WO2020110872A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2020110872A1
WO2020110872A1 PCT/JP2019/045534 JP2019045534W WO2020110872A1 WO 2020110872 A1 WO2020110872 A1 WO 2020110872A1 JP 2019045534 W JP2019045534 W JP 2019045534W WO 2020110872 A1 WO2020110872 A1 WO 2020110872A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmosphere
filter
gas
electrode
cover
Prior art date
Application number
PCT/JP2019/045534
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 高志
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019005924.6T priority Critical patent/DE112019005924T5/en
Publication of WO2020110872A1 publication Critical patent/WO2020110872A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4078Means for sealing the sensor element in a housing

Definitions

  • the present disclosure relates to a gas sensor configured so that the atmosphere is introduced therein.
  • the gas sensor uses, for example, exhaust gas exhausted from an internal combustion engine (engine) mounted on a vehicle as a detection target gas, detects oxygen, NOx (nitrogen oxide), etc. contained in the detection target gas, or detects the air-fuel ratio of the exhaust gas. Used for detection etc. Further, in the gas sensor, the air provided as a reference for referencing the gas to be detected is taken into the electrodes provided on the solid electrolyte body that constitutes the sensor element.
  • the gas sensor is attached to the exhaust pipe of an internal combustion engine, and the atmosphere around the exhaust pipe may contain various substances generated from the engine room of the vehicle.
  • the substance in the atmosphere include Si (silicon) and S (sulfur) generated from rubber, hose, caulking, sealing, oil, rust preventive, lubricant and the like.
  • Patent Document 1 discloses a filter for a gas sensor having a first filter section that adsorbs poisoning gas under a normal temperature and normal humidity environment and a second filter section that adsorbs poisoning gas under a high temperature and high humidity environment.
  • the filter used in the atmospheric cover of the conventional gas sensor does not have the property of not allowing permeation of poisonous substances (poisoning gas). That is, the conventional gas sensor has not been devised to protect the electrodes exposed to the atmosphere from the poisonous substances contained in the atmosphere.
  • the gas sensor filter described in Patent Document 1 is provided in a path through which a gas to be detected such as exhaust gas passes. That is, this gas sensor filter protects the electrode exposed to the gas to be detected from the poisonous substances contained in the gas to be detected.
  • the present disclosure provides a gas sensor capable of protecting an electrode of a sensor element exposed to the atmosphere from water and poisonous substances.
  • One aspect of the present disclosure is a sensor element having a detection unit exposed to a gas to be detected and an atmosphere introduction unit into which the atmosphere is introduced, An atmosphere cover in which the atmosphere introduced into the sensor element is taken in through a vent, A first filter unit having a function of repelling or trapping water in the atmosphere and an adsorbing poisoning substance in the atmosphere are provided in an atmosphere path between the vent hole and the atmosphere introducing unit in the atmosphere cover.
  • the second sensor having a function of capturing the gas is provided in the gas sensor which is stacked, separated, or mixed.
  • two types of filter units are provided in the atmosphere cover between the ventilation port and the atmosphere introducing unit in the atmosphere cover.
  • the two types of filter sections are composed of a first filter section having a function of repelling or capturing water in the atmosphere and a second filter section having a function of adsorbing or capturing a poisonous substance in the atmosphere.
  • the water can be repelled or captured by the first filter unit. This can prevent water from entering the atmosphere-introducing portion of the sensor element, and protect the electrode of the sensor element exposed to the atmosphere from being exposed to water.
  • the atmosphere around the gas sensor contains poisoning substances such as Si (silicon), S (sulfur), Si or S compounds, which may poison the electrode (catalyst) of the sensor element.
  • this poisoning substance can be adsorbed or captured by the second filter unit. As a result, it is possible to prevent the poisoning substance from entering the atmosphere introduction portion of the sensor element, and it is possible to prevent the electrode of the sensor element exposed to the atmosphere from being poisoned.
  • both the first filter section and the second filter section have the property of allowing the permeation of gases such as oxygen and nitrogen.
  • Si constitutes silicone (silicon-containing resin) or the like, it may exist as a gas poisoning substance.
  • the second filter section has a function of adsorbing or capturing a gas that can be a poisoning substance in the atmosphere.
  • first filter portion and the second filter portion are in a stacked state in which they are in close contact with each other, in a separated state in which they are separated from each other, or one of them is arranged inside the other, or both are mixed. It can have various forms as a mixed state.
  • Either of the first filter portion and the second filter portion may be arranged at a position close to the vent hole.
  • the atmosphere can pass through the second filter unit after passing through the first filter unit, and can pass through the first filter unit after passing through the second filter unit.
  • the size of water droplets and the like is larger than the size of the poisoning substance, it is preferable that the atmosphere passes through the second filter unit after passing through the first filter unit.
  • the electrode of the sensor element exposed to the atmosphere can be protected from water and poisonous substances.
  • FIG. 1 is an explanatory view showing a cross section of a gas sensor according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing an enlarged cross section of a part of the gas sensor according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing a cross section of the sensor element according to the first embodiment.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3, showing the sensor element according to the first embodiment.
  • FIG. 5 is a VV sectional view of FIG. 3 showing the sensor element according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing a cross section of the gas sensor according to the second embodiment.
  • FIG. 7 is an explanatory diagram showing an enlarged part of the cross section of the gas sensor according to the second embodiment.
  • FIG. 8 is an explanatory view showing an enlarged cross section of a part of the gas sensor according to the third embodiment.
  • FIG. 9 is explanatory drawing which expands and shows a partial cross section of another gas sensor concerning Embodiment 3.
  • FIG. 10 is an explanatory diagram showing a cross section of the first filter portion and the second filter portion according to the third embodiment.
  • FIG. 11 is an explanatory diagram showing a cross section of another first filter portion and another second filter portion according to the third embodiment.
  • FIG. 12 is an explanatory diagram showing a cross section of the sensor element according to the fourth embodiment.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII of FIG. 12, showing a sensor element according to the fourth embodiment.
  • the gas sensor 1 of the present embodiment has a sensor element 2 having a detection unit 21 exposed to the gas G to be detected and an atmosphere introduction unit 361 into which the atmosphere A is introduced, and is introduced into the sensor element 2. Atmospheric air A that is taken in through the vent 461 is provided.
  • the first filter section 51 having a function of repelling water in the atmosphere A and the poisonous substance in the atmosphere A.
  • a second filter portion 52 having a function of adsorbing
  • the 1st filter part 51 and the 2nd filter part 52 of this form are laminated
  • the sensor element 2 of the present embodiment is provided with a plate-shaped solid electrolyte body 31 and a first main surface 301 of the solid electrolyte body 31, and is exposed to the detection target gas G.
  • the electrode 311, the atmospheric electrode 312 provided on the second main surface 302 of the solid electrolyte body 31 exposed to the atmosphere A, and the first main surface 301 of the solid electrolyte body 31 adjacent to the detection electrode 311 are adjacent to the first main surface 301.
  • the gas chamber 35, into which the detection target gas G is introduced via the diffusion resistance portion 32, and the second major surface 302 of the solid electrolyte body 31 are formed so as to accommodate the atmosphere electrode 312.
  • the atmosphere introducing portion 361 is formed by the rear end opening of the atmosphere duct 36.
  • the gas sensor 1 of this embodiment will be described below in detail.
  • the gas sensor 1 As shown in FIG. 1, the gas sensor 1 is arranged at an attachment port 71 of an exhaust pipe 7 of an internal combustion engine (engine) of a vehicle, and an exhaust gas flowing through the exhaust pipe 7 is used as a detection target gas G, and an oxygen concentration in the detection target gas G is increased. And so on.
  • the gas sensor 1 can be used as an air-fuel ratio sensor (A/F sensor) that obtains an air-fuel ratio in an internal combustion engine based on the oxygen concentration in the exhaust gas, the unburned gas concentration, and the like.
  • the gas sensor 1 can be used for various purposes for obtaining oxygen concentration.
  • a catalyst for purifying harmful substances in the exhaust gas is arranged in the exhaust pipe 7, and the gas sensor 1 should be arranged either upstream or downstream of the catalyst in the flow direction of the exhaust gas in the exhaust pipe 7.
  • the gas sensor 1 can also be arranged in the suction side pipe of the supercharger, which uses the exhaust gas to increase the density of the air sucked by the internal combustion engine.
  • the pipe in which the gas sensor 1 is arranged may be a pipe in an exhaust gas recirculation mechanism that recirculates a part of the exhaust gas exhausted from the internal combustion engine to the exhaust pipe 7 to the intake pipe of the internal combustion engine.
  • the air-fuel ratio sensor is quantitatively continuous from the fuel rich state where the ratio of fuel to air is higher than the theoretical air-fuel ratio to the state of fuel lean where the ratio of fuel to air is lower than the theoretical air-fuel ratio. Can be detected.
  • the diffusion resistance part (diffusion rate controlling part) 32 restricts the diffusion speed of the detection target gas G guided to the gas chamber 35, oxygen ions are generated between the detection electrode 311 and the atmospheric electrode 312.
  • a predetermined voltage is applied to show the limiting current characteristic that a current corresponding to the amount of movement of (O 2 ⁇ ) is output.
  • the air-fuel ratio sensor when the air-fuel ratio on the fuel lean side is detected, when oxygen contained in the detection target gas G becomes ions and moves from the detection electrode 311 to the atmosphere electrode 312 via the solid electrolyte body 31. The current that occurs in is detected. Further, in the air-fuel ratio sensor, when the air-fuel ratio on the fuel rich side is detected, in order to react unburned gas (hydrocarbon, carbon monoxide, hydrogen, etc.) contained in the detection target gas G, the atmospheric electrode 312 is used. The oxygen that has become ions moves from the above to the detection electrode 311 through the solid electrolyte body 31, and the current generated when the unburned gas reacts with the oxygen is detected.
  • unburned gas hydrogen, carbon monoxide, hydrogen, etc.
  • the atmospheric electrode 312 is in a deteriorated state due to a poisoning substance adhering to the atmospheric electrode 312 or the atmospheric electrode 312 being oxidized by water, a catalyst that decomposes and ionizes oxygen molecules in the atmospheric electrode 312.
  • the performance deteriorates, and it becomes difficult to send sufficient oxygen ions from the atmospheric electrode 312 to the detection electrode 311 via the solid electrolyte body 31.
  • the air-fuel ratio detection performance on the fuel rich side deteriorates due to the decrease in the activity of the atmosphere electrode 312.
  • the poisoning substance becomes a gaseous oxide in the atmosphere cover 46 and reduces the oxygen partial pressure of the atmosphere A introduced into the atmosphere introducing unit 361. If the partial pressure of oxygen in the atmosphere cover 46 decreases, there is a possibility that sufficient oxygen cannot be supplied to the atmosphere electrode 312. Therefore, the presence of the gaseous poisoning substance or the oxide of the gaseous poisoning substance in the atmosphere cover 46 reduces the air-fuel ratio detection performance on the fuel rich side.
  • the first filter portion 51 and the second filter portion 52 prevent the poisonous substance and water from entering the atmosphere cover 46, particularly the atmosphere introducing portion 361.
  • the poisoning substance is hardly attached to the air electrode 312 or the water is not oxidized, and the catalytic performance of the air electrode 312 is unlikely to be deteriorated.
  • the second filter portion 52 makes it possible to prevent the oxygen partial pressure in the atmosphere cover 46, particularly in the atmosphere introducing portion 361, from being lowered. Therefore, it is possible to suppress a decrease in the air-fuel ratio detection performance on the fuel rich side.
  • the gas sensor 1 turns ON/OFF whether the air-fuel ratio of the engine obtained from the composition of the gas G to be detected is on the fuel rich side or the fuel lean side with respect to the theoretical air-fuel ratio. It may be an oxygen sensor that is discriminated by. In the oxygen sensor, an electromotive force generated between the atmospheric electrode 312 and the detection electrode 311 is detected by the difference in oxygen concentration between the atmosphere A and the detection target gas G, and whether or not this electromotive force exceeds a predetermined threshold value. The sensor output is output. When the gas sensor 1 is used as an oxygen sensor, the use of the first filter unit 51 and the second filter unit 52 makes it possible to suppress a decrease in the oxygen concentration detection performance.
  • the gas sensor 1 may be a sensor that detects the concentration of a specific gas component such as NOx (nitrogen oxide).
  • NOx nitrogen oxide
  • a pump electrode that pumps oxygen from the detection electrode 311 to the atmosphere electrode 312 by applying a voltage is arranged on the upstream side of the flow of the detection target gas G that contacts the detection electrode 311.
  • the atmosphere electrode 312 is also formed at a position facing the pump electrode via the solid electrolyte body 31.
  • the sensor element 2 of the present embodiment is formed in a long rectangular shape, and includes a solid electrolyte body 31, a detection electrode 311 as a pair of electrodes, an atmospheric electrode 312, and a first insulation.
  • the body 33A, the second insulator 33B, the gas chamber 35, the atmospheric duct 36, and the heating element 34 are provided.
  • the sensor element 2 is of a laminated type in which insulators 33A, 33B and a heating element 34 are laminated on a solid electrolyte body 31.
  • the lengthwise direction L of the sensor element 2 means a direction in which the sensor element 2 extends in a long shape. Further, a direction orthogonal to the lengthwise direction L, in which the solid electrolyte body 31 and the insulators 33A and 33B are laminated, in other words, a direction in which the solid electrolyte body 31, the insulators 33A and 33B and the heat generating body 34 are laminated. Is referred to as a stacking direction D. A direction orthogonal to both the lengthwise direction L and the stacking direction D is referred to as a width direction W. Further, in the longitudinal direction L of the sensor element 2, the side on which the detection portion 21 is formed is referred to as the front end side L1, and the side opposite to the front end side L1 is referred to as the rear end side L2.
  • Solid electrolyte body 31, detection electrode 311, and atmospheric electrode 312 As shown in FIGS. 3 and 4, the solid electrolyte body 31 has conductivity of oxygen ions (O 2 ⁇ ) at a predetermined activation temperature.
  • the detection electrode 311 is provided on the first main surface 301 of the solid electrolyte body 31 in contact with the detection target gas G, and the atmospheric electrode 312 is the second main surface 302 of the solid electrolyte body 31 in contact with the atmosphere A. It is provided in.
  • the detection electrode 311 and the atmospheric electrode 312 are opposed to each other with the solid electrolyte body 31 in between at the tip end side L1 of the sensor element 2 in the longitudinal direction L.
  • a detection unit 21 including a detection electrode 311 and an atmospheric electrode 312 and a portion of the solid electrolyte body 31 sandwiched between these electrodes 311 and 312 is provided.
  • the first insulator 33A is stacked on the first main surface 301 of the solid electrolyte body 31, and the second insulator 33B is stacked on the second main surface 302 of the solid electrolyte body 31.
  • the solid electrolyte body 31 is composed of a zirconia-based oxide, contains zirconia as a main component (containing 50 mass% or more), and stabilized zirconia or a part thereof in which a part of the zirconia is replaced by a rare earth metal element or an alkaline earth metal element. It consists of stabilized zirconia. A part of the zirconia forming the solid electrolyte body 31 can be replaced with yttria, scandia or calcia.
  • the detection electrode 311 and the atmospheric electrode 312 contain platinum as a noble metal exhibiting catalytic activity for oxygen, and zirconia-based oxide as a co-material with the solid electrolyte body 31.
  • the common material is a combination of the solid electrolyte body 31 with the detection electrode 311 and the atmosphere electrode 312 formed of the electrode material when the paste-like electrode material is printed (applied) on the solid electrolyte body 31 and the both are sintered. It is for maintaining strength.
  • an electrode lead portion 313 for electrically connecting these electrodes 311 and 312 to the outside of the gas sensor 1 is connected to the detection electrode 311 and the atmospheric electrode 312, and the electrode lead portion 313 is , To the portion on the rear end side L2 in the lengthwise direction L.
  • Gas chamber 35 As shown in FIGS. 3 and 4, on the first main surface 301 of the solid electrolyte body 31, a gas chamber 35 surrounded by the first insulator 33A and the solid electrolyte body 31 is formed adjacently.
  • the gas chamber 35 is formed at a position where the detection electrode 311 is housed in the first insulator 33A.
  • the gas chamber 35 is formed as a space portion closed by the first insulator 33A, the diffusion resistance portion 32, and the solid electrolyte body 31.
  • the detection target gas G which is the exhaust gas flowing through the exhaust pipe 7, passes through the diffusion resistance portion 32 and is introduced into the gas chamber 35.
  • the diffusion resistance portion 32 of the present embodiment is formed adjacent to the tip side L1 of the gas chamber 35 in the longitudinal direction L.
  • the diffusion resistance portion 32 is arranged in the first insulator 33 ⁇ /b>A in an inlet opening that is adjacent to the tip side L ⁇ b>1 of the gas chamber 35 in the longitudinal direction L.
  • the diffusion resistance part 32 is formed of a porous metal oxide such as alumina.
  • the diffusion speed (flow rate) of the detection target gas G introduced into the gas chamber 35 is determined by limiting the speed at which the detection target gas G permeates the pores in the diffusion resistance portion 32.
  • the diffusion resistance portion 32 may be formed adjacent to both sides of the gas chamber 35 in the width direction W.
  • the diffusion resistance portion 32 is arranged in the first insulator 33 ⁇ /b>A inside the inlet opening that is adjacent to both sides of the gas chamber 35 in the width direction W.
  • the diffusion resistance portion 32 may be formed using a pinhole which is a small through hole communicating with the gas chamber 35, instead of being formed using a porous body.
  • an air duct 36 surrounded by the second insulator 33B and the solid electrolyte body 31 is formed adjacently.
  • the air duct 36 is formed in the second insulator 33B from the position where the air electrode 312 is housed to the rear end position of the sensor element 2.
  • a rear end opening is formed as an atmosphere introducing portion 361 of the atmosphere duct 36.
  • the air duct 36 is formed from the rear end opening to a position facing the gas chamber 35 via the solid electrolyte body 31.
  • the atmosphere A is introduced into the atmosphere duct 36 from the rear end opening.
  • the cross-sectional area of the cross section of the air duct 36 orthogonal to the long direction L is larger than the cross section of the cross section of the gas chamber 35 orthogonal to the long direction L.
  • the thickness (width) of the air duct 36 in the stacking direction D is larger than the thickness (width) of the gas chamber 35 in the stacking direction D. Since the cross-sectional area, thickness, volume, etc. of the atmosphere duct 36 are larger than the cross-sectional area, thickness, volume, etc. of the gas chamber 35, oxygen in the atmosphere A for reacting unburned gas in the detection electrode 311 is It is possible to sufficiently supply the detection electrode 311 from the air duct 36.
  • Heating element 34 As shown in FIGS. 3 to 5, the heating element 34 is embedded in the second insulator 33B that forms the air duct 36, and the heating element 341 that generates heat when energized and the heating element lead that is connected to the heating element 341. And a portion 342. In the stacking direction D of the solid electrolyte body 31 and each of the insulators 33A and 33B, at least a part of the heat generating portion 341 is arranged at a position overlapping the detection electrode 311 and the atmosphere electrode 312.
  • the heating element 34 has a heating section 341 that generates heat when energized, and a pair of heating element lead sections 342 connected to the rear end side L1 of the heating section 341 in the longitudinal direction L.
  • the heat generating portion 341 is formed by a linear conductor portion that meanders with a straight portion and a curved portion.
  • the linear portion of the heat generating portion 341 of this embodiment is formed parallel to the longitudinal direction L.
  • the heating element lead portion 342 is formed by a linear conductor portion.
  • the resistance value per unit length of the heating portion 341 is larger than the resistance value per unit length of the heating element lead portion 342.
  • the heating element lead portion 342 is extended to a portion on the rear end side L2 in the longitudinal direction L.
  • the heating element 34 contains a conductive metal material.
  • the heat generating portion 341 of the present embodiment is formed in a shape meandering in the lengthwise direction L at a position on the tip side L1 of the heat generating body 34 in the lengthwise direction L.
  • the heat generating portion 341 may be formed to meander in the width direction W.
  • the heat generating portion 341 is arranged at a position facing the detection electrode 311 and the atmosphere electrode 312 in the stacking direction D orthogonal to the lengthwise direction L.
  • the cross-sectional area of the heating portion 341 is smaller than the cross-sectional area of the heating element lead portion 342, and the resistance value per unit length of the heating portion 341 is higher than the resistance value per unit length of the heating element lead portion 342.
  • the cross-sectional area means the area of a cross section orthogonal to the extending direction of the heat generating portion 341 and the heat generating body lead portion 342. Then, when a voltage is applied to the pair of heating element lead portions 342, the heating portion 341 generates Joule heat, which heats the periphery of the detection portion 21.
  • the first insulator 33A forms the gas chamber 35
  • the second insulator 33B forms the atmospheric duct 36 and also burys the heating element 34. ..
  • the first insulator 33A and the second insulator 33B are formed of a metal oxide such as alumina (aluminum oxide).
  • Each of the insulators 33A and 33B is formed as a dense body through which the gas G to be detected or the atmosphere A cannot pass, and each of the insulators 33A and 33B has pores through which gas can pass. Not not.
  • Porous layer 37 As shown in FIG. 1, the entire circumference of the portion of the sensor element 2 on the tip side L1 in the longitudinal direction L has a porous structure for capturing poisonous substances to the detection electrode 311 and condensed water generated in the exhaust pipe 7. A quality layer 37 is provided.
  • the porous layer 37 is made of porous ceramics (metal oxide) such as alumina.
  • the porosity of the porous layer 37 is larger than the porosity of the diffusion resistance part 32, and the flow rate of the detection target gas G that can pass through the porous layer 37 is the detection target that can pass through the diffusion resistance part 32. It is higher than the flow rate of the gas G.
  • the gas sensor 1 includes, in addition to the sensor element 2, a first insulator 42 holding the sensor element 2, a housing 41 holding the first insulator 42, and a second insulator connected to the first insulator 42. 43, a contact terminal 44 held by the second insulator 43 and contacting the sensor element 2.
  • the gas sensor 1 is attached to the tip end side L1 of the housing 41 and covers the tip end side portion of the sensor element 2 with the element cover 45, and is attached to the rear end side L2 of the housing 41, and the second insulator 43,
  • An atmosphere cover 46 that covers the contact terminals 44 and the like, a bush 47 and the like for holding the lead wires 48 connected to the contact terminals 44 in the atmosphere cover 46 are provided.
  • the tip portion of the sensor element 2 and the element cover 45 are arranged inside the exhaust pipe 7 of the internal combustion engine.
  • the element cover 45 is formed with a gas passage hole 451 for passing exhaust gas as the detection target gas G.
  • the element cover 45 can have a double structure or a single structure.
  • the exhaust gas as the detection target gas G flowing into the element cover 45 from the gas passage hole 451 of the element cover 45 passes through the porous layer 37 and the diffusion resistance portion 32 of the sensor element 2 and is guided to the detection electrode 311.
  • a plurality of contact terminals 44 are arranged in the second insulator 43 so as to be connected to the respective electrode lead portions 313 of the detection electrode 311 and the atmospheric electrode 312 and the heating element lead portion 342 of the heating element 34.
  • the lead wire 48 is connected to each of the contact terminals 44.
  • the lead wire 48 in the gas sensor 1 is electrically connected to the sensor control device 6 that controls gas detection in the gas sensor 1.
  • the sensor control device 6 cooperates with an engine control device that controls combustion operation in the engine to perform electric control in the gas sensor 1.
  • the sensor control device 6 includes a measurement circuit 61 for measuring a current flowing between the detection electrode 311 and the atmospheric electrode 312, an application circuit 62 for applying a voltage between the detection electrode 311 and the atmospheric electrode 312, and a heating element 34.
  • An energizing circuit or the like for energizing is formed.
  • the sensor control device 6 may be built in the engine control device.
  • the atmosphere cover 46 is arranged outside the exhaust pipe 7 of the internal combustion engine.
  • the gas sensor 1 of the present embodiment is mounted on a vehicle, and the vehicle body in which a part of the exhaust pipe 7 is arranged is connected to an engine room in which an internal combustion engine (engine) is arranged. Then, around the atmosphere cover 46, gases generated from various rubbers, resins, lubricants and the like in the engine room are mixed with the atmosphere A and flow.
  • Examples of the poisoning substances generated in the engine room include Si (silicon) and S (sulfur).
  • Si may exist in the form of SiO 2 (silicon dioxide), silicate (silicate) or the like.
  • the poisoning substance refers to a substance that adheres to the air electrode 312 and deteriorates the performance of the air electrode 312.
  • the exhaust gas may contain a substance that may poison the detection electrode 311.
  • the poisoning substance contained in the exhaust gas as the detection target gas G is captured by, for example, the porous layer 37 provided on the surface of the sensor element 2.
  • the atmosphere cover 46 of the present embodiment includes a first atmosphere cover 46A attached to the housing 41 and a second atmosphere cover 46B that sandwiches the two-layer atmosphere filter 5 between the first atmosphere cover 46A. It is composed of and.
  • the first atmosphere cover 46A and the second atmosphere cover 46B are formed in a cylindrical shape.
  • the second atmosphere cover 46B overlaps the outer periphery of the first atmosphere cover 46A and is crimped to the first atmosphere cover 46A.
  • the vent hole 461 for taking in the atmosphere A into the atmosphere cover 46 is formed on the side surface of the second atmosphere cover 46B so as to penetrate therethrough.
  • the vent holes 461 are formed at a plurality of positions in the circumferential direction of the cylindrical second atmosphere cover 46B.
  • An atmosphere path 460 is formed between the first atmosphere cover 46A and the base end of the second atmosphere cover 46B.
  • the two-layer atmospheric filter 5 of the present embodiment is sandwiched between the first atmospheric cover 46A and the second atmospheric cover 46B, and also sandwiched between the second atmospheric cover 46B and the bush 47.
  • the two-layer air filter 5 is formed as a sheet filter in which a sheet-shaped first filter portion 51 and a sheet-shaped second filter portion 52 are overlapped and integrated.
  • the two-layer atmospheric filter 5 of the present embodiment is rolled into a cylindrical shape and is sandwiched between the first atmospheric cover 46A and the second atmospheric cover 46B.
  • the two-layer atmospheric filter 5 is arranged on the inner peripheral surface (inner side surface) of the second atmospheric cover 46B so as to cover the ventilation port 461 from the inner peripheral side of the second atmospheric cover 46B.
  • the rear end opening of the sensor element 2 as the atmosphere introducing portion 361 of the atmosphere duct 36 is open to the space inside the atmosphere cover 46.
  • the atmosphere path 460 of the present embodiment is formed as the entire space inside the atmosphere cover 46.
  • the two-layer atmosphere filter 5 is arranged on the inner peripheral surface of the second atmosphere cover 46B around the ventilation port 461 so that the atmosphere A flowing through the atmosphere path 460 always passes through the two-layer atmosphere filter 5.
  • the first filter portion 51 and the second filter portion 52 can be formed in various three-dimensional shapes other than the sheet shape.
  • the first filter section 51 and the second filter section 52 can be formed in a block shape.
  • the first filter portion 51 and the second filter portion 52 may have a fibrous or particulate form that fills the space between the first atmosphere cover 46A and the second atmosphere cover 46B.
  • the atmosphere path 460 may be formed as a part of the atmosphere cover 46.
  • the atmosphere path 460 includes the outside of the atmosphere cover 46 as long as it is a position facing the ventilation port 461.
  • the two-layer atmospheric filter 5 may be arranged at a position facing the ventilation port 461 from the outside of the atmospheric cover 46.
  • the two-layer atmospheric filter 5 may be arranged at any position on the atmospheric path 460. However, by disposing the two-layer atmospheric filter 5 at a position close to the ventilation port 461, it is possible to effectively prevent intrusion of water and poisonous substances into the atmospheric cover 46.
  • the first filter unit 51 includes PTFE (polytetrafluoroethylene), PP (polypropylene), PET (polyethylene terephthalate), PE (polyethylene), PVC (polyvinyl chloride), PPS (polyphenylene sulfide), PA (polyamide), PEEK. It can be made of resin such as (polyether ether ketone), glass fiber or the like. When the first filter portion 51 is made of resin, the first filter portion 51 has a large number of pores through which air can pass. When forming the 1st filter part 51 with a fiber, the 1st filter part 51 is formed with the clearance gap through which air can pass. Further, the first filter portion 51 has water repellency that repels water, and water droplets contained in the atmosphere A are repelled by the first filter portion 51.
  • PTFE polytetrafluoroethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PE polyethylene
  • PVC polyvinyl chloride
  • the second filter section 52 can be made of activated carbon, zeolite, silica gel, mesoporous silica, ion exchange membrane, carbon nanotube, or the like.
  • the second filter unit 52 has a large number of pores through which air can pass.
  • the large number of pores in the second filter section 52 can be made smaller than the large number of pores in the first filter section 51 because the second filter section 52 adsorbs poisoning substances smaller than water droplets.
  • the size of the pores in the second filter portion 52 and the first filter portion 51 can be expressed as an average value.
  • the average size of the large numbers of pores in the second filter unit 52 can be smaller than the average size of the large numbers of pores in the first filter unit 51.
  • the first filter section 51 of the present embodiment is arranged upstream of the flow of the atmosphere A in the atmosphere path 460 with respect to the second filter section 52. Then, the atmosphere (air) A from which water has been removed by the first filter portion 51 and poisoning substances have been removed by the second filter portion 52 is taken from the outside to the inside of the atmosphere cover 46.
  • Poisoning substances may be mixed in the atmosphere A in the form of gas, liquid, or solid. Then, it is considered that a part of the poisoning substance mixed in the atmosphere A is captured by the pores, gaps, etc. formed in the first filter portion 51. However, in order to remove most of the poisoning substances in the atmosphere A taken into the atmosphere cover 46, the second filter section 52 is necessary.
  • the surface area per unit mass of the second filter unit 52 is set so that the adsorption performance or capture performance of the poisonous substance by the second filter unit 52 is higher than the capture performance of the poisonous substance by the first filter unit 51.
  • the specific surface area is preferably larger than the specific surface area which is the surface area per unit mass of the first filter portion 51.
  • the size of the large number of pores in the second filter portion 52 is set to be the same as that of the large number of pores in the first filter portion 51.
  • the size can be made smaller than the size, and the porosity of the second filter portion 52 can be made larger than that of the first filter portion 51.
  • the porosity can be expressed as the ratio of the volume of pores per unit volume in the first filter portion 51 or the second filter portion 52.
  • the specific surface area of the first filter portion 51 can be 0.1 to 50 m 2 /g, and the specific surface area of the second filter portion 52 can be 5 to 4000 m 2 /g. Since the first filter portion 51 has a property of repelling water, it may have a small specific surface area, and the second filter portion 52 has a property of adsorbing poisoning substances, and thus the first filter portion 51. It is preferable that the specific surface area is larger than that.
  • the specific surface area of the first filter portion 51 is more preferably 1 to 20 m 2 /g, and the specific surface area of the second filter portion 52 is more preferably 10 to 2500 m 2 /g.
  • the specific surface area of the first filter portion 51 is difficult in manufacturing to make the specific surface area of the first filter portion 51 less than 0.1 m 2 /g or more than 50 m 2 /g. Further, it is difficult to manufacture the specific surface area of the second filter portion 52 to be less than 5 m 2 /g or more than 4000 m 2 /g.
  • each filter portion 51, 52 can be measured by a gas adsorption method such as a BET adsorption isotherm method.
  • a gas adsorption method the phenomenon that gas molecules and the like are adsorbed on the entire surfaces of the gaps and pores in each of the filter parts 51 and 52 is used, and the specific surface area is obtained by measuring the amount of the gas molecules and the like.
  • the specific surface area of each of the filter parts 51 and 52 can also be measured by a transmission method.
  • a fluid is caused to flow through gaps, pores, etc. in each of the filter parts 51 and 52, and the specific surface area can be obtained based on the difficulty of the fluid flow.
  • the external surface area of the second filter portion 52 is larger than the external surface area of the first filter portion 51.
  • the external surface area means the surface area of the outermost surface as the outer surface of each filter portion 51, 52.
  • the water-repellent function of the first filter unit 51 coarsens the water adsorbed on the surface of the first filter unit 51 and retains this water on the surface of the first filter unit 51, and this water is stored in the first filter unit 51.
  • the water capturing function of the first filter unit 51 can be a function of preventing the water from passing through the first filter unit 51 by capturing the water in the first filter unit 51.
  • the first filter unit 51 may have a function of trapping water in the atmosphere A, instead of having a function of repelling water in the atmosphere A. In this case, the water in the atmosphere A is captured in the pores or gaps in the first filter section 51.
  • the first filter unit 51 may have both a water repellent function and a water capturing function.
  • the function of adsorbing the poisoning substance by the second filter unit 52 is a function utilizing the van der Waals force of adsorbing the poisoning substance at the atomic level or the molecular level on the surface of the pores, gaps, etc. in the second filter unit 52. be able to.
  • the function of capturing the poisoning substance by the second filter unit 52 is a function of preventing the poisoning substance from passing through the second filter unit 52 by capturing the poisoning substance in the second filter unit 52.
  • the second filter portion 52 when the second filter portion 52 has a function of adsorbing the poisoning substance in the atmosphere A, it is adsorbed on the surface of the second filter portion 52 forming the pores or gaps. Further, the second filter unit 52 may have a function of trapping a poisoning substance in the atmosphere A instead of having a function of adsorbing the poisoning substance in the atmosphere A. In this case, the poisoning substance in the atmosphere A is captured in the pores or the gaps in the second filter unit 52.
  • the second filter unit 52 may have both a function of adsorbing and a function of capturing poisonous substances.
  • the first filter section 51 and the second filter section 52 each have a property of allowing a gas such as oxygen or nitrogen to pass therethrough.
  • Si constitutes silicone (silicon-containing resin) or the like, it may exist as a gas poisoning substance.
  • the second filter unit 52 has a function of adsorbing or capturing a gas that may be a poisoning substance in the atmosphere.
  • the oxygen gas permeation amounts of the first filter portion 51 and the second filter portion 52 are determined by the air-fuel ratio which is the most fuel-rich side in the internal combustion engine (when the air-fuel ratio detected by the air-fuel ratio sensor is the richest air-fuel ratio).
  • the amount of oxygen gas to the atmospheric electrode 312 in the atmospheric duct 36 may be greater than the amount of oxygen ions required to decompose the maximum rich gas (unburned gas) in the detection electrode 311. preferable. Accordingly, even when the first filter section 51 and the second filter section 52 are used, the gas sensor 1 can accurately detect the air-fuel ratio on the richest side.
  • the atmosphere A existing around the vent hole 461 of the atmosphere cover 46 is taken into the atmosphere cover 46 as the atmosphere path 460 via the first filter unit 51 and the second filter unit 52. Then, the atmosphere A that has passed through the filter portions 51 and 52 flows into the atmosphere duct 36 from the rear end opening as the atmosphere introducing portion 361 of the atmosphere duct 36 of the sensor element 2 to the atmosphere electrode 312 in the atmosphere duct 36. Will be led.
  • the two-layer atmospheric filter 5 including the first filter portion 51 and the second filter portion 52 is arranged in the atmosphere cover 46 so as to cover the ventilation port 461 that serves as the inlet of the atmosphere path 460. ..
  • the two-layer atmospheric filter 5 is composed of a first filter section 51 having a function of repelling water in the atmosphere A and a second filter section 52 having a function of adsorbing poisoning substances in the atmosphere A. ..
  • the water can be repelled by the first filter portion 51. This can prevent water from entering the rear end opening of the atmosphere duct 36 of the sensor element 2 and protect the atmosphere electrode 312 of the sensor element 2 exposed to the atmosphere A from being exposed to water. ..
  • the atmosphere A around the atmosphere cover 46 of the gas sensor 1 contains a poisoning substance such as Si or S that may poison the atmosphere electrode 312 of the sensor element 2, this poisoning may occur.
  • the substance can be adsorbed by the second filter unit 52. As a result, it is possible to prevent the poisoning substance from entering the rear end opening of the sensor element 2 and prevent the atmospheric electrode 312 of the sensor element 2 exposed to the atmosphere A from being poisoned. it can.
  • the two-layer air filter 5 of the present embodiment is formed in a state of being in close contact with each other and laminated.
  • this two-layer atmospheric filter 5 it is possible to easily assemble the two-layer atmospheric filter 5 to the atmospheric cover 46.
  • Both the first filter section 51 and the second filter section 52 have a property of allowing a gas such as oxygen or nitrogen to pass through. Then, gases such as oxygen and nitrogen, excluding water and poisonous substances, pass through the two-layer atmospheric filter 5 to the atmospheric path 460 in the atmospheric cover 46 and the atmospheric air introduction portion 361 of the atmospheric duct 36 of the sensor element 2. be introduced. Further, the second filter unit 52 hardly interferes with the permeation of oxygen, and even if the air-fuel ratio of the exhaust gas as the detection target gas G is at the fuel-rich side air-fuel ratio, it is sufficient for the atmosphere electrode 312. Any amount of oxygen can be supplied.
  • a sufficient amount of oxygen can be supplied to the atmospheric electrode 312 of the sensor element 2, and the atmospheric electrode 312 of the sensor element 2 is protected from water and poisonous substances. Can be protected.
  • the present embodiment mainly shows a gas sensor 1 in which the shape of the sensor element 2 is different from that in the first embodiment.
  • the sensor element 2 of the present embodiment includes a cup-shaped solid electrolyte body 31, a detection electrode 311 provided on the outer peripheral surface of the solid electrolyte body 31 and exposed to the gas G to be detected, and a solid electrolyte body. It has an atmospheric electrode 312 exposed to the atmosphere A, which is provided on the inner peripheral surface of the body 31, and an atmospheric duct 36 formed on the inner peripheral side of the solid electrolyte body 31 so as to accommodate the atmospheric electrode 312.
  • the cup-shaped solid electrolyte body 31 has a cylindrical portion 315 and a closing portion 316 that closes the tip of the cylindrical portion 315.
  • the detection electrode 311 is provided on the outer peripheral surface of the cylindrical portion 315, and the atmospheric electrode 312 is continuously provided on the inner peripheral surface of the cylindrical portion 315 and the inner side surface of the closed portion 316.
  • the sensor element 2 is held on the inner peripheral side of the housing 41.
  • a heater element 340 that generates heat when energized is arranged on the inner peripheral side of the cup-shaped solid electrolyte body 31.
  • the heater element 340 has a ceramic base material and a heating element 34 provided on the ceramic base material.
  • the air introduction part 361 of the present embodiment is configured by the rear end opening of the air duct 36 formed on the inner peripheral side of the solid electrolyte body 31.
  • the atmosphere cover 46 of this embodiment can also be similar to that shown in the first embodiment. However, a space between the first atmospheric cover 46A and the second atmospheric cover 46B of the present embodiment is closed as a space in which the two-layer atmospheric filter 5 is arranged.
  • the vent hole 461 of the atmosphere cover 46 of this embodiment is formed in both the first filter portion 51 and the second filter portion 52. Then, the atmosphere that has passed through the ventilation port 461 of the first atmospheric cover 46A passes through the two-layer atmospheric filter 5 and then passes through the ventilation port 461 of the second atmospheric cover 46B and enters the atmospheric air introduction portion 361 of the sensor element 2. be introduced.
  • the gas sensor 1 of the present embodiment can be used as an air-fuel ratio sensor and also as an oxygen sensor. Other configurations of the gas sensor 1 of the present embodiment are similar to those of the first embodiment.
  • the two-layer air filter 5 can obtain the same operational effect as that of the first embodiment. Also in the present embodiment, the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
  • the first filter unit 51 and the second filter unit 52 have different configurations from those in the first embodiment.
  • the first filter section 51 and the second filter section 52 may be separated from each other and arranged in the atmosphere cover 46.
  • the first filter portion 51 is arranged at a position that covers the vent hole 461 of the first atmosphere cover 46A
  • the second filter portion 52 is provided inside the second atmosphere cover 46B as a part of the atmosphere path 460.
  • the second filter portion 52 can be arranged, for example, at a position that covers the rear end opening portion of the air duct 36 of the sensor element 2 as the air introduction portion 361.
  • the second filter section 52 may be provided in the gap between the second insulator 43 and the lead wire 48, for example, as shown in FIG. 9. It can also be arranged.
  • the second filter portion 52 is arranged on the upstream side of the flow of the atmosphere A in the atmosphere path 460 inside the atmosphere cover 46, and the first filter portion 51 is on the downstream side of the flow of the atmosphere A with respect to the second filter portion 52. It can also be placed in. Further, as shown in FIG. 10, the first filter portion 51 and the second filter portion 52 may be formed into a sheet shape and may be alternately laminated a plurality of times.
  • the first filter unit 51 and the second filter unit 52 may be mixed with each other. Specifically, as shown in FIG. 11, the second filter units 52 can be dispersed and arranged in the first filter unit 51. The second filter part 52 can be kneaded in a dispersed state in the first filter part 51 when molding the first filter part 51 made of a resin material.
  • first filter unit 51 and the second filter unit 52 When the first filter unit 51 and the second filter unit 52 are mixed with each other, one of the first filter unit 51 and the second filter unit 52 is disposed inside the other, the first filter unit One of 51 and the second filter part 52 is dispersed in the other base material, a state in which pieces of the first filter part 51 and the second filter part 52 formed in a lump are joined, and the like are included. ..
  • gas sensor 1 of the present embodiment are similar to those of the first embodiment. Also in the present embodiment, the same operational effect as in the case of the first embodiment can be obtained by the first filter unit 51 and the second filter unit 52. Also in the present embodiment, the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
  • the sensor element 2 does not have the air duct 36, and the air introduction part 361 forms a gap between the solid electrolyte body 31B and the insulator 33E in the sensor element 2.
  • the gas sensor 1 will be described.
  • the solid electrolyte bodies 31A and 31B of the present embodiment are composed of a long plate-shaped first solid electrolyte body 31A and a long plate-shaped second solid electrolyte body 31B.
  • the gas chamber 35 is formed between the first solid electrolyte body 31A and the second solid electrolyte body 31B.
  • the configuration of the atmosphere cover 46 and the like arranged around the sensor element 2 is the same as that of the first embodiment.
  • the atmosphere cover 46 is formed with a vent 461 for taking in the atmosphere A into the atmosphere cover 46, and the atmosphere cover 46 covers the vent 461 so as to cover the first filter portion 51 and the second filter.
  • the part 52 is arranged.
  • a pair of electrodes 311A and 312A for pumping out oxygen in the detection target gas G in the gas chamber 35 is arranged on the two main surfaces.
  • the third main surface of the second solid electrolyte body 31B exposed to the detection target gas G in the gas chamber 35 and the fourth main surface facing the insulator 33E and opposite to the third main surface are provided.
  • a pair of electrodes 311 and 312 for detecting the air-fuel ratio of the detection target gas G in the gas chamber 35 are arranged.
  • the air introduction part 361 of the present embodiment has a gap (interface) between the second solid electrolyte body 31B and the insulator 33E and a gap (interface) between the electrode lead portion 313 of the electrode 312 and the second solid electrolyte body 31B in the sensor element 2. ), a gap (interface) between the electrode lead portion 313 of the electrode 312 and the insulator 33E, or the like. Then, the atmosphere A taken into the atmosphere cover 46 is supplied to the electrode 312 on the fourth main surface of the second solid electrolyte body 31B via the gap (interface).
  • the electrode 312 on the fourth main surface of the second solid electrolyte body 31B is supplied with the atmosphere A from which water and poisonous substances have been removed by the first filter portion 51 and the second filter portion 52. This makes it possible to protect the electrode of the sensor element 2 in contact with the atmosphere A from water and poisonous substances.
  • gas sensor 1 of the present embodiment are similar to those of the first embodiment. Also in the present embodiment, the same operational effect as in the case of the first embodiment can be obtained by the first filter unit 51 and the second filter unit 52. Also in the present embodiment, the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
  • the present disclosure is not limited to each embodiment, and further different embodiments can be configured without departing from the gist thereof. Further, the present disclosure includes various modifications, modifications within the equivalent range, and the like. Furthermore, the technical idea of the present disclosure also includes combinations and forms of various constituent elements that are assumed from the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

A gas sensor (1) according to the present invention is provided with: a sensor element (2) that has a detection part (21) which is exposed to a gas (G) to be detected and an atmosphere introduction part (361) into which the atmosphere (A) is introduced; and an atmosphere cover (46) in which the atmosphere (A) to be introduced into the sensor element (2) is taken via a vent hole (461). An atmosphere path (460) within the atmosphere cover (46), said atmosphere path (460) being positioned between the vent hole (461) and the atmosphere introduction part (361), is provided with a two-layer atmosphere filter (5) which is composed of a first filter part that has a function of repelling the water in the atmosphere (A) and a second filter part that has a function of adsorbing a poisoning substance in the atmosphere (A).

Description

ガスセンサGas sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年11月28日に出願された日本の特許出願番号2018-222587号に基づくものであり、その記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-222587 filed on November 28, 2018, and the contents of the description are incorporated herein.
 本開示は、大気が内部に導入されるよう構成されたガスセンサに関する。 The present disclosure relates to a gas sensor configured so that the atmosphere is introduced therein.
 ガスセンサは、例えば、車両に搭載された内燃機関(エンジン)から排気される排ガスを検出対象ガスとして、検出対象ガスに含まれる酸素、NOx(窒素酸化物)等の検出、又は排ガスの空燃比の検出などに用いられる。また、ガスセンサにおいては、センサ素子を構成する固体電解質体に設けられた電極に、検出対象ガスを参照する基準となる大気が取り込まれる。 The gas sensor uses, for example, exhaust gas exhausted from an internal combustion engine (engine) mounted on a vehicle as a detection target gas, detects oxygen, NOx (nitrogen oxide), etc. contained in the detection target gas, or detects the air-fuel ratio of the exhaust gas. Used for detection etc. Further, in the gas sensor, the air provided as a reference for referencing the gas to be detected is taken into the electrodes provided on the solid electrolyte body that constitutes the sensor element.
 ガスセンサは、内燃機関の排気管等に取り付けられており、排気管等の周辺に存在する大気中には、車両のエンジンルーム等から発生する種々の物質が含まれることがある。この大気中の物質としては、例えば、ゴム、ホース、コーキング、シーリング、オイル、防錆剤、潤滑剤等から発生したSi(シリコン)、S(硫黄)等がある。 The gas sensor is attached to the exhaust pipe of an internal combustion engine, and the atmosphere around the exhaust pipe may contain various substances generated from the engine room of the vehicle. Examples of the substance in the atmosphere include Si (silicon) and S (sulfur) generated from rubber, hose, caulking, sealing, oil, rust preventive, lubricant and the like.
 そして、Si等の物質が大気中に混ざってガスセンサ内に取り込まれたときには、この物質は、大気に晒される電極に付着して、この電極を劣化させる被毒物質となるおそれがある。電極が被毒物質によって劣化したときには、センサ素子の性能が十分に発揮されず、ガスセンサの検出精度、応答性等を低下させるおそれがある。 When a substance such as Si is mixed in the air and taken into the gas sensor, this substance may become a poisonous substance that attaches to the electrode exposed to the air and deteriorates the electrode. When the electrode is deteriorated by the poisoning substance, the performance of the sensor element may not be sufficiently exerted, and the detection accuracy and responsiveness of the gas sensor may be deteriorated.
 従来のガスセンサにおいては、ガスセンサ内に大気を導入する大気カバーの導入口に、大気を通過させる一方、水を通過させないフィルタが設けられている。また、特許文献1においては、常温常湿環境下において被毒ガスを吸着する第1フィルタ部と、高温高湿環境下において被毒ガスを吸着する第2フィルタ部とを有するガスセンサ用フィルタについて開示されている。 In a conventional gas sensor, a filter that allows the atmosphere to pass through but does not allow water to pass through is provided at the inlet of the atmosphere cover that introduces the atmosphere into the gas sensor. Further, Patent Document 1 discloses a filter for a gas sensor having a first filter section that adsorbs poisoning gas under a normal temperature and normal humidity environment and a second filter section that adsorbs poisoning gas under a high temperature and high humidity environment. There is.
特開2015-135270号公報JP, 2005-135270, A
 従来のガスセンサの大気カバーにおいて用いられるフィルタは、被毒物質(被毒ガス)を透過させない性質は有していない。つまり、従来のガスセンサにおいては、大気中に含まれる被毒物質から、大気に晒される電極を保護する工夫はなされていない。 The filter used in the atmospheric cover of the conventional gas sensor does not have the property of not allowing permeation of poisonous substances (poisoning gas). That is, the conventional gas sensor has not been devised to protect the electrodes exposed to the atmosphere from the poisonous substances contained in the atmosphere.
 一方、特許文献1に記載されたガスセンサ用フィルタは、排ガス等の検出対象ガスが通過する経路に設けられる。つまり、このガスセンサ用フィルタは、検出対象ガスに晒される電極を、検出対象ガスに含まれる被毒物質から保護するものである。 On the other hand, the gas sensor filter described in Patent Document 1 is provided in a path through which a gas to be detected such as exhaust gas passes. That is, this gas sensor filter protects the electrode exposed to the gas to be detected from the poisonous substances contained in the gas to be detected.
 そのため、大気に晒される電極を、水及び被毒物質から保護するためには、更なる工夫が必要とされる。 Therefore, in order to protect the electrodes exposed to the atmosphere from water and poisonous substances, further measures are required.
 本開示は、センサ素子の、大気に晒される電極を、水及び被毒物質から保護することができるガスセンサを提供するものである。 The present disclosure provides a gas sensor capable of protecting an electrode of a sensor element exposed to the atmosphere from water and poisonous substances.
 本開示の一態様は、検出対象ガスに晒される検知部及び大気が導入される大気導入部を有するセンサ素子と、
 前記センサ素子に導入される大気が通気口を介して取り込まれる大気カバーと、を備え、
 前記大気カバー内における、前記通気口と前記大気導入部との間の大気経路には、大気中の水を撥水又は捕獲する機能を有する第1フィルタ部と、大気中の被毒物質を吸着又は捕獲する機能を有する第2フィルタ部とが、積層、分離又は混合して設けられている、ガスセンサにある。
One aspect of the present disclosure is a sensor element having a detection unit exposed to a gas to be detected and an atmosphere introduction unit into which the atmosphere is introduced,
An atmosphere cover in which the atmosphere introduced into the sensor element is taken in through a vent,
A first filter unit having a function of repelling or trapping water in the atmosphere and an adsorbing poisoning substance in the atmosphere are provided in an atmosphere path between the vent hole and the atmosphere introducing unit in the atmosphere cover. Alternatively, the second sensor having a function of capturing the gas is provided in the gas sensor which is stacked, separated, or mixed.
 前記一態様のガスセンサにおいては、大気カバー内における、通気口と大気導入部との間の大気経路に、2種類のフィルタ部が設けられている。この2種類のフィルタ部は、大気中の水を撥水又は捕獲する機能を有する第1フィルタ部と、大気中の被毒物質を吸着又は捕獲する機能を有する第2フィルタ部とによって構成されている。 In the gas sensor according to the one aspect, two types of filter units are provided in the atmosphere cover between the ventilation port and the atmosphere introducing unit in the atmosphere cover. The two types of filter sections are composed of a first filter section having a function of repelling or capturing water in the atmosphere and a second filter section having a function of adsorbing or capturing a poisonous substance in the atmosphere. There is.
 そして、ガスセンサの周辺の大気に水が含まれる場合であっても、この水を第1フィルタ部によって撥水又は捕獲することができる。これにより、水がセンサ素子の大気導入部まで進入することを防止することができ、センサ素子の、大気に晒される電極を被水から保護することができる。 Then, even when the atmosphere around the gas sensor contains water, the water can be repelled or captured by the first filter unit. This can prevent water from entering the atmosphere-introducing portion of the sensor element, and protect the electrode of the sensor element exposed to the atmosphere from being exposed to water.
 また、ガスセンサの周辺の大気に、センサ素子の電極(触媒)を被毒させるおそれがある、Si(ケイ素)、S(硫黄)、Si又はSの化合物等の被毒物質が含まれる場合であっても、この被毒物質を第2フィルタ部によって吸着又は捕獲することができる。これにより、被毒物質がセンサ素子の大気導入部まで進入することを防止することができ、センサ素子の、大気に晒される電極が被毒されることを防止することができる。 Further, there is a case where the atmosphere around the gas sensor contains poisoning substances such as Si (silicon), S (sulfur), Si or S compounds, which may poison the electrode (catalyst) of the sensor element. However, this poisoning substance can be adsorbed or captured by the second filter unit. As a result, it is possible to prevent the poisoning substance from entering the atmosphere introduction portion of the sensor element, and it is possible to prevent the electrode of the sensor element exposed to the atmosphere from being poisoned.
 なお、第1フィルタ部及び第2フィルタ部は、いずれも酸素、窒素等の気体を透過させる性質を有する。Siがシリコーン(ケイ素含有樹脂)等を構成する場合には、これが気体である被毒物質として存在することもある。この場合には、第2フィルタ部は、大気中における被毒物質となり得る気体も吸着又は捕獲する機能を有することが好ましい。 Note that both the first filter section and the second filter section have the property of allowing the permeation of gases such as oxygen and nitrogen. When Si constitutes silicone (silicon-containing resin) or the like, it may exist as a gas poisoning substance. In this case, it is preferable that the second filter section has a function of adsorbing or capturing a gas that can be a poisoning substance in the atmosphere.
 また、第1フィルタ部及び第2フィルタ部は、互いに密着して積層された積層状態、互いに離れて配置された分離状態、又はいずれか一方が他方の内部に配置された、もしくは両方が混在する混合状態としての種々の形態を有することができる。 In addition, the first filter portion and the second filter portion are in a stacked state in which they are in close contact with each other, in a separated state in which they are separated from each other, or one of them is arranged inside the other, or both are mixed. It can have various forms as a mixed state.
 第1フィルタ部及び第2フィルタ部は、いずれが通気口に近い位置に配置されていてもよい。換言すれば、大気は、第1フィルタ部を通過した後に第2フィルタ部を通過することができ、第2フィルタ部を通過した後に第1フィルタ部を通過することもできる。ただし、被毒物質の大きさに比べて水滴等の大きさの方が大きいため、第1フィルタ部を通過した後に第2フィルタ部を大気が通過するようにした方がよい。 Either of the first filter portion and the second filter portion may be arranged at a position close to the vent hole. In other words, the atmosphere can pass through the second filter unit after passing through the first filter unit, and can pass through the first filter unit after passing through the second filter unit. However, since the size of water droplets and the like is larger than the size of the poisoning substance, it is preferable that the atmosphere passes through the second filter unit after passing through the first filter unit.
 以上のように、前記一態様のガスセンサによれば、センサ素子の、大気に晒される電極を、水及び被毒物質から保護することができる。 As described above, according to the gas sensor of the one aspect, the electrode of the sensor element exposed to the atmosphere can be protected from water and poisonous substances.
 なお、本開示の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。 Note that the reference numerals in parentheses of the constituent elements shown in one aspect of the present disclosure show the corresponding relationship with the reference numerals in the drawings in the embodiment, but the constituent elements are not limited to only the contents of the embodiment.
 本開示についての目的、特徴、利点等は、添付の図面を参照する後記の詳細な記述によって、より明確になる。本開示の図面を以下に示す。
図1は、実施形態1にかかる、ガスセンサの断面を示す説明図である。 図2は、実施形態1にかかる、ガスセンサの一部の断面を拡大して示す説明図である。 図3は、実施形態1にかかる、センサ素子の断面を示す説明図である。 図4は、実施形態1にかかる、センサ素子を示す、図3のIV-IV断面図である。 図5は、実施形態1にかかる、センサ素子を示す、図3のV-V断面図である。 図6は、実施形態2にかかる、ガスセンサの断面を示す説明図である。 図7は、実施形態2にかかる、ガスセンサの断面の一部を拡大して示す説明図である。 図8は、実施形態3にかかる、ガスセンサの一部の断面を拡大して示す説明図である。 図9は、実施形態3にかかる、他のガスセンサの一部の断面を拡大して示す説明図である。 図10は、実施形態3にかかる、第1フィルタ部及び第2フィルタ部の断面を示す説明図である。 図11は、実施形態3にかかる、他の第1フィルタ部及び第2フィルタ部の断面を示す説明図である。 図12は、実施形態4にかかる、センサ素子の断面を示す説明図である。 図13は、実施形態4にかかる、センサ素子を示す、図12のXIII-XIII断面図である。
Objects, features, advantages, etc. of the present disclosure will be made clearer by the following detailed description with reference to the accompanying drawings. The drawings of the present disclosure are shown below.
FIG. 1 is an explanatory view showing a cross section of a gas sensor according to the first embodiment. FIG. 2 is an explanatory diagram showing an enlarged cross section of a part of the gas sensor according to the first embodiment. FIG. 3 is an explanatory diagram showing a cross section of the sensor element according to the first embodiment. FIG. 4 is a sectional view taken along line IV-IV of FIG. 3, showing the sensor element according to the first embodiment. FIG. 5 is a VV sectional view of FIG. 3 showing the sensor element according to the first embodiment. FIG. 6 is an explanatory diagram showing a cross section of the gas sensor according to the second embodiment. FIG. 7 is an explanatory diagram showing an enlarged part of the cross section of the gas sensor according to the second embodiment. FIG. 8 is an explanatory view showing an enlarged cross section of a part of the gas sensor according to the third embodiment. FIG. 9: is explanatory drawing which expands and shows a partial cross section of another gas sensor concerning Embodiment 3. As shown in FIG. FIG. 10 is an explanatory diagram showing a cross section of the first filter portion and the second filter portion according to the third embodiment. FIG. 11 is an explanatory diagram showing a cross section of another first filter portion and another second filter portion according to the third embodiment. FIG. 12 is an explanatory diagram showing a cross section of the sensor element according to the fourth embodiment. FIG. 13 is a cross-sectional view taken along line XIII-XIII of FIG. 12, showing a sensor element according to the fourth embodiment.
 前述したガスセンサにかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
 本形態のガスセンサ1は、図1及び図2に示すように、検出対象ガスGに晒される検知部21及び大気Aが導入される大気導入部361を有するセンサ素子2と、センサ素子2に導入される大気Aが通気口461を介して取り込まれる大気カバー46とを備える。大気カバー46内における、通気口461と大気導入部361との間の大気経路460には、大気A中の水を撥水する機能を有する第1フィルタ部51と、大気A中の被毒物質を吸着する機能を有する第2フィルタ部52とが設けられている。本形態の第1フィルタ部51と第2フィルタ部52とは、互いに積層されて、一体型の二層大気フィルタ5として形成されている。
A preferred embodiment of the gas sensor described above will be described with reference to the drawings.
<Embodiment 1>
As shown in FIGS. 1 and 2, the gas sensor 1 of the present embodiment has a sensor element 2 having a detection unit 21 exposed to the gas G to be detected and an atmosphere introduction unit 361 into which the atmosphere A is introduced, and is introduced into the sensor element 2. Atmospheric air A that is taken in through the vent 461 is provided. In the atmosphere path 460 between the ventilation port 461 and the atmosphere introducing section 361 in the atmosphere cover 46, the first filter section 51 having a function of repelling water in the atmosphere A and the poisonous substance in the atmosphere A. And a second filter portion 52 having a function of adsorbing The 1st filter part 51 and the 2nd filter part 52 of this form are laminated|stacked on each other, and are formed as the integrated two-layer atmospheric filter 5.
 本形態のセンサ素子2は、図3~図5に示すように、板状の固体電解質体31と、固体電解質体31の第1主面301に設けられた、検出対象ガスGに晒される検出電極311と、固体電解質体31の第2主面302に設けられた、大気Aに晒される大気電極312と、検出電極311を収容する状態で固体電解質体31の第1主面301に隣接して形成された、拡散抵抗部32を介して検出対象ガスGが導入されるガス室35と、大気電極312を収容する状態で固体電解質体31の第2主面302に隣接して形成された大気ダクト36とを有する。大気導入部361は、大気ダクト36の後端開口部によって構成されている。 As shown in FIGS. 3 to 5, the sensor element 2 of the present embodiment is provided with a plate-shaped solid electrolyte body 31 and a first main surface 301 of the solid electrolyte body 31, and is exposed to the detection target gas G. The electrode 311, the atmospheric electrode 312 provided on the second main surface 302 of the solid electrolyte body 31 exposed to the atmosphere A, and the first main surface 301 of the solid electrolyte body 31 adjacent to the detection electrode 311 are adjacent to the first main surface 301. The gas chamber 35, into which the detection target gas G is introduced via the diffusion resistance portion 32, and the second major surface 302 of the solid electrolyte body 31 are formed so as to accommodate the atmosphere electrode 312. Atmospheric duct 36. The atmosphere introducing portion 361 is formed by the rear end opening of the atmosphere duct 36.
 以下に、本形態のガスセンサ1について詳説する。
(ガスセンサ1)
 図1に示すように、ガスセンサ1は、車両の内燃機関(エンジン)の排気管7の取付口71に配置され、排気管7を流れる排ガスを検出対象ガスGとして、検出対象ガスGにおける酸素濃度等を検出するために用いられる。ガスセンサ1は、排ガスにおける酸素濃度、未燃ガス濃度等に基づいて、内燃機関における空燃比を求める空燃比センサ(A/Fセンサ)として用いることができる。また、ガスセンサ1は、空燃比センサ以外にも、酸素濃度を求める種々の用途として用いることができる。
The gas sensor 1 of this embodiment will be described below in detail.
(Gas sensor 1)
As shown in FIG. 1, the gas sensor 1 is arranged at an attachment port 71 of an exhaust pipe 7 of an internal combustion engine (engine) of a vehicle, and an exhaust gas flowing through the exhaust pipe 7 is used as a detection target gas G, and an oxygen concentration in the detection target gas G is increased. And so on. The gas sensor 1 can be used as an air-fuel ratio sensor (A/F sensor) that obtains an air-fuel ratio in an internal combustion engine based on the oxygen concentration in the exhaust gas, the unburned gas concentration, and the like. In addition to the air-fuel ratio sensor, the gas sensor 1 can be used for various purposes for obtaining oxygen concentration.
 排気管7には、排ガス中の有害物質を浄化するための触媒が配置されており、ガスセンサ1は、排気管7における排ガスの流れ方向において、触媒の上流側又は下流側のいずれに配置することもできる。また、ガスセンサ1は、排ガスを利用して内燃機関が吸入する空気の密度を高める過給機の吸入側の配管に配置することもできる。また、ガスセンサ1を配置する配管は、内燃機関から排気管7に排気される排ガスの一部を内燃機関の吸気管に再循環させる排気再循環機構における配管とすることもできる。 A catalyst for purifying harmful substances in the exhaust gas is arranged in the exhaust pipe 7, and the gas sensor 1 should be arranged either upstream or downstream of the catalyst in the flow direction of the exhaust gas in the exhaust pipe 7. You can also Further, the gas sensor 1 can also be arranged in the suction side pipe of the supercharger, which uses the exhaust gas to increase the density of the air sucked by the internal combustion engine. Further, the pipe in which the gas sensor 1 is arranged may be a pipe in an exhaust gas recirculation mechanism that recirculates a part of the exhaust gas exhausted from the internal combustion engine to the exhaust pipe 7 to the intake pipe of the internal combustion engine.
 空燃比センサは、理論空燃比と比べて空気に対する燃料の割合が多い燃料リッチの状態から、理論空燃比と比べて空気に対する燃料の割合が少ない燃料リーンの状態まで定量的に連続して空燃比を検出することができるものである。空燃比センサにおいては、拡散抵抗部(拡散律速部)32によって、ガス室35へ導かれる検出対象ガスGの拡散速度が絞られる際に、検出電極311と大気電極312との間に、酸素イオン(O2-)の移動量に応じた電流が出力される限界電流特性を示すための所定の電圧が印加される。 The air-fuel ratio sensor is quantitatively continuous from the fuel rich state where the ratio of fuel to air is higher than the theoretical air-fuel ratio to the state of fuel lean where the ratio of fuel to air is lower than the theoretical air-fuel ratio. Can be detected. In the air-fuel ratio sensor, when the diffusion resistance part (diffusion rate controlling part) 32 restricts the diffusion speed of the detection target gas G guided to the gas chamber 35, oxygen ions are generated between the detection electrode 311 and the atmospheric electrode 312. A predetermined voltage is applied to show the limiting current characteristic that a current corresponding to the amount of movement of (O 2− ) is output.
 空燃比センサにおいて、燃料リーン側の空燃比を検出する際には、検出対象ガスGに含まれる酸素が、イオンとなって検出電極311から固体電解質体31を介して大気電極312へ移動する際に生じる電流を検出する。また、空燃比センサにおいて、燃料リッチ側の空燃比を検出する際には、検出対象ガスGに含まれる未燃ガス(炭化水素、一酸化炭素、水素等)を反応させるために、大気電極312から固体電解質体31を介して検出電極311へイオンとなった酸素が移動し、未燃ガスと酸素とが反応する際に生じる電流を検出する。 In the air-fuel ratio sensor, when the air-fuel ratio on the fuel lean side is detected, when oxygen contained in the detection target gas G becomes ions and moves from the detection electrode 311 to the atmosphere electrode 312 via the solid electrolyte body 31. The current that occurs in is detected. Further, in the air-fuel ratio sensor, when the air-fuel ratio on the fuel rich side is detected, in order to react unburned gas (hydrocarbon, carbon monoxide, hydrogen, etc.) contained in the detection target gas G, the atmospheric electrode 312 is used. The oxygen that has become ions moves from the above to the detection electrode 311 through the solid electrolyte body 31, and the current generated when the unburned gas reacts with the oxygen is detected.
 空燃比センサにおいて検出する空燃比が、例えば、A/F=10(空気質量/燃料質量が10である場合)以下等の、より燃料リッチ側の空燃比になるときには、大量の未燃ガスを燃焼させるために、大気電極312から固体電解質体31を介して検出電極311へ、十分な量の酸素を移動させることが必要になる。この場合に、大気電極312に被毒物質が付着すること又は大気電極312が水によって酸化することによって、大気電極312が劣化した状態にあると、大気電極312における酸素分子を分解しイオン化する触媒性能が低下し、大気電極312から固体電解質体31を介して検出電極311へ十分な酸素イオンを送り込むことが難しくなる。これにより、大気電極312の活性低下によって、燃料リッチ側の空燃比の検出性能が低下する。 When the air-fuel ratio detected by the air-fuel ratio sensor becomes an air-fuel ratio on the more fuel rich side such as A/F=10 (air mass/fuel mass is 10) or less, a large amount of unburned gas is generated. In order to burn, it is necessary to transfer a sufficient amount of oxygen from the atmospheric electrode 312 to the detection electrode 311 via the solid electrolyte body 31. In this case, if the atmospheric electrode 312 is in a deteriorated state due to a poisoning substance adhering to the atmospheric electrode 312 or the atmospheric electrode 312 being oxidized by water, a catalyst that decomposes and ionizes oxygen molecules in the atmospheric electrode 312. The performance deteriorates, and it becomes difficult to send sufficient oxygen ions from the atmospheric electrode 312 to the detection electrode 311 via the solid electrolyte body 31. As a result, the air-fuel ratio detection performance on the fuel rich side deteriorates due to the decrease in the activity of the atmosphere electrode 312.
 また、大気カバー46の通気口461から大気カバー46内に気体状の被毒物質が侵入すると、被毒物質が侵入した分、センサ素子2の大気導入部361に導入される大気Aの酸素分圧が低下することになる。また、被毒物質は、大気カバー46内において気体状の酸化物となって、大気導入部361に導入される大気Aの酸素分圧を低下させることも想定される。大気カバー46内の酸素分圧の低下が生じると、大気電極312へ十分な酸素を供給できなくなるおそれがある。そのため、大気カバー46内における気体状の被毒物質又は気体状の被毒物質の酸化物の存在によって、燃料リッチ側の空燃比の検出性能が低下する。 Further, when a gaseous poisoning substance enters the atmosphere cover 46 through the vent hole 461 of the atmosphere cover 46, the amount of the poisoning substance invades the oxygen content of the atmosphere A introduced into the atmosphere introducing portion 361 of the sensor element 2. The pressure will decrease. It is also assumed that the poisoning substance becomes a gaseous oxide in the atmosphere cover 46 and reduces the oxygen partial pressure of the atmosphere A introduced into the atmosphere introducing unit 361. If the partial pressure of oxygen in the atmosphere cover 46 decreases, there is a possibility that sufficient oxygen cannot be supplied to the atmosphere electrode 312. Therefore, the presence of the gaseous poisoning substance or the oxide of the gaseous poisoning substance in the atmosphere cover 46 reduces the air-fuel ratio detection performance on the fuel rich side.
 一方、本形態のガスセンサ1においては、第1フィルタ部51及び第2フィルタ部52によって、大気カバー46内、特に大気導入部361への被毒物質及び水の侵入が防止される。これにより、大気電極312に、被毒物質の付着又は水による酸化がほとんど発生せず、大気電極312における触媒性能が低下しにくくすることができる。また、第2フィルタ部52により、大気カバー46内、特に大気導入部361における酸素分圧の低下が生じにくくすることができる。そのため、燃料リッチ側の空燃比の検出性能の低下を抑制することができる。 On the other hand, in the gas sensor 1 of the present embodiment, the first filter portion 51 and the second filter portion 52 prevent the poisonous substance and water from entering the atmosphere cover 46, particularly the atmosphere introducing portion 361. As a result, the poisoning substance is hardly attached to the air electrode 312 or the water is not oxidized, and the catalytic performance of the air electrode 312 is unlikely to be deteriorated. Further, the second filter portion 52 makes it possible to prevent the oxygen partial pressure in the atmosphere cover 46, particularly in the atmosphere introducing portion 361, from being lowered. Therefore, it is possible to suppress a decrease in the air-fuel ratio detection performance on the fuel rich side.
(他のガスセンサ1)
 ガスセンサ1は、空燃比センサとする以外にも、検出対象ガスGの組成から求められるエンジンの空燃比が、理論空燃比に対して燃料リッチ側にあるのか燃料リーン側にあるのかをON-OFFで判別する酸素センサとしてもよい。酸素センサにおいては、大気Aと検出対象ガスGとの酸素濃度の差によって、大気電極312と検出電極311との間に生じる起電力が検出され、この起電力が所定の閾値を超えているか否かのセンサ出力が出力される。ガスセンサ1を酸素センサとして用いる場合には、第1フィルタ部51及び第2フィルタ部52を用いることにより、酸素濃度の検出性能の低下を抑制することができる。
(Other gas sensor 1)
In addition to using the air-fuel ratio sensor, the gas sensor 1 turns ON/OFF whether the air-fuel ratio of the engine obtained from the composition of the gas G to be detected is on the fuel rich side or the fuel lean side with respect to the theoretical air-fuel ratio. It may be an oxygen sensor that is discriminated by. In the oxygen sensor, an electromotive force generated between the atmospheric electrode 312 and the detection electrode 311 is detected by the difference in oxygen concentration between the atmosphere A and the detection target gas G, and whether or not this electromotive force exceeds a predetermined threshold value. The sensor output is output. When the gas sensor 1 is used as an oxygen sensor, the use of the first filter unit 51 and the second filter unit 52 makes it possible to suppress a decrease in the oxygen concentration detection performance.
 また、ガスセンサ1は、NOx(窒素酸化物)等の特定ガス成分の濃度を検出するセンサとしてもよい。NOxセンサにおいては、検出電極311に接触する検出対象ガスGの流れの上流側に、電圧の印加によって検出電極311から大気電極312へ酸素をポンピングするポンプ電極が配置される。大気電極312はポンプ電極に対して固体電解質体31を介して対向する位置にも形成される。ガスセンサ1をNOxセンサとして用いる場合には、第1フィルタ部51及び第2フィルタ部52を用いることにより、NOx濃度の検出性能の低下を抑制することができる。 The gas sensor 1 may be a sensor that detects the concentration of a specific gas component such as NOx (nitrogen oxide). In the NOx sensor, a pump electrode that pumps oxygen from the detection electrode 311 to the atmosphere electrode 312 by applying a voltage is arranged on the upstream side of the flow of the detection target gas G that contacts the detection electrode 311. The atmosphere electrode 312 is also formed at a position facing the pump electrode via the solid electrolyte body 31. When the gas sensor 1 is used as a NOx sensor, the use of the first filter unit 51 and the second filter unit 52 makes it possible to suppress a decrease in NOx concentration detection performance.
(センサ素子2)
 図3~図5に示すように、本形態のセンサ素子2は、長尺の長方形状に形成されており、固体電解質体31、一対の電極としての検出電極311及び大気電極312、第1絶縁体33A、第2絶縁体33B、ガス室35、大気ダクト36及び発熱体34を備える。センサ素子2は、固体電解質体31に、絶縁体33A,33B及び発熱体34が積層された積層タイプのものである。
(Sensor element 2)
As shown in FIGS. 3 to 5, the sensor element 2 of the present embodiment is formed in a long rectangular shape, and includes a solid electrolyte body 31, a detection electrode 311 as a pair of electrodes, an atmospheric electrode 312, and a first insulation. The body 33A, the second insulator 33B, the gas chamber 35, the atmospheric duct 36, and the heating element 34 are provided. The sensor element 2 is of a laminated type in which insulators 33A, 33B and a heating element 34 are laminated on a solid electrolyte body 31.
 本形態において、センサ素子2の長尺方向Lとは、センサ素子2が長尺形状に延びる方向のことをいう。また、長尺方向Lに直交し、固体電解質体31と絶縁体33A,33Bとが積層された方向、換言すれば、固体電解質体31、絶縁体33A,33B及び発熱体34が積層された方向を、積層方向Dという。また、長尺方向Lと積層方向Dとの双方に直交する方向を、幅方向Wという。また、センサ素子2の長尺方向Lにおいて、検知部21が形成された側を先端側L1といい、先端側L1の反対側を後端側L2という。 In the present embodiment, the lengthwise direction L of the sensor element 2 means a direction in which the sensor element 2 extends in a long shape. Further, a direction orthogonal to the lengthwise direction L, in which the solid electrolyte body 31 and the insulators 33A and 33B are laminated, in other words, a direction in which the solid electrolyte body 31, the insulators 33A and 33B and the heat generating body 34 are laminated. Is referred to as a stacking direction D. A direction orthogonal to both the lengthwise direction L and the stacking direction D is referred to as a width direction W. Further, in the longitudinal direction L of the sensor element 2, the side on which the detection portion 21 is formed is referred to as the front end side L1, and the side opposite to the front end side L1 is referred to as the rear end side L2.
(固体電解質体31、検出電極311及び大気電極312)
 図3及び図4に示すように、固体電解質体31は、所定の活性温度において、酸素イオン(O2-)の伝導性を有するものである。検出電極311は、固体電解質体31における、検出対象ガスGが接触する第1主面301に設けられており、大気電極312は、固体電解質体31における、大気Aが接触する第2主面302に設けられている。検出電極311と大気電極312とは、センサ素子2の長尺方向Lの先端側L1の部位において、固体電解質体31を介して互いに対向している。センサ素子2の長尺方向Lの先端側L1の部位には、検出電極311及び大気電極312と、これらの電極311,312の間に挟まれた固体電解質体31の部分とによる検知部21が形成されている。第1絶縁体33Aは、固体電解質体31の第1主面301に積層されており、第2絶縁体33Bは、固体電解質体31の第2主面302に積層されている。
(Solid electrolyte body 31, detection electrode 311, and atmospheric electrode 312)
As shown in FIGS. 3 and 4, the solid electrolyte body 31 has conductivity of oxygen ions (O 2− ) at a predetermined activation temperature. The detection electrode 311 is provided on the first main surface 301 of the solid electrolyte body 31 in contact with the detection target gas G, and the atmospheric electrode 312 is the second main surface 302 of the solid electrolyte body 31 in contact with the atmosphere A. It is provided in. The detection electrode 311 and the atmospheric electrode 312 are opposed to each other with the solid electrolyte body 31 in between at the tip end side L1 of the sensor element 2 in the longitudinal direction L. At a portion of the sensor element 2 on the tip side L1 in the longitudinal direction L, a detection unit 21 including a detection electrode 311 and an atmospheric electrode 312 and a portion of the solid electrolyte body 31 sandwiched between these electrodes 311 and 312 is provided. Has been formed. The first insulator 33A is stacked on the first main surface 301 of the solid electrolyte body 31, and the second insulator 33B is stacked on the second main surface 302 of the solid electrolyte body 31.
 固体電解質体31は、ジルコニア系酸化物からなり、ジルコニアを主成分とし(50質量%以上含有し)、希土類金属元素又はアルカリ土類金属元素によってジルコニアの一部を置換させた安定化ジルコニア又は部分安定化ジルコニアからなる。固体電解質体31を構成するジルコニアの一部は、イットリア、スカンジア又はカルシアによって置換することができる。 The solid electrolyte body 31 is composed of a zirconia-based oxide, contains zirconia as a main component (containing 50 mass% or more), and stabilized zirconia or a part thereof in which a part of the zirconia is replaced by a rare earth metal element or an alkaline earth metal element. It consists of stabilized zirconia. A part of the zirconia forming the solid electrolyte body 31 can be replaced with yttria, scandia or calcia.
 検出電極311及び大気電極312は、酸素に対する触媒活性を示す貴金属としての白金、及び固体電解質体31との共材としてのジルコニア系酸化物を含有している。共材は、固体電解質体31にペースト状の電極材料を印刷(塗布)して両者を焼結する際に、電極材料によって形成される検出電極311及び大気電極312と固体電解質体31との結合強度を維持するためのものである。 The detection electrode 311 and the atmospheric electrode 312 contain platinum as a noble metal exhibiting catalytic activity for oxygen, and zirconia-based oxide as a co-material with the solid electrolyte body 31. The common material is a combination of the solid electrolyte body 31 with the detection electrode 311 and the atmosphere electrode 312 formed of the electrode material when the paste-like electrode material is printed (applied) on the solid electrolyte body 31 and the both are sintered. It is for maintaining strength.
 図3に示すように、検出電極311及び大気電極312には、これらの電極311,312をガスセンサ1の外部と電気接続するための電極リード部313が接続されており、この電極リード部313は、長尺方向Lの後端側L2の部位まで引き出されている。 As shown in FIG. 3, an electrode lead portion 313 for electrically connecting these electrodes 311 and 312 to the outside of the gas sensor 1 is connected to the detection electrode 311 and the atmospheric electrode 312, and the electrode lead portion 313 is , To the portion on the rear end side L2 in the lengthwise direction L.
(ガス室35)
 図3及び図4に示すように、固体電解質体31の第1主面301には、第1絶縁体33Aと固体電解質体31とに囲まれたガス室35が隣接して形成されている。ガス室35は、第1絶縁体33Aにおける、検出電極311を収容する位置に形成されている。ガス室35は、第1絶縁体33Aと拡散抵抗部32と固体電解質体31とによって閉じられた空間部として形成されている。排気管7内を流れる排ガスである検出対象ガスGは、拡散抵抗部32を通過してガス室35内に導入される。
(Gas chamber 35)
As shown in FIGS. 3 and 4, on the first main surface 301 of the solid electrolyte body 31, a gas chamber 35 surrounded by the first insulator 33A and the solid electrolyte body 31 is formed adjacently. The gas chamber 35 is formed at a position where the detection electrode 311 is housed in the first insulator 33A. The gas chamber 35 is formed as a space portion closed by the first insulator 33A, the diffusion resistance portion 32, and the solid electrolyte body 31. The detection target gas G, which is the exhaust gas flowing through the exhaust pipe 7, passes through the diffusion resistance portion 32 and is introduced into the gas chamber 35.
(拡散抵抗部32)
 本形態の拡散抵抗部32は、ガス室35の長尺方向Lの先端側L1に隣接して形成されている。拡散抵抗部32は、第1絶縁体33Aにおいて、ガス室35の長尺方向Lの先端側L1に隣接して開口された導入口内に配置されている。拡散抵抗部32は、アルミナ等の多孔質の金属酸化物によって形成されている。ガス室35に導入される検出対象ガスGの拡散速度(流量)は、検出対象ガスGが拡散抵抗部32における気孔を透過する速度が制限されることによって決定される。
(Diffusion resistance part 32)
The diffusion resistance portion 32 of the present embodiment is formed adjacent to the tip side L1 of the gas chamber 35 in the longitudinal direction L. The diffusion resistance portion 32 is arranged in the first insulator 33</b>A in an inlet opening that is adjacent to the tip side L<b>1 of the gas chamber 35 in the longitudinal direction L. The diffusion resistance part 32 is formed of a porous metal oxide such as alumina. The diffusion speed (flow rate) of the detection target gas G introduced into the gas chamber 35 is determined by limiting the speed at which the detection target gas G permeates the pores in the diffusion resistance portion 32.
 拡散抵抗部32は、ガス室35の幅方向Wの両側に隣接して形成してもよい。この場合には、拡散抵抗部32は、第1絶縁体33Aにおいて、ガス室35の幅方向Wの両側に隣接して開口された導入口内に配置される。なお、拡散抵抗部32は、多孔質体を用いて形成する以外にも、ガス室35に連通された小さな貫通穴であるピンホールを用いて形成することもできる。 The diffusion resistance portion 32 may be formed adjacent to both sides of the gas chamber 35 in the width direction W. In this case, the diffusion resistance portion 32 is arranged in the first insulator 33</b>A inside the inlet opening that is adjacent to both sides of the gas chamber 35 in the width direction W. The diffusion resistance portion 32 may be formed using a pinhole which is a small through hole communicating with the gas chamber 35, instead of being formed using a porous body.
(大気ダクト36)
 図3~図5に示すように、固体電解質体31の第2主面302には、第2絶縁体33Bと固体電解質体31とに囲まれた大気ダクト36が隣接して形成されている。大気ダクト36は、第2絶縁体33Bにおける、大気電極312を収容する位置からセンサ素子2の後端位置まで形成されている。センサ素子2の長尺方向Lの後端位置には、大気ダクト36の大気導入部361としての後端開口部が形成されている。大気ダクト36は、後端開口部から固体電解質体31を介してガス室35と対向する位置まで形成されている。大気ダクト36には、後端開口部から大気Aが導入される。
(Atmospheric duct 36)
As shown in FIGS. 3 to 5, on the second main surface 302 of the solid electrolyte body 31, an air duct 36 surrounded by the second insulator 33B and the solid electrolyte body 31 is formed adjacently. The air duct 36 is formed in the second insulator 33B from the position where the air electrode 312 is housed to the rear end position of the sensor element 2. At the rear end position of the sensor element 2 in the lengthwise direction L, a rear end opening is formed as an atmosphere introducing portion 361 of the atmosphere duct 36. The air duct 36 is formed from the rear end opening to a position facing the gas chamber 35 via the solid electrolyte body 31. The atmosphere A is introduced into the atmosphere duct 36 from the rear end opening.
 大気ダクト36における、長尺方向Lに直交する断面の断面積は、ガス室35における、長尺方向Lに直交する断面の断面積よりも大きい。また、大気ダクト36の積層方向Dの厚み(幅)は、ガス室35の積層方向Dの厚み(幅)よりも大きい。大気ダクト36の断面積、厚み、体積等が、ガス室35の断面積、厚み、体積等よりも大きいことにより、検出電極311における未燃ガスを反応させるための、大気A中の酸素を、大気ダクト36から検出電極311へ十分に供給することができる。 The cross-sectional area of the cross section of the air duct 36 orthogonal to the long direction L is larger than the cross section of the cross section of the gas chamber 35 orthogonal to the long direction L. The thickness (width) of the air duct 36 in the stacking direction D is larger than the thickness (width) of the gas chamber 35 in the stacking direction D. Since the cross-sectional area, thickness, volume, etc. of the atmosphere duct 36 are larger than the cross-sectional area, thickness, volume, etc. of the gas chamber 35, oxygen in the atmosphere A for reacting unburned gas in the detection electrode 311 is It is possible to sufficiently supply the detection electrode 311 from the air duct 36.
(発熱体34)
 図3~図5に示すように、発熱体34は、大気ダクト36を形成する第2絶縁体33B内に埋設されており、通電によって発熱する発熱部341と、発熱部341に繋がる発熱体リード部342とを有する。発熱部341は、固体電解質体31と各絶縁体33A,33Bとの積層方向Dにおいて、少なくとも一部が検出電極311及び大気電極312に重なる位置に配置されている。
(Heating element 34)
As shown in FIGS. 3 to 5, the heating element 34 is embedded in the second insulator 33B that forms the air duct 36, and the heating element 341 that generates heat when energized and the heating element lead that is connected to the heating element 341. And a portion 342. In the stacking direction D of the solid electrolyte body 31 and each of the insulators 33A and 33B, at least a part of the heat generating portion 341 is arranged at a position overlapping the detection electrode 311 and the atmosphere electrode 312.
 また、発熱体34は、通電によって発熱する発熱部341と、発熱部341の、長尺方向Lの後端側L1に繋がる一対の発熱体リード部342とを有する。発熱部341は、直線部分及び曲線部分によって蛇行する線状の導体部によって形成されている。本形態の発熱部341の直線部分は、長尺方向Lに平行に形成されている。発熱体リード部342は、直線状の導体部によって形成されている。発熱部341の単位長さ当たりの抵抗値は、発熱体リード部342の単位長さ当たりの抵抗値よりも大きい。発熱体リード部342は、長尺方向Lの後端側L2の部位まで引き出されている。発熱体34は、導電性を有する金属材料を含有している。 Further, the heating element 34 has a heating section 341 that generates heat when energized, and a pair of heating element lead sections 342 connected to the rear end side L1 of the heating section 341 in the longitudinal direction L. The heat generating portion 341 is formed by a linear conductor portion that meanders with a straight portion and a curved portion. The linear portion of the heat generating portion 341 of this embodiment is formed parallel to the longitudinal direction L. The heating element lead portion 342 is formed by a linear conductor portion. The resistance value per unit length of the heating portion 341 is larger than the resistance value per unit length of the heating element lead portion 342. The heating element lead portion 342 is extended to a portion on the rear end side L2 in the longitudinal direction L. The heating element 34 contains a conductive metal material.
 本形態の発熱部341は、発熱体34における長尺方向Lの先端側L1の位置において、長尺方向Lに蛇行する形状に形成されている。なお、発熱部341は、幅方向Wに蛇行して形成されていてもよい。発熱部341は、長尺方向Lに直交する積層方向Dにおいて、検出電極311及び大気電極312に対向する位置に配置されている。発熱体リード部342からの通電によって発熱部341が発熱することにより、検出電極311、大気電極312、及び固体電解質体31における、各電極311,312の間に挟まれた部分が目標とする温度に加熱される。 The heat generating portion 341 of the present embodiment is formed in a shape meandering in the lengthwise direction L at a position on the tip side L1 of the heat generating body 34 in the lengthwise direction L. The heat generating portion 341 may be formed to meander in the width direction W. The heat generating portion 341 is arranged at a position facing the detection electrode 311 and the atmosphere electrode 312 in the stacking direction D orthogonal to the lengthwise direction L. When the heating portion 341 generates heat due to the electricity supplied from the heating element lead portion 342, the target temperature of the portion sandwiched between the electrodes 311 and 312 in the detection electrode 311, the atmospheric electrode 312, and the solid electrolyte body 31 is targeted. Is heated to.
 発熱部341の断面積は、発熱体リード部342の断面積よりも小さく、発熱部341の単位長さ当たりの抵抗値は、発熱体リード部342の単位長さ当たりの抵抗値よりも高い。この断面積とは、発熱部341及び発熱体リード部342が延びる方向に直交する断面の面積のことをいう。そして、一対の発熱体リード部342に電圧が印加されると、発熱部341がジュール熱によって発熱し、この発熱によって、検知部21の周辺が加熱される。 The cross-sectional area of the heating portion 341 is smaller than the cross-sectional area of the heating element lead portion 342, and the resistance value per unit length of the heating portion 341 is higher than the resistance value per unit length of the heating element lead portion 342. The cross-sectional area means the area of a cross section orthogonal to the extending direction of the heat generating portion 341 and the heat generating body lead portion 342. Then, when a voltage is applied to the pair of heating element lead portions 342, the heating portion 341 generates Joule heat, which heats the periphery of the detection portion 21.
(絶縁体33A,33B)
 図3及び図4に示すように、第1絶縁体33Aは、ガス室35を形成するものであり、第2絶縁体33Bは、大気ダクト36を形成するとともに発熱体34を埋設するものである。第1絶縁体33A及び第2絶縁体33Bは、アルミナ(酸化アルミニウム)等の金属酸化物によって形成されている。各絶縁体33A,33Bは、検出対象ガスG又は大気Aが透過することができない緻密体として形成されており、各絶縁体33A,33Bには、気体が通過することができる気孔がほとんど形成されていない。
( Insulators 33A, 33B)
As shown in FIGS. 3 and 4, the first insulator 33A forms the gas chamber 35, and the second insulator 33B forms the atmospheric duct 36 and also burys the heating element 34. .. The first insulator 33A and the second insulator 33B are formed of a metal oxide such as alumina (aluminum oxide). Each of the insulators 33A and 33B is formed as a dense body through which the gas G to be detected or the atmosphere A cannot pass, and each of the insulators 33A and 33B has pores through which gas can pass. Not not.
(多孔質層37)
 図1に示すように、センサ素子2の長尺方向Lの先端側L1の部位の全周には、検出電極311に対する被毒物質、排気管7内に生じる凝縮水等を捕獲するための多孔質層37が設けられている。多孔質層37は、アルミナ等の多孔質のセラミックス(金属酸化物)によって形成されている。多孔質層37の気孔率は、拡散抵抗部32の気孔率よりも大きく、多孔質層37を透過することができる検出対象ガスGの流量は、拡散抵抗部32を透過することができる検出対象ガスGの流量よりも多い。
(Porous layer 37)
As shown in FIG. 1, the entire circumference of the portion of the sensor element 2 on the tip side L1 in the longitudinal direction L has a porous structure for capturing poisonous substances to the detection electrode 311 and condensed water generated in the exhaust pipe 7. A quality layer 37 is provided. The porous layer 37 is made of porous ceramics (metal oxide) such as alumina. The porosity of the porous layer 37 is larger than the porosity of the diffusion resistance part 32, and the flow rate of the detection target gas G that can pass through the porous layer 37 is the detection target that can pass through the diffusion resistance part 32. It is higher than the flow rate of the gas G.
(ガスセンサ1の他の構成)
 図1に示すように、ガスセンサ1は、センサ素子2の他に、センサ素子2を保持する第1インシュレータ42、第1インシュレータ42を保持するハウジング41、第1インシュレータ42に連結された第2インシュレータ43、第2インシュレータ43に保持されてセンサ素子2に接触する接点端子44を備える。また、ガスセンサ1は、ハウジング41の先端側L1の部分に装着されてセンサ素子2の先端側部分を覆う素子カバー45、ハウジング41の後端側L2の部分に装着されて、第2インシュレータ43、接点端子44等を覆う大気カバー46、接点端子44に繋がるリード線48を大気カバー46に保持するためのブッシュ47等を備える。
(Other configuration of gas sensor 1)
As shown in FIG. 1, the gas sensor 1 includes, in addition to the sensor element 2, a first insulator 42 holding the sensor element 2, a housing 41 holding the first insulator 42, and a second insulator connected to the first insulator 42. 43, a contact terminal 44 held by the second insulator 43 and contacting the sensor element 2. Further, the gas sensor 1 is attached to the tip end side L1 of the housing 41 and covers the tip end side portion of the sensor element 2 with the element cover 45, and is attached to the rear end side L2 of the housing 41, and the second insulator 43, An atmosphere cover 46 that covers the contact terminals 44 and the like, a bush 47 and the like for holding the lead wires 48 connected to the contact terminals 44 in the atmosphere cover 46 are provided.
 センサ素子2の先端側部分及び素子カバー45は、内燃機関の排気管7内に配置される。素子カバー45には、検出対象ガスGとしての排ガスを通過させるためのガス通過孔451が形成されている。素子カバー45は、二重構造のものとすることができ、一重構造のものとすることもできる。素子カバー45のガス通過孔451から素子カバー45内に流入する検出対象ガスGとしての排ガスは、センサ素子2の多孔質層37及び拡散抵抗部32を通過して検出電極311へと導かれる。 The tip portion of the sensor element 2 and the element cover 45 are arranged inside the exhaust pipe 7 of the internal combustion engine. The element cover 45 is formed with a gas passage hole 451 for passing exhaust gas as the detection target gas G. The element cover 45 can have a double structure or a single structure. The exhaust gas as the detection target gas G flowing into the element cover 45 from the gas passage hole 451 of the element cover 45 passes through the porous layer 37 and the diffusion resistance portion 32 of the sensor element 2 and is guided to the detection electrode 311.
 接点端子44は、検出電極311及び大気電極312の各電極リード部313、発熱体34の発熱体リード部342のそれぞれに接続されるよう、第2インシュレータ43に複数配置されている。また、リード線48は、接点端子44のそれぞれに接続されている。 A plurality of contact terminals 44 are arranged in the second insulator 43 so as to be connected to the respective electrode lead portions 313 of the detection electrode 311 and the atmospheric electrode 312 and the heating element lead portion 342 of the heating element 34. The lead wire 48 is connected to each of the contact terminals 44.
 図1及び図3に示すように、ガスセンサ1におけるリード線48は、ガスセンサ1におけるガス検出の制御を行うセンサ制御装置6に電気接続される。センサ制御装置6は、エンジンにおける燃焼運転を制御するエンジン制御装置と連携してガスセンサ1における電気制御を行うものである。センサ制御装置6には、検出電極311と大気電極312との間に流れる電流を測定する測定回路61、検出電極311と大気電極312との間に電圧を印加する印加回路62、発熱体34に通電を行うための通電回路等が形成されている。なお、センサ制御装置6は、エンジン制御装置内に構築してもよい。 As shown in FIGS. 1 and 3, the lead wire 48 in the gas sensor 1 is electrically connected to the sensor control device 6 that controls gas detection in the gas sensor 1. The sensor control device 6 cooperates with an engine control device that controls combustion operation in the engine to perform electric control in the gas sensor 1. The sensor control device 6 includes a measurement circuit 61 for measuring a current flowing between the detection electrode 311 and the atmospheric electrode 312, an application circuit 62 for applying a voltage between the detection electrode 311 and the atmospheric electrode 312, and a heating element 34. An energizing circuit or the like for energizing is formed. The sensor control device 6 may be built in the engine control device.
(大気カバー46及び二層大気フィルタ5)
 図1及び図2に示すように、大気カバー46は、内燃機関の排気管7の外部に配置される。本形態のガスセンサ1は、車載用のものであり、排気管7の一部が配置された車両ボディは、内燃機関(エンジン)が配置されたエンジンルームに繋がっている。そして、大気カバー46の周辺には、エンジンルームにおける種々のゴム、樹脂、潤滑剤等から発生したガスが、大気Aに混合されて流れる。
(Atmosphere cover 46 and two-layer atmospheric filter 5)
As shown in FIGS. 1 and 2, the atmosphere cover 46 is arranged outside the exhaust pipe 7 of the internal combustion engine. The gas sensor 1 of the present embodiment is mounted on a vehicle, and the vehicle body in which a part of the exhaust pipe 7 is arranged is connected to an engine room in which an internal combustion engine (engine) is arranged. Then, around the atmosphere cover 46, gases generated from various rubbers, resins, lubricants and the like in the engine room are mixed with the atmosphere A and flow.
 エンジンルーム等において発生する被毒物質には、例えば、Si(ケイ素)、S(硫黄)等がある。Siは、SiO2(二酸化ケイ素)、シリケート(ケイ酸塩)等の形態で存在することもある。被毒物質とは、大気電極312に付着して、大気電極312の性能を劣化させる性質を有する物質のことをいう。また、排ガスには、検出電極311を被毒させるおそれがある物質が含まれることがある。この場合には、検出対象ガスGとしての排ガスに含まれる被毒物質は、例えば、センサ素子2の表面に設けられた多孔質層37によって捕獲される。 Examples of the poisoning substances generated in the engine room include Si (silicon) and S (sulfur). Si may exist in the form of SiO 2 (silicon dioxide), silicate (silicate) or the like. The poisoning substance refers to a substance that adheres to the air electrode 312 and deteriorates the performance of the air electrode 312. Further, the exhaust gas may contain a substance that may poison the detection electrode 311. In this case, the poisoning substance contained in the exhaust gas as the detection target gas G is captured by, for example, the porous layer 37 provided on the surface of the sensor element 2.
 図2に示すように、本形態の大気カバー46は、ハウジング41に取り付けられた第1大気カバー46Aと、第1大気カバー46Aとの間に二層大気フィルタ5を挟持する第2大気カバー46Bとによって構成されている。第1大気カバー46A及び第2大気カバー46Bは、円筒状に形成されている。第2大気カバー46Bは、第1大気カバー46Aの外周に重なって第1大気カバー46Aに加締められている。大気カバー46内に大気Aを取り込むための通気口461は、第2大気カバー46Bの側面に、貫通する状態で形成されている。通気口461は、円筒状の第2大気カバー46Bの周方向の複数箇所に形成されている。 As shown in FIG. 2, the atmosphere cover 46 of the present embodiment includes a first atmosphere cover 46A attached to the housing 41 and a second atmosphere cover 46B that sandwiches the two-layer atmosphere filter 5 between the first atmosphere cover 46A. It is composed of and. The first atmosphere cover 46A and the second atmosphere cover 46B are formed in a cylindrical shape. The second atmosphere cover 46B overlaps the outer periphery of the first atmosphere cover 46A and is crimped to the first atmosphere cover 46A. The vent hole 461 for taking in the atmosphere A into the atmosphere cover 46 is formed on the side surface of the second atmosphere cover 46B so as to penetrate therethrough. The vent holes 461 are formed at a plurality of positions in the circumferential direction of the cylindrical second atmosphere cover 46B.
 また、第1大気カバー46Aと第2大気カバー46Bの基端部との間には大気経路460が形成されている。本形態の二層大気フィルタ5は、第1大気カバー46Aと第2大気カバー46Bとの間に挟持されるとともに、第2大気カバー46Bとブッシュ47との間にも挟持されている。 An atmosphere path 460 is formed between the first atmosphere cover 46A and the base end of the second atmosphere cover 46B. The two-layer atmospheric filter 5 of the present embodiment is sandwiched between the first atmospheric cover 46A and the second atmospheric cover 46B, and also sandwiched between the second atmospheric cover 46B and the bush 47.
 二層大気フィルタ5は、シート状の第1フィルタ部51とシート状の第2フィルタ部52とが重なって一体化された、シート状フィルタとして形成されている。本形態の二層大気フィルタ5は、円筒状に丸められて第1大気カバー46Aと第2大気カバー46Bとの間に挟持されている。 The two-layer air filter 5 is formed as a sheet filter in which a sheet-shaped first filter portion 51 and a sheet-shaped second filter portion 52 are overlapped and integrated. The two-layer atmospheric filter 5 of the present embodiment is rolled into a cylindrical shape and is sandwiched between the first atmospheric cover 46A and the second atmospheric cover 46B.
 二層大気フィルタ5は、第2大気カバー46Bの内周面(内側面)に、第2大気カバー46Bの内周側から通気口461を覆う状態で配置されている。センサ素子2における、大気ダクト36の大気導入部361としての後端開口部は、大気カバー46内の空間に開放されている。本形態の大気経路460は、大気カバー46内の空間の全体として形成されている。そして、第2大気カバー46Bにおける、通気口461の周囲の内周面に、二層大気フィルタ5が配置されることにより、大気経路460に流れる大気Aが必ず二層大気フィルタ5を通過する。 The two-layer atmospheric filter 5 is arranged on the inner peripheral surface (inner side surface) of the second atmospheric cover 46B so as to cover the ventilation port 461 from the inner peripheral side of the second atmospheric cover 46B. The rear end opening of the sensor element 2 as the atmosphere introducing portion 361 of the atmosphere duct 36 is open to the space inside the atmosphere cover 46. The atmosphere path 460 of the present embodiment is formed as the entire space inside the atmosphere cover 46. The two-layer atmosphere filter 5 is arranged on the inner peripheral surface of the second atmosphere cover 46B around the ventilation port 461 so that the atmosphere A flowing through the atmosphere path 460 always passes through the two-layer atmosphere filter 5.
 第1フィルタ部51及び第2フィルタ部52は、シート状に形成する以外にも、種々の三次元形状に形成することができる。例えば、第1フィルタ部51及び第2フィルタ部52は、ブロック状に形成することもできる。また、第1フィルタ部51及び第2フィルタ部52は、第1大気カバー46Aと第2大気カバー46Bとの間の空間を充填する繊維状、粒子状等の形態を有していてもよい。 The first filter portion 51 and the second filter portion 52 can be formed in various three-dimensional shapes other than the sheet shape. For example, the first filter section 51 and the second filter section 52 can be formed in a block shape. Further, the first filter portion 51 and the second filter portion 52 may have a fibrous or particulate form that fills the space between the first atmosphere cover 46A and the second atmosphere cover 46B.
 大気経路460は、大気カバー46内の一部として形成されていてもよい。また、大気経路460には、通気口461に対向する位置であれば、大気カバー46の外部も含むこととする。そして、二層大気フィルタ5は、大気カバー46の外側から通気口461に対向する位置に配置されていてもよい。また、二層大気フィルタ5は、大気経路460のいずれかの位置に配置されていればよい。ただし、二層大気フィルタ5を通気口461に近い位置に配置することにより、大気カバー46内への水及び被毒物質の侵入を効果的に防止することができる。 The atmosphere path 460 may be formed as a part of the atmosphere cover 46. In addition, the atmosphere path 460 includes the outside of the atmosphere cover 46 as long as it is a position facing the ventilation port 461. Then, the two-layer atmospheric filter 5 may be arranged at a position facing the ventilation port 461 from the outside of the atmospheric cover 46. Further, the two-layer atmospheric filter 5 may be arranged at any position on the atmospheric path 460. However, by disposing the two-layer atmospheric filter 5 at a position close to the ventilation port 461, it is possible to effectively prevent intrusion of water and poisonous substances into the atmospheric cover 46.
 第1フィルタ部51は、PTFE(ポリテトラフルオロエチレン)、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)、PE(ポリエチレン)、PVC(ポリ塩化ビニル)、PPS(ポリフェニレンサルファイド)、PA(ポリアミド)、PEEK(ポリエーテルエーテルケトン)等の樹脂、ガラス繊維等によって構成することができる。第1フィルタ部51を樹脂によって形成する場合には、第1フィルタ部51には、空気が通過可能な多数の気孔が形成される。第1フィルタ部51を繊維によって形成する場合には、第1フィルタ部51には、空気が通過可能な隙間が形成される。また、第1フィルタ部51は、水を弾く撥水性を有し、大気A中に含まれる水滴は、第1フィルタ部51によって弾かれる。 The first filter unit 51 includes PTFE (polytetrafluoroethylene), PP (polypropylene), PET (polyethylene terephthalate), PE (polyethylene), PVC (polyvinyl chloride), PPS (polyphenylene sulfide), PA (polyamide), PEEK. It can be made of resin such as (polyether ether ketone), glass fiber or the like. When the first filter portion 51 is made of resin, the first filter portion 51 has a large number of pores through which air can pass. When forming the 1st filter part 51 with a fiber, the 1st filter part 51 is formed with the clearance gap through which air can pass. Further, the first filter portion 51 has water repellency that repels water, and water droplets contained in the atmosphere A are repelled by the first filter portion 51.
 第2フィルタ部52は、活性炭、ゼオライト、シリカゲル、メソポーラスシリカ、イオン交換膜、カーボンナノチューブ等によって構成することができる。第2フィルタ部52には、空気が通過可能な多数の気孔が形成される。第2フィルタ部52における多数の気孔は、第2フィルタ部52が水滴よりも小さな被毒物質を吸着するために、第1フィルタ部51における多数の気孔よりも小さくすることができる。この第2フィルタ部52及び第1フィルタ部51における気孔の大きさは、平均値として表すことができる。そして、第2フィルタ部52における多数の気孔の大きさの平均値は、第1フィルタ部51における多数の気孔の大きさの平均値よりも小さくすることができる。 The second filter section 52 can be made of activated carbon, zeolite, silica gel, mesoporous silica, ion exchange membrane, carbon nanotube, or the like. The second filter unit 52 has a large number of pores through which air can pass. The large number of pores in the second filter section 52 can be made smaller than the large number of pores in the first filter section 51 because the second filter section 52 adsorbs poisoning substances smaller than water droplets. The size of the pores in the second filter portion 52 and the first filter portion 51 can be expressed as an average value. The average size of the large numbers of pores in the second filter unit 52 can be smaller than the average size of the large numbers of pores in the first filter unit 51.
 本形態の第1フィルタ部51は、第2フィルタ部52に対して、大気経路460における大気Aの流れの上流側に配置されている。そして、大気カバー46の外部から内部へは、第1フィルタ部51によって水が除かれるとともに第2フィルタ部52によって被毒物質が除かれた大気(空気)Aが取り込まれる。 The first filter section 51 of the present embodiment is arranged upstream of the flow of the atmosphere A in the atmosphere path 460 with respect to the second filter section 52. Then, the atmosphere (air) A from which water has been removed by the first filter portion 51 and poisoning substances have been removed by the second filter portion 52 is taken from the outside to the inside of the atmosphere cover 46.
 第1フィルタ部51を、第2フィルタ部52に対して大気Aの流れの上流側に配置することにより、第2フィルタ部52に水が接触しないようにすることができる。これにより、大気カバー46内に取り込まれる大気Aにおける水及び被毒物質の除去を効果的に行うことができる。 By arranging the first filter section 51 upstream of the flow of the atmosphere A with respect to the second filter section 52, it is possible to prevent water from coming into contact with the second filter section 52. As a result, it is possible to effectively remove water and poisonous substances in the atmosphere A taken into the atmosphere cover 46.
 被毒物質は、気体、液体、固体の各形態で大気A中に混在する場合が考えられる。そして、大気A中に混在する被毒物質の一部は、第1フィルタ部51に形成された気孔、隙間等によって捕獲されると考えられる。ただし、大気カバー46内に取り込まれる大気Aにおける被毒物質のほとんどを除去するためには、第2フィルタ部52が必要となる。そして、第2フィルタ部52による被毒物質の吸着性能又は捕獲性能が第1フィルタ部51による被毒物質の捕獲性能よりも高いためには、第2フィルタ部52の単位質量当たりの表面積である比表面積は、第1フィルタ部51の単位質量当たりの表面積である比表面積よりも大きいことが好ましい。 Poisoning substances may be mixed in the atmosphere A in the form of gas, liquid, or solid. Then, it is considered that a part of the poisoning substance mixed in the atmosphere A is captured by the pores, gaps, etc. formed in the first filter portion 51. However, in order to remove most of the poisoning substances in the atmosphere A taken into the atmosphere cover 46, the second filter section 52 is necessary. The surface area per unit mass of the second filter unit 52 is set so that the adsorption performance or capture performance of the poisonous substance by the second filter unit 52 is higher than the capture performance of the poisonous substance by the first filter unit 51. The specific surface area is preferably larger than the specific surface area which is the surface area per unit mass of the first filter portion 51.
 また、第2フィルタ部52の比表面積を第1フィルタ部51の比表面積よりも大きくするためには、第2フィルタ部52における多数の気孔の大きさを第1フィルタ部51における多数の気孔の大きさよりも小さくし、かつ第2フィルタ部52における気孔率を第1フィルタ部51における気孔率よりも大きくすることができる。気孔率は、第1フィルタ部51又は第2フィルタ部52における、単位体積当たりに占める気孔の体積の割合として表すことができる。 Further, in order to make the specific surface area of the second filter portion 52 larger than the specific surface area of the first filter portion 51, the size of the large number of pores in the second filter portion 52 is set to be the same as that of the large number of pores in the first filter portion 51. The size can be made smaller than the size, and the porosity of the second filter portion 52 can be made larger than that of the first filter portion 51. The porosity can be expressed as the ratio of the volume of pores per unit volume in the first filter portion 51 or the second filter portion 52.
 第1フィルタ部51の比表面積は、0.1~50m2/gとすることができ、第2フィルタ部52の比表面積は、5~4000m2/gとすることができる。第1フィルタ部51は、水を撥水する性質を有するために、比表面積が小さくてもよく、第2フィルタ部52は、被毒物質を吸着する性質を有するために、第1フィルタ部51よりも比表面積が大きいことが好ましい。第1フィルタ部51の比表面積は、1~20m2/gとすることがより好ましく、第2フィルタ部52の比表面積は、10~2500m2/gとすることがより好ましい。第1フィルタ部51の比表面積を0.1m2/g未満又は50m2/g超過にすることは製造上難しい。また、第2フィルタ部52の比表面積を5m2/g未満又は4000m2/g超過にすることは製造上難しい。 The specific surface area of the first filter portion 51 can be 0.1 to 50 m 2 /g, and the specific surface area of the second filter portion 52 can be 5 to 4000 m 2 /g. Since the first filter portion 51 has a property of repelling water, it may have a small specific surface area, and the second filter portion 52 has a property of adsorbing poisoning substances, and thus the first filter portion 51. It is preferable that the specific surface area is larger than that. The specific surface area of the first filter portion 51 is more preferably 1 to 20 m 2 /g, and the specific surface area of the second filter portion 52 is more preferably 10 to 2500 m 2 /g. It is difficult in manufacturing to make the specific surface area of the first filter portion 51 less than 0.1 m 2 /g or more than 50 m 2 /g. Further, it is difficult to manufacture the specific surface area of the second filter portion 52 to be less than 5 m 2 /g or more than 4000 m 2 /g.
 各フィルタ部51,52の比表面積は、例えば、BET吸着等温式法等のガス吸着法によって測定することができる。ガス吸着法においては、各フィルタ部51,52における隙間、気孔等の表面の全体に気体分子等が吸着される現象を利用し、この気体分子等の量を測定することによって比表面積を求めることができる。また、各フィルタ部51,52の比表面積は、透過法によって測定することもできる。透過法においては、各フィルタ部51,52における隙間、気孔等に流体を流し、流体の流れにくさに基づいて比表面積を求めることができる。 The specific surface area of each filter portion 51, 52 can be measured by a gas adsorption method such as a BET adsorption isotherm method. In the gas adsorption method, the phenomenon that gas molecules and the like are adsorbed on the entire surfaces of the gaps and pores in each of the filter parts 51 and 52 is used, and the specific surface area is obtained by measuring the amount of the gas molecules and the like. You can The specific surface area of each of the filter parts 51 and 52 can also be measured by a transmission method. In the permeation method, a fluid is caused to flow through gaps, pores, etc. in each of the filter parts 51 and 52, and the specific surface area can be obtained based on the difficulty of the fluid flow.
 また、第2フィルタ部52の外部表面積は、第1フィルタ部51の外部表面積よりも大きい。外部表面積とは、各フィルタ部51,52の外表面として最も外側に現れた表面の表面積のことをいう。 The external surface area of the second filter portion 52 is larger than the external surface area of the first filter portion 51. The external surface area means the surface area of the outermost surface as the outer surface of each filter portion 51, 52.
 第1フィルタ部51による撥水機能は、第1フィルタ部51の表面に吸着する水を粗大化させて、この水を第1フィルタ部51の表面に留め、この水が第1フィルタ部51内へ浸透することを防止する機能とすることができる。また、第1フィルタ部51による水の捕獲機能は、水を第1フィルタ部51内に捕獲することにより、この水が第1フィルタ部51を透過することを防止する機能とすることができる。 The water-repellent function of the first filter unit 51 coarsens the water adsorbed on the surface of the first filter unit 51 and retains this water on the surface of the first filter unit 51, and this water is stored in the first filter unit 51. Can be used as a function of preventing penetration into Further, the water capturing function of the first filter unit 51 can be a function of preventing the water from passing through the first filter unit 51 by capturing the water in the first filter unit 51.
 第1フィルタ部51は、大気A中の水を撥水する機能を有する代わりに、大気A中の水を捕獲する機能を有していてもよい。この場合には、大気A中の水は、第1フィルタ部51における気孔又は隙間に捕獲される。なお、第1フィルタ部51は、水の撥水機能及び捕獲機能の両方を有していてもよい。 The first filter unit 51 may have a function of trapping water in the atmosphere A, instead of having a function of repelling water in the atmosphere A. In this case, the water in the atmosphere A is captured in the pores or gaps in the first filter section 51. The first filter unit 51 may have both a water repellent function and a water capturing function.
 第2フィルタ部52による被毒物質の吸着機能は、第2フィルタ部52における気孔、隙間等の表面に、被毒物質が原子レベル又は分子レベルで吸着するファンデルワールス力を利用した機能とすることができる。また、第2フィルタ部52による被毒物質の捕獲機能は、被毒物質を第2フィルタ部52内に捕獲することにより、この被毒物質が第2フィルタ部52を透過することを防止する機能とすることができる。 The function of adsorbing the poisoning substance by the second filter unit 52 is a function utilizing the van der Waals force of adsorbing the poisoning substance at the atomic level or the molecular level on the surface of the pores, gaps, etc. in the second filter unit 52. be able to. The function of capturing the poisoning substance by the second filter unit 52 is a function of preventing the poisoning substance from passing through the second filter unit 52 by capturing the poisoning substance in the second filter unit 52. Can be
 また、第2フィルタ部52が、大気A中の被毒物質を吸着する機能を有する場合には、第2フィルタ部52の気孔又は隙間を形成する表面に吸着される。また、第2フィルタ部52は、大気A中の被毒物質を吸着する機能を有する代わりに、大気A中の被毒物質を捕獲する機能を有していてもよい。この場合には、大気A中の被毒物質は、第2フィルタ部52における気孔又は隙間に捕獲される。なお、第2フィルタ部52は、被毒物質の吸着機能及び捕獲機能の両方を有していてもよい。 Further, when the second filter portion 52 has a function of adsorbing the poisoning substance in the atmosphere A, it is adsorbed on the surface of the second filter portion 52 forming the pores or gaps. Further, the second filter unit 52 may have a function of trapping a poisoning substance in the atmosphere A instead of having a function of adsorbing the poisoning substance in the atmosphere A. In this case, the poisoning substance in the atmosphere A is captured in the pores or the gaps in the second filter unit 52. The second filter unit 52 may have both a function of adsorbing and a function of capturing poisonous substances.
 なお、第1フィルタ部51及び第2フィルタ部52は、いずれも酸素、窒素等の気体を透過させる性質を有する。Siがシリコーン(ケイ素含有樹脂)等を構成する場合には、これが気体である被毒物質として存在することもある。この場合には、第2フィルタ部52は、大気中における被毒物質となり得る気体も吸着又は捕獲する機能を有することが好ましい。 The first filter section 51 and the second filter section 52 each have a property of allowing a gas such as oxygen or nitrogen to pass therethrough. When Si constitutes silicone (silicon-containing resin) or the like, it may exist as a gas poisoning substance. In this case, it is preferable that the second filter unit 52 has a function of adsorbing or capturing a gas that may be a poisoning substance in the atmosphere.
 第1フィルタ部51及び第2フィルタ部52の酸素ガス透過量は、内燃機関において最も燃料リッチ側にある空燃比で燃焼運転する際に(空燃比センサによって検出する空燃比が最もリッチ側の空燃比である場合に)、大気ダクト36内の大気電極312へ、検出電極311における最大リッチガス(未燃ガス)を分解するために必要な酸素イオンの量に相当する酸素ガス量よりも多いことが好ましい。これにより、第1フィルタ部51及び第2フィルタ部52を用いる場合であっても、ガスセンサ1によって最もリッチ側の空燃比を精度よく検出することができる。 The oxygen gas permeation amounts of the first filter portion 51 and the second filter portion 52 are determined by the air-fuel ratio which is the most fuel-rich side in the internal combustion engine (when the air-fuel ratio detected by the air-fuel ratio sensor is the richest air-fuel ratio). In the case of the fuel ratio), the amount of oxygen gas to the atmospheric electrode 312 in the atmospheric duct 36 may be greater than the amount of oxygen ions required to decompose the maximum rich gas (unburned gas) in the detection electrode 311. preferable. Accordingly, even when the first filter section 51 and the second filter section 52 are used, the gas sensor 1 can accurately detect the air-fuel ratio on the richest side.
 内燃機関においては、最大リッチガスの空燃比としてA/F=9で燃焼運転する場合が想定される。そして、第2フィルタ部52の酸素ガス透過量は、空燃比センサにおいて、A/F=9の最もリッチ側の空燃比を検出する場合に、大気電極312に必要な酸素ガス量以上とすることができる。また、最大リッチガスの空燃比は、A/F=9とする他に、A/F=8としてもよい。 In internal combustion engines, it is assumed that the air-fuel ratio of the maximum rich gas is A/F=9 for combustion operation. Then, the oxygen gas permeation amount of the second filter unit 52 should be equal to or more than the oxygen gas amount required for the atmosphere electrode 312 when the air-fuel ratio sensor detects the air-fuel ratio on the richest side of A/F=9. You can The air-fuel ratio of the maximum rich gas may be A/F=8 instead of A/F=9.
 大気カバー46の通気口461の周辺に存在する大気Aは、第1フィルタ部51及び第2フィルタ部52を経由して、大気経路460としての大気カバー46内に取り込まれる。そして、各フィルタ部51,52を通過した大気Aは、センサ素子2の大気ダクト36の大気導入部361としての後端開口部から大気ダクト36内に流れ、大気ダクト36内の大気電極312へと導かれる。 The atmosphere A existing around the vent hole 461 of the atmosphere cover 46 is taken into the atmosphere cover 46 as the atmosphere path 460 via the first filter unit 51 and the second filter unit 52. Then, the atmosphere A that has passed through the filter portions 51 and 52 flows into the atmosphere duct 36 from the rear end opening as the atmosphere introducing portion 361 of the atmosphere duct 36 of the sensor element 2 to the atmosphere electrode 312 in the atmosphere duct 36. Will be led.
(作用効果)
 本形態のガスセンサ1においては、大気カバー46における、大気経路460の入口となる通気口461を覆う状態で、第1フィルタ部51及び第2フィルタ部52による二層大気フィルタ5が配置されている。二層大気フィルタ5は、大気A中の水を撥水する機能を有する第1フィルタ部51と、大気A中の被毒物質を吸着する機能を有する第2フィルタ部52とによって構成されている。
(Effect)
In the gas sensor 1 of the present embodiment, the two-layer atmospheric filter 5 including the first filter portion 51 and the second filter portion 52 is arranged in the atmosphere cover 46 so as to cover the ventilation port 461 that serves as the inlet of the atmosphere path 460. .. The two-layer atmospheric filter 5 is composed of a first filter section 51 having a function of repelling water in the atmosphere A and a second filter section 52 having a function of adsorbing poisoning substances in the atmosphere A. ..
 そして、ガスセンサ1の大気カバー46の周辺の大気Aに水が含まれる場合であっても、この水を第1フィルタ部51によって撥水することができる。これにより、水がセンサ素子2の大気ダクト36における後端開口部まで進入することを防止することができ、センサ素子2の、大気Aに晒される大気電極312を被水から保護することができる。 Then, even if the atmosphere A around the atmosphere cover 46 of the gas sensor 1 contains water, the water can be repelled by the first filter portion 51. This can prevent water from entering the rear end opening of the atmosphere duct 36 of the sensor element 2 and protect the atmosphere electrode 312 of the sensor element 2 exposed to the atmosphere A from being exposed to water. ..
 また、ガスセンサ1の大気カバー46の周辺の大気Aに、センサ素子2の大気電極312を被毒させるおそれがある、Si、S等の被毒物質が含まれる場合であっても、この被毒物質を第2フィルタ部52によって吸着することができる。これにより、被毒物質がセンサ素子2の後端開口部まで進入することを防止することができ、センサ素子2の、大気Aに晒される大気電極312が被毒されることを防止することができる。 Even if the atmosphere A around the atmosphere cover 46 of the gas sensor 1 contains a poisoning substance such as Si or S that may poison the atmosphere electrode 312 of the sensor element 2, this poisoning may occur. The substance can be adsorbed by the second filter unit 52. As a result, it is possible to prevent the poisoning substance from entering the rear end opening of the sensor element 2 and prevent the atmospheric electrode 312 of the sensor element 2 exposed to the atmosphere A from being poisoned. it can.
 また、本形態の二層大気フィルタ5は、互いに密着して積層された状態に形成されている。この二層大気フィルタ5を用いることにより、大気カバー46への二層大気フィルタ5の組み付けを容易にすることができる。 Also, the two-layer air filter 5 of the present embodiment is formed in a state of being in close contact with each other and laminated. By using this two-layer atmospheric filter 5, it is possible to easily assemble the two-layer atmospheric filter 5 to the atmospheric cover 46.
 第1フィルタ部51及び第2フィルタ部52は、いずれも酸素、窒素等の気体を透過させる性質を有する。そして、水及び被毒物質を除く、酸素、窒素等の気体は、二層大気フィルタ5を透過して、大気カバー46内の大気経路460及びセンサ素子2の大気ダクト36の大気導入部361へ導入される。また、第2フィルタ部52が酸素の透過を阻害することがほとんどなく、検出対象ガスGとしての排ガスの空燃比が、燃料リッチ側の空燃比にある場合であっても、大気電極312へ十分な量の酸素を供給することができる。 Both the first filter section 51 and the second filter section 52 have a property of allowing a gas such as oxygen or nitrogen to pass through. Then, gases such as oxygen and nitrogen, excluding water and poisonous substances, pass through the two-layer atmospheric filter 5 to the atmospheric path 460 in the atmospheric cover 46 and the atmospheric air introduction portion 361 of the atmospheric duct 36 of the sensor element 2. be introduced. Further, the second filter unit 52 hardly interferes with the permeation of oxygen, and even if the air-fuel ratio of the exhaust gas as the detection target gas G is at the fuel-rich side air-fuel ratio, it is sufficient for the atmosphere electrode 312. Any amount of oxygen can be supplied.
 以上のように、本形態のガスセンサ1によれば、センサ素子2の大気電極312へ十分な量の酸素を供給することができるとともに、センサ素子2の大気電極312を、水及び被毒物質から保護することができる。 As described above, according to the gas sensor 1 of the present embodiment, a sufficient amount of oxygen can be supplied to the atmospheric electrode 312 of the sensor element 2, and the atmospheric electrode 312 of the sensor element 2 is protected from water and poisonous substances. Can be protected.
<実施形態2>
 本形態は、主にセンサ素子2の形状が実施形態1の場合と異なるガスセンサ1について示す。本形態のセンサ素子2は、図6に示すように、コップ状の固体電解質体31と、固体電解質体31の外周面に設けられた、検出対象ガスGに晒される検出電極311と、固体電解質体31の内周面に設けられた、大気Aに晒される大気電極312と、大気電極312を収容する状態で固体電解質体31の内周側に形成された大気ダクト36とを有する。コップ状の固体電解質体31は、円筒部315と円筒部315の先端部を閉塞する閉塞部316とを有する。検出電極311は、円筒部315の外周面に設けられており、大気電極312は、円筒部315の内周面及び閉塞部316の内側面に連続して設けられている。
<Embodiment 2>
The present embodiment mainly shows a gas sensor 1 in which the shape of the sensor element 2 is different from that in the first embodiment. As shown in FIG. 6, the sensor element 2 of the present embodiment includes a cup-shaped solid electrolyte body 31, a detection electrode 311 provided on the outer peripheral surface of the solid electrolyte body 31 and exposed to the gas G to be detected, and a solid electrolyte body. It has an atmospheric electrode 312 exposed to the atmosphere A, which is provided on the inner peripheral surface of the body 31, and an atmospheric duct 36 formed on the inner peripheral side of the solid electrolyte body 31 so as to accommodate the atmospheric electrode 312. The cup-shaped solid electrolyte body 31 has a cylindrical portion 315 and a closing portion 316 that closes the tip of the cylindrical portion 315. The detection electrode 311 is provided on the outer peripheral surface of the cylindrical portion 315, and the atmospheric electrode 312 is continuously provided on the inner peripheral surface of the cylindrical portion 315 and the inner side surface of the closed portion 316.
 センサ素子2は、ハウジング41の内周側に保持されている。コップ状の固体電解質体31の内周側には、通電によって発熱するヒータ素子340が配置されている。ヒータ素子340は、セラミック基材と、セラミック基材に設けられた発熱体34とを有する。本形態の大気導入部361は、固体電解質体31の内周側に形成された大気ダクト36の後端開口部によって構成されている。 The sensor element 2 is held on the inner peripheral side of the housing 41. A heater element 340 that generates heat when energized is arranged on the inner peripheral side of the cup-shaped solid electrolyte body 31. The heater element 340 has a ceramic base material and a heating element 34 provided on the ceramic base material. The air introduction part 361 of the present embodiment is configured by the rear end opening of the air duct 36 formed on the inner peripheral side of the solid electrolyte body 31.
 図7に示すように、本形態の大気カバー46も、実施形態1に示したものと同様にすることができる。ただし、本形態の第1大気カバー46Aと第2大気カバー46Bとの間は、二層大気フィルタ5が配置される空間として閉じられている。本形態の大気カバー46の通気口461は、第1フィルタ部51及び第2フィルタ部52の両方に形成されている。そして、第1大気カバー46Aの通気口461を通過した大気は、二層大気フィルタ5を通過した後、第2大気カバー46Bの通気口461を通過して、センサ素子2の大気導入部361に導入される。 As shown in FIG. 7, the atmosphere cover 46 of this embodiment can also be similar to that shown in the first embodiment. However, a space between the first atmospheric cover 46A and the second atmospheric cover 46B of the present embodiment is closed as a space in which the two-layer atmospheric filter 5 is arranged. The vent hole 461 of the atmosphere cover 46 of this embodiment is formed in both the first filter portion 51 and the second filter portion 52. Then, the atmosphere that has passed through the ventilation port 461 of the first atmospheric cover 46A passes through the two-layer atmospheric filter 5 and then passes through the ventilation port 461 of the second atmospheric cover 46B and enters the atmospheric air introduction portion 361 of the sensor element 2. be introduced.
 本形態のガスセンサ1は、空燃比センサとして用いることができ、酸素センサとして用いることもできる。本形態のガスセンサ1における、その他の構成については、実施形態1の場合と同様である。本形態においても、二層大気フィルタ5によって、実施形態1の場合と同様の作用効果を得ることができる。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。 The gas sensor 1 of the present embodiment can be used as an air-fuel ratio sensor and also as an oxygen sensor. Other configurations of the gas sensor 1 of the present embodiment are similar to those of the first embodiment. In the present embodiment as well, the two-layer air filter 5 can obtain the same operational effect as that of the first embodiment. Also in the present embodiment, the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
<実施形態3>
 本形態においては、第1フィルタ部51及び第2フィルタ部52について、実施形態1の場合と異なる構成を示す。図8に示すように、第1フィルタ部51と第2フィルタ部52とは、互いに分離されて大気カバー46内に配置されていてもよい。この場合には、第1フィルタ部51を、第1大気カバー46Aの通気口461を覆う位置に配置し、第2フィルタ部52を、大気経路460の一部としての第2大気カバー46B内に配置することができる。また、第2フィルタ部52は、例えば、センサ素子2の大気ダクト36の大気導入部361としての後端開口部を覆う位置に配置することができる。
<Embodiment 3>
In this embodiment, the first filter unit 51 and the second filter unit 52 have different configurations from those in the first embodiment. As shown in FIG. 8, the first filter section 51 and the second filter section 52 may be separated from each other and arranged in the atmosphere cover 46. In this case, the first filter portion 51 is arranged at a position that covers the vent hole 461 of the first atmosphere cover 46A, and the second filter portion 52 is provided inside the second atmosphere cover 46B as a part of the atmosphere path 460. Can be placed. Further, the second filter portion 52 can be arranged, for example, at a position that covers the rear end opening portion of the air duct 36 of the sensor element 2 as the air introduction portion 361.
 また、第1フィルタ部51と第2フィルタ部52とを互いに分離する場合には、図9に示すように、第2フィルタ部52は、例えば、第2インシュレータ43とリード線48との隙間に配置することもできる。 Further, when the first filter section 51 and the second filter section 52 are separated from each other, the second filter section 52 may be provided in the gap between the second insulator 43 and the lead wire 48, for example, as shown in FIG. 9. It can also be arranged.
 また、第2フィルタ部52を、大気カバー46内の大気経路460における大気Aの流れの上流側に配置し、第1フィルタ部51を、第2フィルタ部52よりも大気Aの流れの下流側に配置することもできる。また、図10に示すように、第1フィルタ部51と第2フィルタ部52とは、シート状に形成されたものを交互に複数回積層することもできる。 Further, the second filter portion 52 is arranged on the upstream side of the flow of the atmosphere A in the atmosphere path 460 inside the atmosphere cover 46, and the first filter portion 51 is on the downstream side of the flow of the atmosphere A with respect to the second filter portion 52. It can also be placed in. Further, as shown in FIG. 10, the first filter portion 51 and the second filter portion 52 may be formed into a sheet shape and may be alternately laminated a plurality of times.
 また、第1フィルタ部51と第2フィルタ部52とは、互いに混合されていてもよい。具体的には、図11に示すように、第2フィルタ部52は、第1フィルタ部51内に分散して配置することができる。第2フィルタ部52は、樹脂材料から構成される第1フィルタ部51を成形する際に、第1フィルタ部51内に分散する状態で練り込むことができる。 The first filter unit 51 and the second filter unit 52 may be mixed with each other. Specifically, as shown in FIG. 11, the second filter units 52 can be dispersed and arranged in the first filter unit 51. The second filter part 52 can be kneaded in a dispersed state in the first filter part 51 when molding the first filter part 51 made of a resin material.
 第1フィルタ部51と第2フィルタ部52とが互いに混合された状態には、第1フィルタ部51及び第2フィルタ部52のいずれか一方が他方の内部に配置された状態、第1フィルタ部51及び第2フィルタ部52のいずれか一方が他方の基材中に分散された状態、塊状に形成された第1フィルタ部51及び第2フィルタ部52の断片が接合された状態等が含まれる。 When the first filter unit 51 and the second filter unit 52 are mixed with each other, one of the first filter unit 51 and the second filter unit 52 is disposed inside the other, the first filter unit One of 51 and the second filter part 52 is dispersed in the other base material, a state in which pieces of the first filter part 51 and the second filter part 52 formed in a lump are joined, and the like are included. ..
 本形態のガスセンサ1における、その他の構成については、実施形態1の場合と同様である。本形態においても、第1フィルタ部51及び第2フィルタ部52によって、実施形態1の場合と同様の作用効果を得ることができる。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。 Other configurations of the gas sensor 1 of the present embodiment are similar to those of the first embodiment. Also in the present embodiment, the same operational effect as in the case of the first embodiment can be obtained by the first filter unit 51 and the second filter unit 52. Also in the present embodiment, the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
<実施形態4>
 本形態は、図12及び図13に示すように、センサ素子2が大気ダクト36を有しておらず、大気導入部361が、センサ素子2における固体電解質体31B、絶縁体33E等の隙間となるガスセンサ1について示す。本形態の固体電解質体31A,31Bは、長尺板形状の第1固体電解質体31Aと、長尺板形状の第2固体電解質体31Bとによって構成されている。ガス室35は、第1固体電解質体31Aと第2固体電解質体31Bとの間に形成されている。
<Embodiment 4>
In this embodiment, as shown in FIGS. 12 and 13, the sensor element 2 does not have the air duct 36, and the air introduction part 361 forms a gap between the solid electrolyte body 31B and the insulator 33E in the sensor element 2. The gas sensor 1 will be described. The solid electrolyte bodies 31A and 31B of the present embodiment are composed of a long plate-shaped first solid electrolyte body 31A and a long plate-shaped second solid electrolyte body 31B. The gas chamber 35 is formed between the first solid electrolyte body 31A and the second solid electrolyte body 31B.
 本形態のガスセンサ1も、センサ素子2の周辺に配置された大気カバー46等の構成は、実施形態1の場合と同様である。そして、大気カバー46には、大気カバー46内に大気Aを取り込むための通気口461が形成されており、大気カバー46には、通気口461を覆う状態で第1フィルタ部51及び第2フィルタ部52が配置されている。 Also in the gas sensor 1 of the present embodiment, the configuration of the atmosphere cover 46 and the like arranged around the sensor element 2 is the same as that of the first embodiment. The atmosphere cover 46 is formed with a vent 461 for taking in the atmosphere A into the atmosphere cover 46, and the atmosphere cover 46 covers the vent 461 so as to cover the first filter portion 51 and the second filter. The part 52 is arranged.
 第1固体電解質体31Aの、ガス室35内の検出対象ガスGに晒される第1主面と、多孔質体38を介して検出対象ガスGに晒される、第1主面と反対側の第2主面とには、ガス室35内の検出対象ガスGにおける酸素を汲み出すための電極311A,312Aが一対に配置されている。また、第2固体電解質体31Bの、ガス室35内の検出対象ガスGに晒される第3主面と、絶縁体33Eと対面する、第3主面と反対側の第4主面とには、ガス室35内の検出対象ガスGにおける空燃比を検出するための電極311,312が一対に配置されている。 The first main surface of the first solid electrolyte body 31A exposed to the detection target gas G in the gas chamber 35 and the first main surface of the first solid electrolyte body 31A opposite to the first main surface exposed to the detection target gas G via the porous body 38. A pair of electrodes 311A and 312A for pumping out oxygen in the detection target gas G in the gas chamber 35 is arranged on the two main surfaces. The third main surface of the second solid electrolyte body 31B exposed to the detection target gas G in the gas chamber 35 and the fourth main surface facing the insulator 33E and opposite to the third main surface are provided. A pair of electrodes 311 and 312 for detecting the air-fuel ratio of the detection target gas G in the gas chamber 35 are arranged.
 本形態の大気導入部361は、センサ素子2における、第2固体電解質体31Bと絶縁体33Eとの隙間(界面)、電極312の電極リード部313と第2固体電解質体31Bとの隙間(界面)、電極312の電極リード部313と絶縁体33Eとの隙間(界面)等によって形成される。そして、第2固体電解質体31Bの第4主面における電極312には、隙間(界面)を介して、大気カバー46内に取り込まれた大気Aが供給される。 The air introduction part 361 of the present embodiment has a gap (interface) between the second solid electrolyte body 31B and the insulator 33E and a gap (interface) between the electrode lead portion 313 of the electrode 312 and the second solid electrolyte body 31B in the sensor element 2. ), a gap (interface) between the electrode lead portion 313 of the electrode 312 and the insulator 33E, or the like. Then, the atmosphere A taken into the atmosphere cover 46 is supplied to the electrode 312 on the fourth main surface of the second solid electrolyte body 31B via the gap (interface).
 本形態においては、第2固体電解質体31Bの第4主面における電極312には、第1フィルタ部51及び第2フィルタ部52によって水及び被毒物質が除去された大気Aが供給される。これにより、センサ素子2における、大気Aが接触する電極を、水及び被毒物質から保護することができる。 In this embodiment, the electrode 312 on the fourth main surface of the second solid electrolyte body 31B is supplied with the atmosphere A from which water and poisonous substances have been removed by the first filter portion 51 and the second filter portion 52. This makes it possible to protect the electrode of the sensor element 2 in contact with the atmosphere A from water and poisonous substances.
 本形態のガスセンサ1における、その他の構成については、実施形態1の場合と同様である。本形態においても、第1フィルタ部51及び第2フィルタ部52によって、実施形態1の場合と同様の作用効果を得ることができる。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。 Other configurations of the gas sensor 1 of the present embodiment are similar to those of the first embodiment. Also in the present embodiment, the same operational effect as in the case of the first embodiment can be obtained by the first filter unit 51 and the second filter unit 52. Also in the present embodiment, the components indicated by the same reference numerals as those in the first embodiment are the same as those in the first embodiment.
 本開示は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本開示は、様々な変形例、均等範囲内の変形例等を含む。さらに、本開示から想定される様々な構成要素の組み合わせ、形態等も本開示の技術思想に含まれる。 The present disclosure is not limited to each embodiment, and further different embodiments can be configured without departing from the gist thereof. Further, the present disclosure includes various modifications, modifications within the equivalent range, and the like. Furthermore, the technical idea of the present disclosure also includes combinations and forms of various constituent elements that are assumed from the present disclosure.

Claims (6)

  1.  検出対象ガス(G)に晒される検知部(21)及び大気(A)が導入される大気導入部(361)を有するセンサ素子(2)と、
     前記センサ素子に導入される大気が通気口(461)を介して取り込まれる大気カバー(46)と、を備え、
     前記大気カバー内における、前記通気口と前記大気導入部との間の大気経路(460)には、大気中の水を撥水又は捕獲する機能を有する第1フィルタ部(51)と、大気中の被毒物質を吸着又は捕獲する機能を有する第2フィルタ部(52)とが、積層、分離又は混合して設けられている、ガスセンサ(1)。
    A sensor element (2) having a detection part (21) exposed to the gas to be detected (G) and an atmosphere introduction part (361) into which the atmosphere (A) is introduced;
    An atmosphere cover (46) through which air introduced into the sensor element is taken in through a vent (461),
    A first filter unit (51) having a function of repelling or trapping water in the atmosphere is provided in the atmosphere path (460) between the ventilation port and the atmosphere introducing unit in the atmosphere cover, and The gas sensor (1), which is provided by being laminated, separated or mixed with the second filter part (52) having a function of adsorbing or trapping the poisoning substance.
  2.  前記第2フィルタ部の単位質量当たりの表面積である比表面積は、前記第1フィルタ部の前記比表面積よりも大きい、請求項1に記載のガスセンサ。 The gas sensor according to claim 1, wherein a specific surface area which is a surface area per unit mass of the second filter portion is larger than the specific surface area of the first filter portion.
  3.  前記第1フィルタ部の前記比表面積は、1~20m2/gであり、
     前記第2フィルタ部の前記比表面積は、10~2500m2/gである、請求項2に記載のガスセンサ。
    The specific surface area of the first filter portion is 1 to 20 m 2 /g,
    The gas sensor according to claim 2 , wherein the specific surface area of the second filter portion is 10 to 2500 m 2 /g.
  4.  前記第1フィルタ部は、前記第2フィルタ部に対して、前記大気経路における大気の流れの上流側に配置されている、請求項1~3のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 3, wherein the first filter section is arranged upstream of the atmosphere flow in the atmosphere path with respect to the second filter section.
  5.  前記第2フィルタ部は、前記第1フィルタ部内に分散して配置されている、請求項1~3のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 3, wherein the second filter portion is arranged in a distributed manner in the first filter portion.
  6.  前記第1フィルタ部と前記第2フィルタ部とは、互いに積層又は混合されて一体化したシート状フィルタを構成しており、
     前記シート状フィルタは、前記通気口を覆う状態で前記大気カバーの内側面に配置されている、請求項1~3のいずれか1項に記載のガスセンサ。
    The first filter unit and the second filter unit are laminated or mixed with each other to form an integrated sheet filter,
    The gas sensor according to any one of claims 1 to 3, wherein the sheet filter is arranged on an inner surface of the atmosphere cover in a state of covering the vent hole.
PCT/JP2019/045534 2018-11-28 2019-11-21 Gas sensor WO2020110872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019005924.6T DE112019005924T5 (en) 2018-11-28 2019-11-21 Gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018222587A JP7024696B2 (en) 2018-11-28 2018-11-28 Gas sensor
JP2018-222587 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020110872A1 true WO2020110872A1 (en) 2020-06-04

Family

ID=70853207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045534 WO2020110872A1 (en) 2018-11-28 2019-11-21 Gas sensor

Country Status (3)

Country Link
JP (1) JP7024696B2 (en)
DE (1) DE112019005924T5 (en)
WO (1) WO2020110872A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215059A (en) * 1990-10-15 1992-08-05 Ngk Spark Plug Co Ltd Oxygen sensor and manufacture thereof
JP2009085940A (en) * 2007-09-14 2009-04-23 Ngk Spark Plug Co Ltd Gas sensor
JP2010236940A (en) * 2009-03-30 2010-10-21 Ngk Spark Plug Co Ltd Gas sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358393B2 (en) 1998-12-28 2009-11-04 日本特殊陶業株式会社 Gas sensor
JP2002350391A (en) 2001-05-24 2002-12-04 Matsushita Electric Ind Co Ltd Gas sensor
US6758952B2 (en) 2002-01-21 2004-07-06 Ngk Spark Plug Co., Ltd. Gas sensor
JP2008216049A (en) 2007-03-05 2008-09-18 Hitachi Ltd Gas sensor
JP6335518B2 (en) 2014-01-17 2018-05-30 矢崎エナジーシステム株式会社 Gas sensor filter and gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215059A (en) * 1990-10-15 1992-08-05 Ngk Spark Plug Co Ltd Oxygen sensor and manufacture thereof
JP2009085940A (en) * 2007-09-14 2009-04-23 Ngk Spark Plug Co Ltd Gas sensor
JP2010236940A (en) * 2009-03-30 2010-10-21 Ngk Spark Plug Co Ltd Gas sensor

Also Published As

Publication number Publication date
JP2020085733A (en) 2020-06-04
JP7024696B2 (en) 2022-02-24
DE112019005924T5 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US8409414B2 (en) Gas sensor and nitrogen oxide sensor
JP6747407B2 (en) Gas sensor
CN111295583A (en) Gas sensor
WO2020230505A1 (en) Gas sensor
WO2020110872A1 (en) Gas sensor
WO2020195079A1 (en) Gas sensor
US20220011257A1 (en) Gas sensor
US20080142364A1 (en) Gas sensor element designed to minimize direct exposure to water
JP6702342B2 (en) Gas sensor
CN114026413A (en) Gas sensor and method for manufacturing the same
JP7186131B2 (en) gas sensor
JP6809361B2 (en) Gas sensor
JP7432542B2 (en) gas sensor
JP2001033425A (en) Hydrogen gas sensor
JP2020003471A (en) Gas sensor
JP7068132B2 (en) Gas sensor
KR20160054707A (en) A nitrogen oxide sensor
JP6907687B2 (en) Gas sensor
JP7089949B2 (en) Gas sensor
JP7384315B2 (en) Gas concentration detection system
JP7247989B2 (en) sensor controller
WO2023199691A1 (en) Gas sensor
WO2023162385A1 (en) Gas sensor
JP2023122871A (en) gas sensor
JP2023013276A (en) gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891214

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19891214

Country of ref document: EP

Kind code of ref document: A1