WO2020110995A1 - Fire resistant structure design method, fire resistant structure construction method, and fire resistant structure - Google Patents

Fire resistant structure design method, fire resistant structure construction method, and fire resistant structure Download PDF

Info

Publication number
WO2020110995A1
WO2020110995A1 PCT/JP2019/045955 JP2019045955W WO2020110995A1 WO 2020110995 A1 WO2020110995 A1 WO 2020110995A1 JP 2019045955 W JP2019045955 W JP 2019045955W WO 2020110995 A1 WO2020110995 A1 WO 2020110995A1
Authority
WO
WIPO (PCT)
Prior art keywords
fireproof
floor
refractory
coated
intersecting direction
Prior art date
Application number
PCT/JP2019/045955
Other languages
French (fr)
Japanese (ja)
Inventor
慧 木村
涼平 桑田
政樹 有田
聡 北岡
半谷 公司
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to SG11202105524UA priority Critical patent/SG11202105524UA/en
Priority to JP2020512050A priority patent/JP6741185B1/en
Publication of WO2020110995A1 publication Critical patent/WO2020110995A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors

Definitions

  • the present invention relates to a method for designing a refractory structure, a method for constructing a refractory structure, and a refractory structure.
  • the present application claims priority based on Japanese Patent Application No. 2018-221046 filed in Japan on November 27, 2018, and the content thereof is incorporated herein.
  • a steel frame structure is known (for example, see Non-Patent Document 1).
  • the steel frame structure is configured by joining columns and beams to each other and supporting a floor (slab) on the beams.
  • the floor is formed in a rectangular shape having a plurality of corners in a plan view.
  • the pillar supports each of the plurality of corners of the floor from below.
  • a steel frame column or beam may be provided with a fire resistant coating.
  • the pillar with the fireproof coating becomes a fireproof covered pillar.
  • a beam with a fireproof coating is a fireproof beam.
  • the fireproof covered pillar and the fireproof covered beam can support the floor even in the case of a fire.
  • a pillar and a beam without a fireproof coating, a pillar and a beam with a fireproof coating less than that of a fireproof covered column and a fireproof covered beam lose rigidity and proof strength in the event of a fire. In the event of a fire, their rigidity and yield strength may be considered to be reduced.
  • fireproof performance is deteriorated. Since a great deal of labor is required to apply a fireproof coating to columns and beams, it is desirable to omit the fireproof coating.
  • a structure is composed of columns, beams, slabs, and the like.
  • the slab includes a tensile force transmission member.
  • the tensile force transmission member is a reinforcing bar.
  • the structure becomes a refractory structure by applying a fireproof coating to the column to form a fireproof coated column, or by applying a fireproof coating to the beam to form a fireproof coated beam.
  • the slab is divided by a pillar and a beam into a rectangular floor having a plurality of corners in a plan view.
  • a beam member 303 is provided between a fire-resistant coated column member 301 and a reduced fire-resistant coated column member 302. It is set to be joined. 31 and subsequent figures, columns and beams provided without reducing the fireproof coating are shown with hatching.
  • the fireproof column member 301 is a column member having a fireproof coating.
  • the reduced fireproof coated column member 302 is a column member in which the fireproof coating is reduced as compared with the fireproof coated column member 301.
  • the plurality of fireproof covered column members 301 and the plurality of reduced fireproof covered column members 302 are arranged side by side in the width direction E1 and the depth direction E2 with an interval therebetween.
  • the plurality of fireproof coated column members 301 and the plurality of reduced fireproof coated column members 302 are arranged in a grid as a whole.
  • the column members adjacent to the reduced fireproof coated column member 302 in the width direction E1 and the depth direction E2 are arranged so as to be the fireproof coated column member 301.
  • the beam member 303 joins the plurality of fire-resistant coated column members 301 and the plurality of reduced fire-resistant coated column members 302 that are arranged in a grid pattern.
  • a synthetic slab 304 is provided on the plurality of beam members 303.
  • the synthetic slab 304 has concrete, a deck plate, and slab muscles (tensile force transmitting members).
  • the deck plate is fixed to the upper surface of the beam member 303 by driving tack bonding, bolt bonding, or the like.
  • the fireproof coated column member 301 can maintain rigidity and proof stress not only in a normal time when the outside temperature is room temperature but also in a fire.
  • the reduced fireproof coated column member 302 can maintain the rigidity and the proof stress in normal times, but cannot maintain the rigidity and the proof stress in a fire. In the event of a fire, it is considered that the reduced fireproof coated column member 302 loses its rigidity and proof stress.
  • the synthetic slab 304 is not shown in FIG.
  • the reduced fireproof coating column member 302 and the synthetic slab 304 after deformation are indicated by a two-dot chain line.
  • the composite slab 304 arranged on the center line M1 connecting the adjacent fire-resistant coated column members 301 is hereinafter referred to as a line slab 304a.
  • the fire-resistant coated column member 301, the reduced fire-resistant coated column member 302, the beam member 303, and the composite slab 304 are affected by gravity not only during normal times but also during a fire.
  • the synthetic slab 304 is curved so as to be convex upward with the linear slab 304a as the center.
  • the concrete receives a compressive force and the slab muscle receives a tensile force, so that the synthetic slab 304 withstands the bending moment B1.
  • the synthetic slab 304 resists gravity acting on the synthetic slab 304 by the bending moment B1.
  • a test body including a concrete structure and an explosion-proof fireproof coating layer provided on the surface of the concrete structure is produced. Then, the test body is heated to measure the change in temperature over time, and the relationship between the depth of the test body and the temperature is derived. Based on the relationship, it is determined whether the temperature of the concrete structure is equal to or lower than the heat-resistant allowable temperature. Further, the thickness of the explosion-proof fireproof coating layer is calculated based on the result.
  • a first aspect of the present invention is, in a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view, and a fireproof coating applied to the floor section.
  • An annular fireproof beam that supports the surroundings from below, a fireproof coating, and an extension beam that is joined to a joining corner, which is at least one of the plurality of corners of the floor, and a fireproof coating.
  • a refractory covered column supporting a part different from the part connected to the connection corner of the extension beam, and a direction intersecting with each other in a plane of the floor part is a first intersecting direction and a second intersecting direction.
  • a second aspect of the present invention is, in a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view, and a fireproof coating applied to the floor section.
  • the tensile force transmitting member extended by the bending of the floor portion transmits the tensile force in each of the first intersecting direction and the second intersecting direction, so that the central portion of the floor portion is supported. Therefore, the fire resistance performance of the fire resistant structure can be maintained at the same level as the conventional one.
  • the joint corners are supported by the fireproof coated columns through the extension beams.
  • the joint corners are not directly supported by the columns or are supported by the reduced fireproof coated columns from below. Therefore, it is possible to increase the degree of freedom in designing at the joint corner of the floor and to omit the fireproof coating of the column supporting at least one corner.
  • FIG. 33 is a cross-sectional view taken along the section line A11-A11 in FIG.
  • the refractory covered beams 13A, 13B, 14A, and 14B are referred to without distinction, they are simply referred to as the refractory covered beams 13 and 14.
  • the refractory-covered beams 13 and 14 are formed in an annular shape (ring, square annular shape) that is a rectangular frame as a whole in a plan view.
  • the fire-resistant coated beam may be formed in a plan view as a whole in an annular shape that is a polygonal frame, an annular shape (circular ring) that is a circular frame, or the like.
  • the fireproof coated beams 13 and 14 support the periphery of the first floor portion 12 from below over the entire circumference.
  • a steel column (H-shaped steel, cross steel frame, square steel pipe, circular steel pipe, etc.) provided with a fireproof coating is used for the fireproof coated column 16A.
  • RC, SRC, and CFT Conscrete Filled steel Tube
  • the fireproof coated pillar 16B is configured similarly to the fireproof covered pillar 16A.
  • the refractory-coated pillars 16A and 16B are not distinguished, they are simply referred to as the refractory-covered pillars 16.
  • the fireproof coated pillars 16 extend in the vertical direction Z, respectively.
  • the upper end portion of the fireproof covered column 16A is joined to the joint portion between the first fireproof covered beam 13B and the second fireproof covered beam 14A and the corner portion 12c of the first floor portion 12, respectively.
  • the upper end of the fireproof coated pillar 16B is joined to the joint between the first fireproof covered beam 13B and the second fireproof covered beam 14B and the corner 12d of the first floor portion 12, respectively.
  • the corners 12a and 12b of the first floor portion 12 are not directly supported by the columns (including the fireproof coated columns and the reduced fireproof coated columns).
  • the fact that the corner portion 12a is not directly supported by the pillar means that the corner portion 12a is not supported by the pillar without going through the beam.
  • the pillar is not disposed below the corner 12a and the corner 12a and the pillar are not in contact with each other.
  • the fact that the corner 12a is not directly supported by the column does not mean that the corner 12a is supported by the column via the beam. The same applies to the corner 12b.
  • the support structure 41 includes a second floor 42 and a third fireproof covered beam 43.
  • the second floor 42 is configured similarly to the first floor 12.
  • the second floor portion 42 is formed in a plate shape in which the vertical direction Z is the thickness direction.
  • the second floor portion 42 is arranged side by side in the second intersecting direction Y with respect to the first floor portion 12.
  • the second floor portion 42 is arranged on one side of the second floor portion 12 in the second intersecting direction Y.
  • the second floor portion 42 is integrated with the first floor portion 12 to form a floor (slab) 44. That is, the first floor portion 12 of the refractory structure 11 is a portion of the floor 44 partitioned into a rectangular shape.
  • Floors 12 and 42 are a part of floor 44, which is partitioned from floor 44. As shown in FIG.
  • the refractory structure 11 configured as described above has a heating curve (standard heating curve, standard heating temperature curve) defined by ISO 834-11:2014 (hereinafter abbreviated as ISO 834), as described later.
  • ISO 834 standard heating curve, standard heating temperature curve
  • K the threshold value defined by the equation (6).
  • L is the length (m) of the first floor portion 12 in the first intersecting direction X (first span).
  • l the length (m) of the first floor portion 12 in the second intersecting direction Y (second span).
  • L and l are lengths of the first floor 12 in the direction along the flat surface 12e.
  • the determination step S9 when the refractory structure 11 is heated based on the heating curve defined by ISO 834, the maximum value of the flexure of the first floor portion 12 in a desired heating time is , Is smaller than the threshold value K defined by the equation (6) (smaller than the threshold value K) or the like.
  • the determination step S9 is a step performed after the fireproof specification determination step S3, the first support specification determination step S5, and the second support specification determination step S7.
  • the desired heating time is, for example, 1 hour, 2 hours, or the like, based on the fire resistance performance specified by the Building Standards Act.
  • the bending of the first floor portion 12 is maximum at the central portion of the first floor portion 12 in plan view.
  • the refractory structure 11A and the support structure 41 shown in FIG. 1 are modified by changing at least a part of the plurality of beams 52 that apply the fireproof coating to the refractory structure 11A and the support structure 41A shown in FIG. That is, a sufficient refractory coating is applied to the reduced fireproof coated beam 15A of the fireproof structure 11 shown in FIG. 1 to obtain the first fireproof coated beam 13A of the fireproof structure 11A shown in FIG.
  • the first refractory-covered beam 13A of the refractory structure 11 shown in FIG. 1 is reduced to the first refractory-covered beam 54 of the support structure 41A as shown in FIG.
  • the first floor portion 12A of the refractory structure 11A shown in FIG. 11 has a shorter length in the second intersecting direction Y than the first floor portion 12 of the refractory structure 11 shown in FIG.
  • the lengths of the refractory covered beams 14A and 14B in the second intersecting direction Y are shortened.
  • the shape of the first floor portion 12A is changed to a shape close to a square in a plan view with respect to the first floor portion 12.
  • the fireproof specification determining step S3, the first supporting specification determining step S5, and the second supporting specification determining step S7 are repeatedly performed as a set until a determination of YES is made in the determination step S9, and a plurality of fireproof coatings are applied. Adjust beam 52.
  • the fireproof specification determining step S3, the first supporting specification determining step S5, and the second supporting specification determining step S7 are performed in this order.
  • the order of performing the fireproof specification determining step S3, the first support specification determining step S5, and the second support specification determining step S7 after the structure determining step S1 is not particularly limited.
  • the second supporting specification determining step S7, the first supporting specification determining step S5, and the fireproof specification determining step S3 may be performed in this order.
  • the center portion of the first floor portion 12 in plan view bends downward to be convex.
  • the periphery of the first floor portion 12 is supported by the annular fireproof coated beams 13 and 14.
  • the first reinforcing bars 25 extended by the bending of the first floor portion 12 transmit the tensile force F2 in the first intersecting direction X.
  • the second reinforcing bars 26 extended by the bending of the first floor portion 12 transmit the tensile force F3 in the second intersecting direction Y. That is, the first floor portion 12 resists gravity or the like acting on the first floor portion 12 by the tensile forces F2 and F3. Therefore, the central portion of the first floor portion 12 is supported by the fireproof covered beams 13, 14 and the reinforcing bars 25, 26 in the first intersecting direction X and the second intersecting direction Y, respectively.
  • the tension region R5 and the compression region R6 are formed on the first floor portion 12, respectively.
  • the compression region R6 is shown with hatching in FIG.
  • the first floor 12 is pulled along the bent plane 12e.
  • the compression region R6 the first floor portion 12 is compressed along the bent flat surface 12e.
  • the tensile region R5 is formed in the central portion of the first floor portion 12 in plan view.
  • the compression region R6 is formed around the tension region R5.
  • the membrane effect that occurs in the refractory structure 11 at the time of fire is an effect of resisting the tensile forces F2 and F3 by the reinforcing bar 23.
  • the robustness that occurs in the refractory structure at the time of fire is the effect of resisting the bending moment B1 by the concrete and the slab reinforcement.
  • the fire-resistant structure 11 of the present embodiment and the fire-resistant structure of Patent Document 1 have different effects that occur during a fire.
  • FIG. 14 is a flowchart which shows the construction method S20 of this embodiment. While each step of the design method S is set but not actually executed, the difference is that each step of the installation method S20 is actually executed.
  • This construction method S20 is preferably used, for example, for a new fireproof structure 11.
  • a pillar-beam construction step S21, a covering construction step S23, a first support step S25, and a second support step S27 are performed.
  • the first ends of the extension beams 17A and 17B are joined to the joining corners 12a and 12b, and the second ends of the extension beams 17A and 17B are supported by the fireproof coated columns 18A and 18B.
  • the joint corners 12a and 12b are not directly supported by the pillar.
  • the joint corners 12a and 12b may be supported from below by the reduced fireproof coating column.
  • the joint corners 12a and 12b may not be directly supported by the columns, but the joint corners 12a and 12b may not be supported from below by the reduced fireproof coating columns.
  • the surroundings of the first floor portion 12 maintain constant rigidity and proof stress even in the event of a fire. It is set so as to be supported from below by the annular fireproof coated beams 13 and 14 that can be formed.
  • the reinforcing bars 23 (first reinforcing bars 25 and second reinforcing bars 26) included in the first floor portion 12 are the tensile force F2 between the ends of the first floor portion 12 in the first intersecting direction X, and the first floor.
  • the tensile force F3 between the ends of the portion 12 in the second cross direction Y is transmitted.
  • the center portion of the first floor portion 12 in a plan view is bent so as to be convex downward.
  • the periphery of the first floor portion 12 is supported by the fireproof coated beams 13 and 14 due to the so-called membrane effect.
  • the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 11 can be set to be maintained at the same level as the conventional one.
  • the fire resistance performance of the fire resistant structure 11 referred to here means to suppress the bending of the first floor portion 12 at the time of a fire and to prevent the external force from becoming larger than the bending resistance.
  • the connecting corners 12a, 12b are set to be supported by the fireproof coated columns 18A, 18B via the extension beams 17A, 17B. Further, in the second support specification determining step S7, the joint corners 12a and 12b are set so as not to be directly supported by the pillar. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
  • the omission of the fireproof coating of the pillar supporting the joint corners 12a and 12b means that the fireproof coating of the pillar is omitted by not directly supporting the joint corners 12a and 12b by the pillar, or the joint corner 12a is omitted. , 12b are supported by the reduced fireproof coated column, which means that the fireproof coating of the column is omitted.
  • the periphery of the first floor portion 12 is supported from below by the annular refractory covered beams 13 and 14 that can maintain constant rigidity and proof strength even in the event of a fire.
  • the reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y. The tensile force F2 between them is transmitted.
  • the center portion of the first floor portion 12 in a plan view is bent downward to be convex.
  • the periphery of the first floor portion 12 is supported by the fireproof coated beams 13 and 14.
  • the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 11 can be maintained at the same level as the conventional one.
  • the joint corners 12a and 12b are supported by the fireproof coated columns 18A and 18B via the extension beams 17A and 17B.
  • the joint corners 12a, 12b are not directly supported by the columns. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
  • the refractory structure 11 is designed by the design method S. Therefore, the refractory structure 11 can be designed by the design method S of the present embodiment.
  • the design method S of the present embodiment is a method that can increase the degree of freedom in designing the corners 12a and 12b of the first floor 12 while maintaining fire resistance.
  • the design method S of this embodiment is a method which can omit at least one fireproof coating of the pillar which supports the corners 12a and 12b of the first floor 12 from below.
  • the refractory structure 11 is provided with a reduced fireproof coated beam 15. As a result, it is possible to prevent the first floor portion 12 from bending during normal times when no fire has occurred. Since the first floor portion 12 is formed in a rectangular shape in plan view, it is possible to easily arrange the plurality of first floor portions 12 side by side in a compact manner.
  • FIG. 16 shows a vertical cross-sectional view of the first floor portion 12 of the refractory structure 11B used in the simulation.
  • the distance from the upper end of the reinforcing bar 23 to the upper surface of the first concrete 22 was set to 30 mm.
  • the thickness of the first floor portion 12 was 200 mm.
  • the design standard strength Fc of the first concrete 22 was set to 40 N/mm 2 (Newton per square millimeter).
  • reinforcing bars 23 first reinforcing bars 25 and second reinforcing bars 26
  • reinforcing bars having a nominal diameter D10 and a tensile strength of 500 MPa were arranged at a pitch of 100 mm.
  • the reduced fire resistant coated beam 15D has the same configuration as the reduced fire resistant coated beam 15A.
  • the reduced fire resistant coated beam 15D extends along the first intersecting direction X and is arranged between the first fire resistant coated beam 13B and the reduced fire resistant coated beam 15C. Both ends of the reduced fireproof coated beam 15D are respectively joined to the second fireproof coated beams 14A and 14B.
  • the fireproof coated columns 16C and 16D have the same configuration as the fireproof coated column 16A.
  • the upper end of the fireproof coated pillar 16C is joined to the joint between the first fireproof covered beam 13A and the second fireproof covered beam 14A and the corner 12a of the first floor portion 12, respectively.
  • the upper end of the fireproof coated pillar 16D is joined to the joint between the first fireproof covered beam 13A and the second fireproof covered beam 14B and the corner 12b of the first floor portion 12, respectively.
  • all of the corners 12a, 12b, 12c, 12d of the first floor 12 are supported from below by the fire resistant coated columns 16C, 16D, 16A, 16B, respectively.
  • the support structure 41B includes, in addition to the respective components of the support structure 41 of the first embodiment, first reduced fire resistant coated beams 54A, 54B, 54C, 54D.
  • the first reduced fire resistant coated beam 54 is configured similarly to the reduced fire resistant coated beam 15A.
  • the first reduced fire-resistant coated beams 54 extend along the first intersecting direction X between the third fire-resistant coated beam 43 and the first fire-resistant coated beam 13A and are spaced from each other in the second intersecting direction Y. Has been done. Both ends of the first reduced fire resistant coating beam 54 are joined to the extension beams 17A and 17B, respectively.
  • the fire-resistant coated beam 14 and the extension beam 17, which are the primary beams, were made of H-section steel (800 ⁇ 250 ⁇ 12 ⁇ 22, made of S355) with fire-resistant coating.
  • H-section steel 800 ⁇ 250 ⁇ 12 ⁇ 22, made of S355
  • H-section steel 600 ⁇ 200 ⁇ 9 ⁇ 12, made of S355 on which a fireproof coating was applied was used.
  • H-section steel 600 ⁇ 200 ⁇ 9 ⁇ 12, made from S355
  • the reduced fireproof coated beam 15 and the first reduced fireproof coated beam 54 are provided with a fireproof coating according to the fireproof specifications.
  • the length of the refractory structure 11B in the first cross direction X and the length in the second cross direction Y were each 15,000 mm.
  • the length of the support structure 41B in the first cross direction X and the length of the second cross direction Y were each 15,000 mm.
  • the load conditions were a fixed load (Dead Load) of 1.5 kPa (kilopascal) and a loading load (Live Load) of 3.0 kPa.
  • FIG 17 to 20 show simulation results of the temperature and stress of the building 1B when the building 1B is heated based on the heating curve defined in ISO 834.
  • the building 1B supported under a predetermined constraint condition is heated by a fire or the like, so that the temperature of the building 1B rises.
  • the building 1B whose temperature has risen expands and its rigidity and proof stress decrease. Stress is generated in the building 1B according to the constraint condition.
  • the fire-resistant coated columns 16, 18, the fire-resistant coated beams 13, 14, 43, the extension beam 17, and the reinforcing bar 23 generate predetermined rigidity and proof strength, but the reduced fire-resistant coated beams 15, 54 lose their rigidity and proof strength.
  • FIG. 17 shows a change in temperature of each portion of the refractory structure 11B with respect to time in the refractory structure 11B of the comparative example.
  • the horizontal axis represents time (minutes) and the vertical axis represents temperature (° C.).
  • a solid line L1 represents the simulation result of the reduced fireproof coating beam 15A to which the fireproof coating is not applied.
  • the dotted line L2 represents the simulation result on the lower surface of the first floor 12
  • the dashed line L3 represents the simulation result on the upper surface of the first floor 12
  • the dashed double-dotted line L4 represents the simulation result on the reinforcing bar 23.
  • the temperatures of the reduced fire resistant coated beam 15A, the lower surface and the upper surface of the first floor portion 12, and the reinforcing bars 23 increase with the lapse of time.
  • the temperature of each part is highest in the reduced fireproof coated beam 15A, and decreases in the order of the lower surface of the first floor portion 12, the reinforcing bar 23, and the upper surface of the first floor portion 12.
  • FIG. 18 shows a change in the maximum value of the bending of the first floor portion 12 with respect to time in the fireproof structure 11B of the comparative example.
  • the horizontal axis represents time (minutes), and the vertical axis represents the maximum value (mm) of bending of the first floor portion 12.
  • the solid line L7 represents the simulation result of the maximum value of the bending of the first floor portion 12.
  • a dotted line L8 represents the deflection limit value of the first floor portion 12 according to the expression of ⁇ (L+1)/30 ⁇ of Non-Patent Document 1 described above.
  • the maximum value of the bending of the first floor 12 is prevented from further increasing so as not to increase.
  • the calculation of the deflection of the portion 12 is terminated. If the calculation of the bending of the first floor portion 12 is not terminated at the time t1, the maximum value of the bending of the first floor portion 12 increases as indicated by a dashed line L9. In the refractory structure 11B of the comparative example, the maximum value of the bending of the first floor portion 12 reached the bending limit value at the time t1, so the first floor portion 12 is held without collapsing at least until the time t1. I found out.
  • FIG. 19 shows changes in bending proof strength with respect to time in the refractory structure 11B of the comparative example.
  • the horizontal axis represents time (minutes) and the vertical axis represents bending yield strength (kN/m 2 ).
  • a dotted line L13 represents the bending proof simulation result of the first refractory covered beam 13A.
  • a dashed line L14 represents a simulation result of bending strength of the first floor portion 12, and a solid line L12 represents a simulation result of the bending resistance of the first fireproof covered beam 13A and the first floor portion 12 as a whole.
  • a dotted line L15 represents the external force acting on the load.
  • FIG. 20 shows a change in value of (external force/bending proof strength (as a whole of the first fireproof coated beam 13A and the first floor portion 12)) with respect to time in the fireproof structure 11B of the comparative example.
  • the horizontal axis represents time (minutes) and the vertical axis represents the value of (external force/bending strength).
  • FIG. 20 is for clearly showing the magnitude relationship between the bending proof stress represented by the line L12 and the external force represented by the line L15 in FIG.
  • a solid line L18 represents a value of (external force/bending strength), and a dotted line L19 represents a line having a value of (external force/bending strength) of 1.0.
  • the first floor portion 12 does not collapse due to an external force larger than the bending resistance, and at least the maximum bending value reaches the bending limit value. It was found that the floor 12 was retained without collapsing.
  • YES is determined. It may be determined. When YES is determined in the determination step S9, all steps of the design method S are completed.
  • FIG. 21 shows a building 1C in which the refractory structure 11C of the example is used.
  • the building 1C includes a refractory structure 11C and support structures 41C and 41D.
  • the refractory structure 11C is provided with extension beams 58A, 58B and fireproof coated columns 59A, 59B in place of the reduced fireproof coated beam 15D and the fireproof coated columns 16C, 16D with respect to the refractory structure 11B.
  • the corners 12c and 12d are also joint corners 12c and 12d. Is.
  • the extension beams 58A and 58B are configured similarly to the extension beam 17A.
  • the extension beams 58A and 58B extend along the second intersecting direction Y.
  • the first end portion of the extension beam 58A is connected to a portion where the first refractory-covered beam 13B and the second refractory-covered beam 14A are joined, and to a joint corner 12c of the first floor portion 12, respectively.
  • the extension beam 58A extends in a direction away from the second refractory-covered beam 14A, starting from the joint corner 12c.
  • the 1st end part of the extension beam 58B is each couple
  • the extension beam 58B extends in a direction away from the second refractory-covered beam 14B starting from the joint corner 12d.
  • the fireproof coated columns 59A and 59B are configured similarly to the fireproof coated column 18A.
  • the upper end of the fireproof coated column 59A is joined to the second end of the extension beam 57A.
  • the upper end of the fireproof coated column 59B is joined to the second end of the extension beam 57B.
  • the upper end of the fireproof covered pillar 16A is joined to the center of the second fireproof covered beam 14A in the second intersecting direction Y and the center of the corner 12a and the corner 12c of the first floor 12, respectively.
  • the upper end of the fireproof covered pillar 16B is joined to the center of the second fireproof covered beam 14B in the second intersecting direction Y and the center of the corner 12b and the corner 12d of the first floor 12, respectively.
  • the support structure 41C does not include the first reduced fireproof coated beams 54C and 54D as compared with the support structure 41B.
  • the support structure 41D includes a third floor portion 61, a fourth fireproof coated beam 62, and second reduced fireproof coated beams 63A and 63B.
  • the third floor 61, the fourth fireproof covered beam 62, and the second reduced fireproof covered beams 63A and 63B are the second floor 42 of the support structure 41C, the third fireproof covered beam 43, the first reduced fireproof covered beam 54A, 54B and the like respectively.
  • the second floor portion 42 and the third floor portion 61 of the support structures 41C and 41D are arranged on both sides of the fire resistant structure 11C in the second intersecting direction Y with respect to the first floor portion 12.
  • the length of the building 1C in the first intersecting direction X and the length of the building 1B in the first intersecting direction X are equal to each other.
  • the length of the building 1C in the second intersecting direction Y and the length of the building 1B in the second intersecting direction Y are equal to each other.
  • the building 1C is a building that is configured by reducing the fireproof coating of the first fireproof coated beam 13A or applying a fireproof coating to the reduced fireproof coated beam 15B and the first reduced fireproof coated beam 54C in the building 1B. is there.
  • FIG. 22 to 25 show simulation results of the temperature and stress of the building 1C when the building 1C is heated based on the heating curve defined in ISO 834.
  • FIG. 22 shows a change in temperature of each portion with respect to time in the refractory structure 11C of the example. 22, the horizontal axis represents time (minutes) and the vertical axis represents temperature (° C.).
  • a solid line L21 represents a simulation result of the reduced fireproof coating beam 15A to which the fireproof coating is not applied.
  • the dotted line L22 represents the simulation result on the lower surface of the first floor 12
  • the dashed line L23 represents the simulation result on the upper surface of the first floor 12
  • the dashed double-dotted line L24 represents the simulation result on the reinforcing bar 23.
  • FIG. 27 shows a change in the maximum value of the bending of the first floor portion 12 with respect to time in the refractory structure 11C of the example.
  • the horizontal axis represents time (minutes) and the vertical axis represents the maximum value (mm) of bending of the first floor portion 12.
  • the solid line L27 represents the simulation result of the maximum deflection of the first floor portion 12.
  • the dotted line L28 represents the deflection limit value of the first floor portion 12 according to the expression of ⁇ (L+1)/30 ⁇ of Non-Patent Document 1 described above.
  • the length of the first floor portion 12 of the refractory structure 11C of the example in the second intersecting direction Y is shorter than the length of the first floor portion 12 of the refractory structure 11B of the comparative example in the second intersecting direction Y. Therefore, the deflection limit value of the first floor portion 12 represented by the line L28 is smaller than the deflection limit value of the first floor portion 12 represented by the line L8 in FIG.
  • the length of the first floor portion 12 of the fireproof structure 11C of the example in the second crossing direction Y is shorter than the length of the first floor portion 12 of the fireproof structure 11B of the comparative example in the second crossing direction Y.
  • the maximum value of the bending of the first floor portion 12 becomes small.
  • the maximum value of the flexure of the first floor 12 does not reach the flexure limit value even after 120 minutes have elapsed from the occurrence of a fire due to the so-called membrane effect, and the first floor 12 receives a load. Found that it can support.
  • FIG. 24 shows a change in bending proof strength with respect to time in the refractory structure 11C of the example.
  • the horizontal axis represents time (minutes) and the vertical axis represents bending yield strength (kN/m 2 ).
  • a dotted line L33 represents a simulation result of the bending strength of the first refractory covered beam 13A.
  • a dashed line L34 represents the simulation result of the bending strength of the first floor portion 12, and a solid line L32 represents the simulation result of the bending resistance of the first refractory covered beam 13A and the first floor portion 12 as a whole.
  • a dotted line L35 represents the external force that acts on the load.
  • FIG. 25 shows a change in the value of (external force/bending strength) with respect to time in the refractory structure 11C of the example.
  • the horizontal axis represents time (minutes) and the vertical axis represents the value of (external force/bending strength).
  • FIG. 25 is for clearly showing the magnitude relationship between the bending proof stress represented by the line L32 and the external force represented by the line L35 in FIG.
  • a solid line L38 represents a value of (external force/bending strength)
  • a dotted line L39 represents a line having a value of (external force/bending strength) of 1.0. With the passage of time, the value of (external force/bending strength) increases and approaches 1.0.
  • the first floor portion 12 can support the load even after 120 minutes have elapsed from the occurrence of the fire. I knew I could do it. Further, the value of (external force/bending strength) in the refractory structure 11C of Example is asymptotically smaller than the value of (external force/bending strength) in the refractory structure 11B of Comparative Example is asymptotic, It was found that the refractory structure 11C of No. 2 has a sufficient bending resistance.
  • the maximum value of the bending of the first floor portion 12 does not reach the bending limit value, and the external force is smaller than the bending proof stress. It turns out that I can support.
  • a building 1B including a fire resistant structure 11B of a comparative example applying a fire resistant coating to the first fire resistant coated beam 13A, the reduced fire resistant coated beam 15, and the first reduced fire resistant coated beam 54, or reducing the fire resistant coating.
  • the refractory structure 11C of the embodiment included in the building 1C can be obtained.
  • the structure of the fire resistant structure of the present embodiment can be variously modified as described below.
  • the building 2 shown in FIG. 26 includes a refractory structure 71 of the present embodiment and support structures 81A and 81B.
  • the refractory structure 71 does not include the refractory-coated columns 16A and 16B as compared with the refractory structure 11C of the embodiment.
  • the support structure 81A does not include the first reduced fireproof coated beams 54A and 54B as compared with the support structure 41C of the embodiment.
  • the support structure 81B does not include the second reduced fireproof coated beams 63A and 63B, unlike the support structure 41D of the embodiment.
  • a building 2B shown in FIG. 28 includes a refractory structure 71B of this embodiment and support structures 81A and 81B.
  • the refractory structure 71B includes refractory-coated columns 16A, 16B, 16C, and 16D in addition to the components of the refractory structure 71 of the modification.
  • the upper end of the refractory-covered pillar 16A has an outer edge near the corner 12a between the corner 12a and the corner 12c of the first floor 12 and the joint between the second refractory-covered beam 14A and the reduced fire-resisting covered beam 15A. Are joined to each.
  • the upper end of the fire-resistant covered pillar 16B has an outer edge near the corner 12b between the corner 12b and the corner 12d of the first floor 12 and the joint between the second fire-resistant covered beam 14B and the reduced fire-resistant covered beam 15A. Are joined to each.
  • the fireproof coated columns 16C and 16D have the same configuration as the fireproof coated column 16A.
  • the upper end of the refractory-covered pillar 16C has an outer edge near the corner 12c between the joint between the second refractory-covered beam 14A and the reduced refractory-covered beam 15C and the corner 12a of the first floor 12 and the corner 12c. Are joined to each.
  • the upper end of the fireproof covered pillar 16D has an outer edge near the corner 12d between the corner 12b and the corner 12d of the first floor 12 and the joint between the second fireproof covered beam 14B and the reduced fireproof covered beam 15C. Are joined to each. Both ends of the second fireproof covered beams 14A and 14B are directly joined to the pair of first fireproof covered beams 13A and 13B. The second fireproof coated beams 14A and 14B are joined to the fireproof coated column 16. The fireproof coated beams 13 and 14 are formed in a ring shape as a whole.
  • the fireproof coated columns 16A, 16B, 16C, 16D are arranged side by side in the first intersecting direction X, and are also arranged side by side in the second intersecting direction Y at the first pitch P1.
  • the second refractory coated beams 14A and 14B are formed to have a length P2 longer than the first pitch P1.
  • at least one of the corners 12a, 12b and the corners 12c, 12d projects outward in the second intersecting direction Y from the fireproof coated columns 16A, 16B, 16C, 16D.
  • all of the corners 12a, 12b and the corners 12c, 12d project outside the fireproof coated columns 16A, 16B, 16C, 16D in the second intersecting direction Y.
  • the second refractory covered beams 14A and 14B may be formed shorter than the first pitch P1.
  • the periphery of the first floor 12 is supported from below by the annular refractory covered beams 13 and 14 that can maintain constant rigidity and proof strength even in the event of a fire.
  • the reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y.
  • the tensile force F3 between them is transmitted.
  • the center portion of the first floor portion 12 in a plan view is bent downward to be convex.
  • the periphery of the first floor portion 12 is supported by the fireproof coated beams 13 and 14.
  • the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 11 can be maintained at the same level as the conventional one.
  • the joint corners 12a, 12b, 12c, 12d are supported by the refractory covered columns 18A, 18B, 59A, 59B via the extension beams 17A, 17B, 58A, 58B.
  • connection corners 12a-12d are not directly supported by the columns. Therefore, the degree of freedom in designing the connection corners 12a to 12d of the first floor portion 12 can be increased, and the fireproof coating of the columns supporting the connection corners 12a to 12d can be omitted.
  • the end positions of the second fireproof covered beams 14A, 14B are located at the fireproof covered columns 16A, 16B, 16C, Forming a space below the corners 12a, 12b, 12c, 12d of the first floor 12 which is displaced in the second crossing direction Y with respect to the position of 16D and is supported by the ends of the second fireproof covered beams 14A, 14B.
  • the second intersecting direction Y may be a direction intersecting with the first intersecting direction X.
  • the first floor portion 12 is formed in a parallelogram shape (quadrangular shape) in a plan view.
  • the number of corners of the first floor 12 where the extension beam is not joined is particularly limited among the corners 12a to 12d. However, the number may be one or two or more. Even with the refractory structures 71, 71A, 71B of the modified example, the degree of freedom of design in the corners of the first floor 12 is increased while maintaining the fire resistance, and the corners 12a to 12d of the first floor 12 are removed. At least one refractory coating on the supporting columns may be omitted.
  • the building 4 includes the fire resistant structure 121 of the present embodiment and the support structure 41.
  • the refractory structure 121 includes first refractory coated columns 122A and 122B and second refractory coated columns (fireproof coated columns) instead of the fireproof coated columns 16A and 16B and the fireproof coated columns 18A and 18B of the fire resistant structure 11 of the first embodiment. Pillars) 123A and 123B are provided.
  • the first fireproof coated columns 122A and 122B support the fireproof coated beams 13 and 14.
  • the fireproof coated beams 13 and 14 and the pillar pieces 122A1 and 122B1 are formed in an annular shape as a whole.
  • the second refractory covered pillars 123A and 123B are configured similarly to the first refractory covered pillar 122A.
  • An intermediate portion of the second fireproof coated column 123A in the up-down direction Z is joined to the second end portion of the extension beam 17A and supports the second end portion.
  • an intermediate portion of the fireproof coated column 123B in the vertical direction Z is joined to the second end of the extension beam 17B and supports the second end.
  • the connecting corners 12a and 12b of the first floor 12 are not directly supported by the columns.
  • the joint corners 12a and 12b may be supported from below by reduced fireproof coated columns having a reduced fireproof coating than the first fireproof coated columns 122A and 122B.
  • the fireproof coated beams 13 and 14 and the two pillar pieces 122A1 and 122B1 are formed in an annular shape as a whole.
  • the number of fireproof coated beams and the number of column pieces formed in a ring shape as a whole is not particularly limited.
  • FIG. 8 is a flowchart showing the design method S30 of this embodiment.
  • This design method S30 differs from the design method S of the first embodiment in that the fireproof specification determining step S31, the second support instead of the fireproof specification determining step S3, the second support specification determining step S7, and the determining step S9.
  • the specification determining step S33 and the determining step S35 are performed.
  • the periphery of the first floor portion 12 partitioned from the floor 44 is set to be supported from below by the fireproof covered beams 13 and 14 and the pillar pieces 122A1 and 122B1.
  • FIG. 14 is a flowchart which shows the construction method S40 of this embodiment.
  • This construction method S40 differs from the construction method S20 of the first embodiment in that instead of the coating construction step S23, the first support step S25, and the second support step S27, the coating construction step S41 and the first support step S43. , And the second supporting step S45.
  • the beam 52 is provided with a fireproof coating to form the fireproof coated beams 13 and 14
  • the column 53 is provided with a fireproof coating to form the first fireproof coated columns 122A and 122B.
  • the periphery of the first floor portion 12 partitioned from the floor 44 is supported from below by the fireproof covered beams 13 and 14 and the pillar pieces 122A1 and 122B1.
  • the first ends of the extension beams 17A and 17B are joined to the joining corners 12a and 12b.
  • the second end portions of the extension beams 17A and 17B are supported by the second fireproof coated columns 123A and 123B.
  • the joint corners 12a and 12b are not directly supported by the pillar.
  • the joint corners 12a and 12b may be supported from below by a reduced fireproof coated column having a reduced fireproof coating than the first fireproof coated columns 122A and 122B.
  • the designing method S30 of the present embodiment by performing the structure determining step S1 and the fireproof specification determining step S31, the surroundings of the first floor portion 12 have a constant rigidity and yield strength even during a fire. It is set so that it can be maintained and is supported from below by the refractory covered beams 13 and 14 and the pillar pieces 122A1 and 122B1 which are formed in an annular shape as a whole.
  • the reinforcing bars 23 included in the first floor portion 12 are the tensile force F2 between the end portions of the first floor portion 12 in the first cross direction X, and the end portions of the first floor portion 12 in the second cross direction Y. The tensile force F3 between them is transmitted.
  • the center portion of the first floor portion 12 in a plan view is bent so as to be convex downward.
  • the periphery of the first floor portion 12 is supported by the fireproof coated beams 13, 14 and the pillar pieces 122A1, 122B1.
  • the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 121 can be set to be maintained at the same level as the conventional one.
  • the joint corners 12a and 12b are set to be supported by the second refractory covered columns 123A and 123B via the extension beams 17A and 17B. Further, in the second support specification determining step S33, the joint corners 12a and 12b are set so as not to be directly supported by the pillar. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
  • the construction method S40 of the present embodiment by performing the column and beam construction step S21 and the covering construction step S41, it is possible to maintain constant rigidity and proof stress around the first floor portion 12 even in the event of a fire. It is supported from below by the fireproof coated beams 13 and 14 and the pillar pieces 122A1 and 122B1 formed in a ring shape.
  • the reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y. The tensile force F3 between them is transmitted.
  • the center portion of the first floor portion 12 in a plan view is bent downward to be convex.
  • the periphery of the first floor portion 12 is supported by the fireproof coated beams 13, 14 and the pillar pieces 122A1, 122B1.
  • the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 121 can be maintained at the same level as the conventional one.
  • the joint corners 12a and 12b are supported by the second fireproof coated columns 123A and 123B via the extension beams 17A and 17B. Furthermore, when the second supporting step S45 is performed, the joint corners 12a and 12b are not directly supported by the pillar. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
  • the surroundings of the first floor portion 12 can maintain constant rigidity and proof stress even in the event of a fire, and the fire resistant coated beams 13, 14 formed in an annular shape as a whole and It is supported from below by the pillar pieces 122A1 and 122B1.
  • the reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y. The tensile force F2 between them is transmitted.
  • the central portion of the first floor portion 12 in a plan view is projected downward.
  • the periphery of the first floor portion 12 is supported by the fireproof coated beams 13, 14 and the pillar pieces 122A1, 122B1.
  • the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 121 can be maintained at the same level as the conventional one.
  • the joint corners 12a and 12b are supported by the second refractory-covered columns 123A and 123B via the extension beams 17A and 17B.
  • joint corners 12a, 12b are not directly supported by the columns. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
  • the determination step S35 is performed. Accordingly, in the determination step S35, it is possible to determine whether or not the maximum value of the bending of the first floor portion 12 is less than the threshold value K. When it is determined to be YES in the determination step S35, at least a part of the plurality of beams 52 to which the fireproof coating is applied is changed so that at least one of the shape and the size of the first floor section partitioned from the floor 44 changes.
  • the fireproof specification determining step S31 is performed, and then the determining step S35 is performed.
  • FIG. 30 a third embodiment of the present invention will be described with reference to FIG. 30, but the same parts as those of the above-mentioned embodiment are designated by the same reference numerals, and the description thereof will be omitted. Only different points will be described.
  • the fire-resistant structures 91A, 91B, 91C of the present embodiment are used in this building 3.
  • the fire-resistant coated beam 94 and the reduced fire-resistant coated beam 95 which will be described later, are shown transparently, and the floor portions 96a, 96b, 96c included in the fire-resistant structures 91A, 91B, 91C are hatched. .
  • the building 3 includes a plurality of fireproof coated columns 93 arranged in a grid pattern in a plan view.
  • the plurality of fireproof coated columns 93 are arranged side by side in the first intersecting direction X and the second intersecting direction Y, respectively.
  • a plurality of fireproof covered beams 94 are joined to the plurality of fireproof covered columns 93, and a reduced fireproof covered beam 95 is joined to the plurality of fireproof covered beams 94.
  • a floor 96 is supported on the plurality of fireproof coated beams 94 and reduced fireproof coated beams 95.
  • a core wall 99 is arranged at the center of the building 3 in a plan view, and stairs 100 are arranged at the outer edge of the building 3.
  • the refractory structure 91A includes a floor portion 96a that is a part of the floor 96.
  • the floor portion 96a is formed in a rectangular shape having a plurality of corners in a plan view.
  • the fireproof coated column 93 is not joined to any corner of the floor 96a. Of the four corners of the floor portion 96b included in the fireproof structure 91B, the fireproof coated columns 93 are joined to two corners. Of the four corners of the floor portion 96c included in the fireproof structure 91C, the fireproof coated columns 93 are joined to two corners.
  • the degree of freedom of design in the corners of the floor portions 96a, 96b, 96c is increased, and the floor portions 96a, 96b, 96c are improved.
  • At least one refractory coating on the pillar supporting the plurality of corners may be omitted. Then, the degree of freedom in arranging the fireproof structures 91A, 91B, 91C in the building 3 can be increased.
  • the first to third embodiments of the present invention have been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and a configuration within a range not departing from the gist of the present invention Change, combination, deletion, etc. are also included. Further, it goes without saying that the configurations shown in the respective embodiments can be appropriately combined and used. For example, in the design methods S and S30 of the first and second embodiments, the determination step S9 need not be performed.
  • the maximum value of the bending of the first floor portion during the desired heating time of the refractory structure may be the threshold value K or more.
  • the fireproof coated beams 13 and 14 may not include the stud 35. That is, the periphery of the first floor portion 12 may be supported from below by the fireproof covered beams 13 and 14, or may be supported from below by the fireproof covered beams 13 and 14 and the pillar pieces 122A1 and 122B1.
  • the first floor portion may have a polygonal shape such as a triangular shape or a pentagonal shape in a plan view.
  • the fireproof coated beams 13 and 14 may be formed in an annular shape or the like in plan view as a whole.
  • the refractory structure may not include the reduced fire resistant coated beam.
  • the design method of the refractory structure, the construction method of the refractory structure, and the refractory structure of the present disclosure increase the degree of freedom of design in the corner portion of the floor while maintaining the fire resistance performance, and the plurality of corners of the floor portion. It can be suitably used as a refractory structure capable of omitting at least one refractory coating of a column supporting a part, and a designing method and a construction method thereof.

Abstract

This fire resistant structure design method involves performing: a structure determination step of determining the arrangement of a slab, a plurality of beams to support the slab from underneath, and a post to support the plurality of beams; a fire resistance specification determination step of setting the perimeter of a floor partitioned from the slab so as to be supported from underneath by a fire resistant beam, which is a beam on which a fire resistant coating has been applied; a first support specification determination step of joining an extended beam to a joining corner and setting a section, which is different from the section of the extended beam joined to the joining corner, to be supported by a fire resistant post; and a second support specification determination step of setting the joining corner so as not to be supported directly by a post or so as to be supported from underneath by a reduced fire resistant post, which has less fire resistant coating than the fire resistant post.

Description

耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物Fireproof structure design method, fireproof construction method, and fireproof structure
本発明は、耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物に関する。
本願は、2018年11月27日に、日本に出願された特願2018-221046号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for designing a refractory structure, a method for constructing a refractory structure, and a refractory structure.
The present application claims priority based on Japanese Patent Application No. 2018-221046 filed in Japan on November 27, 2018, and the content thereof is incorporated herein.
従来、鉄骨造の構造物が知られている(例えば、非特許文献1参照)。鉄骨造の構造物は、柱及び梁を互いに接合し、梁上で床(スラブ)を支持して構成される。床は、平面視で複数の隅部を有する矩形状に形成されている。柱は、床の複数の隅部のそれぞれを下方から支持している。
構造物では、耐火性能を高めるために、鉄骨造の柱、梁に耐火被覆を施す場合がある。耐火被覆を施された柱は、耐火被覆柱となる。耐火被覆を施された梁は、耐火被覆梁となる。
BACKGROUND ART Conventionally, a steel frame structure is known (for example, see Non-Patent Document 1). The steel frame structure is configured by joining columns and beams to each other and supporting a floor (slab) on the beams. The floor is formed in a rectangular shape having a plurality of corners in a plan view. The pillar supports each of the plurality of corners of the floor from below.
In a structure, in order to improve fire resistance performance, a steel frame column or beam may be provided with a fire resistant coating. The pillar with the fireproof coating becomes a fireproof covered pillar. A beam with a fireproof coating is a fireproof beam.
構造物で火災が発生すると、柱及び梁の温度は高くなる。しかしながら、耐火被覆柱及び耐火被覆梁は、それぞれの温度が高くなっても一定の剛性及び耐力を維持する。よって、耐火被覆柱及び耐火被覆梁は、火災時でも床を支持することができる。一方で、耐火被覆を施していない柱及び梁、耐火被覆柱及び耐火被覆梁よりも耐火被覆が削減された柱及び梁では、火災時には剛性及び耐力が無くなる。火災時には、これらの剛性及び耐力が小さくなるとみなされる場合がある。耐火被覆を施していない柱及び梁等を備える構造物では、耐火性能が低下する。
柱及び梁に耐火被覆を施すのには多大な労力を要するため、耐火被覆を省略することが望まれている。
When a structure fires, the temperature of the pillars and beams will rise. However, the refractory-covered columns and the refractory-covered beams maintain constant rigidity and proof stress even when their respective temperatures rise. Therefore, the fireproof covered pillar and the fireproof covered beam can support the floor even in the case of a fire. On the other hand, a pillar and a beam without a fireproof coating, a pillar and a beam with a fireproof coating less than that of a fireproof covered column and a fireproof covered beam lose rigidity and proof strength in the event of a fire. In the event of a fire, their rigidity and yield strength may be considered to be reduced. In a structure including columns and beams that are not covered with fireproof coating, fireproof performance is deteriorated.
Since a great deal of labor is required to apply a fireproof coating to columns and beams, it is desirable to omit the fireproof coating.
一般的に構造物は、柱、梁、及びスラブ等により構成される。スラブは、引張力伝達部材を含む。例えば、引張力伝達部材は鉄筋である。柱に耐火被覆を施して耐火被覆柱としたり、梁に耐火被覆を施して耐火被覆梁とすることで、構造物が耐火構造物となる。スラブは、柱及び梁により、平面視で複数の隅部を有する矩形状の床部に区画される。 Generally, a structure is composed of columns, beams, slabs, and the like. The slab includes a tensile force transmission member. For example, the tensile force transmission member is a reinforcing bar. The structure becomes a refractory structure by applying a fireproof coating to the column to form a fireproof coated column, or by applying a fireproof coating to the beam to form a fireproof coated beam. The slab is divided by a pillar and a beam into a rectangular floor having a plurality of corners in a plan view.
図31に示すように、特許文献1に開示された耐火構造物300を設計する耐火構造物の設計方法では、耐火被覆柱部材301と減耐火被覆柱部材302との間に、梁部材303が接合されるように設定されている。なお、図31以下の図では耐火被覆が削減されることなく施された柱及び梁に、ハッチングを付して示している。
耐火被覆柱部材301は、耐火被覆が施された柱部材である。減耐火被覆柱部材302は、耐火被覆柱部材301よりも耐火被覆が削減された柱部材である。
耐火構造物300の平面視において、複数の耐火被覆柱部材301及び複数の減耐火被覆柱部材302が、幅方向E1及び奥行方向E2にそれぞれ互いに間隔を空けて並べて配置されている。複数の耐火被覆柱部材301及び複数の減耐火被覆柱部材302は、全体として格子状(grid)に配置されている。この際に、減耐火被覆柱部材302に対して幅方向E1及び奥行方向E2にそれぞれ隣り合う柱部材が耐火被覆柱部材301となるように配置されている。梁部材303は、格子状に配置された複数の耐火被覆柱部材301及び複数の減耐火被覆柱部材302同士を接合している。
As shown in FIG. 31, in the method for designing a refractory structure for designing a refractory structure 300 disclosed in Patent Document 1, a beam member 303 is provided between a fire-resistant coated column member 301 and a reduced fire-resistant coated column member 302. It is set to be joined. 31 and subsequent figures, columns and beams provided without reducing the fireproof coating are shown with hatching.
The fireproof column member 301 is a column member having a fireproof coating. The reduced fireproof coated column member 302 is a column member in which the fireproof coating is reduced as compared with the fireproof coated column member 301.
In a plan view of the refractory structure 300, the plurality of fireproof covered column members 301 and the plurality of reduced fireproof covered column members 302 are arranged side by side in the width direction E1 and the depth direction E2 with an interval therebetween. The plurality of fireproof coated column members 301 and the plurality of reduced fireproof coated column members 302 are arranged in a grid as a whole. At this time, the column members adjacent to the reduced fireproof coated column member 302 in the width direction E1 and the depth direction E2 are arranged so as to be the fireproof coated column member 301. The beam member 303 joins the plurality of fire-resistant coated column members 301 and the plurality of reduced fire-resistant coated column members 302 that are arranged in a grid pattern.
複数の梁部材303には、合成スラブ304が架設されている。図示はしないが、合成スラブ304は、コンクリートと、デッキプレートと、スラブ筋(引張力伝達部材)と、を有している。デッキプレートは、打込み鋲接合又はボルト接合等により梁部材303の上面に固定されている。
以上のように構成された耐火構造物300において、耐火被覆柱部材301では、外気温が常温の通常時だけでなく火災時においても剛性及び耐力が維持できる。一方で、減耐火被覆柱部材302では、通常時において剛性及び耐力が維持できるが、火災時においては剛性及び耐力が維持できない。火災時において、減耐火被覆柱部材302の剛性及び耐力が無くなるとみなされる。
A synthetic slab 304 is provided on the plurality of beam members 303. Although not shown, the synthetic slab 304 has concrete, a deck plate, and slab muscles (tensile force transmitting members). The deck plate is fixed to the upper surface of the beam member 303 by driving tack bonding, bolt bonding, or the like.
In the fireproof structure 300 configured as described above, the fireproof coated column member 301 can maintain rigidity and proof stress not only in a normal time when the outside temperature is room temperature but also in a fire. On the other hand, the reduced fireproof coated column member 302 can maintain the rigidity and the proof stress in normal times, but cannot maintain the rigidity and the proof stress in a fire. In the event of a fire, it is considered that the reduced fireproof coated column member 302 loses its rigidity and proof stress.
火災時における耐火構造物300は、図32及び図33に示すように変形する。なお、図32では合成スラブ304を示していない。図33では、変形後の減耐火被覆柱部材302及び合成スラブ304を二点鎖線で示している。
図32において、隣り合う耐火被覆柱部材301を結ぶ中心線M1上に配置された合成スラブ304を、以下では線上スラブ304aと言う。耐火被覆柱部材301、減耐火被覆柱部材302、梁部材303、及び合成スラブ304は、通常時だけでなく火災時においても重力の影響を受ける。
The fire resistant structure 300 at the time of fire deforms as shown in FIGS. 32 and 33. Note that the synthetic slab 304 is not shown in FIG. In FIG. 33, the reduced fireproof coating column member 302 and the synthetic slab 304 after deformation are indicated by a two-dot chain line.
In FIG. 32, the composite slab 304 arranged on the center line M1 connecting the adjacent fire-resistant coated column members 301 is hereinafter referred to as a line slab 304a. The fire-resistant coated column member 301, the reduced fire-resistant coated column member 302, the beam member 303, and the composite slab 304 are affected by gravity not only during normal times but also during a fire.
火災時において耐火被覆柱部材301の剛性及び耐力は維持できるため、図32及び図33に示すように火災時においても線上スラブ304aの上下方向E3の位置が保持される。これに対して、減耐火被覆柱部材302は火災時において剛性及び耐力が無くなるため、図33中に二点鎖線で示すように下方に向かって移動する(折れ曲がる)。
線上スラブ304a以外は上下方向E3の位置が保持されないため、合成スラブ304の各部分は、線上スラブ304aから離間するに従い、合成スラブ304に作用する重力により下方に向かって移動する。このため、火災時において、合成スラブ304は、線上スラブ304aを中心として上方に向かって凸となるように湾曲する。
湾曲した合成スラブ304では、コンクリートが圧縮力を受け、スラブ筋が引張り力を受けることで、合成スラブ304が曲げモーメントB1に耐える。合成スラブ304は、合成スラブ304に作用する重力に曲げモーメントB1により抵抗する。
Since the rigidity and proof stress of the fireproof coated pillar member 301 can be maintained during a fire, the position of the linear slab 304a in the vertical direction E3 is maintained even during a fire, as shown in FIGS. 32 and 33. On the other hand, since the reduced fireproof coating column member 302 loses rigidity and proof stress in the event of a fire, it moves downward (bends) as shown by the chain double-dashed line in FIG.
Since the position in the vertical direction E3 is not held except for the linear slab 304a, each part of the synthetic slab 304 moves downward due to the gravity acting on the synthetic slab 304 as it separates from the linear slab 304a. Therefore, at the time of fire, the synthetic slab 304 is curved so as to be convex upward with the linear slab 304a as the center.
In the curved synthetic slab 304, the concrete receives a compressive force and the slab muscle receives a tensile force, so that the synthetic slab 304 withstands the bending moment B1. The synthetic slab 304 resists gravity acting on the synthetic slab 304 by the bending moment B1.
以上のように、耐火構造物300では、減耐火被覆柱部材302は耐火被覆柱部材301よりも耐火被覆が削減されている。しかし、耐火構造物300では、耐火構造物300の骨組みのロバストネス(Robustness、冗長性、余裕度)が生じる。このロバストネスにより、減耐火被覆柱部材302の耐火被覆が削減されていても、火災時において耐火被覆柱部材301により合成スラブ304が支持される。 As described above, in the fireproof structure 300, the fireproof coating of the reduced fireproof coated column member 302 is smaller than that of the fireproof coated column member 301. However, in the refractory structure 300, the robustness of the frame of the refractory structure 300 occurs. Due to this robustness, the composite slab 304 is supported by the fire-resistant coating pillar member 301 in the event of a fire even if the fire-resistant coating of the fire-retardant covering pillar member 302 is reduced.
特許文献2に開示された防爆耐火性被膜厚さ算出方法では、コンクリート構造体と、コンクリート構造体の表面に設けられた防爆耐火性被覆層と、を備える試験体を作製する。そして、試験体を加熱して温度の経時変化を測定し、試験体の深さと温度との関係を導く。その関係に基づいて、コンクリート構造体の温度が耐熱許容温度以下であるか否かを判定する。さらに、その結果に基づいて防爆耐火性被覆層の厚さを算出する。 In the method for calculating the explosion-proof fireproof coating thickness disclosed in Patent Document 2, a test body including a concrete structure and an explosion-proof fireproof coating layer provided on the surface of the concrete structure is produced. Then, the test body is heated to measure the change in temperature over time, and the relationship between the depth of the test body and the temperature is derived. Based on the relationship, it is determined whether the temperature of the concrete structure is equal to or lower than the heat-resistant allowable temperature. Further, the thickness of the explosion-proof fireproof coating layer is calculated based on the result.
特許文献3に開示されたスラブ構造は、大梁と、鉄骨小梁と、スラブと、を備えている。大梁は、耐火性能を有し、柱間に架け渡されている。鉄骨小梁の全体又は一部は、耐火被覆処理されない。鉄骨小梁は、大梁に接合されている。スラブは、鉄筋コンクリート製である。スラブは、大梁と鉄骨小梁とに支持される。 The slab structure disclosed in Patent Document 3 includes a large beam, a steel frame small beam, and a slab. The girder has fire resistance and is spanned between columns. The whole or part of the steel beam is not fireproof coated. The steel beam is connected to the girder. The slab is made of reinforced concrete. The slab is supported by a girder and a steel beam.
特許文献4に開示された耐火構造は、複数の柱部材と、複数の大梁と、小梁と、床スラブと、を備えている。
各大梁は、柱部材に架設されている。複数の大梁は、小梁に対して略直交させて設けられる一対の直交大梁と、小梁に対して略平行に設けられる一対の平行大梁とを有している。直交大梁及び平行大梁の何れか一方の大梁(以下、第1大梁と言う)に、耐火被覆が施される。直交大梁及び平行大梁の何れか他方となる大梁並びに小梁の耐火被覆は、第1大梁に施された耐火被覆よりも削減される。小梁は、複数の大梁で取り囲んだ内側に設けられる。床スラブは、大梁及び小梁の上方に設けられる。
The fire resistant structure disclosed in Patent Document 4 includes a plurality of pillar members, a plurality of girders, girders, and a floor slab.
Each girder is installed on a pillar member. The plurality of girders have a pair of orthogonal girders provided substantially orthogonal to the girders and a pair of parallel girders provided substantially parallel to the girders. A fireproof coating is applied to either one of the cross girders and the parallel girders (hereinafter referred to as the first girder). The fireproof coating of the girder and the girder that is either the orthogonal girder or the parallel girder is reduced as compared with the fireproof coating applied to the first girder. The cross beam is provided inside the plurality of cross beams. The floor slab is provided above the girders and girders.
日本国特開2017-031592号公報Japanese Patent Laid-Open No. 2017-031592 日本国特開2008-303646号公報Japanese Patent Laid-Open No. 2008-303646 日本国特開2017-190586号公報Japanese Patent Laid-Open No. 2017-190586 日本国特開2018-003556号公報Japanese Patent Laid-Open No. 2018-003556
特許文献1,3,及び4に開示された耐火構造物の設計方法では、床部のいずれの隅部も、柱部材(柱)により支持されている。このため、床部の隅部における設計の自由度が限定されている。
なお、特許文献2には、床部の隅部における支持構造に関する記載は無い。
In the method of designing a refractory structure disclosed in Patent Documents 1, 3, and 4, any corner of the floor is supported by a pillar member (pillar). Therefore, the degree of freedom in designing the corners of the floor is limited.
In addition, in patent document 2, there is no description regarding the support structure at the corner of the floor.
本発明は、このような問題点に鑑みてなされたものであって、耐火性能を維持しつつ、床部の隅部における設計の自由度を高めて、床部の複数の隅部を支持する柱の少なくとも1つの耐火被覆を省略することができる耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物を提供することを目的とする。 The present invention has been made in view of such a problem, and while maintaining fire resistance, increases the degree of freedom in designing the corners of the floor and supports the plurality of corners of the floor. An object of the present invention is to provide a method for designing a refractory structure, a method for constructing a refractory structure, and a refractory structure in which at least one refractory coating of a pillar can be omitted.
前記課題を解決するために、この発明は以下の手段を提案している。
(1)本発明の第一の態様は、引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、耐火被覆が施され、前記床部の周囲を下方から支持する環状の耐火被覆梁と、耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する耐火被覆柱と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を設計する耐火構造物の設計方法であって、構造計算を行うことにより、前記スラブ、前記スラブを下方から支持する複数の梁、及び前記複数の梁を支持する柱の配置を決定する構造決定工程と、前記スラブから区画された前記床部の周囲を、前記梁に耐火被覆を施した前記耐火被覆梁により下方から支持させるように設定する耐火仕様決定工程と、前記結合隅部に前記延長梁を結合させ、前記延長梁における前記結合隅部に結合された部分とは異なる部分を前記耐火被覆柱で支持するように設定する第1支持仕様決定工程と、前記結合隅部を、柱により直接的に支持させないか、前記耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持させるように設定する第2支持仕様決定工程と、を行う耐火構造物の設計方法である。
In order to solve the above problems, the present invention proposes the following means.
(1) A first aspect of the present invention is, in a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view, and a fireproof coating applied to the floor section. An annular fireproof beam that supports the surroundings from below, a fireproof coating, and an extension beam that is joined to a joining corner, which is at least one of the plurality of corners of the floor, and a fireproof coating. A refractory covered column supporting a part different from the part connected to the connection corner of the extension beam, and a direction intersecting with each other in a plane of the floor part is a first intersecting direction and a second intersecting direction. At this time, the tensile force transmitting member transmits the tensile force between the ends of the floor in the first intersecting direction and the tensile force between the ends of the floor in the second intersecting direction, respectively. A method of designing a refractory structure for designing, wherein by performing a structural calculation, the slab, a plurality of beams that support the slab from below, and an arrangement of columns that support the plurality of beams are provided. A structure determining step to determine, a perimeter of the floor section partitioned from the slab, a refractory specification determining step to set so as to be supported from below by the refractory-coated beam having a fire-resistant coating on the beam, and the joint corner A first supporting specification determining step of connecting the extension beam to a portion and setting a portion of the extension beam different from the portion connected to the connecting corner portion to be supported by the fireproof coated column; and the connecting corner portion. And a second supporting specification determining step of setting not to be directly supported by a pillar or by supporting from a lower side by a reduced fireproof covered pillar in which the fireproof covering is reduced compared to the fireproof covered pillar. Is the design method.
(2)前記(1)に記載の耐火構造物の設計方法では、前記耐火仕様決定工程、前記第1支持仕様決定工程、及び前記第2支持仕様決定工程の後で、前記耐火構造物が、ISO 834-11:2014に規定された加熱曲線に基づいて加熱されたときに、所望の加熱時間における前記前記床部の撓みの最大値が、(1)式で定められた閾値K未満であるか否かを判定する判定工程を行ってもよい。
K=(L+l)/30 ・・(1)
ただし、Lは前記床部の主面に沿う第1スパンの長さ(m)であり、lは前記床部の主面に沿うとともに前記第1スパンに交差する第2スパンの長さ(m)である。
(2) In the method for designing a refractory structure according to (1) above, after the refractory specification determination step, the first support specification determination step, and the second support specification determination step, the refractory structure is When heated based on the heating curve defined in ISO 834-11:2014, the maximum value of the deflection of the floor portion at a desired heating time is less than the threshold value K defined by the equation (1). You may perform the determination process which determines whether or not.
K=(L+1)/30 ··· (1)
Here, L is the length (m) of the first span along the main surface of the floor, and l is the length (m of the second span along the main surface of the floor and intersecting the first span. ).
(3)前記(2)に記載の耐火構造物の設計方法では、前記判定工程において、前記床部の撓みの最大値が前記閾値K未満でないときには、前記耐火仕様決定工程を、前記スラブから区画される前記床部の形状及び大きさの少なくとも一方が変わるように、前記耐火被覆を施す前記複数の梁の少なくとも一部を変えて行い、さらに、前記第1支持仕様決定工程及び前記第2支持仕様決定工程を行った後で、前記判定工程を行ってもよい。 (3) In the design method of the refractory structure according to (2), when the maximum value of the bending of the floor is not less than the threshold value K in the determination step, the refractory specification determination step is divided from the slab. At least one of the plurality of beams to which the refractory coating is applied is changed so that at least one of the shape and size of the floor portion to be changed is changed, and further, the first support specification determining step and the second support are performed. The determination step may be performed after the specification determination step.
(4)本発明の第二の態様は、引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、耐火被覆が施され、前記床部の周囲を下方から支持する耐火被覆梁と、耐火被覆が施され、前記耐火被覆梁を支持するとともに、自身の一部及び前記耐火被覆梁が全体として環状に形成された第1耐火被覆柱と、耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する第2耐火被覆柱と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を設計する耐火構造物の設計方法であって、構造計算を行うことにより、前記スラブ、前記スラブを下方から支持する複数の梁、及び前記複数の梁を支持する複数の柱の配置を決定する構造決定工程と、前記スラブから区画された前記床部の周囲を、前記梁に耐火被覆を施した前記耐火被覆梁、及び前記柱に耐火被覆を施した前記第1耐火被覆柱の前記一部により下方から支持させるように設定する耐火仕様決定工程と、前記結合隅部に前記延長梁を結合させ、前記延長梁における前記結合隅部に結合された部分とは異なる部分を前記第2耐火被覆柱で支持するように設定する第1支持仕様決定工程と、前記結合隅部を、柱により直接的に支持させないか、前記第1耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持させるように設定する第2支持仕様決定工程と、を行う耐火構造物の設計方法である。 (4) A second aspect of the present invention is, in a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view, and a fireproof coating applied to the floor section. A refractory coated beam that supports the periphery from below, and a refractory coated beam that supports the refractory coated beam, and a first refractory coated column in which a part of itself and the refractory coated beam are formed in an annular shape as a whole, An extension beam having a fireproof coating and joined to a connecting corner which is at least one of the plurality of corners of the floor, and a fireproof coating having been joined to the connecting corner of the extension beam A second refractory-covered column that supports a part different from the part, and the tensile force transmission member has a first crossing direction and a second crossing direction that intersect with each other in the plane of the floor. A refractory structure for designing a refractory structure that transmits a tensile force between the ends of the floor in the first intersecting direction and a tensile force between the ends of the floor in the second intersecting direction, respectively. A method for designing, wherein a structural calculation is performed to determine an arrangement of the slab, a plurality of beams that support the slab from below, and a plurality of columns that support the plurality of beams, and the slab So that the periphery of the floor section partitioned from is supported from below by the fire-resistant coated beam in which the beam has a fire-resistant coating and the part of the first fire-resistant coated column in which the column has a fire-resistant coating. A step of setting a fireproof specification and a step of connecting the extension beam to the joint corner and setting a portion of the extension beam different from a portion joined to the joint corner to be supported by the second refractory-covered column The first supporting specification determining step and the connecting corners are not directly supported by columns, or are supported from below by reduced fireproof coated columns in which the fireproof coating is reduced compared to the first fireproof coated columns. It is a method for designing a refractory structure that performs a second supporting specification determining step to be set.
(5)前記(4)に記載の耐火構造物の設計方法では、前記耐火仕様決定工程、前記第1支持仕様決定工程、及び前記第2支持仕様決定工程の後で、前記耐火構造物が、ISO 834-11:2014に規定された加熱曲線に基づいて加熱されたときに、所望の加熱時間における前記前記床部の撓みの最大値が、(2)式で定められた閾値K未満であるか否かを判定する判定工程を行ってもよい。
K=(L+l)/30 ・・(2)
ただし、Lは前記床部の主面に沿う第1スパンの長さ(m)であり、lは前記床部の主面に沿うとともに前記第1スパンに交差する第2スパンの長さ(m)である。
(5) In the method for designing a refractory structure according to (4), after the refractory specification determination step, the first support specification determination step, and the second support specification determination step, the refractory structure is When heated based on the heating curve defined in ISO 834-11:2014, the maximum value of the deflection of the floor portion in a desired heating time is less than a threshold value K defined by the equation (2). You may perform the determination process which determines whether or not.
K=(L+1)/30 ··· (2)
Here, L is the length (m) of the first span along the main surface of the floor, and l is the length (m of the second span along the main surface of the floor and intersecting the first span. ).
(6)前記(5)に記載の耐火構造物の設計方法では、前記判定工程において、前記床部の撓みの最大値が前記閾値K未満でないときには、前記耐火仕様決定工程を、前記スラブから区画される前記床部の形状及び大きさの少なくとも一方が変わるように、前記耐火被覆を施す前記複数の梁、及び前記耐火被覆を施す前記複数の柱の少なくとも一部を変えて行い、さらに、前記第1支持仕様決定工程及び前記第2支持仕様決定工程を行った後で、前記判定工程を行ってもよい。
(7)本発明の第三の態様は、耐火構造物は、前記(1)から(6)のいずれかに記載の耐火構造物の設計方法により設計された耐火構造物である。
(6) In the design method of the refractory structure according to (5), when the maximum value of the bending of the floor is not less than the threshold value K in the determination step, the refractory specification determination step is divided from the slab. At least one of the shape and size of the floor portion to be changed is performed by changing at least a part of the plurality of beams for applying the fireproof coating and the plurality of columns for applying the fireproof coating, and further, The determining step may be performed after the first supporting specification determining step and the second supporting specification determining step.
(7) A third aspect of the present invention is a refractory structure designed by the method for designing a refractory structure according to any one of (1) to (6) above.
(8)本発明の第四の態様は、引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、耐火被覆が施され、前記床部の周囲を下方から支持する環状の耐火被覆梁と、耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する耐火被覆柱と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を施工する耐火構造物の施工方法であって、前記スラブ、前記スラブを下方から支持する複数の梁、及び前記複数の梁を支持する柱を施工する柱梁施工工程と、前記梁に耐火被覆を施して前記耐火被覆梁とすることで、前記スラブから区画された前記床部の周囲を前記耐火被覆梁により下方から支持させる被覆施工工程と、前記結合隅部に前記延長梁を結合させ、前記延長梁における前記結合隅部に結合された部分とは異なる部分を前記耐火被覆柱で支持する第1支持工程と、前記結合隅部を、柱により直接的に支持させないか、前記耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持させる第2支持工程と、を行う耐火構造物の施工方法ある。 (8) A fourth aspect of the present invention is, in a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view, and a fireproof coating applied to the floor section. An annular fireproof beam that supports the surroundings from below, a fireproof coating, and an extension beam that is joined to a joining corner, which is at least one of the plurality of corners of the floor, and a fireproof coating. A refractory covered column supporting a part different from the part connected to the connection corner of the extension beam, and a direction intersecting with each other in a plane of the floor part is a first intersecting direction and a second intersecting direction. At this time, the tensile force transmitting member transmits the tensile force between the ends of the floor in the first intersecting direction and the tensile force between the ends of the floor in the second intersecting direction, respectively. A method for constructing a refractory structure for constructing, wherein the slab, a plurality of beams supporting the slab from below, and a beam-column construction step for constructing a column supporting the plurality of beams, and By applying a fireproof coating to the beam to form the fireproof coated beam, a coating construction step of supporting the periphery of the floor section partitioned from the slab from below by the fireproof coated beam, and the extension beam at the joint corner. A first supporting step of supporting a part of the extension beam different from the part connected to the connecting corner with the refractory-coated column, and not connecting the connecting corner directly to the column, There is a second supporting step of supporting from below from a fire-retardant coated pillar in which the fire-resistant coating is reduced compared to the fire-resistant coated pillar.
(9)本発明の第五の態様は、引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、耐火被覆が施され、前記床部の周囲を下方から支持する耐火被覆梁と、耐火被覆が施され、前記耐火被覆梁を支持するとともに、自身の一部及び前記耐火被覆梁が全体として環状に形成された第1耐火被覆柱と、耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する第2耐火被覆柱と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を施工する耐火構造物の施工方法であって、前記スラブ、前記スラブを下方から支持する複数の梁、及び前記複数の梁を支持する複数の柱を施工する柱梁施工工程と、前記梁に耐火被覆を施して前記耐火被覆梁とし、前記柱に耐火被覆を施して前記第1耐火被覆柱とすることで、前記スラブから区画された前記床部の周囲を前記耐火被覆梁及び前記第1耐火被覆柱の前記一部により下方から支持させるようにする被覆施工工程と、前記結合隅部に前記延長梁を結合させ、前記延長梁における前記結合隅部に結合された部分とは異なる部分を前記第2耐火被覆柱で支持する第1支持工程と、前記結合隅部を、柱により直接的に支持させないか、前記第1耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持させる第2支持工程と、を行う耐火構造物の施工方法である。 (9) A fifth aspect of the present invention is, in a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view, and a fireproof coating applied to the floor section. A refractory coated beam that supports the periphery from below, and a refractory coated beam that supports the refractory coated beam, and a first refractory coated column in which a part of itself and the refractory coated beam are formed in an annular shape as a whole, An extension beam having a fireproof coating and joined to a connecting corner which is at least one of the plurality of corners of the floor, and a fireproof coating having been joined to the connecting corner of the extension beam A second refractory-covered column that supports a part different from the part, and the tensile force transmission member has a first crossing direction and a second crossing direction that intersect with each other in the plane of the floor. , A refractory structure for constructing a refractory structure that transmits a tensile force between the ends of the floor in the first intersecting direction and a tensile force between the ends of the floor in the second intersecting direction, respectively. A construction method, wherein the slab, a plurality of beams that support the slab from below, and a pillar-beam construction step that constructs a plurality of columns that support the plurality of beams, and a fireproof coating by applying a fireproof coating to the beams. As a covered beam, by applying a fireproof coating to the pillar to form the first fireproof covered pillar, the periphery of the floor section partitioned from the slab is covered with the fireproof covered beam and the part of the first fireproof covered pillar. And a step of connecting the extension beam to the joint corner, and a portion of the extension beam different from the portion joined to the joint corner is covered with the second refractory-covered column. A first supporting step of supporting, and a second support in which the joint corner is not directly supported by a column or is supported from below by a reduced fireproof coated column in which the fireproof coating is reduced compared to the first fireproof coated column. It is a construction method of the refractory structure which performs the steps.
(10)本発明の第六の態様は、引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、耐火被覆が施され、前記床部の周囲を下方から支持する環状の耐火被覆梁と、耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する耐火被覆柱と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記結合隅部は、柱により直接的に支持されないか、前記耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持され、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物である。 (10) A sixth aspect of the present invention is, in a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view, and a fireproof coating applied to the floor section. An annular fireproof beam that supports the surroundings from below, a fireproof coating, and an extension beam that is joined to a joining corner, which is at least one of the plurality of corners of the floor, and a fireproof coating. A refractory covered column supporting a part different from the part connected to the connection corner of the extension beam, and a direction intersecting with each other in a plane of the floor part is a first intersecting direction and a second intersecting direction. When, and the joint corner is not directly supported by the column, or is supported from below by the reduced fireproof coating column reduced in the fireproof coating than the fireproof coated column, the tensile force transmission member, The refractory structure transmits tensile force between end portions of the floor portion in the first intersecting direction and tensile force between end portions of the floor portion in the second intersecting direction.
(11)前記(10)に記載の耐火構造物では、前記耐火被覆梁よりも前記耐火被覆が削減され、環状の前記耐火被覆梁により囲まれた領域内に配置されて、端部が前記耐火被覆梁に接合されて前記床部を下方から支持する減耐火被覆梁を備えてもよい。
(12)前記(10)又は(11)に記載の耐火構造物では、前記多角形状は、矩形状であってもよい。
(11) In the refractory structure according to (10), the refractory coating is reduced as compared with the refractory coated beam, the refractory coating is arranged in a region surrounded by the annular refractory coated beam, and an end portion of the refractory coated beam is the refractory structure. A reduced fire resistant coated beam may be provided which is joined to the coated beam and supports the floor portion from below.
(12) In the fireproof structure according to (10) or (11), the polygonal shape may be a rectangular shape.
(13)前記(10)から(12)のいずれかに記載の耐火構造物では、ISO 834-11:2014に規定された加熱曲線に基づいて加熱されたときに、所望の加熱時間における前記床部の撓みの最大値が、(3)式で定められた閾値K未満であってもよい。
K=(L+l)/30 ・・(3)
ただし、Lは前記床部の主面に沿う第1スパンの長さ(m)であり、lは前記床部の主面に沿うとともに前記第1スパンに交差する第2スパンの長さ(m)である。
(14)前記(10)から(13)のいずれかに記載の耐火構造物では、前記引張力伝達部材は、前記第1交差方向に沿って延び、前記床部の前記第1交差方向の端部間の引張力を伝達する第1鉄筋と、前記第2交差方向に沿って延び、前記床部の前記第2交差方向の端部間の引張力を伝達する第2鉄筋とを有してもよい。
(13) In the refractory structure according to any one of (10) to (12), the floor for a desired heating time when heated according to a heating curve defined in ISO 834-11:2014. The maximum value of the bending of the portion may be less than the threshold value K defined by the equation (3).
K=(L+1)/30 (3)
Here, L is the length (m) of the first span along the main surface of the floor, and l is the length (m of the second span along the main surface of the floor and intersecting the first span. ).
(14) In the refractory structure according to any one of (10) to (13), the tensile force transmission member extends along the first intersecting direction and is an end of the floor portion in the first intersecting direction. A first reinforcing bar for transmitting a tensile force between the parts, and a second reinforcing bar extending along the second intersecting direction for transmitting a tensile force between the ends of the floor in the second intersecting direction. Good.
(15)本発明の第七の態様は、引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、耐火被覆が施され、前記床部の周囲を下方から支持する耐火被覆梁と、耐火被覆が施され、前記耐火被覆梁を支持するとともに、自身の一部及び前記耐火被覆梁が全体として環状に形成された第1耐火被覆柱と、耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する第2耐火被覆柱と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記結合隅部は、柱により直接的に支持されないか、前記第1耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持され、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物である。 (15) A seventh aspect of the present invention is, in a slab including a tensile force transmitting member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view, and a fireproof coating applied to the floor section. A refractory coated beam that supports the periphery from below, and a refractory coated beam that supports the refractory coated beam, and a first refractory coated column in which a part of itself and the refractory coated beam are formed in an annular shape as a whole, An extension beam having a fireproof coating and joined to a connecting corner which is at least one of the plurality of corners of the floor, and a fireproof coating having been joined to the connecting corner of the extension beam A second refractory-covered column that supports a part different from the part, and when the directions intersecting with each other in the plane of the floor are the first intersecting direction and the second intersecting direction, the joint corner is The column is not directly supported by a column or is supported from below by a reduced fireproof coated column in which the fireproof coating is reduced from the first fireproof coated column, and the tensile force transmission member is in the first intersecting direction of the floor. Is a refractory structure that transmits the tensile force between the ends of the floor part and the tensile force between the ends of the floor part in the second intersecting direction, respectively.
(16)本発明の第八の態様は、耐火被覆が施され、水平面に沿う第1交差方向に並べて配置されるとともに、水平面に沿い前記第1交差方向に交差する第2交差方向に第1のピッチで並べて配置された複数の耐火被覆柱と、耐火被覆が施され、前記第1交差方向に沿って延びるとともに前記第2交差方向に互いに間隔を開けて配置された一対の第1耐火被覆梁と、耐火被覆が施され、前記第2交差方向に沿って延びて、前記第1のピッチとは異なる長さに形成され、両端が前記一対の第1耐火被覆梁に直接接合されるとともに、前記複数の耐火被覆柱にそれぞれ接合された一対の第2耐火被覆梁と、引張力伝達部材を含むスラブにおいて、平面視で4つの隅部を有する四角形状に区画され、前記一対の第1耐火被覆梁及び前記一対の第2耐火被覆梁により周囲が下方から支持された床部と、耐火被覆が施され、前記床部の前記4つの隅部の少なくとも1つである結合隅部に結合された延長梁と、を備え、前記結合隅部は、柱により直接的に支持されないか、前記耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持され、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達し、前記複数の耐火被覆柱の少なくとも1つは、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する耐火構造物である。 (16) In an eighth aspect of the present invention, a fireproof coating is applied, the fireproof coating is provided, and the fireproof coating is arranged side by side in the first intersecting direction along the horizontal plane, and the first intersecting direction intersects with the first intersecting direction along the horizontal plane. A plurality of refractory-coated columns arranged side by side with a pitch, and a pair of first refractory-coated columns that are provided with a refractory coating and that extend along the first intersecting direction and that are arranged at intervals in the second intersecting direction. A beam and a fireproof coating are applied, extend along the second intersecting direction, are formed to have a length different from the first pitch, and both ends are directly bonded to the pair of first fireproof coated beams. In a slab including a pair of second refractory-covered beams respectively joined to the plurality of refractory-covered columns and a tensile force transmission member, the slab is divided into a rectangular shape having four corners in a plan view, and the pair of first A floor portion whose periphery is supported from below by a fireproof covered beam and the pair of second fireproof covered beams, and a fireproof coating, which is coupled to a joining corner portion which is at least one of the four corner portions of the floor portion. And the joint corner is not directly supported by a column or is supported from below by a reduced refractory coated column in which the refractory coating is less than the refractory coated column, and the tensile force The transmission member transmits the tensile force between the ends of the floor in the first intersecting direction and the tensile force between the ends of the floor in the second intersecting direction, respectively, and the plurality of fireproof coated columns Is a refractory structure that supports a portion of the extension beam that is different from the portion connected to the connection corner.
前記(1)に記載の構成において、結合隅部を柱により直接的に支持させないとは、結合隅部が梁を介さずに柱により支持されることはないことを意味する。ただし、結合隅部を柱により直接的に支持させないとは、結合隅部が梁を介して柱により支持されることを排除する意味ではない。 In the configuration described in (1) above, the fact that the joint corner is not directly supported by the column means that the joint corner is not supported by the column without the beam. However, the fact that the joint corner is not directly supported by the pillar does not mean that the joint corner is supported by the pillar via the beam.
前記(1)に記載の構成によれば、構造決定工程及び耐火仕様決定工程を行うことで、床部の周囲は、火災時でも一定の剛性及び耐力を維持できる環状の耐火被覆梁により下方から支持させるように設定される。床部に含まれている引張力伝達部材は、床部の第1交差方向の端部間の引張力、及び、床部の第2交差方向の端部間の引張力をそれぞれ伝達する。火災時には、床部に作用する重力等により、床部の平面視における中央部が下方に向かって凸となるように撓む。しかし、いわゆるメンブレン効果により、床部の周囲が耐火被覆梁により支持される。そして、床部が撓むことにより伸びた引張力伝達部材が第1交差方向及び第2交差方向にそれぞれ引張力を伝達することにより、床部の中央部が支持される。従って、耐火構造物の耐火性能を従来と同等に維持するように設定することができる。なお、ここで言う耐火構造物の耐火性能とは、火災時に床部の撓みを抑えることや、曲げ耐力よりも外力が大きくなることを抑えることを意味する。
第1支持仕様決定工程において、延長梁を介して結合隅部が耐火被覆柱により支持されるように設定される。さらに、第2支持仕様決定工程において、結合隅部が、柱により直接的に支持させないか、減耐火被覆柱により下方から支持させるように設定される。従って、床部の結合隅部における設計の自由度を高めるとともに、少なくとも1つの隅部を支持する柱の耐火被覆を省略することができる。
According to the configuration described in the above (1), by performing the structure determining step and the fireproof specification determining step, the circumference of the floor is covered with an annular fireproof covered beam that can maintain a certain rigidity and yield strength even from a fire. Set to support. The tensile force transmitting member included in the floor portion transmits the tensile force between the end portions of the floor portion in the first intersecting direction and the tensile force between the end portions of the floor portion in the second intersecting direction. At the time of fire, due to gravity or the like acting on the floor, the center of the floor in a plan view is bent downward so as to be convex. However, due to the so-called membrane effect, the perimeter of the floor is supported by the fireproof beam. Then, the tensile force transmitting member extended by the bending of the floor portion transmits the tensile force in each of the first intersecting direction and the second intersecting direction, so that the central portion of the floor portion is supported. Therefore, it is possible to set the fireproof performance of the fireproof structure to be maintained at the same level as the conventional one. The fireproof performance of the fireproof structure here means to prevent the floor from bending during a fire and to prevent the external force from becoming larger than the bending resistance.
In the first support specification determining step, the joint corners are set to be supported by the fireproof coated column via the extension beam. Further, in the second supporting specification determining step, the joint corners are set so as not to be directly supported by the columns or supported from below by the reduced fireproof coated columns. Therefore, it is possible to increase the degree of freedom in designing at the joint corner of the floor and to omit the fireproof coating of the column supporting at least one corner.
前記(8)に記載の構成によれば、柱梁施工工程及び被覆施工工程を行うことで、床部の周囲を、火災時でも一定の剛性及び耐力を維持できる環状の耐火被覆梁により下方から支持させる。床部に含まれている引張力伝達部材は、床部の第1交差方向の端部間の引張力、及び、床部の第2交差方向の端部間の引張力をそれぞれ伝達する。火災時には、床部に作用する重力等により、床部の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、床部の周囲が耐火被覆梁により支持される。そして、床部が撓むことにより伸びた引張力伝達部材が第1交差方向及び第2交差方向にそれぞれ引張力を伝達することにより、床部の中央部が支持される。従って、耐火構造物の耐火性能を従来と同等に維持することができる。
第1支持工程を行うと、延長梁を介して結合隅部を耐火被覆柱により支持する。さらに、第2支持工程を行うと、結合隅部を、柱により直接的に支持させないか、減耐火被覆柱により下方から支持させる。従って、床部の結合隅部における設計の自由度を高めるとともに、少なくとも1つの隅部を支持する柱の耐火被覆を省略することができる。
According to the configuration described in the above (8), by performing the pillar-beam construction process and the covering construction process, the circumference of the floor is covered by the annular fireproof covering beam that can maintain constant rigidity and proof stress even in the case of a fire from below. Support. The tensile force transmitting member included in the floor portion transmits the tensile force between the end portions of the floor portion in the first intersecting direction and the tensile force between the end portions of the floor portion in the second intersecting direction. At the time of fire, due to gravity or the like acting on the floor, the center of the floor in a plan view is bent downward so as to be convex. However, due to the membrane effect, the perimeter of the floor is supported by the fireproof beam. Then, the tensile force transmitting member extended by the bending of the floor portion transmits the tensile force in each of the first intersecting direction and the second intersecting direction, so that the central portion of the floor portion is supported. Therefore, the fire resistance performance of the fire resistant structure can be maintained at the same level as the conventional one.
When the first supporting step is performed, the joint corners are supported by the fireproof coated columns through the extension beams. Further, when the second supporting step is performed, the joint corners are not directly supported by the columns or are supported by the reduced fireproof coated columns from below. Therefore, it is possible to increase the degree of freedom in designing at the joint corner of the floor and to omit the fireproof coating of the column supporting at least one corner.
前記(10)に記載の構成によれば、床部の周囲は、火災時でも一定の剛性及び耐力を維持できる環状の耐火被覆梁により下方から支持される。床部に含まれている引張力伝達部材は、床部の第1交差方向の端部間の引張力、及び、床部の第2交差方向の端部間の引張力をそれぞれ伝達する。火災時には、床部に作用する重力等により、床部の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、床部の周囲が耐火被覆梁により支持される。そして、床部が撓むことにより伸びた引張力伝達部材が第1交差方向及び第2交差方向にそれぞれ引張力を伝達することにより、床部の中央部が支持される。従って、耐火構造物の耐火性能を従来と同等に維持することができる。
耐火構造物では、延長梁を介して結合隅部が耐火被覆柱により支持される。さらに、結合隅部が、柱により直接的に支持されないか、減耐火被覆柱により下方から支持される。従って、床部の結合隅部における設計の自由度を高めるとともに、少なくとも1つの隅部を支持する柱の耐火被覆を省略することができる。
According to the configuration described in (10) above, the periphery of the floor is supported from below by the annular fireproof covered beam that can maintain constant rigidity and yield strength even in the event of a fire. The tensile force transmitting member included in the floor portion transmits the tensile force between the end portions of the floor portion in the first intersecting direction and the tensile force between the end portions of the floor portion in the second intersecting direction. At the time of fire, due to gravity or the like acting on the floor, the center of the floor in a plan view is bent downward so as to be convex. However, due to the membrane effect, the perimeter of the floor is supported by the fireproof beam. Then, the tensile force transmitting member extended by the bending of the floor portion transmits the tensile force in each of the first intersecting direction and the second intersecting direction, so that the central portion of the floor portion is supported. Therefore, the fire resistance performance of the fire resistant structure can be maintained at the same level as the conventional one.
In the refractory structure, the joint corners are supported by the refractory-coated columns via the extension beams. Moreover, the joint corners are not directly supported by the columns or are supported from below by the reduced fireproof coated columns. Therefore, it is possible to increase the degree of freedom in designing at the joint corner of the floor and to omit the fireproof coating of the column supporting at least one corner.
前記(4)に記載の構成によれば、構造決定工程及び耐火仕様決定工程を行うことで、床部の周囲は、火災時でも一定の剛性及び耐力を維持でき、全体として環状に形成された耐火被覆梁及び第1耐火被覆柱の一部により下方から支持させるように設定される。床部に含まれている引張力伝達部材は、床部の第1交差方向の端部間の引張力、及び、床部の第2交差方向の端部間の引張力をそれぞれ伝達する。火災時には、床部に作用する重力等により、床部の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、床部の周囲が耐火被覆梁及び第1耐火被覆柱の一部により支持される。そして、床部が撓むことにより伸びた引張力伝達部材が第1交差方向及び第2交差方向にそれぞれ引張力を伝達することにより、床部の中央部が支持される。従って、耐火構造物の耐火性能を従来と同等に維持するように設定することができる。
第1支持仕様決定工程において、延長梁を介して結合隅部が第2耐火被覆柱により支持するように設定される。さらに、第2支持仕様決定工程において、結合隅部が、柱により直接的に支持させないか、減耐火被覆柱により下方から支持させるように設定される。従って、床部の結合隅部における設計の自由度を高めるとともに、少なくとも1つの隅部を支持する柱の耐火被覆を省略することができる。
According to the configuration described in (4) above, by performing the structure determining step and the fireproof specification determining step, it is possible to maintain a certain rigidity and proof strength around the floor even in the event of a fire, and thus it is formed in an annular shape as a whole. The refractory-covered beam and a part of the first refractory-covered column are set to be supported from below. The tensile force transmitting member included in the floor portion transmits the tensile force between the end portions of the floor portion in the first intersecting direction and the tensile force between the end portions of the floor portion in the second intersecting direction. At the time of fire, due to gravity or the like acting on the floor, the center of the floor in a plan view is bent downward so as to be convex. However, due to the membrane effect, the periphery of the floor is supported by the refractory-covered beams and a part of the first refractory-covered columns. Then, the tensile force transmitting member extended by the bending of the floor portion transmits the tensile force in each of the first intersecting direction and the second intersecting direction, so that the central portion of the floor portion is supported. Therefore, it is possible to set the fireproof performance of the fireproof structure to be maintained at the same level as the conventional one.
In the first supporting specification determining step, the joint corner is set to be supported by the second refractory-covered column via the extension beam. Further, in the second supporting specification determining step, the joint corners are set so as not to be directly supported by the columns or supported from below by the reduced fireproof coated columns. Therefore, it is possible to increase the degree of freedom in designing at the joint corner of the floor and to omit the fireproof coating of the column supporting at least one corner.
前記(9)に記載の構成によれば、柱梁施工工程及び被覆施工工程を行うことで、床部の周囲を、火災時でも一定の剛性及び耐力を維持でき、全体として環状に形成された耐火被覆梁及び第1耐火被覆柱の一部により下方から支持させる。床部に含まれている引張力伝達部材は、床部の第1交差方向の端部間の引張力、及び、床部の第2交差方向の端部間の引張力をそれぞれ伝達する。火災時には、床部に作用する重力等により、床部の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、床部の周囲が耐火被覆梁及び第1耐火被覆柱の一部により支持される。そして、床部が撓むことにより伸びた引張力伝達部材が第1交差方向及び第2交差方向にそれぞれ引張力を伝達することにより、床部の中央部が支持される。従って、耐火構造物の耐火性能を従来と同等に維持することができる。
第1支持工程を行うと、延長梁を介して結合隅部を第2耐火被覆柱により支持する。さらに、第2支持工程を行うと、結合隅部を、柱により直接的に支持させないか、減耐火被覆柱により下方から支持させる。従って、床部の結合隅部における設計の自由度を高めるとともに、少なくとも1つの隅部を支持する柱の耐火被覆を省略することができる。
According to the configuration described in (9) above, by performing the pillar-beam construction process and the covering construction process, it is possible to maintain a certain rigidity and proof strength around the floor even in the event of a fire, and the entire structure is formed in an annular shape. The refractory covered beam and a part of the first refractory covered column are supported from below. The tensile force transmitting member included in the floor portion transmits the tensile force between the end portions of the floor portion in the first intersecting direction and the tensile force between the end portions of the floor portion in the second intersecting direction. At the time of fire, due to gravity or the like acting on the floor, the center of the floor in a plan view is bent downward so as to be convex. However, due to the membrane effect, the periphery of the floor is supported by the refractory-covered beams and a part of the first refractory-covered columns. Then, the tensile force transmitting member extended by the bending of the floor portion transmits the tensile force in each of the first intersecting direction and the second intersecting direction, so that the central portion of the floor portion is supported. Therefore, the fire resistance performance of the fire resistant structure can be maintained at the same level as the conventional one.
When the first supporting step is performed, the joint corner portion is supported by the second refractory-coated column via the extension beam. Further, when the second supporting step is performed, the joint corners are not directly supported by the columns or are supported by the reduced fireproof coated columns from below. Therefore, it is possible to increase the degree of freedom in designing at the joint corner of the floor and to omit the fireproof coating of the column supporting at least one corner.
前記(15)に記載の構成によれば、床部の周囲は、火災時でも一定の剛性及び耐力を維持でき、全体として環状に形成された耐火被覆梁及び第1耐火被覆柱の一部により下方から支持される。床部に含まれている引張力伝達部材は、床部の第1交差方向の端部間の引張力、及び、床部の第2交差方向の端部間の引張力をそれぞれ伝達する。火災時には、床部に作用する重力等により、床部の平面視における中央部が下方に向かって凸となるようにむ。しかし、メンブレン効果により、床部の周囲が耐火被覆梁及び第1耐火被覆柱の一部により支持される。そして、床部が撓むことにより伸びた引張力伝達部材が第1交差方向及び第2交差方向にそれぞれ引張力を伝達することにより、床部の中央部が支持される。従って、耐火構造物の耐火性能を従来と同等に維持することができる。
耐火構造物では、延長梁を介して結合隅部が第2耐火被覆柱により支持される。さらに、結合隅部が、柱により直接的に支持されないか、減耐火被覆柱により下方から支持される。従って、床部の結合隅部における設計の自由度を高めるとともに、少なくとも1つの隅部を支持する柱の耐火被覆を省略することができる。
According to the configuration described in (15) above, the periphery of the floor portion can maintain a certain rigidity and proof stress even in the event of a fire, and is formed by a part of the fireproof covered beam and the first fireproof covered pillar that are formed in an annular shape as a whole. It is supported from below. The tensile force transmitting member included in the floor portion transmits the tensile force between the end portions of the floor portion in the first intersecting direction and the tensile force between the end portions of the floor portion in the second intersecting direction. At the time of fire, due to gravity or the like acting on the floor, the central portion of the floor in plan view is projected downward. However, due to the membrane effect, the periphery of the floor is supported by the refractory-covered beams and a part of the first refractory-covered columns. Then, the tensile force transmitting member extended by the bending of the floor portion transmits the tensile force in each of the first intersecting direction and the second intersecting direction, so that the central portion of the floor portion is supported. Therefore, the fire resistance performance of the fire resistant structure can be maintained at the same level as the conventional one.
In the refractory structure, the joint corners are supported by the second refractory-covered columns via the extension beams. Moreover, the joint corners are not directly supported by the columns or are supported from below by the reduced fireproof coated columns. Therefore, it is possible to increase the degree of freedom in designing at the joint corner of the floor and to omit the fireproof coating of the column supporting at least one corner.
前記(16)に記載の構成によれば、床部の周囲は、火災時でも一定の剛性及び耐力を維持できる環状の第1耐火被覆梁及び第2耐火被覆梁により下方から支持される。床部に含まれている引張力伝達部材は、床部の第1交差方向の端部間の引張力、及び、床部の第2交差方向の端部間の引張力をそれぞれ伝達する。火災時には、床部に作用する重力等により、床部の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、床部の周囲が耐火被覆梁により支持さる。そして、床部が撓むことにより伸びた引張力伝達部材が第1交差方向及び第2交差方向にそれぞれ引張力を伝達することにより、床部の中央部が支持される。従って、耐火構造物の耐火性能を従来と同等に維持することができる。
耐火構造物では、延長梁を介して結合隅部が耐火被覆柱により支持される。さらに、結合隅部が、柱により直接的に支持されないか、減耐火被覆柱により下方から支持される。従って、床部の結合隅部における設計の自由度を高めるとともに、少なくとも1つの結合隅部を支持する柱の耐火被覆を省略することができる。
According to the configuration described in (16), the periphery of the floor is supported from below by the annular first refractory-covered beam and second annular refractory-covered beam that can maintain constant rigidity and proof stress even in the event of a fire. The tensile force transmitting member included in the floor portion transmits the tensile force between the end portions of the floor portion in the first intersecting direction and the tensile force between the end portions of the floor portion in the second intersecting direction. At the time of fire, due to gravity or the like acting on the floor, the center of the floor in a plan view is bent downward so as to be convex. However, due to the membrane effect, the perimeter of the floor is supported by the fireproof beam. Then, the tensile force transmitting member extended by the bending of the floor portion transmits the tensile force in each of the first intersecting direction and the second intersecting direction, so that the central portion of the floor portion is supported. Therefore, the fire resistance performance of the fire resistant structure can be maintained at the same level as the conventional one.
In the refractory structure, the joint corners are supported by the refractory-coated columns via the extension beams. Moreover, the joint corners are not directly supported by the columns or are supported from below by the reduced fireproof coated columns. Therefore, it is possible to increase the degree of freedom of design in the joint corner of the floor and to omit the fireproof coating of the column supporting at least one joint corner.
前記(2)及び(5)に記載の構成によれば、判定工程において、床部の撓みの最大値が閾値未満であるか否かを判定することができる。
前記(3)に記載の構成によれば、床部の撓みの最大値が閾値K未満でないときに、耐火仕様決定工程において、スラブから区画される床部の形状及び大きさの少なくとも一方が変わるように、耐火被覆を施す複数の梁、及び耐火被覆を施す複数の柱の少なくとも一部を変えて行う。これにより、判定工程において、再び床部の撓みの最大値が閾値K未満であるか否かを判定することができる。
According to the configurations described in (2) and (5) above, it is possible to determine whether or not the maximum value of the flexure of the floor is less than the threshold value in the determination step.
According to the configuration described in (3), when the maximum value of the flexure of the floor portion is not less than the threshold value K, at least one of the shape and the size of the floor portion partitioned from the slab changes in the fireproof specification determining step. In this way, at least a part of the plurality of beams to which the fireproof coating is applied and the plurality of columns to which the fireproof coating is applied are changed. Thereby, in the determination step, it is possible to determine again whether or not the maximum value of the bending of the floor is less than the threshold value K.
前記(6)に記載の構成によれば、床部の撓みの最大値が閾値K未満でないときに、耐火仕様決定工程において、スラブから区画される床部の形状及び大きさの少なくとも一方、及び耐火被覆を施す複数の柱が変わるように、耐火被覆を施す複数の梁の少なくとも一部を変えて行う。これにより、判定工程において、再び床部の撓みの最大値が閾値K未満であるか否かを判定することができる。
前記(7)に記載の構成によれば、本発明の耐火構造物の設計方法により耐火構造物を設計することができる。本発明の耐火構造物の設計方法は、耐火性能を維持しつつ、床部の隅部における設計の自由度を高めることができる方法である。そして、本発明の耐火構造物の設計方法は、床部の複数の隅部を下方から支持する柱の少なくとも1つの耐火被覆を省略することができる方法である。
According to the configuration described in (6) above, when the maximum value of the flexure of the floor portion is not less than the threshold value K, at least one of the shape and size of the floor portion partitioned from the slab in the fireproof specification determining step, and At least some of the plurality of beams to be fired coated are changed so that the plurality of columns to be fired coated are changed. Thereby, in the determination step, it is possible to determine again whether or not the maximum value of the bending of the floor is less than the threshold value K.
With the configuration described in (7) above, the fireproof structure can be designed by the method for designing the fireproof structure of the present invention. The method for designing a refractory structure of the present invention is a method capable of increasing the degree of freedom in designing at a corner of a floor while maintaining fire resistance. And the design method of the refractory structure of the present invention is a method in which at least one refractory coating of the pillar supporting the plurality of corners of the floor from below can be omitted.
前記(11)に記載の構成によれば、火災が発生していない通常時において、床部が撓むのを抑えることができる。
前記(12)に記載の構成によれば、複数の床部をコンパクトに並べて配置しやすくすることができる。
With the configuration described in (11) above, it is possible to prevent the floor from bending during normal times when no fire has occurred.
According to the configuration described in (12) above, it is possible to easily arrange a plurality of floors side by side in a compact manner.
前記(13)に記載の構成によれば、床部のメンブレン効果が効果的に発揮され、床部が下方に向かって撓み難くすることができる。
前記(14)に記載の構成によれば、第1鉄筋及び第2鉄筋という簡単な構成で、床部の第1交差方向の端部間の引張力、及び、床部の前記第2交差方向の端部間の引張力をそれぞれ伝達することができる。
With the configuration described in (13) above, the membrane effect of the floor portion can be effectively exhibited, and the floor portion can be made difficult to bend downward.
According to the configuration described in (14) above, with a simple configuration of the first reinforcing bar and the second reinforcing bar, the tensile force between the ends of the floor in the first crossing direction, and the second crossing direction of the floor. The tensile force between the ends of the can be transmitted respectively.
本発明の耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物によれば、耐火性能を維持しつつ、床部の隅部における設計の自由度を高めて、床部の複数の隅部を支持する柱の少なくとも1つの耐火被覆を省略することができる。 According to the method for designing a refractory structure, the method for constructing a refractory structure, and the refractory structure of the present invention, while maintaining the fire resistance performance, the degree of freedom in designing at the corner of the floor is increased, and a plurality of floors are provided. At least one refractory coating on the pillars supporting the corners of the can be omitted.
本発明の第1実施形態の耐火構造物が用いられる建築物の一部を透過させた斜視図である。It is the perspective view which penetrated a part of building in which the fireproof structure of a 1st embodiment of the present invention is used. 図1中の切断線A1-A1の断面図である。FIG. 2 is a sectional view taken along the section line A1-A1 in FIG. 1. 同耐火構造物の第1鉄筋の第1変形例を示す平面図である。It is a top view which shows the 1st modification of the 1st rebar of the same refractory structure. 同耐火構造物の第1鉄筋の第2変形例を示す平面図である。It is a top view which shows the 2nd modification of the 1st rebar of the same refractory structure. 同耐火構造物の第1鉄筋の第3変形例を示す平面図である。It is a top view showing the 3rd modification of the 1st rebar of the same refractory structure. 同耐火構造物の第1鉄筋の第4変形例を示す平面図である。It is a top view which shows the 4th modification of the 1st rebar of the same refractory structure. 図1中の切断線A2-A2の断面図である。FIG. 2 is a cross-sectional view taken along the section line A2-A2 in FIG. 1. 本発明の第1実施形態の耐火構造物の設計方法を示すフローチャートである。It is a flowchart which shows the design method of the fireproof structure of 1st Embodiment of this invention. 同耐火構造物の設計方法における構造決定工程を説明する斜視図である。It is a perspective view explaining the structure determination process in the design method of the same refractory structure. 同耐火構造物の設計方法における耐火仕様決定工程を説明する斜視図である。It is a perspective view explaining the fireproof specification deciding process in the design method of the fireproof structure. 同耐火構造物の設計方法において、耐火被覆梁及び減耐火被覆梁の配置を調節した例を示す斜視図である。It is a perspective view which shows the example which adjusted the arrangement|positioning of the fireproof coating beam and the reduced fireproof coating beam in the design method of the same fireproof structure. 同耐火構造物に通常時に作用する外力を説明する、同耐火構造物の分解斜視図である。It is an exploded perspective view of the fireproof structure for explaining external force which usually acts on the fireproof structure. 同耐火構造物に火災時に作用する外力を説明する、同耐火構造物の分解斜視図である。It is an exploded perspective view of the fireproof structure for explaining the external force which acts on the fireproof structure at the time of a fire. 本発明の第1実施形態の耐火構造物の施工方法を示すフローチャートである。It is a flowchart which shows the construction method of the refractory structure of 1st Embodiment of this invention. 比較例の耐火構造物が用いられる建築物一部を透過させた斜視図である。It is the perspective view which penetrated a part of building in which the fireproof structure of a comparative example is used. 比較例の耐火構造物の第1床部の縦断面図である。It is a longitudinal cross-sectional view of the 1st floor part of the fireproof structure of a comparative example. 比較例の耐火構造物における、時間に対する各部分の温度の変化を示す図である。It is a figure which shows the change of the temperature of each part with respect to time in the refractory structure of a comparative example. 比較例の耐火構造物における、時間に対する第1床部の撓みの最大値の変化を示す図である。It is a figure in the fireproof structure of a comparative example which shows the change of the maximum of deflection of the 1st floor with respect to time. 比較例の耐火構造物における、時間に対する曲げ耐力及び外力の変化を示す図である。It is a figure in the refractory structure of a comparative example which shows the change of bending strength and external force with respect to time. 比較例の耐火構造物における、時間に対する(外力/曲げ耐力)の値の変化を示す図である。It is a figure which shows the change of the value of (external force/bending strength) with respect to time in the refractory structure of a comparative example. 実施例の耐火構造物が用いられる建築物一部を透過させた斜視図である。It is the perspective view which penetrated a part of building in which the fireproof structure of an example is used. 実施例の耐火構造物における、時間に対する各部分の温度の変化を示す図である。It is a figure which shows the change of the temperature of each part with respect to time in the refractory structure of an Example. 実施例の耐火構造物における、時間に対する第1床部の撓みの最大値の変化を示す図である。It is a figure in the fireproof structure of an example which shows the change of the maximum of deflection of the 1st floor with respect to time. 実施例の耐火構造物における、時間に対する曲げ耐力及び外力の変化を示す図である。It is a figure in the fireproof structure of an example which shows the change of bending strength and external force to time. 実施例の耐火構造物における、時間に対する(外力/曲げ耐力)の値の変化を示す図である。It is a figure which shows the change of the value of (external force/bending strength) with respect to time in the refractory structure of an Example. 本発明の第1実施形態の変形例における耐火構造物が用いられる建築物の一部を透過させた斜視図である。It is the perspective view which penetrated a part of building in which the fireproof structure in the modification of a 1st embodiment of the present invention is used. 本発明の第1実施形態の変形例における耐火構造物が用いられる建築物の一部を透過させた斜視図である。It is the perspective view which penetrated a part of building in which the fireproof structure in the modification of a 1st embodiment of the present invention is used. 本発明の第1実施形態の変形例における耐火構造物が用いられる建築物の一部を透過させた斜視図である。It is the perspective view which penetrated a part of building in which the fireproof structure in the modification of a 1st embodiment of the present invention is used. 本発明の第2実施形態の耐火構造物が用いられる建築物の一部を透過させた斜視図である。It is the perspective view which penetrated a part of building in which the fireproof structure of a 2nd embodiment of the present invention is used. 本発明の第3実施形態の耐火構造物が用いられる建築物の横断面図である。It is a cross-sectional view of a building in which the fire resistant structure of the third embodiment of the present invention is used. 従来の耐火構造物の斜視図である。It is a perspective view of the conventional fireproof structure. 火災時における同耐火構造物の要部を模式的に示す平面図である。It is a top view which shows typically the principal part of the same fireproof structure at the time of a fire. 図32中の切断線A11-A11の断面図である。FIG. 33 is a cross-sectional view taken along the section line A11-A11 in FIG.
(第1実施形態)
以下、本発明に係る耐火構造物の第1実施形態が用いられる建築物を、図1から図28を参照しながら説明する。
図1に示すように、この建築物1は、本実施形態の耐火構造物11と、支持構造物41と、を備えている。
耐火構造物11は、第1床部(床部)12と、第1耐火被覆梁(耐火被覆梁)13A,13Bと、第2耐火被覆梁(耐火被覆梁)14A,14Bと、減耐火被覆梁15A,15B,15Cと、耐火被覆柱16A,16Bと、延長梁17A,17Bと、耐火被覆柱18A,18Bと、を備えている。
なお、図1以下では、隣り合う耐火被覆梁の境界を、太線の実線で示している。図1では、第1床部12、及び支持構造物41の後述する第2床部42を透過して示している。
(First embodiment)
Hereinafter, a building in which the first embodiment of the refractory structure according to the present invention is used will be described with reference to FIGS. 1 to 28.
As shown in FIG. 1, the building 1 includes a fire resistant structure 11 of the present embodiment and a support structure 41.
The fireproof structure 11 includes a first floor portion (floor portion) 12, first fireproof coated beams (fireproof coated beams) 13A and 13B, second fireproof coated beams (fireproof coated beams) 14A and 14B, and a reduced fireproof coating. Beams 15A, 15B and 15C, fireproof coated columns 16A and 16B, extension beams 17A and 17B, and fireproof coated columns 18A and 18B are provided.
In addition, in FIG. 1 and subsequent figures, the boundary between adjacent fireproof covered beams is shown by a thick solid line. In FIG. 1, the 1st floor part 12 and the 2nd floor part 42 of the support structure 41 mentioned later are shown transparently.
第1床部12は、上下方向Zが厚さ方向となる板状に形成されている。第1床部12は、上下方向Zに見た平面視で複数(本実施形態では4つ)の隅部12a,12b,12c,12d(以下、隅部12a~12dと略して記載する場合がある)を有する矩形状(多角形状)に形成されている。ここで言う隅部12a~12dとは、第1床部12において、平面視における第1床部12の隣り合う外縁同士が連結される部分の近傍の領域のことを意味する。平面視における第1床部12の一部の外縁は、第1床部12の平面12e内で第1交差方向Xに沿って延びている。平面12eは、第1床部12の厚さ方向に直交する第1床部12の外面(上面、主面)である(図2も参照のこと)。平面視における第1床部12の残部の外縁は、第1床部12の平面12e内で第2交差方向Yに沿って延びている。第1交差方向X及び第2交差方向Yは、平面12eに沿う方向であって、互いに直交(交差)する方向である。
なお、本実施形態では、第1交差方向X及び第2交差方向Yはそれぞれ水平面に沿う方向としているが、第1交差方向X及び第2交差方向Yはそれぞれ水平面に対して傾斜する方向としてもよい。
The first floor portion 12 is formed in a plate shape whose vertical direction Z is the thickness direction. The first floor portion 12 has a plurality of (four in the present embodiment) corners 12a, 12b, 12c, 12d (hereinafter, may be abbreviated as corners 12a to 12d) in a plan view when viewed in the vertical direction Z. Is formed in a rectangular shape (polygonal shape). The corners 12a to 12d referred to here mean regions in the first floor 12 in the vicinity of a portion where the adjacent outer edges of the first floor 12 in a plan view are connected to each other. An outer edge of a part of the first floor portion 12 in a plan view extends along the first intersecting direction X within the plane 12e of the first floor portion 12. The flat surface 12e is an outer surface (upper surface, main surface) of the first floor portion 12 orthogonal to the thickness direction of the first floor portion 12 (see also FIG. 2). The outer edge of the remaining portion of the first floor portion 12 in a plan view extends along the second intersecting direction Y within the plane 12e of the first floor portion 12. The first intersecting direction X and the second intersecting direction Y are directions along the plane 12e and are directions orthogonal (intersecting) to each other.
In the present embodiment, the first intersecting direction X and the second intersecting direction Y are directions along the horizontal plane, but the first intersecting direction X and the second intersecting direction Y may also be directions inclined with respect to the horizontal plane. Good.
図2に示すように、第1床部12は、いわゆる合成スラブ(Composite Slab)である。第1床部12は、第1デッキプレート(引張力伝達部材)21と、第1コンクリート(コンクリート)22と、鉄筋(引張力伝達部材)23と、を備えている。なお、第1床部12は第1デッキプレート21及び第1コンクリート22を備えなくてもよいし、第1床部12は鉄筋23及び第1コンクリート22を備えなくてもよい。第1床部12が備える引張力伝達部材は、第1デッキプレート21、鉄筋23に限定されない。
例えば、第1デッキプレート21は、鋼板を曲げ加工して形成されている。第1デッキプレート21の周囲は、第1耐火被覆梁13A,13B、及び第2耐火被覆梁14A,14Bにより下方から支持されている。
第1コンクリート22は、平面視において第1床部12と同一形状なる板状に形成されている。第1コンクリート22は、第1デッキプレート21上に配置されている。
As shown in FIG. 2, the first floor 12 is a so-called composite slab. The first floor 12 includes a first deck plate (tensile force transmitting member) 21, first concrete (concrete) 22, and reinforcing bars (tensile force transmitting member) 23. The first floor portion 12 does not have to include the first deck plate 21 and the first concrete 22, and the first floor portion 12 does not need to include the reinforcing bar 23 and the first concrete 22. The tensile force transmission member included in the first floor portion 12 is not limited to the first deck plate 21 and the reinforcing bar 23.
For example, the first deck plate 21 is formed by bending a steel plate. The periphery of the first deck plate 21 is supported from below by the first fireproof covered beams 13A, 13B and the second fireproof covered beams 14A, 14B.
The first concrete 22 is formed in a plate shape having the same shape as the first floor portion 12 in a plan view. The first concrete 22 is arranged on the first deck plate 21.
鉄筋23は、第1コンクリート22内に埋設されている。鉄筋23は、複数の第1鉄筋25と、複数の第2鉄筋26と、を備えている。なお、図1中には、第1鉄筋25及び第2鉄筋26をそれぞれ2つずつのみ二点鎖線で示す。
図1及び図2に示すように、各第1鉄筋25は、第1交差方向Xに沿って延びている。各第1鉄筋25は、第1コンクリート22(第1床部12)の第1交差方向Xの端部間の引張力を伝達する。すなわち、各第1鉄筋25は、第1コンクリート22の第1交差方向Xの第1端部と、第1コンクリート22の第1交差方向Xの第1端部とは反対の第2端部と、の間にわたって延びている。そして、各第1鉄筋25は、第1コンクリート22の第1端部と第2端部との間に作用する引張力を、第1コンクリート22の第1端部と第2端部との間にわたって伝達する。複数の第1鉄筋25は、第2交差方向Yに互いに間隔を開けて配置されている。
同様に、各第2鉄筋26は、第2交差方向Yに沿って延びている。各第2鉄筋26は、第1コンクリート22の第2交差方向Yの端部間の引張力を伝達する。複数の第2鉄筋26は、第1交差方向Xに互いに間隔を開けて配置されている。
なお、以下では、第1鉄筋25及び第2鉄筋26の構成の詳細について、第1鉄筋25を例にとって説明する。
The reinforcing bar 23 is embedded in the first concrete 22. The reinforcing bar 23 includes a plurality of first reinforcing bars 25 and a plurality of second reinforcing bars 26. In FIG. 1, only two first reinforcing bars 25 and two second reinforcing bars 26 are shown by a chain double-dashed line.
As shown in FIGS. 1 and 2, each first reinforcing bar 25 extends along the first intersecting direction X. Each 1st rebar 25 transmits the tensile force between the edge parts of the 1st concrete 22 (1st floor part 12) of the 1st cross direction X. That is, each of the first reinforcing bars 25 has a first end portion in the first intersecting direction X of the first concrete 22 and a second end portion opposite to the first end portion in the first intersecting direction X of the first concrete 22. , Extending over. And each 1st rebar 25 applies the tensile force which acts between the 1st end part and 2nd end part of the 1st concrete 22 between the 1st end part and the 2nd end part of the 1st concrete 22. Communicate over. The plurality of first reinforcing bars 25 are arranged at intervals in the second intersecting direction Y.
Similarly, each second reinforcing bar 26 extends along the second intersecting direction Y. Each second reinforcing bar 26 transmits a tensile force between the ends of the first concrete 22 in the second intersecting direction Y. The plurality of second reinforcing bars 26 are arranged at intervals in the first intersecting direction X.
In the following, details of the configurations of the first reinforcing bar 25 and the second reinforcing bar 26 will be described by taking the first reinforcing bar 25 as an example.
第1鉄筋25は、第1コンクリート22の第1交差方向Xの端部間の引張力を伝達できるものであれば、特に限定されない。第1鉄筋25は、第1コンクリート22の第1交差方向Xの第1端部と第2端部との間にわたって1本の鉄筋で形成されてもよいが、以下のように構成されてもよい。第1鉄筋25には、丸鋼、異形棒鋼、溶接金鋼等が用いられる。
図3に示す第1変形例のように、第1鉄筋25Aが、鉄筋片27a,27bと、鉄筋片27a,27bの端部同士を連結する連結鉄筋27cと、を備えてもよい。鉄筋片27a,27b及び連結鉄筋27cは、第1鉄筋25と同様の材料で形成されている。
鉄筋片27aの端部と連結鉄筋27cの第1端部とは、溶接により形成された溶接部28により接合されている。鉄筋片27bの端部と連結鉄筋27cの第1端部とは反対の第2端部とは、溶接部28により接合されている。
The first rebar 25 is not particularly limited as long as it can transmit a tensile force between the ends of the first concrete 22 in the first cross direction X. The first reinforcing bar 25 may be formed of one reinforcing bar between the first end portion and the second end portion of the first concrete 22 in the first intersecting direction X, but may be configured as follows. Good. For the first reinforcing bar 25, round steel, deformed bar steel, welded gold steel, or the like is used.
As in the first modification shown in FIG. 3, the first reinforcing bar 25A may include reinforcing bar pieces 27a and 27b and a connecting reinforcing bar 27c that connects the ends of the reinforcing bar pieces 27a and 27b. The reinforcing bar pieces 27 a and 27 b and the connecting reinforcing bar 27 c are made of the same material as the first reinforcing bar 25.
The end of the reinforcing bar piece 27a and the first end of the connecting reinforcing bar 27c are joined by a welded portion 28 formed by welding. The welded portion 28 joins the end of the reinforcing bar piece 27b and the second end of the connecting reinforcing bar 27c opposite to the first end.
図4に示す第2変形例のように、第1鉄筋25Bが、鉄筋片27aと、鉄筋片27bと、を備えてもよい。鉄筋片27aの端部と鉄筋片27bの端部とは、溶接部28により接合されている。
図5に示す第3変形例のように、第1鉄筋25Cが、鉄筋片27a,27bと、番線(針金)29と、を備えてもよい。鉄筋片27aと鉄筋片27bとは、予め定められた必要長さ重ねられた状態で、番線29により結び付けられている。鉄筋片27aと鉄筋片27bとは、付着(bonding)により、互いに接合されている。
図6に示す第4変形例のように、第1鉄筋25Dが、鉄筋片27a,27bと、機械式継手30と、を備えてもよい。機械式継手30は、カップリング等である。機械式継手30は、鉄筋片27a,27bの端部をそれぞれ挟み付けることにより、鉄筋片27aと鉄筋片27bとを接合している。
第2鉄筋26は、第1鉄筋25と同様に構成されている。
As in the second modification shown in FIG. 4, the first reinforcing bar 25B may include a reinforcing bar piece 27a and a reinforcing bar piece 27b. The end of the reinforcing bar piece 27a and the end of the reinforcing bar piece 27b are joined together by a welded portion 28.
As in the third modification shown in FIG. 5, the first reinforcing bar 25C may include reinforcing bar pieces 27a and 27b and a wire (wire) 29. The reinforcing bar piece 27a and the reinforcing bar piece 27b are connected by a number wire 29 in a state of being overlapped with each other by a predetermined required length. The reinforcing bar pieces 27a and the reinforcing bar pieces 27b are bonded to each other by bonding.
Like the 4th modification shown in Drawing 6, the 1st reinforcing bar 25D may be provided with reinforcing bar pieces 27a and 27b, and mechanical joint 30. The mechanical joint 30 is a coupling or the like. The mechanical joint 30 joins the reinforcing bar pieces 27a and 27b by sandwiching the ends of the reinforcing bar pieces 27a and 27b, respectively.
The second reinforcing bar 26 is configured similarly to the first reinforcing bar 25.
図7に示すように、第1鉄筋25の第1交差方向Xの端部には、下方に向かって折曲げられた折曲げ部25aが形成されていてもよい。折曲げ部25aは、複数の第2鉄筋26のうち、第1交差方向Xの最も外側に配置された第2鉄筋26の外側から、下方に向かって延びている。
なお、鉄筋23が備える第1鉄筋25の数は特に限定されず、1つでもよい。鉄筋23が備える第2鉄筋26の数は特に限定されず、1つでもよい。
As shown in FIG. 7, a bent portion 25a bent downward may be formed at an end portion of the first reinforcing bar 25 in the first intersecting direction X. The bent portion 25a extends downward from the outside of the second reinforcing bar 26, which is arranged on the outermost side in the first intersecting direction X among the plurality of second reinforcing bars 26.
The number of the first reinforcing bars 25 included in the reinforcing bars 23 is not particularly limited and may be one. The number of the second reinforcing bars 26 included in the reinforcing bars 23 is not particularly limited and may be one.
この例では、図2に示すように、第1耐火被覆梁13Aは、耐火被覆33Aが施されたH形鋼34Aである。耐火被覆33Aには、ロックウール、グラスウール等の断熱材が用いられる。耐火被覆33Aは、H形鋼34Aの外面に巻き付けられたり、吹き付けられている。耐火被覆33Aは、吹き付け・塗装工法、成型板工法、巻き付け工法等で形成されている。
図1に示すように、第1耐火被覆梁13Aは、第1床部12の隅部12a,12bを結ぶ外縁の下方に配置されている。
なお、第1耐火被覆梁13Aに、RC(Reinforced Concrete)、SRC(Steel Reinforced Concrete construction)が用いられてもよい。
In this example, as shown in FIG. 2, the first refractory coated beam 13A is an H-section steel 34A provided with a refractory coating 33A. A heat insulating material such as rock wool or glass wool is used for the fireproof coating 33A. The fireproof coating 33A is wound or sprayed on the outer surface of the H-section steel 34A. The fireproof coating 33A is formed by a spraying/painting method, a molding plate method, a winding method, or the like.
As shown in FIG. 1, the first refractory-covered beam 13A is arranged below the outer edge connecting the corners 12a and 12b of the first floor 12.
In addition, RC (Reinforced Concrete) and SRC (Steel Reinforced Concrete construction) may be used for the first refractory covered beam 13A.
第1耐火被覆梁13Bは、第1耐火被覆梁13Aと同様に構成されている。第1耐火被覆梁13A,13Bは、第1交差方向Xに沿ってそれぞれ延び、第2交差方向Yに互いに間隔を開けて配置されている。第1耐火被覆梁13Bは、第1床部12の隅部12c,12dを結ぶ外縁の下方に配置されている。
第2耐火被覆梁14A,14Bは、第1耐火被覆梁13Aと同様に構成されている。すなわち、第2耐火被覆梁14A,14Bには耐火被覆が施されている。第2耐火被覆梁14A,14Bは、第2交差方向Yに沿ってそれぞれ延び、第1交差方向Xに互いに間隔を開けて配置されている。
図2に示すように、第1耐火被覆梁13A,13Bの両端は、第2耐火被覆梁14A,14Bにそれぞれ接合されている。なお、図2には、第1耐火被覆梁13A,13B及び第2耐火被覆梁14A,14Bの接合状態のうちの一部のみを示す。
The first refractory covered beam 13B is configured similarly to the first refractory covered beam 13A. The first refractory covered beams 13A and 13B extend along the first intersecting direction X and are arranged at intervals in the second intersecting direction Y. The first refractory covered beam 13B is arranged below the outer edge connecting the corners 12c and 12d of the first floor 12.
The second fireproof coated beams 14A and 14B are configured similarly to the first fireproof coated beam 13A. That is, the second fireproof coated beams 14A and 14B are provided with a fireproof coating. The second refractory-covered beams 14A and 14B respectively extend along the second intersecting direction Y and are arranged at intervals in the first intersecting direction X.
As shown in FIG. 2, both ends of the first fireproof covered beams 13A and 13B are joined to the second fireproof covered beams 14A and 14B, respectively. It should be noted that FIG. 2 shows only a part of the joined state of the first refractory coated beams 13A and 13B and the second refractory coated beams 14A and 14B.
以下、耐火被覆梁13A,13B,14A,14Bを区別しないで言うときには、耐火被覆梁13,14と略して言う。図1に示すように、耐火被覆梁13,14は、全体として平面視で矩形の枠である環状(ring、角環状)に形成されている。なお、耐火被覆梁は、全体として平面視で、多角形の枠である環状や、円形の枠である環状(円環状)等に形成されてもよい。
耐火被覆梁13,14は、第1床部12の周囲を全周にわたって下方から支持している。なお、耐火被覆梁13,14は、第1床部12の周囲の一部を下方から支持していてもよい。
第1床部12は、耐火被覆梁13,14の上面に設けられたスタッド35等により、耐火被覆梁13,14に固定されている(図2参照)。具体的には、スタッド35は第1デッキプレート21を貫通し、第1コンクリート22内に埋め込まれている。
Hereinafter, when the refractory covered beams 13A, 13B, 14A, and 14B are referred to without distinction, they are simply referred to as the refractory covered beams 13 and 14. As shown in FIG. 1, the refractory-covered beams 13 and 14 are formed in an annular shape (ring, square annular shape) that is a rectangular frame as a whole in a plan view. The fire-resistant coated beam may be formed in a plan view as a whole in an annular shape that is a polygonal frame, an annular shape (circular ring) that is a circular frame, or the like.
The fireproof coated beams 13 and 14 support the periphery of the first floor portion 12 from below over the entire circumference. The fireproof coated beams 13 and 14 may support a part of the periphery of the first floor 12 from below.
The first floor portion 12 is fixed to the fireproof covered beams 13 and 14 by studs 35 and the like provided on the upper surfaces of the fireproof covered beams 13 and 14 (see FIG. 2 ). Specifically, the stud 35 penetrates the first deck plate 21 and is embedded in the first concrete 22.
ここで図7を用いて、第1コンクリート22及び第1鉄筋25の第1交差方向Xの端部と、第2耐火被覆梁14Aと、の位置関係について説明する。第2耐火被覆梁14Aは、第1耐火被覆梁13Aの耐火被覆33A、H形鋼34Aと同様に構成された、耐火被覆37A、H形鋼38Aを備えている。H形鋼38Aは、上フランジ38Aa及び下フランジ38Abが、ウェブ38Acを介して互いに接合されて構成されている。
ここで、H形鋼38Aの上フランジ38Aaにおける、平面視において第1床部12の中央部側の端縁を、端縁38Aa1と言う。上フランジ38Aaにおける端縁38Aa1とは反対側の端縁を、端縁38Aa2と言う。ウェブ38Acの第1交差方向Xの中心を、板中心38Ac1と言う。
例えば、第1コンクリート22の第1交差方向Xの端は、端縁38Aa2に一致している。
第1交差方向Xにおいて、第1鉄筋25の第1交差方向Xの端は、平面視における第1床部12の中央部側から端縁38Aa1に達している。第1鉄筋25のこの端部は、第1交差方向Xにおいて板中心38Ac1に達していることがより好ましい。
第2鉄筋26の第2交差方向Yの端部についても同様である。
Here, the positional relationship between the ends of the first concrete 22 and the first rebar 25 in the first intersecting direction X and the second fireproof covered beam 14A will be described with reference to FIG. 7. The second fireproof coated beam 14A includes a fireproof coating 37A and an H-shaped steel 38A which are configured similarly to the fireproof coating 33A and the H-shaped steel 34A of the first fireproof coated beam 13A. The H-section steel 38A is configured by an upper flange 38Aa and a lower flange 38Ab being joined to each other via a web 38Ac.
Here, the edge of the upper flange 38Aa of the H-section steel 38A on the central portion side of the first floor portion 12 in plan view is referred to as an edge 38Aa1. An edge of the upper flange 38Aa opposite to the edge 38Aa1 is referred to as an edge 38Aa2. The center of the web 38Ac in the first intersecting direction X is referred to as a plate center 38Ac1.
For example, the end of the first concrete 22 in the first intersecting direction X coincides with the edge 38Aa2.
In the first intersecting direction X, the end of the first reinforcing bar 25 in the first intersecting direction X reaches the end edge 38Aa1 from the central portion side of the first floor portion 12 in plan view. It is more preferable that this end portion of the first reinforcing bar 25 reaches the plate center 38Ac1 in the first intersecting direction X.
The same applies to the end portion of the second reinforcing bar 26 in the second intersecting direction Y.
減耐火被覆梁15Aは、耐火被覆梁13,14よりも耐火被覆が削減された梁である。減耐火被覆梁15Aは、耐火被覆が施されていないH形鋼でもよい。減耐火被覆梁15Aは、耐火被覆梁13,14よりも耐火被覆が削減されてはいるが、幾分かの耐火被覆が施されたH形鋼でもよい。
例えば、耐火被覆梁13,14、及び耐火被覆柱16A,16B等におけるロックウール等の耐火被覆の厚さを、「吹付けロックウール被覆耐火構造 施工品質管理指針(ロックウール工業会 吹付け部会)」に準拠して設定する。耐火被覆梁13,14等に1時間耐火が要求される場合には、耐火被覆の厚さを25mmとする。同様に、耐火被覆梁13,14等に2時間耐火が要求される場合には、耐火被覆の厚さを45mmとする。耐火被覆梁13,14等に3時間耐火が要求される場合には、耐火被覆の厚さを65mmとする。本明細書において、耐火被覆が施された梁、柱は、例えばこの仕様の耐火被覆が施された梁、柱のことを意味する。
この場合に、減耐火被覆梁15Aにおける耐火被覆の厚さを、それぞれの耐火性能に応じた耐火被覆梁13,14における耐火被覆の厚さの1/10~1/2程度とする。
The reduced fireproof coated beam 15A is a beam having a reduced fireproof coating than the fireproof coated beams 13 and 14. The reduced fireproof coating beam 15A may be H-section steel that is not provided with a fireproof coating. Although the reduced fireproof coating beam 15A has a reduced amount of fireproof coating than the fireproof coated beams 13 and 14, it may be an H-shaped steel having some fireproof coating.
For example, the thickness of the fireproof coating such as rockwool on the fireproof coated beams 13 and 14 and the fireproof coated columns 16A and 16B can be determined by referring to "Blown Rockwool Coated Fireproof Structure Construction Quality Control Guidelines (Rockwool Industry Association Spraying Section)". Set according to. When the fireproof coated beams 13, 14 and the like are required to be fireproof for one hour, the thickness of the fireproof coating is set to 25 mm. Similarly, when the fireproof coated beams 13, 14 and the like are required to be fireproof for 2 hours, the thickness of the fireproof coating is set to 45 mm. When the fireproof coated beams 13, 14 and the like are required to be fireproof for 3 hours, the thickness of the fireproof coating is set to 65 mm. In the present specification, a beam or column provided with a fireproof coating means, for example, a beam or column provided with a fireproof coating of this specification.
In this case, the thickness of the fireproof coating on the reduced fireproof coated beam 15A is set to about 1/10 to 1/2 of the thickness of the fireproof coating on the fireproof coated beams 13 and 14 according to the respective fireproof performance.
減耐火被覆梁15B,15Cは、減耐火被覆梁15Aと同様に構成されている。以下、減耐火被覆梁15A,15B,15Cを区別しないで言うときには、減耐火被覆梁15と略して言う。耐火被覆柱16A,16B等についても同様である。
図1に示すように、減耐火被覆梁15は、環状の耐火被覆梁13,14により囲まれた領域R1内に配置されている。減耐火被覆梁15は、第1耐火被覆梁13Aと第1耐火被覆梁13Bとの間で、第1交差方向Xに沿ってそれぞれ延びている。減耐火被覆梁15は、第2交差方向Yに互いに間隔を開けて配置されている。減耐火被覆梁15の両端は、第2耐火被覆梁14A,14Bにそれぞれ接合されている。
減耐火被覆梁15は、平面視における第1床部12の中央部等を下方から支持している。
The reduced fire resistant coated beams 15B and 15C have the same configuration as the reduced fire resistant coated beam 15A. Hereinafter, when the reduced fireproof coated beams 15A, 15B, and 15C are not distinguished, they are abbreviated as the reduced fireproof coated beams 15. The same applies to the fireproof coated columns 16A and 16B.
As shown in FIG. 1, the reduced fireproof coated beam 15 is arranged in a region R1 surrounded by annular fireproof coated beams 13 and 14. The reduced fireproof coated beam 15 extends along the first intersecting direction X between the first fireproof coated beam 13A and the first fireproof coated beam 13B. The reduced fire resistant coated beams 15 are arranged at intervals in the second cross direction Y. Both ends of the reduced fireproof coated beam 15 are joined to the second fireproof coated beams 14A and 14B, respectively.
The reduced fireproof coating beam 15 supports the central portion and the like of the first floor portion 12 in plan view from below.
耐火被覆柱16Aには、耐火被覆が施された鋼柱(H形鋼、十字鉄骨、角形鋼管、円形鋼管等)が用いられている。なお、耐火被覆柱16Aに、RC,SRC,CFT(Concrete Filled steel Tube)が用いられてもよい。
耐火被覆柱16Bは、耐火被覆柱16Aと同様に構成されている。以下、耐火被覆柱16A,16Bを区別しないで言うときには、耐火被覆柱16と略して言う。
耐火被覆柱16は、上下方向Zに沿ってそれぞれ延びている。耐火被覆柱16Aの上端部は、第1耐火被覆梁13Bと第2耐火被覆梁14Aとの接合部、及び第1床部12の隅部12cにそれぞれ接合されている。耐火被覆柱16Bの上端部は、第1耐火被覆梁13Bと第2耐火被覆梁14Bとの接合部、及び第1床部12の隅部12dにそれぞれに接合されている。
第1床部12の隅部12a,12bは、柱(耐火被覆柱及び減耐火被覆柱を含む)により直接的に支持されない。ここで隅部12aが柱により直接的に支持されないとは、隅部12aが梁を介さずに柱により支持されることはないことを意味する。具体的には、隅部12aの下方に柱を配置して、隅部12aと柱とを接触させた状態にすることはないことを意味する。ただし、隅部12aが柱により直接的に支持されないとは、隅部12aが梁を介して柱により支持されることを排除する意味ではない。隅部12bについても同様である。
A steel column (H-shaped steel, cross steel frame, square steel pipe, circular steel pipe, etc.) provided with a fireproof coating is used for the fireproof coated column 16A. In addition, RC, SRC, and CFT (Concrete Filled steel Tube) may be used for the fireproof coated column 16A.
The fireproof coated pillar 16B is configured similarly to the fireproof covered pillar 16A. Hereinafter, when the refractory-coated pillars 16A and 16B are not distinguished, they are simply referred to as the refractory-covered pillars 16.
The fireproof coated pillars 16 extend in the vertical direction Z, respectively. The upper end portion of the fireproof covered column 16A is joined to the joint portion between the first fireproof covered beam 13B and the second fireproof covered beam 14A and the corner portion 12c of the first floor portion 12, respectively. The upper end of the fireproof coated pillar 16B is joined to the joint between the first fireproof covered beam 13B and the second fireproof covered beam 14B and the corner 12d of the first floor portion 12, respectively.
The corners 12a and 12b of the first floor portion 12 are not directly supported by the columns (including the fireproof coated columns and the reduced fireproof coated columns). Here, the fact that the corner portion 12a is not directly supported by the pillar means that the corner portion 12a is not supported by the pillar without going through the beam. Specifically, it means that the pillar is not disposed below the corner 12a and the corner 12a and the pillar are not in contact with each other. However, the fact that the corner 12a is not directly supported by the column does not mean that the corner 12a is supported by the column via the beam. The same applies to the corner 12b.
以下では隅部12aを結合隅部12aとも言い、隅部12bを結合隅部12bとも言う。結合隅部12a,12bは、第1床部12の複数の隅部12a~12dのうちの2つである。
なお、結合隅部12a,12bは、耐火被覆柱よりも耐火被覆が削減された減耐火被覆柱により下方から支持されてもよい。第1床部12における柱により直接的に支持されない隅部は、隅部12a,12bであるとしたが、隅部12a~12dのうちの1つであってもよいし、隅部12a~12dのうちの3つ又は4つであってもよい。
Hereinafter, the corner 12a is also referred to as a combined corner 12a, and the corner 12b is also referred to as a combined corner 12b. The connecting corners 12a and 12b are two of the plurality of corners 12a to 12d of the first floor 12.
The connecting corners 12a and 12b may be supported from below by a reduced fireproof coated column having a reduced amount of fireproof coating than the fireproof coated column. The corners of the first floor 12 that are not directly supported by the pillars are the corners 12a and 12b, but may be one of the corners 12a to 12d, or the corners 12a to 12d. It may be three or four.
延長梁17Aは、第1耐火被覆梁13Aと同様に構成されている。図示はしないが、例えば延長梁17Aは、耐火被覆が施されたH形鋼である。延長梁17Aは、第2交差方向Yに沿って延びている。延長梁17Aの第1端部は、第1耐火被覆梁13Aと第2耐火被覆梁14Aとが接合された部分、及び第1床部12の結合隅部12aにそれぞれ結合(接合)されている。延長梁17Aは、結合隅部12aを起点として、第2耐火被覆梁14Aから離間する方向に延びている。
延長梁17Aは、第2耐火被覆梁14Aと一体になって、連結耐火被覆梁39Aを構成している。
なお、本実施形態では、延長梁17A及び第2耐火被覆梁14Aは1本の耐火被覆梁である連結耐火被覆梁39Aとして一体に形成されている。ただし、説明を容易にするため、第1床部12を支持する部分を第2耐火被覆梁14A、第1床部12を支持しない部分を延長梁17Aとして扱う。
The extension beam 17A is configured similarly to the first refractory covered beam 13A. Although not shown, for example, the extension beam 17A is H-section steel with a fireproof coating. The extension beam 17A extends along the second intersecting direction Y. The first end portion of the extension beam 17A is joined (joined) to a portion where the first refractory-covered beam 13A and the second refractory-covered beam 14A are joined, and to a joining corner portion 12a of the first floor portion 12, respectively. . The extension beam 17A extends in a direction away from the second refractory-covered beam 14A starting from the joint corner 12a.
The extension beam 17A is integrated with the second refractory-covered beam 14A to form a connected refractory-covered beam 39A.
In addition, in this embodiment, the extension beam 17A and the second refractory-covered beam 14A are integrally formed as a connected refractory-covered beam 39A which is one refractory-covered beam. However, for ease of explanation, the portion supporting the first floor portion 12 is treated as the second refractory-covered beam 14A, and the portion not supporting the first floor portion 12 is treated as the extension beam 17A.
延長梁17Bは、延長梁17Aと同様に構成されている。延長梁17Bは、第2交差方向Yに沿って延びている。延長梁17Bの第1端部は、第1耐火被覆梁13Aと第2耐火被覆梁14Bとが接合された部分、及び第1床部12の結合隅部12bにそれぞれ結合されている。
延長梁17Bは、第2耐火被覆梁14Bと一体になって、連結耐火被覆梁39Bを構成している。
The extension beam 17B is configured similarly to the extension beam 17A. The extension beam 17B extends along the second intersecting direction Y. The first end portion of the extension beam 17B is connected to a portion where the first refractory-covered beam 13A and the second refractory-covered beam 14B are joined, and to a joining corner portion 12b of the first floor portion 12, respectively.
The extension beam 17B is integrated with the second refractory-covered beam 14B to form a joint refractory-covered beam 39B.
耐火被覆柱18Aは、耐火被覆柱16Aと同様に構成されている。図示はしないが、例えば耐火被覆柱18Aは、耐火被覆が施されたH形鋼である。耐火被覆柱18Aの上端部は、延長梁17Aにおける第2端部(結合隅部12aに結合された部分とは異なる部分)に接合され、この第2端部を支持している。
耐火被覆柱18Bは、耐火被覆柱18Aと同様に構成されている。耐火被覆柱18Bは、延長梁17Bにおける第2端部(結合隅部12bに結合された部分とは異なる部分)に接合され、この第2端部を支持している。
なお、耐火被覆柱18Aは、延長梁17Aにおける長手方向の中央部等に接合されてもよい。耐火被覆柱18Bについても同様である。
The fireproof coated column 18A is configured similarly to the fireproof coated column 16A. Although not shown, for example, the refractory-coated column 18A is H-section steel with a refractory coating. The upper end portion of the fireproof coated column 18A is joined to the second end portion (a portion different from the portion joined to the joining corner portion 12a) of the extension beam 17A, and supports the second end portion.
The fireproof coated column 18B is configured similarly to the fireproof coated column 18A. The fireproof coated column 18B is joined to a second end portion (a portion different from the portion joined to the joining corner portion 12b) of the extension beam 17B and supports the second end portion.
The fireproof coated column 18A may be joined to the central portion of the extension beam 17A in the longitudinal direction or the like. The same applies to the fireproof coated column 18B.
支持構造物41は、第2床部42と、第3耐火被覆梁43と、を備えている。
第2床部42は、第1床部12と同様に構成されている。第2床部42は、上下方向Zが厚さ方向となる板状に形成されている。第2床部42は、第1床部12に対して第2交差方向Yに並べて配置されている。第2床部42は、第1床部12に対する第2交差方向Yの一方側に配置されている。
第2床部42は、第1床部12と一体になって床(スラブ)44を構成している。すなわち、耐火構造物11の第1床部12は、床44において矩形状に区画された部分である。床部12,42は、床44から区画された、床44の一部である。
図2に示すように、第2床部42は、第1床部12の第1デッキプレート21、第1コンクリート22、複数の鉄筋23と同様に構成された第2デッキプレート46、第2コンクリート47、複数の鉄筋48を備えている。
第2デッキプレート46は、第1デッキプレート21と一体になっている。
第2コンクリート47は、第1コンクリート22と一体になっている。
複数の鉄筋48は、複数の第1鉄筋25、複数の第2鉄筋26と同様に構成された複数の第1鉄筋50、複数の第2鉄筋51を備えている。第2鉄筋51は、第2鉄筋26と一体なっている。
The support structure 41 includes a second floor 42 and a third fireproof covered beam 43.
The second floor 42 is configured similarly to the first floor 12. The second floor portion 42 is formed in a plate shape in which the vertical direction Z is the thickness direction. The second floor portion 42 is arranged side by side in the second intersecting direction Y with respect to the first floor portion 12. The second floor portion 42 is arranged on one side of the second floor portion 12 in the second intersecting direction Y.
The second floor portion 42 is integrated with the first floor portion 12 to form a floor (slab) 44. That is, the first floor portion 12 of the refractory structure 11 is a portion of the floor 44 partitioned into a rectangular shape. Floors 12 and 42 are a part of floor 44, which is partitioned from floor 44.
As shown in FIG. 2, the second floor portion 42 includes the first deck plate 21, the first concrete 22, and the second deck plate 46 and the second concrete that are configured similarly to the plurality of reinforcing bars 23 of the first floor portion 12. 47 and a plurality of reinforcing bars 48.
The second deck plate 46 is integrated with the first deck plate 21.
The second concrete 47 is integrated with the first concrete 22.
The plurality of rebars 48 includes a plurality of first rebars 25, a plurality of first rebars 50 having the same configuration as the plurality of second rebars 26, and a plurality of second rebars 51. The second reinforcing bar 51 is integrated with the second reinforcing bar 26.
第3耐火被覆梁43は、第1耐火被覆梁13Aと同様に構成されている。第3耐火被覆梁43は、第1交差方向Xに沿って延びている。第3耐火被覆梁43は、延長梁17Aの第2端部、及び延長梁17Bの第2端部にそれぞれ接合されている。 The third refractory covered beam 43 is configured similarly to the first refractory covered beam 13A. The third refractory covered beam 43 extends along the first intersecting direction X. The third refractory covered beam 43 is joined to the second end of the extension beam 17A and the second end of the extension beam 17B, respectively.
このように構成された耐火構造物11は、後述するように、ISO 834-11:2014(以下、ISO 834と略して言う)に規定された加熱曲線(標準加熱曲線、標準加熱温度曲線)に基づいて加熱されたときに、所望の加熱時間における第1床部12の撓みの最大値が、(6)式で定められた閾値K(m)未満であるように構成されている。
K=(L+l)/30 ・・(6)
ただし、Lは、第1床部12の第1交差方向X(第1スパン)の長さ(m)である。lは、第1床部12の第2交差方向Y(第2スパン)の長さ(m)である。L及びlは、第1床部12の平面12eに沿う方向の長さである。
この閾値Kは、前述の非特許文献1に記載された床の撓み制限値である。
なお、第1スパンは、第1交差方向Xの長さに限定されず、第1床部12の平面12e内での方向(平面12eに沿う方向)の長さであればよい。第2スパンは、第2交差方向Yの長さに限定されず、第1床部12の平面12e内での方向であって、第1スパンに直交(交差)する方向の長さであればよい。第1床部12の撓みの最大値は、第1、第2スパンの向きがいずれの場合でも、(6)式により得られる閾値K未満であることが好ましい。
The refractory structure 11 configured as described above has a heating curve (standard heating curve, standard heating temperature curve) defined by ISO 834-11:2014 (hereinafter abbreviated as ISO 834), as described later. When heated on the basis of the above, the maximum value of the bending of the first floor portion 12 in the desired heating time is less than the threshold value K(m) defined by the equation (6).
K=(L+1)/30 ··· (6)
However, L is the length (m) of the first floor portion 12 in the first intersecting direction X (first span). l is the length (m) of the first floor portion 12 in the second intersecting direction Y (second span). L and l are lengths of the first floor 12 in the direction along the flat surface 12e.
This threshold value K is the floor bending limit value described in Non-Patent Document 1 described above.
The first span is not limited to the length in the first intersecting direction X, and may be the length in the direction within the plane 12e of the first floor 12 (the direction along the plane 12e). The second span is not limited to the length in the second intersecting direction Y, and is a direction within the plane 12e of the first floor portion 12 as long as the length is in a direction orthogonal (crossing) to the first span. Good. The maximum value of the flexure of the first floor portion 12 is preferably less than the threshold value K obtained by the equation (6) regardless of the orientation of the first and second spans.
第1床部が平面視で矩形状ではない場合には、Lは第1床部の平面に沿う第1スパンの長さであり、lは床部の平面に沿うとともに第1スパンに交差する第2スパンの長さである。このとき、(6)式により得られる閾値Kがより小さくなるように、第1、第2スパンの向きを設定することが好ましい。閾値Kをこのように設定することにより、第1床部12の損傷を安全側に評価することができる。
なお、閾値はこれに限定されない。
When the first floor is not rectangular in plan view, L is the length of the first span along the plane of the first floor, and l is along the plane of the floor and intersects the first span. It is the length of the second span. At this time, it is preferable to set the orientations of the first and second spans so that the threshold value K obtained by the equation (6) becomes smaller. By setting the threshold value K in this way, it is possible to evaluate the damage to the first floor 12 on the safe side.
The threshold value is not limited to this.
次に、以上のように構成された耐火構造物11を設計する耐火構造物耐火構造物の設計方法(以下、設計方法とも略して言う)について説明する。図8は、本実施形態の設計方法Sを示すフローチャートである。この設計方法Sは、例えば新規に施工する耐火構造物11、及び既存の耐火構造物11に対して好ましく用いられる。
まず、構造決定工程(図8に示すステップS1)において、公知の構造計算を行うことにより、図9に示すように、床44、床44を下方から支持する複数の梁52、及び複数の梁52を支持する柱53の配置を決定する。梁52は、耐火被覆梁13,14及び減耐火被覆梁15から耐火被覆を取外した梁である。柱53は、耐火被覆柱16A,16Bから耐火被覆を取外した柱である。
構造決定工程S1では、例えば、床44の自重及び床44に作用する荷重から、複数の梁52及び複数の柱53の仕様、及び配置を決定する。
構造決定工程S1が終了すると、ステップS3に移行する。
Next, a method for designing a refractory structure (hereinafter, also abbreviated as a design method) for designing the refractory structure 11 configured as described above will be described. FIG. 8 is a flowchart showing the design method S of this embodiment. This design method S is preferably used for, for example, a newly constructed refractory structure 11 and an existing refractory structure 11.
First, in the structure determining step (step S1 shown in FIG. 8 ), a publicly-known structure calculation is performed, so that as shown in FIG. The arrangement of columns 53 that support 52 is determined. The beam 52 is a beam obtained by removing the fireproof coating from the fireproof coated beams 13 and 14 and the reduced fireproof coated beam 15. The pillar 53 is a pillar obtained by removing the fireproof coating from the fireproof coated pillars 16A and 16B.
In the structure determining step S1, for example, the specifications and arrangement of the plurality of beams 52 and the plurality of columns 53 are determined based on the weight of the floor 44 and the load acting on the floor 44.
When the structure determining step S1 is completed, the process proceeds to step S3.
次に、耐火仕様決定工程(ステップS3)において、床44から第1床部12を区画した際に、以下のように設定されるようにする。図10に示すように、床44から区画された第1床部12の周囲を、全周にわたって梁52に耐火被覆を施した耐火被覆梁13,14により下方から支持させるように設定して耐火構造物11を設計する。この際に、火災時に第1床部12によるメンブレン効果が発揮されるように、複数の梁52の少なくとも一部に耐火被覆を施して耐火構造物11を設計する。ここで言うメンブレン効果とは、火災時において、荷重が作用する床部を、耐火被覆梁及び引張力伝達部材により、床部の中央部が下方に向かって凸となるように撓んだ形状に保持する効果のことを意味する。
この例では、耐火被覆梁13,14に対応する梁52、及び、耐火被覆柱16A,16Bに対応する柱53に耐火被覆を施して耐火構造物11を設計する。
耐火仕様決定工程S3が終了すると、ステップS5に移行する。
Next, in the fireproof specification determining step (step S3), when the first floor portion 12 is partitioned from the floor 44, the following settings are made. As shown in FIG. 10, the periphery of the first floor portion 12 partitioned from the floor 44 is set to be supported from below by the fire-resistant coated beams 13 and 14 in which the beam 52 is fire-resistant coated over the entire circumference. The structure 11 is designed. At this time, the fireproof structure 11 is designed by applying a fireproof coating to at least a part of the plurality of beams 52 so that the membrane effect by the first floor portion 12 is exhibited in the event of a fire. The membrane effect referred to here is the shape in which the floor on which a load acts in the event of a fire is bent so that the center of the floor becomes convex downward due to the fire-resistant coated beam and the tensile force transmission member. Means the effect of holding.
In this example, the beam 52 corresponding to the fireproof coated beams 13 and 14 and the column 53 corresponding to the fireproof coated columns 16A and 16B are provided with a fireproof coating to design the fireproof structure 11.
When the fireproof specification determining step S3 ends, the process proceeds to step S5.
次に、第1支持仕様決定工程(ステップS5)において、図1に示すように、結合隅部12a,12bに延長梁17A,17Bの第1端部を結合させ、延長梁17A,17Bの第2端部を耐火被覆柱18A,18Bで支持するように設定する。
第1支持仕様決定工程S5が終了すると、ステップS7に移行する。
次に、第2支持仕様決定工程(ステップS7)において、結合隅部12a,12bを、柱により直接的に支持させないか、減耐火被覆柱により下方から支持させるように設定する。この例では、結合隅部12a,12bを、柱により直接的に支持させないように設定する。耐火構造物11をこのように設定することで、結合隅部12a,12bを下方から支持する柱自体が無くなり、結合隅部12a,12bを下方から支持する柱の耐火被覆が省略される。
なお、第2支持仕様決定工程S7では、結合隅部12a,12bを柱により直接的に支持させないだけで、結合隅部12a,12bを減耐火被覆柱により下方から支持させるように設定しなくてもよい。
第2支持仕様決定工程S7が終了すると、ステップS9に移行する。
Next, in the first supporting specification determining step (step S5), as shown in FIG. 1, the first ends of the extension beams 17A and 17B are joined to the joining corners 12a and 12b, and the first ends of the extension beams 17A and 17B are joined. The two end portions are set to be supported by the fireproof coated columns 18A and 18B.
When the first support specification determining step S5 is completed, the process proceeds to step S7.
Next, in the second support specification determining step (step S7), the joint corners 12a and 12b are set so as not to be directly supported by the columns or supported from below by the reduced fireproof coated columns. In this example, the connecting corners 12a and 12b are set so as not to be directly supported by the pillar. By setting the refractory structure 11 in this way, the pillar itself supporting the joint corners 12a and 12b from below is eliminated, and the fireproof coating of the pillar supporting the joint corners 12a and 12b from below is omitted.
In the second support specification determining step S7, the joint corners 12a and 12b are not directly supported by the pillars, but the joint corners 12a and 12b are not set to be supported from below by the reduced fireproof covering pillars. Good.
When the second supporting specification determining step S7 is completed, the process proceeds to step S9.
次に、判定工程(ステップS9)において、耐火構造物11が、ISO 834に規定された加熱曲線に基づいて加熱されたときに、所望の加熱時間における第1床部12の撓みの最大値が、(6)式で定められた閾値K未満である(閾値Kよりも小さい)か否か等を判定する。判定工程S9は、耐火仕様決定工程S3、第1支持仕様決定工程S5、及び第2支持仕様決定工程S7の後で行われる工程である。
所望の加熱時間には、例えば、建築基準法に規定される耐火性能に基づいて、1時間、2時間等が用いられる。一般的に、平面視における第1床部12の中央部で、第1床部12の撓みが最大となる。第1床部12の撓みの最大値が閾値K未満であるか否かは、公知のシミュレーションにより判定することができる。
一般的に、火災時の熱により建築物が加熱されると、減耐火被覆梁の剛性及び耐力は0とみなされる。このため、火災時には第1床部12は減耐火被覆梁15により支持されず、耐火被覆梁13,14により支持される。
Next, in the determination step (step S9), when the refractory structure 11 is heated based on the heating curve defined by ISO 834, the maximum value of the flexure of the first floor portion 12 in a desired heating time is , Is smaller than the threshold value K defined by the equation (6) (smaller than the threshold value K) or the like. The determination step S9 is a step performed after the fireproof specification determination step S3, the first support specification determination step S5, and the second support specification determination step S7.
The desired heating time is, for example, 1 hour, 2 hours, or the like, based on the fire resistance performance specified by the Building Standards Act. Generally, the bending of the first floor portion 12 is maximum at the central portion of the first floor portion 12 in plan view. Whether or not the maximum value of the bending of the first floor portion 12 is less than the threshold value K can be determined by a known simulation.
Generally, when a building is heated by heat during a fire, the rigidity and proof stress of the reduced fireproof coated beam are considered to be zero. Therefore, at the time of fire, the first floor portion 12 is not supported by the reduced fireproof coated beam 15, but is supported by the fireproof coated beams 13 and 14.
判定工程S9において、第1床部12の撓みの最大値が閾値K未満でない(NO)と判定したときには、耐火仕様決定工程S3に移行する。
一方で、第1床部12の撓みの最大値が閾値K未満である(YES)と判定したときには、設計方法Sの全工程が終了する。このとき、耐火構造物11が前述の仕様に設計される。
耐火構造物11は、設計方法Sにより設計された耐火構造物である。
When it is determined in the determination step S9 that the maximum value of the bending of the first floor portion 12 is not less than the threshold value K (NO), the process proceeds to the fireproof specification determination step S3.
On the other hand, when it is determined that the maximum value of the bending of the first floor portion 12 is less than the threshold value K (YES), all the steps of the design method S are completed. At this time, the refractory structure 11 is designed to the above-mentioned specifications.
The refractory structure 11 is a refractory structure designed by the design method S.
判定工程S9から移行した耐火仕様決定工程S3では、床44から区画される第1床部の形状及び大きさの少なくとも一方が変わるように、耐火被覆を施す複数の梁52の少なくとも一部を変えて行う。例えば、図1に示す耐火構造物11及び支持構造物41に対して耐火被覆を施す複数の梁52の少なくとも一部を変えて、図11に示す耐火構造物11A及び支持構造物41Aとする。すなわち、図1に示す耐火構造物11の減耐火被覆梁15Aに充分な耐火被覆を施して、図11に示す耐火構造物11Aの第1耐火被覆梁13Aとする。図1に示す耐火構造物11の第1耐火被覆梁13Aの耐火被覆を削減して、図11に示すような支持構造物41Aの第1減耐火被覆梁54とする。
図11に示す耐火構造物11Aの第1床部12Aは、図1に示す耐火構造物11の第1床部12に比べて第2交差方向Yの長さが短くなる。耐火被覆梁14A,14Bも同様に、第2交差方向Yの長さが短くなる。第1床部12Aは、第1床部12に対して形状が、平面視において正方形に近い形状に変わっている。
In the fireproof specification determining step S3 transferred from the determining step S9, at least a part of the plurality of beams 52 to be fireproof coated is changed so that at least one of the shape and the size of the first floor section partitioned from the floor 44 is changed. Do it. For example, the refractory structure 11A and the support structure 41 shown in FIG. 1 are modified by changing at least a part of the plurality of beams 52 that apply the fireproof coating to the refractory structure 11A and the support structure 41A shown in FIG. That is, a sufficient refractory coating is applied to the reduced fireproof coated beam 15A of the fireproof structure 11 shown in FIG. 1 to obtain the first fireproof coated beam 13A of the fireproof structure 11A shown in FIG. The first refractory-covered beam 13A of the refractory structure 11 shown in FIG. 1 is reduced to the first refractory-covered beam 54 of the support structure 41A as shown in FIG.
The first floor portion 12A of the refractory structure 11A shown in FIG. 11 has a shorter length in the second intersecting direction Y than the first floor portion 12 of the refractory structure 11 shown in FIG. Similarly, the lengths of the refractory covered beams 14A and 14B in the second intersecting direction Y are shortened. The shape of the first floor portion 12A is changed to a shape close to a square in a plan view with respect to the first floor portion 12.
第1床部の大きさを変えるとは、例えば第1床部の平面視における矩形状という形状を変えずに、元の第1床部との相似形状を保ったまま、第1床部の大きさを大きくしたり小さくしたりすることを意味する。
さらに、第1支持仕様決定工程S5及び第2支持仕様決定工程S7を行った後で、判定工程S9を行う。
Changing the size of the first floor means, for example, keeping the shape similar to the original first floor without changing the shape of the first floor that is rectangular in plan view. It means increasing or decreasing the size.
Further, after performing the first supporting specification determining step S5 and the second supporting specification determining step S7, the determining step S9 is performed.
一般的に、第1床部12Aが小さくなると、第1床部12Aの撓みの最大値も小さくなる。非特許文献1に記載された床の撓み制限値も小さくなるが、床の撓み制限値は小さくなる程度は、第1床部12Aの撓みの最大値が小さくなる程度よりも小さい。このため、第1床部12Aの撓みの最大値が、床の撓み制限値(閾値)未満になりやすくなる。
このように、判定工程S9でYESと判定されるまで、耐火仕様決定工程S3、第1支持仕様決定工程S5、及び第2支持仕様決定工程S7を組にして繰り返し行い、耐火被覆を施す複数の梁52を調節する。
Generally, as the first floor portion 12A becomes smaller, the maximum value of the bending of the first floor portion 12A also becomes smaller. Although the floor flexure limit value described in Non-Patent Document 1 is also small, the extent that the floor flexure limit value is small is smaller than the extent that the maximum flexure value of the first floor portion 12A is small. For this reason, the maximum value of the bending of the first floor portion 12A tends to be less than the floor bending limit value (threshold value).
In this way, the fireproof specification determining step S3, the first supporting specification determining step S5, and the second supporting specification determining step S7 are repeatedly performed as a set until a determination of YES is made in the determination step S9, and a plurality of fireproof coatings are applied. Adjust beam 52.
なお、本設計方法Sでは、構造決定工程S1の後で耐火仕様決定工程S3、第1支持仕様決定工程S5、及び第2支持仕様決定工程S7を、この順に行うとした。しかし、構造決定工程S1の後において、耐火仕様決定工程S3、第1支持仕様決定工程S5、及び第2支持仕様決定工程S7を行う順は特に限定されない。例えば、構造決定工程S1の後において第2支持仕様決定工程S7、第1支持仕様決定工程S5、及び耐火仕様決定工程S3の順に行ってもよい。 In this design method S, after the structure determining step S1, the fireproof specification determining step S3, the first supporting specification determining step S5, and the second supporting specification determining step S7 are performed in this order. However, the order of performing the fireproof specification determining step S3, the first support specification determining step S5, and the second support specification determining step S7 after the structure determining step S1 is not particularly limited. For example, after the structure determining step S1, the second supporting specification determining step S7, the first supporting specification determining step S5, and the fireproof specification determining step S3 may be performed in this order.
ここで、メンブレン効果により火災の前後で第1床部12等が撓む様子を模式的に説明する。
図12に、火災が発生していない通常時における耐火構造物11の分解斜視図を示す。なお図12及び後述する図13では、耐火構造物11を簡略化して示している。具体的には、耐火構造物11の減耐火被覆梁15、延長梁17A,17B、及び耐火被覆柱18A,18Bを示していない。
図12に示す通常時には、第1床部12、減耐火被覆梁15A等に作用する重力、静荷重等により、第1床部12、減耐火被覆梁15A等に下向きの外力F1が作用する。
一方で火災時において、図13に示すように、第1床部12の平面視における中央部が下方に向かって凸となるように撓む。しかし、いわゆるメンブレン効果により、第1床部12の周囲が環状の耐火被覆梁13,14により支持される。第1床部12が撓むことにより伸びた第1鉄筋25が、第1交差方向Xの引張力F2を伝達する。第1床部12が撓むことにより伸びた第2鉄筋26が、第2交差方向Yの引張力F3を伝達する。すなわち、第1床部12は、第1床部12に作用する重力等に引張力F2,F3により抵抗する。
従って、第1床部12の中央部が、耐火被覆梁13,14及び鉄筋25,26により第1交差方向X及び第2交差方向Yにそれぞれ支持される。
Here, the manner in which the first floor portion 12 and the like bend due to the membrane effect before and after a fire will be schematically described.
FIG. 12 shows an exploded perspective view of the refractory structure 11 in a normal state where no fire has occurred. Note that, in FIG. 12 and FIG. 13 described later, the refractory structure 11 is shown in a simplified manner. Specifically, the reduced fireproof coated beam 15, the extension beams 17A and 17B, and the fireproof coated columns 18A and 18B of the fireproof structure 11 are not shown.
In the normal state shown in FIG. 12, a downward external force F1 acts on the first floor 12, the reduced fireproof coated beam 15A, etc. due to gravity, static load, etc. acting on the first floor 12, the reduced fireproof coated beam 15A, etc.
On the other hand, at the time of fire, as shown in FIG. 13, the center portion of the first floor portion 12 in plan view bends downward to be convex. However, due to the so-called membrane effect, the periphery of the first floor portion 12 is supported by the annular fireproof coated beams 13 and 14. The first reinforcing bars 25 extended by the bending of the first floor portion 12 transmit the tensile force F2 in the first intersecting direction X. The second reinforcing bars 26 extended by the bending of the first floor portion 12 transmit the tensile force F3 in the second intersecting direction Y. That is, the first floor portion 12 resists gravity or the like acting on the first floor portion 12 by the tensile forces F2 and F3.
Therefore, the central portion of the first floor portion 12 is supported by the fireproof covered beams 13, 14 and the reinforcing bars 25, 26 in the first intersecting direction X and the second intersecting direction Y, respectively.
この際、第1床部12には、引張領域R5及び圧縮領域R6がそれぞれ形成される。なお、図13中に圧縮領域R6をハッチングを付して示している。引張領域R5では、第1床部12が撓んだ平面12eに沿って引張られる。圧縮領域R6では、第1床部12が撓んだ平面12eに沿って圧縮される。
引張領域R5は、第1床部12の平面視における中央部に形成される。圧縮領域R6は、引張領域R5の周辺に形成される。
At this time, the tension region R5 and the compression region R6 are formed on the first floor portion 12, respectively. The compression region R6 is shown with hatching in FIG. In the pulling region R5, the first floor 12 is pulled along the bent plane 12e. In the compression region R6, the first floor portion 12 is compressed along the bent flat surface 12e.
The tensile region R5 is formed in the central portion of the first floor portion 12 in plan view. The compression region R6 is formed around the tension region R5.
火災時に耐火構造物11に生じるメンブレン効果は、鉄筋23により引張力F2,F3に抵抗する効果である。一方で、特許文献1において火災時に耐火構造物に生じるロバストネスは、コンクリート及びスラブ筋により曲げモーメントB1に抵抗する効果である。
このように、本実施形態の耐火構造物11と特許文献1の耐火構造物とでは、火災時に生じる効果が異なる。
The membrane effect that occurs in the refractory structure 11 at the time of fire is an effect of resisting the tensile forces F2 and F3 by the reinforcing bar 23. On the other hand, in Patent Document 1, the robustness that occurs in the refractory structure at the time of fire is the effect of resisting the bending moment B1 by the concrete and the slab reinforcement.
As described above, the fire-resistant structure 11 of the present embodiment and the fire-resistant structure of Patent Document 1 have different effects that occur during a fire.
次に、耐火構造物11を施工する耐火構造物の施工方法(製造方法。以下、施工方法とも略して言う)について説明する。図14は、本実施形態の施工方法S20を示すフローチャートである。前記設計方法Sの各工程は設定するだけで実際には施工しないのに対し、施工方法S20の各工程では実際に施工する点が異なる。この施工方法S20は、例えば新規に施工する耐火構造物11に対して好ましく用いられる。
この施工方法S20では、柱梁施工工程S21と、被覆施工工程S23と、第1支持工程S25と、第2支持工程S27と、を行う。
柱梁施工工程S21では、床44、床44を下方から支持する複数の梁52、及び複数の梁52を支持する柱53を施工する。
被覆施工工程S23では、梁52に耐火被覆を施して耐火被覆梁13,14とすることで、床44から区画された第1床部12の周囲を耐火被覆梁13,14により下方から支持させる。被覆施工工程S23では、柱53に耐火被覆を施して耐火被覆柱16A,16Bとする。
第1支持工程S25では、結合隅部12a,12bに延長梁17A,17Bの第1端部を結合させ、延長梁17A,17Bの第2端部を耐火被覆柱18A,18Bで支持する。
第2支持工程S27では、結合隅部12a,12bを、柱により直接的に支持させない。なお、第2支持工程S27では、結合隅部12a,12bを減耐火被覆柱により下方から支持させてもよい。
なお、第2支持工程S27では、結合隅部12a,12bを柱により直接的に支持させないだけで、結合隅部12a,12bを減耐火被覆柱により下方から支持させなくてもよい。
以上で、施工方法S20の全工程が終了し、耐火構造物11が施工される。
Next, a construction method (manufacturing method; hereinafter also abbreviated as construction method) of the refractory structure for constructing the refractory structure 11 will be described. FIG. 14: is a flowchart which shows the construction method S20 of this embodiment. While each step of the design method S is set but not actually executed, the difference is that each step of the installation method S20 is actually executed. This construction method S20 is preferably used, for example, for a new fireproof structure 11.
In this construction method S20, a pillar-beam construction step S21, a covering construction step S23, a first support step S25, and a second support step S27 are performed.
In the column-beam construction step S21, a floor 44, a plurality of beams 52 that support the floor 44 from below, and a column 53 that supports the plurality of beams 52 are constructed.
In the covering construction step S23, the beam 52 is subjected to a fireproof coating to form the fireproof coated beams 13 and 14, so that the periphery of the first floor portion 12 partitioned from the floor 44 is supported from below by the fireproof coated beams 13 and 14. .. In the coating construction step S23, a fire resistant coating is applied to the pillar 53 to form the fire resistant coated pillars 16A and 16B.
In the first supporting step S25, the first ends of the extension beams 17A and 17B are joined to the joining corners 12a and 12b, and the second ends of the extension beams 17A and 17B are supported by the fireproof coated columns 18A and 18B.
In the second supporting step S27, the joint corners 12a and 12b are not directly supported by the pillar. In addition, in the second supporting step S27, the joint corners 12a and 12b may be supported from below by the reduced fireproof coating column.
In the second supporting step S27, the joint corners 12a and 12b may not be directly supported by the columns, but the joint corners 12a and 12b may not be supported from below by the reduced fireproof coating columns.
With the above, all steps of the construction method S20 are completed, and the refractory structure 11 is constructed.
非特許文献1に開示された耐火構造物の設計方法では、床部の複数の隅部の全てが耐火被覆柱により支持されるとして設計している。このため、非特許文献1を見た当業者は、床部の複数の隅部の全てが耐火被覆柱により支持されるとして設計する。
全ての隅部が耐火被覆柱により支持されるため、隅部における設計の自由度は低くなる。
In the method for designing a refractory structure disclosed in Non-Patent Document 1, all the corners of the floor are designed to be supported by the refractory-coated columns. Therefore, those skilled in the art who have seen Non-Patent Document 1 design that all of the plurality of corners of the floor are supported by the fire-resistant coated columns.
All corners are supported by the refractory-covered columns, reducing corner design freedom.
これに対して、本実施形態の設計方法Sによれば、構造決定工程S1及び耐火仕様決定工程S3を行うことで、第1床部12の周囲は、火災時でも一定の剛性及び耐力を維持できる環状の耐火被覆梁13,14により下方から支持させるように設定される。第1床部12に含まれている鉄筋23(第1鉄筋25及び第2鉄筋26)は、第1床部12の第1交差方向Xの端部間の引張力F2、及び、第1床部12の第2交差方向Yの端部間の引張力F3をそれぞれ伝達する。火災時には、第1床部12に作用する重力等により、第1床部12の平面視における中央部が下方に向かって凸となるように撓む。しかし、いわゆるメンブレン効果により、第1床部12の周囲が耐火被覆梁13,14により支持される。そして、第1床部12が撓むことにより伸びた鉄筋23が第1交差方向X及び第2交差方向Yにそれぞれ引張力F2,F3を伝達することにより、第1床部12の中央部が支持される。従って、耐火構造物11の耐火性能を従来と同等に維持するように設定することができる。なお、ここで言う耐火構造物11の耐火性能とは、火災時に第1床部12の撓みを抑えることや、曲げ耐力よりも外力が大きくなることを抑えることを意味する。 On the other hand, according to the design method S of the present embodiment, by performing the structure determining step S1 and the fireproof specification determining step S3, the surroundings of the first floor portion 12 maintain constant rigidity and proof stress even in the event of a fire. It is set so as to be supported from below by the annular fireproof coated beams 13 and 14 that can be formed. The reinforcing bars 23 (first reinforcing bars 25 and second reinforcing bars 26) included in the first floor portion 12 are the tensile force F2 between the ends of the first floor portion 12 in the first intersecting direction X, and the first floor. The tensile force F3 between the ends of the portion 12 in the second cross direction Y is transmitted. At the time of fire, due to gravity or the like acting on the first floor portion 12, the center portion of the first floor portion 12 in a plan view is bent so as to be convex downward. However, the periphery of the first floor portion 12 is supported by the fireproof coated beams 13 and 14 due to the so-called membrane effect. Then, the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 11 can be set to be maintained at the same level as the conventional one. In addition, the fire resistance performance of the fire resistant structure 11 referred to here means to suppress the bending of the first floor portion 12 at the time of a fire and to prevent the external force from becoming larger than the bending resistance.
第1支持仕様決定工程S5において、延長梁17A,17Bを介して結合隅部12a,12bが耐火被覆柱18A,18Bにより支持されるように設定される。さらに、第2支持仕様決定工程S7において、結合隅部12a,12bが、柱により直接的に支持させないように設定される。従って、第1床部12の結合隅部12a,12bにおける設計の自由度を高めるとともに、結合隅部12a,12bを支持する柱の耐火被覆を省略することができる。
ここで言う結合隅部12a,12bを支持する柱の耐火被覆を省略するとは、結合隅部12a,12bを柱により直接的に支持させないことで柱の耐火被覆を省略するか、結合隅部12a,12bを減耐火被覆柱により支持させることで柱の耐火被覆を省略することを意味する。
In the first support specification determining step S5, the connecting corners 12a, 12b are set to be supported by the fireproof coated columns 18A, 18B via the extension beams 17A, 17B. Further, in the second support specification determining step S7, the joint corners 12a and 12b are set so as not to be directly supported by the pillar. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
The omission of the fireproof coating of the pillar supporting the joint corners 12a and 12b means that the fireproof coating of the pillar is omitted by not directly supporting the joint corners 12a and 12b by the pillar, or the joint corner 12a is omitted. , 12b are supported by the reduced fireproof coated column, which means that the fireproof coating of the column is omitted.
また、本実施形態の施工方法S20によれば、柱梁施工工程S21及び被覆施工工程S23を行うことで、第1床部12の周囲を、火災時でも一定の剛性及び耐力を維持できる環状の耐火被覆梁13,14により下方から支持させる。第1床部12に含まれている鉄筋23は、第1床部12の第1交差方向Xの端部間の引張力F2、及び、第1床部12の第2交差方向Yの端部間の引張力F3をそれぞれ伝達する。火災時には、第1床部12に作用する重力等により、第1床部12の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、第1床部12の周囲が耐火被覆梁13,14により支持される。そして、第1床部12が撓むことにより伸びた鉄筋23が第1交差方向X及び第2交差方向Yにそれぞれ引張力F2,F3を伝達することにより、第1床部12の中央部が支持される。従って、耐火構造物11の耐火性能を従来と同等に維持することができる。
第1支持工程S25において、延長梁17A,17Bを介して結合隅部12a,12bを耐火被覆柱18A,18Bにより支持する。さらに、第2支持工程S27において、結合隅部12a,12bを、柱により直接的に支持させない。従って、第1床部12の結合隅部12a,12bにおける設計の自由度を高めるとともに、結合隅部12a,12bを支持する柱の耐火被覆を省略することができる。
Further, according to the construction method S20 of the present embodiment, by performing the column and beam construction step S21 and the covering construction step S23, the circumference of the first floor portion 12 is formed into an annular shape that can maintain constant rigidity and proof stress even in the event of a fire. It is supported from below by the fireproof coated beams 13 and 14. The reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y. The tensile force F3 between them is transmitted. At the time of fire, due to gravity or the like acting on the first floor portion 12, the center portion of the first floor portion 12 in a plan view is bent downward to be convex. However, due to the membrane effect, the periphery of the first floor portion 12 is supported by the fireproof coated beams 13 and 14. Then, the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 11 can be maintained at the same level as the conventional one.
In the first supporting step S25, the joint corners 12a, 12b are supported by the fireproof coated columns 18A, 18B via the extension beams 17A, 17B. Further, in the second supporting step S27, the joint corners 12a and 12b are not directly supported by the pillar. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
また、本実施形態の耐火構造物11にによれば、第1床部12の周囲は、火災時でも一定の剛性及び耐力を維持できる環状の耐火被覆梁13,14により下方から支持される。第1床部12に含まれている鉄筋23は、第1床部12の第1交差方向Xの端部間の引張力F2、及び、第1床部12の第2交差方向Yの端部間の引張力F2をそれぞれ伝達する。火災時には、第1床部12に作用する重力等により、第1床部12の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、第1床部12の周囲が耐火被覆梁13,14により支持される。そして、第1床部12が撓むことにより伸びた鉄筋23が第1交差方向X及び第2交差方向Yにそれぞれ引張力F2,F3を伝達することにより、第1床部12の中央部が支持される。従って、耐火構造物11の耐火性能を従来と同等に維持することができる。
耐火構造物11では、延長梁17A,17Bを介して結合隅部12a,12bが耐火被覆柱18A,18Bにより支持される。さらに、結合隅部12a,12bが、柱により直接的に支持されない。従って、第1床部12の結合隅部12a,12bにおける設計の自由度を高めるとともに、結合隅部12a,12bを支持する柱の耐火被覆を省略することができる。
Further, according to the refractory structure 11 of the present embodiment, the periphery of the first floor portion 12 is supported from below by the annular refractory covered beams 13 and 14 that can maintain constant rigidity and proof strength even in the event of a fire. The reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y. The tensile force F2 between them is transmitted. At the time of fire, due to gravity or the like acting on the first floor portion 12, the center portion of the first floor portion 12 in a plan view is bent downward to be convex. However, due to the membrane effect, the periphery of the first floor portion 12 is supported by the fireproof coated beams 13 and 14. Then, the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 11 can be maintained at the same level as the conventional one.
In the fireproof structure 11, the joint corners 12a and 12b are supported by the fireproof coated columns 18A and 18B via the extension beams 17A and 17B. Moreover, the joint corners 12a, 12b are not directly supported by the columns. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
設計方法Sにおいて、判定工程S9を行う。従って、判定工程S9において、第1床部12の撓みの最大値が閾値K未満であるか否かを判定することができる。
判定工程S9においてYESと判定されたときには、床44から区画される第1床部の形状及び大きさの少なくとも一方が変わるように、耐火被覆を施す複数の梁52の少なくとも一部を変えて、耐火仕様決定工程S3を行い、その後、判定工程S9を行う。これにより、第1床部12の撓みの最大値が閾値K未満でないときに、床44から区画される第1床部12の形状及び大きさの少なくとも一方を調節して、判定工程S9において、再び第1床部12の撓みの最大値が閾値K未満であるか否かを判定することができる。
In the design method S, the determination step S9 is performed. Therefore, in the determination step S9, it is possible to determine whether the maximum value of the bending of the first floor portion 12 is less than the threshold value K.
When it is determined to be YES in the determination step S9, at least a part of the plurality of beams 52 to which the fireproof coating is applied is changed so that at least one of the shape and the size of the first floor section partitioned from the floor 44 is changed, The fireproof specification determining step S3 is performed, and then the determining step S9 is performed. Thereby, when the maximum value of the bending of the first floor portion 12 is not less than the threshold value K, at least one of the shape and the size of the first floor portion 12 partitioned from the floor 44 is adjusted, and in the determination step S9, It can be determined again whether the maximum value of the bending of the first floor portion 12 is less than the threshold value K.
耐火構造物11は、設計方法Sにより設計されている。このため、本実施形態の設計方法Sにより耐火構造物11を設計することができる。本実施形態の設計方法Sは、耐火性能を維持しつつ、第1床部12の隅部12a,12bにおける設計の自由度を高めることができる方法である。そして、本実施形態の設計方法Sは、第1床部12の隅部12a,12bを下方から支持する柱の少なくとも1つの耐火被覆を省略することができる方法である。
耐火構造物11が、減耐火被覆梁15を備えている。これにより、火災が発生していない通常時において、第1床部12が撓むのを抑えることができる。
第1床部12は平面視で矩形状に形成されているため、複数の第1床部12をコンパクトに並べて配置しやすくすることができる。
The refractory structure 11 is designed by the design method S. Therefore, the refractory structure 11 can be designed by the design method S of the present embodiment. The design method S of the present embodiment is a method that can increase the degree of freedom in designing the corners 12a and 12b of the first floor 12 while maintaining fire resistance. And the design method S of this embodiment is a method which can omit at least one fireproof coating of the pillar which supports the corners 12a and 12b of the first floor 12 from below.
The refractory structure 11 is provided with a reduced fireproof coated beam 15. As a result, it is possible to prevent the first floor portion 12 from bending during normal times when no fire has occurred.
Since the first floor portion 12 is formed in a rectangular shape in plan view, it is possible to easily arrange the plurality of first floor portions 12 side by side in a compact manner.
所望の加熱時間における第1床部12の撓みの最大値が、閾値K未満である。このため、第1床部12のメンブレン効果が効果的に発揮され、第1床部12が下方に向かって撓み難くすることができる。
鉄筋23は、第1鉄筋25及び第2鉄筋26を備えている。従って、第1鉄筋25及び第2鉄筋26という簡単な構成で、第1床部12の第1交差方向Xの端部間の引張力F2、及び、第1床部12の前記第2交差方向Yの端部間の引張力F3をそれぞれ伝達することができる。
The maximum value of the bending of the first floor portion 12 during the desired heating time is less than the threshold value K. Therefore, the membrane effect of the first floor portion 12 is effectively exhibited, and the first floor portion 12 can be made difficult to bend downward.
The reinforcing bar 23 includes a first reinforcing bar 25 and a second reinforcing bar 26. Therefore, with a simple structure of the first reinforcing bar 25 and the second reinforcing bar 26, the tensile force F2 between the ends of the first floor portion 12 in the first crossing direction X and the second crossing direction of the first floor portion 12 The tensile force F3 between the ends of Y can be transmitted respectively.
(シミュレーション結果)
ここで、比較例の耐火構造物の耐火性能をシミュレーションにより評価し、比較例の耐火構造物において耐火被覆を施す梁を調節して実施例の耐火構造物とした例について説明する。
図15に、比較例の耐火構造物11Bが用いられる建築物1Bを示す。この建築物1Bは、耐火構造物11Bと、支持構造物41Bと、を備えている。
耐火構造物11Bは、第1実施形態の耐火構造物11の各構成に加えて、減耐火被覆梁15D、及び耐火被覆柱16C,16Dを備えている。
(simulation result)
Here, an example will be described in which the fire resistance performance of the refractory structure of the comparative example is evaluated by simulation, and the beams to which the fireproof coating is applied in the refractory structure of the comparative example are adjusted to form the refractory structure of the example.
FIG. 15 shows a building 1B in which the refractory structure 11B of the comparative example is used. The building 1B includes a refractory structure 11B and a support structure 41B.
The refractory structure 11B includes, in addition to the components of the refractory structure 11 of the first embodiment, a reduced fire resistant coated beam 15D and fire resistant coated columns 16C and 16D.
シミュレーションに用いた耐火構造物11Bの第1床部12の縦断面図を、図16に示す。
鉄筋23の上端から第1コンクリート22の上面までの距離(鉄筋23に対する第1コンクリート22のかぶり厚さ)を、30mmとした。第1床部12の厚さを、200mmとした。
第1コンクリート22の設計基準強度Fcを40N/mm(ニュートン・パー・平方ミリメートル)とした。鉄筋23(第1鉄筋25及び第2鉄筋26)として、呼び径D10、引張強度を500MPaの鉄筋を、100mmピッチで配置した。
FIG. 16 shows a vertical cross-sectional view of the first floor portion 12 of the refractory structure 11B used in the simulation.
The distance from the upper end of the reinforcing bar 23 to the upper surface of the first concrete 22 (the cover thickness of the first concrete 22 with respect to the reinforcing bar 23) was set to 30 mm. The thickness of the first floor portion 12 was 200 mm.
The design standard strength Fc of the first concrete 22 was set to 40 N/mm 2 (Newton per square millimeter). As the reinforcing bars 23 (first reinforcing bars 25 and second reinforcing bars 26), reinforcing bars having a nominal diameter D10 and a tensile strength of 500 MPa were arranged at a pitch of 100 mm.
図15に示すように、減耐火被覆梁15Dは、減耐火被覆梁15Aと同様に構成されている。減耐火被覆梁15Dは、第1交差方向Xに沿って延び、第1耐火被覆梁13Bと減耐火被覆梁15Cとの間に配置されている。減耐火被覆梁15Dの両端は、第2耐火被覆梁14A,14Bにそれぞれ接合されている。
耐火被覆柱16C,16Dは、耐火被覆柱16Aと同様に構成されている。耐火被覆柱16Cの上端部は、第1耐火被覆梁13Aと第2耐火被覆梁14Aとの接合部、及び第1床部12の隅部12aにそれぞれ接合されている。耐火被覆柱16Dの上端部は、第1耐火被覆梁13Aと第2耐火被覆梁14Bとの接合部、及び第1床部12の隅部12bにそれぞれ接合されている。
比較例の耐火構造物11Bでは、第1床部12の隅部12a,12b,12c,12dの全てが、耐火被覆柱16C,16D,16A,16Bによりそれぞれ下方から支持されている。
As shown in FIG. 15, the reduced fire resistant coated beam 15D has the same configuration as the reduced fire resistant coated beam 15A. The reduced fire resistant coated beam 15D extends along the first intersecting direction X and is arranged between the first fire resistant coated beam 13B and the reduced fire resistant coated beam 15C. Both ends of the reduced fireproof coated beam 15D are respectively joined to the second fireproof coated beams 14A and 14B.
The fireproof coated columns 16C and 16D have the same configuration as the fireproof coated column 16A. The upper end of the fireproof coated pillar 16C is joined to the joint between the first fireproof covered beam 13A and the second fireproof covered beam 14A and the corner 12a of the first floor portion 12, respectively. The upper end of the fireproof coated pillar 16D is joined to the joint between the first fireproof covered beam 13A and the second fireproof covered beam 14B and the corner 12b of the first floor portion 12, respectively.
In the fire resistant structure 11B of the comparative example, all of the corners 12a, 12b, 12c, 12d of the first floor 12 are supported from below by the fire resistant coated columns 16C, 16D, 16A, 16B, respectively.
支持構造物41Bは、第1実施形態の支持構造物41の各構成に加えて、第1減耐火被覆梁54A,54B,54C,54Dを備えている。
第1減耐火被覆梁54は、減耐火被覆梁15Aと同様に構成されている。第1減耐火被覆梁54は、第3耐火被覆梁43と第1耐火被覆梁13Aとの間で、第1交差方向Xに沿ってそれぞれ延び、第2交差方向Yに互いに間隔を開けて配置されている。第1減耐火被覆梁54の両端は、延長梁17A,17Bにそれぞれ接合されている。
The support structure 41B includes, in addition to the respective components of the support structure 41 of the first embodiment, first reduced fire resistant coated beams 54A, 54B, 54C, 54D.
The first reduced fire resistant coated beam 54 is configured similarly to the reduced fire resistant coated beam 15A. The first reduced fire-resistant coated beams 54 extend along the first intersecting direction X between the third fire-resistant coated beam 43 and the first fire-resistant coated beam 13A and are spaced from each other in the second intersecting direction Y. Has been done. Both ends of the first reduced fire resistant coating beam 54 are joined to the extension beams 17A and 17B, respectively.
プライマリービームである耐火被覆梁14及び延長梁17として、耐火被覆が施されたH形鋼(800×250×12×22、S355製)を用いた。セカンダリビームである耐火被覆梁13,43として、耐火被覆が施されたH形鋼(600×200×9×12、S355製)を用いた。
セカンダリビームである減耐火被覆梁15及び第1減耐火被覆梁54として、H形鋼(600×200×9×12、S355製)を用いた。減耐火被覆梁15及び第1減耐火被覆梁54には、耐火仕様に応じた耐火被覆が施されている。
耐火構造物11Bの第1交差方向Xの長さ、及び第2交差方向Yの長さは、それぞれ15000mmとした。支持構造物41Bの第1交差方向Xの長さ、及び第2交差方向Yの長さは、それぞれ15000mmとした。
荷重条件は、固定荷重(Dead Load)が1.5kPa(キロパスカル)、積載荷重(Live Load)が3.0kPaとした。
The fire-resistant coated beam 14 and the extension beam 17, which are the primary beams, were made of H-section steel (800×250×12×22, made of S355) with fire-resistant coating. As the refractory-coated beams 13 and 43 as the secondary beams, H-section steel (600×200×9×12, made of S355) on which a fireproof coating was applied was used.
H-section steel (600×200×9×12, made from S355) was used as the secondary beam 15 and the first reduced fireproof coated beam 54 which are secondary beams. The reduced fireproof coated beam 15 and the first reduced fireproof coated beam 54 are provided with a fireproof coating according to the fireproof specifications.
The length of the refractory structure 11B in the first cross direction X and the length in the second cross direction Y were each 15,000 mm. The length of the support structure 41B in the first cross direction X and the length of the second cross direction Y were each 15,000 mm.
The load conditions were a fixed load (Dead Load) of 1.5 kPa (kilopascal) and a loading load (Live Load) of 3.0 kPa.
建築物1BをISO 834に規定された加熱曲線に基づいて加熱したときの、建築物1Bの温度及び応力のシミュレーション結果を、図17から図20に示す。
シミュレーションでは、所定の拘束条件で支持された建築物1Bが、火災等で加熱されることにより建築物1Bの温度が上昇する。温度が上昇した建築物1Bは、膨張するとともに、剛性及び耐力が低下する。建築物1Bには、拘束条件に応じて応力が発生する。火災時には、耐火被覆柱16,18、耐火被覆梁13,14,43、延長梁17、及び鉄筋23は所定の剛性及び耐力を生じるが、減耐火被覆梁15,54の剛性及び耐力は無くなると考える。
17 to 20 show simulation results of the temperature and stress of the building 1B when the building 1B is heated based on the heating curve defined in ISO 834.
In the simulation, the building 1B supported under a predetermined constraint condition is heated by a fire or the like, so that the temperature of the building 1B rises. The building 1B whose temperature has risen expands and its rigidity and proof stress decrease. Stress is generated in the building 1B according to the constraint condition. At the time of fire, the fire-resistant coated columns 16, 18, the fire-resistant coated beams 13, 14, 43, the extension beam 17, and the reinforcing bar 23 generate predetermined rigidity and proof strength, but the reduced fire-resistant coated beams 15, 54 lose their rigidity and proof strength. Think
図17に、比較例の耐火構造物11Bにおける、時間に対する耐火構造物11Bの各部分の温度の変化を示す。図17において、横軸は時間(分)を表し、縦軸は温度(℃)を表す。実線による線L1は、耐火被覆が施されない減耐火被覆梁15Aにおけるシミュレーション結果を表す。点線による線L2は第1床部12の下面におけるシミュレーション結果を表し、一点鎖線による線L3は第1床部12の上面におけるシミュレーション結果を表し、二点鎖線による線L4は鉄筋23におけるシミュレーション結果を表す。
加熱を開始してから120分の間では、時間の経過とともに、減耐火被覆梁15A、第1床部12の下面及び上面、及び鉄筋23の温度が上昇する。各部位の温度は、減耐火被覆梁15Aにおいて最も高く、第1床部12の下面、鉄筋23、第1床部12の上面の順で低くなる。
FIG. 17 shows a change in temperature of each portion of the refractory structure 11B with respect to time in the refractory structure 11B of the comparative example. In FIG. 17, the horizontal axis represents time (minutes) and the vertical axis represents temperature (° C.). A solid line L1 represents the simulation result of the reduced fireproof coating beam 15A to which the fireproof coating is not applied. The dotted line L2 represents the simulation result on the lower surface of the first floor 12, the dashed line L3 represents the simulation result on the upper surface of the first floor 12, and the dashed double-dotted line L4 represents the simulation result on the reinforcing bar 23. Represent
During 120 minutes after starting heating, the temperatures of the reduced fire resistant coated beam 15A, the lower surface and the upper surface of the first floor portion 12, and the reinforcing bars 23 increase with the lapse of time. The temperature of each part is highest in the reduced fireproof coated beam 15A, and decreases in the order of the lower surface of the first floor portion 12, the reinforcing bar 23, and the upper surface of the first floor portion 12.
図18に、比較例の耐火構造物11Bにおける、時間に対する第1床部12の撓みの最大値の変化を示す。図18において、横軸は時間(分)を表し、縦軸は第1床部12の撓みの最大値(mm)を表す。実線による線L7は、第1床部12の撓みの最大値のシミュレーション結果を表す。点線による線L8は、前述の非特許文献1の{(L+l)/30}の式による第1床部12の撓み制限値を表す。なお、第1床部12の撓みの最大値が撓み制限値に達した時刻t1(約40分後)に、第1床部12の撓みの最大値がこれ以上増加しないように、第1床部12の撓みの計算を打ち切っている。時刻t1において第1床部12の撓みの計算を打ち切らなければ、第1床部12の撓みの最大値は、一点鎖線による線L9に示すように増加する。
比較例の耐火構造物11Bでは、第1床部12の撓みの最大値が時刻t1において撓み制限値に達したことから、少なくとも時刻t1までは第1床部12は崩壊することなく保持されることが分かった。
FIG. 18 shows a change in the maximum value of the bending of the first floor portion 12 with respect to time in the fireproof structure 11B of the comparative example. In FIG. 18, the horizontal axis represents time (minutes), and the vertical axis represents the maximum value (mm) of bending of the first floor portion 12. The solid line L7 represents the simulation result of the maximum value of the bending of the first floor portion 12. A dotted line L8 represents the deflection limit value of the first floor portion 12 according to the expression of {(L+1)/30} of Non-Patent Document 1 described above. It should be noted that at the time t1 (about 40 minutes after) when the maximum value of the bending of the first floor 12 reaches the bending limit value, the maximum value of the bending of the first floor 12 is prevented from further increasing so as not to increase. The calculation of the deflection of the portion 12 is terminated. If the calculation of the bending of the first floor portion 12 is not terminated at the time t1, the maximum value of the bending of the first floor portion 12 increases as indicated by a dashed line L9.
In the refractory structure 11B of the comparative example, the maximum value of the bending of the first floor portion 12 reached the bending limit value at the time t1, so the first floor portion 12 is held without collapsing at least until the time t1. I found out.
図19に、比較例の耐火構造物11Bにおける、時間に対する曲げ耐力の変化を示す。図19において、横軸は時間(分)を表し、縦軸は曲げ耐力(kN/m)を表す。点線による線L13は、第1耐火被覆梁13Aの曲げ耐力のシミュレーション結果を表す。一点鎖線による線L14は第1床部12の曲げ耐力のシミュレーション結果を表し、実線による線L12は第1耐火被覆梁13A及び第1床部12の全体としての曲げ耐力のシミュレーション結果を表す。点線による線L15は、前述の荷重により作用する外力を表す。
時間の経過とともに、第1耐火被覆梁13Aの温度が高くなり、第1耐火被覆梁13Aの曲げ耐力が小さくなる。一方で、第1床部12は温度が高くなると曲げ耐力が大きくなる。第1耐火被覆梁13A及び第1床部12の全体としての曲げ耐力は、時間の経過とともにほぼ小さくなる。
線L12が表す曲げ耐力が、線L15が表す外力よりも大きければ、第1床部12は荷重を支持することができる。
FIG. 19 shows changes in bending proof strength with respect to time in the refractory structure 11B of the comparative example. In FIG. 19, the horizontal axis represents time (minutes) and the vertical axis represents bending yield strength (kN/m 2 ). A dotted line L13 represents the bending proof simulation result of the first refractory covered beam 13A. A dashed line L14 represents a simulation result of bending strength of the first floor portion 12, and a solid line L12 represents a simulation result of the bending resistance of the first fireproof covered beam 13A and the first floor portion 12 as a whole. A dotted line L15 represents the external force acting on the load.
With the passage of time, the temperature of the first refractory-covered beam 13A increases, and the bending resistance of the first refractory-covered beam 13A decreases. On the other hand, the bending strength of the first floor portion 12 increases as the temperature rises. The bending strength of the first refractory-covered beam 13A and the first floor portion 12 as a whole becomes substantially smaller with the passage of time.
If the bending proof stress represented by the line L12 is larger than the external force represented by the line L15, the first floor portion 12 can support the load.
図20に、比較例の耐火構造物11Bにおける、時間に対する(外力/(第1耐火被覆梁13A及び第1床部12の全体としての)曲げ耐力)の値の変化を示す。図20において、横軸は時間(分)を表し、縦軸は(外力/曲げ耐力)の値を表す。図20は、図19における線L12が表す曲げ耐力と線L15が表す外力との大小関係を明確に示すためのものである。実線による線L18は、(外力/曲げ耐力)の値を表し、点線による線L19は、(外力/曲げ耐力)の値が1.0である線を表す。
時間の経過とともに、(外力/曲げ耐力)の値が大きくなって1.0に近づく。しかし、120分経過しても(外力/曲げ耐力)の値が1.0に達しないことから、火災が発生してから120分経過しても第1床部12は荷重を支持できることが分かった。
FIG. 20 shows a change in value of (external force/bending proof strength (as a whole of the first fireproof coated beam 13A and the first floor portion 12)) with respect to time in the fireproof structure 11B of the comparative example. 20, the horizontal axis represents time (minutes) and the vertical axis represents the value of (external force/bending strength). FIG. 20 is for clearly showing the magnitude relationship between the bending proof stress represented by the line L12 and the external force represented by the line L15 in FIG. A solid line L18 represents a value of (external force/bending strength), and a dotted line L19 represents a line having a value of (external force/bending strength) of 1.0.
With the passage of time, the value of (external force/bending strength) increases and approaches 1.0. However, since the value of (external force/bending proof strength) does not reach 1.0 even after 120 minutes have passed, it is clear that the first floor portion 12 can support the load even after 120 minutes have passed since the fire started. It was
以上のように、比較例の耐火構造物11Bでは、曲げ耐力よりも外力が大きくなって第1床部12が崩壊することはなく、少なくとも撓みの最大値が撓み制限値に達するまでは第1床部12は崩壊することなく保持されることが分かった。
なお、前述の設計方法Sの判定工程S9において、第1床部12の撓みの最大値が閾値未満であり、かつ、耐火構造物11に作用する外力が曲げ耐力よりも小さいときに、YESと判定されるとしてもよい。判定工程S9においてYESと判定されたときに、設計方法Sの全工程が終了する。
As described above, in the refractory structure 11B of the comparative example, the first floor portion 12 does not collapse due to an external force larger than the bending resistance, and at least the maximum bending value reaches the bending limit value. It was found that the floor 12 was retained without collapsing.
In the determining step S9 of the design method S described above, when the maximum value of the bending of the first floor portion 12 is less than the threshold value and the external force acting on the refractory structure 11 is smaller than the bending proof strength, YES is determined. It may be determined. When YES is determined in the determination step S9, all steps of the design method S are completed.
図21に、実施例の耐火構造物11Cが用いられる建築物1Cを示す。この建築物1Cは、耐火構造物11Cと、支持構造物41C,41Dと、を備えている。
耐火構造物11Cは、耐火構造物11Bに対して、減耐火被覆梁15D及び耐火被覆柱16C,16Dに代えて、延長梁58A,58B及び耐火被覆柱59A,59Bを備えている。
耐火構造物11Cの第1床部12では、隅部12a~12dのうち隅部12a,12bが結合隅部12a,12bであるのに加えて、隅部12c,12dも結合隅部12c,12dである。すなわち、結合隅部12a~12dのいずれにも耐火被覆柱16が接合されていない。
延長梁58A,58Bは、延長梁17Aと同様に構成されている。延長梁58A,58Bは、第2交差方向Yに沿って延びている。
延長梁58Aの第1端部は、第1耐火被覆梁13Bと第2耐火被覆梁14Aとが接合された部分、及び第1床部12の結合隅部12cにそれぞれ結合されている。延長梁58Aは、結合隅部12cを起点として、第2耐火被覆梁14Aから離間する方向に延びている。延長梁58Bの第1端部は、第1耐火被覆梁13Bと第2耐火被覆梁14Bとが接合された部分、及び第1床部12の結合隅部12dにそれぞれ結合されている。延長梁58Bは、結合隅部12dを起点として、第2耐火被覆梁14Bから離間する方向に延びている。
耐火被覆柱59A,59Bは、耐火被覆柱18Aと同様に構成されている。耐火被覆柱59Aの上端部は、延長梁57Aにおける第2端部に接合されている。耐火被覆柱59Bの上端部は、延長梁57Bにおける第2端部に接合されている。
FIG. 21 shows a building 1C in which the refractory structure 11C of the example is used. The building 1C includes a refractory structure 11C and support structures 41C and 41D.
The refractory structure 11C is provided with extension beams 58A, 58B and fireproof coated columns 59A, 59B in place of the reduced fireproof coated beam 15D and the fireproof coated columns 16C, 16D with respect to the refractory structure 11B.
In the first floor 12 of the refractory structure 11C, in addition to the corners 12a and 12b being the joint corners 12a and 12b among the corners 12a to 12d, the corners 12c and 12d are also joint corners 12c and 12d. Is. That is, the fireproof coated column 16 is not joined to any of the joint corners 12a to 12d.
The extension beams 58A and 58B are configured similarly to the extension beam 17A. The extension beams 58A and 58B extend along the second intersecting direction Y.
The first end portion of the extension beam 58A is connected to a portion where the first refractory-covered beam 13B and the second refractory-covered beam 14A are joined, and to a joint corner 12c of the first floor portion 12, respectively. The extension beam 58A extends in a direction away from the second refractory-covered beam 14A, starting from the joint corner 12c. The 1st end part of the extension beam 58B is each couple|bonded with the part which the 1st refractory coating beam 13B and the 2nd refractory coating beam 14B were joined, and the joint corner part 12d of the 1st floor 12. The extension beam 58B extends in a direction away from the second refractory-covered beam 14B starting from the joint corner 12d.
The fireproof coated columns 59A and 59B are configured similarly to the fireproof coated column 18A. The upper end of the fireproof coated column 59A is joined to the second end of the extension beam 57A. The upper end of the fireproof coated column 59B is joined to the second end of the extension beam 57B.
耐火被覆柱16Aの上端部は、第2耐火被覆梁14Aにおける第2交差方向Yの中央部、及び第1床部12の隅部12aと隅部12cとの中央部にそれぞれ接合されている。耐火被覆柱16Bの上端部は、第2耐火被覆梁14Bにおける第2交差方向Yの中央部、及び第1床部12の隅部12bと隅部12dとの中央部にそれぞれ接合されている。 The upper end of the fireproof covered pillar 16A is joined to the center of the second fireproof covered beam 14A in the second intersecting direction Y and the center of the corner 12a and the corner 12c of the first floor 12, respectively. The upper end of the fireproof covered pillar 16B is joined to the center of the second fireproof covered beam 14B in the second intersecting direction Y and the center of the corner 12b and the corner 12d of the first floor 12, respectively.
支持構造物41Cは、支持構造物41Bに対して第1減耐火被覆梁54C,54Dを備えていない。
支持構造物41Dは、第3床部61と、第4耐火被覆梁62と、第2減耐火被覆梁63A,63Bと、を備えている。第3床部61、第4耐火被覆梁62、第2減耐火被覆梁63A,63Bは、支持構造物41Cの第2床部42、第3耐火被覆梁43、第1減耐火被覆梁54A,54Bとそれぞれ同様に構成されている。
The support structure 41C does not include the first reduced fireproof coated beams 54C and 54D as compared with the support structure 41B.
The support structure 41D includes a third floor portion 61, a fourth fireproof coated beam 62, and second reduced fireproof coated beams 63A and 63B. The third floor 61, the fourth fireproof covered beam 62, and the second reduced fireproof covered beams 63A and 63B are the second floor 42 of the support structure 41C, the third fireproof covered beam 43, the first reduced fireproof covered beam 54A, 54B and the like respectively.
建築物1Cでは、耐火構造物11Cの第1床部12に対する第2交差方向Yの両側に支持構造物41C,41Dの第2床部42、第3床部61が配置されている。
建築物1Cの第1交差方向Xの長さ、及び建築物1Bの第1交差方向Xの長さは、互いに同等である。建築物1Cの第2交差方向Yの長さ、及び建築物1Bの第2交差方向Yの長さは、互いに同等である。
建築物1Cは、建築物1Bにおいて、第1耐火被覆梁13Aの耐火被覆を削減したり、減耐火被覆梁15B及び第1減耐火被覆梁54Cに耐火被覆を施したりして構成した建築物である。
In the building 1C, the second floor portion 42 and the third floor portion 61 of the support structures 41C and 41D are arranged on both sides of the fire resistant structure 11C in the second intersecting direction Y with respect to the first floor portion 12.
The length of the building 1C in the first intersecting direction X and the length of the building 1B in the first intersecting direction X are equal to each other. The length of the building 1C in the second intersecting direction Y and the length of the building 1B in the second intersecting direction Y are equal to each other.
The building 1C is a building that is configured by reducing the fireproof coating of the first fireproof coated beam 13A or applying a fireproof coating to the reduced fireproof coated beam 15B and the first reduced fireproof coated beam 54C in the building 1B. is there.
建築物1CをISO 834に規定された加熱曲線に基づいて加熱したときの、建築物1Cの温度及び応力のシミュレーション結果を、図22から図25に示す。
図22に、実施例の耐火構造物11Cにおける、時間に対する各部分の温度の変化を示す。図22において、横軸は時間(分)を表し、縦軸は温度(℃)を表す。実線による線L21は、耐火被覆が施されない減耐火被覆梁15Aにおけるシミュレーション結果を表す。点線による線L22は第1床部12の下面におけるシミュレーション結果を表し、一点鎖線による線L23は第1床部12の上面におけるシミュレーション結果を表し、二点鎖線による線L24は鉄筋23におけるシミュレーション結果を表す。
線L21~L24により表される実施例の耐火構造物11Cにおける第1耐火被覆梁13A、第1床部12の下面、上面、鉄筋23における温度変化は、図17において線L1~L4により表される比較例の耐火構造物11Bにおける第1耐火被覆梁13A、第1床部12の下面、上面、鉄筋23における温度変化とそれぞれ同等である。
22 to 25 show simulation results of the temperature and stress of the building 1C when the building 1C is heated based on the heating curve defined in ISO 834.
FIG. 22 shows a change in temperature of each portion with respect to time in the refractory structure 11C of the example. 22, the horizontal axis represents time (minutes) and the vertical axis represents temperature (° C.). A solid line L21 represents a simulation result of the reduced fireproof coating beam 15A to which the fireproof coating is not applied. The dotted line L22 represents the simulation result on the lower surface of the first floor 12, the dashed line L23 represents the simulation result on the upper surface of the first floor 12, and the dashed double-dotted line L24 represents the simulation result on the reinforcing bar 23. Represent
The temperature changes in the first refractory-covered beam 13A, the lower surface, the upper surface of the first floor portion 12 and the reinforcing bars 23 in the refractory structure 11C of the example represented by the lines L21 to L24 are represented by the lines L1 to L4 in FIG. This is equivalent to the temperature changes in the first refractory-covered beam 13A, the lower surface, the upper surface of the first floor portion 12 and the reinforcing bars 23 in the refractory structure 11B of the comparative example.
図27に、実施例の耐火構造物11Cにおける、時間に対する第1床部12の撓みの最大値の変化を示す。図23において、横軸は時間(分)を表し、縦軸は第1床部12の撓みの最大値(mm)を表す。実線による線L27は、第1床部12の撓みの最大値のシミュレーション結果を表す。点線による線L28は、前述の非特許文献1の{(L+l)/30}の式による第1床部12の撓み制限値を表す。実施例の耐火構造物11Cの第1床部12の第2交差方向Yの長さは、比較例の耐火構造物11Bの第1床部12の第2交差方向Yの長さよりも短い。このため、線L28により表される第1床部12の撓み制限値は、図18において線L8により表される第1床部12の撓み制限値よりも小さい。ただし、実施例の耐火構造物11Cの第1床部12の第2交差方向Yの長さは比較例の耐火構造物11Bの第1床部12の第2交差方向Yの長さよりも短いため、第1床部12の撓みの最大値が小さくなる。
実施例の耐火構造物11Cでは、いわゆるメンブレン効果により火災が発生してから120分経過しても第1床部12の撓みの最大値は撓み制限値に達しなく、第1床部12は荷重を支持することができることが分かった。
FIG. 27 shows a change in the maximum value of the bending of the first floor portion 12 with respect to time in the refractory structure 11C of the example. In FIG. 23, the horizontal axis represents time (minutes) and the vertical axis represents the maximum value (mm) of bending of the first floor portion 12. The solid line L27 represents the simulation result of the maximum deflection of the first floor portion 12. The dotted line L28 represents the deflection limit value of the first floor portion 12 according to the expression of {(L+1)/30} of Non-Patent Document 1 described above. The length of the first floor portion 12 of the refractory structure 11C of the example in the second intersecting direction Y is shorter than the length of the first floor portion 12 of the refractory structure 11B of the comparative example in the second intersecting direction Y. Therefore, the deflection limit value of the first floor portion 12 represented by the line L28 is smaller than the deflection limit value of the first floor portion 12 represented by the line L8 in FIG. However, since the length of the first floor portion 12 of the fireproof structure 11C of the example in the second crossing direction Y is shorter than the length of the first floor portion 12 of the fireproof structure 11B of the comparative example in the second crossing direction Y. The maximum value of the bending of the first floor portion 12 becomes small.
In the refractory structure 11C of the example, the maximum value of the flexure of the first floor 12 does not reach the flexure limit value even after 120 minutes have elapsed from the occurrence of a fire due to the so-called membrane effect, and the first floor 12 receives a load. Found that it can support.
図24に、実施例の耐火構造物11Cにおける、時間に対する曲げ耐力の変化を示す。図24において、横軸は時間(分)を表し、縦軸は曲げ耐力(kN/m)を表す。点線による線L33は、第1耐火被覆梁13Aの曲げ耐力のシミュレーション結果を表す。一点鎖線による線L34は第1床部12の曲げ耐力のシミュレーション結果を表し、実線による線L32は第1耐火被覆梁13A及び第1床部12の全体としての曲げ耐力のシミュレーション結果を表す。点線による線L35は、前述の荷重により作用する外力を表す。 FIG. 24 shows a change in bending proof strength with respect to time in the refractory structure 11C of the example. In FIG. 24, the horizontal axis represents time (minutes) and the vertical axis represents bending yield strength (kN/m 2 ). A dotted line L33 represents a simulation result of the bending strength of the first refractory covered beam 13A. A dashed line L34 represents the simulation result of the bending strength of the first floor portion 12, and a solid line L32 represents the simulation result of the bending resistance of the first refractory covered beam 13A and the first floor portion 12 as a whole. A dotted line L35 represents the external force that acts on the load.
図25に、実施例の耐火構造物11Cにおける、時間に対する(外力/曲げ耐力)の値の変化を示す。図25において、横軸は時間(分)を表し、縦軸は(外力/曲げ耐力)の値を表す。図25は、図24における線L32が表す曲げ耐力と線L35が表す外力との大小関係を明確に示すためのものである。実線による線L38は、(外力/曲げ耐力)の値を表し、点線による線L39は、(外力/曲げ耐力)の値が1.0である線を表す。
時間の経過とともに、(外力/曲げ耐力)の値が大きくなって1.0に近づく。しかし、120分経過しても(外力/曲げ耐力)の値が1.0に達しないことから、火災が発生してから120分経過しても第1床部12は荷重を支持することができることが分かった。
また、実施例の耐火構造物11Cにおける(外力/曲げ耐力)の値が漸近する値は、比較例の耐火構造物11Bにおける(外力/曲げ耐力)の値が漸近する値よりも小さく、実施例の耐火構造物11Cでは曲げ耐力に余裕があることが分かった。
FIG. 25 shows a change in the value of (external force/bending strength) with respect to time in the refractory structure 11C of the example. In FIG. 25, the horizontal axis represents time (minutes) and the vertical axis represents the value of (external force/bending strength). FIG. 25 is for clearly showing the magnitude relationship between the bending proof stress represented by the line L32 and the external force represented by the line L35 in FIG. A solid line L38 represents a value of (external force/bending strength), and a dotted line L39 represents a line having a value of (external force/bending strength) of 1.0.
With the passage of time, the value of (external force/bending strength) increases and approaches 1.0. However, since the value of (external force/bending strength) does not reach 1.0 even after 120 minutes have passed, the first floor portion 12 can support the load even after 120 minutes have elapsed from the occurrence of the fire. I knew I could do it.
Further, the value of (external force/bending strength) in the refractory structure 11C of Example is asymptotically smaller than the value of (external force/bending strength) in the refractory structure 11B of Comparative Example is asymptotic, It was found that the refractory structure 11C of No. 2 has a sufficient bending resistance.
以上のように、実施例の耐火構造物11Cでは、第1床部12の撓みの最大値が撓み制限値に達しなく、かつ曲げ耐力よりも外力が小さいため、第1床部12は荷重を支持することができることが分かった。
比較例の耐火構造物11Bを備える建築物1Bにおいて、第1耐火被覆梁13A、減耐火被覆梁15、及び第1減耐火被覆梁54に耐火被覆を施したり、耐火被覆を削減したりすることにより、建築物1Cが備える実施例の耐火構造物11Cとすることができる。
As described above, in the refractory structure 11C of the example, the maximum value of the bending of the first floor portion 12 does not reach the bending limit value, and the external force is smaller than the bending proof stress. It turns out that I can support.
In a building 1B including a fire resistant structure 11B of a comparative example, applying a fire resistant coating to the first fire resistant coated beam 13A, the reduced fire resistant coated beam 15, and the first reduced fire resistant coated beam 54, or reducing the fire resistant coating. Thus, the refractory structure 11C of the embodiment included in the building 1C can be obtained.
本実施形態の耐火構造物は、以下に説明するようにその構成を様々に変形させることができる。
図26に示す建築物2は、本実施形態の耐火構造物71と、支持構造物81A,81Bと、を備えている。
耐火構造物71は、実施例の耐火構造物11Cに対して耐火被覆柱16A,16Bを備えていない。
支持構造物81Aは、実施例の支持構造物41Cに対して第1減耐火被覆梁54A,54Bを備えていない。支持構造物81Bは、実施例の支持構造物41Dに対して第2減耐火被覆梁63A,63Bを備えていない。
The structure of the fire resistant structure of the present embodiment can be variously modified as described below.
The building 2 shown in FIG. 26 includes a refractory structure 71 of the present embodiment and support structures 81A and 81B.
The refractory structure 71 does not include the refractory-coated columns 16A and 16B as compared with the refractory structure 11C of the embodiment.
The support structure 81A does not include the first reduced fireproof coated beams 54A and 54B as compared with the support structure 41C of the embodiment. The support structure 81B does not include the second reduced fireproof coated beams 63A and 63B, unlike the support structure 41D of the embodiment.
図27に示す建築物2Aは、本実施形態の耐火構造物71Aと、支持構造物81A,81Bと、を備えている。
耐火構造物71Aは、変形例の耐火構造物71の各構成に加えて、耐火被覆柱16A,16Bを備えている。
耐火被覆柱16Aの上端部は、第2耐火被覆梁14Aにおける第2交差方向Yの中央部、及び第1床部12の隅部12aと隅部12cとの中央部にそれぞれ接合されている。耐火被覆柱16Bの上端部は、第2耐火被覆梁14Bにおける第2交差方向Yの中央部、及び第1床部12の隅部12bと隅部12dとの中央部にそれぞれ接合されている。
A building 2A shown in FIG. 27 includes a refractory structure 71A of the present embodiment and support structures 81A and 81B.
The refractory structure 71A includes refractory coated columns 16A and 16B in addition to the components of the refractory structure 71 of the modification.
The upper end of the fireproof covered pillar 16A is joined to the center of the second fireproof covered beam 14A in the second intersecting direction Y and the center of the corner 12a and the corner 12c of the first floor portion 12, respectively. The upper end of the fireproof covered pillar 16B is joined to the center of the second fireproof covered beam 14B in the second intersecting direction Y and the center of the corner 12b and the corner 12d of the first floor 12, respectively.
図28に示す建築物2Bは、本実施形態の耐火構造物71Bと、支持構造物81A,81Bと、を備えている。
耐火構造物71Bは、変形例の耐火構造物71の各構成に加えて、耐火被覆柱16A,16B,16C,16Dを備えている。
耐火被覆柱16Aの上端部は、第2耐火被覆梁14Aと減耐火被覆梁15Aとの接合部、及び第1床部12の隅部12aと隅部12cとの間の隅部12a寄りの外縁にそれぞれ接合されている。耐火被覆柱16Bの上端部は、第2耐火被覆梁14Bと減耐火被覆梁15Aとの接合部、及び第1床部12の隅部12bと隅部12dとの間の隅部12b寄りの外縁にそれぞれ接合されている。
耐火被覆柱16C,16Dは、耐火被覆柱16Aと同様に構成されている。耐火被覆柱16Cの上端部は、第2耐火被覆梁14Aと減耐火被覆梁15Cとの接合部、及び第1床部12の隅部12aと隅部12cとの間の隅部12c寄りの外縁にそれぞれ接合されている。耐火被覆柱16Dの上端部は、第2耐火被覆梁14Bと減耐火被覆梁15Cとの接合部、及び第1床部12の隅部12bと隅部12dとの間の隅部12d寄りの外縁にそれぞれ接合されている。
第2耐火被覆梁14A,14Bの両端は、一対の第1耐火被覆梁13A,13Bに直接接合されている。第2耐火被覆梁14A,14Bは、耐火被覆柱16に接合されている。
耐火被覆梁13,14は、全体として環状に形成されている。
A building 2B shown in FIG. 28 includes a refractory structure 71B of this embodiment and support structures 81A and 81B.
The refractory structure 71B includes refractory-coated columns 16A, 16B, 16C, and 16D in addition to the components of the refractory structure 71 of the modification.
The upper end of the refractory-covered pillar 16A has an outer edge near the corner 12a between the corner 12a and the corner 12c of the first floor 12 and the joint between the second refractory-covered beam 14A and the reduced fire-resisting covered beam 15A. Are joined to each. The upper end of the fire-resistant covered pillar 16B has an outer edge near the corner 12b between the corner 12b and the corner 12d of the first floor 12 and the joint between the second fire-resistant covered beam 14B and the reduced fire-resistant covered beam 15A. Are joined to each.
The fireproof coated columns 16C and 16D have the same configuration as the fireproof coated column 16A. The upper end of the refractory-covered pillar 16C has an outer edge near the corner 12c between the joint between the second refractory-covered beam 14A and the reduced refractory-covered beam 15C and the corner 12a of the first floor 12 and the corner 12c. Are joined to each. The upper end of the fireproof covered pillar 16D has an outer edge near the corner 12d between the corner 12b and the corner 12d of the first floor 12 and the joint between the second fireproof covered beam 14B and the reduced fireproof covered beam 15C. Are joined to each.
Both ends of the second fireproof covered beams 14A and 14B are directly joined to the pair of first fireproof covered beams 13A and 13B. The second fireproof coated beams 14A and 14B are joined to the fireproof coated column 16.
The fireproof coated beams 13 and 14 are formed in a ring shape as a whole.
耐火被覆柱16A,16B,16C,16Dは、第1交差方向Xに並べて配置されるとともに、第2交差方向Yに第1のピッチP1で並べて配置されている。第2耐火被覆梁14A,14Bは、第1のピッチP1よりも長い長さP2に形成されている。この場合、隅部12a,12b及び隅部12c,12dの少なくとも一方は、耐火被覆柱16A,16B,16C,16Dよりも第2交差方向Yの外側に突出している。この変形例では、隅部12a,12b及び隅部12c,12dの全てが、耐火被覆柱16A,16B,16C,16Dよりも第2交差方向Yの外側に突出している。
なお、第2耐火被覆梁14A,14Bは、第1のピッチP1よりも短く形成されていてもよい。
The fireproof coated columns 16A, 16B, 16C, 16D are arranged side by side in the first intersecting direction X, and are also arranged side by side in the second intersecting direction Y at the first pitch P1. The second refractory coated beams 14A and 14B are formed to have a length P2 longer than the first pitch P1. In this case, at least one of the corners 12a, 12b and the corners 12c, 12d projects outward in the second intersecting direction Y from the fireproof coated columns 16A, 16B, 16C, 16D. In this modification, all of the corners 12a, 12b and the corners 12c, 12d project outside the fireproof coated columns 16A, 16B, 16C, 16D in the second intersecting direction Y.
The second refractory covered beams 14A and 14B may be formed shorter than the first pitch P1.
変形例の耐火構造物71Bによれば、第1床部12の周囲は、火災時でも一定の剛性及び耐力を維持できる環状の耐火被覆梁13,14により下方から支持される。第1床部12に含まれている鉄筋23は、第1床部12の第1交差方向Xの端部間の引張力F2、及び、第1床部12の第2交差方向Yの端部間の引張力F3をそれぞれ伝達する。火災時には、第1床部12に作用する重力等により、第1床部12の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、第1床部12の周囲が耐火被覆梁13,14により支持される。そして、第1床部12が撓むことにより伸びた鉄筋23が第1交差方向X及び第2交差方向Yにそれぞれ引張力F2,F3を伝達することにより、第1床部12の中央部が支持される。従って、耐火構造物11の耐火性能を従来と同等に維持することができる。
耐火構造物71Bでは、延長梁17A,17B,58A,58Bを介して結合隅部12a,12b,12c,12dが耐火被覆柱18A,18B,59A,59Bにより支持される。さらに、結合隅部12a~12dが、柱により直接的に支持されない。従って、第1床部12の結合隅部12a~12dにおける設計の自由度を高めるとともに、結合隅部12a~12dを支持する柱の耐火被覆を省略することができる。
According to the refractory structure 71B of the modified example, the periphery of the first floor 12 is supported from below by the annular refractory covered beams 13 and 14 that can maintain constant rigidity and proof strength even in the event of a fire. The reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y. The tensile force F3 between them is transmitted. At the time of fire, due to gravity or the like acting on the first floor portion 12, the center portion of the first floor portion 12 in a plan view is bent downward to be convex. However, due to the membrane effect, the periphery of the first floor portion 12 is supported by the fireproof coated beams 13 and 14. Then, the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 11 can be maintained at the same level as the conventional one.
In the refractory structure 71B, the joint corners 12a, 12b, 12c, 12d are supported by the refractory covered columns 18A, 18B, 59A, 59B via the extension beams 17A, 17B, 58A, 58B. Moreover, the joint corners 12a-12d are not directly supported by the columns. Therefore, the degree of freedom in designing the connection corners 12a to 12d of the first floor portion 12 can be increased, and the fireproof coating of the columns supporting the connection corners 12a to 12d can be omitted.
第2耐火被覆梁14A,14Bが第1のピッチP1よりも長い長さP2に形成されていているため、第2耐火被覆梁14A,14Bの端の位置が耐火被覆柱16A,16B,16C,16Dの位置に対して第2交差方向Yにずれ、第2耐火被覆梁14A,14Bの端が支持する第1床部12の隅部12a,12b,12c,12dの下方に空間を形成することができる。
なお、第2交差方向Yは、第1交差方向Xに交差する方向であってもよい。この場合、例えば第1床部12は平面視で平行四辺形状(四角形状)に形成される。
Since the second fireproof covered beams 14A, 14B are formed to have a length P2 longer than the first pitch P1, the end positions of the second fireproof covered beams 14A, 14B are located at the fireproof covered columns 16A, 16B, 16C, Forming a space below the corners 12a, 12b, 12c, 12d of the first floor 12 which is displaced in the second crossing direction Y with respect to the position of 16D and is supported by the ends of the second fireproof covered beams 14A, 14B. You can
The second intersecting direction Y may be a direction intersecting with the first intersecting direction X. In this case, for example, the first floor portion 12 is formed in a parallelogram shape (quadrangular shape) in a plan view.
本実施形態の耐火構造物11、及び変形例の耐火構造物71,71A,71Bのように、第1床部12の隅部12a~12dのうち延長梁が接合されない隅部の数は特に限定されず、1つでもよいし、2つ以上でもよい。
変形例の耐火構造物71,71A,71Bによっても、耐火性能を維持しつつ、第1床部12の隅部における設計の自由度を高めて、第1床部12の隅部12a~12dを支持する柱の少なくとも1つの耐火被覆を省略することができる。
Like the refractory structure 11 of the present embodiment and the refractory structures 71, 71A, 71B of the modified examples, the number of corners of the first floor 12 where the extension beam is not joined is particularly limited among the corners 12a to 12d. However, the number may be one or two or more.
Even with the refractory structures 71, 71A, 71B of the modified example, the degree of freedom of design in the corners of the first floor 12 is increased while maintaining the fire resistance, and the corners 12a to 12d of the first floor 12 are removed. At least one refractory coating on the supporting columns may be omitted.
(第2実施形態)
次に、本発明の第2実施形態について図29、及び前記図8及び図14を参照しながら説明するが、前記実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
図29に示すように、この建築物4は、本実施形態の耐火構造物121と、前記支持構造物41と、を備えている。
耐火構造物121は、第1実施形態の耐火構造物11の耐火被覆柱16A,16B、耐火被覆柱18A,18Bに代えて、第1耐火被覆柱122A,122B、第2耐火被覆柱(耐火被覆柱)123A,123Bを備えている。
第1耐火被覆柱122A,122Bは、耐火被覆柱16Aと同様に構成されているが、耐火被覆柱16Aとは長さのみが異なる。第1耐火被覆柱122A,122Bは、耐火被覆柱16Aよりも長い。
ここで第1耐火被覆柱122Aにおいて、耐火被覆梁13,14に接合される部分(自身の一部)を、柱片122A1と言う。第1耐火被覆柱122Bについても同様に、上下方向Zで耐火被覆梁13,14に接合される部分を、柱片122B1と言う。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. 29 and FIGS. 8 and 14, but the same parts as those of the embodiment will be designated by the same reference numerals and the description thereof will be omitted. Only different points will be described.
As shown in FIG. 29, the building 4 includes the fire resistant structure 121 of the present embodiment and the support structure 41.
The refractory structure 121 includes first refractory coated columns 122A and 122B and second refractory coated columns (fireproof coated columns) instead of the fireproof coated columns 16A and 16B and the fireproof coated columns 18A and 18B of the fire resistant structure 11 of the first embodiment. Pillars) 123A and 123B are provided.
The first refractory covered columns 122A and 122B are configured similarly to the refractory covered columns 16A, but differ only in length from the refractory covered columns 16A. The first refractory covered columns 122A and 122B are longer than the refractory covered columns 16A.
Here, in the first fireproof coated column 122A, a portion (a part of itself) joined to the fireproof coated beams 13 and 14 is referred to as a column piece 122A1. Similarly, for the first fireproof coated column 122B, a portion joined to the fireproof coated beams 13 and 14 in the vertical direction Z is referred to as a column piece 122B1.
第1耐火被覆柱122A,122Bは、耐火被覆梁13,14を支持している。耐火被覆梁13,14及び柱片122A1,122B1は、全体として環状に形成されている。
第2耐火被覆柱123A,123Bは、第1耐火被覆柱122Aと同様に構成されている。第2耐火被覆柱123Aの上下方向Zの中間部は、延長梁17Aの第2端部に接合され、この第2端部を支持している。同様に、耐火被覆柱123Bの上下方向Zの中間部は、延長梁17Bの第2端部に接合され、この第2端部を支持している。
第1床部12の結合隅部12a,12bは、柱により直接的に支持されない。なお、結合隅部12a,12bは、第1耐火被覆柱122A,122Bよりも耐火被覆が削減された減耐火被覆柱により下方から支持されてもよい。
The first fireproof coated columns 122A and 122B support the fireproof coated beams 13 and 14. The fireproof coated beams 13 and 14 and the pillar pieces 122A1 and 122B1 are formed in an annular shape as a whole.
The second refractory covered pillars 123A and 123B are configured similarly to the first refractory covered pillar 122A. An intermediate portion of the second fireproof coated column 123A in the up-down direction Z is joined to the second end portion of the extension beam 17A and supports the second end portion. Similarly, an intermediate portion of the fireproof coated column 123B in the vertical direction Z is joined to the second end of the extension beam 17B and supports the second end.
The connecting corners 12a and 12b of the first floor 12 are not directly supported by the columns. The joint corners 12a and 12b may be supported from below by reduced fireproof coated columns having a reduced fireproof coating than the first fireproof coated columns 122A and 122B.
この例では、耐火被覆梁13,14及び2つの柱片122A1,122B1全体として環状に形成されている。しかし、全体として環状に形成されている耐火被覆梁の数、及び柱片の数は、特に限定されない。 In this example, the fireproof coated beams 13 and 14 and the two pillar pieces 122A1 and 122B1 are formed in an annular shape as a whole. However, the number of fireproof coated beams and the number of column pieces formed in a ring shape as a whole is not particularly limited.
次に、以上のように構成された耐火構造物121を設計する設計方について説明する。図8は、本実施形態の設計方法S30を示すフローチャートである。この設計方法S30が、第1実施形態の設計方法Sと異なる点は、耐火仕様決定工程S3、第2支持仕様決定工程S7、及び判定工程S9に代えて、耐火仕様決定工程S31、第2支持仕様決定工程S33、及び判定工程S35を行うことである。
耐火仕様決定工程S31では、床44から区画された第1床部12の周囲を、耐火被覆梁13,14及び柱片122A1,122B1により下方から支持させるように設定する。
第2支持仕様決定工程S33では、結合隅部12a,12bを、柱により直接的に支持させないか、第1耐火被覆柱122A,122Bよりも耐火被覆が削減された減耐火被覆柱により下方から支持させるように設定する。
判定工程S35では、耐火仕様決定工程S31を、床44から区画される第1床部の形状及び大きさの少なくとも一方が変わるように、耐火被覆を施す複数の梁、及び耐火被覆を施す複数の柱の少なくとも一部を変えて行う。
Next, a designing method for designing the refractory structure 121 configured as described above will be described. FIG. 8 is a flowchart showing the design method S30 of this embodiment. This design method S30 differs from the design method S of the first embodiment in that the fireproof specification determining step S31, the second support instead of the fireproof specification determining step S3, the second support specification determining step S7, and the determining step S9. The specification determining step S33 and the determining step S35 are performed.
In the fireproof specification determining step S31, the periphery of the first floor portion 12 partitioned from the floor 44 is set to be supported from below by the fireproof covered beams 13 and 14 and the pillar pieces 122A1 and 122B1.
In the second support specification determining step S33, the joint corners 12a and 12b are not directly supported by the pillars, or are supported from below by the reduced fireproof coated columns in which the fireproof coating is reduced as compared with the first fireproof coated columns 122A and 122B. Set to allow.
In the determining step S35, the fireproof specification determining step S31 is performed in such a manner that a plurality of beams to which the fireproof coating is applied and a plurality of beams to which the fireproof coating is applied are applied so that at least one of the shape and the size of the first floor section partitioned from the floor 44 is changed. Change at least a part of the pillar.
次に、耐火構造物121を施工する施工方法について説明する。図14は、本実施形態の施工方法S40を示すフローチャートである。この施工方法S40が、第1実施形態の施工方法S20と異なる点は、被覆施工工程S23及び第1支持工程S25、及び第2支持工程S27に代えて、被覆施工工程S41及び第1支持工程S43、及び第2支持工程S45を行うことである。
被覆施工工程S41では、梁52に耐火被覆を施して耐火被覆梁13,14とし、柱53に耐火被覆を施して第1耐火被覆柱122A,122Bとする。これにより、床44から区画された第1床部12の周囲を耐火被覆梁13,14及び柱片122A1,122B1により下方から支持させるようにする。
第1支持工程S43では、結合隅部12a,12bに延長梁17A,17Bの第1端部を結合させる。そして、延長梁17A,17Bの第2端部を第2耐火被覆柱123A,123Bで支持する。
第2支持工程S45では、結合隅部12a,12bを、柱により直接的に支持させない。なお、第2支持工程S45では、結合隅部12a,12bを、第1耐火被覆柱122A,122Bよりも耐火被覆が削減された減耐火被覆柱により下方から支持させてもよい。
Next, a construction method for constructing the refractory structure 121 will be described. FIG. 14: is a flowchart which shows the construction method S40 of this embodiment. This construction method S40 differs from the construction method S20 of the first embodiment in that instead of the coating construction step S23, the first support step S25, and the second support step S27, the coating construction step S41 and the first support step S43. , And the second supporting step S45.
In the covering construction step S41, the beam 52 is provided with a fireproof coating to form the fireproof coated beams 13 and 14, and the column 53 is provided with a fireproof coating to form the first fireproof coated columns 122A and 122B. As a result, the periphery of the first floor portion 12 partitioned from the floor 44 is supported from below by the fireproof covered beams 13 and 14 and the pillar pieces 122A1 and 122B1.
In the first supporting step S43, the first ends of the extension beams 17A and 17B are joined to the joining corners 12a and 12b. Then, the second end portions of the extension beams 17A and 17B are supported by the second fireproof coated columns 123A and 123B.
In the second supporting step S45, the joint corners 12a and 12b are not directly supported by the pillar. In addition, in the second supporting step S45, the joint corners 12a and 12b may be supported from below by a reduced fireproof coated column having a reduced fireproof coating than the first fireproof coated columns 122A and 122B.
以上説明したように、本実施形態の設計方法S30によれば、構造決定工程S1及び耐火仕様決定工程S31を行うことで、第1床部12の周囲は、火災時でも一定の剛性及び耐力を維持でき、全体として環状に形成された耐火被覆梁13,14及び柱片122A1,122B1により下方から支持させるように設定される。第1床部12に含まれている鉄筋23は、第1床部12の第1交差方向Xの端部間の引張力F2、及び、第1床部12の第2交差方向Yの端部間の引張力F3をそれぞれ伝達する。火災時には、第1床部12に作用する重力等により、第1床部12の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、第1床部12の周囲が耐火被覆梁13,14及び柱片122A1,122B1により支持される。そして、第1床部12が撓むことにより伸びた鉄筋23が第1交差方向X及び第2交差方向Yにそれぞれ引張力F2,F3を伝達することにより、第1床部12の中央部が支持される。従って、耐火構造物121の耐火性能を従来と同等に維持するように設定することができる。 As described above, according to the designing method S30 of the present embodiment, by performing the structure determining step S1 and the fireproof specification determining step S31, the surroundings of the first floor portion 12 have a constant rigidity and yield strength even during a fire. It is set so that it can be maintained and is supported from below by the refractory covered beams 13 and 14 and the pillar pieces 122A1 and 122B1 which are formed in an annular shape as a whole. The reinforcing bars 23 included in the first floor portion 12 are the tensile force F2 between the end portions of the first floor portion 12 in the first cross direction X, and the end portions of the first floor portion 12 in the second cross direction Y. The tensile force F3 between them is transmitted. At the time of fire, due to gravity or the like acting on the first floor portion 12, the center portion of the first floor portion 12 in a plan view is bent so as to be convex downward. However, due to the membrane effect, the periphery of the first floor portion 12 is supported by the fireproof coated beams 13, 14 and the pillar pieces 122A1, 122B1. Then, the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 121 can be set to be maintained at the same level as the conventional one.
第1支持仕様決定工程S5において、延長梁17A,17Bを介して結合隅部12a,12bが第2耐火被覆柱123A,123Bにより支持するように設定される。さらに、第2支持仕様決定工程S33において、結合隅部12a,12bが、柱により直接的に支持させないように設定される。従って、第1床部12の結合隅部12a,12bにおける設計の自由度を高めるとともに、結合隅部12a,12bを支持する柱の耐火被覆を省略することができる。 In the first support specification determining step S5, the joint corners 12a and 12b are set to be supported by the second refractory covered columns 123A and 123B via the extension beams 17A and 17B. Further, in the second support specification determining step S33, the joint corners 12a and 12b are set so as not to be directly supported by the pillar. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
また、本実施形態の施工方法S40によれば、柱梁施工工程S21及び被覆施工工程S41を行うことで、第1床部12の周囲を、火災時でも一定の剛性及び耐力を維持でき、全体として環状に形成された耐火被覆梁13,14及び柱片122A1,122B1により下方から支持させる。第1床部12に含まれている鉄筋23は、第1床部12の第1交差方向Xの端部間の引張力F2、及び、第1床部12の第2交差方向Yの端部間の引張力F3をそれぞれ伝達する。火災時には、第1床部12に作用する重力等により、第1床部12の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、第1床部12の周囲が耐火被覆梁13,14及柱片122A1,122B1により支持される。そして、第1床部12が撓むことにより伸びた鉄筋23が第1交差方向X及び第2交差方向Yにそれぞれ引張力F2,F3を伝達することにより、第1床部12の中央部が支持される。従って、耐火構造物121の耐火性能を従来と同等に維持することができる。
第1支持工程S43を行うと、延長梁17A,17Bを介して結合隅部12a,12bを第2耐火被覆柱123A,123Bにより支持する。さらに、第2支持工程S45を行うと、結合隅部12a,12bを、柱により直接的に支持させない。従って、第1床部12の結合隅部12a,12bにおける設計の自由度を高めるとともに、結合隅部12a,12bを支持する柱の耐火被覆を省略することができる。
Further, according to the construction method S40 of the present embodiment, by performing the column and beam construction step S21 and the covering construction step S41, it is possible to maintain constant rigidity and proof stress around the first floor portion 12 even in the event of a fire. It is supported from below by the fireproof coated beams 13 and 14 and the pillar pieces 122A1 and 122B1 formed in a ring shape. The reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y. The tensile force F3 between them is transmitted. At the time of fire, due to gravity or the like acting on the first floor portion 12, the center portion of the first floor portion 12 in a plan view is bent downward to be convex. However, due to the membrane effect, the periphery of the first floor portion 12 is supported by the fireproof coated beams 13, 14 and the pillar pieces 122A1, 122B1. Then, the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 121 can be maintained at the same level as the conventional one.
When the first supporting step S43 is performed, the joint corners 12a and 12b are supported by the second fireproof coated columns 123A and 123B via the extension beams 17A and 17B. Furthermore, when the second supporting step S45 is performed, the joint corners 12a and 12b are not directly supported by the pillar. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
また、本実施形態の耐火構造物121にによれば、第1床部12の周囲は、火災時でも一定の剛性及び耐力を維持でき、全体として環状に形成された耐火被覆梁13,14及び柱片122A1,122B1により下方から支持される。第1床部12に含まれている鉄筋23は、第1床部12の第1交差方向Xの端部間の引張力F2、及び、第1床部12の第2交差方向Yの端部間の引張力F2をそれぞれ伝達する。火災時には、第1床部12に作用する重力等により、第1床部12の平面視における中央部が下方に向かって凸となるようにむ。しかし、メンブレン効果により、第1床部12の周囲が耐火被覆梁13,14及び柱片122A1,122B1により支持される。そして、第1床部12が撓むことにより伸びた鉄筋23が第1交差方向X及び第2交差方向Yにそれぞれ引張力F2,F3を伝達することにより、第1床部12の中央部が支持される。従って、耐火構造物121の耐火性能を従来と同等に維持することができる。
耐火構造物121では、延長梁17A,17Bを介して結合隅部12a,12bが第2耐火被覆柱123A,123Bにより支持される。さらに、結合隅部12a,12bが、柱により直接的に支持されない。従って、第1床部12の結合隅部12a,12bにおける設計の自由度を高めるとともに、結合隅部12a,12bを支持する柱の耐火被覆を省略することができる。
Further, according to the fire resistant structure 121 of the present embodiment, the surroundings of the first floor portion 12 can maintain constant rigidity and proof stress even in the event of a fire, and the fire resistant coated beams 13, 14 formed in an annular shape as a whole and It is supported from below by the pillar pieces 122A1 and 122B1. The reinforcing bar 23 included in the first floor portion 12 has a tensile force F2 between the end portions of the first floor portion 12 in the first intersecting direction X and an end portion of the first floor portion 12 in the second intersecting direction Y. The tensile force F2 between them is transmitted. At the time of a fire, due to gravity or the like acting on the first floor portion 12, the central portion of the first floor portion 12 in a plan view is projected downward. However, due to the membrane effect, the periphery of the first floor portion 12 is supported by the fireproof coated beams 13, 14 and the pillar pieces 122A1, 122B1. Then, the reinforcing bars 23 extended by the bending of the first floor portion 12 transmit the tensile forces F2 and F3 in the first intersecting direction X and the second intersecting direction Y, respectively, so that the central portion of the first floor portion 12 is Supported. Therefore, the fireproof performance of the fireproof structure 121 can be maintained at the same level as the conventional one.
In the refractory structure 121, the joint corners 12a and 12b are supported by the second refractory-covered columns 123A and 123B via the extension beams 17A and 17B. Moreover, the joint corners 12a, 12b are not directly supported by the columns. Therefore, it is possible to increase the degree of freedom in designing the joint corners 12a and 12b of the first floor portion 12 and to omit the fireproof coating of the columns supporting the joint corners 12a and 12b.
設計方法S30において、判定工程S35を行う。これにより、判定工程S35において、第1床部12の撓みの最大値が閾値K未満であるか否かを判定することができる。
判定工程S35においてYESと判定されたときには、床44から区画される第1床部の形状及び大きさの少なくとも一方が変わるように、耐火被覆を施す複数の梁52の少なくとも一部を変えて、耐火仕様決定工程S31を行い、その後、判定工程S35を行う。これにより、第1床部12の撓みの最大値が閾値K未満でないときに、床44から区画される第1床部12の形状及び大きさの少なくとも一方を調節して、判定工程S35において、再び第1床部12の撓みの最大値が閾値K未満であるか否かを判定することができる。
In the design method S30, the determination step S35 is performed. Accordingly, in the determination step S35, it is possible to determine whether or not the maximum value of the bending of the first floor portion 12 is less than the threshold value K.
When it is determined to be YES in the determination step S35, at least a part of the plurality of beams 52 to which the fireproof coating is applied is changed so that at least one of the shape and the size of the first floor section partitioned from the floor 44 changes. The fireproof specification determining step S31 is performed, and then the determining step S35 is performed. Thereby, when the maximum value of the bending of the first floor portion 12 is not less than the threshold value K, at least one of the shape and the size of the first floor portion 12 partitioned from the floor 44 is adjusted, and in the determination step S35, It can be determined again whether the maximum value of the bending of the first floor portion 12 is less than the threshold value K.
(第3実施形態)
次に、本発明の第3実施形態について図30を参照しながら説明するが、前記実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
図30に示すように、この建築物3には、本実施形態の耐火構造物91A,91B,91Cが用いられている。なお、図30では、後述する耐火被覆梁94及び減耐火被覆梁95を透過して示し、耐火構造物91A,91B,91Cが備える床部96a,96b,96cにハッチングを付して示している。
建築物3は、平面視で碁盤目状に配置された複数の耐火被覆柱93を備えている。複数の耐火被覆柱93は、第1交差方向X及び第2交差方向Yにそれぞれ並べて配置されている。
複数の耐火被覆柱93には、複数の耐火被覆梁94が接合され、さらに複数の耐火被覆梁94には、減耐火被覆梁95が接合されている。
(Third Embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. 30, but the same parts as those of the above-mentioned embodiment are designated by the same reference numerals, and the description thereof will be omitted. Only different points will be described.
As shown in FIG. 30, the fire- resistant structures 91A, 91B, 91C of the present embodiment are used in this building 3. In addition, in FIG. 30, the fire-resistant coated beam 94 and the reduced fire-resistant coated beam 95, which will be described later, are shown transparently, and the floor portions 96a, 96b, 96c included in the fire- resistant structures 91A, 91B, 91C are hatched. .
The building 3 includes a plurality of fireproof coated columns 93 arranged in a grid pattern in a plan view. The plurality of fireproof coated columns 93 are arranged side by side in the first intersecting direction X and the second intersecting direction Y, respectively.
A plurality of fireproof covered beams 94 are joined to the plurality of fireproof covered columns 93, and a reduced fireproof covered beam 95 is joined to the plurality of fireproof covered beams 94.
複数の耐火被覆梁94及び減耐火被覆梁95上には、床96が支持されている。
平面視における建築物3の中心にはコアウォール99が配置され、建築物3の外縁には階段100が配置されている。
耐火構造物91Aは、床96の一部である床部96aを備えている。床部96aは、平面視で複数の隅部を有する矩形状に形成されている。床部96aのいずれの隅部にも、耐火被覆柱93が接合されていない。
耐火構造物91Bが備える床部96bの4つの隅部のうち、2つの隅部に耐火被覆柱93が接合されている。耐火構造物91Cが備える床部96cの4つの隅部のうち、2つの隅部に耐火被覆柱93が接合されている。
A floor 96 is supported on the plurality of fireproof coated beams 94 and reduced fireproof coated beams 95.
A core wall 99 is arranged at the center of the building 3 in a plan view, and stairs 100 are arranged at the outer edge of the building 3.
The refractory structure 91A includes a floor portion 96a that is a part of the floor 96. The floor portion 96a is formed in a rectangular shape having a plurality of corners in a plan view. The fireproof coated column 93 is not joined to any corner of the floor 96a.
Of the four corners of the floor portion 96b included in the fireproof structure 91B, the fireproof coated columns 93 are joined to two corners. Of the four corners of the floor portion 96c included in the fireproof structure 91C, the fireproof coated columns 93 are joined to two corners.
本実施形態の耐火構造物91A,91B,91Cによれば、耐火性能を維持しつつ、床部96a,96b,96cの隅部における設計の自由度を高めて、床部96a,96b,96cの複数の隅部を支持する柱の少なくとも1つの耐火被覆を省略することができる。そして、建築物3内に耐火構造物91A,91B,91Cを配置する自由度を高めることができる。 According to the fire resistant structures 91A, 91B, 91C of the present embodiment, while maintaining the fire resistant performance, the degree of freedom of design in the corners of the floor portions 96a, 96b, 96c is increased, and the floor portions 96a, 96b, 96c are improved. At least one refractory coating on the pillar supporting the plurality of corners may be omitted. Then, the degree of freedom in arranging the fireproof structures 91A, 91B, 91C in the building 3 can be increased.
以上、本発明の第1実施形態から第3実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。さらに、各実施形態で示した構成のそれぞれを適宜組み合わせて利用できることは、言うまでもない。
例えば、前記第1実施形態及び第2実施形態の設計方法S,S30では、判定工程S9を行わなくてもよい。耐火構造物の所望の加熱時間における第1床部の撓みの最大値は、閾値K以上であってもよい。
As described above, the first to third embodiments of the present invention have been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and a configuration within a range not departing from the gist of the present invention Change, combination, deletion, etc. are also included. Further, it goes without saying that the configurations shown in the respective embodiments can be appropriately combined and used.
For example, in the design methods S and S30 of the first and second embodiments, the determination step S9 need not be performed. The maximum value of the bending of the first floor portion during the desired heating time of the refractory structure may be the threshold value K or more.
前記第1実施形態から第3実施形態では、耐火被覆梁13,14は、スタッド35を備えなくてもよい。すなわち、第1床部12の周囲は耐火被覆梁13,14により下方から支持されたり、耐火被覆梁13,14及び柱片122A1,122B1により下方から支持されていてもよい。
第1床部は、平面視で3角形状、5角形状等の多角形状であってもよい。耐火被覆梁13,14は、全体として平面視で円環状等に形成されているとしてもよい。耐火構造物は、減耐火被覆梁を備えなくてもよい。
In the first to third embodiments, the fireproof coated beams 13 and 14 may not include the stud 35. That is, the periphery of the first floor portion 12 may be supported from below by the fireproof covered beams 13 and 14, or may be supported from below by the fireproof covered beams 13 and 14 and the pillar pieces 122A1 and 122B1.
The first floor portion may have a polygonal shape such as a triangular shape or a pentagonal shape in a plan view. The fireproof coated beams 13 and 14 may be formed in an annular shape or the like in plan view as a whole. The refractory structure may not include the reduced fire resistant coated beam.
本開示の耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物は、耐火性能を維持しつつ、床部の隅部における設計の自由度を高めて、床部の複数の隅部を支持する柱の少なくとも1つの耐火被覆を省略することができる耐火構造物、及びその設計方法、施工方法として好適に用いることができる。 The design method of the refractory structure, the construction method of the refractory structure, and the refractory structure of the present disclosure increase the degree of freedom of design in the corner portion of the floor while maintaining the fire resistance performance, and the plurality of corners of the floor portion. It can be suitably used as a refractory structure capable of omitting at least one refractory coating of a column supporting a part, and a designing method and a construction method thereof.
11,11A,11C,71,71A,71B,91A,91B,91C,121 耐火構造物
12,12A 第1床部(床部)
12a,12b 隅部(結合隅部)
12c,12d 隅部
12e 平面
13A,13B 第1耐火被覆梁(耐火被覆梁)
14A,14B 第2耐火被覆梁(耐火被覆梁)
15A,15B,15C,95 減耐火被覆梁
16A,16B,16C,16D,93 耐火被覆柱
17A,17B 延長梁
18A,18B 耐火被覆柱
21 第1デッキプレート(引張力伝達部材)
23 鉄筋(引張力伝達部材)
44 床(スラブ)
45A,45B 第1耐火被覆柱(耐火被覆柱)
52 梁
53 柱
59A,59B 第2耐火被覆柱(耐火被覆柱)
94 耐火被覆梁
96a,96b,96c 床部
122A,122B 第1耐火被覆柱
122A1,122B1 柱片(自身の一部)
123A,123B 第2耐火被覆柱
F2,F3 引張力
S,S30 設計方法(耐火構造物の設計方法)
S1 構造決定工程
S3,S31 耐火仕様決定工程
S5 第1支持仕様決定工程
S7,S33 第2支持仕様決定工程
S9,S35 判定工程
S20,S40 施工方法(耐火構造物の施工方法)
S21 柱梁施工工程
S23,S41 被覆施工工程
S25,S43 第1支持工程
S27,S45 第2支持工程
X  第1交差方向
Y  第2交差方向
11, 11A, 11C, 71, 71A, 71B, 91A, 91B, 91C, 121 Fire- resistant structure 12, 12A 1st floor (floor)
12a, 12b corners (joint corners)
12c, 12d Corner part 12e Plane 13A, 13B 1st fireproof coated beam (fireproof coated beam)
14A, 14B Second fireproof coated beam (fireproof coated beam)
15A, 15B, 15C, 95 Reduced fireproof coated beams 16A, 16B, 16C, 16D, 93 Fireproof coated columns 17A, 17B Extension beams 18A, 18B Fireproof coated columns 21 First deck plate (tensile force transmitting member)
23 Reinforcing bar (tensile force transmitting member)
44 floor (slab)
45A, 45B 1st fireproof coated column (fireproof coated column)
52 Beams 53 Pillars 59A, 59B Second fireproof coated pillars (fireproof coated pillars)
94 Fireproof Covered Beams 96a, 96b, 96c Floors 122A, 122B First Fireproof Covered Columns 122A1, 122B1 Column Pieces (Part of Their Own)
123A, 123B 2nd fireproof coating pillar F2, F3 Tensile force S, S30 Design method (design method of fireproof structure)
S1 Structure determination step S3, S31 Fireproof specification determination step S5 First support specification determination step S7, S33 Second support specification determination step S9, S35 Judgment step S20, S40 Construction method (construction method of fireproof structure)
S21 Column beam construction process S23, S41 Covering construction process S25, S43 First support process S27, S45 Second support process X First cross direction Y Second cross direction

Claims (16)

  1. 引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、
    耐火被覆が施され、前記床部の周囲を下方から支持する環状の耐火被覆梁と、
    耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、
    耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する耐火被覆柱と、
    を備え、
    前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を設計する耐火構造物の設計方法であって、
    構造計算を行うことにより、前記スラブ、前記スラブを下方から支持する複数の梁、及び前記複数の梁を支持する柱の配置を決定する構造決定工程と、
    前記スラブから区画された前記床部の周囲を、前記梁に耐火被覆を施した前記耐火被覆梁により下方から支持させるように設定する耐火仕様決定工程と、
    前記結合隅部に前記延長梁を結合させ、前記延長梁における前記結合隅部に結合された部分とは異なる部分を前記耐火被覆柱で支持するように設定する第1支持仕様決定工程と、
    前記結合隅部を、柱により直接的に支持させないか、前記耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持させるように設定する第2支持仕様決定工程と、
    を行う耐火構造物の設計方法。
    In a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view,
    A fireproof coating is applied, and an annular fireproof beam that supports the periphery of the floor from below,
    An extension beam having a fireproof coating and coupled to a coupling corner that is at least one of the plurality of corners of the floor;
    A fireproof coated column, which is provided with a fireproof coating and supports a portion different from the portion connected to the connection corner of the extension beam,
    Equipped with
    When the directions intersecting with each other in the plane of the floor are the first intersecting direction and the second intersecting direction, the tensile force transmitting member includes a tensile force between end portions of the floor in the first intersecting direction, And a method for designing a refractory structure for designing a refractory structure that respectively transmits a tensile force between the ends of the floor portion in the second intersecting direction,
    By performing a structural calculation, the slab, a plurality of beams that support the slab from below, and a structure determination step of determining the arrangement of columns that support the plurality of beams,
    Around the floor section partitioned from the slab, a refractory specification determining step of setting so as to be supported from below by the refractory coated beam having a fireproof coating on the beam,
    A first support specification determining step of connecting the extension beam to the connection corner, and setting a part of the extension beam different from the part connected to the connection corner to be supported by the refractory-coated column;
    A second support specification determining step of setting the joint corner not to be directly supported by a column or to be supported from below by a reduced fireproof coated column in which the fireproof coating is reduced compared to the fireproof coated column;
    Method for designing fireproof structure.
  2. 前記耐火仕様決定工程、前記第1支持仕様決定工程、及び前記第2支持仕様決定工程の後で、
    前記耐火構造物が、ISO 834-11:2014に規定された加熱曲線に基づいて加熱されたときに、所望の加熱時間における前記前記床部の撓みの最大値が、(1)式で定められた閾値K未満であるか否かを判定する判定工程を行う請求項1に記載の耐火構造物の設計方法。
    K=(L+l)/30 ・・(1)
    ただし、Lは前記床部の前記平面に沿う第1スパンの長さ(m)であり、lは前記床部の前記平面に沿うとともに前記第1スパンに交差する第2スパンの長さ(m)である。
    After the fireproof specification determining step, the first support specification determining step, and the second support specification determining step,
    When the refractory structure is heated on the basis of the heating curve defined in ISO 834-11:2014, the maximum value of the flexure of the floor during a desired heating time is defined by the equation (1). The method for designing a refractory structure according to claim 1, wherein a determination step of determining whether or not it is less than the threshold value K is performed.
    K=(L+1)/30 ··· (1)
    Here, L is the length (m) of the first span along the plane of the floor, and l is the length (m of the second span along the plane of the floor and intersecting the first span. ).
  3. 前記判定工程において、前記床部の撓みの最大値が前記閾値K未満でないときには、
    前記耐火仕様決定工程を、前記スラブから区画される前記床部の形状及び大きさの少なくとも一方が変わるように、前記耐火被覆を施す前記複数の梁の少なくとも一部を変えて行い、
    さらに、前記第1支持仕様決定工程及び前記第2支持仕様決定工程を行った後で、前記判定工程を行う請求項2に記載の耐火構造物の設計方法。
    In the determination step, when the maximum value of the bending of the floor is not less than the threshold value K,
    The fireproof specification determining step is performed by changing at least a part of the plurality of beams to which the fireproof coating is applied so that at least one of the shape and the size of the floor section partitioned from the slab changes.
    The method for designing a refractory structure according to claim 2, further comprising performing the determining step after performing the first supporting specification determining step and the second supporting specification determining step.
  4. 引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、
    耐火被覆が施され、前記床部の周囲を下方から支持する耐火被覆梁と、
    耐火被覆が施され、前記耐火被覆梁を支持するとともに、自身の一部及び前記耐火被覆梁が全体として環状に形成された第1耐火被覆柱と、
    耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、
    耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する第2耐火被覆柱と、
    を備え、
    前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を設計する耐火構造物の設計方法であって、
    構造計算を行うことにより、前記スラブ、前記スラブを下方から支持する複数の梁、及び前記複数の梁を支持する複数の柱の配置を決定する構造決定工程と、
    前記スラブから区画された前記床部の周囲を、前記梁に耐火被覆を施した前記耐火被覆梁、及び前記柱に耐火被覆を施した前記第1耐火被覆柱の前記一部により下方から支持させるように設定する耐火仕様決定工程と、
    前記結合隅部に前記延長梁を結合させ、前記延長梁における前記結合隅部に結合された部分とは異なる部分を前記第2耐火被覆柱で支持するように設定する第1支持仕様決定工程と、
    前記結合隅部を、柱により直接的に支持させないか、前記第1耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持させるように設定する第2支持仕様決定工程と、
    を行う耐火構造物の設計方法。
    In a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view,
    A fireproof coated beam, which is provided with a fireproof coating and supports the periphery of the floor from below,
    A first refractory-covered column, which is provided with a refractory coating, supports the refractory-covered beam, and has a part of itself and the refractory-covered beam formed in an annular shape as a whole,
    An extension beam having a fireproof coating and coupled to a coupling corner that is at least one of the plurality of corners of the floor;
    A second refractory-coated column that is provided with a refractory coating and supports a portion of the extension beam that is different from the portion joined to the joining corner;
    Equipped with
    When the directions intersecting with each other in the plane of the floor are the first intersecting direction and the second intersecting direction, the tensile force transmitting member includes a tensile force between end portions of the floor in the first intersecting direction, And a method for designing a refractory structure for designing a refractory structure that respectively transmits a tensile force between the ends of the floor portion in the second intersecting direction,
    By performing a structural calculation, the slab, a plurality of beams that support the slab from below, and a structure determination step that determines the arrangement of a plurality of columns that support the plurality of beams,
    The periphery of the floor sectioned from the slab is supported from below by the fire-resistant coated beam having the beam applied with the fire-resistant coating, and the part of the first fire-resistant coated column having the fire-resistant coating applied to the column. And the fireproof specification determination process,
    A first supporting specification determining step of connecting the extension beam to the connection corner, and setting a portion of the extension beam different from the part connected to the connection corner to be supported by the second refractory-covered column; ,
    A second supporting specification determining step in which the joint corner is not directly supported by a pillar or is set to be supported from below by a reduced refractory coated pillar in which the refractory coating is reduced compared to the first refractory coated pillar; ,
    Method for designing fireproof structure.
  5. 前記耐火仕様決定工程、前記第1支持仕様決定工程、及び前記第2支持仕様決定工程の後で、
    前記耐火構造物が、ISO 834-11:2014に規定された加熱曲線に基づいて加熱されたときに、所望の加熱時間における前記前記床部の撓みの最大値が、(2)式で定められた閾値K未満であるか否かを判定する判定工程を行う請求項4に記載の耐火構造物の設計方法。
    K=(L+l)/30 ・・(2)
    ただし、Lは前記床部の前記平面に沿う第1スパンの長さ(m)であり、lは前記床部の前記平面に沿うとともに前記第1スパンに交差する第2スパンの長さ(m)である。
    After the fireproof specification determining step, the first support specification determining step, and the second support specification determining step,
    When the refractory structure is heated according to the heating curve defined in ISO 834-11:2014, the maximum value of the flexure of the floor during a desired heating time is defined by the equation (2). The method for designing a refractory structure according to claim 4, wherein a determination step of determining whether or not it is less than the threshold value K is performed.
    K=(L+1)/30 ··· (2)
    Here, L is the length (m) of the first span along the plane of the floor, and l is the length (m of the second span along the plane of the floor and intersecting the first span. ).
  6. 前記判定工程において、前記床部の撓みの最大値が前記閾値K未満でないときには、
    前記耐火仕様決定工程を、前記スラブから区画される前記床部の形状及び大きさの少なくとも一方が変わるように、前記耐火被覆を施す前記複数の梁、及び前記耐火被覆を施す前記複数の柱の少なくとも一部を変えて行い、
    さらに、前記第1支持仕様決定工程及び前記第2支持仕様決定工程を行った後で、前記判定工程を行う請求項5に記載の耐火構造物の設計方法。
    In the determination step, when the maximum value of the bending of the floor is not less than the threshold value K,
    In the fireproof specification determining step, at least one of the shape and the size of the floor section partitioned from the slab is changed, the plurality of beams to which the fireproof coating is applied, and the plurality of columns to which the fireproof coating is applied At least partly changed,
    The method for designing a refractory structure according to claim 5, further comprising performing the determining step after performing the first supporting specification determining step and the second supporting specification determining step.
  7. 請求項1から6のいずれか一項に記載の耐火構造物の設計方法により設計された耐火構造物。 A refractory structure designed by the method for designing a refractory structure according to any one of claims 1 to 6.
  8. 引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、
    耐火被覆が施され、前記床部の周囲を下方から支持する環状の耐火被覆梁と、
    耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、
    耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する耐火被覆柱と、
    を備え、
    前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を施工する耐火構造物の施工方法であって、
    前記スラブ、前記スラブを下方から支持する複数の梁、及び前記複数の梁を支持する柱を施工する柱梁施工工程と、
    前記梁に耐火被覆を施して前記耐火被覆梁とすることで、前記スラブから区画された前記床部の周囲を前記耐火被覆梁により下方から支持させる被覆施工工程と、
    前記結合隅部に前記延長梁を結合させ、前記延長梁における前記結合隅部に結合された部分とは異なる部分を前記耐火被覆柱で支持する第1支持工程と、
    前記結合隅部を、柱により直接的に支持させないか、前記耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持させる第2支持工程と、
    を行う耐火構造物の施工方法。
    In a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view,
    A fireproof coating is applied, and an annular fireproof beam that supports the periphery of the floor from below,
    An extension beam having a fireproof coating and coupled to a coupling corner that is at least one of the plurality of corners of the floor;
    A fireproof coated column, which is provided with a fireproof coating and supports a portion different from the portion connected to the connection corner of the extension beam,
    Equipped with
    When the directions intersecting with each other in the plane of the floor are the first intersecting direction and the second intersecting direction, the tensile force transmitting member includes a tensile force between the ends of the floor in the first intersecting direction, And a method for constructing a refractory structure for constructing a refractory structure that transmits tensile forces between the ends of the floor portion in the second intersecting direction,
    A slab, a plurality of beams that support the slab from below, and a column-beam construction step that constructs a column that supports the plurality of beams,
    By applying a fireproof coating to the beam and the fireproof coated beam, a coating construction step of supporting the periphery of the floor section partitioned from the slab from below by the fireproof coated beam,
    A first supporting step in which the extension beam is coupled to the coupling corner, and a portion of the extension beam different from the portion coupled to the coupling corner is supported by the fireproof coated column;
    A second supporting step in which the joint corner is not directly supported by a pillar or is supported from below by a reduced fireproof coating pillar in which the fireproof coating is reduced compared to the fireproof coated pillar,
    Construction method of fireproof structure.
  9. 引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、
    耐火被覆が施され、前記床部の周囲を下方から支持する耐火被覆梁と、
    耐火被覆が施され、前記耐火被覆梁を支持するとともに、自身の一部及び前記耐火被覆梁が全体として環状に形成された第1耐火被覆柱と、
    耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、
    耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する第2耐火被覆柱と、
    を備え、
    前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を施工する耐火構造物の施工方法であって、
    前記スラブ、前記スラブを下方から支持する複数の梁、及び前記複数の梁を支持する複数の柱を施工する柱梁施工工程と、
    前記梁に耐火被覆を施して前記耐火被覆梁とし、前記柱に耐火被覆を施して前記第1耐火被覆柱とすることで、前記スラブから区画された前記床部の周囲を前記耐火被覆梁及び前記第1耐火被覆柱の前記一部により下方から支持させるようにする被覆施工工程と、
    前記結合隅部に前記延長梁を結合させ、前記延長梁における前記結合隅部に結合された部分とは異なる部分を前記第2耐火被覆柱で支持する第1支持工程と、
    前記結合隅部を、柱により直接的に支持させないか、前記第1耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持させる第2支持工程と、
    を行う耐火構造物の施工方法。
    In a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view,
    A fireproof coated beam, which is provided with a fireproof coating and supports the periphery of the floor from below,
    A first refractory-covered column, which is provided with a refractory coating, supports the refractory-covered beam, and has a part of itself and the refractory-covered beam formed in an annular shape as a whole,
    An extension beam having a fireproof coating and coupled to a coupling corner that is at least one of the plurality of corners of the floor;
    A second refractory-coated column that is provided with a refractory coating and supports a portion of the extension beam that is different from the portion joined to the joining corner;
    Equipped with
    When the directions intersecting with each other in the plane of the floor are the first intersecting direction and the second intersecting direction, the tensile force transmitting member includes a tensile force between the ends of the floor in the first intersecting direction, And a method for constructing a refractory structure for constructing a refractory structure that transmits tensile forces between the ends of the floor portion in the second intersecting direction,
    The slab, a plurality of beams that support the slab from below, and a column-beam construction step that constructs a plurality of columns that support the plurality of beams,
    A fire-resistant coating beam is applied to the beam to form the fire-resistant coated beam, and a fire-resistant coating is applied to the column to form the first fire-resistant coated column, thereby surrounding the floor portion partitioned from the slab with the fire-resistant coated beam and A coating construction step in which the first refractory-coated pillar is supported from below by the part;
    A first supporting step in which the extension beam is coupled to the coupling corner, and a portion of the extension beam different from the portion coupled to the coupling corner is supported by the second refractory-coated column;
    A second supporting step in which the joint corner is not directly supported by a pillar, or is supported from below by a reduced fireproof coated pillar in which the fireproof coating is reduced compared to the first fireproof coated pillar,
    Construction method of fireproof structure.
  10. 引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、
    耐火被覆が施され、前記床部の周囲を下方から支持する環状の耐火被覆梁と、
    耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、
    耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する耐火被覆柱と、
    を備え、
    前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、
    前記結合隅部は、柱により直接的に支持されないか、前記耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持され、
    前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物。
    In a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view,
    A fireproof coating is applied, and an annular fireproof beam that supports the periphery of the floor from below,
    An extension beam having a fireproof coating and coupled to a coupling corner that is at least one of the plurality of corners of the floor;
    A fireproof coated column, which is provided with a fireproof coating and supports a portion different from the portion connected to the connection corner of the extension beam,
    Equipped with
    When the directions intersecting with each other in the plane of the floor are the first intersecting direction and the second intersecting direction,
    The joint corner is not directly supported by a column, or is supported from below by a reduced fireproof coated column in which the fireproof coating is reduced more than the fireproof coated column,
    The tensile force transmitting member transmits a tensile force between the ends of the floor in the first intersecting direction and a tensile force between the ends of the floor in the second intersecting direction, respectively.
  11. 前記耐火被覆梁よりも前記耐火被覆が削減され、環状の前記耐火被覆梁により囲まれた領域内に配置されて、端部が前記耐火被覆梁に接合されて前記床部を下方から支持する減耐火被覆梁を備える請求項10に記載の耐火構造物。 The refractory coating is reduced compared to the refractory coated beam, and the refractory coated beam is arranged in a region surrounded by the annular refractory coated beam, and an end portion is joined to the refractory coated beam to support the floor from below. The fire resistant structure according to claim 10, comprising a fire resistant coated beam.
  12. 前記多角形状は、矩形状である請求項10又は11に記載の耐火構造物。 The refractory structure according to claim 10 or 11, wherein the polygonal shape is a rectangular shape.
  13. ISO 834-11:2014に規定された加熱曲線に基づいて加熱されたときに、所望の加熱時間における前記床部の撓みの最大値が、(3)式で定められた閾値K未満である請求項10から12のいずれか一項に記載の耐火構造物。
    K=(L+l)/30 ・・(3)
    ただし、Lは前記床部の前記平面に沿う第1スパンの長さ(m)であり、lは前記床部の前記平面に沿うとともに前記第1スパンに交差する第2スパンの長さ(m)である。
    A maximum value of deflection of the floor portion during a desired heating time when heated according to a heating curve defined in ISO 834-11:2014 is less than a threshold value K defined by the equation (3). Item 13. The refractory structure according to any one of items 10 to 12.
    K=(L+1)/30 (3)
    Here, L is the length (m) of the first span along the plane of the floor, and l is the length (m of the second span along the plane of the floor and intersecting the first span. ).
  14. 前記引張力伝達部材は、
    前記第1交差方向に沿って延び、前記床部の前記第1交差方向の端部間の引張力を伝達する第1鉄筋と、
    前記第2交差方向に沿って延び、前記床部の前記第2交差方向の端部間の引張力を伝達する第2鉄筋とを有する請求項10から13のいずれか一項に記載の耐火構造物。
    The tensile force transmission member,
    A first reinforcing bar extending along the first intersecting direction and transmitting a tensile force between ends of the floor portion in the first intersecting direction;
    The fireproof structure according to any one of claims 10 to 13, further comprising a second reinforcing bar that extends along the second intersecting direction and that transmits a tensile force between ends of the floor portion in the second intersecting direction. object.
  15. 引張力伝達部材を含むスラブにおいて、平面視で複数の隅部を有する多角形状に区画された床部と、
    耐火被覆が施され、前記床部の周囲を下方から支持する耐火被覆梁と、
    耐火被覆が施され、前記耐火被覆梁を支持するとともに、自身の一部及び前記耐火被覆梁が全体として環状に形成された第1耐火被覆柱と、
    耐火被覆が施され、前記床部の前記複数の隅部の少なくとも1つである結合隅部に結合された延長梁と、
    耐火被覆が施され、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する第2耐火被覆柱と、
    を備え、
    前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向としたときに、
    前記結合隅部は、柱により直接的に支持されないか、前記第1耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持され、
    前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物。
    In a slab including a tensile force transmission member, a floor section partitioned into a polygonal shape having a plurality of corners in a plan view,
    A fireproof coated beam, which is provided with a fireproof coating and supports the periphery of the floor from below,
    A first refractory-covered column, which is provided with a refractory coating, supports the refractory-covered beam, and has a part of itself and the refractory-covered beam formed in an annular shape as a whole,
    An extension beam having a fireproof coating and coupled to a coupling corner that is at least one of the plurality of corners of the floor;
    A second refractory-coated column that is provided with a refractory coating and supports a portion of the extension beam that is different from the portion joined to the joining corner;
    Equipped with
    When the directions intersecting with each other in the plane of the floor are the first intersecting direction and the second intersecting direction,
    The joint corner is not directly supported by a column, or is supported from below by a reduced fireproof coated column in which the fireproof coating is reduced more than in the first fireproof coated column,
    The tensile force transmitting member transmits a tensile force between the ends of the floor in the first intersecting direction and a tensile force between the ends of the floor in the second intersecting direction, respectively.
  16. 耐火被覆が施され、水平面に沿う第1交差方向に並べて配置されるとともに、水平面に沿い前記第1交差方向に交差する第2交差方向に第1のピッチで並べて配置された複数の耐火被覆柱と、
    耐火被覆が施され、前記第1交差方向に沿って延びるとともに前記第2交差方向に互いに間隔を開けて配置された一対の第1耐火被覆梁と、
    耐火被覆が施され、前記第2交差方向に沿って延びて、前記第1のピッチとは異なる長さに形成され、両端が前記一対の第1耐火被覆梁に直接接合されるとともに、前記複数の耐火被覆柱にそれぞれ接合された一対の第2耐火被覆梁と、
    引張力伝達部材を含むスラブにおいて、平面視で4つの隅部を有する四角形状に区画され、前記一対の第1耐火被覆梁及び前記一対の第2耐火被覆梁により周囲が下方から支持された床部と、
    耐火被覆が施され、前記床部の前記4つの隅部の少なくとも1つである結合隅部に結合された延長梁と、
    を備え、
    前記結合隅部は、柱により直接的に支持されないか、前記耐火被覆柱よりも前記耐火被覆が削減された減耐火被覆柱により下方から支持され、
    前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達し、
    前記複数の耐火被覆柱の少なくとも1つは、前記延長梁における前記結合隅部に結合された部分とは異なる部分を支持する耐火構造物。
    A plurality of fireproof coated pillars, which are provided with a fireproof coating and are arranged side by side in a first intersecting direction along a horizontal plane, and are also arranged side by side at a first pitch in a second intersecting direction intersecting the first intersecting direction along a horizontal plane. When,
    A pair of first refractory-coated beams that are provided with a fire-resistant coating and that extend along the first intersecting direction and are spaced apart from each other in the second intersecting direction;
    A refractory coating is applied, extends along the second intersecting direction, is formed to have a length different from the first pitch, and both ends are directly bonded to the pair of first refractory-covered beams, and the plurality of A pair of second refractory-covered beams respectively joined to the refractory-covered columns of
    In a slab including a tensile force transmission member, a floor which is partitioned into a quadrangular shape having four corners in a plan view and whose periphery is supported from below by the pair of first fireproof coated beams and the pair of second fireproof coated beams Department,
    An extension beam having a fireproof coating and coupled to a coupling corner that is at least one of the four corners of the floor;
    Equipped with
    The joint corner is not directly supported by a column, or is supported from below by a reduced fireproof coated column in which the fireproof coating is reduced more than the fireproof coated column,
    The tensile force transmitting member transmits a tensile force between the end portions of the floor portion in the first intersecting direction and a tensile force between the end portions of the floor portion in the second intersecting direction, respectively.
    At least one of the plurality of refractory-covered columns is a refractory structure that supports a portion of the extension beam different from a portion coupled to the coupling corner.
PCT/JP2019/045955 2018-11-27 2019-11-25 Fire resistant structure design method, fire resistant structure construction method, and fire resistant structure WO2020110995A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202105524UA SG11202105524UA (en) 2018-11-27 2019-11-25 Method of designing fire resistant structure, method of constructing fire resistant structure, and fire resistant structure
JP2020512050A JP6741185B1 (en) 2018-11-27 2019-11-25 Fireproof structure design method, fireproof structure construction method, and fireproof structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-221046 2018-11-27
JP2018221046 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020110995A1 true WO2020110995A1 (en) 2020-06-04

Family

ID=70853507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045955 WO2020110995A1 (en) 2018-11-27 2019-11-25 Fire resistant structure design method, fire resistant structure construction method, and fire resistant structure

Country Status (3)

Country Link
JP (1) JP6741185B1 (en)
SG (1) SG11202105524UA (en)
WO (1) WO2020110995A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031592A (en) * 2015-07-30 2017-02-09 新日鐵住金株式会社 Steel frame building structure
JP2018003556A (en) * 2016-07-08 2018-01-11 新日鐵住金株式会社 Fire-resisting structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031592A (en) * 2015-07-30 2017-02-09 新日鐵住金株式会社 Steel frame building structure
JP2018003556A (en) * 2016-07-08 2018-01-11 新日鐵住金株式会社 Fire-resisting structure

Also Published As

Publication number Publication date
JPWO2020110995A1 (en) 2021-02-15
JP6741185B1 (en) 2020-08-19
SG11202105524UA (en) 2021-06-29

Similar Documents

Publication Publication Date Title
JP6645894B2 (en) Construction method of beam-column joint structure
JP6565434B2 (en) Steel structure
JP6741185B1 (en) Fireproof structure design method, fireproof structure construction method, and fireproof structure
JP6724611B2 (en) Fireproof structure
JP5911692B2 (en) Fireproof reinforcement structure for concrete filled steel tubular columns
JP6708324B1 (en) Fireproof structure design method, fireproof construction method, and fireproof structure
JP6909094B2 (en) Fireproof wall structure
JP2011069148A (en) Building structure
JP2017128916A (en) Column-to-beam joint structure
JP5795208B2 (en) Fireproof covering structure of concrete filled steel pipe columns
JP6505270B2 (en) Fireproof reinforcement method of concrete filled steel pipe column
JP2023002223A (en) Refractory structure design method, refractory structure construction method, and refractory structure
JP7131050B2 (en) Fireproof covering structure of seismic isolation device
JP2005030195A (en) Structure and its construction method
JP2023008571A (en) Design method and construction method of fire resistance structure, and fire resistance structure
JP6590367B2 (en) Building frame
JP2006328798A (en) Composite structure frame
JP6719943B2 (en) Reinforced concrete column-steel beam joint structure
KR102612179B1 (en) Floor structure using steel concrete composite beam and concrete panel and method thereof
JP5654658B2 (en) Eccentric column beam frame and building composed of the same frame
JP6749182B2 (en) Beam
KR102282151B1 (en) Reinforcement structure of joints using duoble steel beams
JP6768358B2 (en) Slab structure
JP5393200B2 (en) Composite beams and buildings
JP7449126B2 (en) Column beam joint structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020512050

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890347

Country of ref document: EP

Kind code of ref document: A1