JP7478508B2 - Inorganic solid electrolyte secondary battery - Google Patents

Inorganic solid electrolyte secondary battery Download PDF

Info

Publication number
JP7478508B2
JP7478508B2 JP2018220614A JP2018220614A JP7478508B2 JP 7478508 B2 JP7478508 B2 JP 7478508B2 JP 2018220614 A JP2018220614 A JP 2018220614A JP 2018220614 A JP2018220614 A JP 2018220614A JP 7478508 B2 JP7478508 B2 JP 7478508B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
inorganic solid
secondary battery
ion
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018220614A
Other languages
Japanese (ja)
Other versions
JP2020087711A (en
Inventor
克人 三浦
琢寛 幸
康雄 菊園
瑞絵 鰐渕
雅人 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP2018220614A priority Critical patent/JP7478508B2/en
Publication of JP2020087711A publication Critical patent/JP2020087711A/en
Application granted granted Critical
Publication of JP7478508B2 publication Critical patent/JP7478508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、無機固体電解質二次電池に関する。 The present invention relates to an inorganic solid electrolyte secondary battery.

従来、リチウムイオン電池に代表される非水電解質二次電池は、電解質にイオン伝導性の点から溶液またはペースト状のものが用いられている。しかし、液漏れによる機器の損傷の恐れがあることから、種々の安全対策が必要であり、大型電池開発の障壁になっている。 Conventionally, non-aqueous electrolyte secondary batteries, such as lithium-ion batteries, use a solution or paste-like electrolyte for its ionic conductivity. However, various safety measures are required to prevent leakage of the electrolyte, which can damage the device, and this is an obstacle to the development of large batteries.

これに対し高分子固体電解質、無機固体電解質などの電解質が固体化された固体電解質が提案されている。高分子固体電解質は、一般に柔軟性、曲げ加工性、および成形性に優れ、応用されるデバイスの設計の自由度が高くなるなどの利点があるが、負荷特性や低温特性が悪いために、高温作動の電池用途に限られるという欠点がある。一方、無機固体電解質は、高分子固体電解質と比べて、イオン伝導性が高いものの、電解質が結晶質あるいは非晶質からなり、充放電時の正負極活物質による体積変化の緩和が難しく、更に、電極と電解質の界面抵抗が高いため、充放電特性が不十分という問題がある。 In response to this, solid electrolytes have been proposed, such as polymer solid electrolytes and inorganic solid electrolytes, which are solidified electrolytes. Polymer solid electrolytes generally have advantages such as excellent flexibility, bendability, and moldability, which allows greater freedom in the design of devices to which they are applied, but they have the disadvantage that their use is limited to batteries that operate at high temperatures due to poor load characteristics and low-temperature characteristics. On the other hand, inorganic solid electrolytes have higher ionic conductivity than polymer solid electrolytes, but the electrolyte is crystalline or amorphous, making it difficult to alleviate the volume change caused by the positive and negative electrode active materials during charging and discharging, and furthermore, the high interfacial resistance between the electrodes and the electrolyte results in insufficient charging and discharging characteristics.

特許文献1、2には、ポリエチレンオキシドとリチウム塩を含む高分子固体電解質を無機固体電解質と電極層との間に介在させた電池が開示されている。しかしながら、ポリエチレンオキシドは、結晶性が高く、融点(60℃)以下になると、結晶化に伴い、柔軟性がなくなり、結着性が弱くなる。また、融点以上になると、ポリエチレンオキシドが溶融するため形状維持ができなくなり、結着性が弱くなるという問題がある。ポリエチレンオキシドを含む固体電解質では無機固体電解質との界面を良好に保つことは困難である。 Patent Documents 1 and 2 disclose batteries in which a polymer solid electrolyte containing polyethylene oxide and a lithium salt is interposed between an inorganic solid electrolyte and an electrode layer. However, polyethylene oxide is highly crystalline, and when it is below its melting point (60°C), it loses flexibility and its binding properties weaken as it crystallizes. Furthermore, when it is above its melting point, the polyethylene oxide melts and is unable to maintain its shape, resulting in a problem of weakened binding properties. It is difficult to maintain a good interface with an inorganic solid electrolyte when using a solid electrolyte containing polyethylene oxide.

特開2014-238925号公報JP 2014-238925 A 特開2009-181872号公報JP 2009-181872 A

本発明は、優れた充放電特性を発揮する新規な無機固体電解質二次電池を提供することを主な目的とする。 The main objective of the present invention is to provide a new inorganic solid electrolyte secondary battery that exhibits excellent charge/discharge characteristics.

本発明者は、上記の課題を解決すべく鋭意検討を行った。その結果、正極、無機固体電解質、負極、及び架橋フィルムを備える無機固体電解質二次電池であって、前記架橋フィルムは、リチウム塩化合物、及び側鎖にエチレンオキシド単位を有するイオン伝導性ポリマーを含む組成物の架橋体であり、正極と無機固体電解質との間、及び負極と無機固体電解質との間の少なくとも一方に、前記架橋フィルムを有する無機固体電解質二次電池は、優れた充放電特性を発揮することを見出した。本発明は、このような知見に基づいて、さらに検討を重ねることにより完成したものである。 The present inventors conducted extensive research to solve the above problems. As a result, they discovered that an inorganic solid electrolyte secondary battery having a positive electrode, an inorganic solid electrolyte, a negative electrode, and a crosslinked film, the crosslinked film being a crosslinked body of a composition containing a lithium salt compound and an ion-conductive polymer having an ethylene oxide unit in a side chain, and an inorganic solid electrolyte secondary battery having the crosslinked film at least one between the positive electrode and the inorganic solid electrolyte and between the negative electrode and the inorganic solid electrolyte, exhibits excellent charge/discharge characteristics. The present invention was completed based on this knowledge and through further research.

即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 正極、無機固体電解質、負極、及び架橋フィルムを備える、無機固体電解質二次電池であって、
前記架橋フィルムは、リチウム塩化合物、及び側鎖にエチレンオキシド単位を有するイオン伝導性ポリマーを含む組成物の架橋体であり、
前記正極と前記無機固体電解質との間、及び前記負極と前記無機固体電解質との間の少なくとも一方に、前記架橋フィルムを有する、無機固体電解質二次電池。
項2. 前記リチウム塩化合物は、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22(LiTFSI)、LiN(SFO22(LiFSI)、LiN(C25SO22、及びLiN[CF3SC(C25SO232からなる群より選択される少なくとも1種である、項1に記載の無機固体電解質二次電池。
項3. 前記無機固体電解質と、前記架橋フィルムとが接触している、項1または2に記載の無機固体電解質二次電池。
項4. 前記無機固体電解質は、酸化物系固体電解質又は硫化物系固体電解質である、項1~3のいずれか1項に記載の無機固体電解質二次電池。
That is, the present invention provides the following aspects.
Item 1. An inorganic solid electrolyte secondary battery comprising a positive electrode, an inorganic solid electrolyte, a negative electrode, and a crosslinked film,
the crosslinked film is a crosslinked product of a composition including a lithium salt compound and an ion conductive polymer having an ethylene oxide unit in a side chain,
an inorganic solid electrolyte secondary battery having the crosslinked film at least one between the positive electrode and the inorganic solid electrolyte and between the negative electrode and the inorganic solid electrolyte.
Item 2. The inorganic solid electrolyte secondary battery according to Item 1, wherein the lithium salt compound is at least one selected from the group consisting of LiBF4 , LiPF6 , LiClO4, LiCF3SO3, LiN(CF3SO2 ) 2 ( LiTFSI ), LiN(SFO2) 2 ( LiFSI), LiN ( C2F5SO2 ) 2 , and LiN[ CF3SC ( C2F5SO2 ) 3 ] 2 .
Item 3. The inorganic solid electrolyte secondary battery according to item 1 or 2, wherein the inorganic solid electrolyte and the crosslinked film are in contact with each other.
Item 4. The inorganic solid electrolyte secondary battery according to any one of Items 1 to 3, wherein the inorganic solid electrolyte is an oxide-based solid electrolyte or a sulfide-based solid electrolyte.

本発明によれば、優れた充放電特性を発揮する新規な無機固体電解質二次電池を提供することができる。 The present invention provides a new inorganic solid electrolyte secondary battery that exhibits excellent charge/discharge characteristics.

本発明の無機固体電解質二次電池は、正極、無機固体電解質、負極、及び架橋フィルムを備える、無機固体電解質二次電池であって、前記架橋フィルムは、リチウム塩化合物、及び側鎖にエチレンオキシド単位を有するイオン伝導性ポリマーを含む組成物の架橋体であり、正極と無機固体電解質との間、及び負極と無機固体電解質との間の少なくとも一方に、前記架橋フィルムを有することを特徴としている。本発明の無機固体電解質二次電池は、このような構成を備えていることにより、優れた充放電特性を発揮することができる。 The inorganic solid electrolyte secondary battery of the present invention is an inorganic solid electrolyte secondary battery comprising a positive electrode, an inorganic solid electrolyte, a negative electrode, and a crosslinked film, the crosslinked film being a crosslinked body of a composition containing a lithium salt compound and an ion-conductive polymer having an ethylene oxide unit in a side chain, and characterized in that the crosslinked film is present at least either between the positive electrode and the inorganic solid electrolyte or between the negative electrode and the inorganic solid electrolyte. The inorganic solid electrolyte secondary battery of the present invention is capable of exhibiting excellent charge and discharge characteristics by having such a configuration.

より具体的には、本発明の無機固体電解質二次電池において、前記の架橋フィルム(以下、単に「架橋フィルム」と表記することがある)は、リチウム塩化合物、及びイオン伝導性ポリマーを含む組成物の架橋体であることから、イオン伝導性を有しており、かつ、無機材料と比較して高い柔軟性を有している。従って、当該架橋フィルムは、無機固体電解質(無機固体粒子の集合体)や電極(より具体的には、活物質粒子などを含む電極材料層)との接触面積が大きくなり、その結果、固体電解質や電極との界面抵抗が効果的に低下し、本発明の無機固体電解質二次電池は優れた充放電特性を発揮するものと考えられる。なお、後述の通り、本発明の架橋フィルムは、正極及び負極の少なくとも一方と、無機固体電解質との間に配置され、かつ、無機固体電解質と接触するように設けられることが好ましい。また、無機固体電解質二次電池は、高温環境(例えば100℃以上の高温環境)で使用されることもあるが、本発明の無機固体電解質二次電池は、高温環境において優れた充放電特性を発揮する。以下、本発明の無機固体電解質二次電池について詳述する。 More specifically, in the inorganic solid electrolyte secondary battery of the present invention, the crosslinked film (hereinafter, sometimes simply referred to as "crosslinked film") is a crosslinked body of a composition containing a lithium salt compound and an ion-conductive polymer, and therefore has ion conductivity and has high flexibility compared to inorganic materials. Therefore, the crosslinked film has a large contact area with the inorganic solid electrolyte (aggregate of inorganic solid particles) and the electrode (more specifically, an electrode material layer containing active material particles, etc.), and as a result, the interface resistance with the solid electrolyte and the electrode is effectively reduced, and it is considered that the inorganic solid electrolyte secondary battery of the present invention exhibits excellent charge and discharge characteristics. As described later, it is preferable that the crosslinked film of the present invention is disposed between at least one of the positive electrode and the negative electrode and the inorganic solid electrolyte, and is provided so as to be in contact with the inorganic solid electrolyte. In addition, although the inorganic solid electrolyte secondary battery may be used in a high-temperature environment (for example, a high-temperature environment of 100°C or higher), the inorganic solid electrolyte secondary battery of the present invention exhibits excellent charge and discharge characteristics in a high-temperature environment. The inorganic solid electrolyte secondary battery of the present invention will be described in detail below.

なお、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。複数の下限値と複数の上限値が別個に記載されている場合、任意の下限値と上限値を選択し、「~」で結ぶことができるものとする。 In this specification, a numerical value connected with "~" means a numerical range that includes the numerical values before and after "~" as the lower and upper limits. When multiple lower limits and multiple upper limits are listed separately, any lower limit and upper limit may be selected and connected with "~".

架橋フィルムは、少なくとも、リチウム塩化合物と、側鎖にエチレンオキシド単位を有するイオン伝導性ポリマーとを含む組成物を架橋することにより形成される。すなわち、架橋フィルムは、リチウム塩化合物とイオン伝導性ポリマーを含む組成物の架橋フィルムである。 The crosslinked film is formed by crosslinking a composition containing at least a lithium salt compound and an ion-conductive polymer having ethylene oxide units in its side chain. That is, the crosslinked film is a crosslinked film of a composition containing a lithium salt compound and an ion-conductive polymer.

側鎖にエチレンオキシド単位を有するイオン伝導性ポリマーとしては、例えば、側鎖にエチレンオキシド単位を有するポリエーテル、側鎖にエチレンオキシド単位を有するホウ酸エステル、側鎖にエチレンオキシド単位を有するポリオレフィン等があり、好ましくは側鎖にエチレンオキシド単位を有するポリエーテルである。 Ion-conductive polymers having ethylene oxide units in the side chain include, for example, polyethers having ethylene oxide units in the side chain, borate esters having ethylene oxide units in the side chain, and polyolefins having ethylene oxide units in the side chain, and polyethers having ethylene oxide units in the side chain are preferred.

側鎖にエチレンオキシド単位を有するポリエーテルは、側鎖にエチレンオキシド単位を有するエポキシ化合物から形成された構成単位を含むことが好ましい。すなわち、イオン伝導性ポリマーは、側鎖にエチレンオキシド単位を有するエポキシ化合物を少なくとも単量体としたポリマーであることが好ましい。 It is preferable that the polyether having an ethylene oxide unit in the side chain contains a structural unit formed from an epoxy compound having an ethylene oxide unit in the side chain. In other words, it is preferable that the ion-conductive polymer is a polymer in which at least the monomer is an epoxy compound having an ethylene oxide unit in the side chain.

側鎖にエチレンオキシド単位を有するエポキシ化合物としては、例えば、下記式(2)で表される単量体が挙げられ、下記式(2)、必要により下記式(1)、下記式(3)で表される単量体を用いた分岐型ポリエーテルは、側鎖にエチレンオキシド単位を有するポリエーテル(i)となる。式(1)~(3)で表される単量体は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。式(1)~(3)で表される単量体は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 An example of an epoxy compound having an ethylene oxide unit in the side chain is a monomer represented by the following formula (2). A branched polyether using a monomer represented by the following formula (2) and, if necessary, the following formula (1) or formula (3) is a polyether (i) having an ethylene oxide unit in the side chain. Only one type of monomer represented by formulas (1) to (3) may be used, or two or more types may be mixed together. Only one type of monomer represented by formulas (1) to (3) may be used, or two or more types may be mixed together.

Figure 0007478508000001
Figure 0007478508000001

Figure 0007478508000002
Figure 0007478508000002

[式(2)中、Rは-CH2O(CH2CH2O)n4であり、R4は炭素数1~6のアルキル基であり、nは0~12の数である。] [In formula (2), R is —CH 2 O(CH 2 CH 2 O) n R 4 , R 4 is an alkyl group having 1 to 6 carbon atoms, and n is a number from 0 to 12.]

Figure 0007478508000003
Figure 0007478508000003

[式(3)中、R5は、エチレン性不飽和基を含有する基を表す。] [In formula (3), R5 represents a group containing an ethylenically unsaturated group.]

式(3)の単量体としては、アリルグリシジルエーテル、4-ビニルシクロヘキシルグリシジルエーテル、α-テルピニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、アリルフェニルグリシジルエーテル、ビニルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-1-ペンテン、4,5-エポキシ-2-ペンテン、1,2-エポキシ-5,9-シクロドデカンジエン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5-シクロオクテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソルビン酸グリシジル、ケイ皮酸グリシジル、クロトン酸グリシジル、グリシジル-4-ヘキセノエートが用いられる。好ましくは、アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルである。 As the monomer of formula (3), allyl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, α-terpinyl glycidyl ether, cyclohexenyl methyl glycidyl ether, p-vinylbenzyl glycidyl ether, allyl phenyl glycidyl ether, vinyl glycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy-5,9-cyclododecanediene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, glycidyl sorbate, glycidyl cinnamate, glycidyl crotonate, and glycidyl-4-hexenoate are used. Allyl glycidyl ether, glycidyl acrylate, and glycidyl methacrylate are preferably used.

側鎖にエチレンオキシド単位を有するポリエーテル(i)の合成は、例えば、次のようにして行うことができる。開環重合触媒として有機アルミニウムを主体とする触媒系、有機亜鉛を主体とする触媒系、有機錫-リン酸エステル縮合物触媒系などの配位アニオン開始剤、または対イオンにK+を含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤を用いて、各単量体を溶媒の存在下又は不存在下、反応温度10~120℃、撹拌下で反応させることによってポリエーテル(i)が得られる。重合度、あるいは得られる共重合体の性質などの点から、配位アニオン開始剤が好ましく、なかでも有機錫-リン酸エステル縮合物触媒系が取り扱い易く特に好ましい。 The synthesis of polyether (i) having an ethylene oxide unit in the side chain can be carried out, for example, as follows. Polyether ( i ) is obtained by reacting each monomer with stirring at a reaction temperature of 10 to 120°C in the presence or absence of a solvent using a coordination anion initiator such as an organoaluminum-based catalyst system, an organozinc-based catalyst system, or an organotin-phosphate ester condensate catalyst system as a ring-opening polymerization catalyst, or an anion initiator such as potassium alkoxide, diphenylmethyl potassium, or potassium hydroxide containing K + as a counter ion. From the viewpoint of the degree of polymerization or the properties of the resulting copolymer, coordination anion initiators are preferred, and among them, organotin-phosphate ester condensate catalyst systems are particularly preferred because of their ease of handling.

側鎖にエチレンオキシド単位を有するポリエーテル(i)において、式(1)の単量体に由来する繰り返し単位(A)と、式(2)の単量体に由来する繰り返し単位(B)と、式(3)の単量体に由来する繰り返し単位(C)とのモル比は、(A)95~5モル%、(B)5~95モル%、および(C)0~20モル%が適当であり、好ましくは(A)92~9モル%、(B)7~90モル%、および(C)1~15モル%、更に好ましくは(A)88~18モル%、(B)10~80モル%、および(C)2~15モル%である。繰り返し単位(A)が95モル%以下であるとガラス転移温度の上昇とオキシエチレン鎖の結晶化を招かず、結果的にイオン伝導性の点で好ましい。 In the polyether (i) having ethylene oxide units in the side chain, the molar ratio of the repeating unit (A) derived from the monomer of formula (1), the repeating unit (B) derived from the monomer of formula (2), and the repeating unit (C) derived from the monomer of formula (3) is suitably 95-5 mol% for (A), 5-95 mol% for (B), and 0-20 mol% for (C), preferably 92-9 mol% for (A), 7-90 mol% for (B), and 1-15 mol% for (C), and more preferably 88-18 mol% for (A), 10-80 mol% for (B), and 2-15 mol% for (C). If the repeating unit (A) is 95 mol% or less, the glass transition temperature does not increase and the oxyethylene chains do not crystallize, which is preferable in terms of ion conductivity.

側鎖にエチレンオキシド単位を有するポリエーテル(i)の具体例としては、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル三元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/メタクリル酸グリシジル三元共重合体、エチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アクリル酸グリシジル三元共重合体等が挙げられる。 Specific examples of polyethers (i) having ethylene oxide units in the side chain include ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether terpolymers, ethylene oxide/diethylene glycol methyl glycidyl ether/glycidyl methacrylate terpolymers, and ethylene oxide/diethylene glycol methyl glycidyl ether/glycidyl acrylate terpolymers.

側鎖にエチレンオキシド単位を有するポリエーテル(i)の重量平均分子量は特に限定されないが、1万~300万であってよく、5万~250万であることがより好ましく、10万~200万であることが特に好ましい。重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で、溶媒としてジメチルホルムアミド(DMF)を使用して、標準ポリスチレン換算により算出する。 The weight average molecular weight of the polyether (i) having ethylene oxide units in the side chain is not particularly limited, but may be from 10,000 to 3,000,000, more preferably from 50,000 to 2,500,000, and particularly preferably from 100,000 to 2,000,000. The weight average molecular weight is calculated by gel permeation chromatography (GPC) using dimethylformamide (DMF) as a solvent in terms of standard polystyrene.

架橋フィルムに含まれるイオン伝導性ポリマーの含有量としては、架橋フィルム全体を100質量部として、好ましくは5~95質量部、より好ましくは10~90質量部である。 The content of the ion-conductive polymer in the crosslinked film is preferably 5 to 95 parts by mass, and more preferably 10 to 90 parts by mass, based on 100 parts by mass of the entire crosslinked film.

リチウム塩化合物としては、リチウムイオン電池に一般的に利用されているような、広い電位窓を有するリチウム塩化合物が好適である。リチウム塩化合物としては、例えば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22(LiTFSI),LiN(SFO22(LiFSI)、LiN(C25SO22、LiN[CF3SC(C25SO232などを挙げられるが、これらに限定されない。これらは、単独で用いても、2種類以上を混合して用いても良い。 The lithium salt compound is preferably a lithium salt compound having a wide potential window, as is generally used in lithium ion batteries.The lithium salt compound may be, for example, LiBF4 , LiPF6 , LiClO4 , LiCF3SO3 , LiN(CF3SO2)2(LiTFSI), LiN(SFO2)2(LiFSI), LiN(C2F5SO2 ) 2 , LiN [ CF3SC ( C2F5SO2 ) 3 ] 2 , etc. , but is not limited thereto.These may be used alone or in combination of two or more.

架橋フィルムに含まれるリチウム塩化物の含有量リチウム塩化合物のモル数/イオン伝導性ポリマーのエーテル酸素原子の総モル数の値が0.0001~5が好ましく、更に好ましくは0.001~0.5の範囲がよい。 The content of lithium chloride in the crosslinked film (moles of lithium salt compound) / total moles of ether oxygen atoms in the ion-conductive polymer is preferably 0.0001 to 5, more preferably 0.001 to 0.5.

また、架橋フィルムには、常温溶融塩が含まれていてもよい。常温溶融塩は、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。 The crosslinked film may also contain room temperature molten salt. Room temperature molten salt refers to salt that is at least partially liquid at room temperature, and room temperature refers to the temperature range in which the power supply is expected to operate normally. The temperature range in which the power supply is expected to operate normally has an upper limit of about 120°C, and in some cases about 60°C, and a lower limit of about -40°C, and in some cases about -20°C.

常温溶融塩はイオン液体とも呼ばれており、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。 Room temperature molten salts are also called ionic liquids, and pyridine-based, aliphatic amine-based, and alicyclic amine-based quaternary ammonium organic cations are known. Examples of quaternary ammonium organic cations include imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, and piperidinium ions. In particular, imidazolium cations are preferred.

なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。 Examples of tetraalkylammonium ions include, but are not limited to, trimethylethylammonium ion, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, and triethylmethylammonium ion.

また、アルキルピリジウムイオンとしては、N-メチルピリジウムイオン、N-エチルピリジニウムイオン、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-エチル-2メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。 Alkylpyridinium ions include, but are not limited to, N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion, N-butylpyridinium ion, 1-ethyl-2-methylpyridinium ion, 1-butyl-4-methylpyridinium ion, and 1-butyl-2,4-dimethylpyridinium ion.

イミダゾリウムカチオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。 Examples of imidazolium cations include, but are not limited to, 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, and 1-butyl-2,3-dimethylimidazolium ion.

なお、これらのカチオンを有する常温溶融塩は、単独で用いてもよく、または2種以上を混合して用いても良い。 These room temperature molten salts having cations may be used alone or in combination of two or more.

架橋フィルムに常温溶融塩が含まれる場合、その含有量としては、イオン伝導性ポリマー100質量部に対して、好ましくは10~1000質量部、より好ましくは20~500質量部である。 When the crosslinked film contains a room temperature molten salt, the content is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass, per 100 parts by mass of the ion conductive polymer.

架橋フィルムは、可塑剤などを含んでいてもよい。可塑剤としては、特に限定されないが、ジシアノ化合物、分岐型エーテル化合物が好ましい。可塑剤を添加する場合は、イオン伝導性ポリマーを架橋することが好ましい。この架橋は、化学架橋であり、架橋フィルムからの可塑剤の流出を抑制できる。 The crosslinked film may contain a plasticizer. There are no particular limitations on the plasticizer, but dicyano compounds and branched ether compounds are preferred. When a plasticizer is added, it is preferred to crosslink the ion-conductive polymer. This crosslinking is chemical crosslinking, and can prevent the plasticizer from leaking out of the crosslinked film.

ジシアノ化合物としてはスクシノニトリル、グルタロニトリル、アジポニトリル、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、1,8-ジシアノオクタン等が挙げられる。分岐型エーテル化合物の例として、下記の多分岐型エーテル化合物などが挙げられる。 Examples of dicyano compounds include succinonitrile, glutaronitrile, adiponitrile, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, and 1,8-dicyanooctane. Examples of branched ether compounds include the following multi-branched ether compounds.

Figure 0007478508000004
Figure 0007478508000004

Figure 0007478508000005
Figure 0007478508000005

架橋フィルムに可塑剤が含まれる場合、可塑剤の含有量としては、イオン伝導性ポリマー100質量部に対して、好ましくは10~1000質量部、より好ましくは20~500質量部である。 When the crosslinked film contains a plasticizer, the content of the plasticizer is preferably 10 to 1000 parts by mass, and more preferably 20 to 500 parts by mass, per 100 parts by mass of the ion-conductive polymer.

リチウム塩化合物とイオン伝導性ポリマーを含む組成物に反応開始剤や架橋助剤を配合して、架橋フィルムを形成してもよい。反応開始剤としては、熱反応開始剤、光反応開始剤が挙げられる。 A crosslinked film may be formed by adding a reaction initiator or a crosslinking assistant to a composition containing a lithium salt compound and an ion-conductive polymer. Examples of reaction initiators include thermal reaction initiators and photoreaction initiators.

熱反応開始剤としては、有機過酸化物、アゾ化合物等から選ばれるラジカル開始剤が用いられる。有機過酸化物としては、ケトンパーオキシド、パーオキシケタール、ハイドロパーオキシド、ジアルキルパーオキシド、ジアシルパーオキシド、パーオキシエステル等、通常架橋用途に使用されているものが用いられ、アゾ化合物としてはアゾニトリル化合物、アゾアミド化合物、アゾアミジン化合物等、通常架橋用途に使用されているものが用いられる。ラジカル開始剤の添加量は種類により異なるが、通常、イオン伝導性ポリマーを100質量部として0.1~10質量部の範囲内である。 As the thermal reaction initiator, a radical initiator selected from organic peroxides, azo compounds, etc. is used. As the organic peroxides, those normally used for crosslinking applications such as ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, etc. are used, and as the azo compounds, those normally used for crosslinking applications such as azonitrile compounds, azoamide compounds, azoamidine compounds, etc. are used. The amount of radical initiator added varies depending on the type, but is usually within the range of 0.1 to 10 parts by mass per 100 parts by mass of the ion-conductive polymer.

光反応開始剤としては、アルキルフェノン系、ベンゾフェノン系、アシルフォスフィンオキサイド系、チタノセン類、トリアジン類、ビスイミダゾール類、オキシムエステル類などラジカル開始剤が用いられる。これらのラジカル重合開始剤の添加量は種類により異なるが、通常、イオン伝導性ポリマーを100質量部として0.01~5.0質量部の範囲内である。 As photoinitiators, radical initiators such as alkylphenones, benzophenones, acylphosphine oxides, titanocenes, triazines, bisimidazoles, and oxime esters are used. The amount of these radical polymerization initiators added varies depending on the type, but is usually within the range of 0.01 to 5.0 parts by mass per 100 parts by mass of the ion conductive polymer.

架橋助剤としては、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、オリゴエチレングリコールジアクリレート、オリゴエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、アリルメタクリレート、アリルアクリレート、ジアリルマレート、トリアリルイソシアヌレート、マレイミド、フェニルマレイミド、無水マレイン酸等を任意に用いることができる。 As crosslinking aids, any of the following can be used: ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, trimethylolpropane triacrylate, allyl methacrylate, allyl acrylate, diallyl maleate, triallyl isocyanurate, maleimide, phenylmaleimide, maleic anhydride, etc.

リチウム塩化合物とイオン伝導性ポリマーを含む組成物には、有機溶媒を配合してもよく、有機溶媒としては、トルエン、キシレン、ベンゼン、アセトニトリル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、THF(テトラヒドロフラン)が挙げられる。 An organic solvent may be added to the composition containing the lithium salt compound and the ionically conductive polymer. Examples of the organic solvent include toluene, xylene, benzene, acetonitrile, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and THF (tetrahydrofuran).

架橋フィルムの作製方法は、例えば、イオン伝導性ポリマー、必要に応じて反応開始剤、及びリチウム塩化合物を有機溶媒に混合して溶解して組成物を形成し、基材(例えばPETフィルムやテフロン(登録商標)板など)上に組成物をキャスティングし、溶媒を除去後、加熱又は紫外線などの活性エネルギー線照射によって架橋フィルムを作製する方法が挙げられる。また、直接、無機固体電解質の表面に当該組成物をキャスティングして、架橋フィルムを作製することもできる。 For example, a method for producing a crosslinked film includes mixing and dissolving an ion-conductive polymer, if necessary a reaction initiator, and a lithium salt compound in an organic solvent to form a composition, casting the composition on a substrate (such as a PET film or a Teflon (registered trademark) plate), removing the solvent, and then producing a crosslinked film by heating or irradiating with active energy rays such as ultraviolet rays. Alternatively, the composition can be cast directly onto the surface of an inorganic solid electrolyte to produce a crosslinked film.

架橋フィルムの膜厚は、好ましくは0.1μm~200μm、より好ましくは0.5μm~100μmの範囲内である。 The thickness of the crosslinked film is preferably in the range of 0.1 μm to 200 μm, more preferably 0.5 μm to 100 μm.

本発明の無機固体電解質二次電池の積層構成としては、例えば、以下の構成が挙げられる。
正極、架橋フィルム、無機固体電解質、架橋フィルム、及び負極が順に積層された積層構成;
正極、架橋フィルム、無機固体電解質、及び負極が順に積層された積層構成;
正極、無機固体電解質、架橋フィルム、及び負極が順に積層された積層構成。
Examples of the laminate structure of the inorganic solid electrolyte secondary battery of the present invention include the following structures.
A laminated structure in which a positive electrode, a crosslinked film, an inorganic solid electrolyte, a crosslinked film, and a negative electrode are laminated in this order;
A laminated structure in which a positive electrode, a crosslinked film, an inorganic solid electrolyte, and a negative electrode are laminated in this order;
A laminated structure in which a positive electrode, an inorganic solid electrolyte, a crosslinked film, and a negative electrode are laminated in this order.

本発明の無機固体電解質二次電池においては、無機固体電解質と前述の架橋フィルムとが接触していることが好ましい。無機固体電解質は、一般に、電解質を構成する無機固体粒子の集合体により形成されており、粒子間には空隙が存在している。架橋フィルムは、リチウム塩化合物を含むイオン伝導性ポリマーを含む組成物の架橋体であることから、イオン伝導性を有しており、かつ、無機材料と比較して高い柔軟性を有している。従って、当該架橋フィルムは、無機固体電解質との接触面積が大きくなり、その結果、無機固体電解質の界面抵抗が効果的に低下し、本発明の無機固体電解質二次電池は優れた充放電特性を発揮するものと考えられる。なお、電極材料層に含まれる活物質粒子なども空隙を形成することから、本発明の無機固体電解質二次電池においては、架橋フィルムが電極の電極材料層と接触していることも好ましいし、架橋フィルムが電極材料層と無機固体電解質の両方と接触していることも好ましい。 In the inorganic solid electrolyte secondary battery of the present invention, it is preferable that the inorganic solid electrolyte and the crosslinked film mentioned above are in contact with each other. Inorganic solid electrolytes are generally formed by an aggregate of inorganic solid particles that constitute the electrolyte, and voids exist between the particles. The crosslinked film is a crosslinked body of a composition containing an ion-conductive polymer containing a lithium salt compound, and therefore has ion conductivity and is highly flexible compared to inorganic materials. Therefore, the crosslinked film has a large contact area with the inorganic solid electrolyte, and as a result, the interface resistance of the inorganic solid electrolyte is effectively reduced, and the inorganic solid electrolyte secondary battery of the present invention is considered to exhibit excellent charge and discharge characteristics. In addition, since the active material particles contained in the electrode material layer also form voids, it is also preferable that the crosslinked film is in contact with the electrode material layer of the electrode in the inorganic solid electrolyte secondary battery of the present invention, and it is also preferable that the crosslinked film is in contact with both the electrode material layer and the inorganic solid electrolyte.

本発明の無機固体電解質二次電池において、正極、負極ともに公知のものを用いることができるが、集電体に正極材料層、又は負極材料層を備える電極を例示することができる。 In the inorganic solid electrolyte secondary battery of the present invention, both the positive and negative electrodes can be known, but an example is an electrode that has a positive electrode material layer or a negative electrode material layer on a current collector.

正極、負極には、公知の集電体を用いることができる。具体的には、正極には、集電体として、アルミニウム、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。負極には、集電体として、銅、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。 A known current collector can be used for the positive and negative electrodes. Specifically, metals such as aluminum, nickel, stainless steel, gold, platinum, and titanium are used as the current collector for the positive electrode. Metals such as copper, nickel, stainless steel, gold, platinum, and titanium are used as the current collector for the negative electrode.

また、正極材料層、負極材料層は、それぞれ、少なくとも正極活物質、負極活物質を含有し、更に導電助剤、バインダー、増粘剤を含有していてもよく必要に応じて、前述の無機固体電解質を含有させてもよい。 The positive electrode material layer and the negative electrode material layer each contain at least a positive electrode active material and a negative electrode active material, and may further contain a conductive assistant, a binder, a thickener, and, if necessary, the inorganic solid electrolyte described above.

本発明で使用される正極活物質は、LiMO2、LiM24、Li2MO3、LiMEO4のいずれかの組成からなるリチウム金属含有複合酸化物粉末である。ここで式中のMは主として遷移金属からなり、Co、Mn、Ni、Cr、Fe、Tiの少なくとも一種を含んでいる。Mは遷移金属からなるが、遷移金属以外にもAl、Ga、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどが添加されていてもよい。EはP、Siの少なくとも1種を含んでいる。正極活物質の粒子径には50μm以下が好ましく、更に好ましくは20μm以下のものを用いる。これらの活物質は、3V(vs.Li/Li+)以上の起電力を有するものである。 The positive electrode active material used in the present invention is a lithium metal-containing composite oxide powder consisting of any one of LiMO2 , LiM2O4 , Li2MO3 , and LiMEO4 . Here, M in the formula is mainly composed of a transition metal and contains at least one of Co, Mn, Ni, Cr, Fe, and Ti. M is composed of a transition metal, but in addition to the transition metal, Al, Ga, Ge, Sn, Pb, Sb, Bi, Si, P, B, etc. may be added. E contains at least one of P and Si. The particle diameter of the positive electrode active material is preferably 50 μm or less, and more preferably 20 μm or less. These active materials have an electromotive force of 3 V (vs. Li/Li+) or more.

正極活物質の具体例としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケル/コバルト/マンガン酸リチウム(3元系)、スピネル型マンガン酸リチウム、リン酸鉄リチウムなどが挙げられる。 Specific examples of positive electrode active materials include lithium cobalt oxide, lithium nickel oxide, nickel/cobalt/lithium manganese oxide (ternary system), spinel-type lithium manganese oxide, and lithium iron phosphate.

本発明で使用される負極活物質は、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能な構造(層間化合物)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属である。粉末の場合、粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。 The negative electrode active material used in the present invention is a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (intercalation compound) capable of absorbing and releasing alkali metal ions such as lithium ions, or a metal such as lithium, an aluminum-based compound, a tin-based compound, a silicon-based compound, or a titanium-based compound capable of absorbing and releasing alkali metal ions such as lithium ions. In the case of a powder, the particle size is preferably 10 nm or more and 100 μm or less, and more preferably 20 nm or more and 20 μm or less. A mixed active material of a metal and a carbon material may also be used.

導電助剤を用いる場合には、公知の導電助剤を用いることができ、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、カーボンナノチューブなどの炭素繊維、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。 When a conductive assistant is used, a known conductive assistant can be used, and examples of such conductive assistant include graphite, furnace black, acetylene black, Ketjen black, and other conductive carbon blacks, carbon fibers such as carbon nanotubes, and metal powders. These conductive assistants may be used alone or in combination of two or more kinds.

バインダーとしては、例えばPVdF等のフッ素樹脂、フッ素ゴムやアクリルゴム、変性アクリルゴム、スチレン-ブタジエンゴム、アクリル系重合体、ビニル系重合体、前記記載のイオン伝導性ポリマーから選ばれる1種以上の化合物を用いることができる。これらバインダーは活物質を100質量部として、好ましくは5質量部以下、より好ましくは3質量部以下、例えば0.01~2質量部添加する。 As the binder, for example, one or more compounds selected from fluororesins such as PVdF, fluororubbers, acrylic rubbers, modified acrylic rubbers, styrene-butadiene rubbers, acrylic polymers, vinyl polymers, and the ion-conducting polymers described above can be used. These binders are added in an amount of preferably 5 parts by mass or less, more preferably 3 parts by mass or less, for example 0.01 to 2 parts by mass, per 100 parts by mass of the active material.

増粘剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロースおよびこれらの塩(ナトリウム塩等のアルカリ金属塩、アンモニウム塩)、ポリビニルアルコール、ポリアクリル酸塩、ポリエチレンオキサイド等が挙げられる。これら増粘剤は1種または2種以上用いてもよい。これら増粘剤は活物質を100質量部として、好ましくは5質量部以下、より好ましくは3質量部以下、例えば0.01~2質量部添加する。また、塗工液の粘度が低い場合には増粘剤を併用することができる。 Specific examples of thickeners include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose and their salts (alkali metal salts such as sodium salts, ammonium salts), polyvinyl alcohol, polyacrylates, polyethylene oxide, etc. These thickeners may be used alone or in combination. These thickeners are added in an amount of preferably 5 parts by mass or less, more preferably 3 parts by mass or less, for example 0.01 to 2 parts by mass, per 100 parts by mass of active material. Furthermore, if the viscosity of the coating liquid is low, a thickener can be used in combination.

集電体と正極材料層、負極材料層を備える正極、負極の作製方法は特に限定されず一般的な方法が用いられる。例えば、正極活物質あるいは負極活物質、導電助剤、バインダー、水またはN-メチル-2-ピロリドン(NMP)等の溶媒、必要に応じて増粘剤などからなる正極材料、負極材料のペースト(塗工液)をドクターブレード法やシルクスクリーン法などにより集電体表面上に適切な厚さに均一に塗布することより行われる。 The method for producing the positive and negative electrodes, which include a current collector and a positive and negative electrode material layers, is not particularly limited, and a general method can be used. For example, the method is carried out by uniformly applying a paste (coating liquid) of the positive and negative electrode materials, which are composed of a positive or negative electrode active material, a conductive assistant, a binder, a solvent such as water or N-methyl-2-pyrrolidone (NMP), and a thickener as necessary, to an appropriate thickness on the surface of the current collector using a doctor blade method, silk screen method, or the like.

例えばドクターブレード法では、負極活物質粉末や正極活物質粉末、導電助剤、バインダー等を水に分散してスラリー状にし、金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な有機溶剤を除去するため、例えば、100℃の熱風や80℃減圧状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極が製造される。 For example, in the doctor blade method, negative electrode active material powder, positive electrode active material powder, conductive additive, binder, etc. are dispersed in water to form a slurry, which is then applied to a metal electrode substrate and then uniformized to an appropriate thickness using a blade with a specified slit width. After the active material is applied to the electrode, it is dried, for example, with hot air at 100°C or under reduced pressure at 80°C to remove excess organic solvent. After drying, the electrode is press-molded using a press device to produce the electrode.

集電体上に正極材料層、負極材料層を形成した場合には、正極材料層、負極材料の電極材料間、例えば活物質間、活物質と他の電極材料との間等に空隙を生じることになる。本発明の無機固体電解質二次電池においては、このような空隙に、イオン伝導性ポリマー、リチウム塩化合物などを含んでいてもよい。 When a positive electrode material layer and a negative electrode material layer are formed on a current collector, voids are generated between the electrode materials of the positive electrode material layer and the negative electrode material, for example, between the active materials, between the active materials and other electrode materials, etc. In the inorganic solid electrolyte secondary battery of the present invention, such voids may contain an ion-conducting polymer, a lithium salt compound, etc.

無機固体電解質としては、酸化物系固体電解質、及び硫化物系固体電解質を例示することができる。無機固体電解質は、一般に、電解質を構成する無機固体粒子の集合体である。 Examples of inorganic solid electrolytes include oxide-based solid electrolytes and sulfide-based solid electrolytes. Inorganic solid electrolytes are generally aggregates of inorganic solid particles that constitute the electrolyte.

酸化物系固体電解質は、酸素を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものであれば特に限定されるものではない。 There are no particular limitations on the oxide-based solid electrolyte, so long as it contains oxygen, has the ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation properties.

酸化物系固体電解質を構成する具体的な化合物としては、LixLayTiO3〔x=0.3~0.7、y=0.3~0.7〕(LLT)、LixLayZrzmn(MはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxは5≦x≦10を満たし、yは1≦y≦4を満たし、zは1≦z≦4を満たし、mは0≦m≦2を満たし、nは5≦n≦20を満たす。)Lixyzn(式中MはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxは0≦x≦5を満たし、yは0≦y≦1を満たし、zは0≦z≦1を満たし、nは0≦n≦6を満たす。)、Lix(Al,Ga)y(Ti,Ge)zSiamn(ただし、1≦x≦3、0≦y≦1、0≦z≦2、0≦a≦1、1≦m≦7、3≦n≦13)、Li(3-2x)xDO(xは0以上0.1以下の数を表し、Mは2価の金属原子を表す。Dはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixSiyz(1≦x≦5、0<y≦3、1≦z≦10)、Lixyz(1≦x≦3、0<y≦2、1≦z≦10)、Li3BO3-Li2SO4、Li2O-B23-P25、Li2O-SiO2、Li6BaLa2Ta212、Li3PO(4-3/2w)w(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO4、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO3、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi2312、Li(1+x+y)(Al,Ga)x(Ti,Ge)(2-x)Siy(3-y)12(ただし、0≦x≦1、0≦y≦1)、ガーネット型結晶構造を有するLi7La3Zr2O12等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(Li3PO4)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。 Specific compounds constituting the oxide-based solid electrolyte include Li x La y TiO 3 [x=0.3-0.7, y=0.3-0.7] (LLT), Li x La y Zr z M m O n (wherein M is at least one element selected from the group consisting of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, and Sn, where x satisfies 5≦x≦10, y satisfies 1≦y≦4, z satisfies 1≦z≦4, m satisfies 0≦m≦2, and n satisfies 5≦n≦20), Li x B y M z O n (wherein M is at least one element selected from the group consisting of C, S, Al, Si, Ga, Ge, In, and Sn, where x satisfies 0≦x≦5, y satisfies 0≦y≦1, z satisfies 0≦z≦1, and n satisfies 0≦n≦6), and Li x (Al,Ga) y (Ti,Ge) zSiaPmOn ( wherein 1≦x≦3 , 0 ≦y≦1, 0≦z≦2, 0≦a≦1, 1≦m≦7, 3≦n≦13), Li ( 3-2x) MxDO (x is a number between 0 and 0.1, M is a divalent metal atom, and D is a halogen atom or a combination of two or more halogen atoms), LixSiyOz ( 1≦x≦5, 0<y≦3, 1≦z≦10), LixSyOz (1≦x≦ 3 , 0<y≦2 , 1≦z≦ 10 ) , Li3BO3 - Li2SO4 , Li2O- B2O3 - P2O5 , Li2O - SiO2 , Li6BaLa2 Ta2O12 , Li3PO (4-3/2w) Nw (w is w<1), Li3.5Zn0.25GeO4 having a LISICON (lithium super ionic conductor) type crystal structure, La0.55Li0.35TiO3 having a perovskite type crystal structure , LiTi2P3O12 having a NASICON (sodium super ionic conductor) type crystal structure, Li (1+x+y) ( Al,Ga) x (Ti,Ge) (2-x) SiyP (3-y) O12 (where 0 x 1, 0≦y≦1), Li7 having a garnet type crystal structure, La3Zr2O12 , etc. Also preferred are phosphorus compounds containing Li, P and O. Examples include lithium phosphate ( Li3PO4 ), LiPON in which part of the oxygen in lithium phosphate is replaced with nitrogen, LiPOD (D is at least one selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru , Ag, Ta, W, Pt, Au, etc.), etc. Also preferably usable is LiAON (A is at least one selected from Si, B, Ge, Al, C, Ga, etc.).

その中でも、LixLayTiO3〔x=0.3~0.7、y=0.3~0.7〕(LLT)、LixLayZrzmn(MはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxは5≦x≦10を満たし、yは1≦y≦4を満たし、zは1≦z≦4を満たし、mは0≦m≦2を満たし、nは5≦n≦20を満たす。)、Li7La3Zr212(LLZ)、Li3BO3、Li3BO3-Li2SO4、Li3BO3-Li2CO3、Lix(Al,Ga)y(Ti,Ge)zSiamn(ただし、1≦x≦3、0≦y≦1、0≦z≦2、0≦a≦1、1≦m≦7、3≦n≦13)が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among them, Li x La y TiO 3 [x=0.3-0.7, y=0.3-0.7] (LLT), Li x La y Zr z M m O n (M is at least one element selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, and Sn, x satisfies 5≦x≦10, y satisfies 1≦y≦4, z satisfies 1≦z≦4, m satisfies 0≦m≦2, and n satisfies 5≦n≦20), Li 7 La 3 Zr 2 O 12 (LLZ), Li 3 BO 3 , Li 3 BO 3 -Li 2 SO 4 , Li 3 BO 3 -Li 2 CO 3 , Li x (Al,Ga) y (Ti, Ge) zSiaPmOn (wherein 1≦x≦3 , 0≦y≦1 , 0≦z≦2 , 0≦a≦1, 1≦m≦7, 3≦n≦13) is preferred. These may be used alone or in combination of two or more.

硫化物系固体電解質は、硫黄を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものであれば特に限定されるものではない。例えば下記式で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。 There are no particular limitations on the sulfide-based solid electrolyte, so long as it contains sulfur, has the ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. For example, a lithium ion conductive inorganic solid electrolyte that satisfies the composition shown in the following formula can be used.

Liabcde Li a M b P c S d A e

式中、Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。なかでも、B、Sn、Si、Al、Geが好ましく、Sn、Al、Geがより好ましい。Aは、I、Br、Cl、Fを示し、I、Brが好ましく、Iが特に好ましい。a~eは各元素の組成比を示し、a:b:c:d:eは1~12:0~1:1:2~12:0~5を満たす。aはさらに、1~9が好ましく、1.5~4がより好ましい。bは0~0.5が好ましい。dはさらに、3~7が好ましく、3.25~4.5がより好ましい。eはさらに、0~3が好ましく、0~2がより好ましい。 In the formula, M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. Among them, B, Sn, Si, Al, and Ge are preferred, and Sn, Al, and Ge are more preferred. A represents I, Br, Cl, and F, and I and Br are preferred, and I is particularly preferred. a to e represent the composition ratio of each element, and a:b:c:d:e satisfies 1 to 12:0 to 1:1:2 to 12:0 to 5. a is more preferably 1 to 9, and more preferably 1.5 to 4. b is more preferably 0 to 0.5. d is more preferably 3 to 7, and more preferably 3.25 to 4.5. e is more preferably 0 to 3, and more preferably 0 to 2.

式において、Li、M、P、S及びAの組成比は、好ましくはb、eが0であり、より好ましくはb=0、e=0で且つa、c及びdの比(a:c:d)がa:c:d=1~9:1:3~7であり、さらに好ましくはb=0、e=0で且つa:c:d=1.5~4:1:3.25~4.5である。 In the formula, the composition ratio of Li, M, P, S, and A is preferably such that b and e are 0, more preferably b=0, e=0, and the ratio of a, c, and d (a:c:d) is a:c:d=1-9:1:3-7, and even more preferably b=0, e=0, and a:c:d=1.5-4:1:3.25-4.5.

無機固体電解質が粒子状である場合、その粒子径としては、例えば0.01~100μm、好ましくは0.1~20μmが挙げられる。 When the inorganic solid electrolyte is particulate, the particle size is, for example, 0.01 to 100 μm, preferably 0.1 to 20 μm.

無機固体電解質二次電池の製造方法
本発明の無機固体電解質二次電池の製造方法は特に限定されず、少なくとも、正極、負極、無機固体電解質、及び架橋フィルムで構成され、公知の方法にて製造される。例えば、コイン型のリチウムイオン電池の場合、正極、無機固体電解質、負極、さらに、正極と無機固体電解質との間、及び、負極と無機固体電解質との間の少なくとも一方に架橋フィルムを配置して、外装缶に挿入する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシめることで蓄電池が得られる。電池の形状は限定されないが、例としてはコイン型、円筒型、シート型などがあげられ、2個以上の電池を積層した構造でもよい。
The method of manufacturing the inorganic solid electrolyte secondary battery of the present invention is not particularly limited, and the inorganic solid electrolyte secondary battery is composed of at least a positive electrode, a negative electrode, an inorganic solid electrolyte, and a crosslinked film, and is manufactured by a known method. For example, in the case of a coin-type lithium ion battery, a positive electrode, an inorganic solid electrolyte, a negative electrode, and a crosslinked film are arranged at least one between the positive electrode and the inorganic solid electrolyte and between the negative electrode and the inorganic solid electrolyte, and then inserted into an outer can. Then, the battery is joined to the sealing body by tab welding or the like, and the sealing body is sealed and caulked to obtain a storage battery. The shape of the battery is not limited, but examples include a coin type, a cylindrical type, a sheet type, and the like, and a structure in which two or more batteries are stacked may be used.

以下の実施例において本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be described in more detail in the following examples, but is not limited to these.

本実施例では、コイン電池を作製し、コイン電池の充放電特性の性能評価を以下の実験にて行った。 In this example, a coin battery was fabricated and the performance of the charge/discharge characteristics of the coin battery was evaluated in the following experiment.

[作製した電池の評価]
作製した電池の評価としては充放電装置を用いて充放電試験を行い、充電容量および放電容量を求めた。
[Evaluation of the fabricated battery]
The produced batteries were evaluated by carrying out a charge/discharge test using a charge/discharge device to determine the charge capacity and discharge capacity.

充放電測定
0.1C(10時間率)に相当する電流で4.2VまでCCCV充電(0.01Cカット)後、0.1Cに相当する電流で、2.5VまでCCCV放電(0.01Cカット)を行った。試験温度は100℃環境とした。
Charge/Discharge Measurement: The battery was CCCV charged (0.01 C cut) to 4.2 V at a current equivalent to 0.1 C (10-hour rate), and then CCCV discharged (0.01 C cut) to 2.5 V at a current equivalent to 0.1 C. The test temperature was set to a 100° C. environment.

無機固体電解質二次電池用電極の作製例
[正極の実施作製例]
(1)正極活物質としてNCM(ニッケル/コバルト/マンガン酸リチウム=5/2/3)100質量部に、導電助剤としてアセチレンブラック3質量部、黒鉛3質量部、バインダーとしてPVdF3質量部を加え、さらにスラリーの固形分濃度が35質量%となるようにNMP溶液中に加えて、十分に混合して正極用スラリーを得た。得られた正極スラリーを厚さ20μmのアルミ集電体上にダイコーターを用いて塗布し、100℃で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ20μmの無機固体電解質二次電池用正極の前駆体を作製した(目付量 6.6mg/cm2、正極密度 3.1g/cm3、空隙率 26%)。
Example of Electrode Preparation for Inorganic Solid Electrolyte Secondary Battery [Example of Positive Electrode Preparation]
(1) 100 parts by mass of NCM (nickel/cobalt/lithium manganate = 5/2/3) as a positive electrode active material, 3 parts by mass of acetylene black as a conductive assistant, 3 parts by mass of graphite, and 3 parts by mass of PVdF as a binder were added, and further added to an NMP solution so that the solid content concentration of the slurry was 35% by mass, and mixed thoroughly to obtain a positive electrode slurry. The obtained positive electrode slurry was applied to an aluminum collector having a thickness of 20 μm using a die coater, dried at 100 ° C. for 12 hours or more, and then pressed with a roll press machine to prepare a precursor of a positive electrode for an inorganic solid electrolyte secondary battery having a thickness of 20 μm (weight per unit area 6.6 mg/cm 2 , positive electrode density 3.1 g/cm 3 , porosity 26%).

(2)イオン伝導性ポリマーとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%三元共重合体(重量平均分子量150万)100質量部、リチウム塩化合物としてホウフッ化リチウム12質量部、架橋助剤として、トリメチロールプロパントリアクリレート 10質量部、ラジカル開始剤としてベンゾイルパーオキシド(ナイパーBMT、日油株式会社製)0.3質量部をアセトニトリル 900質量部に完全に溶解させた正極含浸用塗工溶液を調製した。 (2) A coating solution for positive electrode impregnation was prepared by completely dissolving 100 parts by mass of ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether = 80/17/3 mol% ternary copolymer (weight average molecular weight 1.5 million) as an ion conductive polymer, 12 parts by mass of lithium borofluoride as a lithium salt compound, 10 parts by mass of trimethylolpropane triacrylate as a crosslinking aid, and 0.3 parts by mass of benzoyl peroxide (Niper BMT, manufactured by NOF Corporation) as a radical initiator in 900 parts by mass of acetonitrile.

(3)上記(1)の正極の前駆体の上に、上記(2)の正極含浸用塗工溶液を塗工した。その後、2時間静置することにより、溶媒を除去しながら、正極内の空隙にイオン伝導性ポリマーとリチウム塩化合物を含浸した。100℃で2時間、減圧下、含浸したイオン伝導性ポリマーの架橋を行い、無機固体電解質二次電池用正極を作製した。 (3) The coating solution for impregnating the positive electrode (2) above was applied onto the positive electrode precursor (1) above. The solution was then left to stand for 2 hours to remove the solvent, and the voids in the positive electrode were impregnated with the ion-conductive polymer and the lithium salt compound. The impregnated ion-conductive polymer was crosslinked under reduced pressure at 100°C for 2 hours to produce a positive electrode for an inorganic solid electrolyte secondary battery.

[負極の実施作製例]
(1)負極活物質として人造黒鉛(粒径10μm) 100質量部に、導電助剤として気相成長炭素繊維(VGCF)2質量部、バインダーとしてSBR 3質量部、増粘剤としてカルボキシメチルセルロースのナトリウム塩 2質量部を加え、さらにスラリーの固形分濃度が35質量%となるように水を加えて、十分に混合して負極用スラリーを得た。得られた負極スラリーを厚さ16.5μmの銅集電体上にダイコーターを用いて塗布し、100℃で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ22μmの無機固体電解質二次電池用負極の前駆体を作製した(目付量3.1mg/cm2、負極密度1.2g/cm3、空隙率23%)。
[Example of negative electrode preparation]
(1) 100 parts by mass of artificial graphite (particle size 10 μm) as a negative electrode active material, 2 parts by mass of vapor grown carbon fiber (VGCF) as a conductive assistant, 3 parts by mass of SBR as a binder, 2 parts by mass of sodium salt of carboxymethylcellulose as a thickener, and water were added so that the solid content concentration of the slurry was 35% by mass, and the mixture was thoroughly mixed to obtain a negative electrode slurry. The obtained negative electrode slurry was applied to a copper current collector having a thickness of 16.5 μm using a die coater, dried at 100 ° C. for 12 hours or more, and then pressed with a roll press machine to prepare a precursor of a negative electrode for an inorganic solid electrolyte secondary battery having a thickness of 22 μm (weight 3.1 mg / cm 2 , negative electrode density 1.2 g / cm 3 , porosity 23%).

(2)イオン伝導性ポリマーとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%三元共重合体(重量平均分子量150万)100質量部、リチウム塩化合物としてLiTFSI 38質量部を、架橋助剤として、トリメチロールプロパントリアクリレート 10質量部、ラジカル開始剤としてベンゾイルパーオキシド(ナイパーBMT、日油株式会社製)0.3質量部をアセトニトリル900質量部に完全に溶解させた負極含浸用塗工溶液を調製した。 (2) A coating solution for impregnating the negative electrode was prepared by completely dissolving 100 parts by mass of ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether = 80/17/3 mol% ternary copolymer (weight average molecular weight 1.5 million) as an ion conductive polymer, 38 parts by mass of LiTFSI as a lithium salt compound, 10 parts by mass of trimethylolpropane triacrylate as a crosslinking aid, and 0.3 parts by mass of benzoyl peroxide (Niper BMT, manufactured by NOF Corporation) as a radical initiator in 900 parts by mass of acetonitrile.

(3)上記(1)の負極の前駆体の上に、上記(2)の電極含浸用塗工溶液を塗工した。その後、2時間静置することにより、溶媒を除去しながら、負極内の空隙にイオン伝導性ポリマーとリチウム塩化合物を含浸した。100℃で2時間、減圧下、含浸したイオン伝導性ポリマーの架橋を行い、無機固体電解質二次電池用負極を作製した。 (3) The coating solution for electrode impregnation (2) above was applied onto the precursor of the negative electrode (1) above. After that, the mixture was left to stand for 2 hours to remove the solvent, and the voids in the negative electrode were impregnated with the ion-conductive polymer and the lithium salt compound. The impregnated ion-conductive polymer was crosslinked under reduced pressure at 100°C for 2 hours to produce a negative electrode for an inorganic solid electrolyte secondary battery.

[架橋フィルムの実施作製例]
イオン伝導性ポリマーとしてエチレンオキシド/ジエチレングリコールメチルグリシジルエーテル/アリルグリシジルエーテル=80/17/3モル%三元共重合体(重量平均分子量150万)100質量部、リチウム塩化合物としてLiTFSI 38質量部を、架橋助剤として、トリメチロールプロパントリアクリレート10質量部、ラジカル開始剤としてベンゾイルパーオキシド(ナイパーBMT、日油株式会社製)0.3質量部をアセトニトリル900質量部に完全に溶解させて塗工溶液を調製した。この塗工溶液をPETフィルム上に塗工、乾燥後、100℃、2時間、減圧下で熱架橋を行い、厚さ20μmの架橋フィルムを得た。
[Example of crosslinked film production]
A coating solution was prepared by completely dissolving 100 parts by mass of ethylene oxide/diethylene glycol methyl glycidyl ether/allyl glycidyl ether = 80/17/3 mol% ternary copolymer (weight average molecular weight 1.5 million) as an ion conductive polymer, 38 parts by mass of LiTFSI as a lithium salt compound, 10 parts by mass of trimethylolpropane triacrylate as a crosslinking aid, and 0.3 parts by mass of benzoyl peroxide (Niper BMT, manufactured by NOF Corporation) as a radical initiator in 900 parts by mass of acetonitrile. This coating solution was applied onto a PET film, dried, and then thermally crosslinked at 100 ° C. for 2 hours under reduced pressure to obtain a crosslinked film having a thickness of 20 μm.

[リチウム塩化合物を含むポリエチレンオキシドフィルムの比較例]
ポリエチレンオキシド(重量平均分子量110万)100質量部、リチウム塩化合物としてLiTFSI 38質量部をアセトニトリル900質量部に完全に溶解させて塗工溶液を調製した。この塗工溶液をPETフィルム上に塗工、乾燥後、厚さ30μmのリチウム塩化合物を含むポリエチレンオキシドフィルムを得た。
[Comparative Example of Polyethylene Oxide Film Containing Lithium Salt Compound]
A coating solution was prepared by completely dissolving 100 parts by mass of polyethylene oxide (weight average molecular weight 1.1 million) and 38 parts by mass of LiTFSI as a lithium salt compound in 900 parts by mass of acetonitrile. This coating solution was applied onto a PET film and dried to obtain a polyethylene oxide film containing a lithium salt compound having a thickness of 30 μm.

電池の製造例
[無機固体電解質二次電池の実施製造例1]
ドライルーム内において、無機固体電解質二次電池用正極の実施作製例で得た正極、実施作製例の架橋フィルム、無機固体電解質としてLi7La3Zr212(LLZ, 豊島製作所製 膜厚500μm)、実施作製例の架橋フィルム、負極としての金属リチウム箔の順に積層後、カシめ、試験用2032型コイン電池を製造した。
<充放電条件>
下限電圧2.5V-上限電圧4.2V、100℃
CC(0.1C)-CV(0.01C)充電
CC(0.1C)-CV(0.01C)放電
<充放電試験結果>
充電容量168mAh/g、放電容量162mAh/g
Battery Manufacturing Example [Inorganic Solid Electrolyte Secondary Battery Manufacturing Example 1]
In a dry room, the positive electrode obtained in the working example of the positive electrode for an inorganic solid electrolyte secondary battery, the crosslinked film of the working example, Li7La3Zr2O12 ( LLZ , manufactured by Toshima Manufacturing Co., Ltd., film thickness 500 μm) as an inorganic solid electrolyte, the crosslinked film of the working example, and metallic lithium foil as a negative electrode were laminated in that order, and then crimped to produce a test 2032 type coin battery.
<Charge and discharge conditions>
Lower limit voltage 2.5V-upper limit voltage 4.2V, 100℃
Charge CC(0.1C)-CV(0.01C) Discharge CC(0.1C)-CV(0.01C) <Charge/discharge test results>
Charge capacity 168mAh/g, discharge capacity 162mAh/g

[無機固体電解質二次電池の実施製造例2]
ドライルーム内において、無機固体電解質二次電池用正極の実施作製例で得た正極、実施作製例の架橋フィルム、無機固体電解質としてLi7La3Zr212(LLZ, 豊島製作所製 膜厚500μm)、実施作製例の架橋フィルム、無機固体電解質二次電池用負極の実施作製例で得た負極の順に積層後、カシめ、試験用2032型コイン電池を製造した。
<充放電条件>
下限電圧2.5V-上限電圧4.2V、100℃
CC(0.1C)-CV(0.01C)充電
CC(0.1C)-CV(0.01C)放電
<充放電試験結果>
充電容量135mAh/g、放電容量122mAh/g
[Inorganic Solid Electrolyte Secondary Battery Manufacturing Example 2]
In a dry room, the positive electrode obtained in the practical preparation example of the positive electrode for an inorganic solid electrolyte secondary battery, the crosslinked film of the practical preparation example, Li7La3Zr2O12 (LLZ, manufactured by Toshima Manufacturing Co., Ltd., film thickness 500 μm ) as an inorganic solid electrolyte, the crosslinked film of the practical preparation example, and the negative electrode obtained in the practical preparation example of the negative electrode for an inorganic solid electrolyte secondary battery were stacked in that order, and then crimped to produce a test 2032 type coin battery.
<Charge and discharge conditions>
Lower limit voltage 2.5V-upper limit voltage 4.2V, 100℃
Charge CC(0.1C)-CV(0.01C) Discharge CC(0.1C)-CV(0.01C) <Charge/discharge test results>
Charge capacity 135mAh/g, discharge capacity 122mAh/g

[無機固体電解質二次電池の比較製造例1]
実施作製例の架橋フィルムの代わりに、比較例のポリエチレンオキシドフィルムを用いたこと以外は、実施製造例1と同様にして、試験用2032型コイン電池を製造した。
<充放電条件>
下限電圧2.5V-上限電圧4.2V、100℃
CC(0.1C)-CV(0.01C)充電
CC(0.1C)-CV(0.01C)放電
<充放電試験結果>
充電容量102mAh/g、放電容量83mAh/g
[Comparative Production Example 1 of Inorganic Solid Electrolyte Secondary Battery]
A test 2032 type coin battery was produced in the same manner as in Example 1, except that the crosslinked film of the Example was replaced with the polyethylene oxide film of the Comparative Example.
<Charge and discharge conditions>
Lower limit voltage 2.5V-upper limit voltage 4.2V, 100℃
Charge CC(0.1C)-CV(0.01C) Discharge CC(0.1C)-CV(0.01C) <Charge/discharge test results>
Charge capacity 102mAh/g, discharge capacity 83mAh/g

前記の架橋フィルムは、フィルム強度、柔軟性、結着性、イオン伝導性がある。実施製造例および比較例の結果から、正極及び負極と無機固体電解質との間に当該架橋フィルムが配置されている無機固体電解質二次電池は、電池特性(充電および放電容量)が優れていることがわかる。 The crosslinked film has film strength, flexibility, adhesion, and ionic conductivity. From the results of the working examples and comparative examples, it can be seen that an inorganic solid electrolyte secondary battery in which the crosslinked film is disposed between the positive and negative electrodes and the inorganic solid electrolyte has excellent battery characteristics (charge and discharge capacity).

本発明の無機固体電解質二次電池は、優れた充放電特性を発揮することができ、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池といった大型の電池用途に好適に利用可能である。 The inorganic solid electrolyte secondary battery of the present invention can exhibit excellent charge/discharge characteristics and can be suitably used for in-vehicle applications such as electric vehicles and hybrid electric vehicles, and for large battery applications such as storage batteries for home power storage.

Claims (4)

正極、無機固体電解質、負極、及び架橋フィルムを備える、無機固体電解質二次電池であって、
前記架橋フィルムは、リチウム塩化合物、及び側鎖にエチレンオキシド単位を有するイオン伝導性ポリマーを含む組成物の架橋体であり、
前記正極と前記無機固体電解質との間、及び前記負極と前記無機固体電解質との間の少なくとも一方に、前記架橋フィルムを有する、無機固体電解質二次電池。
An inorganic solid electrolyte secondary battery comprising a positive electrode, an inorganic solid electrolyte, a negative electrode, and a crosslinked film,
the crosslinked film is a crosslinked product of a composition including a lithium salt compound and an ion conductive polymer having an ethylene oxide unit in a side chain,
an inorganic solid electrolyte secondary battery having the crosslinked film at least one between the positive electrode and the inorganic solid electrolyte and between the negative electrode and the inorganic solid electrolyte.
前記リチウム塩化合物は、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22(LiTFSI)、LiN(SFO22(LiFSI)、LiN(C25SO22、及びLiN[CF3SC(C25SO232からなる群より選択される少なくとも1種である、請求項1に記載の無機固体電解質二次電池。 2. The inorganic solid electrolyte secondary battery according to claim 1, wherein the lithium salt compound is at least one selected from the group consisting of LiBF4 , LiPF6 , LiClO4 , LiCF3SO3 , LiN( CF3SO2 ) 2 (LiTFSI), LiN ( SFO2 ) 2 ( LiFSI ), LiN( C2F5SO2 ) 2 , and LiN[ CF3SC ( C2F5SO2 ) 3 ] 2 . 前記無機固体電解質と、前記架橋フィルムとが接触している、請求項1又は2に記載の無機固体電解質二次電池。 3. The inorganic solid electrolyte secondary battery according to claim 1, wherein the inorganic solid electrolyte and the crosslinked film are in contact with each other. 前記無機固体電解質は、酸化物系固体電解質又は硫化物系固体電解質である、請求項1~3のいずれか1項に記載の無機固体電解質二次電池。
The inorganic solid electrolyte secondary battery according to any one of claims 1 to 3, wherein the inorganic solid electrolyte is an oxide-based solid electrolyte or a sulfide-based solid electrolyte.
JP2018220614A 2018-11-26 2018-11-26 Inorganic solid electrolyte secondary battery Active JP7478508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018220614A JP7478508B2 (en) 2018-11-26 2018-11-26 Inorganic solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018220614A JP7478508B2 (en) 2018-11-26 2018-11-26 Inorganic solid electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2020087711A JP2020087711A (en) 2020-06-04
JP7478508B2 true JP7478508B2 (en) 2024-05-07

Family

ID=70910078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018220614A Active JP7478508B2 (en) 2018-11-26 2018-11-26 Inorganic solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7478508B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230163349A (en) 2021-03-30 2023-11-30 가부시키가이샤 오사카소다 cathodic shield

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042251A1 (en) 1996-05-08 1997-11-13 Daiso Co., Ltd. Cross-linked solid polyelectrolyte and use thereof
JP2012014892A (en) 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879720B2 (en) * 2011-03-30 2016-03-08 株式会社大阪ソーダ Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042251A1 (en) 1996-05-08 1997-11-13 Daiso Co., Ltd. Cross-linked solid polyelectrolyte and use thereof
JP2012014892A (en) 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2020087711A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6450030B2 (en) Multi-layer polymer electrolyte and all-solid-state battery including the same
KR102568794B1 (en) Composite electrolyte, Protecting film comprising composite electrolyte, and Protected anode and Lithium battery comprising proting film
JP5804557B2 (en) Alkali metal-sulfur secondary battery
WO2017190367A1 (en) Secondary battery and preparation method therefor
JP2015084320A (en) Active material for batteries, electrode, nonaqueous electrolyte battery and battery pack
KR102340874B1 (en) Binder composition for solid electrolyte battery and slurry composition for solid electrolyte battery
WO2017215121A1 (en) Battery paste, battery electrode plate, and preparation method therefor
WO2020110994A1 (en) Composite solid electrolyte, and composite solid electrolyte secondary battery
JPWO2011078263A1 (en) Secondary battery electrode and secondary battery
JP2012038597A (en) Aqueous paste for forming anode active material layer of nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery anode and manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP5326575B2 (en) Method for producing polyradical compound-conductive substance complex
JP2003272609A (en) Lithium secondary battery
CN110945702B (en) Solid electrolyte composition, sheet containing solid electrolyte, all-solid secondary battery, and method for producing both
CN113767499B (en) Solid electrolyte membrane and solid battery comprising same
JP2014007117A (en) Li BASED SECONDARY BATTERY
JP7478508B2 (en) Inorganic solid electrolyte secondary battery
JP2013062038A (en) Lithium ion secondary battery
Nguyen et al. Enhanced Performance of Lithium Polymer Batteries Based on the Nickel-Rich LiNi0. 8Mn0. 1Co0. 1O2 Cathode Material and Dual Salts
JP2013097993A (en) Lithium ion secondary battery
JP2022155549A (en) Power storage device and coating liquid for negative electrode protective film
JP7400729B2 (en) Electrodes for inorganic solid electrolyte secondary batteries, and inorganic solid electrolyte secondary batteries
JP2019129119A (en) Ion conductive separator and electrochemical device
JP4479159B2 (en) Non-aqueous electrolyte battery
JP2020084041A (en) Conductive polymer and inorganic solid electrolyte secondary battery
JP7459982B1 (en) Lithium ion conductive material, lithium ion secondary battery, and method for producing lithium ion conductive material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230412

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230418

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240422

R150 Certificate of patent or registration of utility model

Ref document number: 7478508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150