11において、放熱ファン36が停止又は出力低減となる故障が生じていることの判定と、凝縮器34での目詰まり異常が生じていることの判定とを共に実施することも可能である。この場合、広義には凝縮器34での放熱に異常が生じていることを判定するものであればよい。
Note that the abnormality determination unit that determines whether or not there is an abnormality in the air conditioning refrigerant circuit 31 may use a configuration that determines that a heat radiation abnormality due to clogging in the condenser 34 (clogging abnormality) has occurred. This abnormality is, for example, a clogging of the condenser fin. For example, in step S11 of FIG. 3, the presence or absence of clogging abnormality in the condenser 34 is determined based on the refrigerant pressure on the upstream side of the condenser 34. In step S11 of FIG. 3, it is possible to perform both the determination that the heat dissipation fan 36 is stopped or the output is reduced, and the determination that the condenser 34 is clogged abnormally. Is. In this case, in a broad sense, it is sufficient to determine that the heat radiation in the condenser 34 is abnormal.
以下に、上記第1実施形態の構成の一部を変更した別の実施形態について説明する。なお、以下の説明において、上記第1実施形態と同じ構成のものは、同じ符号を付してその説明を省略する。
Another embodiment in which a part of the configuration of the first embodiment is changed will be described below. In the following description, the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
(第2実施形態)
本実施形態では、バッテリ冷却要求が生じていない状況下において、空調冷媒回路31での異常として放熱ファン36で故障が生じていると判定された場合に、現時点以降の車両走行予測に基づいて、今後、バッテリ冷却要求が生じる状況になるか否かを予測し、バッテリ冷却要求が生じる状況になると予測された場合に、コンプレッサ33の駆動制限を実施することとしている。 (Second embodiment)
In the present embodiment, when it is determined that a failure has occurred in theheat radiating fan 36 as an abnormality in the air conditioning refrigerant circuit 31 under the condition that the battery cooling request is not generated, based on the vehicle traveling prediction after the present time, In the future, it will be predicted whether or not a situation in which a battery cooling request will occur will be predicted, and if it is predicted that a situation in which a battery cooling request will occur will be imposed, drive limitation of the compressor 33 will be implemented.
本実施形態では、バッテリ冷却要求が生じていない状況下において、空調冷媒回路31での異常として放熱ファン36で故障が生じていると判定された場合に、現時点以降の車両走行予測に基づいて、今後、バッテリ冷却要求が生じる状況になるか否かを予測し、バッテリ冷却要求が生じる状況になると予測された場合に、コンプレッサ33の駆動制限を実施することとしている。 (Second embodiment)
In the present embodiment, when it is determined that a failure has occurred in the
図7は、本実施形態におけるバッテリ冷却の処理手順を示すフローチャートであり、本処理は、図3の処理に置き換えて実施される。なお、図7において、図3と同じ処理については同じステップ番号を付している。
FIG. 7 is a flowchart showing a processing procedure of battery cooling in the present embodiment, and this processing is executed by replacing the processing of FIG. Note that, in FIG. 7, the same steps as those in FIG. 3 are given the same step numbers.
図7では、図3と異なる処理として、放熱ファン36に故障が生じ、かつバッテリ冷却要求が生じていない場合(ステップS11がYES、かつステップS13がNOの場合)に、ステップS31に進む。ステップS31では、現時点以降の車両走行予測に基づいて、バッテリ冷却要求が生じる状況になるか否かを予測する。このとき、制御装置60は、ナビゲーション装置等に予め登録された車両10の走行目的地に基づいて、バッテリ冷却要求が生じる状況になるか否かを予測する。より具体的には、走行目的地までの走行距離、所要時間、走行経路上の路面傾斜などに基づいて、将来におけるバッテリ冷却要求の有無を予測する。例えば、走行目的地までの走行距離が長いほど、所要時間が長いほど、走行経路上の路面傾斜として上り傾斜が多いほど、バッテリ冷却要求が生じる可能性が高いと予測する。その他、外気温度や車両10の積載重量を加味してもよい。
In FIG. 7, as a process different from that of FIG. 3, when the heat dissipation fan 36 fails and the battery cooling request is not issued (YES in step S11 and NO in step S13), the process proceeds to step S31. In step S31, it is predicted based on the vehicle traveling prediction after the present time whether or not a situation in which a battery cooling request occurs will occur. At this time, the control device 60 predicts whether or not a situation in which a battery cooling request occurs will be based on the traveling destination of the vehicle 10 registered in advance in the navigation device or the like. More specifically, the presence/absence of a battery cooling request in the future is predicted based on the traveling distance to the traveling destination, the required time, the road surface inclination on the traveling route, and the like. For example, it is predicted that the longer the travel distance to the travel destination, the longer the required time, and the more the road surface slope on the travel route is uphill, the higher the possibility that the battery cooling request will occur. In addition, the outside temperature and the weight of the vehicle 10 loaded may be taken into consideration.
その後、ステップS32では、ステップS31の予測結果が、バッテリ冷却要求が生じるとの予測結果であるか否かを判定する。そして、バッテリ冷却要求が生じるとの予測結果でなければ、ステップS14に進み、コンプレッサ33を非駆動状態とする。
Thereafter, in step S32, it is determined whether or not the prediction result of step S31 is a prediction result that a battery cooling request will occur. Then, if it is not the prediction result that the battery cooling request is generated, the process proceeds to step S14, and the compressor 33 is brought into the non-driving state.
また、バッテリ冷却要求が生じるとの予測結果であれば、ステップS15に進み、既述のとおり冷媒圧力に基づいて、コンプレッサ回転速度を制限する処理を実施する。ステップS15以降の処理は既に説明したとおりである。
If it is a predicted result that a battery cooling request will occur, the process proceeds to step S15, and the process of limiting the compressor rotation speed is performed based on the refrigerant pressure as described above. The processing after step S15 is as already described.
ただし、ステップS31でバッテリ冷却要求が生じる状況になると予測された場合には、現時点でバッテリ冷却要求が生じている場合よりも、コンプレッサ33の駆動状態での駆動制限の度合いを大きくするとよい。具体的には、ステップS13が肯定されることに伴いコンプレッサ33の駆動制限が実施される場合に、ステップS32が肯定されることに伴いコンプレッサ33の駆動制限が実施される場合よりも、ステップS16やステップS19で設定される制限回転速度を小さい値にするとよい。
However, if it is predicted in step S31 that a battery cooling request will occur, it is better to increase the degree of drive restriction in the drive state of the compressor 33 than when the battery cooling request is currently occurring. Specifically, in the case where the drive restriction of the compressor 33 is implemented due to the affirmative determination in step S13, the step S16 is performed more than in the case where the drive restriction of the compressor 33 is implemented due to the affirmative determination in step S32. Alternatively, it is advisable to set the limit rotation speed set in step S19 to a small value.
以上第2実施形態によれば、放熱ファン36の故障時に、バッテリ冷却要求が生じていない状況下にあっても、現時点以降のバッテリ冷却の要否に基づいて、予備的にバッテリ冷却を実施できる。この場合、放熱ファン36が故障している状況下において急激な電気負荷の増大等に伴いバッテリ発熱量が急上昇したとしても、バッテリ温度の上昇を抑制できる。つまり、冷却が不十分となり温度上昇が生じる場合にも、走行中のバッテリ温度の過上昇を抑制できる。これにより、バッテリ51の保護を図ることができる。
As described above, according to the second embodiment, even if the battery cooling request is not generated at the time of the failure of the heat radiation fan 36, the battery cooling can be preliminarily performed based on the necessity of battery cooling after the present time. .. In this case, even if the heat generation amount of the battery sharply increases due to a sudden increase in the electric load or the like under the condition that the heat dissipation fan 36 is out of order, the increase in the battery temperature can be suppressed. That is, even when the cooling is insufficient and the temperature rises, it is possible to suppress the excessive rise of the battery temperature during traveling. As a result, the battery 51 can be protected.
車両10の走行目的地に基づいて、バッテリ冷却要求が生じる状況になるか否かを予測するようにしたため、走行負荷の急変に伴うバッテリ温度の上昇にも好適に対処することができる。
Since it is predicted based on the traveling destination of the vehicle 10 whether or not a battery cooling request will occur, it is possible to appropriately cope with a rise in battery temperature due to a sudden change in traveling load.
バッテリ冷却要求が生じる状況になると予測されたことに基づいてコンプレッサ33の駆動制限を行う場合に、実際にバッテリ冷却要求が生じていることに基づいてコンプレッサの駆動制限を行う場合に比べて、コンプレッサの駆動状態での駆動制限の度合いを大きくするようにした。この場合、バッテリ冷却を過剰に実施することや、空調制限を過剰に実施することを抑制しつつ、バッテリ冷却を適度に実施することができる。
When the drive limit of the compressor 33 is limited on the basis that it is predicted that a battery cooling request will occur, compared to the case where the drive limit of the compressor is limited based on the actual battery cooling request being generated, The degree of drive restriction in the drive state of is increased. In this case, battery cooling can be appropriately performed while suppressing excessive battery cooling and excessive air conditioning restriction.
(他の実施形態)
上記実施形態を例えば次のように変更してもよい。 (Other embodiments)
The above embodiment may be modified as follows, for example.
上記実施形態を例えば次のように変更してもよい。 (Other embodiments)
The above embodiment may be modified as follows, for example.
・上記実施形態では、空調冷媒回路31での異常発生時において、コンプレッサ33の駆動制限を行う構成としたが、これを変更してもよい。例えば、制御装置60による膨張弁38の制御を可能とし、その膨張弁38の制御により、冷媒通路32での冷媒圧力の上昇を制限する構成としてもよい。この場合、膨張弁38を通過する冷媒量が調整され、それに伴い冷媒圧力の制限が行われる。
In the above embodiment, the drive of the compressor 33 is restricted when an abnormality occurs in the air conditioning refrigerant circuit 31, but this may be changed. For example, the control device 60 may control the expansion valve 38, and the expansion valve 38 may be controlled to limit an increase in the refrigerant pressure in the refrigerant passage 32. In this case, the amount of refrigerant passing through the expansion valve 38 is adjusted, and the refrigerant pressure is limited accordingly.
・空調の制限として、膨張弁38を通過する冷媒量を少なくする、又は膨張弁38を通過する冷媒量をゼロにすることも可能である。この場合、空調の制限として、循環経路L1,L2の切替と、膨張弁38での冷媒通過量の調整とを実施してもよい。
-As a restriction on air conditioning, it is possible to reduce the amount of refrigerant passing through the expansion valve 38 or to set the amount of refrigerant passing through the expansion valve 38 to zero. In this case, switching of the circulation paths L1 and L2 and adjustment of the amount of refrigerant passing through the expansion valve 38 may be performed as restrictions on air conditioning.
・空調冷媒回路31での異常発生時に、当該異常が生じる前の正常時に比べて冷媒通路32での冷媒圧力の上昇を制限する構成として、通常時と異常発生時とで、冷媒圧力の上限値、又は冷媒圧力の上限値に対応するコンプレッサ回転速度の上限値を異ならせ、異常発生時の冷媒圧力の上限値又はコンプレッサ回転速度の上限値を、正常時の上限値よりも小さくするとよい。例えば、異常発生時のコンプレッサ回転速度の上限値を、正常時のコンプレッサ回転速度の上限値よりも小さくする。かかる構成では、空調冷媒回路31での異常発生時において、その時点のコンプレッサ回転速度が比較的低回転であれば、必ずしも直ちにコンプレッサ回転速度を低下させなくてもよく、正常時よりも低回転で定められた回転速度上限値を越える場合に、コンプレッサ回転速度がその上限値で制限されるとよい。
When the abnormality occurs in the air conditioning refrigerant circuit 31, the upper limit value of the refrigerant pressure in the normal time and the abnormality occurrence time is set as a configuration for limiting the increase in the refrigerant pressure in the refrigerant passage 32 compared to the normal time before the occurrence of the abnormality. Alternatively, the upper limit value of the compressor rotation speed corresponding to the upper limit value of the refrigerant pressure may be made different so that the upper limit value of the refrigerant pressure or the upper limit value of the compressor rotation speed when an abnormality occurs is smaller than the upper limit value at the normal time. For example, the upper limit value of the compressor rotation speed when an abnormality occurs is set to be smaller than the upper limit value of the compressor rotation speed when normal. With such a configuration, when an abnormality occurs in the air-conditioning refrigerant circuit 31, if the compressor rotation speed at that time is relatively low, it is not always necessary to immediately reduce the compressor rotation speed, and the rotation speed is lower than that in normal operation. When the rotation speed upper limit value is exceeded, the compressor rotation speed may be limited by the upper limit value.
・空調の制限が実施される場合に、バッテリ温度に基づいて、第1循環経路L1を流れる冷媒の量と第2循環経路L2を流れる冷媒の量との配分を調整する構成としてもよい。具体的には、制御装置60は、放熱ファン36の故障発生時において、図8の関係に基づいて、第1循環経路L1を流れる冷媒の量(L1冷媒量)と第2循環経路L2を流れる冷媒の量(L2冷媒量)との配分を調整する。図8では、バッテリ温度が高いほど、L1冷媒量に対するL2冷媒量が多くないように配分比率が調整される。なお、本処理は、例えば図3のステップS17にて実施されるとよい。
When the air conditioning is limited, the distribution of the amount of the refrigerant flowing through the first circulation route L1 and the amount of the refrigerant flowing through the second circulation route L2 may be adjusted based on the battery temperature. Specifically, when a failure occurs in the heat radiation fan 36, the control device 60 flows through the second circulation path L2 and the amount of refrigerant flowing through the first circulation path L1 based on the relationship of FIG. The distribution with the amount of refrigerant (L2 refrigerant amount) is adjusted. In FIG. 8, the distribution ratio is adjusted so that the higher the battery temperature, the less the L2 refrigerant amount relative to the L1 refrigerant amount. It should be noted that this processing may be performed in step S17 of FIG. 3, for example.
上記構成によれば、バッテリ冷却として必要となる程度を考慮しつつ、バッテリ冷却だけでなく空調も好適に実施することができる。
According to the above configuration, not only the battery cooling but also the air conditioning can be suitably performed while considering the degree required for battery cooling.
・空調冷媒回路31での異常発生時において、下記の各手法にて空調冷媒回路31での冷媒循環の制御態様を変更する構成としてもよい。なおここでは、放熱ファン36の故障発生時にコンプレッサ33の駆動制限を実施する構成について説明する。以下には、第1の手法におけるタイムチャートを図9に、フローチャートを図10に示す。また、第2の手法におけるタイムチャートを図11に、フローチャートを図12に示す。第3の手法におけるタイムチャートを図13に、フローチャートを図14に示す。図10,図12,図14は、それぞれバッテリ冷却の処理手順を示すフローチャートであり、これらのいずれかが、制御装置60により所定周期で繰り返し実施される。なお、これら各フローチャートでは、処理を略すが、いずれもバッテリ冷却要求が生じていることを前提としている。
-When an abnormality occurs in the air conditioning refrigerant circuit 31, the control mode of the refrigerant circulation in the air conditioning refrigerant circuit 31 may be changed by the following methods. Note that, here, a configuration will be described in which the drive of the compressor 33 is restricted when a failure of the heat radiation fan 36 occurs. Below, the time chart in a 1st method is shown in FIG. 9, and a flowchart is shown in FIG. Further, a time chart in the second method is shown in FIG. 11 and a flow chart is shown in FIG. FIG. 13 shows a time chart in the third method, and FIG. 14 shows a flow chart. 10, FIG. 12, and FIG. 14 are flowcharts showing the processing procedure of battery cooling, respectively, and any one of them is repeatedly executed by the control device 60 at a predetermined cycle. In each of these flowcharts, the process is omitted, but it is premised that a battery cooling request is made.
まず第1の手法を説明する。図9に示すように、タイミングt11で放熱ファン36の故障が発生すると、冷媒圧力が上昇し、タイミングt12で冷媒圧力が第1閾値TH1まで上昇する。これにより、タイミングt12以降において、コンプレッサ回転速度が制限回転速度N1で制御される。なお、前述のとおり第1閾値TH1は、冷媒配管の高圧破損を抑制する範囲内の高圧上限値、又は、安全弁の開弁圧に基づいて定められた圧力閾値である。
First, the first method will be explained. As shown in FIG. 9, when the heat dissipation fan 36 fails at timing t11, the refrigerant pressure rises, and at timing t12, the refrigerant pressure rises to the first threshold value TH1. As a result, after the timing t12, the compressor rotation speed is controlled at the limited rotation speed N1. As described above, the first threshold value TH1 is a pressure threshold value determined based on the high-pressure upper limit value within the range that suppresses high-pressure breakage of the refrigerant pipe or the valve opening pressure of the safety valve.
制御装置60によるバッテリ冷却処理では、図10におけるステップS41で、放熱ファン36において停止又は出力低減となる故障が生じているか否かを判定する。放熱ファン36に故障が生じていない場合、ステップS42に進み、コンプレッサ33を通常駆動させる。
In the battery cooling process by the control device 60, in step S41 in FIG. 10, it is determined whether or not the heat dissipation fan 36 has a failure that causes a stop or an output reduction. If the heat dissipation fan 36 has not failed, the process proceeds to step S42, and the compressor 33 is normally driven.
また、放熱ファン36に故障が生じている場合、ステップS43に進み、冷媒圧力が第1閾値TH1以上であるか否かを判定する。そして、冷媒圧力が第1閾値TH1以上であれば、ステップS44に進み、コンプレッサ回転速度を制限回転速度N1にて制限する。また、冷媒圧力が第1閾値TH1未満であれば、ステップS45に進み、現時点のコンプレッサ33の駆動状態を保持する。つまり、コンプレッサ33の目標回転速度を現状のまま(すなわち通常駆動の状態、又は駆動制限された状態のまま)とする。
If the heat dissipation fan 36 has a failure, the process proceeds to step S43, and it is determined whether the refrigerant pressure is equal to or higher than the first threshold value TH1. If the refrigerant pressure is equal to or higher than the first threshold value TH1, the process proceeds to step S44, and the compressor rotation speed is limited to the limited rotation speed N1. If the refrigerant pressure is less than the first threshold value TH1, the process proceeds to step S45 and the current drive state of the compressor 33 is maintained. That is, the target rotation speed of the compressor 33 is left as it is (that is, in the normal drive state or the drive limited state).
上述した第1の手法によれば、放熱ファン36の故障発生時において、冷媒圧力が第1閾値TH1まで上昇した場合に、その後において一律の態様でコンプレッサ33の駆動制限が実施される。
According to the first method described above, when the refrigerant pressure rises to the first threshold value TH1 at the time of failure of the heat dissipation fan 36, after that, drive limitation of the compressor 33 is implemented in a uniform manner.
次に、第2の手法を説明する。図11に示すように、タイミングt21で放熱ファン36の故障が発生すると、冷媒圧力が上昇し、タイミングt22で冷媒圧力が第1閾値TH1まで上昇する。これにより、タイミングt22では、コンプレッサ回転速度が制限回転速度N1で制御され、冷媒圧力が下降に転じる。その後、タイミングt23で、冷媒圧力が、第1閾値TH1よりも低圧の第2閾値TH2まで低下すると、コンプレッサ33の制限回転速度がN1よりも大きいNA1(すなわちN1よりも制限度合いの小さい回転速度)に更新される。
Next, the second method will be explained. As shown in FIG. 11, when a failure of the heat radiation fan 36 occurs at timing t21, the refrigerant pressure rises, and at timing t22, the refrigerant pressure rises to the first threshold value TH1. As a result, at the timing t22, the compressor rotation speed is controlled at the limited rotation speed N1, and the refrigerant pressure starts decreasing. After that, at timing t23, when the refrigerant pressure decreases to the second threshold value TH2 which is lower than the first threshold value TH1, the limiting rotation speed of the compressor 33 is NA1 larger than N1 (that is, the rotation speed having a smaller limiting degree than N1). Will be updated.
その後、冷媒圧力が再び上昇し、タイミングt24で第1閾値TH1まで上昇すると、コンプレッサ回転速度が制限回転速度N1で制御され、さらにその後、冷媒圧力が低下し、タイミングt25で第2閾値TH2まで低下すると、コンプレッサ33の制限回転速度が、N1よりも大きくかつNA1よりも小さいNA2(すなわち、前回のTH2到達時よりも制限度合いの大きい回転速度)に更新される。以降、必要に応じて同様の処理が繰り返される。
After that, when the refrigerant pressure rises again and rises to the first threshold value TH1 at the timing t24, the compressor rotation speed is controlled at the limited rotation speed N1, and thereafter, the refrigerant pressure falls and drops to the second threshold value TH2 at the timing t25. Then, the limited rotation speed of the compressor 33 is updated to NA2 that is larger than N1 and smaller than NA1 (that is, the rotation speed that has a larger degree of limitation than when TH2 was reached last time). After that, the same processing is repeated as necessary.
制御装置60によるバッテリ冷却処理では、図12におけるステップS51で、放熱ファン36において停止又は出力低減となる故障が生じているか否かを判定する。放熱ファン36に故障が生じていない場合、ステップS52に進み、コンプレッサ33を通常駆動させる。
In the battery cooling process by the control device 60, it is determined in step S51 in FIG. 12 whether or not the heat dissipation fan 36 has a failure that causes a stop or an output reduction. If the heat dissipation fan 36 has not failed, the process proceeds to step S52, and the compressor 33 is normally driven.
また、放熱ファン36に故障が生じている場合、ステップS53に進み、冷媒圧力が第1閾値TH1以上であるか否かを判定する。そして、冷媒圧力が第1閾値TH1以上であれば、ステップS54に進み、コンプレッサ回転速度を制限回転速度N1にて制限する。また、冷媒圧力が第1閾値TH1未満であれば、ステップS55に進み、冷媒圧力が第2閾値TH2以上であるか否かを判定する。そして、冷媒圧力が第2閾値TH2以上であれば、ステップS56に進み、現時点のコンプレッサ33の駆動状態を保持する。
If the heat dissipation fan 36 has a failure, the process proceeds to step S53, and it is determined whether the refrigerant pressure is equal to or higher than the first threshold value TH1. If the refrigerant pressure is equal to or higher than the first threshold value TH1, the process proceeds to step S54, and the compressor rotation speed is limited to the limited rotation speed N1. If the refrigerant pressure is less than the first threshold TH1, the process proceeds to step S55, and it is determined whether the refrigerant pressure is the second threshold TH2 or more. Then, if the refrigerant pressure is equal to or higher than the second threshold value TH2, the process proceeds to step S56, and the current drive state of the compressor 33 is held.
また、冷媒圧力が第2閾値TH2未満であれば、ステップS57に進み、コンプレッサ33の駆動制限の度合いを小さくすべく、制限回転速度N1よりも大きいコンプレッサ33の制限回転速度を設定する。このステップS57によれば、例えば図11のタイミングt23,t25で、制限回転速度としてNA1,NA2がそれぞれ設定される。このとき、冷媒圧力の上昇が繰り返される場合に、その繰り返し回数iに応じて制限回転速度NAiが設定され、繰り返し回数iが大きくなるほど、前回値に比べて制限回転速度NAiが小さい値(すなわち、前回値に比べて制限度合いの大きい値)に設定される。
If the refrigerant pressure is less than the second threshold value TH2, the process proceeds to step S57, and the limit rotation speed of the compressor 33 that is higher than the limit rotation speed N1 is set in order to reduce the degree of the drive limit of the compressor 33. According to this step S57, for example, at timings t23 and t25 in FIG. 11, NA1 and NA2 are set as the limiting rotation speeds, respectively. At this time, when the increase in the refrigerant pressure is repeated, the limiting rotation speed NAi is set according to the number of repetitions i, and the larger the number of repetitions i, the smaller the limiting rotation speed NAi compared to the previous value (that is, It is set to a value with a greater degree of restriction than the previous value).
上述した第2の手法によれば、放熱ファン36の故障発生時において、冷媒圧力が第1閾値TH1まで上昇したことを条件に、コンプレッサ33の駆動制限が開始される。この場合、冷媒圧力が第1閾値TH1を超えることを抑制しつつ、コンプレッサ33の制限回転速度が徐々に小さい値(すなわち制限度合いの大きい値)に更新される。
According to the second method described above, when the failure of the heat radiation fan 36 occurs, the drive limitation of the compressor 33 is started on condition that the refrigerant pressure has risen to the first threshold value TH1. In this case, the limiting rotation speed of the compressor 33 is gradually updated to a small value (that is, a value having a large limiting degree) while suppressing the refrigerant pressure from exceeding the first threshold value TH1.
ただし、図12のステップS57で設定される制限回転速度は毎回同じ回転速度(すなわち、制限度合いの同じ回転速度)であってもよい。又は、ステップS57において、制限が付与されていない回転速度が設定される構成であってもよい。
However, the limited rotation speed set in step S57 of FIG. 12 may be the same rotation speed each time (that is, the rotation speed of the same degree of limitation). Alternatively, in step S57, a configuration may be adopted in which a rotation speed that is not limited is set.
次に、第3の手法を説明する。図13に示すように、タイミングt31で放熱ファン36の故障が発生すると、冷媒圧力が上昇し、タイミングt32で冷媒圧力が第1閾値TH1まで上昇する。これにより、タイミングt32では、コンプレッサ回転速度が制限回転速度N1で制御され、冷媒圧力が下降に転じる。その後、タイミングt33で、冷媒圧力が、第1閾値TH1よりも低圧の第2閾値TH2まで低下すると、コンプレッサ33の制限回転速度がN1よりも大きいNB1(すなわちN1よりも制限度合いの小さい回転速度)に更新される。
Next, the third method will be explained. As shown in FIG. 13, when a failure of the heat radiation fan 36 occurs at timing t31, the refrigerant pressure rises, and at timing t32, the refrigerant pressure rises to the first threshold value TH1. As a result, at the timing t32, the compressor rotation speed is controlled at the limited rotation speed N1, and the refrigerant pressure starts decreasing. After that, at timing t33, when the refrigerant pressure decreases to the second threshold value TH2 which is lower than the first threshold value TH1, the limit rotation speed of the compressor 33 is NB1 larger than N1 (that is, the rotation speed having a smaller limit degree than N1). Will be updated.
タイミングt33以降、所定の時間間隔ΔTで冷媒圧力の上昇変化が監視され、例えばタイミングt34,t35では、コンプレッサ33の制限回転速度が徐々に大きい値(すなわち制限度合いの小さい値)に更新される。その時間間隔ΔTは、一定時間であってもよく、又は徐々に短くなる時間であってもよい。また、制限回転速度を徐々に大きくする更新幅ΔNxは、一定値であってもよく、又は徐々に小さくなる値であってもよい。そして、タイミングt34では、冷媒圧力が第1閾値TH1まで上昇したことに基づいて、制限回転速度が小さい値に更新される。以降、同様の処理が繰り返される。
After timing t33, the change in increase in the refrigerant pressure is monitored at a predetermined time interval ΔT, and, for example, at timings t34 and t35, the limiting rotation speed of the compressor 33 is gradually updated to a large value (that is, a value with a small limiting degree). The time interval ΔT may be a constant time or a gradually decreasing time. The update width ΔNx for gradually increasing the limited rotation speed may be a constant value or a value that gradually decreases. Then, at timing t34, the speed limit is updated to a small value based on the refrigerant pressure rising to the first threshold value TH1. After that, the same processing is repeated.
制御装置60によるバッテリ冷却処理では、図14におけるステップS61で、放熱ファン36において停止又は出力低減となる故障が生じているか否かを判定する。放熱ファン36に故障が生じていない場合、ステップS62に進み、コンプレッサ33を通常駆動させる。
In the battery cooling process by the control device 60, it is determined in step S61 in FIG. 14 whether or not the heat dissipation fan 36 has a failure that causes a stop or an output reduction. If no failure has occurred in the heat radiation fan 36, the process proceeds to step S62, and the compressor 33 is normally driven.
また、放熱ファン36に故障が生じている場合、ステップS63に進み、冷媒圧力が第1閾値TH1以上であるか否かを判定する。そして、冷媒圧力が第1閾値TH1以上であれば、ステップS64に進み、冷媒圧力が第1閾値TH1以上となったのが、放熱ファン36の故障発生後の初回であるか否かを判定する。初回であれば、ステップS65に進み、コンプレッサ回転速度を制限回転速度N1にて制限する(図13のタイミングt32)。また、初回でなければ、コンプレッサ33の駆動制限の度合いを前回値よりも大きくすべく、制限回転速度を所定値だけ小さくする(図13のタイミングt36)。
If the heat dissipation fan 36 has failed, the process proceeds to step S63, and it is determined whether the refrigerant pressure is equal to or higher than the first threshold value TH1. If the refrigerant pressure is equal to or higher than the first threshold value TH1, the process proceeds to step S64, and it is determined whether or not the refrigerant pressure becomes equal to or higher than the first threshold value TH1 for the first time after the failure of the heat radiation fan 36 occurs. .. If it is the first time, the process proceeds to step S65, and the compressor rotation speed is limited to the limited rotation speed N1 (timing t32 in FIG. 13). If it is not the first time, the limit rotation speed is reduced by a predetermined value in order to increase the degree of drive limitation of the compressor 33 from the previous value (timing t36 in FIG. 13).
また、冷媒圧力が第1閾値TH1未満であれば、ステップS67に進み、冷媒圧力が第2閾値TH2以上であるか否かを判定する。そして、冷媒圧力が第2閾値TH2以上であれば、ステップS68に進み、冷媒圧力が第1閾値TH1に到達した後において、前回、制限回転速度を大きくする側に更新してから所定時間が経過したか否かを判定する。ステップS68を肯定する場合、ステップS69に進み、制限回転速度を所定値だけ大きくする(図13のタイミングt34,t35)。
If the refrigerant pressure is less than the first threshold TH1, the process proceeds to step S67, and it is determined whether the refrigerant pressure is the second threshold TH2 or more. Then, if the refrigerant pressure is equal to or higher than the second threshold value TH2, the process proceeds to step S68, and after the refrigerant pressure reaches the first threshold value TH1, a predetermined time has elapsed since the last time it was updated to the side in which the speed limit is increased. It is determined whether or not. When the result in step S68 is affirmative, the process proceeds to step S69, and the limit rotation speed is increased by a predetermined value (timings t34 and t35 in FIG. 13).
また、ステップS67,S69のいずれかが否定される場合、ステップS70に進み、現時点のコンプレッサ33の駆動状態を保持する。
If either of steps S67 and S69 is denied, the process proceeds to step S70, and the current drive state of the compressor 33 is held.
上述した第3の手法によれば、放熱ファン36の故障発生時において、冷媒圧力が第1閾値TH1まで上昇したことを条件に、コンプレッサ33の駆動制限が開始される。この場合、冷媒圧力が第1閾値TH1を超えることを抑制しつつ、コンプレッサ33の制限回転速度が、制限度合いの大きい制限回転速度N1から徐々に大きい値に更新される。
According to the third method described above, when the failure of the heat radiation fan 36 occurs, the drive limitation of the compressor 33 is started on condition that the refrigerant pressure rises to the first threshold value TH1. In this case, the limiting rotation speed of the compressor 33 is gradually updated from the limiting rotation speed N1 having a large degree of limitation to a large value while suppressing the refrigerant pressure from exceeding the first threshold value TH1.
・空調冷媒回路31での異常判定として、空調冷媒回路31での冷媒漏れが生じていることを判定する構成としてもよい。本構成でのバッテリ冷却の処理手順を、図15を用いて説明する。ここで、空調冷媒回路31での異常として冷媒漏れが生じている場合には、空調冷媒回路31での熱変換能力の低下によるバッテリ冷却の不足が懸念されるが、異常発生時における制御態様の変更として空調の実施を制限することで、バッテリ冷却の不足分を補うこととしている。
As the abnormality determination in the air conditioning refrigerant circuit 31, it may be configured to determine that the refrigerant leakage is occurring in the air conditioning refrigerant circuit 31. The processing procedure of battery cooling in this configuration will be described with reference to FIG. Here, when a refrigerant leak occurs as an abnormality in the air-conditioning refrigerant circuit 31, there is a concern that the battery may be insufficiently cooled due to a decrease in heat conversion capacity in the air-conditioning refrigerant circuit 31. As a change, the implementation of air conditioning is limited to compensate for the shortage of battery cooling.
図15において、ステップS81では、空調冷媒回路31での異常として、空調冷媒回路31で冷媒漏れが生じているか否かを判定する。例えば、冷媒圧センサ37の検出値に基づいて、冷媒漏れ異常の有無を判定する。コンプレッサ回転速度等のコンプレッサ33の駆動状態を加味しつつ、冷媒圧センサ37の検出値に基づいて、冷媒漏れ異常の有無を判定することも可能である。
In FIG. 15, in step S81, it is determined whether a refrigerant leak has occurred in the air conditioning refrigerant circuit 31 as an abnormality in the air conditioning refrigerant circuit 31. For example, based on the detection value of the refrigerant pressure sensor 37, the presence/absence of refrigerant leakage abnormality is determined. It is also possible to determine the presence/absence of a refrigerant leakage abnormality based on the detection value of the refrigerant pressure sensor 37 while taking into consideration the driving state of the compressor 33 such as the compressor rotation speed.
冷媒漏れ異常が生じていない場合、ステップS81を否定してステップS82に進み、コンプレッサ33を通常駆動させる。このとき、制御装置60は、空調要求及びバッテリ冷却要求に基づいて、コンプレッサ33の回転速度制御を実施する。
If no refrigerant leakage abnormality has occurred, step S81 is denied and the process proceeds to step S82 to drive the compressor 33 normally. At this time, the control device 60 executes the rotation speed control of the compressor 33 based on the air conditioning request and the battery cooling request.
また、冷媒漏れ異常が生じている場合、ステップS81を肯定してステップS83に進む。ステップS83では、バッテリ冷却要求が生じているか否かを判定する。バッテリ冷却要求が生じていなければ、ステップS85に進み、コンプレッサ33を非駆動状態とする。このとき、冷媒漏れ異常が生じた時点で空調要求に応じた空調が実施されていれば、コンプレッサ33の駆動を停止することに伴い空調が停止される。
If a refrigerant leakage abnormality has occurred, the affirmative decision is made in step S81 and the operation proceeds to step S83. In step S83, it is determined whether a battery cooling request has been issued. If the battery cooling request is not generated, the process proceeds to step S85, and the compressor 33 is brought into a non-driving state. At this time, if air conditioning is being performed in response to the air conditioning request at the time when the refrigerant leakage abnormality occurs, the air conditioning is stopped as the drive of the compressor 33 is stopped.
また、バッテリ冷却要求が生じていれば、ステップS84に進み、冷媒圧力が所定の閾値TH11以上であるか否かを判定する。閾値TH11は、例えば温調ユニット52でのバッテリ冷却が可能となる圧力下限値である。閾値TH11は、冷媒圧力と温調ユニット52での熱交換能力との関係に基づいて定められていてもよい。そして、ステップS84において冷媒圧力が閾値TH11未満であれば、ステップS85に進み、コンプレッサ33を非駆動状態とする。つまり、冷媒圧力が過剰に低下した場合には、バッテリ冷却が不可となるため、コンプレッサ33の駆動を停止する。
If a battery cooling request is made, the process proceeds to step S84 and it is determined whether the refrigerant pressure is equal to or higher than a predetermined threshold value TH11. The threshold value TH11 is, for example, a pressure lower limit value that allows the temperature control unit 52 to cool the battery. The threshold value TH11 may be determined based on the relationship between the refrigerant pressure and the heat exchange capacity of the temperature adjustment unit 52. Then, if the refrigerant pressure is less than the threshold value TH11 in step S84, the process proceeds to step S85, and the compressor 33 is brought into a non-driving state. That is, when the refrigerant pressure is excessively reduced, battery cooling becomes impossible, and the drive of the compressor 33 is stopped.
また、冷媒圧力が閾値TH11以上であれば、ステップS86に進む。ステップS86では、冷媒漏れ異常が生じている状況であってもバッテリ冷却を継続すべく、コンプレッサ33の駆動により冷媒圧力を所定圧力Pa以上の圧力に維持するようにする。つまり、温調ユニット52での熱変換が可能となるレベルで冷媒圧力の制御を実施する。なお、所定圧力Paは、少なくとも最低限のバッテリ冷却を可能とする圧力であり、例えば閾値TH11を基準として「TH11+α」の圧力であるとよい。
If the refrigerant pressure is equal to or higher than the threshold value TH11, the process proceeds to step S86. In step S86, the refrigerant pressure is maintained at a pressure equal to or higher than the predetermined pressure Pa by driving the compressor 33 in order to continue the battery cooling even in the situation where the refrigerant leakage abnormality occurs. That is, the control of the refrigerant pressure is performed at a level at which the heat conversion in the temperature adjustment unit 52 is possible. The predetermined pressure Pa is a pressure that enables at least the minimum battery cooling, and may be a pressure of “TH11+α” with the threshold TH11 as a reference, for example.
その後、ステップS87では、今現在、空調要求が生じているか否かを判定する。そして、ステップS87が肯定されるとステップS88に進む。このとき、空調要求及びバッテリ冷却要求の両方が生じていれば、ステップS87が肯定される。また、ステップS87が否定されると、そのまま本処理を終了する。
After that, in step S87, it is determined whether or not an air conditioning request is currently made. When step S87 is positive, the process proceeds to step S88. At this time, if both the air conditioning request and the battery cooling request are generated, step S87 is affirmed. If step S87 is denied, this process ends.
ステップS88では、今現在の状況が、コンプレッサ33の出力を増加させても空調要求及びバッテリ冷却要求が満たされない状況になっているか否かを判定する。そして、ステップS88が否定される場合、すなわち両要求を満たすことが可能である場合には、ステップS90に進み、空調を作動状態とする。ステップS90では、空調冷媒回路31において、第2循環経路L2に加えて第1循環経路L1でも冷媒が流れる状態とすることで、空調を作動状態とする。
In step S88, it is determined whether or not the current situation is such that the air conditioning request and the battery cooling request are not satisfied even if the output of the compressor 33 is increased. Then, when step S88 is denied, that is, when both requests can be satisfied, the process proceeds to step S90 to activate the air conditioning. In step S90, in the air conditioning refrigerant circuit 31, the air conditioning is activated by setting the refrigerant to flow in the first circulation path L1 in addition to the second circulation path L2.
また、ステップS88が肯定される場合、には、ステップS89に進む。ステップS89では、車速が速度閾値THC以上であるか否かを判定する。そして、ステップS89が肯定される場合には、ステップS90に進み、空調を作動状態とする。
If step S88 is positive, the process proceeds to step S89. In step S89, it is determined whether the vehicle speed is equal to or higher than the speed threshold THC. If the result at step S89 is affirmative, the process proceeds to step S90 to activate the air conditioning.
また、ステップS89が否定される場合に、ステップS91に進み、空調を停止させる。このとき、空調冷媒回路31において、第2循環経路L2で冷媒が流れる状態とし、かつ第1循環経路L1で冷媒が流れることを停止する。これにより、空調の実施が制限される。
If step S89 is denied, the process proceeds to step S91 to stop the air conditioning. At this time, in the air conditioning refrigerant circuit 31, the refrigerant is allowed to flow in the second circulation path L2, and the refrigerant is stopped from flowing in the first circulation path L1. This limits the implementation of air conditioning.
なお、ステップS91で空調が停止されている状態下、すなわちステップS88が肯定され、かつステップS89が否定されている状態下において、車速が速度閾値THC以上になると、ステップS89が肯定され、ステップS90において空調が作動状態とされる(空調の制限が解除される)。このとき、ステップS90では、空調の制限を解除することに代えて、空調の制限の度合いを小さくするようにしてもよい。
If the vehicle speed becomes equal to or higher than the speed threshold value THC under the condition that the air conditioning is stopped in step S91, that is, the step S88 is affirmative and the step S89 is negative, the step S89 is affirmative and the step S90 is affirmative. At, the air conditioning is activated (the restriction on the air conditioning is lifted). At this time, in step S90, the degree of air conditioning restriction may be reduced instead of canceling the air conditioning restriction.
本実施形態における効果を以下に説明する。
The effects of this embodiment will be described below.
空調冷媒回路31での異常として冷媒漏れが生じている場合には、空調冷媒回路31での熱変換の能力が低下することが考えられるが、空調冷媒回路31による空調の実施を制限することで、バッテリ冷却の不足分を補うことができる。これにより、異常発生時において極力適正な状態でのバッテリ冷却を実施できる。
When a refrigerant leak occurs as an abnormality in the air conditioning refrigerant circuit 31, it is possible that the ability of heat conversion in the air conditioning refrigerant circuit 31 decreases, but by restricting the execution of air conditioning by the air conditioning refrigerant circuit 31. , The shortage of battery cooling can be compensated. As a result, the battery can be cooled in the most appropriate state when an abnormality occurs.
空調要求及びバッテリ冷却要求が生じており、かつ空調冷媒回路31での異常が生じていると判定された状況下において、コンプレッサ33の出力を増加させても空調要求及びバッテリ冷却要求が満たされないことを条件に、空調の実施を制限するようにした。この場合、空調要求及びバッテリ冷却要求が生じる状況とコンプレッサ駆動の状態とを考慮することで、バッテリ冷却を継続しつつ適正な空調制限を実施することができる。
Under the situation where an air conditioning request and a battery cooling request are generated and it is determined that an abnormality is occurring in the air conditioning refrigerant circuit 31, even if the output of the compressor 33 is increased, the air conditioning request and the battery cooling request are not satisfied. Under the conditions, the implementation of air conditioning was restricted. In this case, by considering the situation in which the air conditioning request and the battery cooling request are generated and the compressor driving state, it is possible to implement the appropriate air conditioning restriction while continuing the battery cooling.
車速が速度閾値THCよりも大きいことに基づいて、空調の制限を解除するか、又は空調の制限の度合いを小さくするようにした。車速が大きい場合には走行風による凝縮器34の放熱が行われることを考慮すると、空調制限として空調を停止した状態から、空調を実施する状態への切り替えが可能である。
-Based on the vehicle speed being higher than the speed threshold THC, the air conditioning restriction is released or the degree of air conditioning restriction is reduced. Considering that when the vehicle speed is high, heat is dissipated from the condenser 34 by the traveling wind, it is possible to switch from a state in which the air conditioning is stopped to a state in which the air conditioning is performed as the air conditioning restriction.
・冷媒漏れ異常の発生時における対応として、以下の処理が実施されてもよい。空調の制限が実施される場合に、バッテリ温度に基づいて、第1循環経路L1を流れる冷媒の量と第2循環経路L2を流れる冷媒の量との配分を調整する構成としてもよい。具体的には、制御装置60は、冷媒漏れ異常の発生時において、図8の関係に基づいて、第1循環経路L1を流れる冷媒の量(L1冷媒量)と第2循環経路L2を流れる冷媒の量(L2冷媒量)との配分を調整する。なお、本処理は、例えば図15のステップS91にて実施されるとよい。
-The following processing may be performed as a response when a refrigerant leakage abnormality occurs. When the air conditioning is restricted, the distribution of the amount of the refrigerant flowing through the first circulation path L1 and the amount of the refrigerant flowing through the second circulation path L2 may be adjusted based on the battery temperature. Specifically, when the refrigerant leakage abnormality occurs, the control device 60, based on the relationship of FIG. 8, the amount of the refrigerant flowing through the first circulation path L1 (L1 refrigerant quantity) and the refrigerant flowing through the second circulation path L2. The distribution with the amount (L2 refrigerant amount) is adjusted. Note that this process may be performed in step S91 of FIG. 15, for example.
・冷媒漏れ異常の発生時において、現時点以降に空調要求及びバッテリ冷却要求の両方が生じることを加味して、余剰の空調制御を実施する構成としてもよい。図16は、かかる処理を説明するためのフローチャートである。本処理は、制御装置60により所定周期で実施される。
-When a refrigerant leakage abnormality occurs, it may be configured to perform surplus air conditioning control, taking into account that both an air conditioning request and a battery cooling request will occur after the present time. FIG. 16 is a flowchart for explaining such processing. This process is performed by the control device 60 at a predetermined cycle.
図16において、ステップS101では、今現在、空調要求及びバッテリ冷却要求の一方又は両方が生じていない状況下であるか否かを判定し、続くステップS102では、冷媒漏れ異常が生じているか否かを判定する。ステップS101,S102が共に肯定された場合に、ステップS103に進む。ステップS103では、現時点以降の車両走行予測に基づいて、空調要求及びバッテリ冷却要求の両方が生じる状況になるか否かを予測する。このとき、車両走行時において、現時点以降の外気温度の変化や、高速走行などの走行条件により、将来的に空調要求及びバッテリ冷却要求の両方が生じることの予測が可能である。また、冷媒漏れ異常(空調冷媒回路31の異常)の発生時点で、将来の空調要求及びバッテリ冷却要求の両方を満たすことができなくなることの予測も可能である。
In FIG. 16, in step S101, it is determined whether or not one or both of the air conditioning request and the battery cooling request are currently occurring, and in the following step S102, it is determined whether a refrigerant leakage abnormality has occurred. To judge. When both steps S101 and S102 are affirmed, the process proceeds to step S103. In step S103, it is predicted whether or not both the air-conditioning request and the battery cooling request will occur based on the vehicle traveling prediction after the present time. At this time, when the vehicle is traveling, it is possible to predict that both an air conditioning request and a battery cooling request will occur in the future due to changes in the outside air temperature after the present time and traveling conditions such as high speed traveling. It is also possible to predict that at the time of occurrence of the refrigerant leakage abnormality (abnormality of the air conditioning refrigerant circuit 31), both future air conditioning demand and battery cooling demand cannot be satisfied.
その後、ステップS104では、空調要求及びバッテリ冷却要求の両方が生じる前に、現時点の要求に対して余剰となる空調を実施する。この場合、既に空調要求に応じて空調が実施されていれば、例えば空調の設定温度を低くするなどして、現時点よりも車室内空調(冷房)を強くする。また、空調が実施されていなければ、現時点の空調要求の有無にかかわらず、空調(冷房)を開始する。なお、車両走行予測に基づいて、空調要求及びバッテリ冷却要求の両方が生じる将来のタイミングを推測するとともに、そのタイミングから所定時間を遡ったタイミングで、余剰空調を開始する構成でもよい。
After that, in step S104, surplus air conditioning is performed with respect to the current request before both the air conditioning request and the battery cooling request occur. In this case, if the air conditioning has already been performed in response to the air conditioning request, the vehicle interior air conditioning (cooling) is made stronger than at the present time, for example, by lowering the set temperature of the air conditioning. If the air conditioning is not performed, the air conditioning (cooling) is started regardless of whether or not there is a current air conditioning request. It is also possible to estimate the future timing at which both the air conditioning request and the battery cooling request occur based on the vehicle travel prediction, and to start the surplus air conditioning at a timing that is a predetermined time back from the timing.
上記構成によれば、空調要求及びバッテリ冷却要求の両方が生じる前に、現時点の要求に対して余剰となる空調(余剰空調)を実施しておくことで、車室環境の良化を図ることができる。
According to the above configuration, before the air conditioning request and the battery cooling request both occur, the excess air conditioning (excess air conditioning) for the current request is performed to improve the vehicle interior environment. You can
・「制御パラメータ」として、冷媒通路32内の冷媒圧力以外を用いることも可能である。例えば、コンプレッサ33の通電電流に応じてコンプレッサ33の駆動状態が変わることから、コンプレッサ通電電流を制御パラメータとして取得する構成としてもよい。この場合、例えば電流センサ65により検出したコンプレッサ通電電流に基づいて、放熱ファン36の停止故障の発生後に冷媒圧力が上昇変化していることを判定し、その判定結果に基づいて、コンプレッサ33の駆動制限の度合いを調整するとよい。その他、制御パラメータとして、コンプレッサトルクやコンプレッサ出力を取得する構成としてもよい。
It is also possible to use other than the refrigerant pressure in the refrigerant passage 32 as the “control parameter”. For example, since the driving state of the compressor 33 changes depending on the energizing current of the compressor 33, the compressor energizing current may be acquired as a control parameter. In this case, for example, based on the compressor energization current detected by the current sensor 65, it is determined that the refrigerant pressure is rising after the stop failure of the heat radiation fan 36, and the compressor 33 is driven based on the determination result. Adjust the degree of restriction. In addition, the configuration may be such that the compressor torque or the compressor output is acquired as the control parameter.
・電動式のコンプレッサ33は、回転速度を可変にすることにより駆動状態が制御される構成となっているもの以外に、1回転あたりの冷媒吐出量を可変にすることにより駆動状態が制御される構成となっているものであってもよい。
The electric compressor 33 has a structure in which the driving state is controlled by changing the rotation speed, and the driving state is controlled by changing the refrigerant discharge amount per one rotation. It may be configured.
・空調冷媒回路31のコンプレッサとして、電動式のコンプレッサ33に代えて、エンジン11の動力により駆動される機械式のコンプレッサを用いてもよい。本構成では、コンプレッサの回転軸は、ベルト等の連結部材を介してエンジン11の出力軸に連結され、エンジン11の回転に伴いコンプレッサが駆動される。この場合、例えばコンプレッサの回転入力部に多段式又は無段式の変速装置を設け、その変速装置の制御によりコンプレッサの回転速度を制御可能にする。そして、バッテリ冷却要求が生じており、かつ空調冷媒回路31で異常が生じていると判定された状況下において、駆動制限した状態(回転速度を制限した状態)でコンプレッサを駆動させるとよい。
As the compressor of the air conditioning refrigerant circuit 31, a mechanical compressor driven by the power of the engine 11 may be used instead of the electric compressor 33. In this configuration, the rotating shaft of the compressor is connected to the output shaft of the engine 11 via a connecting member such as a belt, and the compressor is driven as the engine 11 rotates. In this case, for example, a multistage or continuously variable transmission is provided in the rotation input section of the compressor, and the rotational speed of the compressor can be controlled by controlling the transmission. Then, under the situation where the battery cooling request is generated and it is determined that the abnormality has occurred in the air conditioning refrigerant circuit 31, it is preferable to drive the compressor in a drive limited state (a state in which the rotation speed is limited).
・バッテリ51から電力供給される車載の電気機器は、回転電機21以外であってもよく、例えば車室内を暖める暖房用ヒータや、排気浄化触媒等を加熱するヒータ、電動ポンプ等の各種補機であってもよい。
The on-vehicle electric equipment supplied with power from the battery 51 may be other than the rotating electric machine 21, and may be, for example, a heater for heating the interior of the vehicle, a heater for heating an exhaust purification catalyst, or various auxiliary equipment such as an electric pump. May be
・本開示において適用可能な車両は、ハイブリッド車両以外であってもよく、例えば走行動力源としての内燃機関を備える車両や、走行動力源として回転電機を備える電気自動車、燃料電池車両であってもよい。
The vehicle applicable in the present disclosure may be other than a hybrid vehicle, and may be, for example, a vehicle including an internal combustion engine as a traveling power source, an electric vehicle including a rotating electric machine as a traveling power source, or a fuel cell vehicle. Good.
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
The control unit and the method thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be done. Alternatively, the control unit and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method thereof described in the present disclosure are based on a combination of a processor and a memory programmed to execute one or a plurality of functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by a computer.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described according to the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than those, also fall within the scope and spirit of the present disclosure.
Claims (21)
- 冷媒を循環させる冷媒通路(32)と、前記冷媒を圧縮するコンプレッサ(33)と、熱源側熱交換器(34)と、利用側熱交換器(35)とを備える空調冷媒回路(31)と、
車載の電気機器(21)に対して電力を供給するバッテリ(51)と、
前記冷媒通路における前記冷媒の循環により前記バッテリを冷却するバッテリ冷却部(52)と、
を備える車載冷却システムに適用され、空調要求及びバッテリ冷却要求に基づいて、前記コンプレッサの駆動状態を制御する制御装置(60)であって、
前記空調冷媒回路で異常が生じていることを判定する異常判定部と、
前記バッテリ冷却要求が生じており、かつ前記異常が生じていると判定された状況下において、前記バッテリ冷却部による前記バッテリの冷却を継続しつつ前記空調冷媒回路での冷媒循環の制御態様を変更する制御態様変更部と、
を備える車載冷却システムの制御装置。 An air conditioning refrigerant circuit (31) including a refrigerant passage (32) for circulating a refrigerant, a compressor (33) for compressing the refrigerant, a heat source side heat exchanger (34), and a utilization side heat exchanger (35). ,
A battery (51) for supplying electric power to an in-vehicle electric device (21);
A battery cooling unit (52) for cooling the battery by circulating the refrigerant in the refrigerant passage;
A controller (60) which is applied to an in-vehicle cooling system including: and controls a driving state of the compressor based on an air conditioning request and a battery cooling request,
An abnormality determination unit that determines that an abnormality has occurred in the air conditioning refrigerant circuit,
Under the situation where the battery cooling request is generated and it is determined that the abnormality is occurring, the control mode of the refrigerant circulation in the air conditioning refrigerant circuit is changed while continuing the cooling of the battery by the battery cooling unit. A control mode changing unit for
A control device for an in-vehicle cooling system including the. - 前記制御態様変更部は、前記制御態様の変更として、前記異常が生じる前に比べて前記冷媒通路での冷媒圧力の上昇を制限する請求項1に記載の車載冷却システムの制御装置。 The control device for the vehicle-mounted cooling system according to claim 1, wherein the control mode changing unit limits the increase in the refrigerant pressure in the refrigerant passage as compared with the time before the abnormality occurs, as the control mode is changed.
- 前記制御態様変更部は、前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇を制限するものであり、前記冷媒通路内の冷媒圧力が所定の高圧上限値を超える圧力上昇を抑えるべく前記コンプレッサの駆動を制限する請求項1又は2に記載の車載冷却システムの制御装置。 The control mode changing unit limits the increase of the refrigerant pressure in the refrigerant passage as the change of the control mode, and the refrigerant pressure in the refrigerant passage suppresses the pressure increase exceeding a predetermined high pressure upper limit value. The control device for a vehicle-mounted cooling system according to claim 1 or 2, which limits driving of the compressor.
- 前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇が制限される場合に、前記空調冷媒回路による空調の実施を制限する空調制限部を備える請求項2又は3に記載の車載冷却システムの制御装置。 The vehicle-mounted cooling system according to claim 2 or 3, further comprising an air-conditioning restriction unit that restricts execution of air conditioning by the air-conditioning refrigerant circuit when the increase in the refrigerant pressure in the refrigerant passage is restricted as a change of the control mode. Control device.
- 前記冷媒通路は、前記利用側熱交換器に対して並列に設けられ前記バッテリ冷却部に前記冷媒を供給するバイパス通路(41)を有しており、前記利用側熱交換器を含む第1循環経路(L1)と前記利用側熱交換器を含まず前記バイパス通路を含む第2循環経路(L2)とのいずれの循環経路で前記冷媒を流す状態とするかの切り替えが可能であり、
前記空調制限部は、前記空調の制限として、前記第2循環経路で前記冷媒が流れる状態とし、かつ前記第1循環経路で前記冷媒が流れることを制限する請求項4に記載の車載冷却システムの制御装置。 The refrigerant passage has a bypass passage (41) that is provided in parallel with the usage-side heat exchanger and supplies the refrigerant to the battery cooling unit, and a first circulation including the usage-side heat exchanger. It is possible to switch which circulation path of the path (L1) and the second circulation path (L2) that does not include the use-side heat exchanger and includes the bypass path, in which the refrigerant flows.
The in-vehicle cooling system according to claim 4, wherein the air-conditioning restriction unit sets the refrigerant to flow in the second circulation path and restricts the refrigerant to flow in the first circulation path as the air-conditioning restriction. Control device. - 前記空調制限部は、前記空調の制限が実施される場合に、前記バッテリの温度に基づいて、前記第1循環経路を流れる冷媒の量と前記第2循環経路を流れる冷媒の量との配分を調整する請求項5に記載の車載冷却システムの制御装置。 The air conditioning restriction unit distributes the amount of the refrigerant flowing through the first circulation path and the amount of the refrigerant flowing through the second circulation path based on the temperature of the battery when the air conditioning is restricted. The controller of the vehicle-mounted cooling system according to claim 5, which is adjusted.
- 前記空調制限部は、車両の走行速度である車速が所定の速度閾値よりも大きいことに基づいて、前記空調の制限を解除するか、又は前記空調の制限の度合いを小さくする請求項4乃至6のいずれか1項に記載の車載冷却システムの制御装置。 7. The air conditioning restriction unit releases the restriction of the air conditioning or reduces the degree of the restriction of the air conditioning based on the vehicle speed, which is the traveling speed of the vehicle, being higher than a predetermined speed threshold value. The control device for a vehicle-mounted cooling system according to claim 1.
- 前記制御態様変更部は、前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇を制限している状態下で、車両の走行速度である車速が所定の第1速度閾値よりも大きいことに基づいて、前記冷媒圧力の制限の度合いを小さくし、
前記空調制限部は、前記車速が前記第1速度閾値よりも大きい第2速度閾値よりも大きいことに基づいて、前記空調の制限の度合いを小さくする請求項4乃至6のいずれか1項に記載の車載冷却システムの制御装置。 The control mode changing unit is configured to change the control mode such that the vehicle speed, which is the traveling speed of the vehicle, is higher than a predetermined first speed threshold value under the condition that the increase of the refrigerant pressure in the refrigerant passage is limited. Based on, the degree of restriction of the refrigerant pressure is reduced,
7. The air conditioning restriction unit reduces the degree of restriction of the air conditioning based on that the vehicle speed is higher than a second speed threshold value that is higher than the first speed threshold value, according to claim 4. Control device for in-vehicle cooling system. - 前記制御態様変更部は、前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇を制限している状態下で、車両の走行速度である車速が所定の速度閾値よりも大きいことに基づいて、前記冷媒圧力の制限の度合いを小さくする請求項1乃至8のいずれか1項に記載の車載冷却システムの制御装置。 The control mode changing unit is based on that the vehicle speed, which is the traveling speed of the vehicle, is greater than a predetermined speed threshold value under the condition that the increase of the refrigerant pressure in the refrigerant passage is limited as the change of the control mode. The control device for a vehicle-mounted cooling system according to any one of claims 1 to 8, wherein the degree of restriction of the refrigerant pressure is reduced.
- 前記バッテリ冷却要求が生じていない状況下において、前記異常が生じていると判定された場合に、現時点以降の車両走行予測に基づいて、前記バッテリ冷却要求が生じる状況になるか否かを予測する予測部を備え、
前記制御態様変更部は、前記予測部により前記バッテリ冷却要求が生じる状況になると予測された場合に、前記制御態様の変更を実施する請求項1乃至9のいずれか1項に記載の車載冷却システムの制御装置。 When it is determined that the abnormality has occurred in a situation in which the battery cooling request has not occurred, it is predicted whether or not the situation in which the battery cooling request will occur occurs based on the vehicle traveling prediction after the present time. Equipped with a predictor,
The vehicle-mounted cooling system according to claim 1, wherein the control mode changing unit changes the control mode when the prediction unit predicts that the battery cooling request will be generated. Control device. - 前記電気機器は、車両走行のための動力源となる回転電機(21)であり、
前記予測部は、車両の走行目的地に基づいて、前記バッテリ冷却要求が生じる状況になるか否かを予測する請求項10に記載の車載冷却システムの制御装置。 The electric device is a rotating electric machine (21) serving as a power source for running the vehicle,
The controller of the vehicle-mounted cooling system according to claim 10, wherein the prediction unit predicts whether or not the battery cooling request will be generated based on a traveling destination of the vehicle. - 前記制御態様変更部は、
前記制御態様の変更として前記冷媒通路での冷媒圧力の上昇を制限するものであり、
前記バッテリ冷却要求が生じる状況になると予測されたことに基づき前記冷媒圧力の制限を行う場合に、実際に前記バッテリ冷却要求が生じていることに基づき前記冷媒圧力の制限を行う場合に比べて、前記冷媒圧力の制限の度合いを大きくする請求項10又は11に記載の車載冷却システムの制御装置。 The control mode changing unit,
As a change of the control mode, it is intended to limit the increase of the refrigerant pressure in the refrigerant passage,
In the case of limiting the refrigerant pressure based on the fact that the battery cooling request is predicted to occur, compared to the case of limiting the refrigerant pressure based on the fact that the battery cooling request is actually generated, The control device for a vehicle-mounted cooling system according to claim 10, wherein the degree of restriction of the refrigerant pressure is increased. - 前記制御態様変更部は、前記制御態様の変更として前記空調冷媒回路による空調の実施を制限する空調制限部を備える請求項1に記載の車載冷却システムの制御装置。 The control device for a vehicle-mounted cooling system according to claim 1, wherein the control mode changing unit includes an air conditioning restriction unit that restricts execution of air conditioning by the air conditioning refrigerant circuit as a change of the control mode.
- 前記空調制限部は、前記空調要求及び前記バッテリ冷却要求が生じており、かつ前記異常が生じていると判定された状況下において、前記コンプレッサの出力を増加させても前記空調要求及び前記バッテリ冷却要求が満たされないことを条件に、前記空調の実施を制限する請求項13に記載の車載冷却システムの制御装置。 In the situation where the air conditioning request and the battery cooling request are generated and it is determined that the abnormality is occurring, the air conditioning restriction unit is configured to increase the output of the compressor, and the air conditioning request and the battery cooling are performed. The control device for a vehicle-mounted cooling system according to claim 13, wherein execution of the air conditioning is restricted on condition that the requirement is not satisfied.
- 前記空調要求及び前記バッテリ冷却要求の一方又は両方が生じていない状況下において、前記異常が生じていると判定された場合に、現時点以降の車両走行予測に基づいて、前記空調要求及び前記バッテリ冷却要求の両方が生じる状況になるか否かを予測する予測部を備え、
前記制御態様変更部は、前記予測部により前記空調要求及び前記バッテリ冷却要求の両方が生じる状況になると予測された場合に、前記空調要求及び前記バッテリ冷却要求の両方が生じる前に、現時点の要求に対して余剰となる前記空調を実施する請求項14に記載の車載冷却システムの制御装置。 In a situation where one or both of the air conditioning request and the battery cooling request have not occurred, when it is determined that the abnormality has occurred, the air conditioning request and the battery cooling are performed based on the vehicle traveling prediction after the present time. A prediction unit that predicts whether or not both of the requests will occur,
The control mode changing unit, when the prediction unit predicts that both the air conditioning request and the battery cooling request will occur, before the air conditioning request and the battery cooling request both occur, the current request The control device for a vehicle-mounted cooling system according to claim 14, wherein the air-conditioning that is redundant with respect to the above is performed. - 前記冷媒通路は、前記利用側熱交換器に対して並列に設けられ前記バッテリ冷却部に前記冷媒を供給するバイパス通路(41)を有しており、前記利用側熱交換器を含む第1循環経路(L1)と前記利用側熱交換器を含まず前記バイパス通路を含む第2循環経路(L2)とのいずれの循環経路で前記冷媒を流す状態とするかの切り替えが可能であり、
前記空調制限部は、前記空調の制限として、前記第2循環経路で前記冷媒が流れる状態とし、かつ前記第1循環経路で前記冷媒が流れることを制限する請求項13乃至15のいずれか1項に記載の車載冷却システムの制御装置。 The refrigerant passage has a bypass passage (41) that is provided in parallel with the usage-side heat exchanger and supplies the refrigerant to the battery cooling unit, and a first circulation including the usage-side heat exchanger. It is possible to switch which circulation path of the path (L1) and the second circulation path (L2) that does not include the use-side heat exchanger and includes the bypass path, in which the refrigerant flows.
16. The air conditioning restriction unit sets, as the restriction of the air conditioning, a state in which the refrigerant flows through the second circulation path, and restricts the refrigerant through the first circulation path. The control device for the vehicle-mounted cooling system according to item 1. - 前記空調制限部は、前記空調の制限が実施される場合に、前記バッテリの温度に基づいて、前記第1循環経路を流れる冷媒の量と前記第2循環経路を流れる冷媒の量との配分を調整する請求項16に記載の車載冷却システムの制御装置。 The air conditioning restriction unit distributes the amount of the refrigerant flowing through the first circulation path and the amount of the refrigerant flowing through the second circulation path based on the temperature of the battery when the air conditioning is restricted. The controller of the vehicle-mounted cooling system according to claim 16, which is adjusted.
- 前記空調制限部は、車両の走行速度である車速が所定の速度閾値よりも大きいことに基づいて、前記空調の制限を解除するか、又は前記空調の制限の度合いを小さくする請求項13乃至17のいずれか1項に記載の車載冷却システムの制御装置。 18. The air conditioning restriction unit releases the restriction of the air conditioning or reduces the degree of the restriction of the air conditioning based on the vehicle speed, which is the traveling speed of the vehicle, being higher than a predetermined speed threshold. The control device for a vehicle-mounted cooling system according to claim 1.
- 前記コンプレッサの駆動状態、又は前記冷媒通路内の冷媒圧力を制御パラメータとして取得するパラメータ取得部を備え、
前記制御態様変更部は、前記異常の発生後における前記制御パラメータに基づいて、前記制御態様を変更する請求項1乃至18のいずれか1項に記載の車載冷却システムの制御装置。 The driving state of the compressor, or a parameter acquisition unit for acquiring the refrigerant pressure in the refrigerant passage as a control parameter,
The control device for a vehicle-mounted cooling system according to claim 1, wherein the control mode changing unit changes the control mode based on the control parameter after the occurrence of the abnormality. - 前記異常判定部は、前記空調冷媒回路において前記熱源側熱交換器に送風を行う放熱ファン(36)が停止又は出力低減となる異常、前記熱源側熱交換器での目詰まりによる放熱異常、前記空調冷媒回路での冷媒漏れ異常の少なくともいずれかが生じていることに基づいて、前記空調冷媒回路で異常が生じていることを判定する請求項1乃至19のいずれか1項に記載の車載冷却システムの制御装置。 The abnormality determination unit is an abnormality in which the heat radiation fan (36) that blows air to the heat source side heat exchanger in the air conditioning refrigerant circuit is stopped or the output is reduced, heat radiation abnormality due to clogging in the heat source side heat exchanger, The vehicle-mounted cooling according to any one of claims 1 to 19, wherein it is determined that an abnormality has occurred in the air conditioning refrigerant circuit based on at least one of the refrigerant leakage abnormalities in the air conditioning refrigerant circuit. The control unit of the system.
- 前記空調冷媒回路と、
前記バッテリと、
前記バッテリ冷却部と、
請求項1乃至20のいずれか1項に記載の制御装置と、を備える車載冷却システム。 The air-conditioning refrigerant circuit,
The battery;
The battery cooling unit,
An in-vehicle cooling system comprising: the control device according to any one of claims 1 to 20.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019005980.7T DE112019005980T5 (en) | 2018-11-29 | 2019-11-25 | Control device for a vehicle-mounted cooling system and a vehicle-mounted cooling system |
CN201980078618.0A CN113165480B (en) | 2018-11-29 | 2019-11-25 | Control device of vehicle-mounted cooling system and vehicle-mounted cooling system |
US17/335,415 US11884137B2 (en) | 2018-11-29 | 2021-06-01 | Control device for vehicle-mounted cooling system, and vehicle-mounted cooling system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-224234 | 2018-11-29 | ||
JP2018224234 | 2018-11-29 | ||
JP2019-196040 | 2019-10-29 | ||
JP2019196040A JP7443718B2 (en) | 2018-11-29 | 2019-10-29 | In-vehicle cooling system control device, in-vehicle cooling system and program |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/335,415 Continuation US11884137B2 (en) | 2018-11-29 | 2021-06-01 | Control device for vehicle-mounted cooling system, and vehicle-mounted cooling system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020111004A1 true WO2020111004A1 (en) | 2020-06-04 |
Family
ID=70853512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045989 WO2020111004A1 (en) | 2018-11-29 | 2019-11-25 | Vehicle-mounted cooling system control device and vehicle-mounted cooling system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020111004A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022146556A (en) * | 2021-03-22 | 2022-10-05 | トヨタ自動車株式会社 | battery cooling system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013052778A (en) * | 2011-09-05 | 2013-03-21 | Nippon Soken Inc | Control device and control method for cooling system |
JP2013189118A (en) * | 2012-03-14 | 2013-09-26 | Denso Corp | Vehicle air-conditioning system |
JP2018075922A (en) * | 2016-11-08 | 2018-05-17 | 株式会社デンソー | Vehicular air conditioner |
-
2019
- 2019-11-25 WO PCT/JP2019/045989 patent/WO2020111004A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013052778A (en) * | 2011-09-05 | 2013-03-21 | Nippon Soken Inc | Control device and control method for cooling system |
JP2013189118A (en) * | 2012-03-14 | 2013-09-26 | Denso Corp | Vehicle air-conditioning system |
JP2018075922A (en) * | 2016-11-08 | 2018-05-17 | 株式会社デンソー | Vehicular air conditioner |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022146556A (en) * | 2021-03-22 | 2022-10-05 | トヨタ自動車株式会社 | battery cooling system |
JP7295155B2 (en) | 2021-03-22 | 2023-06-20 | トヨタ自動車株式会社 | battery cooling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10601087B2 (en) | Traction battery cooling system with coolant proportional valve | |
JP7232638B2 (en) | Temperature control system for electric vehicles | |
US7310961B2 (en) | Heat exchange apparatus and hybrid vehicle including heat exchange apparatus | |
US20040016246A1 (en) | Control device for motor fan of vehicle | |
KR101588767B1 (en) | Air conditioner system control method for vehicle | |
JP2006224879A (en) | Vehicle cooling system | |
JP7151684B2 (en) | vehicle controller | |
US11884137B2 (en) | Control device for vehicle-mounted cooling system, and vehicle-mounted cooling system | |
CN113597506B (en) | Thermal control device and thermal control method | |
KR20190124159A (en) | Cooling device for vehicle drive system | |
US10919364B2 (en) | Vehicle air conditioning device | |
WO2020111004A1 (en) | Vehicle-mounted cooling system control device and vehicle-mounted cooling system | |
CN113459760B (en) | Heat request adjusting device and adjusting method, non-transitory storage medium, and vehicle | |
JP2023007581A (en) | Vehicular control apparatus | |
KR20240090106A (en) | Thermal management system, vehicle including the same, and control method for thermal management circuit | |
US11177487B2 (en) | Power supply apparatus for vehicle | |
CN114619870B (en) | Grille control method, device, equipment and medium | |
US11333086B1 (en) | System for variably controlling engine-on line in consideration of cooling after FATC engine is turned on | |
US11577737B2 (en) | Heat management device, system, method, and program product for vehicle | |
WO2021140991A1 (en) | Cooling control device, cooling system, program, and control method | |
US20190322159A1 (en) | Vehicular air conditioning system | |
KR102656590B1 (en) | Air conditioning system for automotive vehicles | |
JP2018170825A (en) | Cooling system for vehicle | |
JP7373265B2 (en) | Control device | |
JP2024073319A (en) | Vehicle air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19889911 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19889911 Country of ref document: EP Kind code of ref document: A1 |