WO2020110994A1 - Composite solid electrolyte, and composite solid electrolyte secondary battery - Google Patents

Composite solid electrolyte, and composite solid electrolyte secondary battery Download PDF

Info

Publication number
WO2020110994A1
WO2020110994A1 PCT/JP2019/045953 JP2019045953W WO2020110994A1 WO 2020110994 A1 WO2020110994 A1 WO 2020110994A1 JP 2019045953 W JP2019045953 W JP 2019045953W WO 2020110994 A1 WO2020110994 A1 WO 2020110994A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
composite solid
mass
parts
composite
Prior art date
Application number
PCT/JP2019/045953
Other languages
French (fr)
Japanese (ja)
Inventor
克人 三浦
琢寛 幸
康雄 菊園
託也 三輪
雅人 田渕
Original Assignee
株式会社大阪ソーダ
技術研究組合リチウムイオン電池材料評価研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ, 技術研究組合リチウムイオン電池材料評価研究センター filed Critical 株式会社大阪ソーダ
Priority to CN201980076975.3A priority Critical patent/CN113273010A/en
Priority to JP2020557703A priority patent/JPWO2020110994A1/en
Publication of WO2020110994A1 publication Critical patent/WO2020110994A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite solid electrolyte and a composite solid electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries typified by lithium-ion batteries
  • various safety measures are required, which is a barrier to the development of large batteries.
  • solid electrolytes in which solid electrolytes such as polymer solid electrolytes and inorganic solid electrolytes are solidified have been proposed.
  • Polymer solid electrolytes are generally superior in flexibility, bending workability, and moldability, and have the advantage of increasing the degree of freedom in the design of the device to which they are applied, but due to poor load characteristics and low-temperature characteristics, high temperature It has the drawback of being limited to operating battery applications.
  • the inorganic solid electrolyte is higher in ion conductivity than the polymer solid electrolyte, but the electrolyte is crystalline or amorphous, and it is difficult to alleviate the volume change due to the positive and negative electrode active materials during charge and discharge, and However, since the interface resistance between the electrode and the electrolyte is high, there is a problem that the charge/discharge characteristics are insufficient.
  • Patent Document 1 a hydrogenated polymer such as hydrogenated styrene-butadiene rubber as a branched polymer is used as a binder in a sulfide-based solid electrolyte, but such a polymer suppresses a decrease in ion conductivity. I can't do it.
  • Patent Documents 2 and 3 polyethylene oxide (polyethylene glycol) having relatively high ionic conductivity is used, but polyethylene oxide has high crystallinity, and the melting point of the polymer is around 60° C. Low ionic conductivity. In addition, there is a problem that when heated above the melting point, it softens, the strength cannot be maintained, and a short circuit due to breakage easily occurs.
  • the main object of the present invention is to provide a novel composite solid electrolyte that allows a solid electrolyte secondary battery to exhibit excellent charge/discharge characteristics.
  • a further object of the present invention is to provide a composite solid electrolyte secondary battery containing the composite solid electrolyte.
  • the present inventor has diligently studied to solve the above problems. As a result, they have found that a composite solid electrolyte containing an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether exhibits excellent charge/discharge characteristics for a solid electrolyte secondary battery.
  • the present invention has been completed by further studies based on such findings.
  • Item 1 A composite solid electrolyte containing an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether.
  • Item 2. Item 2. The composite solid electrolyte according to Item 1, wherein the branched polyether includes a constituent unit formed of an ether compound having an ethylene oxide unit in a side chain.
  • Item 3. Item 3. The composite solid electrolyte according to Item 1 or 2, wherein the branched polyether includes a constituent unit formed of at least one selected from the group consisting of allyl glycidyl ether, acrylic acid glycidyl ether, and methacrylic acid glycidyl ether. ..
  • Item 4. The composite solid electrolyte according to any one of Items 1 to 3, wherein the branched polyether is crosslinked. Item 5.
  • Item 5. The composite solid electrolyte according to any one of Items 1 to 4, wherein the inorganic solid electrolyte is an oxide solid electrolyte or a sulfide solid electrolyte.
  • Item 6. Item 7. A composite solid electrolyte secondary battery containing the composite solid electrolyte according to any one of items 1 to 5.
  • the present invention it is possible to provide a novel composite solid electrolyte that allows a solid electrolyte secondary battery to exhibit excellent charge/discharge characteristics. Furthermore, according to the present invention, it is also possible to provide a composite solid electrolyte secondary battery containing the composite solid electrolyte.
  • the composite solid electrolyte of the present invention is characterized by containing an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether. Since the composite solid electrolyte of the present invention has such a configuration, when applied as a solid electrolyte of a solid electrolyte secondary battery, the solid electrolyte secondary battery can exhibit excellent charge/discharge characteristics. .. More specifically, the composite solid electrolyte of the present invention, in addition to the inorganic solid electrolyte, contains a polymer solid electrolyte containing a branched polyether, the solid electrolyte is formed only by the inorganic solid electrolyte.
  • the contact area at the interface between the electrode material layer and the solid electrolyte layer is larger than that in the case where the electrode material layer and the solid electrolyte layer are large, and as a result, the interface resistance between the electrode and the electrolyte is reduced and excellent charge/discharge characteristics are exhibited. .. Further, even in the composite solid electrolyte, it is considered that the polymer solid electrolyte is brought into close contact with the inorganic solid electrolyte to reduce the resistance inside the composite solid electrolyte. Further, the solid electrolyte secondary battery may be used in a high temperature environment (for example, a high temperature environment of 100° C.
  • the numerical value connected by “to” means a numerical value range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • any lower limit value and upper limit value can be selected and connected by "".
  • the composite solid electrolyte of the present invention contains at least an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether.
  • the composite solid electrolyte of the present invention is a mixture of at least an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether.
  • the branched polyether may include a crosslinked product.
  • the branched polyether preferably contains a constitutional unit formed from an epoxy compound having an ethylene oxide unit in its side chain. That is, the branched polyether is preferably a polymer having at least a monomer of an epoxy compound having an ethylene oxide unit in its side chain.
  • Examples of the epoxy compound having an ethylene oxide unit in the side chain include a monomer represented by the following formula (2), which is represented by the following formula (2) and, if necessary, the following formula (1) and the following formula (3).
  • the branched polyether using the represented monomer is the polyether (i) having an ethylene oxide unit in the side chain.
  • the monomers represented by the formulas (1) to (3) may be used alone or in combination of two or more.
  • R is —CH 2 O(CH 2 CH 2 O) n R 4 , R 4 is an alkyl group having 1 to 6 carbon atoms, and n is a number of 0 to 12].
  • R 5 represents a group containing an ethylenically unsaturated group.
  • Examples of the monomer of the formula (3) include allyl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, ⁇ -terpinyl glycidyl ether, cyclohexenyl methyl glycidyl ether, p-vinyl benzyl glycidyl ether, allyl phenyl glycidyl ether, vinyl glycidyl.
  • Ether 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy-5,9-cyclododecanediene, 3,4- Epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, glycidyl cinnamate, glycidyl crotonic acid, and glycidyl-4-hexenoate are used.
  • Preferred are allyl glycidyl ether, acrylic acid glycidyl ether, and methacrylic acid glycidyl ether.
  • the polyether (i) having an ethylene oxide unit in its side chain can be synthesized, for example, as follows.
  • Coordination anion initiators such as organoaluminum-based catalyst systems, organozinc-based catalyst systems, and organotin-phosphate ester condensate catalyst systems as ring-opening polymerization catalysts, or potassium containing K + in the counterion
  • Anionic initiators such as alkoxides, potassium diphenylmethyl, and potassium hydroxide are used to react each monomer in the presence or absence of a solvent at a reaction temperature of 10 to 120° C. under stirring to obtain a polyether (i. ) Is obtained.
  • a coordinating anion initiator is preferable, and an organotin-phosphate ester condensate catalyst system is particularly preferable because it is easy to handle.
  • the molar ratio of the repeating unit (C) derived from the monomer of the formula (3) is 95 to 5 mol% of (A), 5 to 95 mol% of (B), and 0 to 20 mol% of (C).
  • the content of the repeating unit (A) is 95 mol% or less, the glass transition temperature is not increased and the oxyethylene chain is not crystallized, and as a result, it is preferable in terms of ion conductivity.
  • polyether (i) having an ethylene oxide unit in the side chain examples include ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether terpolymer, ethylene oxide/diethylene glycol methyl glycidyl ether/glycidyl methacrylate terpolymer, Examples thereof include ethylene oxide/diethylene glycol methyl glycidyl ether/glycidyl acrylate terpolymer.
  • the weight average molecular weight of the polyether (i) having an ethylene oxide unit in the side chain is not particularly limited, but may be 10,000 to 3,000,000, more preferably 50,000 to 2,500,000, and preferably 100,000 to 2,000,000. It is particularly preferable that The weight average molecular weight is calculated by gel permeation chromatography (GPC) using dimethylformamide (DMF) as a solvent, and is calculated in terms of standard polystyrene.
  • GPC gel permeation chromatography
  • DMF dimethylformamide
  • the polymer solid electrolyte of the branched polyether preferably contains a lithium salt compound.
  • a lithium salt compound having a wide potential window, which is generally used for lithium ion batteries, is suitable.
  • the lithium salt compound include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 (LiTFSI), LiN(SFO 2 ) 2 (LiFSI), LiN(C 2 F 5 ).
  • SO 2 ) 2 , LiN[CF 3 SC(C 2 F 5 SO 2 ) 3 ] 2 and the like can be mentioned, but the invention is not limited thereto. These may be used alone or in combination of two or more.
  • the content thereof is preferably such that the value of the number of moles of the lithium salt compound/the total number of moles of ether oxygen atoms of the branched polyether is 0.0001 to 5, and The range of 0.001 to 0.5 is preferable.
  • the branched polyether polymer solid electrolyte may contain a room temperature molten salt.
  • the room-temperature molten salt is a salt that is at least partially in a liquid state at room temperature, and the room temperature refers to a temperature range in which the power supply is supposed to normally operate.
  • the temperature range in which the power supply is supposed to normally operate has an upper limit of about 120° C., in some cases about 60° C., and a lower limit of about ⁇ 40° C., in some cases about ⁇ 20° C.
  • Normal temperature molten salt is also called ionic liquid, and quaternary ammonium organic cations of pyridine type, aliphatic amine type, and alicyclic amine type are known.
  • quaternary ammonium organic cation include imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, piperidinium ions and the like. Particularly, an imidazolium cation is preferable.
  • tetraalkylammonium ion examples include, but are not limited to, trimethylethylammonium ion, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, and triethylmethylammonium ion. is not.
  • the alkylpyridinium ion includes N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion, N-butylpyridinium ion, 1-ethyl-2methylpyridinium ion, 1-butyl-4-methyl. Examples thereof include, but are not limited to, pyridinium ion and 1-butyl-2,4 dimethylpyridinium ion.
  • imidazolium cation examples include 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- 2,3-Dimethylimidazolium ion and the like can be mentioned, but the present invention is not limited thereto.
  • the room temperature molten salt having these cations may be used alone or in combination of two or more kinds.
  • the content thereof is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the branched polyether.
  • the solid polymer electrolyte may include a plasticizer in addition to the branched polyether.
  • the plasticizer is not particularly limited, but dicyano compounds and branched ether compounds are preferable.
  • a plasticizer is added, it is preferable to crosslink the branched polyether. This cross-linking is a chemical cross-linking and can suppress the outflow of the plasticizer from the inside of the electrode.
  • dicyano compounds include succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, and 1,8-dicyanooctane.
  • branched ether compounds include the following multi-branched ether compounds.
  • the content of the plasticizer is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the branched polyether.
  • examples of the inorganic solid electrolyte include oxide-based solid electrolytes and sulfide-based solid electrolytes.
  • the inorganic solid electrolyte is contained, for example, in the form of particles, and has a structure in which the particles of the inorganic solid electrolyte are adhered to each other by the polymer solid electrolyte.
  • the oxide solid electrolyte is particularly limited as long as it contains oxygen, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Not a thing.
  • M represents a divalent metal atom
  • D represents a halogen atom or a combination of two or more kinds of halogen atoms
  • Li 3 BO 3 —Li 2 SO 4 Li 2 O—B 2 O 3 -P 2 O 5 , Li 2 O-SiO 2 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3/2w) N w (w is w ⁇ 1)
  • LiTi 2 P 3 O 12 having a NASICON (Naturium super ionic conductor) type crystal structure
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON and LiPOD LiPON and LiPOD (D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb) in which a part of oxygen of lithium phosphate is replaced with nitrogen.
  • Mo, Ru, Ag, Ta, W, Pt, Au and the like LiAON (A is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
  • the sulfide-based solid electrolyte is not particularly limited as long as it contains sulfur, has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Not a thing.
  • a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula can be given.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. Among them, B, Sn, Si, Al and Ge are preferable, and Sn, Al and Ge are more preferable.
  • A represents I, Br, Cl or F, preferably I or Br, and particularly preferably I.
  • a to e indicate composition ratios of respective elements, and a:b:c:d:e satisfies 1 to 12:0 to 1:1:2 to 12:0 to 5. Further, a is preferably 1 to 9, more preferably 1.5 to 4.
  • b is preferably 0 to 0.5.
  • d is preferably 3 to 7, and more preferably 3.25 to 4.5. Further, e is preferably 0 to 3, and more preferably 0 to 2.
  • the inorganic solid electrolyte is in the form of particles
  • its particle size is, for example, 0.01 to 100 ⁇ m, preferably 0.1 to 20 ⁇ m.
  • the mass ratio of the inorganic solid electrolyte and the polymer solid electrolyte is not particularly limited, from the viewpoint of more suitably exhibiting excellent charge and discharge characteristics in the solid electrolyte secondary battery, the inorganic solid
  • the amount is preferably 0.1 to 1000 parts by mass, more preferably 0.5 to 500 parts by mass, and further preferably 1 to 400 parts by mass with respect to 100 parts by mass of the electrolyte.
  • the composite solid electrolyte of the present invention contains a polymer solid electrolyte in addition to the inorganic solid electrolyte, it can be suitably formed into a sheet, unlike the case where only the inorganic solid electrolyte is used.
  • the thickness when the composite solid electrolyte of the present invention is applied to a solid electrolyte secondary battery is not particularly limited, but is, for example, about 0.01 to 1 mm, preferably about 0.05 to 0.3 mm.
  • the composite solid electrolyte of the present invention can be prepared by utilizing a conventionally known method.
  • a method of obtaining a composite solid electrolyte by dispersing an inorganic solid electrolyte in a solvent containing a branched polyether and a lithium salt compound to prepare a composite solid electrolyte slurry, spraying and drying the slurry in hot air It can be produced by a method of heating and evaporating the solvent of the dispersion slurry under atmospheric pressure or a reduced pressure to dryness, or a method of applying the dispersion slurry to a current collector sheet or the like and drying it.
  • the dispersion solvent water, an organic solvent, or a mixture of these in any ratio can be used. Even if the obtained dispersion slurry is a uniform solution, even if the solute that does not dissolve in the dispersion solvent is an inorganic solid electrolyte and/or a polymer solid electrolyte of branched polyether, the above general preparation method is used. Can be prepared by In the composite solid electrolyte obtained by removing the dispersion solvent, it is desirable to remove the remaining solvent and water as much as possible. For example, it can be realized by evacuation under heating at 30° C. to 200° C. for 1 hour to 48 hours.
  • the electrolyte powder itself can be pressure-molded and used as a solid electrolyte material. Furthermore, by performing the heat treatment under pressure, the porosity can be reduced and the particle interface adhesion can be increased.
  • the organic solvent is preferably a polar solvent. Specifically, acetonitrile, ethyl alcohol, methyl alcohol, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, dioxane, methyl ethyl ketone, methyl isobutyl ketone and the like are used alone or in combination.
  • the inorganic solid electrolyte alone When the inorganic solid electrolyte alone is pressure-molded, it has almost no binding property, so that it becomes a thick-film electrolyte, but in the composite solid electrolyte, it is possible to manufacture a thinner solid electrolyte due to the binding property of the polymer solid electrolyte. is there.
  • the composite solid electrolyte can be crosslinked to increase the binding strength between the inorganic solid electrolyte and the polymer solid electrolyte in the composite solid electrolyte, and also the binding pressure and the deposition of dendride of the battery It is also possible to prevent a short circuit.
  • the cross-linking can be carried out by applying heat or irradiating active energy rays such as ultraviolet rays.
  • a radical initiator selected from organic peroxides, azo compounds, etc.
  • organic peroxide ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters and the like which are commonly used for crosslinking
  • azo compounds are azonitriles.
  • Compounds, azoamide compounds, azoamidine compounds and the like which are usually used for crosslinking are used.
  • the amount of the radical initiator added varies depending on the type, it is usually within the range of 0.1 to 10 parts by mass with 100 parts by mass of the branched polyether (ion conductive polymer).
  • radical initiator in the case of cross-linking irradiated with active energy rays, alkylphenone-based, benzophenone-based, acylphosphine oxide-based, titanocenes, triazines, bisimidazoles, oxime esters and the like are used.
  • the addition amount of these radical polymerization initiators varies depending on the type, but is usually in the range of 0.01 to 5.0 parts by mass with 100 parts by mass of the branched polyether (ion conductive polymer).
  • a crosslinking aid may be used when the composite solid electrolyte is crosslinked.
  • ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, trimethylolpropane triacrylate, allyl methacrylate, allyl acrylate, diallyl malate, triallyl isocyanurate, maleimide, phenyl Maleimide, maleic anhydride and the like can be optionally used.
  • a cross-linked film of a polymeric material may be placed.
  • a crosslinked film of an ion conductive polymer material is a crosslinked film of a composition containing a lithium salt compound and an ion conductive polymer.
  • the crosslinked film is formed by crosslinking at least a composition containing a lithium salt compound and an ion conductive polymer having an ethylene oxide unit in a side chain. That is, the crosslinked film is a crosslinked film of a composition containing a lithium salt compound and an ion conductive polymer.
  • the lithium salt compound and the ion conductive polymer are as described above.
  • the content of the ion conductive polymer contained in the crosslinked film is 100 parts by mass of the entire crosslinked film, preferably 10 to 90 parts by mass, more preferably 20 to 80 parts by mass.
  • the number of moles of lithium salt compound/the total number of moles of ether oxygen atoms of the ion conductive polymer is preferably 0.0001 to 5, and more preferably 0.001 to 0. A range of 5 is good.
  • the crosslinked film may contain a room temperature molten salt.
  • the room temperature molten salt is as described above.
  • the content thereof is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the ion conductive polymer.
  • the crosslinked film may contain a plasticizer and the like.
  • the plasticizer is as described above.
  • the content of the plasticizer is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the ion conductive polymer.
  • a crosslinked film may be formed by adding a reaction initiator or a crosslinking aid to a composition containing a lithium salt compound and an ion conductive polymer.
  • the reaction initiator include a thermal reaction initiator and a photoreaction initiator.
  • a radical initiator selected from organic peroxides, azo compounds, etc. is used as the thermal reaction initiator.
  • organic peroxide ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters and the like which are commonly used for crosslinking
  • azo compounds are azonitriles.
  • Compounds, azoamide compounds, azoamidine compounds and the like which are usually used for crosslinking are used.
  • the amount of the radical initiator added varies depending on the type, it is usually within the range of 0.1 to 10 parts by mass with 100 parts by mass of the ion conductive polymer.
  • Radical initiators such as alkylphenones, benzophenones, acylphosphine oxides, titanocenes, triazines, bisimidazoles, and oxime esters are used as photoreaction initiators.
  • the addition amount of these radical polymerization initiators varies depending on the type, but is usually within the range of 0.01 to 5.0 parts by mass with 100 parts by mass of the ion conductive polymer.
  • ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, trimethylolpropane triacrylate, allyl methacrylate, allyl acrylate, diallyl malate, triallyl isocyanurate, maleimide , Phenylmaleimide, maleic anhydride, etc. can be optionally used.
  • An organic solvent may be added to the composition containing the lithium salt compound and the ion conductive polymer, and as the organic solvent, toluene, xylene, benzene, acetonitrile, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, THF ( Tetrahydrofuran).
  • the crosslinked film is produced by, for example, mixing an ion conductive polymer, a reaction initiator if necessary, and a lithium salt compound in an organic solvent and dissolving them to form a composition, and then forming a composition on a substrate (for example, PET film or Teflon). (Registered trademark) plate, etc., the composition is cast, the solvent is removed, and then a crosslinked film is produced by heating or irradiation with active energy rays such as ultraviolet rays. Alternatively, the composition may be directly cast on the surface of the composite solid electrolyte to produce a crosslinked film.
  • the thickness of the crosslinked film is preferably in the range of 0.1 ⁇ m to 200 ⁇ m, more preferably 0.5 ⁇ m to 100 ⁇ m.
  • Examples of the laminated constitution of the composite solid electrolyte secondary battery of the present invention include the following constitutions.
  • the composite solid electrolyte secondary battery of the present invention it is preferable that the composite solid electrolyte and the aforementioned crosslinked film are in contact with each other. Since the crosslinked film is a crosslinked product of a composition containing an ion conductive polymer containing a lithium salt compound, it has ion conductivity and has high flexibility as compared with an inorganic material. .. Therefore, the crosslinked film has a large contact area with the composite solid electrolyte, and as a result, the interfacial resistance of the composite solid electrolyte is effectively reduced, and the composite solid electrolyte secondary battery of the present invention has excellent charge/discharge characteristics. It is considered to be effective.
  • the crosslinked film is in contact with the electrode material layer of the electrode, and the crosslinked film is in contact with both the electrode material layer and the composite solid electrolyte. Is also preferable.
  • Composite solid electrolyte secondary battery The composite solid electrolyte secondary battery of the present invention includes at least a positive electrode, a negative electrode, and the composite solid electrolyte of the present invention.
  • the composite solid electrolyte of the present invention is as described above.
  • the composite solid electrolyte of the present invention is arranged between the positive electrode and the negative electrode.
  • the composite solid electrolyte used in the composite solid electrolyte secondary battery of the present invention in addition to the inorganic solid electrolyte, since it contains a polymer solid electrolyte containing a branched polyether, the inorganic solid electrolyte It is considered that the contact area of the interface between the electrode material layer and the composite solid electrolyte layer is larger than that in the case where the solid electrolyte is formed only by itself, and as a result, the interface resistance between the electrode and the electrolyte decreases, which is excellent. It is considered that the excellent charge/discharge characteristics are exhibited. Further, even in the composite solid electrolyte, it is considered that the polymer solid electrolyte reduces the resistance inside the composite solid electrolyte by bringing the particles of the inorganic solid electrolyte into close contact with each other.
  • Electrodes can be used for both the positive electrode and the negative electrode, and an electrode including a current collector with an electrode material layer, that is, a positive electrode material layer or a negative electrode material layer can be exemplified.
  • a known current collector can be used for the positive electrode and the negative electrode.
  • a metal such as aluminum, nickel, stainless steel, gold, platinum, or titanium is used as a current collector.
  • a metal such as copper, nickel, stainless steel, gold, platinum or titanium is used as a current collector.
  • the positive electrode material layer and the negative electrode material layer each contain at least a positive electrode active material and a negative electrode active material, and may further contain a conductive auxiliary agent, a binder, and a thickener, if necessary, the above-mentioned inorganic material.
  • a solid electrolyte may be included.
  • the positive electrode active material used in the present invention is a lithium metal-containing composite oxide powder having a composition of any one of LiMO 2 , LiM 2 O 4 , Li 2 MO 3 and LiMEO 4 .
  • M in the formula is mainly composed of a transition metal and contains at least one of Co, Mn, Ni, Cr, Fe, and Ti.
  • M is a transition metal, Al, Ga, Ge, Sn, Pb, Sb, Bi, Si, P, B and the like may be added in addition to the transition metal.
  • E contains at least one of P and Si.
  • the particle size of the positive electrode active material is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. These active materials have an electromotive force of 3 V (vs. Li/Li+) or more.
  • positive electrode active material examples include lithium cobalt oxide, lithium nickel oxide, nickel/cobalt/lithium manganate (ternary system), spinel type lithium manganate, and lithium iron phosphate.
  • the negative electrode active material used in the present invention is a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (intercalation compound) capable of occluding and releasing alkali metal ions such as lithium ions, or lithium ions.
  • Metals such as lithium, aluminum-based compounds, tin-based compounds, silicon-based compounds, and titanium-based compounds that can store and release alkali metal ions such as.
  • the particle size is preferably 10 nm or more and 100 ⁇ m or less, and more preferably 20 nm or more and 20 ⁇ m or less.
  • a known conductive auxiliary agent can be used, such as graphite, furnace black, acetylene black, conductive carbon black such as Ketjen black, carbon fiber such as carbon nanotubes, or metal powder. Can be mentioned. These conductive aids may be used alone or in combination of two or more.
  • binder for example, one or more selected from fluororesins such as PVdF, fluororubber, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber, acrylic polymers, vinyl polymers, and branched polyethers described above. Compounds can be used.
  • the amount of the active material added to these binders is 100 parts by mass, preferably 5 parts by mass or less, more preferably 3 parts by mass or less, for example 0.01 to 2 parts by mass.
  • the thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose and salts thereof (alkali metal salts such as sodium salt, ammonium salt), polyvinyl alcohol, polyacrylic acid salt, polyethylene oxide and the like. You may use these thickeners 1 type(s) or 2 or more types.
  • the thickener is added in an amount of preferably 5 parts by mass or less, more preferably 3 parts by mass or less, for example, 0.01 to 2 parts by mass, based on 100 parts by mass of the active material. Further, when the viscosity of the coating liquid is low, a thickener can be used together.
  • the method for producing the positive electrode and the negative electrode including the current collector, the positive electrode material layer, and the negative electrode material layer is not particularly limited, and a general method is used.
  • a positive electrode active material or a negative electrode active material, a conductive auxiliary agent, a binder, a solvent such as water or N-methyl-2-pyrrolidone (NMP), and a positive electrode material and a negative electrode material paste (thickener, if necessary) (The coating solution) is uniformly applied to the surface of the current collector by a doctor blade method or a silk screen method so as to have an appropriate thickness.
  • a negative electrode active material powder, a positive electrode active material powder, a conductive auxiliary agent, a binder and the like are dispersed in water to form a slurry, which is applied to a metal electrode substrate, and then a blade having a predetermined slit width is used. Make it uniform in thickness.
  • the electrode is dried, for example, in hot air at 100° C. or under reduced pressure at 80° C. to remove excess organic solvent. The dried electrode is press-molded by a press machine to manufacture the electrode.
  • such a void may contain the above-mentioned branched polyether which is an ion conductive polymer.
  • the manufacturing method of the composite solid electrolyte secondary battery of the present invention is not particularly limited, and is composed of at least a positive electrode, a negative electrode, and the composite solid electrolyte of the present invention, and manufactured by a known method. To be done.
  • the positive electrode, the composite solid electrolyte, and the negative electrode are inserted in an outer can.
  • the storage body is obtained by joining the sealing body with tab welding or the like, enclosing the sealing body, and caulking.
  • the shape of the battery is not limited, but examples thereof include a coin type, a cylinder type, and a sheet type, and a structure in which two or more batteries are laminated may be used.
  • a coin battery was produced using the composite solid electrolyte, and the performance of the charge/discharge characteristics of the coin battery was evaluated in the following experiment.
  • acetylene black as a conduction aid
  • 3 parts by mass of graphite 3 parts by mass of graphite
  • PVdF as a binder
  • the positive electrode impregnating coating solution of (2) was applied onto the positive electrode precursor of (1). Then, by leaving it to stand for 2 hours, the branched polyether and the electrolyte lithium compound were impregnated into the voids in the positive electrode while removing the solvent. The impregnated branched polyether was crosslinked under reduced pressure at 100° C. for 2 hours to prepare a positive electrode.
  • a negative electrode having a thickness of 22 ⁇ m was prepared (a basis weight of 3.1 mg/cm 2 , a negative electrode density of 1.2 g/cm 3 , and a porosity of 23%).
  • the composite solid electrolyte consisting of the inorganic solid electrolyte and the polymer solid electrolyte containing the branched polyether, compared with the solid electrolyte not containing the polymer solid electrolyte, apparently solid electrolyte
  • the secondary battery exhibits high charge and discharge capacities.
  • pressure molding is performed using the inorganic solid electrolyte alone, it has almost no flexibility and binding property, so that it becomes a thick film electrolyte, but in the composite solid electrolyte, due to the flexibility and binding property of the polymer solid electrolyte, A thin solid electrolyte is obtained.
  • the composite solid electrolyte of the present invention, and a solid electrolyte secondary battery produced using the composite solid electrolyte are excellent in charge/discharge characteristics, and are storage batteries for in-vehicle applications such as electric vehicles and hybrid electric vehicles and household power storage. Can be suitably used for large-sized battery applications such as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a novel composite solid electrolyte that causes a solid electrolyte secondary battery to exhibit excellent charging/discharging properties. This composite solid electrolyte contains an inorganic solid electrolyte and a polymer solid electrolyte including a branched-type polyether.

Description

複合固体電解質、および複合固体電解質二次電池Composite solid electrolyte and composite solid electrolyte secondary battery
 本発明は、複合固体電解質及び複合固体電解質二次電池に関する。 The present invention relates to a composite solid electrolyte and a composite solid electrolyte secondary battery.
 従来、リチウムイオン電池に代表される非水電解質二次電池は、電解質にイオン伝導性の点から溶液またはペースト状のものが用いられている。しかし、液漏れによる機器の損傷の恐れがあることから、種々の安全対策が必要であり、大型電池開発の障壁になっている。 In the past, non-aqueous electrolyte secondary batteries, typified by lithium-ion batteries, have been used as electrolytes in the form of solutions or pastes because of their ionic conductivity. However, since there is a risk of equipment damage due to liquid leakage, various safety measures are required, which is a barrier to the development of large batteries.
 これに対し高分子固体電解質、無機固体電解質などの電解質が固体化された固体電解質が提案されている。高分子固体電解質は、一般に柔軟性、曲げ加工性、および成形性に優れ、応用されるデバイスの設計の自由度が高くなるなどの利点があるが、負荷特性や低温特性が悪いために、高温作動の電池用途に限られるという欠点がある。一方、無機固体電解質は、高分子固体電解質と比べて、イオン伝導性が高いものの、電解質が結晶質あるいは非晶質からなり、充放電時の正負極活物質による体積変化の緩和が難しく、更に、電極と電解質の界面抵抗が高いため、充放電特性が不十分という問題がある。 On the other hand, solid electrolytes in which solid electrolytes such as polymer solid electrolytes and inorganic solid electrolytes are solidified have been proposed. Polymer solid electrolytes are generally superior in flexibility, bending workability, and moldability, and have the advantage of increasing the degree of freedom in the design of the device to which they are applied, but due to poor load characteristics and low-temperature characteristics, high temperature It has the drawback of being limited to operating battery applications. On the other hand, the inorganic solid electrolyte is higher in ion conductivity than the polymer solid electrolyte, but the electrolyte is crystalline or amorphous, and it is difficult to alleviate the volume change due to the positive and negative electrode active materials during charge and discharge, and However, since the interface resistance between the electrode and the electrolyte is high, there is a problem that the charge/discharge characteristics are insufficient.
 電極と電解質の界面抵抗を下げる方法として、無機固体電解質にポリマーを混合することによって、電解質内および電極界面との結着性を向上させることが知られている。例えば、特許文献1では、硫化物系固体電解質に、分岐型ポリマーとして水素添加スチレンブタジエンゴムなどの水素添加ポリマーを結着剤として用いているが、このようなポリマーではイオン伝導性の低下を抑制するまでには至らない。また、特許文献2、3では、イオン伝導性の比較的に高いポリエチレンオキサイド(ポリエチレングリコール)を用いているが、ポリエチレンオキサイドは結晶性が高く、ポリマーで融点が60℃付近にあり、融点以下ではイオン伝導度が低い。また、融点以上に加熱すると軟化して、強度を維持することができず、断裂による短絡が発生しやすいという問題がある。 As a method of lowering the interfacial resistance between the electrode and the electrolyte, it is known to improve the binding property between the electrolyte and the electrode interface by mixing a polymer with the inorganic solid electrolyte. For example, in Patent Document 1, a hydrogenated polymer such as hydrogenated styrene-butadiene rubber as a branched polymer is used as a binder in a sulfide-based solid electrolyte, but such a polymer suppresses a decrease in ion conductivity. I can't do it. Further, in Patent Documents 2 and 3, polyethylene oxide (polyethylene glycol) having relatively high ionic conductivity is used, but polyethylene oxide has high crystallinity, and the melting point of the polymer is around 60° C. Low ionic conductivity. In addition, there is a problem that when heated above the melting point, it softens, the strength cannot be maintained, and a short circuit due to breakage easily occurs.
国際公開第2013-1623号International Publication No. 2013-1623 特開平3-129603号公報JP-A-3-129603 特開2010-33918号公報JP, 2010-33918, A
 本発明は、固体電解質二次電池に優れた充放電特性を発揮させる新規な複合固体電解質を提供することを主な目的とする。さらに、本発明は、当該複合固体電解質を含む複合固体電解質二次電池を提供することも目的とする。 The main object of the present invention is to provide a novel composite solid electrolyte that allows a solid electrolyte secondary battery to exhibit excellent charge/discharge characteristics. A further object of the present invention is to provide a composite solid electrolyte secondary battery containing the composite solid electrolyte.
 本発明者は、上記の課題を解決すべく鋭意検討を行った。その結果、無機固体電解質と、分岐型ポリエーテルを含む高分子固体電解質とを含有する複合固体電解質は、固体電解質二次電池に優れた充放電特性を発揮させることを見出した。本発明は、このような知見に基づいて、さらに検討を重ねることにより完成したものである。 The present inventor has diligently studied to solve the above problems. As a result, they have found that a composite solid electrolyte containing an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether exhibits excellent charge/discharge characteristics for a solid electrolyte secondary battery. The present invention has been completed by further studies based on such findings.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 無機固体電解質と、分岐型ポリエーテルを含む高分子固体電解質と、を含有する、複合固体電解質。
項2. 前記分岐型ポリエーテルは、側鎖にエチレンオキシド単位を有するエーテル化合物から形成された構成単位を含む、項1に記載の複合固体電解質。
項3. 前記分岐型ポリエーテルは、アリルグリシジルエーテル、アクリル酸グリシジルエーテル、及びメタクリル酸グリシジルエーテルからなる群より選択される少なくとも1種から形成された構成単位を含む、項1又は2に記載の複合固体電解質。
項4. 前記分岐型ポリエーテルは、架橋されている、項1~3のいずれか1項に記載の複合固体電解質。
項5. 前記無機固体電解質は、酸化物系固体電解質又は硫化物系固体電解質である、項1~4のいずれか1項に記載の複合固体電解質。
項6. 項1~5のいずれか1項に記載の複合固体電解質を含む、複合固体電解質二次電池。
That is, the present invention provides the inventions of the following modes.
Item 1. A composite solid electrolyte containing an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether.
Item 2. Item 2. The composite solid electrolyte according to Item 1, wherein the branched polyether includes a constituent unit formed of an ether compound having an ethylene oxide unit in a side chain.
Item 3. Item 3. The composite solid electrolyte according to Item 1 or 2, wherein the branched polyether includes a constituent unit formed of at least one selected from the group consisting of allyl glycidyl ether, acrylic acid glycidyl ether, and methacrylic acid glycidyl ether. ..
Item 4. Item 4. The composite solid electrolyte according to any one of Items 1 to 3, wherein the branched polyether is crosslinked.
Item 5. Item 5. The composite solid electrolyte according to any one of Items 1 to 4, wherein the inorganic solid electrolyte is an oxide solid electrolyte or a sulfide solid electrolyte.
Item 6. Item 7. A composite solid electrolyte secondary battery containing the composite solid electrolyte according to any one of items 1 to 5.
 本発明によれば、固体電解質二次電池に優れた充放電特性を発揮させる新規な複合固体電解質を提供することができる。さらに、本発明によれば、当該複合固体電解質を含む複合固体電解質二次電池を提供することもできる。 According to the present invention, it is possible to provide a novel composite solid electrolyte that allows a solid electrolyte secondary battery to exhibit excellent charge/discharge characteristics. Furthermore, according to the present invention, it is also possible to provide a composite solid electrolyte secondary battery containing the composite solid electrolyte.
 本発明の複合固体電解質は、無機固体電解質と、分岐型ポリエーテルを含む高分子固体電解質とを含有することを特徴としている。本発明の複合固体電解質は、このような構成を備えていることにより、固体電解質二次電池の固体電解質として適用されると、固体電解質二次電池に優れた充放電特性を発揮させることができる。より具体的には、本発明の複合固体電解質は、無機固体電解質に加えて、分岐型ポリエーテルを含む高分子固体電解質を含有していることから、無機固体電解質のみによって固体電解質が形成されている場合などと比較して、電極材料層と固体電解質層との界面の接触面積が大きく、その結果、電極と電解質の界面抵抗が低下し、優れた充放電特性が発揮されるものと考えられる。また、複合固体電解質中においても、当該高分子固体電解質は、無機固体電解質と密着することで、複合固体電解質の内部での抵抗を低下させていると考えられる。また、固体電解質二次電池は、高温環境(例えば100℃以上の高温環境)で使用されることもあるが、本発明の複合固体電解質を用いることにより、高温環境において優れた充放電特性が発揮される。以下、本発明の複合固体電解質及びこれを利用した固体電解質二次電池について詳述する。 The composite solid electrolyte of the present invention is characterized by containing an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether. Since the composite solid electrolyte of the present invention has such a configuration, when applied as a solid electrolyte of a solid electrolyte secondary battery, the solid electrolyte secondary battery can exhibit excellent charge/discharge characteristics. .. More specifically, the composite solid electrolyte of the present invention, in addition to the inorganic solid electrolyte, contains a polymer solid electrolyte containing a branched polyether, the solid electrolyte is formed only by the inorganic solid electrolyte. It is considered that the contact area at the interface between the electrode material layer and the solid electrolyte layer is larger than that in the case where the electrode material layer and the solid electrolyte layer are large, and as a result, the interface resistance between the electrode and the electrolyte is reduced and excellent charge/discharge characteristics are exhibited. .. Further, even in the composite solid electrolyte, it is considered that the polymer solid electrolyte is brought into close contact with the inorganic solid electrolyte to reduce the resistance inside the composite solid electrolyte. Further, the solid electrolyte secondary battery may be used in a high temperature environment (for example, a high temperature environment of 100° C. or higher), but by using the composite solid electrolyte of the present invention, excellent charge/discharge characteristics are exhibited in the high temperature environment. To be done. Hereinafter, the composite solid electrolyte of the present invention and the solid electrolyte secondary battery using the same will be described in detail.
 なお、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。複数の下限値と複数の上限値が別個に記載されている場合、任意の下限値と上限値を選択し、「~」で結ぶことができるものとする。 Note that, in the present specification, the numerical value connected by “to” means a numerical value range including the numerical values before and after “to” as the lower limit value and the upper limit value. When a plurality of lower limit values and a plurality of upper limit values are described separately, any lower limit value and upper limit value can be selected and connected by "...".
 本発明の複合固体電解質は、少なくとも、無機固体電解質と、分岐型ポリエーテルを含む高分子固体電解質とを含有する。具体的には、本発明の複合固体電解質は、少なくとも、無機固体電解質と、分岐型ポリエーテルを含む高分子固体電解質との混合物である。 The composite solid electrolyte of the present invention contains at least an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether. Specifically, the composite solid electrolyte of the present invention is a mixture of at least an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether.
 分岐型ポリエーテルは、架橋体を含んでいてもよい。 The branched polyether may include a crosslinked product.
 分岐型ポリエーテルは、側鎖にエチレンオキシド単位を有するエポキシ化合物から形成された構成単位を含むことが好ましい。すなわち、分岐型ポリエーテルは、側鎖にエチレンオキシド単位を有するエポキシ化合物を少なくとも単量体としたポリマーであることが好ましい。 The branched polyether preferably contains a constitutional unit formed from an epoxy compound having an ethylene oxide unit in its side chain. That is, the branched polyether is preferably a polymer having at least a monomer of an epoxy compound having an ethylene oxide unit in its side chain.
 側鎖にエチレンオキシド単位を有するエポキシ化合物としては、例えば、下記式(2)で表される単量体が挙げられ、下記式(2)、必要により下記式(1)、下記式(3)で表される単量体を用いた分岐型ポリエーテルは、側鎖にエチレンオキシド単位を有するポリエーテル(i)となる。式(1)~(3)で表される単量体は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Examples of the epoxy compound having an ethylene oxide unit in the side chain include a monomer represented by the following formula (2), which is represented by the following formula (2) and, if necessary, the following formula (1) and the following formula (3). The branched polyether using the represented monomer is the polyether (i) having an ethylene oxide unit in the side chain. The monomers represented by the formulas (1) to (3) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(2)中、Rは-CH2O(CH2CH2O)n4であり、R4は炭素数1~6のアルキル基であり、nは0~12の数である。] [In the formula (2), R is —CH 2 O(CH 2 CH 2 O) n R 4 , R 4 is an alkyl group having 1 to 6 carbon atoms, and n is a number of 0 to 12]. ]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(3)中、R5は、エチレン性不飽和基を含有する基を表す。] [In the formula (3), R 5 represents a group containing an ethylenically unsaturated group. ]
 式(3)の単量体としては、アリルグリシジルエーテル、4-ビニルシクロヘキシルグリシジルエーテル、α-テルピニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、アリルフェニルグリシジルエーテル、ビニルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-1-ペンテン、4,5-エポキシ-2-ペンテン、1,2-エポキシ-5,9-シクロドデカンジエン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5-シクロオクテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソルビン酸グリシジル、ケイ皮酸グリシジル、クロトン酸グリシジル、グリシジル-4-ヘキセノエートが用いられる。好ましくは、アリルグリシジルエーテル、アクリル酸グリシジルエーテル、メタクリル酸グリシジルエーテルである。 Examples of the monomer of the formula (3) include allyl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, α-terpinyl glycidyl ether, cyclohexenyl methyl glycidyl ether, p-vinyl benzyl glycidyl ether, allyl phenyl glycidyl ether, vinyl glycidyl. Ether, 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy-5,9-cyclododecanediene, 3,4- Epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, glycidyl cinnamate, glycidyl crotonic acid, and glycidyl-4-hexenoate are used. Preferred are allyl glycidyl ether, acrylic acid glycidyl ether, and methacrylic acid glycidyl ether.
 側鎖にエチレンオキシド単位を有するポリエーテル(i)の合成は、例えば、次のようにして行うことができる。開環重合触媒として有機アルミニウムを主体とする触媒系、有機亜鉛を主体とする触媒系、有機錫-リン酸エステル縮合物触媒系などの配位アニオン開始剤、または対イオンにK+を含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤を用いて、各単量体を溶媒の存在下又は不存在下、反応温度10~120℃、撹拌下で反応させることによってポリエーテル(i)が得られる。重合度、あるいは得られる共重合体の性質などの点から、配位アニオン開始剤が好ましく、なかでも有機錫-リン酸エステル縮合物触媒系が取り扱い易く特に好ましい。 The polyether (i) having an ethylene oxide unit in its side chain can be synthesized, for example, as follows. Coordination anion initiators such as organoaluminum-based catalyst systems, organozinc-based catalyst systems, and organotin-phosphate ester condensate catalyst systems as ring-opening polymerization catalysts, or potassium containing K + in the counterion Anionic initiators such as alkoxides, potassium diphenylmethyl, and potassium hydroxide are used to react each monomer in the presence or absence of a solvent at a reaction temperature of 10 to 120° C. under stirring to obtain a polyether (i. ) Is obtained. From the viewpoint of the degree of polymerization or the properties of the resulting copolymer, a coordinating anion initiator is preferable, and an organotin-phosphate ester condensate catalyst system is particularly preferable because it is easy to handle.
 側鎖にエチレンオキシド単位を有するポリエーテル(i)において、式(1)の単量体に由来する繰り返し単位(A)と、式(2)の単量体に由来する繰り返し単位(B)と、式(3)の単量体に由来する繰り返し単位(C)とのモル比は、(A)95~5モル%、(B)5~95モル%、および(C)0~20モル%が適当であり、好ましくは(A)92~9モル%、(B)7~90モル%、および(C)1~15モル%、更に好ましくは(A)88~18モル%、(B)10~80モル%、および(C)2~15モル%である。繰り返し単位(A)が95モル%以下であるとガラス転移温度の上昇とオキシエチレン鎖の結晶化を招かず、結果的にイオン伝導性の点で好ましい。 In the polyether (i) having an ethylene oxide unit in its side chain, a repeating unit (A) derived from the monomer of formula (1), a repeating unit (B) derived from the monomer of formula (2), The molar ratio of the repeating unit (C) derived from the monomer of the formula (3) is 95 to 5 mol% of (A), 5 to 95 mol% of (B), and 0 to 20 mol% of (C). Suitable, preferably (A) 92 to 9 mol %, (B) 7 to 90 mol %, and (C) 1 to 15 mol %, more preferably (A) 88 to 18 mol %, (B) 10 ˜80 mol %, and (C) 2 to 15 mol %. When the content of the repeating unit (A) is 95 mol% or less, the glass transition temperature is not increased and the oxyethylene chain is not crystallized, and as a result, it is preferable in terms of ion conductivity.
 側鎖にエチレンオキシド単位を有するポリエーテル(i)の具体例としては、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル三元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/メタクリル酸グリシジル三元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アクリル酸グリシジル三元共重合体等が挙げられる。 Specific examples of the polyether (i) having an ethylene oxide unit in the side chain include ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether terpolymer, ethylene oxide/diethylene glycol methyl glycidyl ether/glycidyl methacrylate terpolymer, Examples thereof include ethylene oxide/diethylene glycol methyl glycidyl ether/glycidyl acrylate terpolymer.
 側鎖にエチレンオキシド単位を有するポリエーテル(i)の重量平均分子量は特に限定されないが、1万~300万であってよく、5万~250万であることがより好ましく、10万~200万であることが特に好ましい。重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で、溶媒としてジメチルホルムアミド(DMF)を使用して、標準ポリスチレン換算により算出する。 The weight average molecular weight of the polyether (i) having an ethylene oxide unit in the side chain is not particularly limited, but may be 10,000 to 3,000,000, more preferably 50,000 to 2,500,000, and preferably 100,000 to 2,000,000. It is particularly preferable that The weight average molecular weight is calculated by gel permeation chromatography (GPC) using dimethylformamide (DMF) as a solvent, and is calculated in terms of standard polystyrene.
 分岐型ポリエーテルの高分子固体電解質としては、リチウム塩化合物を含有することが好ましい。リチウム塩化合物としては、リチウムイオン電池に一般的に利用されているような、広い電位窓を有するリチウム塩化合物が好適である。リチウム塩化合物としては、例えば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22(LiTFSI),LiN(SFO22(LiFSI)、LiN(C25SO22、LiN[CF3SC(C25SO232などを挙げられるが、これらに限定されない。これらは、単独で用いても、2種類以上を混合して用いても良い。 The polymer solid electrolyte of the branched polyether preferably contains a lithium salt compound. As the lithium salt compound, a lithium salt compound having a wide potential window, which is generally used for lithium ion batteries, is suitable. Examples of the lithium salt compound include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 (LiTFSI), LiN(SFO 2 ) 2 (LiFSI), LiN(C 2 F 5 ). SO 2 ) 2 , LiN[CF 3 SC(C 2 F 5 SO 2 ) 3 ] 2 and the like can be mentioned, but the invention is not limited thereto. These may be used alone or in combination of two or more.
 高分子固体電解質にリチウム塩化物が含まれる場合、その含有量としては、リチウム塩化合物のモル数/分岐型ポリエーテルのエーテル酸素原子の総モル数の値が0.0001~5が好ましく、更に好ましくは0.001~0.5の範囲がよい。 When the solid polymer electrolyte contains lithium chloride, the content thereof is preferably such that the value of the number of moles of the lithium salt compound/the total number of moles of ether oxygen atoms of the branched polyether is 0.0001 to 5, and The range of 0.001 to 0.5 is preferable.
 また、分岐型ポリエーテルの高分子固体電解質としては、常温溶融塩を含有してもよい。常温溶融塩は、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。 The branched polyether polymer solid electrolyte may contain a room temperature molten salt. The room-temperature molten salt is a salt that is at least partially in a liquid state at room temperature, and the room temperature refers to a temperature range in which the power supply is supposed to normally operate. The temperature range in which the power supply is supposed to normally operate has an upper limit of about 120° C., in some cases about 60° C., and a lower limit of about −40° C., in some cases about −20° C.
 常温溶融塩はイオン液体とも呼ばれており、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。 Normal temperature molten salt is also called ionic liquid, and quaternary ammonium organic cations of pyridine type, aliphatic amine type, and alicyclic amine type are known. Examples of the quaternary ammonium organic cation include imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, piperidinium ions and the like. Particularly, an imidazolium cation is preferable.
 なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。 Examples of the tetraalkylammonium ion include, but are not limited to, trimethylethylammonium ion, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, and triethylmethylammonium ion. is not.
 また、アルキルピリジウムイオンとしては、N-メチルピリジウムイオン、N-エチルピリジニウムイオン、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-エチル-2メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。 The alkylpyridinium ion includes N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion, N-butylpyridinium ion, 1-ethyl-2methylpyridinium ion, 1-butyl-4-methyl. Examples thereof include, but are not limited to, pyridinium ion and 1-butyl-2,4 dimethylpyridinium ion.
 イミダゾリウムカチオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。 Examples of the imidazolium cation include 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- 2,3-Dimethylimidazolium ion and the like can be mentioned, but the present invention is not limited thereto.
 なお、これらのカチオンを有する常温溶融塩は、単独で用いてもよく、または2種以上を混合して用いても良い。 The room temperature molten salt having these cations may be used alone or in combination of two or more kinds.
 高分子固体電解質に常温溶融塩が含まれる場合、その含有量としては、分岐型ポリエーテル100質量部に対して、好ましくは10~1000質量部、より好ましくは20~500質量部である。 When the polymer solid electrolyte contains a room temperature molten salt, the content thereof is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the branched polyether.
 高分子固体電解質は、分岐型ポリエーテルに加えて、可塑剤などを含んでいてもよい。可塑剤としては、特に限定されないが、ジシアノ化合物、分岐型エーテル化合物が好ましい。可塑剤を添加する場合は、分岐型ポリエーテルを架橋することが好ましい。この架橋は、化学架橋であり、電極内からの可塑剤の流出を抑制できる。 The solid polymer electrolyte may include a plasticizer in addition to the branched polyether. The plasticizer is not particularly limited, but dicyano compounds and branched ether compounds are preferable. When a plasticizer is added, it is preferable to crosslink the branched polyether. This cross-linking is a chemical cross-linking and can suppress the outflow of the plasticizer from the inside of the electrode.
 ジシアノ化合物としてはスクシノニトリル、グルタロニトリル、アジポニトリル、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、1,8-ジシアノオクタン等が挙げられる。分岐型エーテル化合物の例として、下記の多分岐型エーテル化合物などが挙げられる。 Examples of dicyano compounds include succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, and 1,8-dicyanooctane. Examples of branched ether compounds include the following multi-branched ether compounds.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 高分子固体電解質に可塑剤が含まれる場合、可塑剤の含有量としては、分岐型ポリエーテル100質量部に対して、好ましくは10~1000質量部、より好ましくは20~500質量部である。 When the solid polymer electrolyte contains a plasticizer, the content of the plasticizer is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the branched polyether.
 また、無機固体電解質としては、酸化物系固体電解質、及び硫化物系固体電解質を例示することができる。本発明の複合固体電解質において、無機固体電解質は、例えば粒子状で含まれており、無機固体電解質の粒子間を高分子固体電解質で密着させている構造を有している。 Further, examples of the inorganic solid electrolyte include oxide-based solid electrolytes and sulfide-based solid electrolytes. In the composite solid electrolyte of the present invention, the inorganic solid electrolyte is contained, for example, in the form of particles, and has a structure in which the particles of the inorganic solid electrolyte are adhered to each other by the polymer solid electrolyte.
 酸化物系固体電解質は、酸素を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものであれば特に限定されるものではない。 The oxide solid electrolyte is particularly limited as long as it contains oxygen, has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Not a thing.
 酸化物系固体電解質を構成する具体的な化合物としては、LixLayTiO3〔x=0.3~0.7、y=0.3~0.7〕(LLT)、LixLayZrzmn(MはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxは5≦x≦10を満たし、yは1≦y≦4を満たし、zは1≦z≦4を満たし、mは0≦m≦2を満たし、nは5≦n≦20を満たす。)Lixyzn(式中MはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxは0≦x≦5を満たし、yは0≦y≦1を満たし、zは0≦z≦1を満たし、nは0≦n≦6を満たす。)、Lix(Al,Ga)y(Ti,Ge)zSiamn(ただし、1≦x≦3、0≦y≦1、0≦z≦2、0≦a≦1、1≦m≦7、3≦n≦13)、Li(3-2x)xDO(xは0以上0.1以下の数を表し、Mは2価の金属原子を表す。Dはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixSiyz(1≦x≦5、0<y≦3、1≦z≦10)、Lixyz(1≦x≦3、0<y≦2、1≦z≦10)、Li3BO3-Li2SO4、Li2O-B23-P25、Li2O-SiO2、Li6BaLa2Ta212、Li3PO(4-3/2w)w(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO4、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO3、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi2312、Li(1+x+y)(Al,Ga)x(Ti,Ge)(2-x)Siy(3-y)12(ただし、0≦x≦1、0≦y≦1)、ガーネット型結晶構造を有するLi7La3Zr2O12等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(Li3PO4)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。 Specific examples of the compound forming the oxide-based solid electrolyte include Li x La y TiO 3 [x=0.3 to 0.7, y=0.3 to 0.7] (LLT), Li x La y Zr z M m O n (M is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, and x satisfies 5≦x≦10, and y satisfies 1 ≦ y ≦ 4, z satisfies 1 ≦ z ≦ 4, m satisfies 0 ≦ m ≦ 2, n satisfies 5 ≦ n ≦ 20.) Li x B y M z O n ( wherein Medium M is at least one element of C, S, Al, Si, Ga, Ge, In, Sn, x satisfies 0≦x≦5, y satisfies 0≦y≦1, and z is 0. meet ≦ z ≦ 1, n satisfies 0 ≦ n ≦ 6.), Li x (Al, Ga) y (Ti, Ge) z Si a P m O n ( however, 1 ≦ x ≦ 3,0 ≦ y≦1, 0≦z≦2, 0≦a≦1, 1≦m≦7, 3≦n≦13), Li (3-2x) M x DO (x is a number from 0 to 0.1 ). , M represents a divalent metal atom, D represents a halogen atom or a combination of two or more kinds of halogen atoms), Li x Si y O z (1≦x≦5, 0<y≦3, 1) ≦z≦10), Li x S y O z (1≦x≦3, 0<y≦2, 1≦z≦10), Li 3 BO 3 —Li 2 SO 4 , Li 2 O—B 2 O 3 -P 2 O 5 , Li 2 O-SiO 2 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3/2w) N w (w is w<1), LISON (Lithium superionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite type crystal structure, LiTi 2 P 3 O 12 having a NASICON (Naturium super ionic conductor) type crystal structure, Li (1+x+y) ) (Al, Ga) x (Ti, Ge) (2-x) Si y P (3-y) O 12 (where 0≦x≦1, 0≦y≦1), Li having a garnet-type crystal structure 7 La 3 Zr 2 O1 2, and the like. A phosphorus compound containing Li, P and O is also desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON and LiPOD (D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb) in which a part of oxygen of lithium phosphate is replaced with nitrogen. , Mo, Ru, Ag, Ta, W, Pt, Au and the like) and the like. LiAON (A is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
 その中でも、LixLayTiO3〔x=0.3~0.7、y=0.3~0.7〕(LLT)、LixLayZrzmn(MはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxは5≦x≦10を満たし、yは1≦y≦4を満たし、zは1≦z≦4を満たし、mは0≦m≦2を満たし、nは5≦n≦20を満たす。)、Li7La3Zr212(LLZ)、Li3BO3、Li3BO3-Li2SO4、Li3BO3-Li2CO3、Lix(Al,Ga)y(Ti,Ge)zSiamn(ただし、1≦x≦3、0≦y≦1、0≦z≦2、0≦a≦1、1≦m≦7、3≦n≦13)が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among them, Li x La y TiO 3 [x=0.3 to 0.7, y=0.3 to 0.7] (LLT), Li x La y Zr z M m O n (M is Al, Mg , Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, and at least one element, x satisfies 5≦x≦10, y satisfies 1≦y≦4, and z is 1 ≦z≦4, m satisfies 0≦m≦2, and n satisfies 5≦n≦20), Li 7 La 3 Zr 2 O 12 (LLZ), Li 3 BO 3 , Li 3 BO 3 -Li 2 SO 4, Li 3 BO 3 -Li 2 CO 3, Li x (Al, Ga) y (Ti, Ge) z Si a P m O n ( however, 1 ≦ x ≦ 3,0 ≦ y ≦ 1 , 0≦z≦2, 0≦a≦1, 1≦m≦7, 3≦n≦13) are preferable. These may be used alone or in combination of two or more.
 硫化物系固体電解質は、硫黄を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものであれば特に限定されるものではない。例えば下記式で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。 The sulfide-based solid electrolyte is not particularly limited as long as it contains sulfur, has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Not a thing. For example, a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula can be given.
 Liabcde Li a M b P c S d A e
 式中、Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。なかでも、B、Sn、Si、Al、Geが好ましく、Sn、Al、Geがより好ましい。Aは、I、Br、Cl、Fを示し、I、Brが好ましく、Iが特に好ましい。a~eは各元素の組成比を示し、a:b:c:d:eは1~12:0~1:1:2~12:0~5を満たす。aはさらに、1~9が好ましく、1.5~4がより好ましい。bは0~0.5が好ましい。dはさらに、3~7が好ましく、3.25~4.5がより好ましい。eはさらに、0~3が好ましく、0~2がより好ましい。 In the formula, M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge. Among them, B, Sn, Si, Al and Ge are preferable, and Sn, Al and Ge are more preferable. A represents I, Br, Cl or F, preferably I or Br, and particularly preferably I. a to e indicate composition ratios of respective elements, and a:b:c:d:e satisfies 1 to 12:0 to 1:1:2 to 12:0 to 5. Further, a is preferably 1 to 9, more preferably 1.5 to 4. b is preferably 0 to 0.5. Further, d is preferably 3 to 7, and more preferably 3.25 to 4.5. Further, e is preferably 0 to 3, and more preferably 0 to 2.
 式において、Li、M、P、S及びAの組成比は、好ましくはb、eが0であり、より好ましくはb=0、e=0で且つa、c及びdの比(a:c:d)がa:c:d=1~9:1:3~7であり、さらに好ましくはb=0、e=0で且つa:c:d=1.5~4:1:3.25~4.5である。 In the formula, the composition ratio of Li, M, P, S and A is preferably b and e being 0, more preferably b=0, e=0 and the ratio of a, c and d (a:c). :D) is a:c:d=1 to 9:1:3 to 7, more preferably b=0, e=0 and a:c:d=1.5 to 4:1:3. It is 25 to 4.5.
 無機固体電解質が粒子状である場合、その粒子径としては、例えば0.01~100μm、好ましくは0.1~20μmが挙げられる。 When the inorganic solid electrolyte is in the form of particles, its particle size is, for example, 0.01 to 100 μm, preferably 0.1 to 20 μm.
 本発明の複合固体電解質において、無機固体電解質と高分子固体電解質との質量比としては、特に制限されないが、固体電解質二次電池に優れた充放電特性をより好適に発揮させる観点から、無機固体電解質100質量部に対して、好ましくは0.1~1000質量部、より好ましくは0.5~500質量部、さらに好ましくは1~400質量部が挙げられる。 In the composite solid electrolyte of the present invention, the mass ratio of the inorganic solid electrolyte and the polymer solid electrolyte is not particularly limited, from the viewpoint of more suitably exhibiting excellent charge and discharge characteristics in the solid electrolyte secondary battery, the inorganic solid The amount is preferably 0.1 to 1000 parts by mass, more preferably 0.5 to 500 parts by mass, and further preferably 1 to 400 parts by mass with respect to 100 parts by mass of the electrolyte.
 本発明の複合固体電解質は、無機固体電解質に加えて、高分子固体電解質を含んでいることから、無機固体電解質のみを用いる場合と異なり、好適にシート状に成形することもできる。本発明の複合固体電解質を固体電解質二次電池に適用する場合の厚みとしては、特に制限されないが、例えば0.01~1mm程度、好ましくは0.05~0.3mm程度が挙げられる。 Since the composite solid electrolyte of the present invention contains a polymer solid electrolyte in addition to the inorganic solid electrolyte, it can be suitably formed into a sheet, unlike the case where only the inorganic solid electrolyte is used. The thickness when the composite solid electrolyte of the present invention is applied to a solid electrolyte secondary battery is not particularly limited, but is, for example, about 0.01 to 1 mm, preferably about 0.05 to 0.3 mm.
複合固体電解質の製造方法
 本発明の複合固体電解質は、従来公知の方法を利用して調製することができる。例えば、分岐型ポリエーテルとリチウム塩化合物を含む溶媒中に無機固体電解質を分散させて複合固体電解質スラリーを調製し、当該スラリーを、熱風中に噴霧・乾燥して複合固体電解質を得る方法や、当該分散スラリーの溶媒を大気圧または減圧下に加熱蒸発させて乾固する方法、或いは、当該分散スラリーを集電シート、等に塗布し乾燥する方法、等によって製造することができる。
Method for producing composite solid electrolyte The composite solid electrolyte of the present invention can be prepared by utilizing a conventionally known method. For example, a method of obtaining a composite solid electrolyte by dispersing an inorganic solid electrolyte in a solvent containing a branched polyether and a lithium salt compound to prepare a composite solid electrolyte slurry, spraying and drying the slurry in hot air, It can be produced by a method of heating and evaporating the solvent of the dispersion slurry under atmospheric pressure or a reduced pressure to dryness, or a method of applying the dispersion slurry to a current collector sheet or the like and drying it.
 分散溶媒としては、水、有機溶媒、および、これらの任意の比率の混合物を使用することができる。得られた分散スラリーが、均一溶液であっても、分散溶媒に溶解しない溶質が無機固体電解質、および/または、分岐型ポリエーテルの高分子固体電解質であっても、上記の一般的な調製方法によって調製できる。分散溶媒を除去して得られる複合固体電解質は、残存する溶媒および水分をできる限り除去することが望ましい。例えば、30℃~200℃の加熱下で1時間~48時間真空排気することで実現できる。乾燥された本発明の複合固体電解質は、イオン伝導性と結着性を有するので、本電解質粉末自体を加圧成型して、固体電解質材料として使用することができる。更に、加圧熱処理をおこなうことによって、空隙率を減少させ粒子界面密着性を増大できる。有機溶媒としては、極性溶媒が好ましい。具体的にはアセトニトリル、エチルアルコール、メチルアルコール、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、メチルエチルケトン、メチルイソブチルケトン等が単独、或いは混合して用いられる。無機固体電解質単独で加圧成型すると、結着性が殆どないため、厚膜の電解質になるが、複合固体電解質では、高分子固体電解質の結着性により、より薄い固体電解質の製造が可能である。 As the dispersion solvent, water, an organic solvent, or a mixture of these in any ratio can be used. Even if the obtained dispersion slurry is a uniform solution, even if the solute that does not dissolve in the dispersion solvent is an inorganic solid electrolyte and/or a polymer solid electrolyte of branched polyether, the above general preparation method is used. Can be prepared by In the composite solid electrolyte obtained by removing the dispersion solvent, it is desirable to remove the remaining solvent and water as much as possible. For example, it can be realized by evacuation under heating at 30° C. to 200° C. for 1 hour to 48 hours. Since the dried composite solid electrolyte of the present invention has ionic conductivity and binding property, the electrolyte powder itself can be pressure-molded and used as a solid electrolyte material. Furthermore, by performing the heat treatment under pressure, the porosity can be reduced and the particle interface adhesion can be increased. The organic solvent is preferably a polar solvent. Specifically, acetonitrile, ethyl alcohol, methyl alcohol, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, dioxane, methyl ethyl ketone, methyl isobutyl ketone and the like are used alone or in combination. When the inorganic solid electrolyte alone is pressure-molded, it has almost no binding property, so that it becomes a thick-film electrolyte, but in the composite solid electrolyte, it is possible to manufacture a thinner solid electrolyte due to the binding property of the polymer solid electrolyte. is there.
複合固体電解質の架橋
 複合固体電解質は、架橋することによって、複合固体電解質内の無機固体電解質と高分子固体電解質との結着強度を上げることができ、また、拘束圧やデンドライドの析出による電池の短絡を防止することもできる。架橋方法としては、熱を加えるもしくは紫外線などの活性エネルギー線を照射することによって架橋することができる。
Crosslinking of composite solid electrolyte The composite solid electrolyte can be crosslinked to increase the binding strength between the inorganic solid electrolyte and the polymer solid electrolyte in the composite solid electrolyte, and also the binding pressure and the deposition of dendride of the battery It is also possible to prevent a short circuit. As a cross-linking method, the cross-linking can be carried out by applying heat or irradiating active energy rays such as ultraviolet rays.
 熱による架橋の場合では、有機過酸化物、アゾ化合物等から選ばれるラジカル開始剤が用いられる。有機過酸化物としては、ケトンパーオキシド、パーオキシケタール、ハイドロパーオキシド、ジアルキルパーオキシド、ジアシルパーオキシド、パーオキシエステル等、通常架橋用途に使用されているものが用いられ、アゾ化合物としてはアゾニトリル化合物、アゾアミド化合物、アゾアミジン化合物等、通常架橋用途に使用されているものが用いられる。ラジカル開始剤の添加量は種類により異なるが、通常、分岐型ポリエーテル(イオン伝導性ポリマー)を100質量部として0.1~10質量部の範囲内である。 In the case of crosslinking by heat, a radical initiator selected from organic peroxides, azo compounds, etc. is used. As the organic peroxide, ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters and the like which are commonly used for crosslinking are used, and azo compounds are azonitriles. Compounds, azoamide compounds, azoamidine compounds and the like which are usually used for crosslinking are used. Although the amount of the radical initiator added varies depending on the type, it is usually within the range of 0.1 to 10 parts by mass with 100 parts by mass of the branched polyether (ion conductive polymer).
 活性エネルギー線を照射する架橋の場合のラジカル開始剤としては、アルキルフェノン系、ベンゾフェノン系、アシルフォスフィンオキサイド系、チタノセン類、トリアジン類、ビスイミダゾール類、オキシムエステル類などが用いられる。これらのラジカル重合開始剤の添加量は種類により異なるが、通常、分岐型ポリエーテル(イオン伝導性ポリマー)を100質量部として0.01~5.0質量部の範囲内である。 As a radical initiator in the case of cross-linking irradiated with active energy rays, alkylphenone-based, benzophenone-based, acylphosphine oxide-based, titanocenes, triazines, bisimidazoles, oxime esters and the like are used. The addition amount of these radical polymerization initiators varies depending on the type, but is usually in the range of 0.01 to 5.0 parts by mass with 100 parts by mass of the branched polyether (ion conductive polymer).
 本発明においては、複合固体電解質に架橋を施す場合に架橋助剤を使用してもよい。架橋助剤としてエチレングリコールジアクリレート、エチレングリコールジメタクリレート、オリゴエチレングリコールジアクリレート、オリゴエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、アリルメタクリレート、アリルアクリレート、ジアリルマレート、トリアリルイソシアヌレート、マレイミド、フェニルマレイミド、無水マレイン酸等を任意に用いることができる。 In the present invention, a crosslinking aid may be used when the composite solid electrolyte is crosslinked. As a cross-linking aid, ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, trimethylolpropane triacrylate, allyl methacrylate, allyl acrylate, diallyl malate, triallyl isocyanurate, maleimide, phenyl Maleimide, maleic anhydride and the like can be optionally used.
 本発明の複合固体電解質二次電池においては、正極と複合固体電解質との間、及び負極と前記複合固体電解質との間の少なくとも一方に、リチウム塩化合物を含む側鎖にエチレンオキシド単位を有するイオン伝導性ポリマー材料の架橋フィルムを配置してもよい。イオン伝導性ポリマー材料の架橋フィルムは、リチウム塩化合物とイオン伝導性ポリマーを含む組成物の架橋フィルムである。当該架橋フィルムを配置することにより、電極や複合固体電解質の界面抵抗をより一層低下させることができる。 In the composite solid electrolyte secondary battery of the present invention, at least one of the positive electrode and the composite solid electrolyte, and between the negative electrode and the composite solid electrolyte, ionic conduction having an ethylene oxide unit in the side chain containing a lithium salt compound. A cross-linked film of a polymeric material may be placed. A crosslinked film of an ion conductive polymer material is a crosslinked film of a composition containing a lithium salt compound and an ion conductive polymer. By disposing the crosslinked film, the interfacial resistance of the electrode and the composite solid electrolyte can be further reduced.
 架橋フィルムは、少なくとも、リチウム塩化合物と、側鎖にエチレンオキシド単位を有するイオン伝導性ポリマーとを含む組成物を架橋することにより形成される。すなわち、架橋フィルムは、リチウム塩化合物とイオン伝導性ポリマーを含む組成物の架橋フィルムである。リチウム塩化合物及びイオン伝導性ポリマーについては、前述の通りである。 The crosslinked film is formed by crosslinking at least a composition containing a lithium salt compound and an ion conductive polymer having an ethylene oxide unit in a side chain. That is, the crosslinked film is a crosslinked film of a composition containing a lithium salt compound and an ion conductive polymer. The lithium salt compound and the ion conductive polymer are as described above.
 架橋フィルムに含まれるイオン伝導性ポリマーの含有量としては、架橋フィルム全体を100質量部として、好ましくは10~90質量部、より好ましくは20~80質量部である。 The content of the ion conductive polymer contained in the crosslinked film is 100 parts by mass of the entire crosslinked film, preferably 10 to 90 parts by mass, more preferably 20 to 80 parts by mass.
 架橋フィルムに含まれるリチウム塩化物の含有量リチウム塩化合物のモル数/イオン伝導性ポリマーのエーテル酸素原子の総モル数の値が0.0001~5が好ましく、更に好ましくは0.001~0.5の範囲がよい。 Content of lithium chloride contained in cross-linked film The number of moles of lithium salt compound/the total number of moles of ether oxygen atoms of the ion conductive polymer is preferably 0.0001 to 5, and more preferably 0.001 to 0. A range of 5 is good.
 また、架橋フィルムには、常温溶融塩が含まれていてもよい。常温溶融塩については、前述の通りである。 Further, the crosslinked film may contain a room temperature molten salt. The room temperature molten salt is as described above.
 架橋フィルムに常温溶融塩が含まれる場合、その含有量としては、イオン伝導性ポリマー100質量部に対して、好ましくは10~1000質量部、より好ましくは20~500質量部である。 When the cross-linked film contains a room temperature molten salt, the content thereof is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the ion conductive polymer.
 架橋フィルムは、可塑剤などを含んでいてもよい。可塑剤については、前述の通りである。 The crosslinked film may contain a plasticizer and the like. The plasticizer is as described above.
 架橋フィルムに可塑剤が含まれる場合、可塑剤の含有量としては、イオン伝導性ポリマー100質量部に対して、好ましくは10~1000質量部、より好ましくは20~500質量部である。 When the cross-linked film contains a plasticizer, the content of the plasticizer is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the ion conductive polymer.
 リチウム塩化合物とイオン伝導性ポリマーを含む組成物に反応開始剤や架橋助剤を配合して、架橋フィルムを形成してもよい。反応開始剤としては、熱反応開始剤、光反応開始剤が挙げられる。 A crosslinked film may be formed by adding a reaction initiator or a crosslinking aid to a composition containing a lithium salt compound and an ion conductive polymer. Examples of the reaction initiator include a thermal reaction initiator and a photoreaction initiator.
 熱反応開始剤としては、有機過酸化物、アゾ化合物等から選ばれるラジカル開始剤が用いられる。有機過酸化物としては、ケトンパーオキシド、パーオキシケタール、ハイドロパーオキシド、ジアルキルパーオキシド、ジアシルパーオキシド、パーオキシエステル等、通常架橋用途に使用されているものが用いられ、アゾ化合物としてはアゾニトリル化合物、アゾアミド化合物、アゾアミジン化合物等、通常架橋用途に使用されているものが用いられる。ラジカル開始剤の添加量は種類により異なるが、通常、イオン伝導性ポリマーを100質量部として0.1~10質量部の範囲内である。 A radical initiator selected from organic peroxides, azo compounds, etc. is used as the thermal reaction initiator. As the organic peroxide, ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters and the like which are commonly used for crosslinking are used, and azo compounds are azonitriles. Compounds, azoamide compounds, azoamidine compounds and the like which are usually used for crosslinking are used. Although the amount of the radical initiator added varies depending on the type, it is usually within the range of 0.1 to 10 parts by mass with 100 parts by mass of the ion conductive polymer.
 光反応開始剤としては、アルキルフェノン系、ベンゾフェノン系、アシルフォスフィンオキサイド系、チタノセン類、トリアジン類、ビスイミダゾール類、オキシムエステル類などラジカル開始剤が用いられる。これらのラジカル重合開始剤の添加量は種類により異なるが、通常、イオン伝導性ポリマーを100質量部として0.01~5.0質量部の範囲内である。 Radical initiators such as alkylphenones, benzophenones, acylphosphine oxides, titanocenes, triazines, bisimidazoles, and oxime esters are used as photoreaction initiators. The addition amount of these radical polymerization initiators varies depending on the type, but is usually within the range of 0.01 to 5.0 parts by mass with 100 parts by mass of the ion conductive polymer.
 架橋助剤としては、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、オリゴエチレングリコールジアクリレート、オリゴエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、アリルメタクリレート、アリルアクリレート、ジアリルマレート、トリアリルイソシアヌレート、マレイミド、フェニルマレイミド、無水マレイン酸等を任意に用いることができる。 As the cross-linking aid, ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, trimethylolpropane triacrylate, allyl methacrylate, allyl acrylate, diallyl malate, triallyl isocyanurate, maleimide , Phenylmaleimide, maleic anhydride, etc. can be optionally used.
 リチウム塩化合物とイオン伝導性ポリマーを含む組成物には、有機溶媒を配合してもよく、有機溶媒としては、トルエン、キシレン、ベンゼン、アセトニトリル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、THF(テトラヒドロフラン)が挙げられる。 An organic solvent may be added to the composition containing the lithium salt compound and the ion conductive polymer, and as the organic solvent, toluene, xylene, benzene, acetonitrile, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, THF ( Tetrahydrofuran).
 架橋フィルムの作製方法は、例えば、イオン伝導性ポリマー、必要に応じて反応開始剤、及びリチウム塩化合物を有機溶媒に混合して溶解して組成物を形成し、基材(例えばPETフィルムやテフロン(登録商標)板など)上に組成物をキャスティングし、溶媒を除去後、加熱又は紫外線などの活性エネルギー線照射によって架橋フィルムを作製する方法が挙げられる。また、直接、複合固体電解質の表面に当該組成物をキャスティングして、架橋フィルムを作製することもできる。 The crosslinked film is produced by, for example, mixing an ion conductive polymer, a reaction initiator if necessary, and a lithium salt compound in an organic solvent and dissolving them to form a composition, and then forming a composition on a substrate (for example, PET film or Teflon). (Registered trademark) plate, etc., the composition is cast, the solvent is removed, and then a crosslinked film is produced by heating or irradiation with active energy rays such as ultraviolet rays. Alternatively, the composition may be directly cast on the surface of the composite solid electrolyte to produce a crosslinked film.
 架橋フィルムの膜厚は、好ましくは0.1μm~200μm、より好ましくは0.5μm~100μmの範囲内である。 The thickness of the crosslinked film is preferably in the range of 0.1 μm to 200 μm, more preferably 0.5 μm to 100 μm.
 本発明の複合固体電解質二次電池の積層構成としては、例えば、以下の構成が挙げられる。
正極、無機複合固体電解質、及び負極が順に積層された積層構成;
正極、架橋フィルム、複合固体電解質、架橋フィルム、及び負極が順に積層された積層構成;
正極、架橋フィルム、複合固体電解質、及び負極が順に積層された積層構成;
正極、複合固体電解質、架橋フィルム、及び負極が順に積層された積層構成。
Examples of the laminated constitution of the composite solid electrolyte secondary battery of the present invention include the following constitutions.
A laminated structure in which a positive electrode, an inorganic composite solid electrolyte, and a negative electrode are sequentially laminated;
A laminated structure in which a positive electrode, a crosslinked film, a composite solid electrolyte, a crosslinked film, and a negative electrode are laminated in order;
A laminated structure in which a positive electrode, a crosslinked film, a composite solid electrolyte, and a negative electrode are laminated in this order;
A laminated structure in which a positive electrode, a composite solid electrolyte, a crosslinked film, and a negative electrode are sequentially laminated.
 本発明の複合固体電解質二次電池においては、複合固体電解質と前述の架橋フィルムとが接触していることが好ましい。架橋フィルムは、リチウム塩化合物を含むイオン伝導性ポリマーを含む組成物の架橋体であることから、イオン伝導性を有しており、かつ、無機材料と比較して高い柔軟性を有している。従って、当該架橋フィルムは、複合固体電解質との接触面積が大きくなり、その結果、複合固体電解質の界面抵抗が効果的に低下し、本発明の複合固体電解質二次電池は優れた充放電特性を発揮するものと考えられる。なお、本発明の複合固体電解質二次電池においては、架橋フィルムが電極の電極材料層と接触していることも好ましいし、架橋フィルムが電極材料層と複合固体電解質の両方と接触していることも好ましい。 In the composite solid electrolyte secondary battery of the present invention, it is preferable that the composite solid electrolyte and the aforementioned crosslinked film are in contact with each other. Since the crosslinked film is a crosslinked product of a composition containing an ion conductive polymer containing a lithium salt compound, it has ion conductivity and has high flexibility as compared with an inorganic material. .. Therefore, the crosslinked film has a large contact area with the composite solid electrolyte, and as a result, the interfacial resistance of the composite solid electrolyte is effectively reduced, and the composite solid electrolyte secondary battery of the present invention has excellent charge/discharge characteristics. It is considered to be effective. In the composite solid electrolyte secondary battery of the present invention, it is also preferable that the crosslinked film is in contact with the electrode material layer of the electrode, and the crosslinked film is in contact with both the electrode material layer and the composite solid electrolyte. Is also preferable.
複合固体電解質二次電池
 本発明の複合固体電解質二次電池は、正極、負極、及び本発明の複合固体電解質を少なくとも備える。本発明の複合固体電解質については、前述の通りである。本発明の複合固体電解質は、正極及び負極の間に配置される。特に、本発明の複合固体電解質二次電池に用いる複合固体電解質は、前記の通り、無機固体電解質に加えて、分岐型ポリエーテルを含む高分子固体電解質を含有していることから、無機固体電解質のみによって固体電解質が形成されている場合などと比較して、電極材料層と複合固体電解質層との界面の接触面積が大きいと考えられ、その結果、電極と電解質の界面抵抗が低下し、優れた充放電特性が発揮されるものと考えられる。また、複合固体電解質中においても、当該高分子固体電解質は、無機固体電解質の粒子間を密着させることで、複合固体電解質の内部での抵抗を低下させていると考えられる。
Composite solid electrolyte secondary battery The composite solid electrolyte secondary battery of the present invention includes at least a positive electrode, a negative electrode, and the composite solid electrolyte of the present invention. The composite solid electrolyte of the present invention is as described above. The composite solid electrolyte of the present invention is arranged between the positive electrode and the negative electrode. In particular, the composite solid electrolyte used in the composite solid electrolyte secondary battery of the present invention, as described above, in addition to the inorganic solid electrolyte, since it contains a polymer solid electrolyte containing a branched polyether, the inorganic solid electrolyte It is considered that the contact area of the interface between the electrode material layer and the composite solid electrolyte layer is larger than that in the case where the solid electrolyte is formed only by itself, and as a result, the interface resistance between the electrode and the electrolyte decreases, which is excellent. It is considered that the excellent charge/discharge characteristics are exhibited. Further, even in the composite solid electrolyte, it is considered that the polymer solid electrolyte reduces the resistance inside the composite solid electrolyte by bringing the particles of the inorganic solid electrolyte into close contact with each other.
 正極、負極ともに公知のものを用いることができるが、集電体に電極材料層、即ち正極材料層、又は負極材料層を備える電極を例示することができる。 Known electrodes can be used for both the positive electrode and the negative electrode, and an electrode including a current collector with an electrode material layer, that is, a positive electrode material layer or a negative electrode material layer can be exemplified.
 正極、負極には、公知の集電体を用いることができる。具体的には、正極には、集電体として、アルミニウム、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。負極には、集電体として、銅、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。 A known current collector can be used for the positive electrode and the negative electrode. Specifically, for the positive electrode, a metal such as aluminum, nickel, stainless steel, gold, platinum, or titanium is used as a current collector. For the negative electrode, a metal such as copper, nickel, stainless steel, gold, platinum or titanium is used as a current collector.
 また、正極材料層、負極材料層は、それぞれ、少なくとも正極活物質、負極活物質を含有し、更に導電助剤、バインダー、増粘剤を含有していてもよく必要に応じて、前述の無機固体電解質を含有させてもよい。 Further, the positive electrode material layer and the negative electrode material layer each contain at least a positive electrode active material and a negative electrode active material, and may further contain a conductive auxiliary agent, a binder, and a thickener, if necessary, the above-mentioned inorganic material. A solid electrolyte may be included.
 本発明で使用される正極活物質は、LiMO2、LiM24、Li2MO3、LiMEO4のいずれかの組成からなるリチウム金属含有複合酸化物粉末である。ここで式中のMは主として遷移金属からなり、Co、Mn、Ni、Cr、Fe、Tiの少なくとも一種を含んでいる。Mは遷移金属からなるが、遷移金属以外にもAl、Ga、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどが添加されていてもよい。EはP、Siの少なくとも1種を含んでいる。正極活物質の粒子径には50μm以下が好ましく、更に好ましくは20μm以下のものを用いる。これらの活物質は、3V(vs.Li/Li+)以上の起電力を有するものである。 The positive electrode active material used in the present invention is a lithium metal-containing composite oxide powder having a composition of any one of LiMO 2 , LiM 2 O 4 , Li 2 MO 3 and LiMEO 4 . Here, M in the formula is mainly composed of a transition metal and contains at least one of Co, Mn, Ni, Cr, Fe, and Ti. Although M is a transition metal, Al, Ga, Ge, Sn, Pb, Sb, Bi, Si, P, B and the like may be added in addition to the transition metal. E contains at least one of P and Si. The particle size of the positive electrode active material is preferably 50 μm or less, more preferably 20 μm or less. These active materials have an electromotive force of 3 V (vs. Li/Li+) or more.
 正極活物質の具体例としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケル/コバルト/マンガン酸リチウム(3元系)、スピネル型マンガン酸リチウム、リン酸鉄リチウムなどが挙げられる。 Specific examples of the positive electrode active material include lithium cobalt oxide, lithium nickel oxide, nickel/cobalt/lithium manganate (ternary system), spinel type lithium manganate, and lithium iron phosphate.
 本発明で使用される負極活物質は、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能な構造(層間化合物)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属である。粉末の場合、粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。 The negative electrode active material used in the present invention is a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (intercalation compound) capable of occluding and releasing alkali metal ions such as lithium ions, or lithium ions. Metals such as lithium, aluminum-based compounds, tin-based compounds, silicon-based compounds, and titanium-based compounds that can store and release alkali metal ions such as. In the case of powder, the particle size is preferably 10 nm or more and 100 μm or less, and more preferably 20 nm or more and 20 μm or less. Moreover, you may use as a mixed active material of a metal and a carbon material.
 導電助剤を用いる場合には、公知の導電助剤を用いることができ、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、カーボンナノチューブなどの炭素繊維、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。 When using a conductive auxiliary agent, a known conductive auxiliary agent can be used, such as graphite, furnace black, acetylene black, conductive carbon black such as Ketjen black, carbon fiber such as carbon nanotubes, or metal powder. Can be mentioned. These conductive aids may be used alone or in combination of two or more.
 バインダーとしては、例えばPVdF等のフッ素樹脂、フッ素ゴムやアクリルゴム、変性アクリルゴム、スチレン-ブタジエンゴム、アクリル系重合体、ビニル系重合体、前記記載の分岐型ポリエーテルから選ばれる1種以上の化合物を用いることができる。これらバインダーは活物質を100質量部として、好ましくは5質量部以下、より好ましくは3質量部以下、例えば0.01~2質量部添加する。 As the binder, for example, one or more selected from fluororesins such as PVdF, fluororubber, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber, acrylic polymers, vinyl polymers, and branched polyethers described above. Compounds can be used. The amount of the active material added to these binders is 100 parts by mass, preferably 5 parts by mass or less, more preferably 3 parts by mass or less, for example 0.01 to 2 parts by mass.
 増粘剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロースおよびこれらの塩(ナトリウム塩等のアルカリ金属塩、アンモニウム塩)、ポリビニルアルコール、ポリアクリル酸塩、ポリエチレンオキサイド等が挙げられる。これら増粘剤は1種または2種以上用いてもよい。これら増粘剤は活物質を100質量部として、好ましくは5質量部以下、より好ましくは3質量部以下、例えば0.01~2質量部添加する。また、塗工液の粘度が低い場合には増粘剤を併用することができる。 Specific examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose and salts thereof (alkali metal salts such as sodium salt, ammonium salt), polyvinyl alcohol, polyacrylic acid salt, polyethylene oxide and the like. You may use these thickeners 1 type(s) or 2 or more types. The thickener is added in an amount of preferably 5 parts by mass or less, more preferably 3 parts by mass or less, for example, 0.01 to 2 parts by mass, based on 100 parts by mass of the active material. Further, when the viscosity of the coating liquid is low, a thickener can be used together.
 集電体と正極材料層、負極材料層を備える正極、負極の作製方法は特に限定されず一般的な方法が用いられる。例えば、正極活物質あるいは負極活物質、導電助剤、バインダー、水またはN-メチル-2-ピロリドン(NMP)等の溶媒、必要に応じて増粘剤などからなる正極材料、負極材料のペースト(塗工液)をドクターブレード法やシルクスクリーン法などにより集電体表面上に適切な厚さに均一に塗布することより行われる。 The method for producing the positive electrode and the negative electrode including the current collector, the positive electrode material layer, and the negative electrode material layer is not particularly limited, and a general method is used. For example, a positive electrode active material or a negative electrode active material, a conductive auxiliary agent, a binder, a solvent such as water or N-methyl-2-pyrrolidone (NMP), and a positive electrode material and a negative electrode material paste (thickener, if necessary) ( The coating solution) is uniformly applied to the surface of the current collector by a doctor blade method or a silk screen method so as to have an appropriate thickness.
 例えばドクターブレード法では、負極活物質粉末や正極活物質粉末、導電助剤、バインダー等を水に分散してスラリー状にし、金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な有機溶剤を除去するため、例えば、100℃の熱風や80℃減圧状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極が製造される。 For example, in the doctor blade method, a negative electrode active material powder, a positive electrode active material powder, a conductive auxiliary agent, a binder and the like are dispersed in water to form a slurry, which is applied to a metal electrode substrate, and then a blade having a predetermined slit width is used. Make it uniform in thickness. After applying the active material, the electrode is dried, for example, in hot air at 100° C. or under reduced pressure at 80° C. to remove excess organic solvent. The dried electrode is press-molded by a press machine to manufacture the electrode.
 集電体上に正極材料層、負極材料層を形成した場合には、正極材料層、負極材料の電極材料間、例えば活物質間、活物質と他の電極材料との間等に空隙を生じることになる。本発明の複合固体電解質二次電池においては、このような空隙に、イオン伝導性ポリマーである前記の分岐型ポリエーテルを含んでいてもよい。 When the positive electrode material layer and the negative electrode material layer are formed on the current collector, voids are generated between the positive electrode material layer and the negative electrode material electrode material, for example, between the active materials, between the active material and another electrode material, and the like. It will be. In the composite solid electrolyte secondary battery of the present invention, such a void may contain the above-mentioned branched polyether which is an ion conductive polymer.
複合固体電解質二次電池の製造方法
 本発明の複合固体電解質二次電池の製造方法は特に限定されず、少なくとも、正極、負極、及び本発明の複合固体電解質で構成され、公知の方法にて製造される。例えば、コイン型のリチウムイオン電池の場合、正極、複合固体電解質、負極を外装缶に挿入する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシメることで蓄電池が得られる。電池の形状は限定されないが、例としてはコイン型、円筒型、シート型などがあげられ、2個以上の電池を積層した構造でもよい。
Manufacturing method of composite solid electrolyte secondary battery The manufacturing method of the composite solid electrolyte secondary battery of the present invention is not particularly limited, and is composed of at least a positive electrode, a negative electrode, and the composite solid electrolyte of the present invention, and manufactured by a known method. To be done. For example, in the case of a coin type lithium ion battery, the positive electrode, the composite solid electrolyte, and the negative electrode are inserted in an outer can. After that, the storage body is obtained by joining the sealing body with tab welding or the like, enclosing the sealing body, and caulking. The shape of the battery is not limited, but examples thereof include a coin type, a cylinder type, and a sheet type, and a structure in which two or more batteries are laminated may be used.
 以下の実施例において本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be described more specifically in the following examples, but the present invention is not limited to these.
 本実施例では、複合固体電解質を用いて、コイン電池を作製し、コイン電池の充放電特性の性能評価を以下の実験にて行った。 In this example, a coin battery was produced using the composite solid electrolyte, and the performance of the charge/discharge characteristics of the coin battery was evaluated in the following experiment.
[作製した電池の評価]
 作製した電池の評価としては充放電装置を用いて充放電試験を行い、充電容量および放電容量を求めた。
[Evaluation of fabricated battery]
For the evaluation of the manufactured battery, a charge/discharge test was performed using a charge/discharge device, and the charge capacity and the discharge capacity were obtained.
充放電測定
 0.1C(10時間率)に相当する電流で4.2VまでCCCV充電(0.01Cカット)後、0.1Cに相当する電流で、2.5VまでCCCV放電(0.01Cカット)を行った。試験温度は100℃環境とした。
Charge/discharge measurement After CCCV charging (0.01C cut) up to 4.2V with a current equivalent to 0.1C (10 hour rate), CCCV discharge (0.01C cut) up to 2.5V with a current corresponding to 0.1C. ) Was done. The test temperature was 100° C. environment.
[正極の作製例]
(1)正極活物質としてNCM(ニッケル/コバルト/マンガン酸リチウム=5/2/3)100質量部に、導電助剤としてアセチレンブラック3質量部、黒鉛3質量部、バインダーとしてPVdF3質量部を加え、さらにスラリーの固形分濃度が35質量%となるようにNMP溶液中に加えて、十分に混合して正極用スラリーを得た。得られた正極スラリーを厚さ20μmのアルミ集電体上にダイコーターを用いて塗布し、100℃で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ20μmの正極の前駆体を作製した(目付量6.6mg/cm2、正極密度3.1g/cm3、空隙率26%)。
[Example of producing positive electrode]
(1) To 100 parts by mass of NCM (nickel/cobalt/lithium manganate=5/2/3) as a positive electrode active material, 3 parts by mass of acetylene black as a conduction aid, 3 parts by mass of graphite, and 3 parts by mass of PVdF as a binder were added. Further, the slurry was added to the NMP solution so that the solid content concentration of the slurry was 35% by mass, and sufficiently mixed to obtain a positive electrode slurry. The obtained positive electrode slurry was applied onto a 20 μm thick aluminum current collector using a die coater, dried and dried at 100° C. for 12 hours or more, and then pressed by a roll press machine to prepare a 20 μm thick positive electrode precursor. A body was produced (Basis weight: 6.6 mg/cm 2 , positive electrode density: 3.1 g/cm 3 , porosity: 26%).
(2)分岐型ポリエーテルとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%三元共重合体(重量平均分子量150万)100質量部、リチウム塩化合物としてホウフッ化リチウム12質量部、架橋助剤として、トリメチロールプロパントリアクリレート10質量部、ラジカル開始剤としてベンゾイルパーオキシド(ナイパーBMT、日油株式会社製)0.3質量部をアセトニトリル900質量部に完全に溶解させた正極含浸用塗工溶液を調製した。 (2) 100 parts by mass of ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether=80/17/3 mol% terpolymer (weight average molecular weight 1.5 million) as a branched polyether, and lithium borofluoride 12 as a lithium salt compound. By mass, 10 parts by mass of trimethylolpropane triacrylate as a crosslinking aid and 0.3 parts by mass of benzoyl peroxide (Nyper BMT, NOF CORPORATION) as a radical initiator were completely dissolved in 900 parts by mass of acetonitrile. A coating solution for impregnating the positive electrode was prepared.
(3)上記(1)の正極の前駆体の上に、上記(2)の正極含浸用塗工溶液を塗工した。その後、2時間静置することにより、溶媒を除去しながら、正極内の空隙に分岐型ポリエーテルと電解質リチウム化合物を含浸した。100℃で2時間、減圧下、含浸した分岐型ポリエーテルの架橋を行い、正極を作製した。 (3) The positive electrode impregnating coating solution of (2) was applied onto the positive electrode precursor of (1). Then, by leaving it to stand for 2 hours, the branched polyether and the electrolyte lithium compound were impregnated into the voids in the positive electrode while removing the solvent. The impregnated branched polyether was crosslinked under reduced pressure at 100° C. for 2 hours to prepare a positive electrode.
[負極の作製例]
(1)負極活物質として人造黒鉛(粒径10μm)100質量部に、導電助剤として気相成長炭素繊維(VGCF)2質量部、バインダーとしてSBR 3質量部、増粘剤としてカルボキシメチルセルロースのナトリウム塩2質量部を加え、さらにスラリーの固形分濃度が35質量%となるように水を加えて、十分に混合して負極用スラリーを得た。得られた負極スラリーを厚さ16.5μmの銅集電体上にダイコーターを用いて塗布し、100℃で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ22μmの負極の前駆体を作製した(目付量3.1mg/cm2、負極密度1.2g/cm3、空隙率23%)。
[Production Example of Negative Electrode]
(1) 100 parts by mass of artificial graphite (particle size: 10 μm) as a negative electrode active material, 2 parts by mass of vapor grown carbon fiber (VGCF) as a conduction aid, 3 parts by mass of SBR as a binder, and sodium carboxymethyl cellulose as a thickener. 2 parts by mass of salt was added, water was further added so that the solid content concentration of the slurry was 35% by mass, and they were sufficiently mixed to obtain a slurry for negative electrode. The obtained negative electrode slurry was applied onto a copper current collector having a thickness of 16.5 μm using a die coater, dried and dried at 100° C. for 12 hours or more, and then pressed with a roll press machine to obtain a negative electrode having a thickness of 22 μm. Was prepared (a basis weight of 3.1 mg/cm 2 , a negative electrode density of 1.2 g/cm 3 , and a porosity of 23%).
(2)分岐型ポリエーテルとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%三元共重合体(重量平均分子量150万)100質量部、リチウム塩化合物としてLiTFSI 38質量部を、架橋助剤として、トリメチロールプロパントリアクリレート10質量部、ラジカル開始剤としてベンゾイルパーオキシド(ナイパーBMT、日油株式会社製)0.3質量部をアセトニトリル900質量部に完全に溶解させた負極含浸用塗工溶液を調製した。 (2) 100 parts by mass of ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether=80/17/3 mol% terpolymer (weight average molecular weight 1.5 million) as a branched polyether, and 38 parts by mass of LiTFSI as a lithium salt compound. As a crosslinking aid, 10 parts by mass of trimethylolpropane triacrylate, and 0.3 parts by mass of benzoyl peroxide (Nyper BMT, manufactured by NOF CORPORATION) as a radical initiator were completely dissolved in 900 parts by mass of acetonitrile. A coating solution for impregnation was prepared.
(3)上記(1)の負極の前駆体の上に、上記(2)の電極含浸用塗工溶液を塗工した。その後、2時間静置することにより、溶媒を除去しながら、負極内の空隙に分岐型ポリエーテルと電解質リチウム化合物を含浸した。100℃で2時間、減圧下、含浸した分岐型ポリエーテルの架橋を行い、負極を作製した。 (3) The electrode impregnating coating solution of (2) was applied onto the negative electrode precursor of (1). Then, by leaving it to stand for 2 hours, the branched polyether and the electrolyte lithium compound were impregnated into the voids in the negative electrode while removing the solvent. The impregnated branched polyether was crosslinked under reduced pressure at 100° C. for 2 hours to prepare a negative electrode.
[複合固体電解質の実施作製例]
(1)無機固体電解質の調製
 イオン交換水99.5質量部にホウ酸リチウム0.5質量部を溶かし、0.5質量%のホウ酸リチウム水溶液を調製した。別途、イオン交換水99.5質量部に硫酸リチウム一水和物0.5質量部を溶かし、0.5質量%の硫酸リチウム水溶液13質量部を加え、更に、酸化物系固体電解質LATP(豊島製作所製)(組成:Li1.3Al0.3Ti1.7312、平均粒径:1μm)10.5質量部を添加し、室温中で撹拌した。このスラリーを60℃の湯浴を備えたロータリーエバポレーターに移し、加熱・撹拌・減圧下に溶媒を留出・乾固させ、白色の乾固品を得た。これを150℃1時間真空乾燥し、5質量%-ホウ酸リチウム-硫酸リチウムが被覆されたLATP(無機固体電解質)の乾燥品を得た。乾燥品(粉末)84mgを、直径10mmφの錠剤成型ダイスに入れ、20kNで、5分間加圧して行い、500μmの厚みの成型品を得ることができた。なお、粉末50mg以下では、取出し時に、成型品の破損が生じ、成型品が得られなかった。
[Exemplary production example of composite solid electrolyte]
(1) Preparation of Inorganic Solid Electrolyte 0.5 parts by mass of lithium borate was dissolved in 99.5 parts by mass of ion-exchanged water to prepare a 0.5% by mass aqueous solution of lithium borate. Separately, 0.5 parts by mass of lithium sulfate monohydrate was dissolved in 99.5 parts by mass of ion-exchanged water, 13 parts by mass of a 0.5% by mass aqueous solution of lithium sulfate was added, and further, oxide solid electrolyte LATP (Toyoshima). (Manufactured by Seisakusho) (composition: Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 , average particle size: 1 μm) (10.5 parts by mass) was added, and the mixture was stirred at room temperature. This slurry was transferred to a rotary evaporator equipped with a 60° C. water bath, and the solvent was distilled off and dried under heating, stirring, and reduced pressure to obtain a white dry product. This was vacuum dried at 150° C. for 1 hour to obtain a dry product of LATP (inorganic solid electrolyte) coated with 5% by mass of lithium borate-lithium sulfate. 84 mg of the dried product (powder) was put into a tablet forming die having a diameter of 10 mmφ and pressed at 20 kN for 5 minutes to obtain a molded product having a thickness of 500 μm. In addition, when the powder was 50 mg or less, the molded product was damaged when taken out, and the molded product could not be obtained.
(2)分岐型ポリエーテルの高分子固体電解質の調製
 分岐型ポリエーテルとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%三元共重合体(重量平均分子量150万)100質量部、リチウム塩化合物としてホウフッ化リチウム12質量部、架橋助剤として、トリメチロールプロパントリアクリレート10質量部、ラジカル開始剤としてナイパーBMT(日油株式会社製)0.3質量部をアセトニトリル中、室温で、10時間、攪拌し、完全に溶解させて、0.5質量%分岐型ポリエーテルの高分子固体電解質を含むアセトニトリル溶液を調製した。
(2) Preparation of Polymer Solid Electrolyte of Branched Polyether Ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether=80/17/3 mol% terpolymer (weight average molecular weight 1.5 million) as branched polyether 100 12 parts by mass of lithium borofluoride as a lithium salt compound, 10 parts by mass of trimethylolpropane triacrylate as a crosslinking aid, 0.3 parts by mass of Niper BMT (manufactured by NOF CORPORATION) as a radical initiator in acetonitrile, The mixture was stirred at room temperature for 10 hours and completely dissolved to prepare an acetonitrile solution containing 0.5% by mass of a branched polyether polymer solid electrolyte.
(3)無機固体電解質と高分子固体電解質の複合固体電解質の調製
 上記(2)の0.5質量%分岐型ポリエーテルの高分子固体電解質を含むアセトニトリル溶液100質量部に、上記(1)の無機固体電解質の乾燥品8.7質量部を加え、60℃の湯浴を備えたロータリーエバポレーターで、加熱・撹拌・減圧下に溶媒を留出させ乾固した。乾固品を110℃2時間真空乾燥し、白色の乾燥品を得た。乾燥品の粉末39mgを、直径10mmφの錠剤成型ダイスに入れ、20kNで、5分間加圧して行った。この加圧成型条件では、成型品の取出しは、何れも円滑に行うことができ、230μmの厚みの成型品を得ることができた。
(3) Preparation of Composite Solid Electrolyte of Inorganic Solid Electrolyte and Polymer Solid Electrolyte 100 parts by mass of an acetonitrile solution containing the polymer solid electrolyte of 0.5% by mass branched polyether of (2) above is added to the above (1). 8.7 parts by mass of a dried inorganic solid electrolyte was added, and the solvent was distilled off under heating, stirring and reduced pressure with a rotary evaporator equipped with a hot water bath at 60°C. The dried product was vacuum dried at 110° C. for 2 hours to obtain a white dried product. 39 mg of the dried powder was put into a tablet forming die having a diameter of 10 mmφ and pressurized at 20 kN for 5 minutes. Under these pressure molding conditions, the molded product could be smoothly taken out, and a molded product having a thickness of 230 μm could be obtained.
[複合固体電解質の比較作製例]
(1)ポリエチレンオキシドの高分子固体電解質の調製
 ポリエチレンオキシド(重量平均分子量110万)100質量部、リチウム塩化合物としてホウフッ化リチウム12質量部をアセトニトリル中、室温で、10時間、攪拌し、完全に溶解させて、0.5質量%ポリエチレンオキシドの高分子固体電解質を含むアセトニトリル溶液を調製した。
[Comparative Preparation Example of Composite Solid Electrolyte]
(1) Preparation of Polymer Solid Electrolyte of Polyethylene Oxide 100 parts by mass of polyethylene oxide (weight average molecular weight of 1.1 million) and 12 parts by mass of lithium borofluoride as a lithium salt compound are stirred in acetonitrile at room temperature for 10 hours to be completely stirred. The solution was dissolved to prepare an acetonitrile solution containing 0.5% by mass of polyethylene oxide as a solid polymer electrolyte.
(2)複合固体電解質の調製
 0.5質量%ポリエチレンオキシドの高分子固体電解質を含むアセトニトリル溶液100質量部に、上記(1)無機固体電解質の調製で得た無機固体電解質の乾燥品8.7質量部を加え、60℃の湯浴を備えたロータリーエバポレーターで、加熱・撹拌・減圧下に溶媒を留出させ乾固した。乾固品を110℃2時間真空乾燥し、白色の乾燥品を得た。乾燥品の粉末45mgを、直径10mmφの錠剤成型ダイスに入れ、20kNで、5分間加圧して行った。この加圧成型条件では、成型品の取出しは、何れも円滑に行うことができ、350μmの厚みの成型品を得ることができた。
(2) Preparation of composite solid electrolyte In 100 parts by mass of an acetonitrile solution containing a polymer solid electrolyte of 0.5% by mass of polyethylene oxide, a dried product of the inorganic solid electrolyte obtained in (1) Preparation of inorganic solid electrolyte 8.7. A mass part was added, and the solvent was distilled off under heating, stirring and reduced pressure with a rotary evaporator equipped with a hot water bath at 60° C. to dryness. The dried product was vacuum dried at 110° C. for 2 hours to obtain a white dried product. 45 mg of the dried powder was put into a tablet forming die having a diameter of 10 mmφ and pressurized at 20 kN for 5 minutes. Under these pressure molding conditions, the molded product could be smoothly taken out, and a molded product having a thickness of 350 μm could be obtained.
[イオン伝導性ポリマー材料の架橋フィルムの作製]
 側鎖にエチレンオキシド単位を有するイオン伝導性ポリマーとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%三元共重合体 100質量部、リチウム塩化合物としてLiTFSI 38質量部を、架橋助剤として、トリメチロールプロパントリアクリレート10質量部、ラジカル開始剤としてナイパーBMT(日油株式会社製)0.3質量部をアセトニトリル900質量部に溶解させた溶液を調製した。この溶液をポリテトラフルオロエチレン製モールド上にキャストして、室温で乾燥した後、100℃、2時間、熱架橋を行い、厚さ20μmのイオン伝導性ポリマー材料の架橋フィルムを作製した。
[Preparation of cross-linked film of ion conductive polymer material]
100 parts by mass of ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether=80/17/3 mol% terpolymer as an ion conductive polymer having an ethylene oxide unit in a side chain, and 38 parts by mass of LiTFSI as a lithium salt compound are crosslinked. A solution was prepared by dissolving 10 parts by mass of trimethylolpropane triacrylate as an auxiliary agent and 0.3 parts by mass of Niper BMT (manufactured by NOF CORPORATION) as a radical initiator in 900 parts by mass of acetonitrile. This solution was cast on a polytetrafluoroethylene mold, dried at room temperature, and then thermally crosslinked at 100° C. for 2 hours to prepare a crosslinked film of an ion conductive polymer material having a thickness of 20 μm.
電池の製造例
[コイン電池の実施製造例1]
 ドライルーム内において、正極の実施作製例で得た正極、複合固体電解質の成型品(厚み 230μm)、作製例のイオン伝導性ポリマー材料の架橋フィルム、負極としての金属リチウム箔を順に積層後、カシめ、試験用2032型コイン電池を製造した。
<充放電条件>
 下限電圧2.5V-上限電圧4.2V、100℃
 CC-CV/CC-CV 0.1C-0.01C充電、0.1C-0.01C放電
<充放電試験結果>
 充電容量165mAh/g、放電容量150mAh/g
Battery Manufacturing Example [Coin Battery Working Manufacturing Example 1]
In the dry room, the positive electrode obtained in the practical production example of the positive electrode, the molded product of the composite solid electrolyte (thickness: 230 μm), the crosslinked film of the ion conductive polymer material of the production example, and the metallic lithium foil as the negative electrode were laminated in that order, and Therefore, a test 2032 type coin battery was manufactured.
<Charging/discharging conditions>
Lower limit voltage 2.5V-Upper limit voltage 4.2V, 100°C
CC-CV/CC-CV 0.1C-0.01C charge, 0.1C-0.01C discharge <charge/discharge test result>
Charge capacity 165mAh/g, discharge capacity 150mAh/g
[コイン電池の実施製造例2]
 ドライルーム内において、正極の実施作製例で得た正極、複合固体電解質の実施作製例で得た複合固体電解質の成型品、負極の実施作製例で得た負極を積層後、カシめ、試験用2032型コイン電池を製造した。
<充放電条件>
 下限電圧2.5V-上限電圧4.2V、100℃
 CC(0.1C)-CV(0.01C)充電
 CC(0.1C)-CV(0.01C)放電
<充放電試験結果>
 充電容量 151mAh/g 放電容量 130mAh/g
[Coin Battery Implementation Manufacturing Example 2]
In a dry room, the positive electrode obtained in the practical production example of the positive electrode, the molded product of the composite solid electrolyte obtained in the practical production example of the composite solid electrolyte, and the negative electrode obtained in the practical production example of the negative electrode were laminated, crimped, and tested. A 2032 type coin battery was manufactured.
<Charging/discharging conditions>
Lower limit voltage 2.5V-Upper limit voltage 4.2V, 100°C
CC(0.1C)-CV(0.01C) charge CC(0.1C)-CV(0.01C) discharge <Charge/discharge test result>
Charge capacity 151mAh/g Discharge capacity 130mAh/g
[コイン電池の比較製造例1]
 ドライルーム内において、正極の実施作製例で得た正極、ポリエチレンオキシドを用いた複合固体電解質の比較作製例で得た複合固体電解質の成型品、作製例のイオン伝導性ポリマー材料の架橋フィルム、負極としての金属リチウム箔を順に積層後、カシめ、試験用2032型コイン電池を製造した。
<充放電条件>
 下限電圧2.5V-上限電圧4.2V、100℃
 CC(0.1C)-CV(0.01C)充電
 CC(0.1C)-CV(0.01C)放電
<充放電試験結果>
 充電容量110mAh/g、放電容量90mAh/g
[Comparative Production Example 1 of Coin Battery]
In a dry room, the positive electrode obtained in the positive production example of the positive electrode, a composite solid electrolyte molded article obtained in a comparative production example of a composite solid electrolyte using polyethylene oxide, a cross-linked film of the ion conductive polymer material of the production example, a negative electrode After laminating the metallic lithium foil as described above in order, caulking was performed to manufacture a test 2032 type coin battery.
<Charging/discharging conditions>
Lower limit voltage 2.5V-Upper limit voltage 4.2V, 100°C
CC(0.1C)-CV(0.01C) charge CC(0.1C)-CV(0.01C) discharge <Charge/discharge test result>
Charge capacity 110mAh/g, discharge capacity 90mAh/g
 実施製造例および比較製造例より、無機固体電解質と分岐型ポリエーテルを含む高分子固体電解質とからなる複合固体電解質は、高分子固体電解質を含まない固体電解質と比べて、明らかに、固体電解質二次電池に対して、高い充電および放電容量を発揮させることがわかる。また、無機固体電解質単独で加圧成型すると、柔軟性と結着性が殆どないため、厚膜の電解質になるが、複合固体電解質では、高分子固体電解質の柔軟性と結着性により、より薄い固体電解質が得られている。 From the production example and the comparative production example, the composite solid electrolyte consisting of the inorganic solid electrolyte and the polymer solid electrolyte containing the branched polyether, compared with the solid electrolyte not containing the polymer solid electrolyte, apparently solid electrolyte It can be seen that the secondary battery exhibits high charge and discharge capacities. In addition, when pressure molding is performed using the inorganic solid electrolyte alone, it has almost no flexibility and binding property, so that it becomes a thick film electrolyte, but in the composite solid electrolyte, due to the flexibility and binding property of the polymer solid electrolyte, A thin solid electrolyte is obtained.
 本発明の複合固体電解質、および複合固体電解質を用いて製造される固体電解質二次電池は、充放電特性に優れており、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池といった大型の電池用途に好適に利用可能である。 The composite solid electrolyte of the present invention, and a solid electrolyte secondary battery produced using the composite solid electrolyte, are excellent in charge/discharge characteristics, and are storage batteries for in-vehicle applications such as electric vehicles and hybrid electric vehicles and household power storage. Can be suitably used for large-sized battery applications such as.

Claims (6)

  1.  無機固体電解質と、分岐型ポリエーテルを含む高分子固体電解質と、を含有する、複合固体電解質。 A composite solid electrolyte containing an inorganic solid electrolyte and a polymer solid electrolyte containing a branched polyether.
  2.  前記分岐型ポリエーテルは、側鎖にエチレンオキシド単位を有するエーテル化合物から形成された構成単位を含む、請求項1に記載の複合固体電解質。 The composite solid electrolyte according to claim 1, wherein the branched polyether includes a constituent unit formed of an ether compound having an ethylene oxide unit in a side chain.
  3.  前記分岐型ポリエーテルは、アリルグリシジルエーテル、アクリル酸グリシジルエーテル、及びメタクリル酸グリシジルエーテルからなる群より選択される少なくとも1種から形成された構成単位を含む、請求項1又は2に記載の複合固体電解質。 The composite solid according to claim 1 or 2, wherein the branched polyether includes a constituent unit formed of at least one selected from the group consisting of allyl glycidyl ether, acrylic acid glycidyl ether, and methacrylic acid glycidyl ether. Electrolytes.
  4.  前記分岐型ポリエーテルは、架橋されている、請求項1~3のいずれか1項に記載の複合固体電解質。 The composite solid electrolyte according to any one of claims 1 to 3, wherein the branched polyether is crosslinked.
  5.  前記無機固体電解質は、酸化物系固体電解質又は硫化物系固体電解質である、請求項1~4のいずれか1項に記載の複合固体電解質。 The composite solid electrolyte according to any one of claims 1 to 4, wherein the inorganic solid electrolyte is an oxide solid electrolyte or a sulfide solid electrolyte.
  6.  請求項1~5のいずれか1項に記載の複合固体電解質を含む、複合固体電解質二次電池。 A composite solid electrolyte secondary battery containing the composite solid electrolyte according to any one of claims 1 to 5.
PCT/JP2019/045953 2018-11-26 2019-11-25 Composite solid electrolyte, and composite solid electrolyte secondary battery WO2020110994A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980076975.3A CN113273010A (en) 2018-11-26 2019-11-25 Composite solid electrolyte and composite solid electrolyte secondary battery
JP2020557703A JPWO2020110994A1 (en) 2018-11-26 2019-11-25 Composite solid electrolyte and composite solid electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018220613 2018-11-26
JP2018-220613 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020110994A1 true WO2020110994A1 (en) 2020-06-04

Family

ID=70853492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045953 WO2020110994A1 (en) 2018-11-26 2019-11-25 Composite solid electrolyte, and composite solid electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JPWO2020110994A1 (en)
CN (1) CN113273010A (en)
WO (1) WO2020110994A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080808A1 (en) * 2022-10-14 2024-04-18 주식회사 엘지에너지솔루션 Method for producing polymer solid electrolyte
WO2024080810A1 (en) * 2022-10-14 2024-04-18 주식회사 엘지에너지솔루션 Composite solid electrolyte and preparation method therefor
WO2024080805A1 (en) * 2022-10-14 2024-04-18 주식회사 엘지에너지솔루션 Composite solid electrolyte and manufacturing method therefor
WO2024080807A1 (en) * 2022-10-14 2024-04-18 주식회사 엘지에너지솔루션 Method for preparing composite solid electrolyte and composite solid electrolyte prepared thereby

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140143A (en) * 1997-07-16 1999-02-12 Ricoh Co Ltd Manufacture of electrode and nonaqueous secondary battery using it
JP2002343431A (en) * 2001-05-21 2002-11-29 Hitachi Maxell Ltd Solid electrolyte and polymer solid electrolyte battery
WO2012173089A1 (en) * 2011-06-17 2012-12-20 日本ゼオン株式会社 All-solid-state secondary battery
WO2015046314A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
WO2015147281A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 All-solid secondary cell, solid electrolyte composition and cell electrode sheet used for all-solid secondary cell, and method for manufacturing cell electrode sheet and all-solid secondary cell
US20170194663A1 (en) * 2016-01-04 2017-07-06 Aruna Zhamu Solid state electrolyte for lithium secondary battery
WO2019203333A1 (en) * 2018-04-20 2019-10-24 富士フイルム株式会社 Solid electrolyte composition, sheet for all-solid secondary battery, all-solid secondary battery, and method of manufacturing sheet for all-solid secondary battery or all-solid secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343433A (en) * 2001-05-15 2002-11-29 National Institute Of Advanced Industrial & Technology Manganese based composite positive electrode for solid- type lithium polymer battery, and lithium polymer battery using the same
JP2012216347A (en) * 2011-03-31 2012-11-08 Daiso Co Ltd Nonaqueous electrolyte secondary battery
JP6059743B2 (en) * 2014-02-17 2017-01-11 富士フイルム株式会社 Solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and method for producing the same
JP6492181B2 (en) * 2015-08-26 2019-03-27 富士フイルム株式会社 Electrode sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery
KR102601602B1 (en) * 2016-04-11 2023-11-14 삼성전자주식회사 Composite solid electrolyte, protected anode and lithium battery including the same, and method of preparing the composite solid electrolyte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140143A (en) * 1997-07-16 1999-02-12 Ricoh Co Ltd Manufacture of electrode and nonaqueous secondary battery using it
JP2002343431A (en) * 2001-05-21 2002-11-29 Hitachi Maxell Ltd Solid electrolyte and polymer solid electrolyte battery
WO2012173089A1 (en) * 2011-06-17 2012-12-20 日本ゼオン株式会社 All-solid-state secondary battery
WO2015046314A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
WO2015147281A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 All-solid secondary cell, solid electrolyte composition and cell electrode sheet used for all-solid secondary cell, and method for manufacturing cell electrode sheet and all-solid secondary cell
US20170194663A1 (en) * 2016-01-04 2017-07-06 Aruna Zhamu Solid state electrolyte for lithium secondary battery
WO2019203333A1 (en) * 2018-04-20 2019-10-24 富士フイルム株式会社 Solid electrolyte composition, sheet for all-solid secondary battery, all-solid secondary battery, and method of manufacturing sheet for all-solid secondary battery or all-solid secondary battery

Also Published As

Publication number Publication date
CN113273010A (en) 2021-08-17
JPWO2020110994A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
EP3336931B1 (en) Composite electrolyte structure and lithium metal battery including the same
JP6450030B2 (en) Multi-layer polymer electrolyte and all-solid-state battery including the same
CN105449273B (en) Electrolyte, method of preparing the same, and lithium secondary battery comprising the same
WO2020110994A1 (en) Composite solid electrolyte, and composite solid electrolyte secondary battery
JP2016219411A (en) Lithium metal battery
JPWO2011078263A1 (en) Secondary battery electrode and secondary battery
CN111201660A (en) Solid electrolyte composition, sheet containing solid electrolyte, electrode sheet for all-solid-state secondary battery, and method for producing solid electrolyte-containing sheet and all-solid-state secondary battery
CN111194492A (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing solid electrolyte-containing sheet and all-solid-state secondary battery
JPWO2019194094A1 (en) Separator for power storage device, power storage device and manufacturing method thereof
JP5326575B2 (en) Method for producing polyradical compound-conductive substance complex
KR20200078211A (en) Positive electrode and lithium battery including the same
CN111213213A (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing solid electrolyte-containing sheet and all-solid-state secondary battery
KR100462668B1 (en) Polymer cell
Ryu et al. Fabrication and electrochemical behavior of thin composite solid electrolyte for all-solid lithium batteries
KR20180087169A (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
CN110741495B (en) Binder composition for electrochemical element, slurry composition for functional layer, slurry composition for adhesive layer, and composite film
JP7478508B2 (en) Inorganic solid electrolyte secondary battery
KR20210110298A (en) Conductive material paste for all-solid secondary battery electrodes
JP2022155549A (en) Power storage device and coating liquid for negative electrode protective film
JP7400729B2 (en) Electrodes for inorganic solid electrolyte secondary batteries, and inorganic solid electrolyte secondary batteries
US20230106336A1 (en) Electrolyte and power storage device
JP4479159B2 (en) Non-aqueous electrolyte battery
JP2020084041A (en) Conductive polymer and inorganic solid electrolyte secondary battery
JP6631363B2 (en) Negative electrode active material, negative electrode including negative electrode active material, and lithium ion secondary battery including negative electrode
JP7459982B1 (en) Lithium ion conductive material, lithium ion secondary battery, and method for producing lithium ion conductive material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889047

Country of ref document: EP

Kind code of ref document: A1