WO2020110430A1 - Refrigerator, storage method for stored object, and sensor system - Google Patents

Refrigerator, storage method for stored object, and sensor system Download PDF

Info

Publication number
WO2020110430A1
WO2020110430A1 PCT/JP2019/036220 JP2019036220W WO2020110430A1 WO 2020110430 A1 WO2020110430 A1 WO 2020110430A1 JP 2019036220 W JP2019036220 W JP 2019036220W WO 2020110430 A1 WO2020110430 A1 WO 2020110430A1
Authority
WO
WIPO (PCT)
Prior art keywords
stored
refrigerator
stored item
sensor
time
Prior art date
Application number
PCT/JP2019/036220
Other languages
French (fr)
Japanese (ja)
Inventor
小谷 正直
健太郎 佐野
浩平 京谷
大平 昭義
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020110430A1 publication Critical patent/WO2020110430A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present invention relates to a refrigerator, a stored item storage method, and a sensor system.
  • the refrigerator user opens and closes the door of the refrigerator and visually checks the inside to confirm what kind of food is stored at what position and for how long. There is no particular problem when making such confirmation while taking food in and out. However, opening and closing the door exclusively for such confirmation raises the temperature in the refrigerator, which leads to increase in power consumption and deterioration of food. Therefore, recently, a technique for acquiring information in the refrigerator without opening the door has become widespread.
  • the refrigerator of Patent Document 1 detects the presence or absence of food with a non-contact electric field sensor.
  • a camera provided with a wide-angle lens and a lighting unit are arranged inside a door.
  • the storage of patent document 3 performs wireless communication of data between a temperature sensor, a humidity sensor, and a pressure sensor arranged on a shelf in the refrigerating compartment and an antenna arranged on a wall surface in the refrigerating compartment.
  • the patent document 1 refrigerator includes a wire for supplying power to the electric field sensor. Then, the position where the electric field sensor can be arranged is limited, and the food to be detected is also limited to eggs and the like. Further, since the refrigerator of Patent Document 1 has a one-to-one correspondence between the food to be detected and the electric field sensor, the shape of each food cannot be detected.
  • the refrigerator of Patent Document 2 can detect the shape of each food item as an image, but cannot detect the shape of the food item hidden in the blind spot when the food item has a front-rear positional relationship with the camera. Furthermore, the refrigerator of patent document 2 does not manage the storage period of each food.
  • the storage of Patent Document 3 enables various sensors to be arranged at arbitrary positions. However, when a plurality of sensors are arranged on the same plane, the installation area of the antenna becomes large and the refrigerating room becomes dark. The storage of Patent Document 3 also does not manage the storage period of individual food products. Therefore, an object of the present invention is to reliably detect the shape and storage period of stored items at arbitrary positions while ensuring the illuminance in the refrigerator.
  • the refrigerator of the present invention is based on a sensor array having a plurality of sensors for detecting the presence/absence of a stored item, a timer for specifying the time when the presence/absence of a stored item is detected, and information obtained from individual sensors constituting the sensor array.
  • a storage unit that determines the shape of the stored item, calculates the storage period of the stored item based on the time specified by the timer, and stores the determined shape and the calculated storage period in association with the stored item. To do. Other means will be described in the modes for carrying out the invention.
  • the present invention it is possible to reliably detect the shape and storage period of stored items at arbitrary positions while ensuring the illuminance in the refrigerator.
  • (A) is sectional drawing which looked at the refrigerator from the right side facing the front.
  • (B) is sectional drawing which looked at the refrigerator from the front.
  • (A) is sectional drawing which looked at the refrigerator from the right side facing the front.
  • (B) is sectional drawing which looked at the refrigerator from the front.
  • (C) is a plan view looking down on the shelf. It is a figure which shows the structure of a housing side arithmetic unit and a detection side arithmetic unit.
  • (A) is a figure which shows the stored thing stored on the sensor array.
  • (B) is a figure explaining the signal which a sensor outputs.
  • (C) is a figure which shows the movement of the stored item at a certain time. It is a figure showing an example of detection information.
  • (A) is a figure which shows an example of storage information.
  • (B) And (c) is a figure explaining the transition of the record of storage information.
  • (A), (b) and (c) is a figure explaining the identity etc. of a stored item. It is a flowchart of a processing procedure.
  • this embodiment is an example of storing stored items such as fresh foods in a refrigerator.
  • the present invention is also applicable, for example, to the case where stored items such as biological experiment samples are stored in a heat-retaining room in a laboratory.
  • the stored item of the present embodiment is a concept including not only food itself but also food packaged in bottles, cans, boxes, plates, vinyl packages, paper packages and the like.
  • FIG. 1A is a cross-sectional view of the refrigerator 1 of the present embodiment as seen from the right side when facing the front.
  • FIG.1(b) is sectional drawing which looked at the refrigerator 1 of this embodiment from the front.
  • the cross section of FIG. 1B is taken along the line AA of FIG.
  • the refrigerator 1 has a refrigerating compartment 2, an ice making compartment 3, a freezing compartment 4 and a vegetable compartment 5 in order from the top.
  • the refrigerator compartment 2 stores the stored items at a temperature of 0° C. or higher.
  • the refrigerating room 2 has a door 6 that opens from both sides, a plurality of shelves 7, a plurality of door pockets 8 and an egg storage room 9. Cold air is sent to the refrigerating compartment 2 from a refrigerating unit (not shown).
  • the vegetable compartment 5 also stores the contents at a temperature of 0°C or higher.
  • the stored items stored here are mainly unpackaged vegetables (carrots, tomatoes, etc.).
  • the vegetable compartment 5 is a single storage box (drawer) as a whole. Cold air is also sent from the refrigeration unit to the vegetable compartment 5.
  • the ice making room 3 stores the stored items at a temperature below 0°C.
  • the storage item stored here is ice.
  • the ice making chamber 3 has two left and right drawers. Cold air is sent to the ice making chamber 3 from a refrigerating unit (not shown).
  • the freezer compartment 4 also stores the contents at a temperature below 0°C.
  • the items stored here are mainly fish and shellfish, meats, frozen foods and the like. Cold air is also sent from the freezing unit to the freezing compartment 4.
  • the refrigerator 1 has a housing-side arithmetic unit 11 on the upper part of the back of itself.
  • the refrigerator 1 has the detection side arithmetic unit 12 on the upper surface of any shelf 7 or the bottom surface of the drawer. These details will be described later.
  • a broken line connecting the housing side computing device 11 and the detection side computing device 12 indicates wireless communication between the antennas (details will be described later).
  • FIGS. 1(a) and 1(b) are the same as the cross-sectional views of FIGS. 1(a) and 1(b), respectively.
  • FIG. 2A and FIG. 2B show how the stored items are actually stored.
  • a storage item 13 and a storage item 14 are stored on the third shelf 7 from the top of the refrigerator compartment 2.
  • the storage item 13 is a food item in a bowl-shaped container.
  • the stored item 14 is a food item in a two-stage container with a lid.
  • a part of the stored item 14 is hidden in the blind spot of the stored item 13.
  • FIG. 2C is a plan view of the third shelf 7 from the top of the refrigerating room 2 as viewed from directly below the second shelf 7 from the top (position of line BB).
  • the detection side arithmetic unit 12 is arranged (laid) so as to cover almost the entire upper surface of the third shelf 7 from the top.
  • the detection-side arithmetic unit 12 has a detection-side arithmetic unit 21 and a large number of sensors 22.
  • the sensors 22 are arranged on the upper surface of the shelf 7 in a grid pattern.
  • the vertical position and the horizontal position of this lattice are represented by English letters a, b, c, d,..., H, i.
  • the two-dimensional coordinate value “[a,b]” indicates the sensor located at “first row, second column” in FIG.
  • the sensors 22 and the detection side calculation unit 21 are connected by, for example, a metal wire connection. An induced current (energy source) and a signal current (data) described later pass through this connection.
  • FIG. 2C although it is described that a plurality of wirings pass under one sensor 22, the sensors are electrically insulated from each other.
  • the housing-side arithmetic unit 11 is connected to the external power supply unit 41, the display unit 42, and the refrigerator control sensor 43 by wire.
  • the external power supply unit 41 supplies power to the housing side arithmetic unit 11.
  • the display unit 42 is a display arranged outside the door of the refrigerator 1, for example.
  • the refrigerator control sensor 43 is generally a sensor that detects any operation of the refrigerator 1, but is a sensor that detects opening/closing of the door 6 or the drawer in the present embodiment.
  • the refrigerator control sensor 43 is arranged in each of the door 6 and the drawer, and the housing-side arithmetic unit 11 can recognize the open/closed state of each door or the like.
  • the housing side arithmetic unit 11 is wirelessly connected to the detection side arithmetic unit 12. For this reason, the connection as in Patent Document 1 is not necessary between the housing side arithmetic unit 11 and the detection side arithmetic unit 12.
  • the detection-side arithmetic unit 12 has a detection-side arithmetic unit 21, a detection-side antenna 24, and a large number of sensors 22. These are connected by wire. A large number of sensors 22 are arranged in a plane (two-dimensional) and constitute one sensor array 23 as a whole. Further, since the detection side calculation unit 21 and each sensor 22 are patterned conductors, the connection as in Patent Document 1 is not necessary. Although the number of sensors is nine in FIG. 3 due to space limitations, the actual number is much larger than this. Note that “9” here is a number for explanation only, and does not match the number of sensors 22 in FIG. 4A, which is also a diagram for explanation.
  • a broken line between the detection-side antenna 24 and the housing-side antenna 31 in FIG. 3 indicates that wireless communication is performed there. Further, the housing side arithmetic unit 11 causes the detection side arithmetic unit 12 to generate an induced voltage via the broken line. Solid lines between the other configurations in FIG. 3 indicate that wired communication and power supply are performed therein.
  • Only one housing-side antenna 31 for wireless communication is arranged on the upper rear part of the refrigerator 1.
  • the other detection-side antenna 24 is small in size and is distributed and arranged on the bottom surfaces of a plurality of shelves or drawers (see FIGS. 1A and 1B). Therefore, neither antenna positionally interferes with the illumination means in the refrigerator and the inside of the refrigerator is always bright.
  • the “sensor system for managing the contents of the refrigerator” including the sensor array 23, the timer 33, and the housing side calculation unit 32 of FIG. 3 may be configured to be independent from the main body of the refrigerator 1.
  • the sensor system can be externally attached to the existing refrigerator 1.
  • FIG. 4( a) is a diagram showing the stored items stored on the sensor array 23.
  • the stored items 13 and 14 are stored on the same shelf (sensor array). As is apparent from the overlapping state, the stored items 14 are first stored (stored) at the time point t1, and the stored items 13 are stored at the subsequent time point t2.
  • the lower side of FIG. 4A is in front of the user.
  • Each sensor 22 outputs a binary value as to whether or not there is a stored item on itself. Then, the housing side arithmetic unit 11 recognizes at which position the stored item is currently stored.
  • the sensor 22 is, for example, a pressure sensor, a weight sensor, a capacitance (electric field) sensor, or the like.
  • FIG. 4B is a diagram illustrating a signal output by the sensor 22.
  • the sensor “[b,e]” or the like is represented by a black square. This indicates that the contents are stored on the sensor.
  • the sensor “[b, d]” and the like are represented by white squares. This indicates that there is no storage on the sensor.
  • FIG. 4C will be described later. It should be noted that “black” and “white” are words for explanation only, and have nothing to do with the actual color presented by the sensor.
  • the detection side arithmetic unit 12 does not have a power supply unit and is not connected to the housing side arithmetic unit 11. Therefore, the shelves 7 and the drawer can be freely taken in and out.
  • FIG. 5 is a diagram showing an example of the detection information 51.
  • the sensor information column 102 stores time-series sensor information in association with the sensor ID stored in the sensor ID column 101.
  • the sensor ID in the sensor ID column 101 is an identifier that uniquely identifies the sensor 22, and is a combination of two English characters here.
  • the English letters a, b, c,... Specify the vertical position and the horizontal position.
  • the sensor ID may include a number or a symbol that distinguishes the bottom surfaces of a plurality of shelves or drawers.
  • the left and right positions of the sensor information column 102 indicate time points. The more to the right, the later in time.
  • the sensor information column 102 stores one or a plurality of ⁇ or ⁇ . 4 corresponds to the black sensor in FIG. 4B, and ⁇ corresponds to the white sensor in FIG. 4B.
  • a plurality of broken lines are drawn in the vertical direction. One broken line corresponds to one time point. Then, in each record, either ⁇ or ⁇ is on each broken line.
  • the time points t1, t2, t3,... Corresponding to the broken lines are the time points at which the “detection opportunity” has been reached.
  • the refrigerator 1 of the present embodiment acquires sensor information ( ⁇ or ⁇ ) only at limited detection opportunities.
  • An example of the detection opportunity is when a predetermined period of time has passed from the time when the door 6 or the drawer of the refrigerator 1 was opened (or closed). Therefore, the intervals between the time points t1, t2, t3,... Are not uniform. More precisely, the point in time such as t1 may be a period having a certain time range (for example, 5 seconds) instead of an instantaneous point in time (details described later). Then, in this case, t1 may be a representative value (for example, a median value) of the period.
  • ⁇ Time t3> The sensor information is the same as at time t2. At time t3, the user opens the door and visually checks the inside, and then closes the door without taking in and out the stored items.
  • ⁇ Time t4> A group of sensors (newly blackened at time t2 [e, d], [e, e], [e, f], [f, d], [f, e], [f, f], [g , D], [g, e] and [g, f] have once returned to white. At the same time, another group of sensors ([f,e], [f,f], [f,g], [g,e], [g,f], [g,g] including a sensor that has once returned to white).
  • FIG. 4C shows the movement of the stored item 13 from time t3 to time t4. Compared to the time point t3, at the time point t4, the stored item 13 moves to the right side of the figure by one sensor ( ⁇ x) and moves to the lower side of the figure by one sensor ( ⁇ y).
  • FIG. 6A is a diagram showing an example of the storage information 52.
  • the first recognition time point column 112 indicates the first recognition time point
  • the final recognition time point column 113 indicates the final recognition time point
  • the storage period column 114 The storage period, the latest position in the latest position column 115, and the outline shape in the outline shape column 116 are stored.
  • the stored item ID in the stored item ID column 111 is an identifier that uniquely identifies the stored item.
  • the housing-side arithmetic unit 32 of the refrigerator 1 gives a new identifier to the newly stored items.
  • the first recognition time in the first recognition time column 112 is the time when the housing side computing unit 32 first recognizes that the stored item is stored (initial recognition time). Note that “#” is abbreviated to indicate a different value (the same applies to subsequent columns).
  • the final recognition time in the final recognition time column 113 is the time when the housing side computing unit 32 finally recognizes that the stored item is stored.
  • the storage period in the storage period column 114 is a period from the first recognition time to the final recognition time.
  • the latest position in the latest position column 115 is the position where the stored item was stored at the time of the final recognition, and here is a set of two-dimensional coordinate values indicating the position of the sensor that was black.
  • the general shape of the general shape column 116 is an approximate planar shape of the stored item.
  • the housing-side arithmetic unit 32 recognizes the shapes collectively represented by the blackened sensors as a general shape.
  • the general shape here is a character string such as “3 ⁇ 3 square”, but a graphic itself indicating the shape may be stored as the general shape.
  • FIG. 6B is a diagram for explaining the transition of the record 117a of the stored item A001 in the storage information 52. Now, it is assumed that the stored item ID that identifies the stored item 14 in FIG. 4A is “A001”. Hereinafter, a process in which the housing-side computing unit 32 updates (transitions) the record of the storage item 14 will be described in time series.
  • the times t1, t2,..., T5 in FIG. 6B correspond to t1, t2,..., T5 in FIG. 5, respectively.
  • the housing side calculation unit 32 first recognizes that the stored item A001 is stored. Therefore, the housing side computing unit 32 stores “A001” and “t1” in the stored item ID column 111 and the first recognition time column 112, respectively. Further, the housing side computing unit 32 stores “be,..., Dg” and “3 ⁇ 3 square” in the latest position column 115 and the schematic shape column 116, respectively.
  • “be” is an abbreviated representation of the two-dimensional coordinate value “[b,e]” of the sensor.
  • the housing side arithmetic unit 32 stores “ ⁇ ” indicating that there is no corresponding data in the final recognition time point column 113 and the storage period column 114.
  • ⁇ Time 2: Record 117c> The housing-side arithmetic unit 32 recognizes that the stored item A001 is stored at the same position as the most recent past (time t1). Therefore, the housing side computing unit 32 stores “t2” in the final recognition time column 113 and “t2-t1” in the storage period column 114.
  • “t2” and “t2-t1” are described for the sake of clarity, but in reality, they are the time point ( ⁇ hour ⁇ minute ⁇ second) and the time ( ⁇ hour ⁇ minute ⁇ second), respectively. ..
  • the housing-side arithmetic unit 32 kept the data in the other columns as they were.
  • FIG. 6C is a diagram for explaining the transition of the record 118a of the stored item A002 in the storage information 52. Now, it is assumed that the stored item ID for identifying the stored item 13 in FIG. 4A is “A002”. Hereinafter, a process in which the housing side computing unit 32 updates the record of the stored item 13 will be described in time series.
  • ⁇ Time t1> There is no record for time point t1 in FIG. 6(c). That is, the housing side arithmetic unit 32 does not perform any particular process. This is because at the time point t1, the housing side computing unit 32 does not recognize that the stored item A002 is stored.
  • ⁇ Time t2: Record 118b> The housing side computing unit 32 first recognizes that the stored item A002 is stored. Therefore, the housing side computing unit 32 stores “A002” and “t2” in the stored item ID column 111 and the first recognition time column 112, respectively. Further, the housing side computing unit 32 stores “ed,..., Gf” and “3 ⁇ 3 square” in the latest position column 115 and the schematic shape column 116, respectively.
  • the housing-side arithmetic unit 32 stores “ ⁇ ” in the final recognition time column 113 and the storage period column 114.
  • the housing side computing unit 32 recognizes that the stored item A002 is stored at the same position as the most recent past (time t2). Therefore, the housing side computing unit 32 stores “t3” in the final recognition time column 113 and “t3-t2” in the storage period column 114. The housing-side arithmetic unit 32 kept the data in the other columns as they were.
  • the housing-side arithmetic unit 32 recognizes that the stored item “A002” is not stored (taken out). Therefore, the housing side computing unit 32 stores “none” in the latest position column 115. This “none” is also called a “deletion flag”. The housing-side arithmetic unit 32 kept the data in the other columns as they were.
  • the housing side computing unit 32 regards it as the same stored item.
  • the storage period and schematic shape are managed.
  • the housing side calculation unit 32 accepts that the user performs a certain operation on the display unit 42.
  • a certain operation is, for example, pressing of the ““Immediately return” button.”
  • the housing-side computing unit 32 identifies the stored item that was taken out immediately before with respect to the stored item that was first stored.
  • the object ID is continuously given.
  • FIG. 7 is a diagram for explaining the identity of stored items.
  • FIG. 7A is a diagram showing the storage position of the stored items at the latest past time point.
  • the latest past time is the last time when the sensor 22 detects the presence or absence of a stored item. If the door or drawer is not opened/closed for about half a day, the latest past time is, for example, 12 hours ago.
  • One square in FIG. 7A corresponds to one sensor.
  • the area surrounded by a thick broken line is the position where the stored item is stored (the same applies to FIG. 7B).
  • a stored item A011, a stored item A012, a stored item A013, and a stored item A014 are stored.
  • FIG. 7B is a diagram showing the storage position of the stored items at the present time.
  • the present time is the present time when the sensor detects the presence or absence of the stored item.
  • the stored item A011, the stored item A012, the stored item A013, and the stored item A015 are stored.
  • FIG.7(c) is the figure which overlapped FIG.7(a) and FIG.7(b).
  • the shaded area in the area surrounded by the thick broken line is the area surrounded by the thick broken line in FIG. 7A and the area surrounded by the thick broken line in FIG. 7B. It is the overlapping part with.
  • the stored item A011 has not moved at all between the latest past time and the present time.
  • the housing side calculation unit 32 regards the stored item A011 of FIG. 7A and the stored item A011 of FIG. 7B as the same stored item without any problem.
  • the stored item A012 is currently moving slightly to the right as compared with the latest past time point.
  • the housing side computing unit 32 regards the stored item A012 of FIG. 7A and the stored item A012 of FIG. 7B as the same stored item. If the positions of the two are significantly different from each other, or if the areas of the regions surrounded by the broken lines are significantly different from each other, the housing side computing unit 32 causes the storage item A012 of FIG.
  • the stored item A012 of b) is regarded as a different stored item. That is, the housing-side arithmetic unit 32 attaches different stored item IDs to these.
  • the housing side computing unit 32 regards the stored item A013 of FIG. 7A and the stored item A013 of FIG. 7B as the same stored item. If the positions of the two are significantly different from each other, or if the areas of the regions surrounded by the broken lines are significantly different from each other, the housing side computing unit 32 causes the storage item A013 of FIG.
  • the stored item A013 of b) is regarded as a different stored item.
  • the stored item A014 has disappeared at this point. That is, the stored item is not stored at the position where the stored item was stored at the latest past time.
  • the housing side computing unit 32 regards the stored item A014 of FIG. 7A as the stored item taken out from the refrigerator at the present time.
  • the stored item A015 has appeared for the first time at this point. That is, the stored items were not stored at that position in the latest past time.
  • the housing side computing unit 32 regards the stored item A015 of FIG. 7B as a newly stored stored item at the present time.
  • the distance between the position of the stored item at the previous time point and the position of the stored item at the subsequent time point is equal to or less than a predetermined threshold value.
  • the position is, for example, the position of the center of gravity of the stored items.
  • the distance is, for example, the square root of the sum of the square of the vertical position difference ( ⁇ y in FIG. 4C) and the square of the horizontal position difference ( ⁇ x in FIG. 4C). Is.
  • ⁇ Condition 2> The absolute value of the difference between the projected area of the stored object on the sensor array at the previous time point and the projected area of the stored object on the sensor array at the subsequent time point is equal to or less than a predetermined threshold value.
  • the projected area can be replaced by the number of blackened sensors.
  • the time point t1 and the like in FIG. 5 is not an instantaneous one time point but a period having a certain time range.
  • the sensor on either the left or right side often changes from ⁇ to ⁇ prior to the sensor on the other side.
  • the housing-side arithmetic unit 32 needs to make a determination to determine the number of stored items stored in adjacent positions (a plurality of connected squares) independently of the determination to use the condition 1 and the condition 2. is there.
  • the case side computing unit 32 determines that the plurality of times when the output changes are within a predetermined time range.
  • a group is created with sensors inside (for example, 2 to 3 seconds), and each group is considered to correspond to one storage item.
  • FIG. 8 is a flowchart of the processing procedure.
  • the housing side computing unit 32 supplies power to the refrigerator 1.
  • the housing side calculation unit 32 accepts the user turning on the power of the refrigerator 1 via the display unit 42.
  • step S202 the housing side computing unit 32 determines whether or not the door is opened.
  • the housing side arithmetic unit 32 constantly monitors the refrigerator control sensor 43. Then, when the housing side calculation unit 32 receives a signal indicating that at least one door or drawer is opened from the refrigerator control sensor 43 (step S202 “YES”), the process proceeds to step S203. When the housing side calculation unit 32 does not accept the signal (step S202 “NO”), it waits until the signal is accepted.
  • the signal here shall contain the information (henceforth "door information”) which specifies the opened door or drawer.
  • the housing side computing unit 32 supplies power to the sensor 22. Specifically, the housing side computing unit 32 sends to the housing side antenna 31 an instruction to transmit a radio wave to the sensing side antenna 24 of the sensing side computing device 12 corresponding to the door or drawer specified by the door information. To do. In response to the instruction, the housing side antenna 31 actually transmits a radio wave to the detection side antenna 24. Then, an induced voltage due to a change in the magnetic field is generated in the detection-side antenna 24 that has received the radio wave. This induced voltage serves as an energy source for the operation of the detection side arithmetic unit 12.
  • the housing side computing unit 32 requests sensor information. Specifically, the housing side computing unit 32 provides the sensing side computing unit 21 of the sensing side computing device 12 corresponding to the door or drawer specified by the door information, with the sensor information indicating the presence or absence of the stored item at the position of the sensor 22. Request. Then, the detection side calculation unit 21 acquires sensor information from all the sensors 22 and transmits the acquired sensor information to the housing side calculation unit 32 via the detection side antenna 24 and the housing side antenna 31.
  • the sensor information here is a plurality of squares or squares on the broken lines in the vertical direction of FIG. That is, the sensor information is binary information indicating the presence/absence of a stored item for each sensor position.
  • step S205 the housing side computing unit 32 determines whether or not all sensor information has been acquired. Specifically, the housing side computing unit 32 receives from the sensing side computing unit 21 the sensor information of all the sensors belonging to the sensing side computing device 12 corresponding to the door or drawer specified by the door information (step S205 " YES"), the process proceeds to step S206. In other cases (step S205 “NO”), the housing side computing unit 32 waits until it receives the sensor information of all the sensors.
  • step S206 the housing side computing unit 32 creates the current storage information. Specifically, the housing side computing unit 32 creates a diagram (current map) showing the storage position of the stored items at the present moment as shown in FIG. 7B.
  • step S207 the housing side computing unit 32 creates the storage information of the latest past time point. Specifically, the housing side computing unit 32 creates a diagram (previous map) showing the storage position of the stored items at the latest past time as shown in FIG. 7A.
  • step S208 the housing side computing unit 32 identifies one stored item at the present time. Specifically, the housing side computing unit 32 specifies any one of the stored items appearing on the map this time as the “processing target stored item”.
  • step S209 the housing side computing unit 32 determines whether or not there is a stored item whose difference is equal to or larger than the threshold value. Specifically, the housing side computing unit 32 superimposes the current map and the previous map, and the stored items that satisfy the above-mentioned conditions 1 and 2 when the stored items to be processed are set as the previous map. Check if it exists. Then, the housing side computing unit 32 proceeds to step S210 when such a stored item exists (step S209 “YES”), and proceeds to step S211 otherwise (step S209 “NO”).
  • step S210 the housing side computing unit 32 updates the storage period of the existing record of the storage information 52.
  • the processing performed by the housing side computing unit 32 is, for example, the processing of updating the record 117c in FIG. 6B with the record 117d, or the processing of updating the record 118c in FIG. 6C with the record 118d.
  • the housing-side arithmetic unit 32 may store the record 117c before update as a history in another area.
  • step S211 the housing side computing unit 32 creates a new record of the storage information 52.
  • the process performed by the housing side computing unit 32 is a process of newly creating the record 117b in FIG. 6B, for example.
  • step S212 the housing side computing unit 32 determines whether or not there is an unprocessed stored item. Specifically, the housing-side computing unit 32 returns to step S208 if the processing target stored items remain (step S212 “YES”), and otherwise proceeds to step S213. ..
  • the housing side computing unit 32 identifies the stored contents that have been taken out. Specifically, the housing side computing unit 32 deletes the stored item determined to be the same as the processing target stored item from the previous map. Then, only the stored item (for example, the stored item A014) taken out at the present time is not erased and remains on the map last time.
  • the housing side calculation unit 32 identifies one or a plurality of stored items left in this way.
  • step S214 the housing side computing unit 32 sets a deletion flag on the existing record of the storage information 52.
  • the process performed by the housing side computing unit 32 is a process of updating, for example, the record 118d in FIG. 6C with the record 118e.
  • “none” is stored as the deletion flag in the latest position column 115 of the record 118e.
  • the housing side computing unit 32 may store the record 118d before update and the record 118e after update as a history in another area.
  • step S215 the housing side computing unit 32 stops power supply to the sensor. Specifically, the housing side computing unit 32 sends to the housing side antenna 31 an instruction to stop the transmission of radio waves to the detection side antenna 24.
  • step S216 the housing side arithmetic unit 32 determines whether or not the power supply to the refrigerator is stopped. Specifically, when the user accepts that the power of the refrigerator 1 is “OFF” via the display unit 42 (step S216 “YES”), the housing side computing unit 32 ends the processing procedure. .. In other cases (step S216 “NO”), the housing side computing unit 32 returns to step S202.
  • the housing-side arithmetic unit 32 transmits the storage information 52 at that time to an arbitrary device (for example, a terminal device carried by the user) via the network or the like at an arbitrary timing.
  • an arbitrary device for example, a terminal device carried by the user
  • An example of arbitrary timing is as follows. -Periodic timing specified by the user, such as 00:00:00 every hour-Timing when the user instructs the refrigerator 1 each time via the network-Timing when the storage period of a certain stored item exceeds a predetermined threshold value
  • the effects of the refrigerator of this embodiment are as follows. (1) The refrigerator can recognize the shape of the stored item without a blind spot by the sensor array, and can accurately know the storage period of the stored item by the timer. (2) Since the refrigerator can omit the internal wiring, the sensor position can be freely determined while maintaining the internal illuminance. (3) The refrigerator can operate the sensor only at the time when stored items may be taken in and out. (4) The refrigerator can accurately determine the identity of the stored items. (5) The refrigerator can output information about the stored items to a device at a remote place.
  • the present invention is not limited to the above-mentioned embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • other configurations can be added/deleted/replaced.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • the above-described respective configurations, functions and the like may be realized by software by the processor interpreting and executing a program for realizing the respective functions.
  • Information such as a program, a table, and a file that realizes each function can be stored in a memory, a recording device such as a hard disk and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • the control lines and information lines shown are those that are considered necessary for explanation, and not all the control lines and information lines on the product are necessarily shown. In reality, it may be considered that almost all configurations are connected to each other.

Abstract

A refrigerator according to the present invention is characterized by comprising: a sensor array (23) having a plurality of sensors (22) each of which detect the presence or absence of a stored item; a timer (33) which specifies a time when the presence or absence of the stored item is detected; and a calculation unit (32) which determines the shape of the stored item on the basis of the information obtained from each sensor constituting the sensor array, calculates a storage period of a stored item on the basis of the time specified by the timer, and stores the determined shape and the calculated storage period in association with the stored items.

Description

冷蔵庫、収納物保管方法及びセンサシステムRefrigerator, storage method and sensor system
 本発明は、冷蔵庫、収納物保管方法及びセンサシステムに関する。 The present invention relates to a refrigerator, a stored item storage method, and a sensor system.
 冷蔵庫のユーザは、冷蔵庫の扉を開閉し内部を目視して、どの位置にどのような食品がどれだけの期間保管されているかを確認する。食品を出し入れするついでにこのような確認をする場合、特に問題はない。しかしながら、専らこのような確認をするためだけに扉を開閉することは、冷蔵庫内の気温を上昇させ、消費電力の増加及び食品の劣化に繋がる。そこで近時、扉を開けることなく冷蔵庫内の情報を取得する技術が普及している。  The refrigerator user opens and closes the door of the refrigerator and visually checks the inside to confirm what kind of food is stored at what position and for how long. There is no particular problem when making such confirmation while taking food in and out. However, opening and closing the door exclusively for such confirmation raises the temperature in the refrigerator, which leads to increase in power consumption and deterioration of food. Therefore, recently, a technique for acquiring information in the refrigerator without opening the door has become widespread.
 特許文献1の冷蔵庫は、非接触式の電界センサで食品の有無を検知する。特許文献2の冷蔵庫は、広角レンズを備えたカメラ及び照明手段を扉の内側に配置する。特許文献3の保存庫は、冷蔵室内の棚上に配置された温度センサ、湿度センサ及び圧力センサと、冷蔵室内の壁面に配置されたアンテナとの間で、データの無線通信を行う。 The refrigerator of Patent Document 1 detects the presence or absence of food with a non-contact electric field sensor. In the refrigerator of Patent Document 2, a camera provided with a wide-angle lens and a lighting unit are arranged inside a door. The storage of patent document 3 performs wireless communication of data between a temperature sensor, a humidity sensor, and a pressure sensor arranged on a shelf in the refrigerating compartment and an antenna arranged on a wall surface in the refrigerating compartment.
特開2012-42173号公報Japanese Patent Laid-Open No. 2012-42173 特開2015-111025号公報JP, 2015-111025, A 特開2006-214644号公報JP, 2006-214644, A
 特許文献1の冷蔵庫は、電界センサに給電するための結線を備える。すると、電界センサが配置され得る位置が限定されてしまい、検知対象となる食品も、卵等に限定されてしまう。さらに、特許文献1の冷蔵庫は、検知対象となる食品及び電界センサを1対1で対応させているので、個々の食品の形状を検知できない。 The patent document 1 refrigerator includes a wire for supplying power to the electric field sensor. Then, the position where the electric field sensor can be arranged is limited, and the food to be detected is also limited to eggs and the like. Further, since the refrigerator of Patent Document 1 has a one-to-one correspondence between the food to be detected and the electric field sensor, the shape of each food cannot be detected.
 特許文献2の冷蔵庫は、個々の食品の形状を画像として検知できるが、食品がカメラに対して前後の位置関係になった場合、死角に隠れている食品の形状を検知できない。さらに、特許文献2の冷蔵庫は、個々の食品の保管期間を管理するものではない。特許文献3の保存庫は、各種センサを任意の位置に配置することを可能にする。しかしながら、複数のセンサを同一面に配置する場合、アンテナの設置面積が大きくなり、冷蔵室内が暗くなる。特許文献3の保存庫も、個々の食品の保管期間を管理するものではない。
 そこで、本発明は、冷蔵庫内の照度を確保しつつ、任意の位置にある収納物の形状及び保管期間を確実に検知することを目的とする。
The refrigerator of Patent Document 2 can detect the shape of each food item as an image, but cannot detect the shape of the food item hidden in the blind spot when the food item has a front-rear positional relationship with the camera. Furthermore, the refrigerator of patent document 2 does not manage the storage period of each food. The storage of Patent Document 3 enables various sensors to be arranged at arbitrary positions. However, when a plurality of sensors are arranged on the same plane, the installation area of the antenna becomes large and the refrigerating room becomes dark. The storage of Patent Document 3 also does not manage the storage period of individual food products.
Therefore, an object of the present invention is to reliably detect the shape and storage period of stored items at arbitrary positions while ensuring the illuminance in the refrigerator.
 本発明の冷蔵庫は、収納物の有無を検知するセンサを複数有するセンサアレイと、収納物の有無が検知された時点を特定するタイマと、センサアレイを構成する個々のセンサから取得した情報に基づき収納物の形状を決定し、タイマが特定した時点に基づき収納物の保管期間を算出し、決定した形状及び算出した保管期間を収納物に関連付けて記憶する演算部と、を備えることを特徴とする。
 その他の手段については、発明を実施するための形態のなかで説明する。
The refrigerator of the present invention is based on a sensor array having a plurality of sensors for detecting the presence/absence of a stored item, a timer for specifying the time when the presence/absence of a stored item is detected, and information obtained from individual sensors constituting the sensor array. A storage unit that determines the shape of the stored item, calculates the storage period of the stored item based on the time specified by the timer, and stores the determined shape and the calculated storage period in association with the stored item. To do.
Other means will be described in the modes for carrying out the invention.
 本発明によれば、冷蔵庫内の照度を確保しつつ、任意の位置にある収納物の形状及び保管期間を確実に検知することができる。 According to the present invention, it is possible to reliably detect the shape and storage period of stored items at arbitrary positions while ensuring the illuminance in the refrigerator.
(a)は、冷蔵庫を正面向かって右側から見た断面図である。(b)は、冷蔵庫を正面から見た断面図である。(A) is sectional drawing which looked at the refrigerator from the right side facing the front. (B) is sectional drawing which looked at the refrigerator from the front. (a)は、冷蔵庫を正面向かって右側から見た断面図である。(b)は、冷蔵庫を正面から見た断面図である。(c)は、棚を見下ろした平面図である。(A) is sectional drawing which looked at the refrigerator from the right side facing the front. (B) is sectional drawing which looked at the refrigerator from the front. (C) is a plan view looking down on the shelf. 筺体側演算装置及び検知側演算装置の構成を示す図である。It is a figure which shows the structure of a housing side arithmetic unit and a detection side arithmetic unit. (a)は、センサアレイ上に保管された収納物を示す図である。(b)は、センサが出力する信号を説明する図である。(c)は、ある時点における収納物の移動を示す図である。(A) is a figure which shows the stored thing stored on the sensor array. (B) is a figure explaining the signal which a sensor outputs. (C) is a figure which shows the movement of the stored item at a certain time. 検知情報の一例を示す図であるIt is a figure showing an example of detection information. (a)は、保管情報の一例を示す図である。(b)及び(c)は、保管情報のレコードの遷移を説明する図である。(A) is a figure which shows an example of storage information. (B) And (c) is a figure explaining the transition of the record of storage information. (a)、(b)及び(c)は、収納物の同一性等を説明する図である。(A), (b) and (c) is a figure explaining the identity etc. of a stored item. 処理手順のフローチャートである。It is a flowchart of a processing procedure.
 以降、本発明を実施するための形態(“本実施形態”という)を、図等を参照しながら詳細に説明する。本実施形態は、冷蔵庫に生鮮食品等の収納物を保管する例である。しかしながら、本発明は、例えば実験室内の保温庫等に、生物実験試料等の収納物を保管する場合等にも適用可能である。本実施形態の収納物は、食品そのものの他に、ビン、缶、箱、皿、ビニールパッケージ、紙パッケージ等で包装された食品を含む概念である。 Hereinafter, a mode for carrying out the present invention (referred to as “this embodiment”) will be described in detail with reference to the drawings and the like. The present embodiment is an example of storing stored items such as fresh foods in a refrigerator. However, the present invention is also applicable, for example, to the case where stored items such as biological experiment samples are stored in a heat-retaining room in a laboratory. The stored item of the present embodiment is a concept including not only food itself but also food packaged in bottles, cans, boxes, plates, vinyl packages, paper packages and the like.
(冷蔵庫)
 図1(a)は、本実施形態の冷蔵庫1を正面向かって右側から見た断面図である。図1(b)は、本実施形態の冷蔵庫1を正面から見た断面図である。図1(b)の断面は、図1(a)のA-A線である。冷蔵庫1は、上から順に、冷蔵室2、製氷室3、冷凍室4及び野菜室5を有する。冷蔵室2は、0℃以上の温度で収納物を保管する。冷蔵室2は、左右両開きの扉6、複数の棚7、複数の扉ポケット8及び卵保管室9を有する。図示しない冷蔵ユニットから冷蔵室2に冷風が送られる。
(refrigerator)
FIG. 1A is a cross-sectional view of the refrigerator 1 of the present embodiment as seen from the right side when facing the front. FIG.1(b) is sectional drawing which looked at the refrigerator 1 of this embodiment from the front. The cross section of FIG. 1B is taken along the line AA of FIG. The refrigerator 1 has a refrigerating compartment 2, an ice making compartment 3, a freezing compartment 4 and a vegetable compartment 5 in order from the top. The refrigerator compartment 2 stores the stored items at a temperature of 0° C. or higher. The refrigerating room 2 has a door 6 that opens from both sides, a plurality of shelves 7, a plurality of door pockets 8 and an egg storage room 9. Cold air is sent to the refrigerating compartment 2 from a refrigerating unit (not shown).
 野菜室5もまた0℃以上の温度で収納物を保管する。ここで保管される収納物は、主として包装されていない野菜(ニンジン、トマト等)である。野菜室5は、全体として1つの収納箱(引き出し)になっている。野菜室5にも冷蔵ユニットから冷風が送られる。 The vegetable compartment 5 also stores the contents at a temperature of 0°C or higher. The stored items stored here are mainly unpackaged vegetables (carrots, tomatoes, etc.). The vegetable compartment 5 is a single storage box (drawer) as a whole. Cold air is also sent from the refrigeration unit to the vegetable compartment 5.
 製氷室3は、0℃未満の温度で収納物を保管する。ここで保管される収納物は、氷である。製氷室3は、左右2つの引き出しになっている。図示しない冷凍ユニットから製氷室3に冷風が送られる。冷凍室4もまた0℃未満の温度で収納物を保管する。ここで保管される収納物は、主として魚貝類、食肉類、冷凍食品等である。冷凍室4にも冷凍ユニットから冷風が送られる。 The ice making room 3 stores the stored items at a temperature below 0°C. The storage item stored here is ice. The ice making chamber 3 has two left and right drawers. Cold air is sent to the ice making chamber 3 from a refrigerating unit (not shown). The freezer compartment 4 also stores the contents at a temperature below 0°C. The items stored here are mainly fish and shellfish, meats, frozen foods and the like. Cold air is also sent from the freezing unit to the freezing compartment 4.
 冷蔵庫1は、自身の背面上部に筺体側演算装置11を有する。冷蔵庫1は、任意の棚7の上面又は引き出しの底面上に、検知側演算装置12を有する。これらの詳細は後記する。筺体側演算装置11と検知側演算装置12とを結ぶ破線は、アンテナ間の無線通信を示す(詳細後記)。 The refrigerator 1 has a housing-side arithmetic unit 11 on the upper part of the back of itself. The refrigerator 1 has the detection side arithmetic unit 12 on the upper surface of any shelf 7 or the bottom surface of the drawer. These details will be described later. A broken line connecting the housing side computing device 11 and the detection side computing device 12 indicates wireless communication between the antennas (details will be described later).
 図2(a)及び図2(b)は、それぞれ図1(a)及び図1(b)の断面図と同じである。しかしながら、図2(a)及び図2(b)は、収納物が実際に保管された様子を示している。例えば、冷蔵室2の上から3番目の棚7には、収納物13及び収納物14が保管されている。収納物13は、お椀形の容器に入った食品である。収納物14は、蓋付きの2段容器に入った食品である。図2(b)においては、収納物14の一部が収納物13の死角に隠れている。 2(a) and 2(b) are the same as the cross-sectional views of FIGS. 1(a) and 1(b), respectively. However, FIG. 2A and FIG. 2B show how the stored items are actually stored. For example, a storage item 13 and a storage item 14 are stored on the third shelf 7 from the top of the refrigerator compartment 2. The storage item 13 is a food item in a bowl-shaped container. The stored item 14 is a food item in a two-stage container with a lid. In FIG. 2B, a part of the stored item 14 is hidden in the blind spot of the stored item 13.
 図2(c)は、冷蔵室2の上から3番目の棚7を、上から2番目の棚7の直下(B-B線の位置)から見下ろした平面図である。上から3番目の棚7の上面のほぼ全体を覆うように、検知側演算装置12が配置(敷設)されている。検知側演算装置12は、検知側演算部21及び多数のセンサ22を有する。 FIG. 2C is a plan view of the third shelf 7 from the top of the refrigerating room 2 as viewed from directly below the second shelf 7 from the top (position of line BB). The detection side arithmetic unit 12 is arranged (laid) so as to cover almost the entire upper surface of the third shelf 7 from the top. The detection-side arithmetic unit 12 has a detection-side arithmetic unit 21 and a large number of sensors 22.
 センサ22は、棚7の上面に格子状に整列している。図2(c)は、この格子の縦位置及び横位置を、いずれも英文字a、b、c、d、・・・、h、iで表している。例えば、2次元座標値“[a,b]”は、図2(c)の“第1行第2列”に位置するセンサを示す。各センサ22及び検知側演算部21は、例えば金属製の結線で接続されている。この結線中を、後記する誘起電流(エネルギー源)及び信号電流(データ)が通る。なお、図2(c)では、1つのセンサ22の下に複数本の結線が通っているように記載されているが、各センサ間は、電気的に絶縁されている。 The sensors 22 are arranged on the upper surface of the shelf 7 in a grid pattern. In FIG. 2C, the vertical position and the horizontal position of this lattice are represented by English letters a, b, c, d,..., H, i. For example, the two-dimensional coordinate value “[a,b]” indicates the sensor located at “first row, second column” in FIG. The sensors 22 and the detection side calculation unit 21 are connected by, for example, a metal wire connection. An induced current (energy source) and a signal current (data) described later pass through this connection. In addition, in FIG. 2C, although it is described that a plurality of wirings pass under one sensor 22, the sensors are electrically insulated from each other.
(筺体側演算装置及び検知側演算装置)
 図3は、筺体側演算装置11及び検知側演算装置12の構成を示す図である。筺体側演算装置11は、筺体側アンテナ31、筺体側演算部32、タイマ33、記憶部34及び外部通信部35を有する。これらは、バスで相互に接続されている。筺体側演算部32は、所定のプログラムをメモリ(図示せず)等に読み込み当該プログラムに予め記載されている各種演算を行う主体である。タイマ33は時間を管理する。記憶部34は、後記する検知情報51(図5)、保管情報52(図6)及び前記のプログラムを記憶する。外部通信部35は、冷蔵庫1以外の任意の装置との通信を行う。
(Enclosure side arithmetic unit and detection side arithmetic unit)
FIG. 3 is a diagram showing the configurations of the housing side arithmetic unit 11 and the detection side arithmetic unit 12. The housing side computing device 11 includes a housing side antenna 31, a housing side computing unit 32, a timer 33, a storage unit 34, and an external communication unit 35. These are interconnected by a bus. The housing side calculation unit 32 is a main body that reads a predetermined program into a memory (not shown) or the like and performs various kinds of calculations described in advance in the program. The timer 33 manages time. The storage unit 34 stores detection information 51 (FIG. 5), storage information 52 (FIG. 6), and the above-mentioned program, which will be described later. The external communication unit 35 communicates with any device other than the refrigerator 1.
 筺体側演算装置11は、外部電源部41、表示部42及び冷蔵庫制御用センサ43と有線で接続されている。外部電源部41は、筺体側演算装置11に給電する。表示部42は、冷蔵庫1の例えば扉の外側に配置されたディスプレイである。冷蔵庫制御用センサ43は、一般には冷蔵庫1の任意の動作を検知するセンサであるが、本実施形態では、扉6又は引き出しの開閉を検知するセンサである。扉6及び引き出しのそれぞれに冷蔵庫制御用センサ43が配置されており、筺体側演算装置11は、各扉等の開閉状態を認識することができる。筺体側演算装置11は、検知側演算装置12と無線で接続されている。このため、筺体側演算装置11と検知側演算装置12との間には、特許文献1のような結線は不要である。 The housing-side arithmetic unit 11 is connected to the external power supply unit 41, the display unit 42, and the refrigerator control sensor 43 by wire. The external power supply unit 41 supplies power to the housing side arithmetic unit 11. The display unit 42 is a display arranged outside the door of the refrigerator 1, for example. The refrigerator control sensor 43 is generally a sensor that detects any operation of the refrigerator 1, but is a sensor that detects opening/closing of the door 6 or the drawer in the present embodiment. The refrigerator control sensor 43 is arranged in each of the door 6 and the drawer, and the housing-side arithmetic unit 11 can recognize the open/closed state of each door or the like. The housing side arithmetic unit 11 is wirelessly connected to the detection side arithmetic unit 12. For this reason, the connection as in Patent Document 1 is not necessary between the housing side arithmetic unit 11 and the detection side arithmetic unit 12.
 検知側演算装置12は、検知側演算部21、検知側アンテナ24及び多数のセンサ22を有する。これらは、有線で接続されている。多数のセンサ22は、平面状(2次元)に配列されており、全体として1つのセンサアレイ23を構成する。また、検知側演算部21と各センサ22とは、パターン化された導体であるので、特許文献1のような結線は不要である。図3では紙面の制約上、センサの数は9個であるが、実際の数は、これよりはるかに多い。なお、ここでの“9個”は、あくまでも説明用の数であり、同じく説明用の図である図4(a)等におけるセンサ22の数とは一致しない。検知側演算装置12は、冷蔵庫1の棚7又は引き出しの底面ごとに、複数存在する。図3の検知側アンテナ24と筺体側アンテナ31との間の破線は、そこで無線通信が行われることを示す。さらに当該破線を介して、筺体側演算装置11は、検知側演算装置12に誘起電圧を発生させる。図3のその他の構成間の実線は、そこで有線通信及び電力供給が行われることを示す。 The detection-side arithmetic unit 12 has a detection-side arithmetic unit 21, a detection-side antenna 24, and a large number of sensors 22. These are connected by wire. A large number of sensors 22 are arranged in a plane (two-dimensional) and constitute one sensor array 23 as a whole. Further, since the detection side calculation unit 21 and each sensor 22 are patterned conductors, the connection as in Patent Document 1 is not necessary. Although the number of sensors is nine in FIG. 3 due to space limitations, the actual number is much larger than this. Note that “9” here is a number for explanation only, and does not match the number of sensors 22 in FIG. 4A, which is also a diagram for explanation. There are a plurality of detection-side arithmetic devices 12 for each of the shelves 7 of the refrigerator 1 or the bottom surface of the drawer. A broken line between the detection-side antenna 24 and the housing-side antenna 31 in FIG. 3 indicates that wireless communication is performed there. Further, the housing side arithmetic unit 11 causes the detection side arithmetic unit 12 to generate an induced voltage via the broken line. Solid lines between the other configurations in FIG. 3 indicate that wired communication and power supply are performed therein.
 無線通信の一方の筺体側アンテナ31は、冷蔵庫1の背面上部に1つだけ配置される。他方の検知側アンテナ24は、それ自身が小型であり、複数の棚又は引き出しの底面に分散配置される(図1(a)及び(b)参照)。したがって、いずれのアンテナも冷蔵庫内の照明手段と位置的に干渉することがなく、冷蔵庫内は常に明るい。なお、図3のセンサアレイ23、タイマ33及び筺体側演算部32から構成される“冷蔵庫の収容物管理用のセンサシステム”が、冷蔵庫1本体から独立した構成になっていてもよい。既存の冷蔵庫1に対して、当該センサシステムを外付けすることも可能である。 Only one housing-side antenna 31 for wireless communication is arranged on the upper rear part of the refrigerator 1. The other detection-side antenna 24 is small in size and is distributed and arranged on the bottom surfaces of a plurality of shelves or drawers (see FIGS. 1A and 1B). Therefore, neither antenna positionally interferes with the illumination means in the refrigerator and the inside of the refrigerator is always bright. Note that the “sensor system for managing the contents of the refrigerator” including the sensor array 23, the timer 33, and the housing side calculation unit 32 of FIG. 3 may be configured to be independent from the main body of the refrigerator 1. The sensor system can be externally attached to the existing refrigerator 1.
 図4(a)は、センサアレイ23上に保管された収納物を示す図である。収納物13及び収納物14が同じ棚(センサアレイ)の上に保管されている。これらの重なり具合から明らかなように、まず時点t1において収納物14が保管(入庫)され、その後の時点t2において収納物13が保管されている。図4(a)の下側が、ユーザから見て手前に当たる。個々のセンサ22は、自身の上に収納物が存在するか否かを2値的に出力する。すると、筺体側演算装置11は、現在どの位置に収納物が保管されているかを認識する。センサ22は、例えば、圧力センサ、重量センサ、静電容量(電界)センサ等である。 FIG. 4( a) is a diagram showing the stored items stored on the sensor array 23. The stored items 13 and 14 are stored on the same shelf (sensor array). As is apparent from the overlapping state, the stored items 14 are first stored (stored) at the time point t1, and the stored items 13 are stored at the subsequent time point t2. The lower side of FIG. 4A is in front of the user. Each sensor 22 outputs a binary value as to whether or not there is a stored item on itself. Then, the housing side arithmetic unit 11 recognizes at which position the stored item is currently stored. The sensor 22 is, for example, a pressure sensor, a weight sensor, a capacitance (electric field) sensor, or the like.
 図4(b)は、センサ22が出力する信号を説明する図である。例えば、センサ“[b,e]”等は、黒い正方形で表現されている。このことは、そのセンサの上に収納物が保管されていることを示している。一方で、センサ“[b,d]”等は、白い正方形で表現されている。このことは、そのセンサの上に収納物が保管されていないことを示している。図4(c)については、後記する。なお、“黒”及び“白”は、専ら説明用の語であり、センサが呈する実際の色彩とは関係ない。
 前記より明らかなように、検知側演算装置12は、電源部を有さず、かつ、筺体側演算装置11とは結線されていない。したがって、棚7及び引き出しの前後の出し入れが自由になる。
FIG. 4B is a diagram illustrating a signal output by the sensor 22. For example, the sensor “[b,e]” or the like is represented by a black square. This indicates that the contents are stored on the sensor. On the other hand, the sensor “[b, d]” and the like are represented by white squares. This indicates that there is no storage on the sensor. FIG. 4C will be described later. It should be noted that “black” and “white” are words for explanation only, and have nothing to do with the actual color presented by the sensor.
As is clear from the above, the detection side arithmetic unit 12 does not have a power supply unit and is not connected to the housing side arithmetic unit 11. Therefore, the shelves 7 and the drawer can be freely taken in and out.
(検知情報)
 図5は、検知情報51の一例を示す図である。検知情報51においては、センサID欄101に記憶されたセンサIDに関連付けてセンサ情報欄102には時系列のセンサ情報が記憶されている。
 センサID欄101のセンサIDは、センサ22を一意に特定する識別子であり、ここでは、2つの英文字の組合せである。英文字a、b、c、・・・は、縦位置及び横位置を特定している。なお、説明の単純化のため、ここでは2次元的なセンサIDの例を記載したが、センサIDは、複数の棚又は引き出しの底面を区別する数字又は記号を含んでいてもよい。検知情報51のレコード(行)は、センサ22の数だけ存在する。
(Detection information)
FIG. 5 is a diagram showing an example of the detection information 51. In the detection information 51, the sensor information column 102 stores time-series sensor information in association with the sensor ID stored in the sensor ID column 101.
The sensor ID in the sensor ID column 101 is an identifier that uniquely identifies the sensor 22, and is a combination of two English characters here. The English letters a, b, c,... Specify the vertical position and the horizontal position. Note that, although a two-dimensional sensor ID example is described here for simplification of description, the sensor ID may include a number or a symbol that distinguishes the bottom surfaces of a plurality of shelves or drawers. There are as many records (rows) of the detection information 51 as there are sensors 22.
 センサ情報欄102の左右の位置は、時点を示している。右に進むほど時間的に後になる。センサ情報欄102には、1又は複数の□又は■が記憶されている。■は、図4(b)における黒いセンサに対応し、□は、図4(b)における白いセンサに対応している。センサ情報欄102には、上下方向に複数の破線が引かれている。1本の破線は、1つの時点に対応している。そして、各レコードにおいて、□又は■のいずれかが各破線の上に乗っている。各破線に対応する時点t1、t2、t3、・・・は、“検知機会”となった時点である。 The left and right positions of the sensor information column 102 indicate time points. The more to the right, the later in time. The sensor information column 102 stores one or a plurality of □ or ■. 4 corresponds to the black sensor in FIG. 4B, and □ corresponds to the white sensor in FIG. 4B. In the sensor information column 102, a plurality of broken lines are drawn in the vertical direction. One broken line corresponds to one time point. Then, in each record, either □ or ■ is on each broken line. The time points t1, t2, t3,... Corresponding to the broken lines are the time points at which the “detection opportunity” has been reached.
 消費電力及び情報処理資源を節約するために、本実施形態の冷蔵庫1は、限られた検知機会にのみセンサ情報(□又は■)を取得する。その検知機会の一例は、冷蔵庫1の扉6又は引き出しが開かれた(又は閉じられた)時点から所定の期間が経過した時点である。したがって、時点t1、t2、t3、・・・の間隔は、均等とはならない。より正確には、t1等の時点は、瞬間的な1時点ではなく、ある時間範囲(例えば5秒)を有する期間であってもよい(詳細後記)。そして、この場合、t1はその期間の代表値(例えば、中央値)であってもよい。 In order to save power consumption and information processing resources, the refrigerator 1 of the present embodiment acquires sensor information (□ or ■) only at limited detection opportunities. An example of the detection opportunity is when a predetermined period of time has passed from the time when the door 6 or the drawer of the refrigerator 1 was opened (or closed). Therefore, the intervals between the time points t1, t2, t3,... Are not uniform. More precisely, the point in time such as t1 may be a period having a certain time range (for example, 5 seconds) instead of an instantaneous point in time (details described later). Then, in this case, t1 may be a representative value (for example, a median value) of the period.
 図5を時系列に見て行くと以下のことがわかる。
〈時点t1〉
 9個のセンサが黒くなっている。つまり、[b,e]、[b,f]、[b,g]、[c,e]、[c,f]、[c,g]、[d,e]、[d,f]及び[d,g]の位置に収納物が保管されている。
〈時点t2〉
 9個のセンサが新たに黒くなっている。つまり、[e,d]、[e,e]、[e,f]、[f,d]、[f,e]、[f,f]、[g,d]、[g,e]及び[g,f]の位置に収納物が新たに保管された。なお、時点t1において黒くなっていた9個のセンサは、時点t2においても黒いままである。
The following can be understood from a time series of FIG.
<Time t1>
Nine sensors are black. That is, [b,e], [b,f], [b,g], [c,e], [c,f], [c,g], [d,e], [d,f] and The stored item is stored at the position [d, g].
<Time t2>
Nine sensors are newly black. That is, [e, d], [e, e], [e, f], [f, d], [f, e], [f, f], [g, d], [g, e] and A new storage item was stored at the position [g, f]. Note that the nine sensors that were black at time t1 remain black at time t2.
〈時点t3〉
 センサ情報は時点t2と同じである。ユーザは、時点t3において、扉を開けて内部を目視した後、収納物を出し入れすることなく扉を閉じている。
〈時点t4〉
 一群のセンサ(時点t2において新たに黒くなった [e,d]、[e,e]、[e,f]、[f,d]、[f,e]、[f,f]、[g,d]、[g,e]及び[g,f]が)白に一旦戻っている。同時に、白に一旦戻ったセンサを含む他の一群のセンサ([f,e]、[f,f]、[f,g]、[g,e]、[g,f]、[g,g]、[h,e]、[h,f]及び[h,g])が黒くなっている。一方、時点t1において黒くなっていた9個のセンサは、時点t4においても黒いままである。このことは、時点t4において、ユーザが、収納物14の位置をそのままに維持し、収納物13の位置を僅かに移動させたことを示す。図4(c)は、時点t3から時点t4における収納物13の移動を示している。時点t3に比して、時点t4では、収納物13は、図の右側にセンサ1個分移動(Δx)し、図の下側にセンサ1個分移動(Δy)している。
<Time t3>
The sensor information is the same as at time t2. At time t3, the user opens the door and visually checks the inside, and then closes the door without taking in and out the stored items.
<Time t4>
A group of sensors (newly blackened at time t2 [e, d], [e, e], [e, f], [f, d], [f, e], [f, f], [g , D], [g, e] and [g, f] have once returned to white. At the same time, another group of sensors ([f,e], [f,f], [f,g], [g,e], [g,f], [g,g] including a sensor that has once returned to white). ], [h,e], [h,f] and [h,g]) are black. On the other hand, the nine sensors that were black at time t1 remain black at time t4. This indicates that at time t4, the user maintained the position of the stored item 14 and moved the position of the stored item 13 slightly. FIG. 4C shows the movement of the stored item 13 from time t3 to time t4. Compared to the time point t3, at the time point t4, the stored item 13 moves to the right side of the figure by one sensor (Δx) and moves to the lower side of the figure by one sensor (Δy).
〈時点t5〉
 時点t4において黒くなったセンサ([f,e]、[f,f]、[f,g]、[g,e]、[g,f]、[g,g]、[h,e]、[h,f]及び[h,g])が白に戻っている。一方、時点t1において黒くなっていた9個のセンサは、時点t5においても黒いままである。このことは、時点t5において、ユーザが、収納物14の位置をそのままに維持し、収納物13を取り出したことを示す。
<Time t5>
At the time t4, the blackened sensor ([f,e], [f,f], [f,g], [g,e], [g,f], [g,g], [h,e], [h,f] and [h,g]) have returned to white. On the other hand, the nine sensors that were black at time t1 remain black at time t5. This indicates that at time t5, the user kept the position of the storage item 14 as it was and took out the storage item 13.
(保管情報)
 図6(a)は、保管情報52の一例を示す図である。保管情報52においては、収納物ID欄111に記憶された収納物IDに関連付けて、最初認識時点欄112には最初認識時点が、最終認識時点欄113には最終認識時点が、保管期間欄114に保管期間が、最新位置欄115には最新位置が、概略形状欄116には概略形状が記憶されている。
(Storage information)
FIG. 6A is a diagram showing an example of the storage information 52. In the storage information 52, in association with the stored item ID stored in the stored item ID column 111, the first recognition time point column 112 indicates the first recognition time point, the final recognition time point column 113 indicates the final recognition time point, and the storage period column 114. The storage period, the latest position in the latest position column 115, and the outline shape in the outline shape column 116 are stored.
 収納物ID欄111の収納物IDは、収納物を一意に特定する識別子である。冷蔵庫1の筺体側演算部32は、新たに入庫された収納物に対して新たな識別子を付与する。本実施形態では、実際には同一の収納物が、繰り返し入庫された場合、原則、その都度新たな収納物IDが付与される(例外を後記する)。
 最初認識時点欄112の最初認識時点は、筺体側演算部32がその収納物が保管されていることを最初に認識した時点(初期認識時点)である。なお、“#”は、異なる値を省略的に示している(以降の欄でも同様)。
 最終認識時点欄113の最終認識時点は、筺体側演算部32がその収納物が保管されていることを最後に認識した時点である。
The stored item ID in the stored item ID column 111 is an identifier that uniquely identifies the stored item. The housing-side arithmetic unit 32 of the refrigerator 1 gives a new identifier to the newly stored items. In the present embodiment, in reality, when the same stored item is repeatedly stored, a new stored item ID is added in principle each time (exception will be described later).
The first recognition time in the first recognition time column 112 is the time when the housing side computing unit 32 first recognizes that the stored item is stored (initial recognition time). Note that “#” is abbreviated to indicate a different value (the same applies to subsequent columns).
The final recognition time in the final recognition time column 113 is the time when the housing side computing unit 32 finally recognizes that the stored item is stored.
 保管期間欄114の保管期間は、最初認識時点から最終認識時点までの期間である。
 最新位置欄115の最新位置は、最終認識時点において収納物が保管されていた位置であり、ここでは、黒くなっていたセンサの位置を示す2次元座標値の集合である。
 概略形状欄116の概略形状は、収納物のおおよその平面的な形状である。筺体側演算部32は、黒くなっているセンサが集合的に表す形状を概略形状として認識する。ここでの概略形状は、“3×3正方形”等の文字列であるが、概略形状として形状を示す図形そのものが記憶されてもよい。
The storage period in the storage period column 114 is a period from the first recognition time to the final recognition time.
The latest position in the latest position column 115 is the position where the stored item was stored at the time of the final recognition, and here is a set of two-dimensional coordinate values indicating the position of the sensor that was black.
The general shape of the general shape column 116 is an approximate planar shape of the stored item. The housing-side arithmetic unit 32 recognizes the shapes collectively represented by the blackened sensors as a general shape. The general shape here is a character string such as “3×3 square”, but a graphic itself indicating the shape may be stored as the general shape.
 図6(b)は、保管情報52における収納物A001のレコード117aの遷移を説明する図である。いま、図4(a)における収納物14を特定する収納物IDが“A001”であるとする。以降で、筺体側演算部32が、収納物14のレコードを更新(遷移)して行く過程を時系列で説明する。なお、図6(b)における時点t1、t2、・・・、t5は、それぞれ図5におけるt1、t2、・・・、t5に対応している。 FIG. 6B is a diagram for explaining the transition of the record 117a of the stored item A001 in the storage information 52. Now, it is assumed that the stored item ID that identifies the stored item 14 in FIG. 4A is “A001”. Hereinafter, a process in which the housing-side computing unit 32 updates (transitions) the record of the storage item 14 will be described in time series. The times t1, t2,..., T5 in FIG. 6B correspond to t1, t2,..., T5 in FIG. 5, respectively.
〈時点t1:レコード117b〉
 筺体側演算部32は、収納物A001が保管されていることを最初に認識した。そこで、筺体側演算部32は、収納物ID欄111及び最初認識時点欄112に、それぞれ“A001”及び“t1”を記憶した。さらに、筺体側演算部32は、最新位置欄115及び概略形状欄116に、それぞれ、“be,・・・,dg”及び“3×3正方形”を記憶した。ここで、例えば“be”は、センサの2次元座標値“[b,e]”を省略的に示したものである。筺体側演算部32は、最終認識時点欄113及び保管期間欄114には、該当するデータがないことを示す“-”を記憶した。
<Time point t1: record 117b>
The housing side calculation unit 32 first recognizes that the stored item A001 is stored. Therefore, the housing side computing unit 32 stores “A001” and “t1” in the stored item ID column 111 and the first recognition time column 112, respectively. Further, the housing side computing unit 32 stores “be,..., Dg” and “3×3 square” in the latest position column 115 and the schematic shape column 116, respectively. Here, for example, “be” is an abbreviated representation of the two-dimensional coordinate value “[b,e]” of the sensor. The housing side arithmetic unit 32 stores “−” indicating that there is no corresponding data in the final recognition time point column 113 and the storage period column 114.
〈時点2:レコード117c〉
 筺体側演算部32は、収納物A001が直近の過去(時点t1)と同じ位置で保管されていることを認識した。そこで、筺体側演算部32は、最終認識時点欄113に“t2”を記憶し、保管期間欄114に“t2-t1”を記憶した。ここでは、わかり易さのために“t2”及び“t2-t1”と記したが、実際にはこれらは、それぞれ時点(○時○分○秒)及び時間(○時間○分○秒)である。筺体側演算部32は、その他の欄のデータをそのまま維持した。
<Time 2: Record 117c>
The housing-side arithmetic unit 32 recognizes that the stored item A001 is stored at the same position as the most recent past (time t1). Therefore, the housing side computing unit 32 stores “t2” in the final recognition time column 113 and “t2-t1” in the storage period column 114. Here, “t2” and “t2-t1” are described for the sake of clarity, but in reality, they are the time point (○ hour ○ minute ○ second) and the time (○ hour ○ minute ○ second), respectively. .. The housing-side arithmetic unit 32 kept the data in the other columns as they were.
〈時点t3~t5:レコード117d~117f〉
 筺体側演算部32は、時点t2に行った処理と同様の処理を行った。その結果、時点t3、t4及びt5の各時点において、最終認識時点が、それぞれ“t3”、“t4”及び“t5”に更新された。同様に、各時点において、保管期間が、“t3-t1”、“t4-t1”及び“t5-t1”に更新された。筺体側演算部32は、その他の欄のデータをそのまま維持した。
<Time points t3 to t5: Records 117d to 117f>
The housing side arithmetic unit 32 performed the same processing as that performed at the time point t2. As a result, the final recognition time points were updated to "t3", "t4", and "t5" at the time points t3, t4, and t5, respectively. Similarly, at each time point, the storage period was updated to "t3-t1", "t4-t1", and "t5-t1". The housing-side arithmetic unit 32 kept the data in the other columns as they were.
 図6(c)は、保管情報52における収納物A002のレコード118aの遷移を説明する図である。いま、図4(a)における収納物13を特定する収納物IDが、“A002”であるとする。以降で、筺体側演算部32が、収納物13のレコードを更新して行く過程を時系列で説明する。 FIG. 6C is a diagram for explaining the transition of the record 118a of the stored item A002 in the storage information 52. Now, it is assumed that the stored item ID for identifying the stored item 13 in FIG. 4A is “A002”. Hereinafter, a process in which the housing side computing unit 32 updates the record of the stored item 13 will be described in time series.
〈時点t1〉
 図6(c)に時点t1についてのレコードはない。つまり、筺体側演算部32は、特に処理を行わない。なぜならば、時点t1において、筺体側演算部32は、収納物A002を保管していることを認識していないからである。
〈時点t2:レコード118b〉
 筺体側演算部32は、収納物A002が保管されていることを最初に認識した。そこで、筺体側演算部32は、収納物ID欄111及び最初認識時点欄112に、それぞれ“A002”及び“t2”を記憶した。さらに、筺体側演算部32は、最新位置欄115及び概略形状欄116に、それぞれ、“ed,・・・,gf”及び“3×3正方形”を記憶した。なお、筺体側演算部32は、最終認識時点欄113及び保管期間欄114に、“-”を記憶した。
<Time t1>
There is no record for time point t1 in FIG. 6(c). That is, the housing side arithmetic unit 32 does not perform any particular process. This is because at the time point t1, the housing side computing unit 32 does not recognize that the stored item A002 is stored.
<Time t2: Record 118b>
The housing side computing unit 32 first recognizes that the stored item A002 is stored. Therefore, the housing side computing unit 32 stores “A002” and “t2” in the stored item ID column 111 and the first recognition time column 112, respectively. Further, the housing side computing unit 32 stores “ed,..., Gf” and “3×3 square” in the latest position column 115 and the schematic shape column 116, respectively. The housing-side arithmetic unit 32 stores “−” in the final recognition time column 113 and the storage period column 114.
〈時点t3:レコード118c〉
 筺体側演算部32は、収納物A002が直近の過去(時点t2)と同じ位置で保管されていることを認識した。そこで、筺体側演算部32は、最終認識時点欄113に“t3”を記憶し、保管期間欄114に“t3-t2”を記憶した。筺体側演算部32は、その他の欄のデータをそのまま維持した。
<Time t3: Record 118c>
The housing side computing unit 32 recognizes that the stored item A002 is stored at the same position as the most recent past (time t2). Therefore, the housing side computing unit 32 stores “t3” in the final recognition time column 113 and “t3-t2” in the storage period column 114. The housing-side arithmetic unit 32 kept the data in the other columns as they were.
〈時点t4:レコード118d〉
 筺体側演算部32は、収納物A002が直近の過去(時点t3)に比して僅かにずれた位置で保管されていることを認識した。そこで、筺体側演算部32は、最終認識時点欄113に“t4”を記憶し、保管期間欄114に“t4-t2”を記憶し、最新位置欄115に“fe,・・・,hg”を記憶した。筺体側演算部32は、その他の欄のデータをそのまま維持した。
<Time t4: Record 118d>
The housing-side arithmetic unit 32 recognizes that the stored item A002 is stored at a position slightly displaced from the latest past (time t3). Therefore, the housing side computing unit 32 stores "t4" in the final recognition time column 113, "t4-t2" in the storage period column 114, and "fe,..., Hg" in the latest position column 115. Remembered. The housing-side arithmetic unit 32 kept the data in the other columns as they were.
〈時点t5:レコード118e〉
 筺体側演算部32は、収納物“A002”が保管されていない(取り出された)ことを認識した。そこで、筺体側演算部32は、最新位置欄115に“なし”を記憶する。この“なし”は、“削除フラグ”とも呼ばれる。筺体側演算部32は、その他の欄のデータをそのまま維持した。
<Time t5: Record 118e>
The housing-side arithmetic unit 32 recognizes that the stored item “A002” is not stored (taken out). Therefore, the housing side computing unit 32 stores “none” in the latest position column 115. This “none” is also called a “deletion flag”. The housing-side arithmetic unit 32 kept the data in the other columns as they were.
 前記した図6(a)、(b)及び(c)の説明から明らかなように、冷蔵庫内における収納物の位置が大きく変化しない限り、筺体側演算部32は、それを同じ収納物と看做して、その保管期間及び概略形状を管理する。しかしながら、ユーザが例えば調味料入りの缶を取り出し、僅かな時間(例えば30秒)の経過後、当該缶を再度入庫するような場合、保管位置の変化に関係なく、当該缶を同一の収納物として積算的に保管期間を管理したいというニーズも生じる。この場合、筺体側演算部32は、ユーザが表示部42に対してある操作を行うのを受け付ける。ある操作とは、例えば“「すぐ戻します」ボタン”の押下である。すると、筺体側演算部32は、その後最初に入庫された収納物に対し、直前に取り出された収納物を特定する収納物IDを引き続き付与する。 As is clear from the description of FIGS. 6A, 6B, and 6C described above, unless the position of the stored item in the refrigerator changes significantly, the housing side computing unit 32 regards it as the same stored item. The storage period and schematic shape are managed. However, for example, when the user takes out a can containing seasonings and stores the can again after a short time (for example, 30 seconds), the same can be stored in the same storage container regardless of the change in the storage position. As a result, there is a need to manage the storage period in an integrated manner. In this case, the housing side calculation unit 32 accepts that the user performs a certain operation on the display unit 42. A certain operation is, for example, pressing of the ““Immediately return” button.” Then, the housing-side computing unit 32 identifies the stored item that was taken out immediately before with respect to the stored item that was first stored. The object ID is continuously given.
 図7は、収納物の同一性等を説明する図である。図7(a)は、直近の過去の時点における収納物の保管位置を示す図である。直近の過去の時点とは、センサ22が収納物の有無を検知した前回の時点である。扉又は引き出しの開閉が半日程度なされない場合、直近の過去の時点は、例えば12時間前となる。図7(a)の1つのマス目は、1つのセンサに対応している。太い破線で囲まれた領域がその収納物が保管されている位置である(図7(b)でも同様)。ここでは、収納物A011、収納物A012、収納物A013及び収納物A014が保管されている。 FIG. 7 is a diagram for explaining the identity of stored items. FIG. 7A is a diagram showing the storage position of the stored items at the latest past time point. The latest past time is the last time when the sensor 22 detects the presence or absence of a stored item. If the door or drawer is not opened/closed for about half a day, the latest past time is, for example, 12 hours ago. One square in FIG. 7A corresponds to one sensor. The area surrounded by a thick broken line is the position where the stored item is stored (the same applies to FIG. 7B). Here, a stored item A011, a stored item A012, a stored item A013, and a stored item A014 are stored.
 図7(b)は、現時点における収納物の保管位置を示す図である。現時点とは、センサが収納物の有無を検知した今回の時点である。ここでは、収納物A011、収納物A012、収納物A013及び収納物A015が保管されている。図7(c)は、図7(a)と図7(b)とを重ねた図である。図7(c)において太い破線で囲まれた領域のうち網掛けされた領域は、図7(a)の太い破線で囲まれた領域と、図7(b)の太い破線で囲まれた領域との重複部分である。 FIG. 7B is a diagram showing the storage position of the stored items at the present time. The present time is the present time when the sensor detects the presence or absence of the stored item. Here, the stored item A011, the stored item A012, the stored item A013, and the stored item A015 are stored. FIG.7(c) is the figure which overlapped FIG.7(a) and FIG.7(b). In FIG. 7C, the shaded area in the area surrounded by the thick broken line is the area surrounded by the thick broken line in FIG. 7A and the area surrounded by the thick broken line in FIG. 7B. It is the overlapping part with.
 収納物A011は、直近の過去の時点と現時点との間で、全く移動していない。この場合、筺体側演算部32は、図7(a)の収納物A011と図7(b)の収納物A011とを、同じ収納物であると問題なく看做す。
 収納物A012は、現時点では、直近の過去の時点に比して僅かに右に移動している。この場合も、筺体側演算部32は、図7(a)の収納物A012と図7(b)の収納物A012とを、同じ収納物であると看做す。仮に、両者の位置が大幅に異なる場合、又は、両者の破線で囲まれた領域の面積が大幅に異なる場合は、筺体側演算部32は、図7(a)の収納物A012と図7(b)の収納物A012とを、異なる収納物であると看做す。つまり、筺体側演算部32は、これらに別々の収納物IDを付す。
The stored item A011 has not moved at all between the latest past time and the present time. In this case, the housing side calculation unit 32 regards the stored item A011 of FIG. 7A and the stored item A011 of FIG. 7B as the same stored item without any problem.
The stored item A012 is currently moving slightly to the right as compared with the latest past time point. Also in this case, the housing side computing unit 32 regards the stored item A012 of FIG. 7A and the stored item A012 of FIG. 7B as the same stored item. If the positions of the two are significantly different from each other, or if the areas of the regions surrounded by the broken lines are significantly different from each other, the housing side computing unit 32 causes the storage item A012 of FIG. The stored item A012 of b) is regarded as a different stored item. That is, the housing-side arithmetic unit 32 attaches different stored item IDs to these.
 収納物A013は、現時点では、直近の過去の時点に比して僅かに右下に移動している。この場合も、筺体側演算部32は、図7(a)の収納物A013と図7(b)の収納物A013とを、同じ収納物であると看做す。仮に、両者の位置が大幅に異なる場合、又は、両者の破線で囲まれた領域の面積が大幅に異なる場合は、筺体側演算部32は、図7(a)の収納物A013と図7(b)の収納物A013とを、異なる収納物であると看做す。 Currently, the storage item A013 has moved slightly to the lower right as compared to the latest past time point. Also in this case, the housing side computing unit 32 regards the stored item A013 of FIG. 7A and the stored item A013 of FIG. 7B as the same stored item. If the positions of the two are significantly different from each other, or if the areas of the regions surrounded by the broken lines are significantly different from each other, the housing side computing unit 32 causes the storage item A013 of FIG. The stored item A013 of b) is regarded as a different stored item.
 収納物A014は、現時点で姿を消している。つまり、直近の過去の時点においてその収納物が保管されていた位置には、現時点において収納物が保管されていない。この場合、筺体側演算部32は、図7(a)の収納物A014を、現時点において冷蔵庫から取り出された収納物であると看做す。
 収納物A015は、現時点で初めて現れている。つまり、直近の過去の時点におけるその位置には収納物が保管されていなかった。この場合、筺体側演算部32は、図7(b)の収納物A015を、現時点において新たに入庫された収納物であると看做す。
The stored item A014 has disappeared at this point. That is, the stored item is not stored at the position where the stored item was stored at the latest past time. In this case, the housing side computing unit 32 regards the stored item A014 of FIG. 7A as the stored item taken out from the refrigerator at the present time.
The stored item A015 has appeared for the first time at this point. That is, the stored items were not stored at that position in the latest past time. In this case, the housing side computing unit 32 regards the stored item A015 of FIG. 7B as a newly stored stored item at the present time.
 つまり、筺体側演算部32が前後の2時点間で、収納物が同じであると看做すのは、以下の条件1及び条件2が満たされる場合である。
〈条件1〉前の時点における収納物の位置と後の時点における収納物の位置との距離が所定の閾値以下である。ここでの位置は、例えば、収納物の重心の位置である。ここでの距離は、例えば、縦方向の位置の差分(図4(c)のΔy)の2乗と横方向の位置の差分(図4(c)のΔx)の2乗との合計の平方根である。
〈条件2〉前の時点における収納物のセンサアレイ上の投影面積と後の時点における収納物のセンサアレイ上の投影面積との差分の絶対値が所定の閾値以下である。投影面積は、黒くなっているセンサの数で代替され得る。
That is, the case side computing unit 32 considers that the stored items are the same between the two front and rear times when the following conditions 1 and 2 are satisfied.
<Condition 1> The distance between the position of the stored item at the previous time point and the position of the stored item at the subsequent time point is equal to or less than a predetermined threshold value. The position here is, for example, the position of the center of gravity of the stored items. The distance here is, for example, the square root of the sum of the square of the vertical position difference (Δy in FIG. 4C) and the square of the horizontal position difference (Δx in FIG. 4C). Is.
<Condition 2> The absolute value of the difference between the projected area of the stored object on the sensor array at the previous time point and the projected area of the stored object on the sensor array at the subsequent time point is equal to or less than a predetermined threshold value. The projected area can be replaced by the number of blackened sensors.
 ユーザの収納物に対する動作によっては、図5の時点t1等は、瞬間的な1時点ではなく、ある程度の時間範囲を有する期間となる。例えば、食品が入った鍋をユーザが両手で持って棚に置く場合、左右いずれかの側のセンサが、他の側のセンサに先行して□から■へ変化することが多い。すると、筺体側演算部32は、条件1及び条件2を使用する判断とは独立して、隣接している位置(繋がった複数の■)に保管された収納物の数を決定する判断も行う必要がある。筺体側演算部32は、例えば、前後の2時点において、出力が同様に変化した(□から■へ、又はその逆)センサが複数存在する場合、出力が変化した複数の時点が所定の時間範囲内(例えば2~3秒)にあるセンサ同士で群を作成し、各群が1つの収納物に対応すると看做す。 Depending on the user's operation on the stored items, the time point t1 and the like in FIG. 5 is not an instantaneous one time point but a period having a certain time range. For example, when a user holds a pot containing food with both hands and places it on a shelf, the sensor on either the left or right side often changes from □ to ■ prior to the sensor on the other side. Then, the housing-side arithmetic unit 32 needs to make a determination to determine the number of stored items stored in adjacent positions (a plurality of connected squares) independently of the determination to use the condition 1 and the condition 2. is there. For example, when there are a plurality of sensors whose outputs similarly change (from □ to ■ or vice versa) at two times before and after, the case side computing unit 32 determines that the plurality of times when the output changes are within a predetermined time range. A group is created with sensors inside (for example, 2 to 3 seconds), and each group is considered to correspond to one storage item.
(処理手順)
 図8は、処理手順のフローチャートである。処理手順が開始される前提として、過去の検知機会における検知情報51及び保管情報52のレコードが充分蓄積されたうえで、記憶部34に記憶されているものとする。
 ステップS201において、筺体側演算部32は、冷蔵庫1に給電する。具体的には、筺体側演算部32は、ユーザが、表示部42を介して、冷蔵庫1の電源を“ON”にするのを受け付ける。
(Processing procedure)
FIG. 8 is a flowchart of the processing procedure. As a premise of starting the processing procedure, it is assumed that the records of the detection information 51 and the storage information 52 in the past detection opportunity are sufficiently accumulated and then stored in the storage unit 34.
In step S201, the housing side computing unit 32 supplies power to the refrigerator 1. Specifically, the housing side calculation unit 32 accepts the user turning on the power of the refrigerator 1 via the display unit 42.
 ステップS202において、筺体側演算部32は、扉が開かれたか否かを判断する。筺体側演算部32は、冷蔵庫制御用センサ43を常時監視しておく。そして、筺体側演算部32は、少なくとも1つの扉又は引き出しが開かれたことを示す信号を冷蔵庫制御用センサ43から受け付けた場合(ステップS202“YES”)、ステップS203に進む。筺体側演算部32は、当該信号を受け付けない場合(ステップS202“NO”)、受け付けるまで待機する。なお、ここでの信号は、開かれた扉又は引き出しを特定する情報(以降“扉情報”と呼ぶ)を含むものとする。 In step S202, the housing side computing unit 32 determines whether or not the door is opened. The housing side arithmetic unit 32 constantly monitors the refrigerator control sensor 43. Then, when the housing side calculation unit 32 receives a signal indicating that at least one door or drawer is opened from the refrigerator control sensor 43 (step S202 “YES”), the process proceeds to step S203. When the housing side calculation unit 32 does not accept the signal (step S202 “NO”), it waits until the signal is accepted. In addition, the signal here shall contain the information (henceforth "door information") which specifies the opened door or drawer.
 ステップS203において、筺体側演算部32は、センサ22に給電する。具体的には、筺体側演算部32は、扉情報が特定する扉又は引き出しに対応する検知側演算装置12の検知側アンテナ24に電波を送信する旨の指示を筺体側アンテナ31に対して送信する。当該指示に応じて、筺体側アンテナ31は、実際に検知側アンテナ24に電波を送信する。すると、電波を受信した検知側アンテナ24において、磁界の変化に起因する誘起電圧が発生する。この誘起電圧が、検知側演算装置12の動作のエネルギー源となる。 In step S203, the housing side computing unit 32 supplies power to the sensor 22. Specifically, the housing side computing unit 32 sends to the housing side antenna 31 an instruction to transmit a radio wave to the sensing side antenna 24 of the sensing side computing device 12 corresponding to the door or drawer specified by the door information. To do. In response to the instruction, the housing side antenna 31 actually transmits a radio wave to the detection side antenna 24. Then, an induced voltage due to a change in the magnetic field is generated in the detection-side antenna 24 that has received the radio wave. This induced voltage serves as an energy source for the operation of the detection side arithmetic unit 12.
 ステップS204において、筺体側演算部32は、センサ情報を要求する。具体的には、筺体側演算部32は、センサ22の位置における収納物の有無を示すセンサ情報を、扉情報が特定する扉又は引き出しに対応する検知側演算装置12の検知側演算部21に要求する。すると、検知側演算部21は、すべてのセンサ22からセンサ情報を取得し、検知側アンテナ24及び筺体側アンテナ31を介して筺体側演算部32に取得したセンサ情報を送信する。ここでのセンサ情報とは、図5の上下方向の破線に乗っている複数の□又は■である。つまり、センサ情報は、センサの位置ごとに収納物の有無を示す2値的な情報である。 In step S204, the housing side computing unit 32 requests sensor information. Specifically, the housing side computing unit 32 provides the sensing side computing unit 21 of the sensing side computing device 12 corresponding to the door or drawer specified by the door information, with the sensor information indicating the presence or absence of the stored item at the position of the sensor 22. Request. Then, the detection side calculation unit 21 acquires sensor information from all the sensors 22 and transmits the acquired sensor information to the housing side calculation unit 32 via the detection side antenna 24 and the housing side antenna 31. The sensor information here is a plurality of squares or squares on the broken lines in the vertical direction of FIG. That is, the sensor information is binary information indicating the presence/absence of a stored item for each sensor position.
 ステップS205において、筺体側演算部32は、すべてのセンサ情報を取得したか否かを判断する。具体的には、筺体側演算部32は、扉情報が特定する扉又は引き出しに対応する検知側演算装置12に属するすべてのセンサのセンサ情報を検知側演算部21から受信した場合(ステップS205“YES”)、ステップS206に進む。筺体側演算部32は、それ以外の場合(ステップS205“NO”)、すべてのセンサのセンサ情報を受信するまで待機する。 In step S205, the housing side computing unit 32 determines whether or not all sensor information has been acquired. Specifically, the housing side computing unit 32 receives from the sensing side computing unit 21 the sensor information of all the sensors belonging to the sensing side computing device 12 corresponding to the door or drawer specified by the door information (step S205 " YES"), the process proceeds to step S206. In other cases (step S205 “NO”), the housing side computing unit 32 waits until it receives the sensor information of all the sensors.
 ステップS206において、筺体側演算部32は、現時点の保管情報を作成する。具体的には、筺体側演算部32は、図7(b)に示したような現時点における収納物の保管位置を示す図(今回マップ)を作成する。
 ステップS207において、筺体側演算部32は、直近の過去の時点の保管情報を作成する。具体的には、筺体側演算部32は、図7(a)に示したような直近の過去の時点における収納物の保管位置を示す図(前回マップ)を作成する。
In step S206, the housing side computing unit 32 creates the current storage information. Specifically, the housing side computing unit 32 creates a diagram (current map) showing the storage position of the stored items at the present moment as shown in FIG. 7B.
In step S207, the housing side computing unit 32 creates the storage information of the latest past time point. Specifically, the housing side computing unit 32 creates a diagram (previous map) showing the storage position of the stored items at the latest past time as shown in FIG. 7A.
 ステップS208において、筺体側演算部32は、現時点の収納物を1つ特定する。具体的には、筺体側演算部32は、今回マップに現れた収納物のうち任意の1つを“処理対象収納物”として特定する。
 ステップS209において、筺体側演算部32は、差分が閾値以上である収納物が存在するか否かを判断する。具体的には、筺体側演算部32は、今回マップと前回マップとを重ねて、処理対象収納物を基準とした場合に前記した条件1及び条件2を満たすような収納物が、前回マップに存在するか否かを調べる。そして、筺体側演算部32は、そのような収納物が存在する場合(ステップS209“YES”)、ステップS210に進み、それ以外の場合(ステップS209“NO”)、ステップS211に進む。
In step S208, the housing side computing unit 32 identifies one stored item at the present time. Specifically, the housing side computing unit 32 specifies any one of the stored items appearing on the map this time as the “processing target stored item”.
In step S209, the housing side computing unit 32 determines whether or not there is a stored item whose difference is equal to or larger than the threshold value. Specifically, the housing side computing unit 32 superimposes the current map and the previous map, and the stored items that satisfy the above-mentioned conditions 1 and 2 when the stored items to be processed are set as the previous map. Check if it exists. Then, the housing side computing unit 32 proceeds to step S210 when such a stored item exists (step S209 “YES”), and proceeds to step S211 otherwise (step S209 “NO”).
 ステップS210において、筺体側演算部32は、保管情報52の既存レコードの保管期間を更新する。ここで筺体側演算部32が行う処理は、図6(b)の例えばレコード117cをレコード117dで更新する処理、又は、図6(c)のレコード118cをレコード118dで更新する処理である。筺体側演算部32は、更新前のレコード117c等を履歴として別領域で記憶しておいてもよい。 In step S210, the housing side computing unit 32 updates the storage period of the existing record of the storage information 52. Here, the processing performed by the housing side computing unit 32 is, for example, the processing of updating the record 117c in FIG. 6B with the record 117d, or the processing of updating the record 118c in FIG. 6C with the record 118d. The housing-side arithmetic unit 32 may store the record 117c before update as a history in another area.
 ステップS211において、筺体側演算部32は、保管情報52の新たなレコードを作成する。ここで筺体側演算部32が行う処理は、図6(b)の例えばレコード117bを新たに作成する処理である。
 ステップS212において、筺体側演算部32は、未処理の収納物が存在するか否かを判断する。具体的には、筺体側演算部32は、処理対象収納物が残っている場合(ステップS212“YES”)、ステップS208に戻り、それ以外の場合(ステップS212“NO”)、ステップS213に進む。
In step S211, the housing side computing unit 32 creates a new record of the storage information 52. Here, the process performed by the housing side computing unit 32 is a process of newly creating the record 117b in FIG. 6B, for example.
In step S212, the housing side computing unit 32 determines whether or not there is an unprocessed stored item. Specifically, the housing-side computing unit 32 returns to step S208 if the processing target stored items remain (step S212 “YES”), and otherwise proceeds to step S213. ..
 ステップS213において、筺体側演算部32は、取り出された収納物を特定する。具体的には、筺体側演算部32は、処理対象収納物と同一と判断された収納物を前回マップから消去する。すると、現時点において取り出された収納物(例えば収納物A014)だけが消去されずに前回マップに残る。筺体側演算部32は、このようにして残された1又は複数の収納物を特定する。 In step S213, the housing side computing unit 32 identifies the stored contents that have been taken out. Specifically, the housing side computing unit 32 deletes the stored item determined to be the same as the processing target stored item from the previous map. Then, only the stored item (for example, the stored item A014) taken out at the present time is not erased and remains on the map last time. The housing side calculation unit 32 identifies one or a plurality of stored items left in this way.
 ステップS214において、筺体側演算部32は、保管情報52の既存レコードに削除フラグを立てる。ここで筺体側演算部32が行う処理は、図6(c)の例えばレコード118dをレコード118eで更新する処理である。なお、レコード118eの最新位置欄115には削除フラグとして“なし”が記憶されている。筺体側演算部32は、更新前のレコード118d及び更新後のレコード118eを履歴として別領域で記憶しておいてもよい。 In step S214, the housing side computing unit 32 sets a deletion flag on the existing record of the storage information 52. Here, the process performed by the housing side computing unit 32 is a process of updating, for example, the record 118d in FIG. 6C with the record 118e. In addition, “none” is stored as the deletion flag in the latest position column 115 of the record 118e. The housing side computing unit 32 may store the record 118d before update and the record 118e after update as a history in another area.
 ステップS215において、筺体側演算部32は、センサへの給電を停止する。具体的には、筺体側演算部32は、検知側アンテナ24への電波の送信を停止する旨の指示を筺体側アンテナ31に対して送信する。
 ステップS216において、筺体側演算部32は、冷蔵庫への給電を停止したか否かを判断する。具体的には、筺体側演算部32は、ユーザが、表示部42を介して、冷蔵庫1の電源を“OFF”にするのを受け付けた場合(ステップS216“YES”)、処理手順を終了する。筺体側演算部32は、それ以外の場合(ステップS216“NO”)、ステップS202に戻る。
In step S215, the housing side computing unit 32 stops power supply to the sensor. Specifically, the housing side computing unit 32 sends to the housing side antenna 31 an instruction to stop the transmission of radio waves to the detection side antenna 24.
In step S216, the housing side arithmetic unit 32 determines whether or not the power supply to the refrigerator is stopped. Specifically, when the user accepts that the power of the refrigerator 1 is “OFF” via the display unit 42 (step S216 “YES”), the housing side computing unit 32 ends the processing procedure. .. In other cases (step S216 “NO”), the housing side computing unit 32 returns to step S202.
 図8には記載していないが、筺体側演算部32は、任意のタイミングで、その時点における保管情報52をユーザが指定する任意の装置(例えばユーザが携帯する端末装置)にネットワーク等を介して出力することができる。任意のタイミングの例は、以下の通りである。
・毎時00分00秒のように、ユーザが指定する周期的なタイミング
・ユーザがネットワークを介して冷蔵庫1にその都度指示するタイミング
・ある収納物の保管期間が所定の閾値以上になったタイミング
Although not shown in FIG. 8, the housing-side arithmetic unit 32 transmits the storage information 52 at that time to an arbitrary device (for example, a terminal device carried by the user) via the network or the like at an arbitrary timing. Can be output. An example of arbitrary timing is as follows.
-Periodic timing specified by the user, such as 00:00:00 every hour-Timing when the user instructs the refrigerator 1 each time via the network-Timing when the storage period of a certain stored item exceeds a predetermined threshold value
(本実施形態の効果)
 本実施形態の冷蔵庫の効果は以下の通りである。
(1)冷蔵庫は、センサアレイによって収納物の形状を死角なしで認識し、タイマによって収納物の保管期間を正確に知ることができる。
(2)冷蔵庫は、内部の配線を省略することができるので、内部の照度を保ったままで、センサ位置を自由に決定することができる。
(3)冷蔵庫は、収納物が出し入れされる可能性のある時点にのみセンサを稼働させることができる。
(4)冷蔵庫は、収納物の同一性を正確に判断することができる。
(5)冷蔵庫は、収納物についての情報を遠隔地の装置に出力することができる。
(Effect of this embodiment)
The effects of the refrigerator of this embodiment are as follows.
(1) The refrigerator can recognize the shape of the stored item without a blind spot by the sensor array, and can accurately know the storage period of the stored item by the timer.
(2) Since the refrigerator can omit the internal wiring, the sensor position can be freely determined while maintaining the internal illuminance.
(3) The refrigerator can operate the sensor only at the time when stored items may be taken in and out.
(4) The refrigerator can accurately determine the identity of the stored items.
(5) The refrigerator can output information about the stored items to a device at a remote place.
 なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-mentioned embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, with respect to a part of the configuration of each embodiment, other configurations can be added/deleted/replaced.
 また、前記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウエアで実現してもよい。また、前記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウエアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆どすべての構成が相互に接続されていると考えてもよい。
Further, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Further, the above-described respective configurations, functions and the like may be realized by software by the processor interpreting and executing a program for realizing the respective functions. Information such as a program, a table, and a file that realizes each function can be stored in a memory, a recording device such as a hard disk and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
Further, the control lines and information lines shown are those that are considered necessary for explanation, and not all the control lines and information lines on the product are necessarily shown. In reality, it may be considered that almost all configurations are connected to each other.
 1   冷蔵庫
 2   冷蔵室
 3   製氷室
 4   冷凍室
 5   野菜室
 6   扉
 7   棚
 8   扉ポケット
 9   卵室
 11  筺体側演算装置
 12  検知側演算装置
 21  検知側演算部
 22  センサ
 23  センサアレイ
 24  検知側アンテナ
 31  筺体側アンテナ
 32  筺体側演算部(演算部)
 33  タイマ
 34  記憶部
 35  外部通信部
 41  外部電源部
 42  表示部
 43  冷蔵庫制御用センサ
 51  検知情報
 52  保管情報
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigerator 3 Ice making room 4 Freezer 5 Vegetable room 6 Door 7 Shelf 8 Door pocket 9 Egg chamber 11 Case side arithmetic unit 12 Detection side arithmetic unit 21 Detection side arithmetic unit 22 Sensor 23 Sensor array 24 Detection side antenna 31 Enclosure Side antenna 32 Case side calculation unit (calculation unit)
33 timer 34 storage unit 35 external communication unit 41 external power supply unit 42 display unit 43 refrigerator control sensor 51 detection information 52 storage information

Claims (9)

  1.  収納物の有無を検知するセンサを複数有するセンサアレイと、
     前記収納物の有無が検知された時点を特定するタイマと、
     前記センサアレイを構成する個々のセンサから取得した情報に基づき前記収納物の形状を決定し、
     前記タイマが特定した時点に基づき前記収納物の保管期間を算出し、
     前記決定した形状及び前記算出した保管期間を前記収納物に関連付けて記憶する演算部と、
     を備えることを特徴とする冷蔵庫。
    A sensor array having a plurality of sensors for detecting the presence or absence of stored items,
    A timer that identifies the time when the presence or absence of the stored item is detected,
    The shape of the stored item is determined based on the information obtained from the individual sensors forming the sensor array,
    Calculate the storage period of the stored items based on the time specified by the timer,
    A computing unit that stores the determined shape and the calculated storage period in association with the stored item;
    A refrigerator comprising:
  2.  前記演算部は、
     前記センサが前記収納物の有無を検知した結果を、無線技術を介して前記センサから受信すること、
     を特徴とする請求項1に記載の冷蔵庫。
    The arithmetic unit is
    Receiving a result of the sensor detecting the presence or absence of the stored item from the sensor via wireless technology,
    The refrigerator according to claim 1, wherein the refrigerator is a refrigerator.
  3.  前記センサは、
     前記演算部が無線技術を介して送信した電波により発生する誘起電圧を、前記収納物の有無を検知するための電源とすること、
     を特徴とする請求項2に記載の冷蔵庫。
    The sensor is
    The induced voltage generated by the radio wave transmitted by the arithmetic unit via wireless technology is used as a power source for detecting the presence or absence of the stored item,
    The refrigerator according to claim 2, wherein:
  4.  前記センサは、
     前記収納物が出し入れされる可能性のある時点が到来したことを前記演算部が検知したことを契機として、前記収納物の有無を検知すること、
     を特徴とする請求項3に記載の冷蔵庫。
    The sensor is
    Detecting the presence or absence of the stored item triggered by the detection by the arithmetic unit that the time point at which the stored item may be taken in and out has arrived,
    The refrigerator according to claim 3, wherein:
  5.  前記演算部は、
     隣接する複数の前記センサが所定の時間範囲において同一の値を出力した場合、前記センサは同一の前記収納物を検知したと看做すこと、
     を特徴とする請求項4に記載の冷蔵庫。
    The arithmetic unit is
    When a plurality of adjacent sensors output the same value in a predetermined time range, it is considered that the sensors have detected the same stored item,
    The refrigerator according to claim 4, wherein:
  6.  前記演算部は、
     2時点間の前記収納物間の距離、及び、前記センサが有無を検知した面積の差分に基づき、2時点間における前記収納物の同一性を判断すること、
     を特徴とする請求項5に記載の冷蔵庫。
    The arithmetic unit is
    Determining the identity of the stored items between the two time points based on the distance between the stored items between the two time points and the difference in the area where the sensor detects the presence or absence of the stored item;
    The refrigerator according to claim 5, wherein:
  7.  前記演算部は、
     前記決定した形状及び前記算出した保管期間を前記収納物に関連付けて外部の任意の装置に対して出力すること、
     を特徴とする請求項6に記載の冷蔵庫。
    The arithmetic unit is
    Outputting the determined shape and the calculated storage period in association with the stored item to an external arbitrary device,
    The refrigerator according to claim 6, wherein the refrigerator is a refrigerator.
  8.  冷蔵庫のセンサアレイは、
     収納物の有無を検知するセンサを複数有しており、
     前記冷蔵庫のタイマは、
     前記収納物の有無が検知された時点を特定し、
     前記冷蔵庫の演算部は、
     前記センサアレイを構成する個々のセンサから取得した情報に基づき前記収納物の形状を決定し、
     前記タイマが特定した時点に基づき前記収納物の保管期間を算出し、
     前記決定した形状及び前記算出した保管期間を前記収納物に関連付けて記憶すること、
     を特徴とする冷蔵庫の収納物保管方法。
    The sensor array of the refrigerator is
    It has multiple sensors to detect the presence or absence of stored items,
    The refrigerator timer is
    Specify the time when the presence or absence of the stored items is detected,
    The operation unit of the refrigerator is
    The shape of the stored item is determined based on the information obtained from the individual sensors forming the sensor array,
    Calculate the storage period of the stored items based on the time specified by the timer,
    Storing the determined shape and the calculated storage period in association with the stored item;
    A method of storing stored items in a refrigerator, characterized by:
  9.  収納物の有無を検知するセンサを複数有するセンサアレイと、
     前記収納物の有無が検知された時点を特定するタイマと、
     前記センサアレイを構成する個々のセンサから取得した情報に基づき前記収納物の形状を決定し、
     前記タイマが特定した時点に基づき前記収納物の保管期間を算出し、
     前記決定した形状及び前記算出した保管期間を前記収納物に関連付けて記憶する演算部と、
     を備えることを特徴とする、冷蔵庫の収容物管理用のセンサシステム。
    A sensor array having a plurality of sensors for detecting the presence or absence of stored items,
    A timer that identifies the time when the presence or absence of the stored item is detected,
    The shape of the stored item is determined based on the information obtained from the individual sensors forming the sensor array,
    Calculate the storage period of the stored items based on the time specified by the timer,
    A computing unit that stores the determined shape and the calculated storage period in association with the stored item;
    A sensor system for managing the contents of a refrigerator, comprising:
PCT/JP2019/036220 2018-11-29 2019-09-13 Refrigerator, storage method for stored object, and sensor system WO2020110430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-223559 2018-11-29
JP2018223559A JP7228373B2 (en) 2018-11-29 2018-11-29 Refrigerator, storage method and sensor system

Publications (1)

Publication Number Publication Date
WO2020110430A1 true WO2020110430A1 (en) 2020-06-04

Family

ID=70852866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036220 WO2020110430A1 (en) 2018-11-29 2019-09-13 Refrigerator, storage method for stored object, and sensor system

Country Status (2)

Country Link
JP (1) JP7228373B2 (en)
WO (1) WO2020110430A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201584A1 (en) * 2021-03-23 2022-09-29 日立グローバルライフソリューションズ株式会社 Inventory management system, inventory management apparatus, and storage container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064320A (en) * 2004-08-27 2006-03-09 Toshiba Corp Refrigerator
US20070069867A1 (en) * 2004-03-11 2007-03-29 Elgar Fleisch Stocking system and method for managing stocking
JP2010121784A (en) * 2008-11-17 2010-06-03 Toshiba Corp Stock management device of refrigerator
JP2015152211A (en) * 2014-02-13 2015-08-24 三菱電機株式会社 Shed management device and method
JP2016023852A (en) * 2014-07-18 2016-02-08 株式会社東芝 refrigerator
WO2018174080A1 (en) * 2017-03-24 2018-09-27 パナソニックIpマネジメント株式会社 Article management system and article management method
WO2019017323A1 (en) * 2017-07-21 2019-01-24 パナソニックIpマネジメント株式会社 Food management system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214644A (en) * 2005-01-07 2006-08-17 Matsushita Electric Ind Co Ltd Storage
JP5499993B2 (en) * 2010-08-23 2014-05-21 三菱電機株式会社 Refrigerator and food management method
JP6498866B2 (en) * 2013-03-12 2019-04-10 東芝ライフスタイル株式会社 Refrigerator, camera device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070069867A1 (en) * 2004-03-11 2007-03-29 Elgar Fleisch Stocking system and method for managing stocking
JP2006064320A (en) * 2004-08-27 2006-03-09 Toshiba Corp Refrigerator
JP2010121784A (en) * 2008-11-17 2010-06-03 Toshiba Corp Stock management device of refrigerator
JP2015152211A (en) * 2014-02-13 2015-08-24 三菱電機株式会社 Shed management device and method
JP2016023852A (en) * 2014-07-18 2016-02-08 株式会社東芝 refrigerator
WO2018174080A1 (en) * 2017-03-24 2018-09-27 パナソニックIpマネジメント株式会社 Article management system and article management method
WO2019017323A1 (en) * 2017-07-21 2019-01-24 パナソニックIpマネジメント株式会社 Food management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201584A1 (en) * 2021-03-23 2022-09-29 日立グローバルライフソリューションズ株式会社 Inventory management system, inventory management apparatus, and storage container

Also Published As

Publication number Publication date
JP2020085393A (en) 2020-06-04
JP7228373B2 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
JP6938116B2 (en) Inventory management device and inventory management method
CN105444504B (en) It is a kind of can classification monitoring intelligent refrigerator
JP3748369B2 (en) Food management storage
CN113494792B (en) Refrigerator with a door
JP5292991B2 (en) Storage and storage system
JP4473849B2 (en) Article handling system and article handling server
US11499773B2 (en) Refrigerator and method for managing articles in refrigerator
JPWO2004106009A1 (en) Article handling system and article handling server
US20170205138A1 (en) Refrigerator and controlling method thereof
JP2007010208A (en) Refrigerator
CN106546063A (en) The food information management method of refrigerating device and system
AU2016415984A1 (en) Refrigerator system
CN108805123A (en) A kind of device, method and system that the time limit reminds
WO2020110430A1 (en) Refrigerator, storage method for stored object, and sensor system
KR20210137592A (en) How to manage refrigerators and items in refrigerators
JP2022089941A (en) Storage, controlling method, program, and controlling system
JP6447334B2 (en) Refrigerator and network system
KR20190090290A (en) Refrigerator with displaying image by identifying goods and method of displaying thereof
JP2006317109A (en) Refrigerator
CN112417282B (en) Information recommendation method, food storage equipment and server
CN114152029B (en) Food management refrigerator based on RFID tag and control method thereof
CN112199406A (en) Information recommendation method, food material storage device and server
JP2020054775A (en) Pantry, house, and pantry system
JP5315855B2 (en) Refrigerator, refrigerator system, and refrigerator control method
JP2007176550A (en) Storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889358

Country of ref document: EP

Kind code of ref document: A1