WO2020110222A1 - Concentration measurement device, concentration measurement method, and non-transitory storage medium - Google Patents

Concentration measurement device, concentration measurement method, and non-transitory storage medium Download PDF

Info

Publication number
WO2020110222A1
WO2020110222A1 PCT/JP2018/043732 JP2018043732W WO2020110222A1 WO 2020110222 A1 WO2020110222 A1 WO 2020110222A1 JP 2018043732 W JP2018043732 W JP 2018043732W WO 2020110222 A1 WO2020110222 A1 WO 2020110222A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
concentration
measuring device
unit
Prior art date
Application number
PCT/JP2018/043732
Other languages
French (fr)
Japanese (ja)
Inventor
石原 康利
Original Assignee
学校法人明治大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人明治大学 filed Critical 学校法人明治大学
Priority to PCT/JP2018/043732 priority Critical patent/WO2020110222A1/en
Priority to JP2020557454A priority patent/JP7197205B2/en
Publication of WO2020110222A1 publication Critical patent/WO2020110222A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes

Definitions

  • the present invention relates to a concentration measuring device, a concentration measuring method, and a non-transitory recording medium.
  • Non-Patent Document 1 The number of diabetic patients has increased explosively in recent years, and it is predicted that the number of diabetic patients will reach 550 million worldwide in 2030 (see Non-Patent Document 1).
  • the basic treatment for diabetes is diet/exercise based on blood glucose level control, and it is necessary to measure the blood glucose level several times a day for the blood glucose level control.
  • a general blood glucose meter requires blood sampling, it has problems with pain, hygiene, and medical waste. Therefore, the establishment of a non-invasive and non-invasive blood glucose level measuring device is eagerly desired.
  • Patent Documents 1 to 4 In response to such demands, methods for measuring blood glucose levels from information on light transmission/reflection/scattering have been vigorously studied (see Patent Documents 1 to 4 and Non-Patent Document 2). However, these methods have a problem that it is difficult to accurately estimate the blood glucose level because the transmitted light intensity is insufficient with respect to the measurement accuracy (about ⁇ 10 milligrams/deciliter) required for managing the blood glucose level.
  • Patent Documents 5 to 6 a blood glucose level measuring method using a photoacoustic effect in which light energy absorbed by a substance is converted into a heat wave and an elastic wave has been studied. These methods have a feature that a detection signal is larger than a method using transmitted light and that the measurement region can be specified in the depth direction by controlling the modulation frequency of the excitation light (see Non-Patent Document 3). ).
  • glucose concentration when the glucose concentration is measured using only the energy obtained with light of a certain wavelength, there is a problem that it cannot be distinguished whether the energy is derived from glucose or water. Furthermore, there is a possibility that the glucose concentration may be erroneously measured even if the amount of water contained in the living body is slightly changed due to various factors.
  • Non-Patent Document 4 a method of measuring the spectral spectrum detected from the target object at a plurality of wavelengths and using multivariate analysis or a neural network to estimate the concentration of the substance contained in the measurement target is known.
  • JP, 10-325794 A JP, 11-216131, A Japanese Patent Laid-Open No. 2004-147706 JP, 2005-37253, A JP, 2008-191160, A JP, 2009-165634, A
  • Non-Patent Document 4 when measuring a spectral spectrum at a plurality of wavelengths, it is necessary to arrange a light source and a detection device for a plurality of wavelengths, which complicates the device and makes measurement. There is a problem that it takes time. In particular, the amount of glucose in the living body is very small, and high measurement accuracy is required at all wavelengths for measuring the spectrum. Therefore, when the method described in Non-Patent Document 4 is used, the problems of complication of the device and lengthening of the measurement become prominent.
  • an object of the present invention is to provide a technique capable of measuring the concentration of a target component contained in a measurement target using a simple device.
  • One embodiment of the present invention includes a first irradiation unit that irradiates a measurement target having a target component and a non-target component with light having a first wavelength, and light having a second wavelength that is a wavelength different from the first wavelength.
  • a second irradiation unit that irradiates the measurement target with the first irradiation unit irradiates the measurement target with light having the first wavelength, and the second irradiation unit first emits light having the second wavelength.
  • a first acquisition unit that acquires a physical quantity resulting from a change in the measurement target, and the first irradiation unit irradiates the measurement target with light of the first wavelength
  • the 2nd acquisition which acquires the physical quantity resulting from the change of the above-mentioned measuring object, when the above-mentioned 2nd irradiation part irradiates the above-mentioned measuring object with the 2nd intensity different from the 1st above-mentioned light of the 2nd wavelength.
  • a temperature information acquisition unit that acquires temperature information that is information related to a temperature change of the measurement target based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit, and the temperature information.
  • a concentration acquisition unit that acquires the concentration of the non-target component based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit.
  • concentration measuring device wherein the concentration acquisition unit acquires the concentration by multivariate analysis.
  • concentration acquisition unit is a learning model learned in advance, and the physical quantity acquired by the first acquisition unit and the second acquisition unit are acquired.
  • the concentration is acquired based on a learning model representing the relationship among the physical quantity, the temperature information, and the concentration.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength is a wavelength at which the absorbance of the target component is smaller than that of the non-target component.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength is a wavelength that changes the absorption spectrum of the non-target component to a predetermined magnitude or more.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength is a wavelength at which the absorbance of the non-target component is maximum.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength is within a range of ⁇ 70 nanometers centered on the wavelength at which the absorbance of the non-target component is maximum.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the first wavelength is within a range of ⁇ 70 nanometers centered on the wavelength at which the absorbance of the target component is maximum.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the first wavelength is a wavelength at which the absorbance of the target component is maximum.
  • One mode of the present invention is the above-mentioned concentration measuring device, showing the influence of the environment on the physical quantity based on the physical quantity acquired by the first acquisition section and the physical quantity acquired by the second acquisition section.
  • a correction unit that acquires a correction coefficient that is a value and corrects the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit by the acquired correction coefficient is further included.
  • One aspect of the present invention is the above-mentioned concentration measuring device, wherein the influence of the environment is the amount of the non-target component.
  • One mode of the present invention is the above-mentioned concentration measuring device, wherein the influence of the environment is the absorbance of the non-target component with respect to the first wavelength and the absorbance of the non-target component with respect to the second wavelength. ..
  • One aspect of the present invention is the above-described concentration measuring device, wherein the influence of the environment is the performance of the light receiving unit that receives the light of the first wavelength.
  • One aspect of the present invention is the above-mentioned concentration measuring device, wherein at least one of the light of the first wavelength and the light of the second wavelength is coded light.
  • One embodiment of the present invention is the above-described concentration measuring device, comprising an n-th irradiation unit (n is an integer of 3 or more) that irradiates a measurement target having a target component and a non-target component with light having an n-th wavelength. Further prepare.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength and the third wavelength are wavelengths having a predetermined correlation with respect to the shift of the absorption spectrum of the non-target component.
  • One embodiment of the present invention is the above-described concentration measuring apparatus, wherein the second wavelength and the third wavelength have opposite signs with respect to the origin of the wavelength of the peak of the absorption spectrum of the non-target component. It is the wavelength located at the position.
  • One embodiment of the present invention is the above-described concentration measuring apparatus, wherein the second wavelength and the third wavelength have opposite signs with respect to the wavelength of the inflection point of the absorption spectrum of the non-target component as the origin. Is a wavelength located at a position.
  • One aspect of the present invention is the above-mentioned concentration measuring device, wherein the physical quantity is intensity of transmitted light, scattered light, or reflected light of the light with which the measurement target is irradiated.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the physical quantity is the intensity of transmitted light with which the measurement target is irradiated.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the physical quantity is an amplitude of a vibration wave generated in the measurement target by the light with which the measurement target is irradiated.
  • vibration wave is an amplitude of a heat wave generated in the measurement target by the light with which the measurement target is irradiated.
  • vibration wave is an amplitude of a sound wave due to a heat wave generated in the measurement target by the light with which the measurement target is irradiated.
  • One embodiment of the present invention is the above-described concentration measuring device, wherein a piezoelectric body that generates a voltage proportional to the magnitude of the pressure when pressure is applied, and a tension member that applies tension to the piezoelectric body A holder that is in close contact with the measurement target is provided, and the first acquisition unit and the second acquisition unit acquire the physical quantity based on the voltage generated by the piezoelectric body.
  • One aspect of the present invention is the above-described concentration measuring device, wherein the temperature information is a shift amount of the absorption spectrum of the non-target component.
  • One embodiment of the present invention includes a first irradiation unit that irradiates a measurement target having a target component and a non-target component with light having a first wavelength, and light having a second wavelength that is a wavelength different from the first wavelength.
  • a second irradiation unit that irradiates the measurement target with the first irradiation unit irradiates the measurement target with light having the first wavelength, and the second irradiation unit first emits light having the second wavelength.
  • a first acquisition unit that acquires a physical quantity resulting from a change in the measurement target, and the first irradiation unit irradiates the measurement target with light of the first wavelength
  • the 2nd acquisition which acquires the physical quantity resulting from the change of the above-mentioned measuring object, when the above-mentioned 2nd irradiation part irradiates the above-mentioned measuring object with the 2nd intensity different from the 1st above-mentioned light of the 2nd wavelength.
  • a temperature information acquisition unit that acquires temperature information that is information related to a temperature change of the measurement target based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit, and the temperature information.
  • a concentration acquisition unit that acquires the concentration of the non-target component based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit.
  • a first irradiation step of irradiating the measurement target with light of the first wavelength a second irradiation step of irradiating the measurement target with light of the second wavelength, and the first irradiation unit
  • a second acquisition step of acquiring a physical quantity due to a change of the measurement target, a physical quantity acquired by the first acquisition unit, and the second acquisition unit A temperature information acquisition step of acquiring temperature information that is information related to the temperature change of the measurement target based on the physical quantity that has been measured, the temperature information, the physical quantity acquired by the first acquisition unit, and the physical quantity acquired by the second acquisition unit.
  • a concentration acquisition step of acquiring the concentration of the non-target component based on the following.
  • One aspect of the present invention is a non-transitory recording medium that stores a program for causing a computer to function as the concentration measuring device according to claim 1.
  • the present invention it becomes possible to measure the concentration of the target component contained in the measurement target using a simple device.
  • a target component of measurement is glucose and a non-target component is water.
  • a target component of measurement is glucose
  • a non-target component is water.
  • the present invention can be applied by the same concept.
  • glucose is used as the target component and water
  • protein and lipid are used as the non-target components
  • hemoglobin is used as the target component and proteins and lipids are used as the non-target components.
  • target component excitation light light having a wavelength at which glucose has a high absorbance
  • non-target component excitation light light having a wavelength at which water absorbs light
  • the target component excitation light is transmitted when the target component excitation light and the non-target component excitation light whose intensity is E1 (hereinafter referred to as “first non-target component excitation light”) are applied to the living body to be measured.
  • the light is called the first target component transmitted light.
  • the transmitted light of the non-target component excitation light I1 when the target component excitation light and the first non-target component excitation light are applied to the living body to be measured is referred to as the first non-target component transmitted light.
  • the target component excitation light when the target component excitation light and the non-target component excitation light whose intensity is the second intensity E2 (hereinafter referred to as “second non-target component excitation light”) are irradiated to the living body to be measured.
  • the transmitted light is referred to as the second target component transmitted light.
  • the second strength E2 is a value larger than the first strength E1.
  • the transmitted light of the non-target component excitation light of the second intensity when the target component excitation light and the non-target component excitation light of the second intensity are applied to the living body to be measured is referred to as the second non-target component transmitted light.
  • the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light and the difference between the intensity of the first non-target component transmitted light and the intensity of the second non-target component transmitted light is acquired.
  • the intensity of the non-target component excitation light with which the living body 9 is irradiated changes, the temperature of water changes, so that the absorption spectrum of water shifts. Therefore, based on the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light, and the difference between the intensity of the first non-target component transmitted light and the intensity of the second non-target component transmitted light.
  • the shift amount of the absorption spectrum of water is acquired.
  • the magnitude of the change in the absorption spectrum of glucose with respect to the change in the intensity of the excitation light of the non-target component with which the living body 9 is irradiated is so small as to be negligible with respect to the magnitude of the change in the absorption spectrum of water.
  • the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light is due to the change in the water absorption spectrum at the wavelength of the target component excitation light. Therefore, the influence of water on the absorbance of the target component excitation light is acquired based on the shift amount of the absorption spectrum of water and the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light.
  • the concentration of glucose may be acquired by a physical quantity that is proportional to the intensity of the transmitted light of the light with which the living body 9 is irradiated, such as the amplitude of a vibration wave.
  • the vibration waves include elastic waves and sound waves generated by heat waves.
  • the first intensity E1 may be 0.
  • the first intensity E1 being 0 means that the first target component excitation light is not irradiated. This is the end of the description of the outline of the principle of the embodiment.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of the concentration measuring device 1 according to the first embodiment.
  • the concentration measuring device 1 includes a CPU (Central Processing Unit) 11, a memory 12, an auxiliary storage device 13 and the like connected by a bus, and executes a program to input the input unit 10, the first irradiation unit 14, and the second irradiation unit. It functions as a device including the light receiving unit 16, the light receiving unit 16, and the output unit 17.
  • the concentration measuring apparatus 1 controls the operations of the input unit 10, the first irradiation unit 14, the second irradiation unit 15, and the light receiving unit 16 by executing the program, and based on the result of light reception by the light receiving unit 16, the purpose Get the concentration of an ingredient.
  • the auxiliary storage device 13 is configured by using a storage device such as a magnetic hard disk device or a semiconductor storage device.
  • the auxiliary storage device 13 stores a program relating to the operation of the concentration measuring device 1.
  • the CPU 11 functions as the information processing unit 100 by executing the program stored in the memory 12 or the auxiliary storage device 13.
  • the input unit 10 is configured to include an input device such as a mouse, a keyboard, and a touch panel.
  • the input unit 10 may be configured as an interface that connects these input devices to the own device.
  • the input unit 10 receives an input of information to its own device.
  • the input unit 10 outputs the input information to the information processing unit 100.
  • the 1st irradiation part 14 irradiates the living body 9 which is a measuring object with the light of the 1st wavelength.
  • the light of the first wavelength is the target component excitation light.
  • the light having the first wavelength is light having a wavelength of 1600 nanometers at which the absorbance of glucose is maximum.
  • the light of the first wavelength does not necessarily have to have the wavelength at which the absorbance of glucose is maximum.
  • the light having the first wavelength may be, for example, light having a wavelength of 1600 ⁇ 70 nm, which is a wavelength in the vicinity of the wavelength at which the absorbance of glucose is substantially maximum. That is, the first wavelength may be a wavelength within a range of ⁇ 70 nanometers around the wavelength at which the absorbance of glucose is maximum.
  • the light having the first wavelength may be, for example, light having a wavelength of 1600 ⁇ 30 nanometers at which the absorbance of glucose is approximately maximum.
  • the light of the first wavelength is the light of the wavelength of 1600 ⁇ 30 nanometer where the absorbance of glucose is approximately maximum
  • the light of the first wavelength is more than the light of the wavelength of 1600 ⁇ 70 nanometer.
  • the glucose concentration is accurately measured.
  • the light having the first wavelength may be, for example, light having a wavelength of 1600 nanometers at which the absorbance of glucose is approximately maximum.
  • the light of the first wavelength is the light of the wavelength of 1600 nanometers at which the absorbance of glucose is approximately maximum
  • the light of the first wavelength is higher than that of the light of the wavelength of 1600 ⁇ 30 nanometers.
  • the glucose concentration is accurately measured.
  • the first irradiator 14 may irradiate light of the first wavelength in any way.
  • the 1st irradiation part 14 may be equipped with a laser diode driver and a semiconductor laser, for example, and may irradiate the light of the 1st wavelength with a laser diode driver and a semiconductor laser.
  • the 1st irradiation part 14 may be equipped with a general purpose cheap laser, and may irradiate the light of the wavelength of 1600 +/-70 nanometer, for example.
  • the light emitted by the first irradiator 14 is CW (Continuous Wave) light.
  • the first irradiation unit 14 emits light of the first wavelength, a distance between the first light source, which is a light source of the light of the first wavelength, and the living body 9, an irradiation angle of the light,
  • a first irradiation unit adjustment mechanism that is a mechanism that adjusts the radiation intensity of light of the first wavelength is provided.
  • the first irradiation unit 14 controls the intensity of light emitted by the first irradiation unit adjustment mechanism. Since the first irradiation unit 14 includes the first irradiation unit adjustment mechanism, the concentration measuring device 1 can measure the glucose concentration with a constant accuracy regardless of the angle or distance between the first light source and the living body 9. You can However, it is not necessary to provide all the irradiation distance, angle, and intensity adjustment mechanisms, and an alternative function can be provided as necessary, but it can be appropriately omitted depending on the application and performance.
  • the second irradiation unit 15 irradiates the living body 9, which is the measurement target, with light having a second wavelength, which is a wavelength at which the absorbance of glucose as a target component is smaller than the absorbance of water as a non-target component.
  • the light of the second wavelength is the non-target component excitation light.
  • the light of the second wavelength is, for example, light of 1450 nm, which is a wavelength at which the absorbance of glucose is smaller than that of water and the absorbance of water is maximum. It should be noted that the light of the second wavelength does not necessarily have the wavelength at which the absorbance of water is maximum.
  • the light having the second wavelength may be light having a wavelength of 1450 ⁇ 70 nm, which is a wavelength in the vicinity of the wavelength where the absorbance of water is maximum. That is, the second wavelength may be a wavelength within a range of ⁇ 70 nanometers around the wavelength at which the absorbance of water is maximum.
  • the light having the second wavelength may be light having a wavelength of 1450 ⁇ 50 nanometers, which is a wavelength at which the absorbance of water is approximately maximum.
  • the light of the second wavelength is the light of the wavelength of 1450 ⁇ 50 nanometers, which is the wavelength at which the absorbance of water is approximately maximum
  • the light of the second wavelength is the light of the wavelength of 1450 ⁇ 70 nanometers.
  • the glucose concentration is measured more accurately than in some cases.
  • the light having the second wavelength may be light having a wavelength of 1450 nm, which is a wavelength at which the absorbance of water is maximum.
  • the light of the second wavelength is more than the light of the wavelength of 1450 ⁇ 50 nm. The glucose concentration can be accurately measured.
  • the second irradiation unit 15 may irradiate light of the second wavelength in any way.
  • the second irradiation unit 15 may include, for example, a laser diode driver or a semiconductor laser, and the laser diode driver or the semiconductor laser may irradiate light of the second wavelength.
  • the second irradiation unit 15 may include, for example, a general-purpose inexpensive laser, and may irradiate light having a wavelength of 1450 ⁇ 70 nanometers with the general-purpose inexpensive laser.
  • the light emitted by the second irradiation unit 15 is CW (Continuous Wave) light.
  • the second irradiation unit 15 irradiates the irradiation direction of the light of the second wavelength, the distance between the second light source, which is the light source of the light of the second wavelength, and the living body 9, the irradiation angle of the light,
  • a second irradiation unit adjustment mechanism that is a mechanism that adjusts the radiation intensity of light of two wavelengths is provided.
  • the second irradiation unit 15 controls the intensity of light emitted by the second irradiation unit adjustment mechanism. Since the second irradiation unit 15 includes the second irradiation unit adjustment mechanism, the concentration measuring device 1 can measure the glucose concentration with a constant accuracy regardless of the angle or distance between the second light source and the living body 9. You can However, it is not necessary to provide all the irradiation distance, angle, and intensity adjustment mechanisms, and an alternative function can be provided as necessary, but it can be appropriately omitted depending on the application and performance.
  • the light receiving unit 16 includes a detector such as lead sulfide (PbS) having a photoelectric effect or indium gallium arsenide (InGaAs) having a photovoltaic effect.
  • PbS lead sulfide
  • InGaAs indium gallium arsenide
  • the light receiving unit 16 receives the light emitted by the first irradiation unit 14 and transmitted through the living body 9.
  • the light receiving unit 16 receives the light emitted by the second irradiation unit 15 and transmitted through the living body 9.
  • the light receiving unit 16 may receive the transmitted light of the light of the first wavelength and the transmitted light of the light of the second wavelength in any way.
  • the light receiving unit 16 includes, for example, a bandpass filter that passes only the light of the first wavelength and the light of the second wavelength between the light receiving unit 16 and the living body 9, and thus the light of the first wavelength Only the transmitted light and the transmitted light of the light of the second wavelength may be received.
  • the output unit 17 outputs the concentration of the target component acquired by the own device.
  • the output unit 17 may be any unit as long as it can output the concentration of the target component acquired by the own device.
  • the output unit 17 may be configured to include, for example, an interface for connecting the own device to an external device.
  • the output unit 17 may be configured to include a display device such as a CRT (Cathode Ray Tube) display, a liquid crystal display, and an organic EL (Electro-Luminescence) display.
  • the output unit 17 may be configured as an interface that connects these display devices to the own device, for example.
  • FIG. 2 is a diagram showing the relationship between the absorption spectra of the target component and the non-target component of the light of the first wavelength and the light of the second wavelength in the first embodiment.
  • the horizontal axis of FIG. 2 represents wavelength.
  • the vertical axis of FIG. 2 represents the absorbance.
  • the target component is glucose.
  • the non-target component is water.
  • FIG. 2 shows that the first wavelength is 1600 nanometers where the absorption spectrum of glucose is approximately maximum.
  • FIG. 2 shows that the second wavelength is 1450 nm, where the absorption spectrum of water is approximately maximum.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the information processing unit 100 according to the first embodiment.
  • the information processing unit 100 includes a control unit 110, a first intensity acquisition unit 120, a second intensity acquisition unit 130, a correction unit 140, a temperature information acquisition unit 150, and a concentration acquisition unit 160.
  • the control unit 110 controls the operations of the first irradiation unit 14, the second irradiation unit 15, and the light receiving unit 16.
  • the control unit 110 controls, for example, the timing at which the first irradiation unit 14 and the second irradiation unit 15 irradiate the living body 9 with light.
  • the control unit 110 can be configured to control the irradiation distance, angle, and intensity of the first irradiation unit 14 and the second irradiation unit 15, for example.
  • the 1st intensity acquisition part 120 acquires the intensity
  • the light received by the light receiving unit 16 is the first target component transmitted light and the first non-target component transmitted light. Is.
  • the temperature of water is the light of the first wavelength and the light of the second wavelength having the intensity E2.
  • the first intensity acquisition unit 120 outputs the acquired intensity of the transmitted light in the low temperature state to the temperature information acquisition unit 150 and the concentration acquisition unit 160.
  • the second intensity acquisition unit 130 acquires the intensity of the light received by the light receiving unit 16 when the living body 9 is irradiated with the light having the first wavelength and the light having the second wavelength having the intensity E2.
  • the light received by the light receiving unit 16 is the second target component transmitted light and the second non-target component transmitted light.
  • a high temperature state the state of water when the living body 9 is irradiated with the light of the first wavelength and the light of the second wavelength having the intensity E2 is referred to as a high temperature state.
  • the light transmitted through the water in the high temperature state and received by the light receiving unit 16 is referred to as the transmitted light in the high temperature state.
  • the second intensity acquisition unit 130 outputs the acquired intensity of the transmitted light in the high temperature state to the temperature information acquisition unit 150 and the concentration acquisition unit 160.
  • the correction unit 140 acquires the first correction coefficient based on information indicating the intensity of transmitted light in the low temperature state and the intensity of transmitted light in the high temperature state (hereinafter referred to as “first measurement result information”).
  • the first correction coefficient is a value that corrects the intensity of transmitted light in the low temperature state and the intensity of transmitted light in the high temperature state, which are measurement results.
  • the first correction coefficient is a value that changes according to the amount of water.
  • the first correction coefficient is a value that changes according to the wavelength of the light with which the living body 9 is irradiated.
  • the first correction coefficient is a value according to the performance of the light receiving unit 16. That is, the first correction coefficient is a value representing the influence of the environment.
  • the environmental influence is, for example, the amount of water.
  • the environmental influence is, for example, the absorbance of water for the first wavelength and the absorbance of water for the second wavelength.
  • the influence of the environment is, for example, the performance of the light receiving unit 16.
  • the correction unit 140 may acquire the amount of water of the living body 9 based on the first measurement result information, and may acquire the first correction coefficient based on the acquired amount of water.
  • the correction unit 140 acquires the amount of water of the living body 9 based on the first measurement result information, and acquires the first correction coefficient based on the acquired amount of water, the first wavelength, and the second wavelength. You may.
  • the correction unit 140 may acquire the amount of water in any way.
  • the correction unit 140 may acquire the amount of water by multivariate analysis, for example.
  • the correction unit 140 is based on, for example, a learning model that is learned in advance by a machine learning method such as a neural network and that represents the relationship between the intensity of transmitted light in a low temperature state, the intensity of transmitted light in a high temperature state, and the amount of water.
  • the amount of water may be obtained.
  • the correction unit 140 is, for example, the intensity of the transmitted light in the low temperature state, the intensity of the transmitted light in the high temperature state, the first wavelength, the second wavelength, and the amount of water, which have been learned in advance by a machine learning method such as a neural network.
  • the amount of water may be acquired based on a learning model representing the relationship with.
  • the correction unit 140 corrects the intensity of the transmitted light in the low temperature state and the intensity of the transmitted light in the high temperature state based on the acquired first correction coefficient.
  • the value after the correction of the intensity of the transmitted light in the low temperature state acquired by the first intensity acquisition unit 120 is also referred to as the intensity of the transmitted light in the low temperature state.
  • the value after correction of the intensity of transmitted light in the high temperature state acquired by the second intensity acquisition unit 130 is also referred to as the intensity of transmitted light in the high temperature state.
  • the temperature information acquisition unit 150 acquires information (hereinafter referred to as “temperature information”) regarding the temperature change of the living body 9 at the light irradiation location based on the first measurement result information.
  • the temperature information is the information about the temperature change of the living body 9 at the light irradiation position, which is a part or all of the position where the light of the first wavelength and the light of the second wavelength are irradiated. It may be any information as long as it is, for example, the shift amount of the absorption spectrum of water.
  • the temperature information acquisition unit 150 may acquire the temperature information by any method as long as the temperature information can be acquired.
  • the temperature information acquisition unit 150 may acquire the temperature information by multivariate analysis, for example.
  • the temperature information acquisition unit 150 may acquire the temperature information based on a learning model that is learned in advance by a machine learning method such as a neural network and that represents the relationship between the first measurement result information and the temperature information.
  • the concentration acquisition unit 160 acquires the glucose concentration by the first concentration acquisition method based on the temperature information acquired by the temperature information acquisition unit 150 and the first measurement result information.
  • the first concentration acquisition method may be any method as long as it can acquire the glucose concentration based on the temperature information and the first measurement result information.
  • the first concentration acquisition method may be, for example, a multivariate analysis method.
  • the first concentration acquisition method may be a method of acquiring the glucose concentration based on the first concentration learning model when the first concentration learning model is stored in the auxiliary storage device 13 in advance.
  • the first concentration learning model is a learning model learned by machine learning such as a neural network, and is a learning model representing the relationship between the temperature information and the first measurement result information and the glucose concentration.
  • FIG. 4 is a flowchart showing an example of the flow of processing in which the information processing unit 100 according to the first embodiment acquires the glucose concentration.
  • the first irradiation unit 14 irradiates the living body 9 with light of the first wavelength
  • the second irradiation unit 15 irradiates the living body 9 with light of the second wavelength having the intensity E1.
  • the first intensity acquisition unit 120 acquires the intensity of transmitted light in a low temperature state.
  • the first intensity acquisition unit 120 outputs the acquired intensity of the transmitted light in the low temperature state to the temperature information acquisition unit 150 and the concentration acquisition unit 160 (step S101).
  • the irradiation by the first irradiation unit 14 and the irradiation by the second irradiation unit 15 may be performed at the same time, or may be executed with a predetermined time difference.
  • the first irradiation unit 14 irradiates the living body 9 with light of the first wavelength
  • the second irradiation unit 15 irradiates the living body 9 with light of the second wavelength having the intensity E2.
  • the second intensity acquisition unit 130 acquires the intensity of transmitted light in a high temperature state.
  • the second intensity acquisition unit 130 outputs the acquired intensity of the transmitted light in the high temperature state to the temperature information acquisition unit 150 and the concentration acquisition unit 160. (Step S102).
  • the irradiation by the first irradiation unit 14 and the irradiation by the second irradiation unit 15 may be performed at the same time, or may be executed with a predetermined time difference.
  • the correction unit 140 acquires the first correction coefficient based on the intensity of the transmitted light in the low temperature state and the intensity of the transmitted light in the high temperature state, and based on the acquired first correction coefficient, the intensity of the transmitted light in the low temperature state and the high temperature state. And the intensity of the transmitted light are corrected (step S103).
  • the temperature information acquisition unit 150 acquires temperature information based on the first measurement result information (step S104).
  • the concentration acquisition unit 160 acquires temperature information based on the first measurement result information and the temperature information, and acquires the glucose concentration by the first concentration acquisition method based on the temperature information and the first measurement result (step S105).
  • FIGS. 5 and 6 show that the absorption spectrum of the living body 9 is changed by the irradiation of the living body 9 with the second wavelength in the first embodiment.
  • FIG. 5 is a figure which shows the simulation result which shows the dependence with respect to the intensity
  • FIG. 5 shows absorption spectra when the intensity of the second wavelength is 0 mW, 10 mW, 15 mW, and 20 mW.
  • FIG. 5 shows that the absorption spectrum changes as the intensity of the second wavelength changes.
  • the amount of change in the absorption spectrum of the living body 9 is substantially the same as the amount of change in the absorption spectrum of water.
  • FIG. 6 is a diagram showing a simulation result showing the dependence of the absorption spectrum of the living body 9 from the wavelength 1386 nm to the wavelength 1392 nm on the intensity of the second wavelength in the first embodiment.
  • FIG. 6 shows absorption spectra when the intensity of the second wavelength is 0 mW, 10 mW, 15 mW, and 20 mW.
  • FIG. 6 shows that the absorption spectrum changes as the intensity of the second wavelength changes.
  • the amount of change in the absorption spectrum of the living body 9 is substantially the same as the amount of change in the absorption spectrum of water.
  • FIG. 5 shows that, when the living body 9 is irradiated with the second wavelength of 20 mW, the change in absorbance is 1.4% at the wavelength of 1600 nm.
  • FIG. 6 shows that when the living body 9 is irradiated with the second wavelength of 20 mW, the change in absorbance at the wavelength of 1390 nanometers is 1.7%. This means that the temperature of the living body 9 has changed by about 2 degrees due to the second wavelength of 20 mW.
  • the second wavelength causes a shift in the absorption spectrum of water of the living body 9 to the extent that the concentration measuring device 1 of the first embodiment can observe it. Therefore, the concentration measuring device 1 of the first embodiment can detect the shift of the water absorption spectrum of the living body 9, and can measure the glucose concentration based on the change of the water absorption spectrum of the living body 9.
  • the concentration measuring device 1 of the first embodiment configured as described above includes the temperature information acquisition unit 150 and the concentration acquisition unit 160, it is possible to acquire the glucose concentration of the living body 9 based on the first measurement result information. You can Therefore, the concentration measuring device 1 of the first embodiment can measure the concentration of the target component contained in the measurement target using a simple device.
  • concentration measuring device 1 does not necessarily need to measure the concentration of the target component by the transmitted light.
  • the concentration measuring device 1 may measure the concentration of the target component by reflected light or scattered light.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of the concentration measuring device 2 according to the second embodiment.
  • the concentration measuring device 2 according to the second embodiment modulates the intensity of the light with which the living body 9 is irradiated, and measures the glucose concentration at the target depth of the living body 9 using photoacoustic spectroscopy. Note that the target depth is the depth of the living body 9 whose glucose concentration should be measured.
  • components having the same functions as those of the functional units included in the concentration measuring device 1 are denoted by the same reference numerals as those in FIGS. 1 and 3, and description thereof will be omitted.
  • the concentration measuring device 2 includes a CPU (Central Processing Unit) 21, a memory 22, an auxiliary storage device 23, and the like connected by a bus, and executes a program to input the input unit 10, the first irradiation unit 14, and the first modulation unit. It functions as a device including the section 24, the second irradiation section 15, the second modulation section 25, the pressure sensing section 26, and the output section 17.
  • the concentration measuring device 2 controls the operations of the input unit 10, the first irradiation unit 14, the first modulation unit 24, the second irradiation unit 15, the second modulation unit 25, and the pressure-sensitive unit 26 by executing the program.
  • the concentration of the target component is obtained based on the result obtained by the pressure sensing unit 26.
  • the first modulator 24 modulates the intensity of light emitted by the first irradiator 14 with a frequency ⁇ 1 (first frequency) and a frequency ⁇ 2 (second frequency).
  • the frequency ⁇ 1 is a frequency at which the vibration wave generated in the living body 9 at the target depth reaches the pressure sensitive unit 26 when the living body 9 is irradiated with the light of the frequency ⁇ 1.
  • the frequency ⁇ 2 is a frequency at which, when the living body 9 is irradiated with light having the frequency ⁇ 2, the vibration wave generated in the living body 9 at the target depth is attenuated before reaching the pressure sensing unit 26.
  • the vibration wave generated in the living body 9 by the light modulated at the frequency ⁇ 1 reflects the vibration wave generated from the mixture of the vibration wave generated from the living body water existing near the dermis and the glucose in the blood vessel bed.
  • the vibration wave generated in the living body 9 by the light modulated at the frequency ⁇ 2 mainly reflects the vibration wave generated from the body water existing near the dermis.
  • the intensity of the vibration wave is inversely proportional to the frequency and the depth.
  • the frequency ⁇ 2 is higher than the frequency ⁇ 1.
  • the second modulator 25 modulates the intensity of the light emitted by the second irradiator 15 at the frequency ⁇ 3, which is a frequency different from the frequencies ⁇ 1 and ⁇ 2.
  • the concentration measuring device 2 does not necessarily need to include only one second modulator 25.
  • the concentration measuring device 2 may include two or more second modulators 25.
  • FIG. 8 is a diagram showing an example of the structure of the pressure-sensitive section 26 in the second embodiment.
  • the pressure sensing unit 26 detects a vibration wave generated in the living body 9 by the light emitted by the first irradiation unit 14.
  • the pressure-sensitive portion 26 includes a piezoelectric film 261 formed of a piezoelectric material such as polyvinylidene fluoride, and a holder 262 that holds the piezoelectric film 261 while applying tension to the piezoelectric film 261.
  • the piezoelectric body When pressure is applied, the piezoelectric body generates a voltage proportional to the magnitude of the applied pressure.
  • the piezoelectric body may be any piezoelectric body that generates a voltage proportional to the magnitude of the applied pressure when the pressure is applied.
  • the piezoelectric body may be, for example, a microphone.
  • the holder 262 is made of an elastic material such as silicon rubber, covers one surface of the piezoelectric film 261, and is connected to the outer edge of the piezoelectric film 261.
  • the holder 262 is formed so as not to come into contact with the piezoelectric film 261 except at the outer edge thereof.
  • an elastic force of the holder 262 is generated outward with respect to the outer edge of the piezoelectric film 261, and the piezoelectric film 261 is tensioned.
  • the shape of the holder 262 as shown in FIG.
  • the holder 262 may include an acoustic tube.
  • An acoustic tube is a device that enhances vibration of sound waves generated by heat waves. In this way, when the piezoelectric film 261 and the living body 9 are in contact with each other, tension is applied to the piezoelectric film 261 so that the piezoelectric film 261 and the living body 9 can be brought into close contact with each other.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the information processing unit 200 according to the second embodiment.
  • the information processing unit 200 includes a control unit 210, a first amplitude acquisition unit 220, a second amplitude acquisition unit 230, a correction unit 240, a temperature information acquisition unit 250, and a concentration acquisition unit 260.
  • the control unit 210 controls the operations of the first irradiation unit 14, the first modulation unit 24, the second irradiation unit 15, the second modulation unit 25, and the pressure sensitive unit 26.
  • the control unit 210 controls, for example, the timing at which the first irradiation unit 14 and the second irradiation unit 15 irradiate the living body 9 with light.
  • the controller 210 controls, for example, the modulation frequency of the first modulator 24 and the modulation frequency of the second modulator 25.
  • the first amplitude acquisition unit 220 detects the amplitude of the vibration wave detected by the pressure sensing unit 26 (hereinafter, “low temperature”). "Amplitude of state”). More specifically, the first amplitude acquisition unit 220 acquires the amplitude in the low temperature state based on the voltage generated by the piezoelectric body included in the pressure sensing unit 26. The amplitude of the vibration wave is proportional to the intensity of the transmitted light of the light with which the living body 9 is irradiated.
  • the second amplitude acquisition unit 230 detects the amplitude of the vibration wave detected by the pressure sensing unit 26 when the living body 9 is irradiated with the light of the first wavelength and the light of the second wavelength having the intensity E2 (hereinafter, referred to as “high temperature state”). "Amplitude of.”). More specifically, the second amplitude acquisition unit 230 acquires the amplitude in the high temperature state based on the voltage generated by the piezoelectric body included in the pressure sensing unit 26. The second amplitude acquisition unit 230 outputs the acquired amplitude of the vibration wave to the correction unit 240.
  • the correction unit 240 acquires the second correction coefficient based on the information indicating the amplitude in the low temperature state and the amplitude in the high temperature state (hereinafter referred to as “second measurement result information”).
  • the second correction coefficient is a value that corrects the amplitude in the low temperature state and the amplitude in the high temperature state, which are the measurement results.
  • the second correction coefficient is a value that changes according to the amount of water.
  • the second correction coefficient is a value that changes depending on the wavelength of the light with which the living body 9 is irradiated.
  • the second correction coefficient is a value according to the performance of the pressure sensitive unit 26. That is, the second correction coefficient is a value representing the influence of the environment.
  • the environmental influence is, for example, the amount of water
  • the environmental influence is, for example, the absorbance of water for the first wavelength and the absorbance of water for the second wavelength.
  • the influence of the environment is, for example, the performance of the pressure sensitive unit 26.
  • the correction unit 240 acquires the amount of water of the living body 9 based on the second measurement result information, and acquires the second correction coefficient based on the acquired amount of water.
  • the correction unit 240 acquires the amount of water of the living body 9 based on the amplitude of the low temperature state and the amplitude of the high temperature state, and based on the acquired amount of water, the first wavelength, and the second wavelength, 2
  • the correction coefficient may be acquired.
  • the correction unit 240 may acquire the amount of water in any way.
  • the correction unit 240 may acquire the amount of water by multivariate analysis, for example.
  • the correction unit 240 acquires the amount of water based on, for example, a learning model that is learned in advance by a machine learning method such as a neural network and that represents the relationship between the amplitude of the low temperature state, the amplitude of the high temperature state, and the amount of water. May be.
  • the correction unit 240 for example, learns the relationship between the amplitude in the low temperature state, the amplitude in the high temperature state, the first wavelength, the second wavelength, and the amount of water, which has been learned in advance by a machine learning method such as a neural network.
  • the amount of water may be obtained based on the model.
  • the correction unit 240 corrects the amplitude in the low temperature state and the amplitude in the high temperature state based on the acquired second correction coefficient.
  • the corrected value of the amplitude of the vibration wave acquired by the first amplitude acquisition unit 220 is also referred to as the low temperature state amplitude.
  • the corrected value of the amplitude of the vibration wave acquired by the second amplitude acquisition unit 230 is also referred to as the high temperature state amplitude.
  • the temperature information acquisition unit 250 acquires temperature information based on the second measurement result information.
  • the temperature information acquisition unit 250 may acquire the temperature information by any method as long as the temperature information can be acquired.
  • the temperature information acquisition unit 250 may acquire the temperature information by multivariate analysis, for example.
  • the temperature information acquisition unit 250 may acquire the temperature information based on a learning model that is learned in advance by a machine learning method such as a neural network and that represents the relationship between the second measurement result information and the temperature information.
  • the concentration acquisition unit 260 acquires the glucose concentration in the living body 9 by the second concentration acquisition method based on the second measurement result information and the temperature information.
  • the second concentration acquisition method may be any method as long as the glucose concentration can be acquired based on the second measurement result information and the temperature information.
  • the second concentration acquisition method may be, for example, a multivariate analysis method.
  • the second concentration acquisition method may be a method of acquiring the glucose concentration based on the second concentration learning model when the second concentration learning model is stored in advance in the auxiliary storage device 23.
  • the second concentration learning model is a learning model learned by machine learning such as a neural network, and represents the relationship between the temperature information and the second measurement result information and the glucose concentration.
  • FIG. 10 is a flowchart showing an example of the flow of processing in which the information processing unit 200 according to the second embodiment acquires the glucose concentration.
  • the first irradiation unit 14 irradiates the living body 9 with light of the first wavelength
  • the second irradiation unit 15 irradiates the living body 9 with light of the second wavelength having the intensity E1.
  • the first amplitude acquisition unit 220 acquires the amplitude in the low temperature state based on the vibration wave detected by the pressure sensing unit 26.
  • the first amplitude acquisition unit 220 outputs the acquired amplitude in the low temperature state to the correction unit 240 (step S201).
  • the irradiation by the first irradiation unit 14 and the irradiation by the second irradiation unit 15 may be performed at the same time, or may be executed with a predetermined time difference.
  • the first irradiation unit 14 irradiates the living body 9 with light of the first wavelength
  • the second irradiation unit 15 irradiates the living body 9 with light of the second wavelength having the intensity E2.
  • the second amplitude acquisition unit 230 acquires the amplitude in the high temperature state based on the vibration wave detected by the pressure sensing unit 26.
  • the second amplitude acquisition unit 230 outputs the acquired amplitude in the high temperature state to the correction unit 240 (step S202).
  • the irradiation by the first irradiation unit 14 and the irradiation by the second irradiation unit 15 may be performed at the same time, or may be executed with a predetermined time difference.
  • the correction unit 240 acquires the second correction coefficient based on the amplitude of the low temperature state and the amplitude of the high temperature state, and corrects the amplitude of the low temperature state and the amplitude of the high temperature state based on the acquired second correction coefficient (step S203). ).
  • the temperature information acquisition unit 250 acquires temperature information based on the second measurement result information (step S204).
  • the concentration acquisition unit 260 acquires the glucose concentration by the second concentration acquisition method based on the temperature information and the second measurement result information (step S205).
  • the concentration measuring device 2 of the second embodiment configured as described above includes the concentration acquisition unit 260, the glucose concentration of the living body 9 can be acquired based on the second measurement result information. Therefore, the concentration measuring device 2 of the second embodiment can measure the concentration of the target component contained in the measurement target using a simple device.
  • the pressure sensitive portion 26 in the second embodiment is not limited to the pressure sensitive portion 26 shown in FIG.
  • the pressure sensitive portion 26 may be formed only from the piezoelectric film 261, and may be attached or wound around the surface of the living body.
  • the pressure-sensitive section 26 may be an element such as a microphone or a piezoelectric element instead of the piezoelectric film 261, or a system that applies a laser beam to detect a minute fluctuation.
  • the concentration measuring device 1 of the first embodiment and the concentration measuring device 2 of the second embodiment perform irradiation of excitation light under different conditions a plurality of times, so that the glucose concentration of the living body 9 is reduced. You may measure.
  • the concentration measuring devices 1 and 2 measure the glucose concentration according to the measurement results of irradiation of the excitation light a plurality of times under different conditions, so that the concentration measuring devices 1 and 2 measure the glucose concentration. The measurement accuracy can be improved.
  • the correction unit 140 does not necessarily need to acquire the first correction coefficient based on the first measurement result information.
  • the correction unit 140 may acquire a value calculated in advance as the first correction coefficient by performing an experiment in which water having a wavelength of 1600 nanometers and light having a wavelength of 1450 nanometers is irradiated on water.
  • the correction unit 240 does not necessarily need to acquire the second correction coefficient based on the second measurement result information.
  • the correction unit 240 may acquire a value calculated in advance as the second correction coefficient by performing an experiment in which water having a wavelength of 1600 nm and light having a wavelength of 1450 nm are irradiated.
  • the light with which the living body 9 is irradiated is not necessarily CW light.
  • the light with which the living body 9 is irradiated may have a predetermined pattern and may be coded light.
  • the light with which the living body 9 is irradiated may be encoded by the power of light, the irradiation time, or the observation wavelength.
  • the coded light is irradiated as the light for irradiating the living body 9, so that the measurement accuracy of the glucose concentration by the concentration measuring device 1 is higher than that when the light for irradiating the living body 9 is the CW light. Is improved.
  • the concentration measuring device 1 includes, for example, a first modulator 24 and a second modulator 25, and controls the operations of the first modulator 24 and the second modulator 25 by the controller 110 so that the living body 9 can be controlled.
  • the illuminating light may be encoded.
  • the concentration measuring device 1a may irradiate the living body 9 with coded light having a predetermined irradiation pattern, similarly to the concentration measuring device 1.
  • the second wavelength is a wavelength at which the absorbance of glucose, which is the target component, is smaller than the absorbance of water, which is the non-target component, and is a wavelength that changes the absorption spectrum of water to a predetermined magnitude or more. Can be any wavelength. If the second wavelength is a wavelength that shifts the absorption spectrum of the non-target component such that the shift amount of the absorption spectrum of the non-target component can be measured by the concentration measuring device 1, for example, Such a wavelength may be used.
  • the light of the second wavelength may be a terahertz wave or ultraviolet light, for example.
  • the second wavelength may be the wavelength at the position of the inflection point of the absorption spectrum of the non-target component.
  • the concentration measuring devices 1 and 2 do not necessarily need to include only one second irradiation unit 15.
  • the concentration measuring device 1 and the concentration measuring device 2 may include two or more second irradiation units 15.
  • the concentration measuring device 2 includes two or more second irradiation units 15. The case is the same except that the glucose concentration is acquired based on the amplitude of the vibration wave instead of the glucose concentration is acquired based on the intensity of transmitted light.
  • the concentration measuring device 1 including one or more second irradiation units 15 is referred to as a concentration measuring device 1a.
  • each of the second irradiation units 15 included in the concentration measuring device 1a is referred to as an nth irradiation unit 15-(n-1) (n is an integer of 2 or more and N or less. N is an integer of 2 or more).
  • the second irradiation unit 15-1 is, for example, the second irradiation unit 15 in the first embodiment.
  • FIG. 11 is a diagram showing an example of a functional configuration of the concentration measuring device 1a according to the modification.
  • components having the same functions as those of the functional units included in the concentration measuring device 1 are denoted by the same reference numerals as those in FIGS. 1, 3, 7, and 9, and the description thereof will be omitted.
  • the concentration measuring device 1a includes an n-th irradiation unit 15-(n-1) in place of the second irradiation unit 15, a light receiving unit 16a in place of the light receiving unit 16, and an information processing unit 100 in place.
  • the information processing unit 100a is included in the concentration measuring device 1.
  • the second irradiation unit 15-1 is the same as the second irradiation unit 15 in the first embodiment.
  • the nth irradiator 15-(n-1) irradiates the light of the nth wavelength.
  • the n-th irradiation unit 15-(n-1) is the same as the second irradiation unit 15 except that the wavelength of the light to be irradiated is the n-th wavelength.
  • the nth wavelength is the non-target component excitation light.
  • the light receiving unit 16a not only receives the light emitted by the first irradiation unit 14 and transmitted through the living body 9 and the light emitted by the second irradiation unit 15 and transmitted through the living body 9,
  • the light receiving unit 16 is different from the light receiving unit 16 in that the light emitted by the n-th irradiation unit 15-(n-1) and transmitted through the living body 9 is also received.
  • the information processing unit 100a replaces the result of irradiation of the living body 9 by the first irradiation unit 14 and the second irradiation unit 15 with N number of the first irradiation unit 14 and the n-th irradiation unit 15-(n-1).
  • the information processing unit 100 differs from the information processing unit 100 in that the concentration of glucose is acquired based on the result of irradiation of the living body 9 by the irradiation unit.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of the information processing unit 100a in the modified example.
  • the information processing unit 100 a includes a control unit 110 a in place of the control unit 110, a first intensity acquisition unit 120 a in place of the first intensity acquisition unit 120, and a second intensity acquisition unit 130 in place of the second intensity acquisition unit 130.
  • the information processing unit 100a differs from the information processing unit 100a in that the two-strength acquisition unit 130a is provided.
  • the control unit 110a controls the operations of the first irradiation unit 14, the nth irradiation unit 15-(n-1), and the light receiving unit 16a.
  • the control unit 110a controls the timing at which the first irradiation unit 14 and the nth irradiation unit 15-(n-1) irradiate the living body 9 with light, for example.
  • the first intensity acquisition unit 120a acquires the intensity of the transmitted light in the low temperature state and outputs it to the temperature information acquisition unit 150 and the concentration acquisition unit 160.
  • the low temperature state in the concentration measuring device 1a is a state of water when the living body 9 is irradiated with the light of the first wavelength and the light of the nth wavelength having the intensity E1_n.
  • the transmitted light in the low temperature state in the concentration measuring device 1a is the light transmitted through the water in the low temperature state and received by the light receiving unit 16a.
  • the second intensity acquisition unit 130a acquires the intensity of transmitted light in a high temperature state and outputs it to the temperature information acquisition unit 150 and the concentration acquisition unit 160.
  • the high temperature state in the concentration measuring device 1a is a state of water when the living body 9 is irradiated with the light of the nth wavelength and the light of the nth wavelength of the intensity E2_n.
  • the intensity E2_n is a value larger than the intensity E1_n.
  • the transmitted light in the high temperature state in the concentration measuring device 1a is the light transmitted through the water in the high temperature state and received by the light receiving unit 16a.
  • the concentration measuring apparatus 1a of the modified example configured in this way acquires the glucose concentration based on the result of irradiating the living body 9 with a plurality of non-target component excitation lights.
  • the number is greater than that of the concentration measuring device 1. Therefore, the concentration measuring device 1a can measure the glucose concentration with accuracy higher than the measurement precision of the glucose concentration by the concentration measuring device 1a.
  • the second wavelength and the third wavelength may be any wavelengths as long as they have a predetermined correlation with respect to the shift of the absorption spectrum of the non-target component.
  • the wavelength having a predetermined correlation is a wavelength that changes in correlation with each other due to the shift of the absorption spectrum of the non-target component.
  • the wavelengths having the predetermined correlation may be, for example, two wavelengths located at positions whose signs are opposite to each other with the wavelength of the peak of the absorption spectrum of the non-target component being the origin.
  • the two wavelengths located at positions where the signs are opposite to each other with the wavelength of the peak of the absorption spectrum of the non-target component as the origin are, for example, when the non-target component is water, a wavelength of 1450+70 nm and a wavelength of 1450 nm. It may be two wavelengths, with a wavelength of -70 nanometers. Two wavelengths located at positions whose signs are opposite to each other with the wavelength of the peak of the absorption spectrum of the non-target component being the origin are, for example, when the non-target component is water, a wavelength of 1450+20 nanometers and a wavelength of 1450 nm. It may be two wavelengths, with a wavelength of -50 nanometers.
  • Two wavelengths located at positions where the signs of the peaks of the absorption spectrum of the non-target component are opposite to each other are the inflection points where the signs of the peaks of the absorption spectrum of the non-target component are opposite to the origin.
  • the wavelength may be located at the position of.
  • the wavelengths having a predetermined correlation may be, for example, two wavelengths located at positions whose signs are opposite to each other with the wavelength of the inflection point of the absorption spectrum of the non-target component as the origin.
  • Two wavelengths located at positions whose signs are opposite to each other with the wavelength of the inflection point of the absorption spectrum of the non-target component being the origin are, for example, a wavelength of H+10 nanometers and a wavelength of H-10 nanometers. It may be one wavelength.
  • H is the wavelength of the inflection point of the absorption spectrum of the non-target component.
  • Two wavelengths located at positions whose signs are opposite to each other with the wavelength of the inflection point of the absorption spectrum of the non-target component being the origin are, for example, a wavelength of H+7 nanometers and a wavelength of H-5 nanometers. It may be one wavelength.
  • the wavelengths of the respective non-target component excitation lights are wavelengths having a predetermined correlation. is there.
  • the predetermined correlation between three or more non-target component excitation lights means that, for example, approximately half of the wavelengths are located on the positive side with the wavelength of the peak of the absorption spectrum of the non-target component as the origin, and the remaining non-target components.
  • the relationship may be such that the wavelength of the component excitation light is located on the negative side.
  • the information processing units 100 and 100a may acquire the amount of water based on the first measurement result information.
  • the information processing units 100 and 100a may acquire the amount of water in any way.
  • the information processing units 100 and 100a may acquire the amount of water by multivariate analysis, for example.
  • the information processing units 100 and 100a are, for example, learning models that have been learned in advance by a machine learning method such as a neural network, and the intensity of transmitted light in a low temperature state, the intensity of transmitted light in a high temperature state, and the amount of water.
  • the amount of water may be acquired based on a learning model representing the relationship.
  • the concentration measuring device 1 and the concentration measuring device 2 are machine-learned by a method of multivariate analysis.
  • the glucose concentration can be measured with an accuracy equal to or higher than the measurement accuracy of the glucose concentration measured by the method.
  • the concentration measuring device 1 and the concentration measuring device 2 are often subjected to the machine learning method.
  • the glucose concentration can be measured with accuracy higher than the measurement accuracy of the glucose concentration measured by the method of variable analysis.
  • the concentration measuring device 1 and the concentration measuring device 2 measure the concentration by the method of multivariate analysis, there is a correlation between the wavelengths with respect to the change occurring in the living body 9 for each wavelength with which the living body 9 is irradiated. The measurement accuracy is improved.
  • the concentration measuring device 1 and the concentration measuring device 2 measure the concentration by the method of machine learning, the change occurring in the living body 9 for each wavelength with which the living body 9 is irradiated may not necessarily have a correlation.
  • FIG. 13 is a diagram showing an example of absorption spectra of water and glucose used in the simulation.
  • the water used in the simulation has a spectrum with a maximum at 1450 nanometers.
  • Glucose used in the simulation is a spectrum having a maximum value at 1600 nanometers.
  • the analysis wavelength point indicates a candidate for the second wavelength in the simulation.
  • FIG. 14 shows an error from the true value of the glucose concentration obtained by the multivariate analysis by the concentration measuring devices 1, 2 and 1a when only the light of the second wavelength is irradiated as the non-target component excitation light. It is a figure which shows an example of a simulation result.
  • the simulation is an absorption spectrum of the living body 9 when the temperature of the living body 9 is 28° C. and the glucose concentration is 0%, 0.05%, 0.1%, 0.15% and 0.2% respectively.
  • the absorption spectrum of the living body 9 and the absorption spectrum of the living body 9 when the temperature of the living body 9 is 30° C. and the concentrations of glucose are 0%, 0.05%, 0.1%, 0.15% and 0.2%.
  • a total of 15 spectra with the absorption spectrum of organism 9 in each case of 0.2% were carried out as known. The simulation was performed assuming a true value of 31° C. and a glucose concentration of 0.07%.
  • the horizontal axis of FIG. 14 represents wavelength.
  • the vertical axis of FIG. 14 represents the error.
  • the water estimation error is an error calculated by the simulation, and represents an error between the amount of water acquired by the concentration measuring devices 1, 2 and 1a and the true value.
  • the Glc estimation error is an error calculated by the simulation, and represents an error between the glucose concentration acquired by the concentration measuring devices 1, 2 and 1a and the true value.
  • the temperature estimation error is the error calculated by the simulation, and represents the error between the temperature of water and the true value acquired by the concentration measuring devices 1, 2 and 1a.
  • FIG. 14 shows that the glucose concentration acquired by the multivariate analysis by the concentration measuring devices 1, 2 and 1a when the non-target component excitation light is irradiated with only the light of the second wavelength has an error of 20 from the true value. % To 25%.
  • FIG. 15 shows the concentration of glucose acquired by the multivariate analysis by the concentration measuring devices 1, 2 and 1a when the light of the second wavelength and the light of the third wavelength are irradiated as the non-target component excitation light. It is a figure which shows an example of the simulation result which shows the error with a true value.
  • the simulation was performed assuming that the same information as in FIG. 14 is known. That is, also in FIG. 15, the simulation is the absorption spectrum of the living body 9 when the temperature of the living body 9 is 28° C., and the glucose concentrations are 0%, 0.05%, 0.1%, 0.15%, 0.
  • the concentration of glucose is 0%, 0.05%, 0.1%, 0.15. % And 0.2% of the absorption spectrum of the living body 9 and the absorption spectrum of the living body 9 when the temperature of the living body 9 is 32° C. and the glucose concentrations are 0%, 0.05% and 0.1%, respectively. , 0.15%, 0.2% in each case, and a total of 15 spectra with the absorption spectrum of living body 9 were performed as known. Also, as in FIG. 14, the simulation was performed assuming that the true value was 31° C. and the glucose concentration was 0.07%.
  • the horizontal axis of FIG. 15 represents wavelength.
  • the vertical axis of FIG. 15 represents the error.
  • FIG. 15 shows that when the light of the second wavelength and the light of the third wavelength longer than 1450 nm are irradiated as the non-target component excitation light, the concentration measuring devices 1, 2 and 1a are analyzed by the multivariate analysis. The obtained glucose concentration has an error of 5% to 10% from the true value.
  • FIG. 15 shows that when the light of the second wavelength and the light of the third wavelength of 1450 nm or less are irradiated as the non-target component excitation light, the concentration measuring devices 1, 2 and 1 a are multivariate.
  • the glucose concentration obtained by the analysis shows that the error from the true value is 20% to 25%.
  • the concentration measuring devices 1, 2 and 1a are based on the learning result of the machine learning. It is desirable to obtain the glucose concentration.
  • FIG. 16 is a diagram showing an example of the error between the glucose concentration and the true value acquired by the concentration measuring devices 1, 2 and 1a based on the learning result of machine learning.
  • the machine learning teacher data for obtaining the result of FIG. 16 is that the true value of the glucose concentration is changed in steps of 0.01% from 0.08 to 0.17%, and the temperature is changed from 35° C. to 37° C. This is the concentration of the glucose concentration acquired by the concentration measuring devices 1, 2 and 1a when changed in steps of 0.2° C.
  • FIG. 16 shows the concentration measurement in the case where the concentration measuring devices 1, 2 and 1a acquire the concentration of glucose having a true value of 0.085 to 0.165% at a temperature of 36° C. based on the learned model.
  • FIG. 16 shows the error between the concentration of glucose acquired by the devices 1, 2 and 1a and the true value.
  • FIG. 16 also shows the error between the temperature and the true value acquired by the concentration measuring devices 1, 2 and 1a.
  • FIG. 16 shows that the error between the concentration of glucose and the true value acquired by the concentration measuring devices 1, 2 and 1a is 2% or less when based on the learned model.
  • the concentration measurement devices 1, 2 and 1a are realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device) and FPGA (Field Programmable Gate Array). May be done.
  • the program may be recorded in a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the program may be transmitted via a telecommunication line.
  • the information processing units 100, 200, and 100a may be implemented by using a plurality of information processing devices communicatively connected via a network. Further, the information processing units 100, 200 and 100a may output the measurement result. In addition, the information processing units 100, 200, and 100a may include a display device that displays the measurement result. In this case, the functional units included in the information processing units 100, 200, and 100a may be distributed and implemented in a plurality of information processing devices. For example, the control unit 110, the first intensity acquisition unit 120 and the second intensity acquisition unit 130, the correction unit 140, the temperature information acquisition unit 150, and the concentration acquisition unit 160 may be implemented in different information processing devices. ..
  • the concentration measuring devices 1, 2 and 1a may be implemented by using a plurality of devices communicably connected via a network.
  • the concentration measuring device 1 includes, for example, a light measuring device including the control unit 110, the first irradiation unit 14, the second irradiation unit 15, and the light receiving unit 16, the first intensity acquisition unit 120, and the second intensity acquisition unit 130.
  • a processing unit including the correction unit 140, the temperature information acquisition unit 150, and the concentration acquisition unit 160.
  • the strength E2 does not necessarily have to be stronger than the strength E1 as long as the strength E2 is different from the strength E1.
  • the intensity of the transmitted light and the amplitude of the vibration wave are physical quantities whose squared dimension is proportional to energy.
  • the intensity of the transmitted light and the amplitude of the vibration wave are examples of physical quantities due to changes in the measurement target.
  • strength acquisition part 120 and the 1st amplitude acquisition part 220 are examples of a 1st acquisition part.
  • the second intensity acquisition unit 130 and the second amplitude acquisition unit 230 are examples of the second acquisition unit.
  • the strength E1 is an example of the first strength.
  • the strength E2 is an example of the second strength.
  • the third irradiation unit 15-2 to the Nth irradiation unit 15-(N-1) are examples of M irradiation units. Note that M is an integer of 1 or more.
  • the shift amount of the absorption spectrum is an example of change in the absorption spectrum. The change in the absorption spectrum is not limited to the change in the shift amount and may be the change in the shape of the absorption spectrum.
  • Concentration measuring device 11, 21... CPU, 12, 22... Memory, 13, 23... Auxiliary storage device, 14... First irradiation unit, 15... Second irradiation unit, 16, 16a... Light receiving unit , 100, 100a... Information processing unit, 110, 210... Control unit, 120... First intensity acquisition unit, 130... Second intensity acquisition unit, 140, 240... Correction unit, 150, 250... Temperature information acquisition unit, 160, 260... concentration acquisition section, 24... first modulation section, 25... second modulation section, 26... pressure sensitive section, 220... first amplitude acquisition section, 230... second amplitude acquisition section

Abstract

One embodiment of the present invention is a concentration measurement device comprising a first emission unit for emitting light having a first wavelength, a second emission unit for emitting light having a second wavelength, a first acquisition unit for acquiring a physical quantity caused by a change in an object of measurement when light having the first wavelength and light having a first intensity and the second wavelength are emitted onto the object of measurement, a second acquisition unit for acquiring a physical quantity caused by a change in the object of measurement when light having the first wavelength and light having a second intensity different from the first intensity and the second wavelength are emitted onto the object of measurement, a temperature information acquisition unit for using the acquired physical quantities to acquire information about variation in the temperature of the object of measurement, and a concentration acquisition unit for using the information about the variation in temperature and the acquired physical quantities to acquire the non-target-component concentration of the object of measurement.

Description

濃度測定装置、濃度測定方法及び非一時的記録媒体Density measuring device, density measuring method and non-transitory recording medium
 本発明は、濃度測定装置、濃度測定方法及び非一時的記録媒体に関する。 The present invention relates to a concentration measuring device, a concentration measuring method, and a non-transitory recording medium.
 近年、糖尿病の患者数が爆発的に増加しており、2030年には糖尿病の患者が全世界で5億5000万人に達すると予測されている(非特許文献1参照)。糖尿病の治療は、血糖値管理に基づく食餌・運動療法が基本であり、血糖値管理のために血糖値を1日に数回計測する必要がある。一般的な血糖値測定器では採血を必要とするが、疼痛・衛生面・医療廃棄物が問題となっている。そこで、非侵襲・非観血な血糖値計測装置の確立が渇望されている。 The number of diabetic patients has increased explosively in recent years, and it is predicted that the number of diabetic patients will reach 550 million worldwide in 2030 (see Non-Patent Document 1). The basic treatment for diabetes is diet/exercise based on blood glucose level control, and it is necessary to measure the blood glucose level several times a day for the blood glucose level control. Although a general blood glucose meter requires blood sampling, it has problems with pain, hygiene, and medical waste. Therefore, the establishment of a non-invasive and non-invasive blood glucose level measuring device is eagerly desired.
 このような要求に応じて、光の透過・反射・散乱に関する情報から血糖値を計測する方法が精力的に研究されている(特許文献1~4、非特許文献2参照)。しかしながら、これらの方法は、血糖値管理に必要な計測精度(±10ミリグラム毎デシリットル程度)に対して透過光強度が不十分なため、正確な血糖値推定が困難であるという問題がある。 In response to such demands, methods for measuring blood glucose levels from information on light transmission/reflection/scattering have been vigorously studied (see Patent Documents 1 to 4 and Non-Patent Document 2). However, these methods have a problem that it is difficult to accurately estimate the blood glucose level because the transmitted light intensity is insufficient with respect to the measurement accuracy (about ±10 milligrams/deciliter) required for managing the blood glucose level.
 これに対して、物質に吸収された光エネルギーが熱波・弾性波に変換される光音響効果を利用した血糖値計測法が研究されている(特許文献5~6を参照)。これらの方法は、透過光を利用した方法に比べて検出信号が大きく、また、励起光の変調周波数を制御することで計測領域を深さ方向に特定できる特徴を有する(非特許文献3を参照)。 On the other hand, a blood glucose level measuring method using a photoacoustic effect in which light energy absorbed by a substance is converted into a heat wave and an elastic wave has been studied (see Patent Documents 5 to 6). These methods have a feature that a detection signal is larger than a method using transmitted light and that the measurement region can be specified in the depth direction by controlling the modulation frequency of the excitation light (see Non-Patent Document 3). ).
 しかしながら、上述した方法を用いた場合、測定結果に非目的成分である水分に由来する信号による雑音が混ざり、計測された血糖値の信頼性・正確性を著しく低下させてしまうという問題がある。これは、測定対象たる生体に含まれるグルコースの分光スペクトルと水の分光スペクトルが互いに重なり合っているためである。 However, when the above-mentioned method is used, there is a problem that noise due to a signal derived from water, which is a non-target component, is mixed in the measurement result, and the reliability and accuracy of the measured blood glucose level are significantly reduced. This is because the spectral spectrum of glucose and the spectral spectrum of water contained in the living body to be measured overlap each other.
 すなわち、ある波長の光で得られたエネルギーのみを用いてグルコース濃度の計測を行った場合、当該エネルギーがグルコースに由来するものなのか、水に由来するものなのかを区別できないという問題がある。さらに、生体内に多く含まれる水分が種々の要因によって僅かに変化しただけでも、グルコース濃度を誤って計測するおそれがある。 That is, when the glucose concentration is measured using only the energy obtained with light of a certain wavelength, there is a problem that it cannot be distinguished whether the energy is derived from glucose or water. Furthermore, there is a possibility that the glucose concentration may be erroneously measured even if the amount of water contained in the living body is slightly changed due to various factors.
 この問題を解決する一つの方法として、対象物体から検出される分光スペクトルを複数の波長において計測し、多変量解析やニューラルネットワークを用いて、測定対象に含まれる物質の濃度を推定する方法が知られている(非特許文献4を参照)。 As one method to solve this problem, a method of measuring the spectral spectrum detected from the target object at a plurality of wavelengths and using multivariate analysis or a neural network to estimate the concentration of the substance contained in the measurement target is known. (See Non-Patent Document 4).
特開平10-325794号公報JP, 10-325794, A 特開平11-216131号公報JP, 11-216131, A 特開2004-147706号公報Japanese Patent Laid-Open No. 2004-147706 特開2005-37253号公報JP, 2005-37253, A 特開2008-191160号公報JP, 2008-191160, A 特開2009-165634号公報JP, 2009-165634, A
 しかしながら、上述した非特許文献4に記載の方法のように、複数の波長において分光スペクトルの計測を行う場合、複数の波長の光源と検出装置を配置する必要があり、装置が複雑化し、また計測に時間が掛かってしまうという問題がある。特に、生体におけるグルコースの量は微量であり、分光スペクトルの計測を行う全ての波長において高い計測精度が求められる。そのため、非特許文献4に記載の方法を用いる場合、装置の複雑化及び計測の長時間化の問題は顕著に現れる。 However, as in the method described in Non-Patent Document 4 described above, when measuring a spectral spectrum at a plurality of wavelengths, it is necessary to arrange a light source and a detection device for a plurality of wavelengths, which complicates the device and makes measurement. There is a problem that it takes time. In particular, the amount of glucose in the living body is very small, and high measurement accuracy is required at all wavelengths for measuring the spectrum. Therefore, when the method described in Non-Patent Document 4 is used, the problems of complication of the device and lengthening of the measurement become prominent.
 そこで、これらの問題を解決するために、本発明は、簡素な装置を用いて測定対象に含まれる目的成分の濃度を測定することが可能な技術の提供を目的とする。 Therefore, in order to solve these problems, an object of the present invention is to provide a technique capable of measuring the concentration of a target component contained in a measurement target using a simple device.
 本発明の一態様は、目的成分と非目的成分とを有する測定対象に第1の波長の光を照射する第1照射部と、前記第1の波長と異なる波長である第2の波長の光を前記測定対象に照射する第2照射部と、前記第1照射部が前記第1の波長の光を前記測定対象に照射し前記第2照射部が前記第2の波長の光を第1の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第1取得部と、前記第1照射部が前記第1の波長の光を前記測定対象に照射し、前記第2照射部が前記第2の波長の光を前記第1の強度と異なる第2の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第2取得部と、前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて前記測定対象の温度変化に関する情報である温度情報を取得する温度情報取得部と、前記温度情報と前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて、前記非目的成分の濃度を取得する濃度取得部と、を備える濃度測定装置である。 One embodiment of the present invention includes a first irradiation unit that irradiates a measurement target having a target component and a non-target component with light having a first wavelength, and light having a second wavelength that is a wavelength different from the first wavelength. A second irradiation unit that irradiates the measurement target with the first irradiation unit irradiates the measurement target with light having the first wavelength, and the second irradiation unit first emits light having the second wavelength. When irradiating the measurement target with intensity, a first acquisition unit that acquires a physical quantity resulting from a change in the measurement target, and the first irradiation unit irradiates the measurement target with light of the first wavelength, The 2nd acquisition which acquires the physical quantity resulting from the change of the above-mentioned measuring object, when the above-mentioned 2nd irradiation part irradiates the above-mentioned measuring object with the 2nd intensity different from the 1st above-mentioned light of the 2nd wavelength. Unit, a temperature information acquisition unit that acquires temperature information that is information related to a temperature change of the measurement target based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit, and the temperature information. And a concentration acquisition unit that acquires the concentration of the non-target component based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit.
 本発明の一態様は、上記の濃度測定装置であって、前記濃度取得部は、多変量解析によって前記濃度を取得する。 One aspect of the present invention is the above-described concentration measuring device, wherein the concentration acquisition unit acquires the concentration by multivariate analysis.
 本発明の一態様は、上記の濃度測定装置であって、前記濃度取得部は、予め学習された学習モデルであって、前記第1取得部が取得した物理量と前記第2取得部が取得した物理量と前記温度情報と前記濃度との関係を表す学習モデルに基づいて、前記濃度を取得する。 One mode of the present invention is the above-mentioned concentration measuring device, wherein the concentration acquisition unit is a learning model learned in advance, and the physical quantity acquired by the first acquisition unit and the second acquisition unit are acquired. The concentration is acquired based on a learning model representing the relationship among the physical quantity, the temperature information, and the concentration.
 本発明の一態様は、上記の濃度測定装置であって、前記第2の波長は、前記目的成分の吸光度が前記非目的成分の吸光度より小さい波長である。 One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength is a wavelength at which the absorbance of the target component is smaller than that of the non-target component.
 本発明の一態様は、上記の濃度測定装置であって、前記第2の波長は、前記非目的成分の吸収スペクトルを所定の大きさ以上に変化させる波長である。 One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength is a wavelength that changes the absorption spectrum of the non-target component to a predetermined magnitude or more.
 本発明の一態様は、上記の濃度測定装置であって、前記第2の波長は、前記非目的成分の吸光度が極大である波長である。 One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength is a wavelength at which the absorbance of the non-target component is maximum.
 本発明の一態様は、上記の濃度測定装置であって、前記第2の波長は、前記非目的成分の吸光度が極大である波長を中心とした±70ナノメートルの範囲内の波長である。 One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength is within a range of ±70 nanometers centered on the wavelength at which the absorbance of the non-target component is maximum.
 本発明の一態様は、上記の濃度測定装置であって、前記第1の波長は、前記目的成分の吸光度が極大である波長を中心とした±70ナノメートルの範囲内の波長である。 One aspect of the present invention is the above-described concentration measuring device, wherein the first wavelength is within a range of ±70 nanometers centered on the wavelength at which the absorbance of the target component is maximum.
 本発明の一態様は、上記の濃度測定装置であって、前記第1の波長は、目的成分の吸光度が極大である波長である。 One aspect of the present invention is the above-described concentration measuring device, wherein the first wavelength is a wavelength at which the absorbance of the target component is maximum.
 本発明の一態様は、上記の濃度測定装置であって、前記第1取得部が取得した前記物理量と前記第2取得部が取得した前記物理量とに基づいて、前記物理量に対する環境の影響を表す値である補正係数を取得し、取得した前記補正係数によって、前記第1取得部が取得した前記物理量と前記第2取得部が取得した前記物理量とを補正する補正部をさらに備える。 One mode of the present invention is the above-mentioned concentration measuring device, showing the influence of the environment on the physical quantity based on the physical quantity acquired by the first acquisition section and the physical quantity acquired by the second acquisition section. A correction unit that acquires a correction coefficient that is a value and corrects the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit by the acquired correction coefficient is further included.
 本発明の一態様は、上記の濃度測定装置であって、前記環境の影響は、前記非目的成分の量である。 One aspect of the present invention is the above-mentioned concentration measuring device, wherein the influence of the environment is the amount of the non-target component.
 本発明の一態様は、上記の濃度測定装置であって、前記環境の影響は、前記第1の波長に対する前記非目的成分の吸光度と前記第2の波長に対する前記非目的成分の吸光度とである。 One mode of the present invention is the above-mentioned concentration measuring device, wherein the influence of the environment is the absorbance of the non-target component with respect to the first wavelength and the absorbance of the non-target component with respect to the second wavelength. ..
 本発明の一態様は、上記の濃度測定装置であって、前記環境の影響は、前記第1の波長の光を受光する受光部の性能である。 One aspect of the present invention is the above-described concentration measuring device, wherein the influence of the environment is the performance of the light receiving unit that receives the light of the first wavelength.
 本発明の一態様は、上記の濃度測定装置であって、前記第1の波長の光と、前記第2の波長の光との少なくとも一方は、符号化された光である。 One aspect of the present invention is the above-mentioned concentration measuring device, wherein at least one of the light of the first wavelength and the light of the second wavelength is coded light.
 本発明の一態様は、上記の濃度測定装置であって、目的成分と非目的成分とを有する測定対象に第nの波長の光を照射する第n照射部(nは3以上の整数)をさらに備える。 One embodiment of the present invention is the above-described concentration measuring device, comprising an n-th irradiation unit (n is an integer of 3 or more) that irradiates a measurement target having a target component and a non-target component with light having an n-th wavelength. Further prepare.
 本発明の一態様は、上記の濃度測定装置であって、前記第2の波長と第3の波長とは、前記非目的成分の吸収スペクトルのシフトに関する所定の相関関係を有する波長である。 One aspect of the present invention is the above-described concentration measuring device, wherein the second wavelength and the third wavelength are wavelengths having a predetermined correlation with respect to the shift of the absorption spectrum of the non-target component.
 本発明の一態様は、上記の濃度測定装置であって、前記第2の波長と前記第3の波長とは、前記非目的成分の吸収スペクトルのピークの波長を原点として互いに符号が逆である位置に位置する波長である。 One embodiment of the present invention is the above-described concentration measuring apparatus, wherein the second wavelength and the third wavelength have opposite signs with respect to the origin of the wavelength of the peak of the absorption spectrum of the non-target component. It is the wavelength located at the position.
 本発明の一態様は、上記の濃度測定装置であって、前記第2の波長と前記第3の波長とは、前記非目的成分の吸収スペクトルの変曲点の波長を原点として互いに符号が逆である位置に位置する波長である。 One embodiment of the present invention is the above-described concentration measuring apparatus, wherein the second wavelength and the third wavelength have opposite signs with respect to the wavelength of the inflection point of the absorption spectrum of the non-target component as the origin. Is a wavelength located at a position.
 本発明の一態様は、上記の濃度測定装置であって、前記物理量は前記測定対象に照射された光の透過光、散乱光又は反射光の強度である。 One aspect of the present invention is the above-mentioned concentration measuring device, wherein the physical quantity is intensity of transmitted light, scattered light, or reflected light of the light with which the measurement target is irradiated.
 本発明の一態様は、上記の濃度測定装置であって、前記物理量は、前記測定対象に照射された光の透過光の強度である。 One aspect of the present invention is the above-described concentration measuring device, wherein the physical quantity is the intensity of transmitted light with which the measurement target is irradiated.
 本発明の一態様は、上記の濃度測定装置であって、前記物理量は前記測定対象に照射された光によって前記測定対象に発生した振動波の振幅である。 One aspect of the present invention is the above-described concentration measuring device, wherein the physical quantity is an amplitude of a vibration wave generated in the measurement target by the light with which the measurement target is irradiated.
 本発明の一態様は、上記の濃度測定装置であって、前記振動波は前記測定対象に照射された光によって前記測定対象に発生した熱波の振幅である。 One aspect of the present invention is the above-described concentration measuring device, wherein the vibration wave is an amplitude of a heat wave generated in the measurement target by the light with which the measurement target is irradiated.
 本発明の一態様は、上記の濃度測定装置であって、前記振動波は前記測定対象に照射された光によって前記測定対象に発生した熱波による音波の振幅である。 One aspect of the present invention is the above-described concentration measuring device, wherein the vibration wave is an amplitude of a sound wave due to a heat wave generated in the measurement target by the light with which the measurement target is irradiated.
 本発明の一態様は、上記の濃度測定装置であって、圧力が加わったときに前記圧力の大きさに比例する電圧を発生させる圧電体と、前記圧電体に張力を与えて前記圧電体を前記測定対象に密着させる保持具とを備え、前記第1取得部及び前記第2取得部は、前記圧電体が発生した電圧に基づいて前記物理量を取得する。 One embodiment of the present invention is the above-described concentration measuring device, wherein a piezoelectric body that generates a voltage proportional to the magnitude of the pressure when pressure is applied, and a tension member that applies tension to the piezoelectric body A holder that is in close contact with the measurement target is provided, and the first acquisition unit and the second acquisition unit acquire the physical quantity based on the voltage generated by the piezoelectric body.
 本発明の一態様は、上記の濃度測定装置であって、前記温度情報は、前記非目的成分の吸収スペクトルのシフト量である。 One aspect of the present invention is the above-described concentration measuring device, wherein the temperature information is a shift amount of the absorption spectrum of the non-target component.
 本発明の一態様は、目的成分と非目的成分とを有する測定対象に第1の波長の光を照射する第1照射部と、前記第1の波長と異なる波長である第2の波長の光を前記測定対象に照射する第2照射部と、前記第1照射部が前記第1の波長の光を前記測定対象に照射し前記第2照射部が前記第2の波長の光を第1の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第1取得部と、前記第1照射部が前記第1の波長の光を前記測定対象に照射し、前記第2照射部が前記第2の波長の光を前記第1の強度と異なる第2の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第2取得部と、前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて前記測定対象の温度変化に関する情報である温度情報を取得する温度情報取得部と、前記温度情報と前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて、前記非目的成分の濃度を取得する濃度取得部と、を備える濃度測定装置が行う濃度測定方法であって、前記測定対象に前記第1の波長の光を照射する第1照射ステップと、前記第2の波長の光を前記測定対象に照射する第2照射ステップと、前記第1照射部が前記第1の波長の光を前記測定対象に照射し前記第2照射部が前記第2の波長の光を第1の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第1取得ステップと、前記第1照射部が前記第1の波長の光を前記測定対象に照射し、前記第2照射部が前記第2の波長の光を前記第1の強度と異なる第2の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第2取得ステップと、前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて前記測定対象の温度変化に関する情報である温度情報を取得する温度情報取得ステップと、前記温度情報と前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて、前記非目的成分の濃度を取得する濃度取得ステップと、を有する濃度測定方法である。 One embodiment of the present invention includes a first irradiation unit that irradiates a measurement target having a target component and a non-target component with light having a first wavelength, and light having a second wavelength that is a wavelength different from the first wavelength. A second irradiation unit that irradiates the measurement target with the first irradiation unit irradiates the measurement target with light having the first wavelength, and the second irradiation unit first emits light having the second wavelength. When irradiating the measurement target with intensity, a first acquisition unit that acquires a physical quantity resulting from a change in the measurement target, and the first irradiation unit irradiates the measurement target with light of the first wavelength, The 2nd acquisition which acquires the physical quantity resulting from the change of the above-mentioned measuring object, when the above-mentioned 2nd irradiation part irradiates the above-mentioned measuring object with the 2nd intensity different from the 1st above-mentioned light of the 2nd wavelength. Unit, a temperature information acquisition unit that acquires temperature information that is information related to a temperature change of the measurement target based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit, and the temperature information. And a concentration acquisition unit that acquires the concentration of the non-target component based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit. There, a first irradiation step of irradiating the measurement target with light of the first wavelength, a second irradiation step of irradiating the measurement target with light of the second wavelength, and the first irradiation unit A physical quantity resulting from a change in the measurement target when the measurement target is irradiated with light of a first wavelength and the second irradiation unit irradiates the measurement target with light of the second wavelength at a first intensity. A first acquisition step of acquiring, and the first irradiation unit irradiates the measurement target with light having the first wavelength, and the second irradiation unit sets light having the second wavelength as the first intensity. When the measurement target is irradiated with different second intensities, a second acquisition step of acquiring a physical quantity due to a change of the measurement target, a physical quantity acquired by the first acquisition unit, and the second acquisition unit A temperature information acquisition step of acquiring temperature information that is information related to the temperature change of the measurement target based on the physical quantity that has been measured, the temperature information, the physical quantity acquired by the first acquisition unit, and the physical quantity acquired by the second acquisition unit. And a concentration acquisition step of acquiring the concentration of the non-target component based on the following.
 本発明の一態様は、請求項1に記載の濃度測定装置としてコンピュータを機能させるためのプログラムを記憶する非一時的記録媒体である。 One aspect of the present invention is a non-transitory recording medium that stores a program for causing a computer to function as the concentration measuring device according to claim 1.
 本発明により、簡素な装置を用いて測定対象に含まれる目的成分の濃度を測定することが可能となる。 According to the present invention, it becomes possible to measure the concentration of the target component contained in the measurement target using a simple device.
第1の実施形態の濃度測定装置1の機能構成の一例を示す図である。It is a figure showing an example of functional composition of concentration measuring device 1 of a 1st embodiment. 第1の実施形態における第1の波長の光と第2の波長の光との目的成分の吸収スペクトルと非目的成分の吸収スペクトルとの関係を示す図である。It is a figure which shows the relationship between the absorption spectrum of the target component of the light of the 1st wavelength in the 1st Embodiment, and the light of the 2nd wavelength, and the absorption spectrum of a non-target component. 第1の実施形態における情報処理部100の機能構成の一例を示す図である。It is a figure showing an example of functional composition of information processor 100 in a 1st embodiment. 第1の実施形態における情報処理部100がグルコースの濃度を取得する処理の流れの一例を示すフローチャートである。5 is a flowchart showing an example of a flow of processing in which the information processing unit 100 according to the first embodiment acquires a glucose concentration. 第1の実施形態における生体9の吸収スペクトルの第2の波長の強度に対する依存性を示すシミュレーション結果を示す第1の図である。It is a 1st figure which shows the simulation result which shows the dependence with respect to the intensity|strength of the 2nd wavelength of the absorption spectrum of the biological body 9 in 1st Embodiment. 第1の実施形態における生体9の吸収スペクトルの第2の波長の強度に対する依存性を示すシミュレーション結果を示す第2の図である。It is a 2nd figure which shows the simulation result which shows the dependence with respect to the intensity|strength of the 2nd wavelength of the absorption spectrum of the biological body 9 in 1st Embodiment. 第2の実施形態の濃度測定装置2の機能構成の一例を示す図である。It is a figure which shows an example of a functional structure of the concentration measuring apparatus 2 of 2nd Embodiment. 第2の実施形態における感圧部26の構造の一例を示す図である。It is a figure which shows an example of a structure of the pressure sensitive part 26 in 2nd Embodiment. 第2の実施形態における情報処理部200の機能構成の一例を示す図である。It is a figure which shows an example of a functional structure of the information processing part 200 in 2nd Embodiment. 第2の実施形態における情報処理部200がグルコースの濃度を取得する処理の流れの一例を示すフローチャートである。11 is a flowchart showing an example of the flow of a process in which the information processing unit 200 according to the second embodiment acquires a glucose concentration. 変形例の濃度測定装置1aの機能構成の一例を示す図である。It is a figure showing an example of functional composition of concentration measuring device 1a of a modification. 変形例における情報処理部100aの機能構成の一例を示す図である。It is a figure which shows an example of a functional structure of the information processing part 100a in a modification. シミュレーションに用いられた水とグルコースとの吸収スペクトルの一例を示す図である。It is a figure which shows an example of the absorption spectrum of water and glucose used for simulation. 多変量解析によって取得されたグルコースの濃度の真値との誤差を示すシミュレーション結果の一例を示す第1の図である。It is a 1st figure which shows an example of the simulation result which shows the error with the true value of the concentration of glucose acquired by the multivariate analysis. 多変量解析によって取得したグルコースの濃度の真値との誤差を示すシミュレーション結果の一例を示す第2の図である。It is a 2nd figure which shows an example of the simulation result which shows the error with the true value of the concentration of glucose acquired by the multivariate analysis. 濃度測定装置1、2及び1aが機械学習の学習結果に基づいて取得したグルコースの濃度と真値との誤差の一例を示す図である。It is a figure which shows an example of the difference|error of the concentration of glucose and true value which the concentration measuring devices 1, 2, and 1a acquired based on the learning result of machine learning.
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。以下、本発明の実施形態の一例として、生体内の血糖値(グルコース濃度)を計測するための形態を例に挙げ、計測の目的成分がグルコース、非目的成分が水であると仮定して説明する。しかしながら、これらの対象物質が異なる場合や非目的成分の数が複数となる場合でも、同様の概念によって本発明を適用することが可能である。例えば、目的成分をグルコースとし、非目的成分を水、タンパク質及び脂質とする場合や、目的成分をヘモグロビンとし、非目的成分をタンパク質や脂質とする場合などが挙げられる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, as an example of an embodiment of the present invention, a form for measuring a blood glucose level (glucose concentration) in a living body will be described as an example, and it is assumed that a target component of measurement is glucose and a non-target component is water. To do. However, even when these target substances are different or the number of non-target components is plural, the present invention can be applied by the same concept. For example, glucose is used as the target component and water, protein and lipid are used as the non-target components, and hemoglobin is used as the target component and proteins and lipids are used as the non-target components.
 (原理の概要)
 まず、実施形態の原理の概要を説明する。説明に先立っていくつかの言葉の定義をしておく。以下、グルコースの吸光度が大きい波長の光を目的成分励起光という。以下、水の吸光度が大きい波長の光を非目的成分励起光という。以下、目的成分励起光と強度が強度E1である非目的成分励起光(以下「第1非目的成分励起光」という。)とが測定対象の生体に照射された場合における目的成分励起光の透過光を第1目的成分透過光という。以下、目的成分励起光と第1非目的成分励起光とが測定対象の生体に照射された場合における非目的成分励起光I1の透過光を第1非目的成分透過光という。以下、目的成分励起光と強度が第2強度E2である非目的成分励起光(以下「第2非目的成分励起光」という。)とが測定対象の生体に照射された場合における目的成分励起光の透過光を第2目的成分透過光という。第2強度E2は第1強度E1よりも大きな値である。以下、目的成分励起光と第2強度の非目的成分励起光とが測定対象の生体に照射された場合における第2強度の非目的成分励起光の透過光を第2非目的成分透過光という。
(Outline of principle)
First, the outline of the principle of the embodiment will be described. Before explaining, some words are defined. Hereinafter, light having a wavelength at which glucose has a high absorbance is referred to as target component excitation light. Hereinafter, light having a wavelength at which water absorbs light is referred to as non-target component excitation light. Hereinafter, the target component excitation light is transmitted when the target component excitation light and the non-target component excitation light whose intensity is E1 (hereinafter referred to as “first non-target component excitation light”) are applied to the living body to be measured. The light is called the first target component transmitted light. Hereinafter, the transmitted light of the non-target component excitation light I1 when the target component excitation light and the first non-target component excitation light are applied to the living body to be measured is referred to as the first non-target component transmitted light. Hereinafter, the target component excitation light when the target component excitation light and the non-target component excitation light whose intensity is the second intensity E2 (hereinafter referred to as “second non-target component excitation light”) are irradiated to the living body to be measured. The transmitted light is referred to as the second target component transmitted light. The second strength E2 is a value larger than the first strength E1. Hereinafter, the transmitted light of the non-target component excitation light of the second intensity when the target component excitation light and the non-target component excitation light of the second intensity are applied to the living body to be measured is referred to as the second non-target component transmitted light.
 実施形態の原理の概要の説明に戻る。実施形態の発明は、第1目的成分透過光の強度と第2目的成分透過光の強度との差と、第1非目的成分透過光の強度と第2非目的成分透過光の強度との差とに基づき、グルコース濃度を取得する。
 生体9に照射される非目的成分励起光の強度が変化すると、水の温度が変化するため、水の吸収スペクトルがシフトする。そのため、第1目的成分透過光の強度と第2目的成分透過光の強度との差と、第1非目的成分透過光の強度と第2非目的成分透過光の強度との差とに基づいて、水の吸収スペクトルのシフト量が取得される。なお、生体9に照射される非目的成分励起光の強度の変化に対するグルコースの吸収スペクトルの変化の大きさは水の吸収スペクトルの変化の大きさに対して無視できるほど小さい。このことは、第1目的成分透過光の強度と第2目的成分透過光の強度との差が、目的成分励起光の波長における水の吸収スペクトルの変化に起因することを意味する。そのため、水の吸収スペクトルのシフト量と第1目的成分透過光の強度と第2目的成分透過光の強度との差とに基づいて、目的成分励起光の吸光度に対する水の影響が取得される。目的成分励起光の吸光度に対する水の影響が取得されるため、第1目的成分透過光の強度と第2目的成分透過光の強度との差に基づいて、目的成分励起光の吸光度に対するグルコースの影響が取得され、グルコースの濃度が取得される。
 なお、実施形態の発明は、必ずしも透過光を取得してグルコースの濃度を取得する必要は無い。実施形態の発明は、例えば振動波の振幅等、生体9に照射された光の透過光の強度に比例する物理量によってグルコースの濃度を取得してもよい。なお、振動波は、弾性波と、熱波によって生じる音波とを含む。
 なお、第1強度E1が0であってもよい。第1強度E1が0であるとは、第1目的成分励起光が照射されないことを意味する。
 ここまでで、実施形態の原理の概要の説明を終了する。
Returning to the explanation of the outline of the principle of the embodiment. In the invention of the embodiment, the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light and the difference between the intensity of the first non-target component transmitted light and the intensity of the second non-target component transmitted light. Based on and, the glucose concentration is acquired.
When the intensity of the non-target component excitation light with which the living body 9 is irradiated changes, the temperature of water changes, so that the absorption spectrum of water shifts. Therefore, based on the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light, and the difference between the intensity of the first non-target component transmitted light and the intensity of the second non-target component transmitted light. , The shift amount of the absorption spectrum of water is acquired. The magnitude of the change in the absorption spectrum of glucose with respect to the change in the intensity of the excitation light of the non-target component with which the living body 9 is irradiated is so small as to be negligible with respect to the magnitude of the change in the absorption spectrum of water. This means that the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light is due to the change in the water absorption spectrum at the wavelength of the target component excitation light. Therefore, the influence of water on the absorbance of the target component excitation light is acquired based on the shift amount of the absorption spectrum of water and the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light. Since the influence of water on the absorbance of the target component excitation light is acquired, the influence of glucose on the absorbance of the target component excitation light based on the difference between the intensity of the first target component transmitted light and the intensity of the second target component transmitted light. Is obtained and the concentration of glucose is obtained.
In the invention of the embodiment, it is not always necessary to acquire transmitted light to acquire glucose concentration. In the invention of the embodiment, the concentration of glucose may be acquired by a physical quantity that is proportional to the intensity of the transmitted light of the light with which the living body 9 is irradiated, such as the amplitude of a vibration wave. The vibration waves include elastic waves and sound waves generated by heat waves.
The first intensity E1 may be 0. The first intensity E1 being 0 means that the first target component excitation light is not irradiated.
This is the end of the description of the outline of the principle of the embodiment.
 (第1の実施形態)
 図1は、第1の実施形態の濃度測定装置1の機能構成の一例を示す図である。
 濃度測定装置1は、バスで接続されたCPU(Central Processing Unit)11やメモリ12や補助記憶装置13などを備え、プログラムを実行することによって入力部10、第1照射部14、第2照射部15、受光部16及び出力部17を備える装置として機能する。濃度測定装置1は、プログラムを実行することによって、入力部10、第1照射部14、第2照射部15及び受光部16の動作を制御し、受光部16が受光した結果に基づいて、目的成分の濃度を取得する。
(First embodiment)
FIG. 1 is a diagram illustrating an example of a functional configuration of the concentration measuring device 1 according to the first embodiment.
The concentration measuring device 1 includes a CPU (Central Processing Unit) 11, a memory 12, an auxiliary storage device 13 and the like connected by a bus, and executes a program to input the input unit 10, the first irradiation unit 14, and the second irradiation unit. It functions as a device including the light receiving unit 16, the light receiving unit 16, and the output unit 17. The concentration measuring apparatus 1 controls the operations of the input unit 10, the first irradiation unit 14, the second irradiation unit 15, and the light receiving unit 16 by executing the program, and based on the result of light reception by the light receiving unit 16, the purpose Get the concentration of an ingredient.
 補助記憶装置13は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。補助記憶装置13は濃度測定装置1の動作に関するプログラムを記憶する。
 CPU11は、メモリ12又は補助記憶装置13に記憶されたプログラムを実行することで情報処理部100として機能する。
 入力部10は、マウスやキーボード、タッチパネル等の入力装置を含んで構成される。入力部10は、これらの入力装置を自装置に接続するインタフェースとして構成されてもよい。入力部10は、自装置に対する情報の入力を受け付ける。入力部10は、入力された情報を情報処理部100に出力する。
The auxiliary storage device 13 is configured by using a storage device such as a magnetic hard disk device or a semiconductor storage device. The auxiliary storage device 13 stores a program relating to the operation of the concentration measuring device 1.
The CPU 11 functions as the information processing unit 100 by executing the program stored in the memory 12 or the auxiliary storage device 13.
The input unit 10 is configured to include an input device such as a mouse, a keyboard, and a touch panel. The input unit 10 may be configured as an interface that connects these input devices to the own device. The input unit 10 receives an input of information to its own device. The input unit 10 outputs the input information to the information processing unit 100.
 第1照射部14は、第1の波長の光を、測定対象である生体9に照射する。本実施形態において、第1の波長の光は、目的成分励起光である。第1の波長の光は、グルコースの吸光度が極大である1600ナノメートルの波長の光である。なお、第1の波長の光は、必ずしもグルコースの吸光度が極大である波長の光でなくてもよい。
 第1の波長の光は、例えば、グルコースの吸光度が略極大である波長の近傍の波長である1600±70ナノメートルの波長の光であってもよい。すなわち、第1の波長は、グルコースの吸光度が極大である波長を中心とした±70ナノメートルの範囲内の波長であってもよい。
 第1の波長の光は、例えば、グルコースの吸光度が略極大である1600±30ナノメートルの波長の光であってもよい。第1の波長の光が、グルコースの吸光度が略極大である1600±30ナノメートルの波長の光である場合、第1の波長の光が1600±70ナノメートルの波長の光である場合よりも精度よくグルコース濃度が計測される。
 第1の波長の光は、例えば、グルコースの吸光度が略極大である1600ナノメートルの波長の光であってもよい。第1の波長の光が、グルコースの吸光度が略極大である1600ナノメートルの波長の光である場合、第1の波長の光が1600±30ナノメートルの波長の光である場合よりもより高精度にグルコース濃度が計測される。
The 1st irradiation part 14 irradiates the living body 9 which is a measuring object with the light of the 1st wavelength. In the present embodiment, the light of the first wavelength is the target component excitation light. The light having the first wavelength is light having a wavelength of 1600 nanometers at which the absorbance of glucose is maximum. The light of the first wavelength does not necessarily have to have the wavelength at which the absorbance of glucose is maximum.
The light having the first wavelength may be, for example, light having a wavelength of 1600±70 nm, which is a wavelength in the vicinity of the wavelength at which the absorbance of glucose is substantially maximum. That is, the first wavelength may be a wavelength within a range of ±70 nanometers around the wavelength at which the absorbance of glucose is maximum.
The light having the first wavelength may be, for example, light having a wavelength of 1600±30 nanometers at which the absorbance of glucose is approximately maximum. When the light of the first wavelength is the light of the wavelength of 1600±30 nanometer where the absorbance of glucose is approximately maximum, the light of the first wavelength is more than the light of the wavelength of 1600±70 nanometer. The glucose concentration is accurately measured.
The light having the first wavelength may be, for example, light having a wavelength of 1600 nanometers at which the absorbance of glucose is approximately maximum. When the light of the first wavelength is the light of the wavelength of 1600 nanometers at which the absorbance of glucose is approximately maximum, the light of the first wavelength is higher than that of the light of the wavelength of 1600±30 nanometers. The glucose concentration is accurately measured.
 第1照射部14は、どのように第1の波長の光を照射してもよい。第1照射部14は、例えば、レーザダイオードドライバや半導体レーザを備え、レーザダイオードドライバや半導体レーザによって第1の波長の光を照射してもよい。第1照射部14は、例えば、汎用の安価なレーザを備え1600±70ナノメートルの波長の光を照射してもよい。第1照射部14が照射する光はCW(Continuous Wave)光である。 The first irradiator 14 may irradiate light of the first wavelength in any way. The 1st irradiation part 14 may be equipped with a laser diode driver and a semiconductor laser, for example, and may irradiate the light of the 1st wavelength with a laser diode driver and a semiconductor laser. The 1st irradiation part 14 may be equipped with a general purpose cheap laser, and may irradiate the light of the wavelength of 1600 +/-70 nanometer, for example. The light emitted by the first irradiator 14 is CW (Continuous Wave) light.
 また、第1照射部14は、第1の波長の光の照射方向と、第1の波長の光の光源である第1光源と生体9との間の距離と、光の照射角度と、第1の波長の光の放射強度とを調整する機構である第1照射部調整機構を備える。第1照射部14は、第1照射部調整機構によって照射する光の強度を制御する。第1照射部14が第1照射部調整機構を備えるため、濃度測定装置1は、第1光源と生体9との間の角度や距離によらずに一定の精度でグルコース濃度の計測を行うことができる。但し、照射の距離、角度、強度の調整機構をすべて備える必要はなく、必要に応じて代替機能を設けることもできるが、用途や性能に応じて適宜省略することができる。 In addition, the first irradiation unit 14 emits light of the first wavelength, a distance between the first light source, which is a light source of the light of the first wavelength, and the living body 9, an irradiation angle of the light, A first irradiation unit adjustment mechanism that is a mechanism that adjusts the radiation intensity of light of the first wavelength is provided. The first irradiation unit 14 controls the intensity of light emitted by the first irradiation unit adjustment mechanism. Since the first irradiation unit 14 includes the first irradiation unit adjustment mechanism, the concentration measuring device 1 can measure the glucose concentration with a constant accuracy regardless of the angle or distance between the first light source and the living body 9. You can However, it is not necessary to provide all the irradiation distance, angle, and intensity adjustment mechanisms, and an alternative function can be provided as necessary, but it can be appropriately omitted depending on the application and performance.
 第2照射部15は、目的成分であるグルコースの吸光度が非目的成分である水の吸光度より小さい波長である第2の波長の光を、測定対象である生体9に照射する。第2の波長の光は、非目的成分励起光である。 The second irradiation unit 15 irradiates the living body 9, which is the measurement target, with light having a second wavelength, which is a wavelength at which the absorbance of glucose as a target component is smaller than the absorbance of water as a non-target component. The light of the second wavelength is the non-target component excitation light.
 第2の波長の光は、例えば、グルコースの吸光度が水の吸光度より小さくかつ水の吸光度が極大である波長である1450ナノメートルの光である。なお、第2の波長の光は、必ずしも水の吸光度が極大である波長でなくてもよい。
 例えば、第2の波長の光は、水の吸光度が極大である波長近傍の波長である1450±70ナノメートルの波長の光であってもよい。すなわち、第2の波長は、水の吸光度が極大である波長を中心とした±70ナノメートルの範囲内の波長であってもよい。
 第2の波長の光は、水の吸光度が略極大である波長である1450±50ナノメートルの波長の光であってもよい。第2の波長の光が、水の吸光度が略極大である波長である1450±50ナノメートルの波長の光である場合、第2の波長の光が、1450±70ナノメートルの波長の光である場合よりも精度よくグルコース濃度が計測される。
 第2の波長の光は、水の吸光度が極大である波長である1450ナノメートルの波長の光であってもよい。第2の波長の光が、水の吸光度が極大である波長である1450ナノメートルの波長の光である場合、第2の波長の光が、1450±50ナノメートルの波長の光である場合よりも精度よくグルコース濃度が計測される。
The light of the second wavelength is, for example, light of 1450 nm, which is a wavelength at which the absorbance of glucose is smaller than that of water and the absorbance of water is maximum. It should be noted that the light of the second wavelength does not necessarily have the wavelength at which the absorbance of water is maximum.
For example, the light having the second wavelength may be light having a wavelength of 1450±70 nm, which is a wavelength in the vicinity of the wavelength where the absorbance of water is maximum. That is, the second wavelength may be a wavelength within a range of ±70 nanometers around the wavelength at which the absorbance of water is maximum.
The light having the second wavelength may be light having a wavelength of 1450±50 nanometers, which is a wavelength at which the absorbance of water is approximately maximum. When the light of the second wavelength is the light of the wavelength of 1450±50 nanometers, which is the wavelength at which the absorbance of water is approximately maximum, the light of the second wavelength is the light of the wavelength of 1450±70 nanometers. The glucose concentration is measured more accurately than in some cases.
The light having the second wavelength may be light having a wavelength of 1450 nm, which is a wavelength at which the absorbance of water is maximum. When the light of the second wavelength is the light of the wavelength of 1450 nm, which is the wavelength at which the absorbance of water is maximum, the light of the second wavelength is more than the light of the wavelength of 1450±50 nm. The glucose concentration can be accurately measured.
 第2照射部15は、どのように第2の波長の光を照射してもよい。第2照射部15は、例えば、レーザダイオードドライバや半導体レーザを備え、レーザダイオードドライバや半導体レーザによって第2の波長の光を照射してもよい。第2照射部15は、例えば、汎用の安価なレーザを備え、汎用の安価なレーザによって1450±70ナノメートルの波長の光を照射してもよい。第2照射部15が照射する光はCW(Continuous Wave)光である。 The second irradiation unit 15 may irradiate light of the second wavelength in any way. The second irradiation unit 15 may include, for example, a laser diode driver or a semiconductor laser, and the laser diode driver or the semiconductor laser may irradiate light of the second wavelength. The second irradiation unit 15 may include, for example, a general-purpose inexpensive laser, and may irradiate light having a wavelength of 1450±70 nanometers with the general-purpose inexpensive laser. The light emitted by the second irradiation unit 15 is CW (Continuous Wave) light.
 また、第2照射部15は、第2の波長の光の照射方向と、第2の波長の光の光源である第2光源と生体9との間の距離と、光の照射角度と、第2の波長の光の放射強度とを調整する機構である第2照射部調整機構を備える。第2照射部15は、第2照射部調整機構によって照射する光の強度を制御する。第2照射部15が第2照射部調整機構を備えるため、濃度測定装置1は、第2光源と生体9との間の角度や距離によらずに一定の精度でグルコース濃度の計測を行うことができる。但し、照射の距離、角度、強度の調整機構をすべて備える必要はなく、必要に応じて代替機能を設けることもできるが、用途や性能に応じて適宜省略することができる。 Further, the second irradiation unit 15 irradiates the irradiation direction of the light of the second wavelength, the distance between the second light source, which is the light source of the light of the second wavelength, and the living body 9, the irradiation angle of the light, A second irradiation unit adjustment mechanism that is a mechanism that adjusts the radiation intensity of light of two wavelengths is provided. The second irradiation unit 15 controls the intensity of light emitted by the second irradiation unit adjustment mechanism. Since the second irradiation unit 15 includes the second irradiation unit adjustment mechanism, the concentration measuring device 1 can measure the glucose concentration with a constant accuracy regardless of the angle or distance between the second light source and the living body 9. You can However, it is not necessary to provide all the irradiation distance, angle, and intensity adjustment mechanisms, and an alternative function can be provided as necessary, but it can be appropriately omitted depending on the application and performance.
 受光部16は、光電効果を有する硫化鉛(PbS)や、光起電力効果を有するインジウム・ガリウム・ヒ素(InGaAs)等の検出器を備える。受光部16は、第1照射部14が照射した光であって生体9を透過した光を受光する。受光部16は、第2照射部15が照射した光であって生体9を透過した光を受光する。
 受光部16は、どのように第1の波長の光の透過光と第2の波長の光の透過光とを受光してもよい。受光部16は、例えば、受光部16と生体9との間に第1の波長の光と第2の波長の光とだけを通過させるバンドパスフィルタを備えることで、第1の波長の光の透過光と第2の波長の光の透過光とだけを受光してもよい。
The light receiving unit 16 includes a detector such as lead sulfide (PbS) having a photoelectric effect or indium gallium arsenide (InGaAs) having a photovoltaic effect. The light receiving unit 16 receives the light emitted by the first irradiation unit 14 and transmitted through the living body 9. The light receiving unit 16 receives the light emitted by the second irradiation unit 15 and transmitted through the living body 9.
The light receiving unit 16 may receive the transmitted light of the light of the first wavelength and the transmitted light of the light of the second wavelength in any way. The light receiving unit 16 includes, for example, a bandpass filter that passes only the light of the first wavelength and the light of the second wavelength between the light receiving unit 16 and the living body 9, and thus the light of the first wavelength Only the transmitted light and the transmitted light of the light of the second wavelength may be received.
 出力部17は、自装置が取得した目的成分の濃度を出力する。出力部17は、自装置が取得した目的成分の濃度を出力可能であればどのようなものであってもよい。出力部17は、例えば、自装置を外部の装置に接続するためのインタフェースを含んで構成されてもよい。出力部17は、例えば、CRT(Cathode Ray Tube)ディスプレイや液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ等の表示装置を含んで構成されてもよい。出力部17は、例えば、これらの表示装置を自装置に接続するインタフェースとして構成されてもよい。 The output unit 17 outputs the concentration of the target component acquired by the own device. The output unit 17 may be any unit as long as it can output the concentration of the target component acquired by the own device. The output unit 17 may be configured to include, for example, an interface for connecting the own device to an external device. The output unit 17 may be configured to include a display device such as a CRT (Cathode Ray Tube) display, a liquid crystal display, and an organic EL (Electro-Luminescence) display. The output unit 17 may be configured as an interface that connects these display devices to the own device, for example.
 図2は、第1の実施形態における第1の波長の光と第2の波長の光との目的成分の吸収スペクトルと非目的成分の吸収スペクトルとの関係を示す図である。
 図2の横軸は波長を表す。図2の縦軸は吸光度を表す。図2において、目的成分はグルコースである。図2において非目的成分は水である。図2は、第1の波長がグルコースの吸収スペクトルが略極大である1600ナノメートルであることを示す。図2は、第2の波長が水の吸収スペクトルが略極大である1450ナノメートルであることを示す。
FIG. 2 is a diagram showing the relationship between the absorption spectra of the target component and the non-target component of the light of the first wavelength and the light of the second wavelength in the first embodiment.
The horizontal axis of FIG. 2 represents wavelength. The vertical axis of FIG. 2 represents the absorbance. In FIG. 2, the target component is glucose. In FIG. 2, the non-target component is water. FIG. 2 shows that the first wavelength is 1600 nanometers where the absorption spectrum of glucose is approximately maximum. FIG. 2 shows that the second wavelength is 1450 nm, where the absorption spectrum of water is approximately maximum.
 図3は、第1の実施形態における情報処理部100の機能構成の一例を示す図である。
 情報処理部100は、制御部110、第1強度取得部120、第2強度取得部130、補正部140、温度情報取得部150及び濃度取得部160を備える。
FIG. 3 is a diagram illustrating an example of a functional configuration of the information processing unit 100 according to the first embodiment.
The information processing unit 100 includes a control unit 110, a first intensity acquisition unit 120, a second intensity acquisition unit 130, a correction unit 140, a temperature information acquisition unit 150, and a concentration acquisition unit 160.
 制御部110は、第1照射部14、第2照射部15及び受光部16の動作を制御する。制御部110は、例えば、第1照射部14及び第2照射部15が生体9に光を照射するタイミングを制御する。制御部110は、例えば、第1照射部14及び第2照射部15の照射距離、角度、強度を制御するように構成することも可能である。 The control unit 110 controls the operations of the first irradiation unit 14, the second irradiation unit 15, and the light receiving unit 16. The control unit 110 controls, for example, the timing at which the first irradiation unit 14 and the second irradiation unit 15 irradiate the living body 9 with light. The control unit 110 can be configured to control the irradiation distance, angle, and intensity of the first irradiation unit 14 and the second irradiation unit 15, for example.
 第1強度取得部120は、第1の波長の光と強度E1の第2の波長の光とが生体9に照射された場合に、受光部16が受光した光の強度を取得する。第1の波長の光と強度E1の第2の波長の光とが生体9に照射された場合に、受光部16が受光した光は、第1目的成分透過光及び第1非目的成分透過光である。第1の波長の光と強度E1の第2の波長の光とが生体9に照射された場合の水の温度は、第1の波長の光と強度E2の第2の波長の光とが生体9に照射された場合の水の温度よりも低温である。以下、第1の波長の光と強度E1の第1の波長の光とが生体9に照射された場合の水の状態を低温状態という。以下、低温状態の水を透過した光であって受光部16が受光した光を低温状態の透過光という。
 第1強度取得部120は、取得した低温状態の透過光の強度を温度情報取得部150及び濃度取得部160に出力する。
The 1st intensity acquisition part 120 acquires the intensity|strength of the light which the light-receiving part 16 received, when the living body 9 was irradiated with the light of the 1st wavelength, and the light of the 2nd wavelength of intensity|strength E1. When the living body 9 is irradiated with the light of the first wavelength and the light of the second wavelength having the intensity E1, the light received by the light receiving unit 16 is the first target component transmitted light and the first non-target component transmitted light. Is. When the living body 9 is irradiated with the light of the first wavelength and the light of the second wavelength having the intensity E1, the temperature of water is the light of the first wavelength and the light of the second wavelength having the intensity E2. 9 is lower than the temperature of water when irradiated. Hereinafter, the state of water when the living body 9 is irradiated with the light of the first wavelength and the light of the first wavelength having the intensity E1 is referred to as a low temperature state. Hereinafter, the light transmitted through the water in the low temperature state and received by the light receiving unit 16 is referred to as the transmitted light in the low temperature state.
The first intensity acquisition unit 120 outputs the acquired intensity of the transmitted light in the low temperature state to the temperature information acquisition unit 150 and the concentration acquisition unit 160.
 第2強度取得部130は、第1の波長の光と強度E2の第2の波長の光とが生体9に照射された場合に受光部16が受光した光の強度を取得する。第1の波長の光と強度E2の第2の波長の光とが生体9に照射された場合に、受光部16が受光した光は、第2目的成分透過光及び第2非目的成分透過光である。以下、第1の波長の光と強度E2の第2の波長の光とが生体9に照射された場合の水の状態を高温状態という。以下、高温状態の水を透過した光であって受光部16が受光した光を高温状態の透過光という。
 第2強度取得部130は、取得した高温状態の透過光の強度を温度情報取得部150及び濃度取得部160に出力する。
The second intensity acquisition unit 130 acquires the intensity of the light received by the light receiving unit 16 when the living body 9 is irradiated with the light having the first wavelength and the light having the second wavelength having the intensity E2. When the living body 9 is irradiated with the light of the first wavelength and the light of the second wavelength having the intensity E2, the light received by the light receiving unit 16 is the second target component transmitted light and the second non-target component transmitted light. Is. Hereinafter, the state of water when the living body 9 is irradiated with the light of the first wavelength and the light of the second wavelength having the intensity E2 is referred to as a high temperature state. Hereinafter, the light transmitted through the water in the high temperature state and received by the light receiving unit 16 is referred to as the transmitted light in the high temperature state.
The second intensity acquisition unit 130 outputs the acquired intensity of the transmitted light in the high temperature state to the temperature information acquisition unit 150 and the concentration acquisition unit 160.
 補正部140は、低温状態の透過光の強度と高温状態の透過光の強度とを示す情報(以下「第1測定結果情報」という。)に基づいて、第1補正係数を取得する。第1補正係数は、測定結果である低温状態の透過光の強度と高温状態の透過光の強度と、を補正する値である。
 第1補正係数は水の量に応じて変わる値である。第1補正係数は、生体9に照射される光の波長に応じて変わる値である。第1補正係数は、受光部16の性能に応じた値である。
 すなわち、第1補正係数は、環境の影響を表す値である。環境の影響は、例えば、水の量である。環境の影響は、例えば、第1の波長に対する水の吸光度と第2の波長に対する水の吸光度とである。環境の影響は、例えば、受光部16の性能である。
The correction unit 140 acquires the first correction coefficient based on information indicating the intensity of transmitted light in the low temperature state and the intensity of transmitted light in the high temperature state (hereinafter referred to as “first measurement result information”). The first correction coefficient is a value that corrects the intensity of transmitted light in the low temperature state and the intensity of transmitted light in the high temperature state, which are measurement results.
The first correction coefficient is a value that changes according to the amount of water. The first correction coefficient is a value that changes according to the wavelength of the light with which the living body 9 is irradiated. The first correction coefficient is a value according to the performance of the light receiving unit 16.
That is, the first correction coefficient is a value representing the influence of the environment. The environmental influence is, for example, the amount of water. The environmental influence is, for example, the absorbance of water for the first wavelength and the absorbance of water for the second wavelength. The influence of the environment is, for example, the performance of the light receiving unit 16.
 補正部140は、第1測定結果情報に基づいて生体9の水の量を取得し、取得した水の量に基づいて第1補正係数を取得してもよい。なお、補正部140は、第1測定結果情報に基づいて生体9の水の量を取得し、取得した水の量と第1の波長と第2の波長とに基づいて第1補正係数を取得してもよい。 The correction unit 140 may acquire the amount of water of the living body 9 based on the first measurement result information, and may acquire the first correction coefficient based on the acquired amount of water. The correction unit 140 acquires the amount of water of the living body 9 based on the first measurement result information, and acquires the first correction coefficient based on the acquired amount of water, the first wavelength, and the second wavelength. You may.
 補正部140は、どのように水の量を取得してもよい。補正部140は、例えば、多変量解析によって水の量を取得してもよい。補正部140は、例えば、予めニューラルネットワーク等の機械学習の方法によって学習された、低温状態の透過光の強度と高温状態の透過光の強度と水の量との関係を表す学習モデルに基づいて水の量を取得してもよい。補正部140は、例えば、予めニューラルネットワーク等の機械学習の方法によって学習された、低温状態の透過光の強度と高温状態の透過光の強度と第1の波長と第2の波長と水の量との関係を表す学習モデルに基づいて水の量を取得してもよい。 The correction unit 140 may acquire the amount of water in any way. The correction unit 140 may acquire the amount of water by multivariate analysis, for example. The correction unit 140 is based on, for example, a learning model that is learned in advance by a machine learning method such as a neural network and that represents the relationship between the intensity of transmitted light in a low temperature state, the intensity of transmitted light in a high temperature state, and the amount of water. The amount of water may be obtained. The correction unit 140 is, for example, the intensity of the transmitted light in the low temperature state, the intensity of the transmitted light in the high temperature state, the first wavelength, the second wavelength, and the amount of water, which have been learned in advance by a machine learning method such as a neural network. The amount of water may be acquired based on a learning model representing the relationship with.
 補正部140は、取得した第1補正係数に基づいて、低温状態の透過光の強度と高温状態の透過光の強度とを補正する。
 以下、説明の簡単のため、第1強度取得部120が取得した低温状態の透過光の強度の補正後の値も低温状態の透過光の強度という。以下、説明の簡単のため、第2強度取得部130が取得した高温状態の透過光の強度の補正後の値も高温状態の透過光の強度という。
The correction unit 140 corrects the intensity of the transmitted light in the low temperature state and the intensity of the transmitted light in the high temperature state based on the acquired first correction coefficient.
Hereinafter, for simplicity of description, the value after the correction of the intensity of the transmitted light in the low temperature state acquired by the first intensity acquisition unit 120 is also referred to as the intensity of the transmitted light in the low temperature state. Hereinafter, for simplicity of explanation, the value after correction of the intensity of transmitted light in the high temperature state acquired by the second intensity acquisition unit 130 is also referred to as the intensity of transmitted light in the high temperature state.
 温度情報取得部150は、第1測定結果情報に基づいて、光の照射箇所における生体9の温度変化に関する情報(以下「温度情報)という。)を取得する。光の照射箇所とは、生体9の一部又は全部の箇所であって、第1の波長の光と第2の波長の光とが照射された箇所である。温度情報は、光の照射箇所における生体9の温度変化に関する情報であればどのような情報であってもよく、例えば、水の吸収スペクトルのシフト量であってもよい。
 温度情報取得部150は、温度情報を取得可能であればどのような方法で温度情報を取得してもよい。温度情報取得部150は、例えば、多変数解析によって温度情報を取得してもよい。温度情報取得部150は、予めニューラルネットワーク等の機械学習の方法によって学習された、第1測定結果情報と温度情報との関係を表す学習モデルに基づいて温度情報を取得してもよい。
The temperature information acquisition unit 150 acquires information (hereinafter referred to as “temperature information”) regarding the temperature change of the living body 9 at the light irradiation location based on the first measurement result information. The temperature information is the information about the temperature change of the living body 9 at the light irradiation position, which is a part or all of the position where the light of the first wavelength and the light of the second wavelength are irradiated. It may be any information as long as it is, for example, the shift amount of the absorption spectrum of water.
The temperature information acquisition unit 150 may acquire the temperature information by any method as long as the temperature information can be acquired. The temperature information acquisition unit 150 may acquire the temperature information by multivariate analysis, for example. The temperature information acquisition unit 150 may acquire the temperature information based on a learning model that is learned in advance by a machine learning method such as a neural network and that represents the relationship between the first measurement result information and the temperature information.
 濃度取得部160は、温度情報取得部150が取得した温度情報と、第1測定結果情報とに基づき、第1濃度取得法によって、グルコースの濃度を取得する。第1濃度取得法は、温度情報及び第1測定結果情報に基づいてグルコースの濃度を取得可能な方法であればどのような方法であってもよい。第1濃度取得法は、例えば、多変数解析の方法であってもよい。第1濃度取得法は、予め補助記憶装置13に第1濃度学習モデルが記憶されている場合には、第1濃度学習モデルに基づいて、グルコースの濃度が取得される方法であってもよい。第1濃度学習モデルは、ニューラルネットワーク等の機械学習によって学習された学習モデルであって温度情報及び第1測定結果情報とグルコースの濃度との関係を表す学習モデルである。 The concentration acquisition unit 160 acquires the glucose concentration by the first concentration acquisition method based on the temperature information acquired by the temperature information acquisition unit 150 and the first measurement result information. The first concentration acquisition method may be any method as long as it can acquire the glucose concentration based on the temperature information and the first measurement result information. The first concentration acquisition method may be, for example, a multivariate analysis method. The first concentration acquisition method may be a method of acquiring the glucose concentration based on the first concentration learning model when the first concentration learning model is stored in the auxiliary storage device 13 in advance. The first concentration learning model is a learning model learned by machine learning such as a neural network, and is a learning model representing the relationship between the temperature information and the first measurement result information and the glucose concentration.
 図4は、第1の実施形態における情報処理部100がグルコースの濃度を取得する処理の流れの一例を示すフローチャートである。
 第1照射部14が生体9に第1の波長の光を照射し、第2照射部15が強度E1の第2の波長の光を生体9に照射する。第1強度取得部120は、低温状態の透過光の強度を取得する。第1強度取得部120は、取得した低温状態の透過光の強度を温度情報取得部150及び濃度取得部160に出力する(ステップS101)。なお、第1照射部14による照射と第2照射部15による照射とは同時であってもよいし、所定の時間差を有して実行されてもよい。
FIG. 4 is a flowchart showing an example of the flow of processing in which the information processing unit 100 according to the first embodiment acquires the glucose concentration.
The first irradiation unit 14 irradiates the living body 9 with light of the first wavelength, and the second irradiation unit 15 irradiates the living body 9 with light of the second wavelength having the intensity E1. The first intensity acquisition unit 120 acquires the intensity of transmitted light in a low temperature state. The first intensity acquisition unit 120 outputs the acquired intensity of the transmitted light in the low temperature state to the temperature information acquisition unit 150 and the concentration acquisition unit 160 (step S101). The irradiation by the first irradiation unit 14 and the irradiation by the second irradiation unit 15 may be performed at the same time, or may be executed with a predetermined time difference.
 第1照射部14が生体9に第1の波長の光を照射し、第2照射部15が強度E2の第2の波長の光を生体9に照射する。第2強度取得部130は、高温状態の透過光の強度を取得する。第2強度取得部130は、取得した高温状態の透過光の強度を温度情報取得部150及び濃度取得部160に出力する。(ステップS102)。なお、第1照射部14による照射と第2照射部15による照射とは同時であってもよいし、所定の時間差を有して実行されてもよい。 The first irradiation unit 14 irradiates the living body 9 with light of the first wavelength, and the second irradiation unit 15 irradiates the living body 9 with light of the second wavelength having the intensity E2. The second intensity acquisition unit 130 acquires the intensity of transmitted light in a high temperature state. The second intensity acquisition unit 130 outputs the acquired intensity of the transmitted light in the high temperature state to the temperature information acquisition unit 150 and the concentration acquisition unit 160. (Step S102). The irradiation by the first irradiation unit 14 and the irradiation by the second irradiation unit 15 may be performed at the same time, or may be executed with a predetermined time difference.
 補正部140が低温状態の透過光の強度と高温状態の透過光の強度とに基づいて第1補正係数を取得し、取得した第1補正係数に基づいて低温状態の透過光の強度と高温状態の透過光の強度とを補正する(ステップS103)。 The correction unit 140 acquires the first correction coefficient based on the intensity of the transmitted light in the low temperature state and the intensity of the transmitted light in the high temperature state, and based on the acquired first correction coefficient, the intensity of the transmitted light in the low temperature state and the high temperature state. And the intensity of the transmitted light are corrected (step S103).
 温度情報取得部150が、第1測定結果情報に基づいて、温度情報を取得する(ステップS104)。
 濃度取得部160が、第1測定結果情報及び温度情報に基づき、温度情報を取得し、温度情報及び第1測定結果に基づき第1濃度取得法によってグルコースの濃度を取得する(ステップS105)。
The temperature information acquisition unit 150 acquires temperature information based on the first measurement result information (step S104).
The concentration acquisition unit 160 acquires temperature information based on the first measurement result information and the temperature information, and acquires the glucose concentration by the first concentration acquisition method based on the temperature information and the first measurement result (step S105).
(実験結果)
 ここで、図5及び図6によって、第1の実施形態における第2の波長の生体9への照射によって、生体9の吸収スペクトルが変化することを示す。
 図5は、第1の実施形態における生体9の波長1590ナノメートルから波長1610ナノメートルの吸収スペクトルの第2の波長の強度に対する依存性を示すシミュレーション結果を示す図である。
 図5は、第2の波長の強度が0mWである場合と、10mWである場合と、15mWである場合と、20mWである場合との吸収スペクトルを示す。
 図5は、第2の波長の強度の変化によって、吸収スペクトルが変化することを示す。生体9の吸収スペクトルの変化量は、水の吸収スペクトルの変化量に略同一である。
(Experimental result)
Here, FIGS. 5 and 6 show that the absorption spectrum of the living body 9 is changed by the irradiation of the living body 9 with the second wavelength in the first embodiment.
FIG. 5: is a figure which shows the simulation result which shows the dependence with respect to the intensity|strength of the 2nd wavelength of the absorption spectrum of the wavelengths 1590 nanometer to 1610 nanometer of the biological body 9 in 1st Embodiment.
FIG. 5 shows absorption spectra when the intensity of the second wavelength is 0 mW, 10 mW, 15 mW, and 20 mW.
FIG. 5 shows that the absorption spectrum changes as the intensity of the second wavelength changes. The amount of change in the absorption spectrum of the living body 9 is substantially the same as the amount of change in the absorption spectrum of water.
 図6は、第1の実施形態における生体9の波長1386ナノメートルから波長1392ナノメートルの吸収スペクトルの第2の波長の強度に対する依存性を示すシミュレーション結果を示す図である。
 図6は、第2の波長の強度が0mWである場合と、10mWである場合と、15mWである場合と、20mWである場合との吸収スペクトルを示す。
 図6は、第2の波長の強度の変化によって、吸収スペクトルが変化することを示す。生体9の吸収スペクトルの変化量は、水の吸収スペクトルの変化量に略同一である。
FIG. 6 is a diagram showing a simulation result showing the dependence of the absorption spectrum of the living body 9 from the wavelength 1386 nm to the wavelength 1392 nm on the intensity of the second wavelength in the first embodiment.
FIG. 6 shows absorption spectra when the intensity of the second wavelength is 0 mW, 10 mW, 15 mW, and 20 mW.
FIG. 6 shows that the absorption spectrum changes as the intensity of the second wavelength changes. The amount of change in the absorption spectrum of the living body 9 is substantially the same as the amount of change in the absorption spectrum of water.
 図5は、20mWの第2の波長が生体9へ照射されると波長1600ナノメートルで吸光度の変化が1.4%であることを示す。図6は、20mWの第2の波長が生体9へ照射されると波長1390ナノメートルで吸光度の変化が1.7%であることを示す。このことは、20mWの第2の波長によって、生体9の温度が約2度変化したことを意味する。 FIG. 5 shows that, when the living body 9 is irradiated with the second wavelength of 20 mW, the change in absorbance is 1.4% at the wavelength of 1600 nm. FIG. 6 shows that when the living body 9 is irradiated with the second wavelength of 20 mW, the change in absorbance at the wavelength of 1390 nanometers is 1.7%. This means that the temperature of the living body 9 has changed by about 2 degrees due to the second wavelength of 20 mW.
 図5及び図6が示すように、第2の波長によって第1の実施形態の濃度測定装置1が観測可能な程度の生体9の水の吸収スペクトルのシフトが生じる。そのため、第1の実施形態の濃度測定装置1は、生体9の水の吸収スペクトルのシフトを検知でき、生体9の水の吸収スペクトルの変化に基づいて、グルコースの濃度を測定することができる。 As shown in FIGS. 5 and 6, the second wavelength causes a shift in the absorption spectrum of water of the living body 9 to the extent that the concentration measuring device 1 of the first embodiment can observe it. Therefore, the concentration measuring device 1 of the first embodiment can detect the shift of the water absorption spectrum of the living body 9, and can measure the glucose concentration based on the change of the water absorption spectrum of the living body 9.
 このように構成された第1の実施形態の濃度測定装置1は、温度情報取得部150及び濃度取得部160を備えるため、第1測定結果情報に基づいて生体9のグルコースの濃度を取得することができる。そのため、第1の実施形態の濃度測定装置1は、簡素な装置を用いて測定対象に含まれる目的成分の濃度を測定することができる。 Since the concentration measuring device 1 of the first embodiment configured as described above includes the temperature information acquisition unit 150 and the concentration acquisition unit 160, it is possible to acquire the glucose concentration of the living body 9 based on the first measurement result information. You can Therefore, the concentration measuring device 1 of the first embodiment can measure the concentration of the target component contained in the measurement target using a simple device.
 なお、濃度測定装置1は、必ずしも透過光によって目的成分の濃度を測定する必要はない。濃度測定装置1は、反射光や散乱光によって目的成分の濃度を測定してもよい。 Note that the concentration measuring device 1 does not necessarily need to measure the concentration of the target component by the transmitted light. The concentration measuring device 1 may measure the concentration of the target component by reflected light or scattered light.
 (第2の実施形態)
 図7は、第2の実施形態の濃度測定装置2の機能構成の一例を示す図である。第2の実施形態の濃度測定装置2は、生体9に照射する光の強度を変調し、光音響分光法を用いて生体9の目的深度におけるグルコース濃度を測定する。なお、目的深度とは、グルコースの濃度を計測すべき生体9の深度のことである。
 以下、濃度測定装置1が備える各機能部と同様の機能をもつものについては、図1及び図3と同じ符号を付すことで説明を省略する。
(Second embodiment)
FIG. 7 is a diagram illustrating an example of a functional configuration of the concentration measuring device 2 according to the second embodiment. The concentration measuring device 2 according to the second embodiment modulates the intensity of the light with which the living body 9 is irradiated, and measures the glucose concentration at the target depth of the living body 9 using photoacoustic spectroscopy. Note that the target depth is the depth of the living body 9 whose glucose concentration should be measured.
Hereinafter, components having the same functions as those of the functional units included in the concentration measuring device 1 are denoted by the same reference numerals as those in FIGS. 1 and 3, and description thereof will be omitted.
 濃度測定装置2は、バスで接続されたCPU(Central Processing Unit)21やメモリ22や補助記憶装置23などを備え、プログラムを実行することによって、入力部10、第1照射部14、第1変調部24、第2照射部15、第2変調部25、感圧部26及び出力部17を備える装置として機能する。濃度測定装置2は、プログラムを実行することによって、入力部10、第1照射部14、第1変調部24、第2照射部15、第2変調部25及び感圧部26の動作を制御し、感圧部26が取得した結果に基づいて、目的成分の濃度を取得する。 The concentration measuring device 2 includes a CPU (Central Processing Unit) 21, a memory 22, an auxiliary storage device 23, and the like connected by a bus, and executes a program to input the input unit 10, the first irradiation unit 14, and the first modulation unit. It functions as a device including the section 24, the second irradiation section 15, the second modulation section 25, the pressure sensing section 26, and the output section 17. The concentration measuring device 2 controls the operations of the input unit 10, the first irradiation unit 14, the first modulation unit 24, the second irradiation unit 15, the second modulation unit 25, and the pressure-sensitive unit 26 by executing the program. The concentration of the target component is obtained based on the result obtained by the pressure sensing unit 26.
 第1変調部24は、第1照射部14が照射する光の強度を、周波数ω1(第1の周波数)及び周波数ω2(第2の周波数)で変調する。なお、周波数ω1は、周波数ω1の光を生体9に照射した場合に、目的深度において生体9に発生した振動波が減衰せずに感圧部26に到達する周波数である。また、周波数ω2は、周波数ω2の光を生体9に照射した場合に、目的深度において生体9に発生した振動波が感圧部26に到達するまでに減衰する周波数である。つまり、周波数ω1で変調された光により生体9に発生する振動波は、真皮近傍に存在する生体水から生じる振動波と血管床のグルコースとの混合物質から振動波とを反映している。他方、周波数ω2で変調された光により生体9に発生する振動波は、真皮近傍に存在する生体水から生じる振動波を主に反映している。なお、振動波の強度は、周波数と深度に反比例する。周波数ω2は、周波数ω1より高い周波数である。 The first modulator 24 modulates the intensity of light emitted by the first irradiator 14 with a frequency ω1 (first frequency) and a frequency ω2 (second frequency). The frequency ω1 is a frequency at which the vibration wave generated in the living body 9 at the target depth reaches the pressure sensitive unit 26 when the living body 9 is irradiated with the light of the frequency ω1. Further, the frequency ω2 is a frequency at which, when the living body 9 is irradiated with light having the frequency ω2, the vibration wave generated in the living body 9 at the target depth is attenuated before reaching the pressure sensing unit 26. That is, the vibration wave generated in the living body 9 by the light modulated at the frequency ω1 reflects the vibration wave generated from the mixture of the vibration wave generated from the living body water existing near the dermis and the glucose in the blood vessel bed. On the other hand, the vibration wave generated in the living body 9 by the light modulated at the frequency ω2 mainly reflects the vibration wave generated from the body water existing near the dermis. The intensity of the vibration wave is inversely proportional to the frequency and the depth. The frequency ω2 is higher than the frequency ω1.
 第2変調部25は、第2照射部15が照射する光の強度を、周波数ω1、ω2と異なる周波数である周波数ω3で変調する。なお、濃度測定装置2は、必ずしも第2変調部25をひとつだけ備える必要は無い。濃度測定装置2は、第2変調部25を2つ以上備えてもよい。 The second modulator 25 modulates the intensity of the light emitted by the second irradiator 15 at the frequency ω3, which is a frequency different from the frequencies ω1 and ω2. The concentration measuring device 2 does not necessarily need to include only one second modulator 25. The concentration measuring device 2 may include two or more second modulators 25.
 図8は、第2の実施形態における感圧部26の構造の一例を示す図である。
 感圧部26は、第1照射部14が照射した光によって生体9に生じた振動波を検出する。感圧部26は、ポリフッ化ビニリデンなどの圧電体によって形成された圧電フィルム261と、圧電フィルム261に張力を与えつつ圧電フィルム261を保持する保持具262とを備える。圧電体は、圧力が加わったときに、加えられた圧力の大きさに比例する電圧を発生させる。圧電体は、圧力が加わったときに、加えられた圧力の大きさに比例する電圧を発生させるものであればどのようなものであってもよい。圧電体は、例えば、マイクであってもよい。
 保持具262は、シリコンゴムなどの弾性体により形成されており、圧電フィルム261の片面を覆い、圧電フィルム261の外縁に連結される。なお、保持具262は、圧電フィルム261と外縁以外では接触しないよう形成される。
 これにより、圧電フィルム261を生体9に当てて保持具262を生体9に対して押し付けることで、圧電フィルム261の外縁に対して外側方向に保持具262の弾性力が生じ、圧電フィルム261に張力があたえられる。保持具262の形状の例としては、図8に示すように、圧電フィルム261に相対する内面及び外面が半球状に形成される形状が挙げられる。
 なお、保持具262は、音響管を備えてもよい。音響管は、熱波によって発生する音波の振動を増強する装置である。
 このように、圧電フィルム261と生体9とが接触しているときに、圧電フィルム261に張力を与えることで、圧電フィルム261と生体9とを密着させることができる。
FIG. 8 is a diagram showing an example of the structure of the pressure-sensitive section 26 in the second embodiment.
The pressure sensing unit 26 detects a vibration wave generated in the living body 9 by the light emitted by the first irradiation unit 14. The pressure-sensitive portion 26 includes a piezoelectric film 261 formed of a piezoelectric material such as polyvinylidene fluoride, and a holder 262 that holds the piezoelectric film 261 while applying tension to the piezoelectric film 261. When pressure is applied, the piezoelectric body generates a voltage proportional to the magnitude of the applied pressure. The piezoelectric body may be any piezoelectric body that generates a voltage proportional to the magnitude of the applied pressure when the pressure is applied. The piezoelectric body may be, for example, a microphone.
The holder 262 is made of an elastic material such as silicon rubber, covers one surface of the piezoelectric film 261, and is connected to the outer edge of the piezoelectric film 261. The holder 262 is formed so as not to come into contact with the piezoelectric film 261 except at the outer edge thereof.
As a result, by pressing the piezoelectric film 261 against the living body 9 and pressing the holder 262 against the living body 9, an elastic force of the holder 262 is generated outward with respect to the outer edge of the piezoelectric film 261, and the piezoelectric film 261 is tensioned. Given. As an example of the shape of the holder 262, as shown in FIG. 8, a shape in which the inner surface and the outer surface facing the piezoelectric film 261 are formed in a hemispherical shape can be mentioned.
The holder 262 may include an acoustic tube. An acoustic tube is a device that enhances vibration of sound waves generated by heat waves.
In this way, when the piezoelectric film 261 and the living body 9 are in contact with each other, tension is applied to the piezoelectric film 261 so that the piezoelectric film 261 and the living body 9 can be brought into close contact with each other.
 図9は、第2の実施形態における情報処理部200の機能構成の一例を示す図である。
 情報処理部200は、制御部210、第1振幅取得部220、第2振幅取得部230、補正部240、温度情報取得部250及び濃度取得部260を備える。
FIG. 9 is a diagram illustrating an example of a functional configuration of the information processing unit 200 according to the second embodiment.
The information processing unit 200 includes a control unit 210, a first amplitude acquisition unit 220, a second amplitude acquisition unit 230, a correction unit 240, a temperature information acquisition unit 250, and a concentration acquisition unit 260.
 制御部210は、第1照射部14、第1変調部24、第2照射部15、第2変調部25及び感圧部26の動作を制御する。制御部210は、例えば、第1照射部14及び第2照射部15が生体9に光を照射するタイミングを制御する。制御部210は、例えば、第1変調部24の変調周波数と、第2変調部25の変調周波数とを制御する。 The control unit 210 controls the operations of the first irradiation unit 14, the first modulation unit 24, the second irradiation unit 15, the second modulation unit 25, and the pressure sensitive unit 26. The control unit 210 controls, for example, the timing at which the first irradiation unit 14 and the second irradiation unit 15 irradiate the living body 9 with light. The controller 210 controls, for example, the modulation frequency of the first modulator 24 and the modulation frequency of the second modulator 25.
 第1振幅取得部220は、第1の波長の光と強度E1の第2の波長の光とが生体9に照射された場合に、感圧部26が検出した振動波の振幅(以下「低温状態の振幅」という。)を取得する。より具体的には、第1振幅取得部220は、感圧部26が備える圧電体が発生した電圧に基づいて低温状態の振幅を取得する。なお、振動波の振幅は、生体9に照射された光の透過光の強度に比例する。 When the living body 9 is irradiated with the light of the first wavelength and the light of the second wavelength having the intensity E1, the first amplitude acquisition unit 220 detects the amplitude of the vibration wave detected by the pressure sensing unit 26 (hereinafter, “low temperature”). "Amplitude of state"). More specifically, the first amplitude acquisition unit 220 acquires the amplitude in the low temperature state based on the voltage generated by the piezoelectric body included in the pressure sensing unit 26. The amplitude of the vibration wave is proportional to the intensity of the transmitted light of the light with which the living body 9 is irradiated.
 第2振幅取得部230は、第1の波長の光と強度E2の第2の波長の光とが生体9に照射された場合に感圧部26が検出した振動波の振幅(以下「高温状態の振幅」という。)を取得する。より具体的には、第2振幅取得部230は、感圧部26が備える圧電体が発生した電圧に基づいて高温状態の振幅を取得する。第2振幅取得部230は、取得した振動波の振幅を補正部240に出力する。 The second amplitude acquisition unit 230 detects the amplitude of the vibration wave detected by the pressure sensing unit 26 when the living body 9 is irradiated with the light of the first wavelength and the light of the second wavelength having the intensity E2 (hereinafter, referred to as “high temperature state”). "Amplitude of."). More specifically, the second amplitude acquisition unit 230 acquires the amplitude in the high temperature state based on the voltage generated by the piezoelectric body included in the pressure sensing unit 26. The second amplitude acquisition unit 230 outputs the acquired amplitude of the vibration wave to the correction unit 240.
 補正部240は、低温状態の振幅と高温状態の振幅とを示す情報(以下「第2測定結果情報」という。)に基づいて、第2補正係数を取得する。
 第2補正係数は、測定結果である低温状態の振幅と高温状態の振幅と、を補正する値である。第2補正係数は水の量に応じて変わる値である。第2補正係数は、生体9に照射される光の波長に応じて変わる値である。第2補正係数は、感圧部26の性能に応じた値である。
 すなわち、第2補正係数は、環境の影響を表す値である。環境の影響は、例えば、水の量である、環境の影響は、例えば、第1の波長に対する水の吸光度と第2の波長に対する水の吸光度とである。環境の影響は、例えば、感圧部26の性能である。
The correction unit 240 acquires the second correction coefficient based on the information indicating the amplitude in the low temperature state and the amplitude in the high temperature state (hereinafter referred to as “second measurement result information”).
The second correction coefficient is a value that corrects the amplitude in the low temperature state and the amplitude in the high temperature state, which are the measurement results. The second correction coefficient is a value that changes according to the amount of water. The second correction coefficient is a value that changes depending on the wavelength of the light with which the living body 9 is irradiated. The second correction coefficient is a value according to the performance of the pressure sensitive unit 26.
That is, the second correction coefficient is a value representing the influence of the environment. The environmental influence is, for example, the amount of water, and the environmental influence is, for example, the absorbance of water for the first wavelength and the absorbance of water for the second wavelength. The influence of the environment is, for example, the performance of the pressure sensitive unit 26.
 補正部240は、第2測定結果情報に基づいて生体9の水の量を取得し、取得した水の量に基づいて第2補正係数を取得する。なお、補正部240は、低温状態の振幅と高温状態の振幅とに基づいて生体9の水の量を取得し、取得した水の量と第1の波長と第2の波長とに基づいて第2補正係数を取得してもよい。 The correction unit 240 acquires the amount of water of the living body 9 based on the second measurement result information, and acquires the second correction coefficient based on the acquired amount of water. The correction unit 240 acquires the amount of water of the living body 9 based on the amplitude of the low temperature state and the amplitude of the high temperature state, and based on the acquired amount of water, the first wavelength, and the second wavelength, 2 The correction coefficient may be acquired.
 補正部240は、どのように水の量を取得してもよい。補正部240は、例えば、多変量解析によって水の量を取得してもよい。補正部240は、例えば、予めニューラルネットワーク等の機械学習の方法によって学習された、低温状態の振幅と高温状態の振幅と水の量との関係を表す学習モデルに基づいて水の量を取得してもよい。補正部240は、例えば、予めニューラルネットワーク等の機械学習の方法によって学習された、低温状態の振幅と高温状態の振幅と第1の波長と第2の波長と水の量との関係を表す学習モデルに基づいて水の量を取得してもよい。 The correction unit 240 may acquire the amount of water in any way. The correction unit 240 may acquire the amount of water by multivariate analysis, for example. The correction unit 240 acquires the amount of water based on, for example, a learning model that is learned in advance by a machine learning method such as a neural network and that represents the relationship between the amplitude of the low temperature state, the amplitude of the high temperature state, and the amount of water. May be. The correction unit 240, for example, learns the relationship between the amplitude in the low temperature state, the amplitude in the high temperature state, the first wavelength, the second wavelength, and the amount of water, which has been learned in advance by a machine learning method such as a neural network. The amount of water may be obtained based on the model.
 補正部240は、取得した第2補正係数に基づいて、低温状態の振幅と高温状態の振幅とを補正する。
 以下、説明の簡単のため、第1振幅取得部220が取得した振動波の振幅の補正後の値も低温状態の振幅という。以下、説明の簡単のため、第2振幅取得部230が取得した振動波の振幅の補正後の値も高温状態の振幅という。
The correction unit 240 corrects the amplitude in the low temperature state and the amplitude in the high temperature state based on the acquired second correction coefficient.
Hereinafter, for the sake of simplicity of description, the corrected value of the amplitude of the vibration wave acquired by the first amplitude acquisition unit 220 is also referred to as the low temperature state amplitude. Hereinafter, for the sake of simplicity of description, the corrected value of the amplitude of the vibration wave acquired by the second amplitude acquisition unit 230 is also referred to as the high temperature state amplitude.
 温度情報取得部250は、第2測定結果情報に基づいて、温度情報を取得する。温度情報取得部250は、温度情報を取得可能であればどのような方法で温度情報を取得してもよい。温度情報取得部250は、例えば、多変数解析によって温度情報を取得してもよい。温度情報取得部250は、予めニューラルネットワーク等の機械学習の方法によって学習された、第2測定結果情報と温度情報との関係を表す学習モデルに基づいて温度情報を取得してもよい。 The temperature information acquisition unit 250 acquires temperature information based on the second measurement result information. The temperature information acquisition unit 250 may acquire the temperature information by any method as long as the temperature information can be acquired. The temperature information acquisition unit 250 may acquire the temperature information by multivariate analysis, for example. The temperature information acquisition unit 250 may acquire the temperature information based on a learning model that is learned in advance by a machine learning method such as a neural network and that represents the relationship between the second measurement result information and the temperature information.
 濃度取得部260は、第2測定結果情報及び温度情報に基づいて、第2濃度取得法によって生体9におけるグルコースの濃度を取得する。第2濃度取得法は、第2測定結果情報及び温度情報に基づいてグルコースの濃度を取得可能な方法であればどのような方法であってもよい。第2濃度取得法は、例えば、多変数解析の方法であってもよい。第2濃度取得法は、予め補助記憶装置23に第2濃度学習モデルが記憶されている場合には、第2濃度学習モデルに基づいて、グルコースの濃度が取得される方法であってもよい。第2濃度学習モデルは、ニューラルネットワーク等の機械学習によって学習された学習モデルであって温度情報及び第2測定結果情報とグルコースの濃度との関係を表す学習モデルである。 The concentration acquisition unit 260 acquires the glucose concentration in the living body 9 by the second concentration acquisition method based on the second measurement result information and the temperature information. The second concentration acquisition method may be any method as long as the glucose concentration can be acquired based on the second measurement result information and the temperature information. The second concentration acquisition method may be, for example, a multivariate analysis method. The second concentration acquisition method may be a method of acquiring the glucose concentration based on the second concentration learning model when the second concentration learning model is stored in advance in the auxiliary storage device 23. The second concentration learning model is a learning model learned by machine learning such as a neural network, and represents the relationship between the temperature information and the second measurement result information and the glucose concentration.
 図10は、第2の実施形態における情報処理部200がグルコースの濃度を取得する処理の流れの一例を示すフローチャートである。
 第1照射部14が生体9に第1の波長の光を照射し、第2照射部15が生体9に強度E1の第2の波長の光を照射する。感圧部26が検出した振動波に基づいて、第1振幅取得部220が低温状態の振幅を取得する。第1振幅取得部220は、取得した低温状態の振幅を補正部240に出力する(ステップS201)。なお、第1照射部14による照射と第2照射部15による照射とは同時であってもよいし、所定の時間差を有して実行されてもよい。
FIG. 10 is a flowchart showing an example of the flow of processing in which the information processing unit 200 according to the second embodiment acquires the glucose concentration.
The first irradiation unit 14 irradiates the living body 9 with light of the first wavelength, and the second irradiation unit 15 irradiates the living body 9 with light of the second wavelength having the intensity E1. The first amplitude acquisition unit 220 acquires the amplitude in the low temperature state based on the vibration wave detected by the pressure sensing unit 26. The first amplitude acquisition unit 220 outputs the acquired amplitude in the low temperature state to the correction unit 240 (step S201). The irradiation by the first irradiation unit 14 and the irradiation by the second irradiation unit 15 may be performed at the same time, or may be executed with a predetermined time difference.
 第1照射部14が生体9に第1の波長の光を照射し、第2照射部15が生体9に強度E2の第2の波長の光を照射する。感圧部26が検出した振動波に基づいて、第2振幅取得部230が高温状態の振幅を取得する。第2振幅取得部230は、取得した高温状態の振幅を補正部240に出力する(ステップS202)。なお、第1照射部14による照射と第2照射部15による照射とは同時であってもよいし、所定の時間差を有して実行されてもよい。 The first irradiation unit 14 irradiates the living body 9 with light of the first wavelength, and the second irradiation unit 15 irradiates the living body 9 with light of the second wavelength having the intensity E2. The second amplitude acquisition unit 230 acquires the amplitude in the high temperature state based on the vibration wave detected by the pressure sensing unit 26. The second amplitude acquisition unit 230 outputs the acquired amplitude in the high temperature state to the correction unit 240 (step S202). The irradiation by the first irradiation unit 14 and the irradiation by the second irradiation unit 15 may be performed at the same time, or may be executed with a predetermined time difference.
 補正部240が低温状態の振幅と高温状態の振幅とに基づいて第2補正係数を取得し、取得した第2補正係数に基づいて低温状態の振幅と高温状態の振幅とを補正する(ステップS203)。 The correction unit 240 acquires the second correction coefficient based on the amplitude of the low temperature state and the amplitude of the high temperature state, and corrects the amplitude of the low temperature state and the amplitude of the high temperature state based on the acquired second correction coefficient (step S203). ).
 温度情報取得部250が、第2測定結果情報に基づいて、温度情報を取得する(ステップS204)。
 濃度取得部260が、温度情報及び第2測定結果情報に基づき、第2濃度取得法によってグルコースの濃度を取得する(ステップS205)。
The temperature information acquisition unit 250 acquires temperature information based on the second measurement result information (step S204).
The concentration acquisition unit 260 acquires the glucose concentration by the second concentration acquisition method based on the temperature information and the second measurement result information (step S205).
 このように構成された第2の実施形態の濃度測定装置2は、濃度取得部260を備えるため、第2測定結果情報に基づいて生体9のグルコースの濃度を取得することができる。そのため、第2の実施形態の濃度測定装置2は、簡素な装置を用いて測定対象に含まれる目的成分の濃度を測定することができる。 Since the concentration measuring device 2 of the second embodiment configured as described above includes the concentration acquisition unit 260, the glucose concentration of the living body 9 can be acquired based on the second measurement result information. Therefore, the concentration measuring device 2 of the second embodiment can measure the concentration of the target component contained in the measurement target using a simple device.
 なお、第2の実施形態における感圧部26は図8に示す感圧部26に限られない。例えば、感圧部26は圧電フィルム261のみから形成され、生体表面に貼付したり巻きつけたりしてもよい。また、感圧部26は、圧電フィルム261に代えて、マイクロフォン、圧電素子などの素子や、レーザ光を応用して微小変動を検出するシステムであってもよい。 Note that the pressure sensitive portion 26 in the second embodiment is not limited to the pressure sensitive portion 26 shown in FIG. For example, the pressure sensitive portion 26 may be formed only from the piezoelectric film 261, and may be attached or wound around the surface of the living body. Further, the pressure-sensitive section 26 may be an element such as a microphone or a piezoelectric element instead of the piezoelectric film 261, or a system that applies a laser beam to detect a minute fluctuation.
(変形例)
 なお、第1の実施形態の濃度測定装置1と、第2の実施形態の濃度測定装置2とは、異なる条件での励起光の照射を複数回実行することで、生体9のグルコースの濃度を測定してもよい。
 このように、濃度測定装置1及び濃度測定装置2が、条件の異なる複数回の励起光の照射の測定結果によってグルコースの濃度を測定することで、濃度測定装置1及び2は、グルコースの濃度の測定精度が高めることができる。
(Modification)
Note that the concentration measuring device 1 of the first embodiment and the concentration measuring device 2 of the second embodiment perform irradiation of excitation light under different conditions a plurality of times, so that the glucose concentration of the living body 9 is reduced. You may measure.
In this way, the concentration measuring devices 1 and 2 measure the glucose concentration according to the measurement results of irradiation of the excitation light a plurality of times under different conditions, so that the concentration measuring devices 1 and 2 measure the glucose concentration. The measurement accuracy can be improved.
 なお、補正部140は必ずしも、第1測定結果情報に基づいて第1補正係数を取得する必要は無い。補正部140は、1600ナノメートルの波長の光及び1450ナノメートルの波長の光を水に照射する実験を行うことなどによって、予め算出された値を第1補正係数として取得してもよい。
 なお、補正部240は必ずしも、第2測定結果情報に基づいて第2補正係数を取得する必要は無い。補正部240は、1600ナノメートルの波長の光及び1450ナノメートルの波長の光を水に照射する実験を行うことなどによって、予め算出された値を第2補正係数として取得してもよい。
The correction unit 140 does not necessarily need to acquire the first correction coefficient based on the first measurement result information. The correction unit 140 may acquire a value calculated in advance as the first correction coefficient by performing an experiment in which water having a wavelength of 1600 nanometers and light having a wavelength of 1450 nanometers is irradiated on water.
The correction unit 240 does not necessarily need to acquire the second correction coefficient based on the second measurement result information. The correction unit 240 may acquire a value calculated in advance as the second correction coefficient by performing an experiment in which water having a wavelength of 1600 nm and light having a wavelength of 1450 nm are irradiated.
 なお、濃度測定装置1において、生体9に照射される光は必ずしもCW光でなくてもよい。生体9に照射される光は所定のパターンを有し、符号化された光であってもよい。生体9に照射される光は、光の電力や照射時間や観測波長によって符号化されてもよい。
 このように生体9に照射する光として、符号化された光が照射されることで、生体9に照射される光がCW光である場合よりも、濃度測定装置1によるグルコースの濃度の測定精度が向上する。
 なお、濃度測定装置1は、例えば、第1変調部24及び第2変調部25を備え、制御部110によって第1変調部24及び第2変調部25の動作を制御することで、生体9に照射する光を符号化してもよい。
 なお、濃度測定装置1aも濃度測定装置1と同様に、生体9に、所定の照射パターンを有し符号化された光を照射してもよい。
In the concentration measuring device 1, the light with which the living body 9 is irradiated is not necessarily CW light. The light with which the living body 9 is irradiated may have a predetermined pattern and may be coded light. The light with which the living body 9 is irradiated may be encoded by the power of light, the irradiation time, or the observation wavelength.
As described above, the coded light is irradiated as the light for irradiating the living body 9, so that the measurement accuracy of the glucose concentration by the concentration measuring device 1 is higher than that when the light for irradiating the living body 9 is the CW light. Is improved.
Note that the concentration measuring device 1 includes, for example, a first modulator 24 and a second modulator 25, and controls the operations of the first modulator 24 and the second modulator 25 by the controller 110 so that the living body 9 can be controlled. The illuminating light may be encoded.
Note that the concentration measuring device 1a may irradiate the living body 9 with coded light having a predetermined irradiation pattern, similarly to the concentration measuring device 1.
 なお、第2の波長は、目的成分であるグルコースの吸光度が非目的成分である水の吸光度より小さい波長であって、水の吸収スペクトルを所定の大きさ以上に変化させる波長であればどのような波長であってもよい。
 第2の波長は、例えば、非目的成分の吸収スペクトルのシフト量を濃度測定装置1が測定可能な程度のシフト量であるように、非目的成分の吸収スペクトルをシフトさせる波長であれば、どのような波長であってもよい。第2の波長の光は、例えば、テラヘルツ波であってもよいし、紫外線であってもよい。
 第2の波長は、非目的成分の吸収スペクトルの変曲点の位置の波長であってもよい。
The second wavelength is a wavelength at which the absorbance of glucose, which is the target component, is smaller than the absorbance of water, which is the non-target component, and is a wavelength that changes the absorption spectrum of water to a predetermined magnitude or more. Can be any wavelength.
If the second wavelength is a wavelength that shifts the absorption spectrum of the non-target component such that the shift amount of the absorption spectrum of the non-target component can be measured by the concentration measuring device 1, for example, Such a wavelength may be used. The light of the second wavelength may be a terahertz wave or ultraviolet light, for example.
The second wavelength may be the wavelength at the position of the inflection point of the absorption spectrum of the non-target component.
 なお、濃度測定装置1及び2は、必ずしも第2照射部15を1つだけ備える必要は無い。濃度測定装置1及び濃度測定装置2は、2つ以上の第2照射部15を備えてもよい。
 以下、説明の簡単のため、濃度測定装置1が2つ以上の第2照射部15を備える場合について説明するが、以下の説明は濃度測定装置2が2つ以上の第2照射部15を備える場合についても、透過光の強度に基づいてグルコースの濃度が取得される代わりに振動波の振幅に基づいてグルコースの濃度が取得される点以外は同様である。
 以下、1つ以上の第2照射部15を備える濃度測定装置1を濃度測定装置1aという。以下、濃度測定装置1aが備える第2照射部15をそれぞれ第n照射部15-(n-1)という(nは2以上N以下の整数。Nは2以上の整数)。第2照射部15-1は、例えば、第1実施形態における第2照射部15である。n=3である第2照射部15は、例えば、第3照射部15-2である。
It should be noted that the concentration measuring devices 1 and 2 do not necessarily need to include only one second irradiation unit 15. The concentration measuring device 1 and the concentration measuring device 2 may include two or more second irradiation units 15.
Hereinafter, for simplicity of description, a case where the concentration measuring device 1 includes two or more second irradiation units 15 will be described. However, in the following description, the concentration measuring device 2 includes two or more second irradiation units 15. The case is the same except that the glucose concentration is acquired based on the amplitude of the vibration wave instead of the glucose concentration is acquired based on the intensity of transmitted light.
Hereinafter, the concentration measuring device 1 including one or more second irradiation units 15 is referred to as a concentration measuring device 1a. Hereinafter, each of the second irradiation units 15 included in the concentration measuring device 1a is referred to as an nth irradiation unit 15-(n-1) (n is an integer of 2 or more and N or less. N is an integer of 2 or more). The second irradiation unit 15-1 is, for example, the second irradiation unit 15 in the first embodiment. The second irradiation unit 15 with n=3 is, for example, the third irradiation unit 15-2.
 図11は、変形例の濃度測定装置1aの機能構成の一例を示す図である。以下、濃度測定装置1が備える各機能部と同様の機能をもつものは、図1、図3、図7及び図9と同じ符号を付すことで説明を省略する。 FIG. 11 is a diagram showing an example of a functional configuration of the concentration measuring device 1a according to the modification. Hereinafter, components having the same functions as those of the functional units included in the concentration measuring device 1 are denoted by the same reference numerals as those in FIGS. 1, 3, 7, and 9, and the description thereof will be omitted.
 濃度測定装置1aは、第2照射部15に代えて第n照射部15―(n-1)を備える点と、受光部16に代えて受光部16aを備える点と、情報処理部100に代えて情報処理部100aを備える点とで、濃度測定装置1と異なる。
 第2照射部15-1は、第1の実施形態における第2照射部15と同様である。第n照射部15-(n-1)は、第nの波長の光を照射する。第n照射部15-(n-1)は、照射する光の波長が第nの波長である以外の点は、第2照射部15と同様である。第nの波長は非目的成分励起光である。
The concentration measuring device 1a includes an n-th irradiation unit 15-(n-1) in place of the second irradiation unit 15, a light receiving unit 16a in place of the light receiving unit 16, and an information processing unit 100 in place. The information processing unit 100a is included in the concentration measuring device 1.
The second irradiation unit 15-1 is the same as the second irradiation unit 15 in the first embodiment. The nth irradiator 15-(n-1) irradiates the light of the nth wavelength. The n-th irradiation unit 15-(n-1) is the same as the second irradiation unit 15 except that the wavelength of the light to be irradiated is the n-th wavelength. The nth wavelength is the non-target component excitation light.
 受光部16aは、第1照射部14が照射した光であって生体9を透過した光と第2照射部15が照射した光であって生体9を透過した光とを受光するだけでなく、第n照射部15-(n-1)が照射した光であって生体9を透過した光も受光する点で受光部16と異なる。 The light receiving unit 16a not only receives the light emitted by the first irradiation unit 14 and transmitted through the living body 9 and the light emitted by the second irradiation unit 15 and transmitted through the living body 9, The light receiving unit 16 is different from the light receiving unit 16 in that the light emitted by the n-th irradiation unit 15-(n-1) and transmitted through the living body 9 is also received.
 情報処理部100aは、第1照射部14及び第2照射部15が生体9を照射した結果に代えて、第1照射部14と第n照射部15-(n-1)とのN個の照射部が生体9を照射した結果に基づいて、グルコースの濃度を取得する点で、情報処理部100と異なる。 The information processing unit 100a replaces the result of irradiation of the living body 9 by the first irradiation unit 14 and the second irradiation unit 15 with N number of the first irradiation unit 14 and the n-th irradiation unit 15-(n-1). The information processing unit 100 differs from the information processing unit 100 in that the concentration of glucose is acquired based on the result of irradiation of the living body 9 by the irradiation unit.
 図12は、変形例における情報処理部100aの機能構成の一例を示す図である。
 情報処理部100aは、制御部110に代えて制御部110aを備える点と、第1強度取得部120に代えて第1強度取得部120aを備える点と、第2強度取得部130に代えて第2強度取得部130aを備える点とで情報処理部100aと異なる。
FIG. 12 is a diagram illustrating an example of a functional configuration of the information processing unit 100a in the modified example.
The information processing unit 100 a includes a control unit 110 a in place of the control unit 110, a first intensity acquisition unit 120 a in place of the first intensity acquisition unit 120, and a second intensity acquisition unit 130 in place of the second intensity acquisition unit 130. The information processing unit 100a differs from the information processing unit 100a in that the two-strength acquisition unit 130a is provided.
 制御部110aは、第1照射部14、第n照射部15-(n-1)及び受光部16aの動作を制御する。制御部110aは、例えば、第1照射部14及び第n照射部15-(n-1)が生体9に光を照射するタイミングを制御する。 The control unit 110a controls the operations of the first irradiation unit 14, the nth irradiation unit 15-(n-1), and the light receiving unit 16a. The control unit 110a controls the timing at which the first irradiation unit 14 and the nth irradiation unit 15-(n-1) irradiate the living body 9 with light, for example.
 第1強度取得部120aは、低温状態の透過光の強度を取得し、温度情報取得部150及び濃度取得部160に出力する。濃度測定装置1aにおける低温状態は、第1の波長の光と強度E1_nの第nの波長の光とが生体9に照射された場合の水の状態である。濃度測定装置1aにおける低温状態の透過光は、低温状態の水を透過した光であって受光部16aが受光した光である。 The first intensity acquisition unit 120a acquires the intensity of the transmitted light in the low temperature state and outputs it to the temperature information acquisition unit 150 and the concentration acquisition unit 160. The low temperature state in the concentration measuring device 1a is a state of water when the living body 9 is irradiated with the light of the first wavelength and the light of the nth wavelength having the intensity E1_n. The transmitted light in the low temperature state in the concentration measuring device 1a is the light transmitted through the water in the low temperature state and received by the light receiving unit 16a.
 第2強度取得部130aは、高温状態の透過光の強度を取得し、温度情報取得部150及び濃度取得部160に出力する。濃度測定装置1aにおける高温状態は、第nの波長の光と強度E2_nの第nの波長の光とが生体9に照射された場合の水の状態である。強度E2_nは、強度E1_nよりも大きな値である。濃度測定装置1aにおける高温状態の透過光は、高温状態の水を透過した光であって受光部16aが受光した光である。 The second intensity acquisition unit 130a acquires the intensity of transmitted light in a high temperature state and outputs it to the temperature information acquisition unit 150 and the concentration acquisition unit 160. The high temperature state in the concentration measuring device 1a is a state of water when the living body 9 is irradiated with the light of the nth wavelength and the light of the nth wavelength of the intensity E2_n. The intensity E2_n is a value larger than the intensity E1_n. The transmitted light in the high temperature state in the concentration measuring device 1a is the light transmitted through the water in the high temperature state and received by the light receiving unit 16a.
 このように構成された変形例の濃度測定装置1aは、複数の非目的成分励起光を生体9に照射した結果に基づいて、グルコースの濃度を取得するため、グルコースの濃度の取得に用いるデータの数が濃度測定装置1よりも多い。そのため、濃度測定装置1aは、濃度測定装置1aによるグルコースの濃度の測定精度以上の精度でグルコースの濃度を測定することができる。 The concentration measuring apparatus 1a of the modified example configured in this way acquires the glucose concentration based on the result of irradiating the living body 9 with a plurality of non-target component excitation lights. The number is greater than that of the concentration measuring device 1. Therefore, the concentration measuring device 1a can measure the glucose concentration with accuracy higher than the measurement precision of the glucose concentration by the concentration measuring device 1a.
 なお、変形例の濃度測定装置1aにおいて、第2の波長と第3の波長とは、非目的成分の吸収スペクトルのシフトに関する所定の相関関係を有する波長であればどのような波長であってもよい。所定の相関関係を有する波長とは、非目的成分の吸収スペクトルのシフトによって互いに相関をもって変化する波長である。
 所定の相関関係を有する波長は、例えば、非目的成分の吸収スペクトルのピークの波長を原点として互いに符号が逆である位置に位置する2つの波長であってもよい。非目的成分の吸収スペクトルのピークの波長を原点として互いに符号が逆である位置に位置する2つの波長とは、例えば、非目的成分が水である場合には、1450+70ナノメートルの波長と、1450-70ナノメートルの波長との2つの波長であってもよい。非目的成分の吸収スペクトルのピークの波長を原点として互いに符号が逆である位置に位置する2つの波長とは、例えば、非目的成分が水である場合には、1450+20ナノメートルの波長と、1450-50ナノメートルの波長との2つの波長であってもよい。非目的成分の吸収スペクトルのピークの波長を原点として互いに符号が逆である位置に位置する2つの波長は、非目的成分の吸収スペクトルのピークの波長を原点として互いに符号が逆である変曲点の位置に位置する波長であってもよい。
In the concentration measuring device 1a of the modified example, the second wavelength and the third wavelength may be any wavelengths as long as they have a predetermined correlation with respect to the shift of the absorption spectrum of the non-target component. Good. The wavelength having a predetermined correlation is a wavelength that changes in correlation with each other due to the shift of the absorption spectrum of the non-target component.
The wavelengths having the predetermined correlation may be, for example, two wavelengths located at positions whose signs are opposite to each other with the wavelength of the peak of the absorption spectrum of the non-target component being the origin. The two wavelengths located at positions where the signs are opposite to each other with the wavelength of the peak of the absorption spectrum of the non-target component as the origin are, for example, when the non-target component is water, a wavelength of 1450+70 nm and a wavelength of 1450 nm. It may be two wavelengths, with a wavelength of -70 nanometers. Two wavelengths located at positions whose signs are opposite to each other with the wavelength of the peak of the absorption spectrum of the non-target component being the origin are, for example, when the non-target component is water, a wavelength of 1450+20 nanometers and a wavelength of 1450 nm. It may be two wavelengths, with a wavelength of -50 nanometers. Two wavelengths located at positions where the signs of the peaks of the absorption spectrum of the non-target component are opposite to each other are the inflection points where the signs of the peaks of the absorption spectrum of the non-target component are opposite to the origin. The wavelength may be located at the position of.
 所定の相関関係を有する波長は、例えば、非目的成分の吸収スペクトルの変曲点の波長を原点として互いに符号が逆である位置に位置する2つの波長であってもよい。非目的成分の吸収スペクトルの変曲点の波長を原点として互いに符号が逆である位置に位置する2つの波長とは、例えば、H+10ナノメートルの波長と、H-10ナノメートルの波長との2つの波長であってもよい。Hは、非目的成分の吸収スペクトルの変曲点の波長である。非目的成分の吸収スペクトルの変曲点の波長を原点として互いに符号が逆である位置に位置する2つの波長とは、例えば、H+7ナノメートルの波長と、H-5ナノメートルの波長との2つの波長であってもよい。 The wavelengths having a predetermined correlation may be, for example, two wavelengths located at positions whose signs are opposite to each other with the wavelength of the inflection point of the absorption spectrum of the non-target component as the origin. Two wavelengths located at positions whose signs are opposite to each other with the wavelength of the inflection point of the absorption spectrum of the non-target component being the origin are, for example, a wavelength of H+10 nanometers and a wavelength of H-10 nanometers. It may be one wavelength. H is the wavelength of the inflection point of the absorption spectrum of the non-target component. Two wavelengths located at positions whose signs are opposite to each other with the wavelength of the inflection point of the absorption spectrum of the non-target component being the origin are, for example, a wavelength of H+7 nanometers and a wavelength of H-5 nanometers. It may be one wavelength.
 なお、変形例の濃度測定装置1aが、非目的成分励起光を照射する3つ以上の照射部を有する場合には、それぞれの非目的成分励起光の波長は、所定の相関関係を有する波長である。3つ以上の非目的成分励起光の間の所定の相関関係とは、例えば、略半数の波長が非目的成分の吸収スペクトルのピークの波長を原点として正の側に位置し、残りの非目的成分励起光の波長が負の側に位置するという関係であってもよい。
 ここまでで、図11が示す変形例の濃度測定装置1aに関する説明を終了する。
When the concentration measuring device 1a of the modified example has three or more irradiation units that irradiate the non-target component excitation light, the wavelengths of the respective non-target component excitation lights are wavelengths having a predetermined correlation. is there. The predetermined correlation between three or more non-target component excitation lights means that, for example, approximately half of the wavelengths are located on the positive side with the wavelength of the peak of the absorption spectrum of the non-target component as the origin, and the remaining non-target components. The relationship may be such that the wavelength of the component excitation light is located on the negative side.
Up to this point, the description of the modified concentration measuring device 1a shown in FIG. 11 is completed.
 なお、情報処理部100及び100aは、第1測定結果情報に基づいて水の量を取得してもよい。情報処理部100及び100aは、どのように水の量を取得してもよい。情報処理部100及び100aは、例えば、多変量解析によって水の量を取得してもよい。情報処理部100及び100aは、例えば、予めニューラルネットワーク等の機械学習の方法によって学習された学習モデルであって、低温状態の透過光の強度と高温状態の透過光の強度と水の量との関係を表す学習モデルに基づいて水の量を取得してもよい。 Note that the information processing units 100 and 100a may acquire the amount of water based on the first measurement result information. The information processing units 100 and 100a may acquire the amount of water in any way. The information processing units 100 and 100a may acquire the amount of water by multivariate analysis, for example. The information processing units 100 and 100a are, for example, learning models that have been learned in advance by a machine learning method such as a neural network, and the intensity of transmitted light in a low temperature state, the intensity of transmitted light in a high temperature state, and the amount of water. The amount of water may be acquired based on a learning model representing the relationship.
 なお、第1の波長が、温度変化に対する水の吸光度の変化が線形である波長帯域に属する波長である場合には、濃度測定装置1及び濃度測定装置2は多変量解析の方法によって機械学習の方法によって測定されるグルコースの濃度の測定精度と同程度以上の精度でグルコースの濃度を測定することができる。 When the first wavelength is a wavelength belonging to a wavelength band in which the change in the absorbance of water with respect to the temperature change is linear, the concentration measuring device 1 and the concentration measuring device 2 are machine-learned by a method of multivariate analysis. The glucose concentration can be measured with an accuracy equal to or higher than the measurement accuracy of the glucose concentration measured by the method.
 一方で、第1の波長が、温度変化に対する水の吸光度の変化が非線形である波長帯域に属する波長である場合には、濃度測定装置1及び濃度測定装置2は、機械学習の方法によって、多変量解析の方法によって測定されるグルコースの濃度の測定精度以上の精度でグルコースの濃度を測定することができる。
 なお、濃度測定装置1及び濃度測定装置2が多変量解析の方法によって濃度を測定する場合には、生体9に照射する波長ごとの生体9に生じる変化に関して、波長間の相関関係がある方が測定の精度が向上する。一方、濃度測定装置1及び濃度測定装置2が機械学習の方法によって濃度を測定する場合には、生体9に照射する波長ごとの生体9に生じる変化に関して、必ずしも相関関係が無くてもよい。
On the other hand, when the first wavelength is a wavelength belonging to a wavelength band in which the change of the absorbance of water with respect to the temperature change is non-linear, the concentration measuring device 1 and the concentration measuring device 2 are often subjected to the machine learning method. The glucose concentration can be measured with accuracy higher than the measurement accuracy of the glucose concentration measured by the method of variable analysis.
In the case where the concentration measuring device 1 and the concentration measuring device 2 measure the concentration by the method of multivariate analysis, there is a correlation between the wavelengths with respect to the change occurring in the living body 9 for each wavelength with which the living body 9 is irradiated. The measurement accuracy is improved. On the other hand, in the case where the concentration measuring device 1 and the concentration measuring device 2 measure the concentration by the method of machine learning, the change occurring in the living body 9 for each wavelength with which the living body 9 is irradiated may not necessarily have a correlation.
 図13~図15によって、濃度測定装置1、2及び1aが多変量解析によって取得したグルコースの濃度と真値との誤差をシミュレーションした結果を説明する。
 図13は、シミュレーションに用いられた水とグルコースとの吸収スペクトルの一例を示す図である。
 シミュレーションに用いられた水は、1450ナノメートルに極大値をもつスペクトルである。シミュレーションに用いられたグルコースは、1600ナノメートルに極大値をもつスペクトルである。図13において、解析波長点は、シミュレーションにおける第2の波長の候補を示す。
The results of simulating the error between the glucose concentration and the true value acquired by the multivariate analysis by the concentration measuring devices 1, 2 and 1a will be described with reference to FIGS. 13 to 15.
FIG. 13 is a diagram showing an example of absorption spectra of water and glucose used in the simulation.
The water used in the simulation has a spectrum with a maximum at 1450 nanometers. Glucose used in the simulation is a spectrum having a maximum value at 1600 nanometers. In FIG. 13, the analysis wavelength point indicates a candidate for the second wavelength in the simulation.
 図14は、非目的成分励起光として第2の波長の光のみが照射された場合に、濃度測定装置1、2及び1aが多変量解析によって取得したグルコースの濃度の真値との誤差を示すシミュレーション結果の一例を示す図である。
 シミュレーションは、生体9の温度が28℃における生体9の吸収スペクトルであってグルコースの濃度が0%、0.05%、0.1%、0.15%、0.2%のそれぞれの場合の生体9の吸光スペクトルと、生体9の温度が30℃における生体9の吸収スペクトルであってグルコースの濃度が0%、0.05%、0.1%、0.15%、0.2%のそれぞれの場合の生体9の吸光スペクトルと、生体9の温度が32℃における生体9の吸収スペクトルであってグルコースの濃度が0%、0.05%、0.1%、0.15%、0.2%のそれぞれの場合の生体9の吸光スペクトルとの全部で15のスペクトルが既知であるとして実行された。
 シミュレーションは、真値が31℃であって、グルコースの濃度が0.07%であると仮定して実行された。
FIG. 14 shows an error from the true value of the glucose concentration obtained by the multivariate analysis by the concentration measuring devices 1, 2 and 1a when only the light of the second wavelength is irradiated as the non-target component excitation light. It is a figure which shows an example of a simulation result.
The simulation is an absorption spectrum of the living body 9 when the temperature of the living body 9 is 28° C. and the glucose concentration is 0%, 0.05%, 0.1%, 0.15% and 0.2% respectively. The absorption spectrum of the living body 9 and the absorption spectrum of the living body 9 when the temperature of the living body 9 is 30° C. and the concentrations of glucose are 0%, 0.05%, 0.1%, 0.15% and 0.2%. The absorption spectrum of the living body 9 in each case and the absorption spectrum of the living body 9 when the temperature of the living body 9 is 32° C. and the concentration of glucose are 0%, 0.05%, 0.1%, 0.15%, 0 A total of 15 spectra with the absorption spectrum of organism 9 in each case of 0.2% were carried out as known.
The simulation was performed assuming a true value of 31° C. and a glucose concentration of 0.07%.
 図14の横軸は波長を表す。図14の縦軸は、誤差を表す。図14において、水推定誤差は、ミシュレ―ションによって算出された誤差であって、濃度測定装置1、2及び1aが取得する水の量と真値との誤差を表す。図14において、Glc推定誤差は、ミシュレ―ションによって算出された誤差であって、濃度測定装置1、2及び1aが取得するグルコースの濃度と真値との誤差を表す。図14において、温度推定誤差は、ミシュレ―ションによって算出された誤差であって、濃度測定装置1、2及び1aが取得する水の温度と真値との誤差を表す。
 図14は、非目的成分励起光として第2の波長の光のみが照射された場合に濃度測定装置1、2及び1aが多変量解析によって取得するグルコースの濃度は、真値との誤差が20%から25%であることを示す。
The horizontal axis of FIG. 14 represents wavelength. The vertical axis of FIG. 14 represents the error. In FIG. 14, the water estimation error is an error calculated by the simulation, and represents an error between the amount of water acquired by the concentration measuring devices 1, 2 and 1a and the true value. In FIG. 14, the Glc estimation error is an error calculated by the simulation, and represents an error between the glucose concentration acquired by the concentration measuring devices 1, 2 and 1a and the true value. In FIG. 14, the temperature estimation error is the error calculated by the simulation, and represents the error between the temperature of water and the true value acquired by the concentration measuring devices 1, 2 and 1a.
FIG. 14 shows that the glucose concentration acquired by the multivariate analysis by the concentration measuring devices 1, 2 and 1a when the non-target component excitation light is irradiated with only the light of the second wavelength has an error of 20 from the true value. % To 25%.
 図15は、非目的成分励起光として第2の波長の光と第3の波長の光とが照射された場合に、濃度測定装置1、2及び1aが多変量解析によって取得したグルコースの濃度の真値との誤差を示すシミュレーション結果の一例を示す図である。
 シミュレーションは、図14と同様の情報が既知であるとして実行された。すなわち、図15においても、シミュレーションは、生体9の温度が28℃における生体9の吸収スペクトルであってグルコースの濃度が0%、0.05%、0.1%、0.15%、0.2%のそれぞれの場合の生体9の吸光スペクトルと、生体9の温度が30℃における生体9の吸収スペクトルであってグルコースの濃度が0%、0.05%、0.1%、0.15%、0.2%のそれぞれの場合の生体9の吸光スペクトルと、生体9の温度が32℃における生体9の吸収スペクトルであってグルコースの濃度が0%、0.05%、0.1%、0.15%、0.2%のそれぞれの場合の生体9の吸光スペクトルとの全部で15のスペクトルが既知であるとして実行された。
 また、図14と同様に、シミュレーションは、真値が31℃であって、グルコースの濃度が0.07%であると仮定して実行された。
FIG. 15 shows the concentration of glucose acquired by the multivariate analysis by the concentration measuring devices 1, 2 and 1a when the light of the second wavelength and the light of the third wavelength are irradiated as the non-target component excitation light. It is a figure which shows an example of the simulation result which shows the error with a true value.
The simulation was performed assuming that the same information as in FIG. 14 is known. That is, also in FIG. 15, the simulation is the absorption spectrum of the living body 9 when the temperature of the living body 9 is 28° C., and the glucose concentrations are 0%, 0.05%, 0.1%, 0.15%, 0. The absorption spectrum of the living body 9 in each case of 2% and the absorption spectrum of the living body 9 when the temperature of the living body 9 is 30° C. and the concentration of glucose is 0%, 0.05%, 0.1%, 0.15. % And 0.2% of the absorption spectrum of the living body 9 and the absorption spectrum of the living body 9 when the temperature of the living body 9 is 32° C. and the glucose concentrations are 0%, 0.05% and 0.1%, respectively. , 0.15%, 0.2% in each case, and a total of 15 spectra with the absorption spectrum of living body 9 were performed as known.
Also, as in FIG. 14, the simulation was performed assuming that the true value was 31° C. and the glucose concentration was 0.07%.
 図15の横軸は波長を表す。図15の縦軸は、誤差を表す。図15は、非目的成分励起光として第2の波長の光と1450ナノメートルより長い第3の波長の光とが照射された場合には、濃度測定装置1、2及び1aが多変量解析によって取得するグルコースの濃度は、真値との誤差が5%~10%であることを示す。
 また、図15は、非目的成分励起光として第2の波長の光と1450ナノメートル以下の第3の波長の光とが照射された場合には、濃度測定装置1、2及び1aが多変量解析によって取得するグルコースの濃度は、真値との誤差が20%~25%であることを示す。
 非目的成分励起光として第2の波長の光と1450ナノメートル以下の第3の波長の光とが照射された場合には、濃度測定装置1、2及び1aは機械学習の学習結果に基づいてグルコースの濃度を取得することが望ましい。
The horizontal axis of FIG. 15 represents wavelength. The vertical axis of FIG. 15 represents the error. FIG. 15 shows that when the light of the second wavelength and the light of the third wavelength longer than 1450 nm are irradiated as the non-target component excitation light, the concentration measuring devices 1, 2 and 1a are analyzed by the multivariate analysis. The obtained glucose concentration has an error of 5% to 10% from the true value.
In addition, FIG. 15 shows that when the light of the second wavelength and the light of the third wavelength of 1450 nm or less are irradiated as the non-target component excitation light, the concentration measuring devices 1, 2 and 1 a are multivariate. The glucose concentration obtained by the analysis shows that the error from the true value is 20% to 25%.
When the light of the second wavelength and the light of the third wavelength of 1450 nm or less are irradiated as the non-target component excitation light, the concentration measuring devices 1, 2 and 1a are based on the learning result of the machine learning. It is desirable to obtain the glucose concentration.
 図16は、濃度測定装置1、2及び1aが機械学習の学習結果に基づいて取得したグルコースの濃度と真値との誤差の一例を示す図である。
 図16の結果を取得するための機械学習の教師データは、グルコースの濃度の真値を0.08~0.17%にまで0.01%刻みで変化させ、温度を35℃から37℃まで0.2℃刻みで変化させた場合に、濃度測定装置1、2及び1aが取得したグルコースの濃度の濃度である。
 図16は、学習したモデルに基づいて、温度が36℃であって、真値が0.085~0.165%のグルコースの濃度を濃度測定装置1、2及び1aが取得した場合における濃度測定装置1、2及び1aが取得したグルコースの濃度と真値との誤差を示す。
 図16は、濃度測定装置1、2及び1aが取得した温度と真値との誤差も示す。
 図16は、学習したモデルに基づいた場合、濃度測定装置1、2及び1aが取得したグルコースの濃度と真値との誤差は、2%以下であることを示す。
FIG. 16 is a diagram showing an example of the error between the glucose concentration and the true value acquired by the concentration measuring devices 1, 2 and 1a based on the learning result of machine learning.
The machine learning teacher data for obtaining the result of FIG. 16 is that the true value of the glucose concentration is changed in steps of 0.01% from 0.08 to 0.17%, and the temperature is changed from 35° C. to 37° C. This is the concentration of the glucose concentration acquired by the concentration measuring devices 1, 2 and 1a when changed in steps of 0.2° C.
FIG. 16 shows the concentration measurement in the case where the concentration measuring devices 1, 2 and 1a acquire the concentration of glucose having a true value of 0.085 to 0.165% at a temperature of 36° C. based on the learned model. The error between the concentration of glucose acquired by the devices 1, 2 and 1a and the true value is shown.
FIG. 16 also shows the error between the temperature and the true value acquired by the concentration measuring devices 1, 2 and 1a.
FIG. 16 shows that the error between the concentration of glucose and the true value acquired by the concentration measuring devices 1, 2 and 1a is 2% or less when based on the learned model.
 なお、濃度測定装置1、2及び1aの各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。 All or part of each function of the concentration measurement devices 1, 2 and 1a is realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device) and FPGA (Field Programmable Gate Array). May be done. The program may be recorded in a computer-readable recording medium. The computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system. The program may be transmitted via a telecommunication line.
 なお、情報処理部100、200及び100aは、ネットワークを介して通信可能に接続された複数台の情報処理装置を用いて実装されてもよい。また、情報処理部100、200及び100aは、測定結果を出力してもよい。また、情報処理部100、200及び100aは、測定結果を表示する表示装置を備えても良い。この場合、情報処理部100、200及び100aが備える各機能部は、複数の情報処理装置に分散して実装されてもよい。例えば、制御部110と、第1強度取得部120及び第2強度取得部130と、補正部140、温度情報取得部150及び濃度取得部160とは、それぞれ異なる情報処理装置に実装されてもよい。 Note that the information processing units 100, 200, and 100a may be implemented by using a plurality of information processing devices communicatively connected via a network. Further, the information processing units 100, 200 and 100a may output the measurement result. In addition, the information processing units 100, 200, and 100a may include a display device that displays the measurement result. In this case, the functional units included in the information processing units 100, 200, and 100a may be distributed and implemented in a plurality of information processing devices. For example, the control unit 110, the first intensity acquisition unit 120 and the second intensity acquisition unit 130, the correction unit 140, the temperature information acquisition unit 150, and the concentration acquisition unit 160 may be implemented in different information processing devices. ..
 なお、濃度測定装置1、2及び1aは、ネットワークを介して通信可能に接続された複数台の装置を用いて実装されてもよい。
 この場合、濃度測定装置1は、例えば、制御部110、第1照射部14、第2照射部15及び受光部16を備える光測定装置と、第1強度取得部120、第2強度取得部130、補正部140、温度情報取得部150及び濃度取得部160を備える処理装置と、の2つの装置で実装されてもよい。
The concentration measuring devices 1, 2 and 1a may be implemented by using a plurality of devices communicably connected via a network.
In this case, the concentration measuring device 1 includes, for example, a light measuring device including the control unit 110, the first irradiation unit 14, the second irradiation unit 15, and the light receiving unit 16, the first intensity acquisition unit 120, and the second intensity acquisition unit 130. , A processing unit including the correction unit 140, the temperature information acquisition unit 150, and the concentration acquisition unit 160.
 なお、強度E2は強度E1と異なる強度であれば、必ずしも、強度E1よりも強くなくてもよい。なお、透過光の強度と振動波の振幅とは、2乗した次元がエネルギーに比例する物理量である。なお、透過光の強度と、振動波の振幅とは、測定対象の変化に起因する物理量の一例である。なお、第1強度取得部120及び第1振幅取得部220は、第1取得部の一例である。なお、第2強度取得部130及び第2振幅取得部230は、第2取得部の一例である。なお、強度E1は第1の強度の一例である。なお、強度E2は第2の強度の一例である。なお、第3照射部15-2~第N照射部15-(N-1)は、M個の照射部の一例である。なおMは、1以上の整数である。なお、吸収スペクトルのシフト量は、吸収スペクトルの変化の一例である。なお、吸収スペクトルの変化は、必ずしもシフト量の変化だけでなく、吸収スペクトルの形状の変化であってもよい。 Note that the strength E2 does not necessarily have to be stronger than the strength E1 as long as the strength E2 is different from the strength E1. The intensity of the transmitted light and the amplitude of the vibration wave are physical quantities whose squared dimension is proportional to energy. The intensity of the transmitted light and the amplitude of the vibration wave are examples of physical quantities due to changes in the measurement target. In addition, the 1st intensity|strength acquisition part 120 and the 1st amplitude acquisition part 220 are examples of a 1st acquisition part. The second intensity acquisition unit 130 and the second amplitude acquisition unit 230 are examples of the second acquisition unit. The strength E1 is an example of the first strength. The strength E2 is an example of the second strength. The third irradiation unit 15-2 to the Nth irradiation unit 15-(N-1) are examples of M irradiation units. Note that M is an integer of 1 or more. The shift amount of the absorption spectrum is an example of change in the absorption spectrum. The change in the absorption spectrum is not limited to the change in the shift amount and may be the change in the shape of the absorption spectrum.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 The embodiment of the present invention has been described in detail above with reference to the drawings, but the specific configuration is not limited to this embodiment, and includes a design etc. within the scope not departing from the gist of the present invention.
1、2、1a…濃度測定装置、 11、21…CPU、 12、22…メモリ、13、23…補助記憶装置、 14…第1照射部、 15…第2照射部、 16、16a…受光部、 100、100a…情報処理部、 110、210…制御部、 120…第1強度取得部、 130…第2強度取得部、 140、240…補正部、 150、250…温度情報取得部、 160、260…濃度取得部、 24…第1変調部、 25…第2変調部、 26…感圧部、 220…第1振幅取得部、 230…第2振幅取得部 1, 2, 1a... Concentration measuring device, 11, 21... CPU, 12, 22... Memory, 13, 23... Auxiliary storage device, 14... First irradiation unit, 15... Second irradiation unit, 16, 16a... Light receiving unit , 100, 100a... Information processing unit, 110, 210... Control unit, 120... First intensity acquisition unit, 130... Second intensity acquisition unit, 140, 240... Correction unit, 150, 250... Temperature information acquisition unit, 160, 260... concentration acquisition section, 24... first modulation section, 25... second modulation section, 26... pressure sensitive section, 220... first amplitude acquisition section, 230... second amplitude acquisition section

Claims (27)

  1.  目的成分と非目的成分とを有する測定対象に第1の波長の光を照射する第1照射部と、
     前記第1の波長と異なる波長である第2の波長の光を前記測定対象に照射する第2照射部と、
     前記第1照射部が前記第1の波長の光を前記測定対象に照射し前記第2照射部が前記第2の波長の光を第1の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第1取得部と、
     前記第1照射部が前記第1の波長の光を前記測定対象に照射し、前記第2照射部が前記第2の波長の光を前記第1の強度と異なる第2の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第2取得部と、
     前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて前記測定対象の温度変化に関する情報である温度情報を取得する温度情報取得部と、
     前記温度情報と前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて、前記非目的成分の濃度を取得する濃度取得部と、
     を備える濃度測定装置。
    A first irradiation unit that irradiates a measurement target having a target component and a non-target component with light having a first wavelength;
    A second irradiation unit that irradiates the measurement target with light having a second wavelength that is different from the first wavelength;
    The measurement is performed when the first irradiation unit irradiates the measurement target with light having the first wavelength and the second irradiation unit irradiates the measurement target with light having the second wavelength at the first intensity. A first acquisition unit that acquires a physical quantity resulting from a change in the target;
    The first irradiation unit irradiates the measurement target with light of the first wavelength, and the second irradiation unit measures the measurement target with light of the second wavelength at a second intensity different from the first intensity. A second acquisition unit that acquires a physical quantity resulting from a change in the measurement target when the object is irradiated with
    A temperature information acquisition unit that acquires temperature information that is information related to a temperature change of the measurement target based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit;
    A concentration acquisition unit that acquires the concentration of the non-target component based on the temperature information, the physical quantity acquired by the first acquisition unit, and the physical quantity acquired by the second acquisition unit;
    A concentration measuring device comprising.
  2.  前記濃度取得部は、多変量解析によって前記濃度を取得する、
     請求項1に記載の濃度測定装置。
    The concentration acquisition unit acquires the concentration by multivariate analysis,
    The concentration measuring device according to claim 1.
  3.  前記濃度取得部は、予め学習された学習モデルであって、前記第1取得部が取得した物理量と前記第2取得部が取得した物理量と前記温度情報と前記濃度との関係を表す学習モデルに基づいて、前記濃度を取得する、
     請求項1に記載の濃度測定装置。
    The concentration acquisition unit is a learning model that has been learned in advance, and is a learning model that represents the relationship between the physical quantity acquired by the first acquisition unit, the physical quantity acquired by the second acquisition unit, the temperature information, and the concentration. Based on, obtaining the concentration,
    The concentration measuring device according to claim 1.
  4.  前記第2の波長は、前記目的成分の吸光度が前記非目的成分の吸光度より小さい波長である、
     請求項1に記載の濃度測定装置。
    The second wavelength is a wavelength at which the absorbance of the target component is smaller than the absorbance of the non-target component,
    The concentration measuring device according to claim 1.
  5.  前記第2の波長は、前記非目的成分の吸収スペクトルを所定の大きさ以上に変化させる波長である、
     請求項4に記載の濃度測定装置。
    The second wavelength is a wavelength that changes the absorption spectrum of the non-target component to a predetermined magnitude or more,
    The concentration measuring device according to claim 4.
  6.  前記第2の波長は、前記非目的成分の吸光度が極大である波長である、
     請求項5に記載の濃度測定装置。
    The second wavelength is a wavelength at which the absorbance of the non-target component is maximum,
    The concentration measuring device according to claim 5.
  7.  前記第2の波長は、前記非目的成分の吸光度が極大である波長を中心とした±70ナノメートルの範囲内の波長である、
     請求項5に記載の濃度測定装置。
    The second wavelength is a wavelength within a range of ±70 nanometers centering on the wavelength at which the absorbance of the non-target component is maximum,
    The concentration measuring device according to claim 5.
  8.  前記第1の波長は、前記目的成分の吸光度が極大である波長を中心とした±70ナノメートルの範囲内の波長である、
     請求項1に記載の濃度測定装置。
    The first wavelength is a wavelength within a range of ±70 nanometers around the wavelength at which the absorbance of the target component is maximum,
    The concentration measuring device according to claim 1.
  9.  前記第1の波長は、目的成分の吸光度が極大である波長である、
     請求項2に記載の濃度測定装置。
    The first wavelength is a wavelength at which the absorbance of the target component is maximum,
    The concentration measuring device according to claim 2.
  10.  前記第1取得部が取得した前記物理量と前記第2取得部が取得した前記物理量とに基づいて、前記物理量に対する環境の影響を表す値である補正係数を取得し、取得した前記補正係数によって、前記第1取得部が取得した前記物理量と前記第2取得部が取得した前記物理量とを補正する補正部、
     をさらに備える請求項1に記載の濃度測定装置。
    Based on the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit, a correction coefficient that is a value representing the influence of the environment on the physical quantity is acquired, and by the acquired correction coefficient, A correction unit that corrects the physical quantity acquired by the first acquisition unit and the physical quantity acquired by the second acquisition unit,
    The concentration measuring device according to claim 1, further comprising:
  11.  前記環境の影響は、前記非目的成分の量である、
     請求項10に記載の濃度測定装置。
    The environmental impact is the amount of the non-target component,
    The concentration measuring device according to claim 10.
  12.  前記環境の影響は、前記第1の波長に対する前記非目的成分の吸光度と前記第2の波長に対する前記非目的成分の吸光度である、
     請求項10に記載の濃度測定装置。
    The influence of the environment is the absorbance of the non-target component for the first wavelength and the absorbance of the non-target component for the second wavelength.
    The concentration measuring device according to claim 10.
  13.  前記環境の影響は、前記第1の波長の光を受光する受光部の性能である、
     請求項10に記載の濃度測定装置。
    The influence of the environment is the performance of the light receiving unit that receives the light of the first wavelength,
    The concentration measuring device according to claim 10.
  14.  前記第1の波長の光と、前記第2の波長の光との少なくとも一方は、符号化された光である、
     請求項1に記載の濃度測定装置。
    At least one of the light of the first wavelength and the light of the second wavelength is coded light,
    The concentration measuring device according to claim 1.
  15.  目的成分と非目的成分とを有する測定対象に光を照射するM(Mは1以上の整数)個の照射部をさらに備える、
     請求項1に記載の濃度測定装置。
    Further, M (M is an integer of 1 or more) irradiation units for irradiating a measurement object having a target component and a non-target component with light,
    The concentration measuring device according to claim 1.
  16.  M個の前記照射部のうちの少なくともひとつの前記照射部が照射する光の波長を第3の波長として、
     前記第2の波長と前記第3の波長とは、前記非目的成分の吸収スペクトルのシフトに関する所定の相関関係を有する波長である、
     請求項15に記載の濃度測定装置。
    The wavelength of the light emitted by at least one of the M irradiation units is the third wavelength,
    The second wavelength and the third wavelength are wavelengths having a predetermined correlation regarding the shift of the absorption spectrum of the non-target component,
    The concentration measuring device according to claim 15.
  17.  前記第2の波長と前記第3の波長とは、前記非目的成分の吸収スペクトルのピークの波長を原点として互いに符号が逆である位置に位置する波長である、
     請求項16に記載の濃度測定装置。
    The second wavelength and the third wavelength are wavelengths located at positions with opposite signs with respect to the wavelength of the peak of the absorption spectrum of the non-target component as the origin.
    The concentration measuring device according to claim 16.
  18.  前記第2の波長と前記第3の波長とは、前記非目的成分の吸収スペクトルの変曲点の波長を原点として互いに符号が逆である位置に位置する波長である、
     請求項16に記載の濃度測定装置。
    The second wavelength and the third wavelength are wavelengths located at positions whose signs are opposite to each other with the wavelength of the inflection point of the absorption spectrum of the non-target component being the origin.
    The concentration measuring device according to claim 16.
  19.  前記物理量は前記測定対象に照射された光の透過光、散乱光又は反射光の強度である、
     請求項1に記載の濃度測定装置。
    The physical quantity is the intensity of transmitted light, scattered light, or reflected light of the light with which the measurement target is irradiated,
    The concentration measuring device according to claim 1.
  20.  前記物理量は、前記測定対象に照射された光の透過光の強度である、
     請求項19に記載の濃度測定装置。
    The physical quantity is the intensity of transmitted light of the light applied to the measurement object,
    The concentration measuring device according to claim 19.
  21.  前記物理量は前記測定対象に照射された光によって前記測定対象に発生した振動波の振幅である、
     請求項1に記載の濃度測定装置。
    The physical quantity is the amplitude of an oscillating wave generated in the measurement object by the light applied to the measurement object,
    The concentration measuring device according to claim 1.
  22.  前記振動波は前記測定対象に照射された光によって前記測定対象に発生した弾性波の振幅である、
     請求項21に記載の濃度測定装置。
    The vibration wave is the amplitude of the elastic wave generated in the measurement object by the light applied to the measurement object,
    The concentration measuring device according to claim 21.
  23.  前記振動波は前記測定対象に照射された光によって前記測定対象に発生した熱波の振幅である、
     請求項21に記載の濃度測定装置。
    The vibration wave is the amplitude of a thermal wave generated in the measurement object by the light applied to the measurement object,
    The concentration measuring device according to claim 21.
  24.  圧力が加わったときに前記圧力の大きさに比例する電圧を発生させる圧電体と、
     前記圧電体に張力を与えて前記圧電体を前記測定対象に密着させる保持具と
     を備え、
     前記第1取得部及び前記第2取得部は、前記圧電体が発生した電圧に基づいて前記物理量を取得する、
     請求項21に記載の濃度測定装置。
    A piezoelectric body that generates a voltage proportional to the magnitude of the pressure when pressure is applied,
    A holder for applying tension to the piezoelectric body to bring the piezoelectric body into close contact with the measurement target,
    The first acquisition unit and the second acquisition unit acquire the physical quantity based on the voltage generated by the piezoelectric body,
    The concentration measuring device according to claim 21.
  25.  前記温度情報は、前記非目的成分の吸収スペクトルのシフト量である、
     請求項1に記載の濃度測定装置。
    The temperature information is a shift amount of the absorption spectrum of the non-target component,
    The concentration measuring device according to claim 1.
  26.  目的成分と非目的成分とを有する測定対象に第1の波長の光を照射する第1照射部と、前記第1の波長と異なる波長である第2の波長の光を前記測定対象に照射する第2照射部と、前記第1照射部が前記第1の波長の光を前記測定対象に照射し前記第2照射部が前記第2の波長の光を第1の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第1取得部と、前記第1照射部が前記第1の波長の光を前記測定対象に照射し、前記第2照射部が前記第2の波長の光を前記第1の強度と異なる第2の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第2取得部と、前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて前記測定対象の温度変化に関する情報である温度情報を取得する温度情報取得部と、前記温度情報と前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて、前記非目的成分の濃度を取得する濃度取得部と、を備える濃度測定装置が行う濃度測定方法であって、
     前記測定対象に前記第1の波長の光を照射する第1照射ステップと、
     前記第2の波長の光を前記測定対象に照射する第2照射ステップと、
     前記第1照射部が前記第1の波長の光を前記測定対象に照射し前記第2照射部が前記第2の波長の光を第1の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第1取得ステップと、
     前記第1照射部が前記第1の波長の光を前記測定対象に照射し、前記第2照射部が前記第2の波長の光を前記第1の強度と異なる第2の強度で前記測定対象に照射した場合に、前記測定対象の変化に起因する物理量を取得する第2取得ステップと、
     前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて前記測定対象の温度変化に関する情報である温度情報を取得する温度情報取得ステップと、
     前記温度情報と前記第1取得部が取得した物理量と前記第2取得部が取得した物理量とに基づいて、前記非目的成分の濃度を取得する濃度取得ステップと、
     を有する濃度測定方法。
    A first irradiation unit that irradiates a measurement target having a target component and a non-target component with light having a first wavelength, and irradiates the measurement target with light having a second wavelength that is different from the first wavelength. A second irradiation unit and the first irradiation unit irradiate the measurement target with light having the first wavelength, and the second irradiation unit irradiates the measurement target with light having the second wavelength at the first intensity. In that case, a first acquisition unit that acquires a physical quantity resulting from a change in the measurement target, and the first irradiation unit irradiates the measurement target with light having the first wavelength, and the second irradiation unit A second acquisition unit that acquires a physical quantity resulting from a change in the measurement target when the measurement target is irradiated with light having a second wavelength at a second intensity different from the first intensity; and the first acquisition A temperature information acquisition unit that acquires temperature information, which is information related to a temperature change of the measurement target, based on the physical quantity acquired by the unit and the physical quantity acquired by the second acquisition unit; and the temperature information and the first acquisition unit. A concentration measuring method performed by a concentration measuring device comprising: a concentration acquiring unit that acquires the concentration of the non-target component based on the acquired physical amount and the physical amount acquired by the second acquiring unit,
    A first irradiation step of irradiating the measurement object with the light of the first wavelength;
    A second irradiation step of irradiating the measurement target with light of the second wavelength;
    The measurement is performed when the first irradiation unit irradiates the measurement target with light having the first wavelength and the second irradiation unit irradiates the measurement target with light having the second wavelength at the first intensity. A first acquisition step of acquiring a physical quantity resulting from a change in the target,
    The first irradiation unit irradiates the measurement target with light of the first wavelength, and the second irradiation unit measures the measurement target with light of the second wavelength at a second intensity different from the first intensity. A second acquisition step of acquiring a physical quantity resulting from the change of the measurement target when the irradiation is performed on
    A temperature information acquisition step of acquiring temperature information, which is information regarding a temperature change of the measurement target, based on the physical quantity acquired by the first acquisition section and the physical quantity acquired by the second acquisition section;
    A concentration acquisition step of acquiring the concentration of the non-target component based on the temperature information, the physical quantity acquired by the first acquisition unit, and the physical quantity acquired by the second acquisition unit;
    And a method for measuring concentration.
  27.  請求項1に記載の濃度測定装置としてコンピュータを機能させるためのプログラムを記憶する非一時的記録媒体。 A non-transitory recording medium that stores a program for causing a computer to function as the concentration measuring device according to claim 1.
PCT/JP2018/043732 2018-11-28 2018-11-28 Concentration measurement device, concentration measurement method, and non-transitory storage medium WO2020110222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/043732 WO2020110222A1 (en) 2018-11-28 2018-11-28 Concentration measurement device, concentration measurement method, and non-transitory storage medium
JP2020557454A JP7197205B2 (en) 2018-11-28 2018-11-28 DENSITY MEASUREMENT DEVICE, DENSITY MEASUREMENT METHOD AND NON-TEMPORARY RECORDING MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043732 WO2020110222A1 (en) 2018-11-28 2018-11-28 Concentration measurement device, concentration measurement method, and non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2020110222A1 true WO2020110222A1 (en) 2020-06-04

Family

ID=70854181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043732 WO2020110222A1 (en) 2018-11-28 2018-11-28 Concentration measurement device, concentration measurement method, and non-transitory storage medium

Country Status (2)

Country Link
JP (1) JP7197205B2 (en)
WO (1) WO2020110222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4144292A1 (en) * 2021-09-02 2023-03-08 Eclypia Process and analyte monitor for estimating a quantity in mathematical relationship with an analyte concentration level in a target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356089A (en) * 2000-11-10 2001-12-26 Citizen Watch Co Ltd Concentration measuring instrument
JP2013000506A (en) * 2011-06-21 2013-01-07 Seiko Epson Corp Apparatus and method for quantifying concentration
US20130110311A1 (en) * 2011-08-29 2013-05-02 Tk Holdings Inc. System for noninvasive measurement of an analyte in a vehicle driver
JP2014079559A (en) * 2012-09-26 2014-05-08 Meiji Univ Parameter measuring device, parameter measuring method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356089A (en) * 2000-11-10 2001-12-26 Citizen Watch Co Ltd Concentration measuring instrument
JP2013000506A (en) * 2011-06-21 2013-01-07 Seiko Epson Corp Apparatus and method for quantifying concentration
US20130110311A1 (en) * 2011-08-29 2013-05-02 Tk Holdings Inc. System for noninvasive measurement of an analyte in a vehicle driver
JP2014079559A (en) * 2012-09-26 2014-05-08 Meiji Univ Parameter measuring device, parameter measuring method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4144292A1 (en) * 2021-09-02 2023-03-08 Eclypia Process and analyte monitor for estimating a quantity in mathematical relationship with an analyte concentration level in a target
WO2023031243A1 (en) * 2021-09-02 2023-03-09 Eclypia Process and analyte monitor for estimating a quantity in mathematical relationship with an analyte concentration level in a target

Also Published As

Publication number Publication date
JPWO2020110222A1 (en) 2021-09-30
JP7197205B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
AU2008325237B2 (en) Optical sensor for determining the concentration of an analyte
KR100493154B1 (en) Apparatus of non-invasive measurement of bio-fluid concentration by using photoacoustic spectroscopy
US8364414B2 (en) Apparatus and method for processing biological information
US9032800B2 (en) Photoacoustic imaging apparatus and photoacoustic imaging method
CN106535760A (en) Non-invasive substance analysis
JP2012237595A (en) Optical tomography device
US20180092579A1 (en) Pulse photometer
JPH11183377A (en) Optical content meter
WO2020110222A1 (en) Concentration measurement device, concentration measurement method, and non-transitory storage medium
JP4444227B2 (en) Component concentration measuring apparatus and component concentration measuring method
WO2011152747A1 (en) Photoacoustic material analysis
JP4706028B2 (en) Blood glucose level measuring apparatus and method
JP4531632B2 (en) Biological component concentration measuring apparatus and biological component concentration measuring apparatus control method
JP6080004B2 (en) Parameter measuring apparatus, parameter measuring method, and program
WO2019211993A1 (en) Component concentration measuring device
TWI484154B (en) Optical detecting apparatus and operating method thereof
JP2013205079A (en) Biogenic substance measurement method
CN110178006A (en) NDIR glucose detection in liquid
JP2014100456A (en) Photoacoustic imaging apparatus
US20160374565A1 (en) Object information acquiring apparatus, object information acquiring method, and storage medium
JP2009136329A (en) Component concentration measuring instrument and control method thereof
JP2016154607A (en) Constituent concentration measuring apparatus and measuring method
JP4966837B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP2005114678A (en) Apparatus and method for measuring scattering absorber
JP2010266427A (en) In-vivo component measuring instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941150

Country of ref document: EP

Kind code of ref document: A1