WO2020110183A1 - Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion - Google Patents

Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion Download PDF

Info

Publication number
WO2020110183A1
WO2020110183A1 PCT/JP2018/043461 JP2018043461W WO2020110183A1 WO 2020110183 A1 WO2020110183 A1 WO 2020110183A1 JP 2018043461 W JP2018043461 W JP 2018043461W WO 2020110183 A1 WO2020110183 A1 WO 2020110183A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium titanate
particle material
test example
group
mass
Prior art date
Application number
PCT/JP2018/043461
Other languages
French (fr)
Japanese (ja)
Inventor
雄己 新井
冨田 亘孝
桂輔 栗田
優里 青木
Original Assignee
株式会社アドマテックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドマテックス filed Critical 株式会社アドマテックス
Priority to JP2019520170A priority Critical patent/JP6564551B1/en
Priority to PCT/JP2018/043461 priority patent/WO2020110183A1/en
Publication of WO2020110183A1 publication Critical patent/WO2020110183A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium

Definitions

  • the present invention relates to a surface-modified barium titanate particle material, a barium titanate-containing resin composition, and a barium titanate dispersion liquid in which a particle material containing barium titanate is dispersed.
  • Barium titanate is used as a thin film dielectric material for thin film capacitors because it has a high dielectric constant.
  • a method of forming a dielectric layer when manufacturing a thin film capacitor there is a method of using a dispersion liquid in which a particle material made of barium titanate is dispersed in a dispersion medium, or a resin composition dispersed in a resin material.
  • the barium titanate used is also required to have a small particle size, and the barium titanate dispersion liquid in which the powder is dispersed and the resin composition are also required to have high homogeneity.
  • the present invention has been completed in view of the above circumstances, surface-modified barium titanate particle material having high dispersibility in a dispersion medium or resin, and barium titanate-containing dispersion of the surface-modified barium titanate particle material. It is an object to be solved to provide a resin composition and a barium titanate dispersion liquid.
  • the surface-modified barium titanate particle material of the present invention which solves the above-mentioned problems, is a particle material whose main component is barium titanate, and an amount of 0.05 or more and less than 6.0 ⁇ mol/m 2 based on the surface area.
  • a silane compound having a surface treatment layer reacted on the surface of the particle material, FT-IR IR spectrum measured by diffuse reflection method has a peak at 1500-1600 cm -1 ,
  • the average particle diameter (D50) by dynamic light scattering when dispersed in ethanol at a concentration of 0.1% by mass is 10 nm to 1000 nm.
  • the surface-modified barium titanate particle material of the present invention which solves the above-mentioned problems, comprises a particle material whose main component is barium titanate and a compound represented by the general formula (1): X—(CH 2 ) n —Si(OR 3 (in the general formula (1), X is a vinyl group, a phenyl group, a methacryloxy group, an N-phenylamino group, a glycidyloxy group or an amino group, and R is a hydrocarbon group having 1 to 3 carbon atoms, n Has a surface treatment layer reacted with the surface of the particulate material with a silane compound represented by FT-IR IR spectrum measured by diffuse reflection method has a peak at 1500-1600 cm -1 , The average particle diameter (D50) by dynamic light scattering when dispersed in ethanol at a concentration of 0.1% by mass is 10 nm to 1000 nm.
  • D50 average particle diameter
  • the above-mentioned surface-modified barium titanate particle material (1) or (2) has excellent dispersibility in a dispersion medium or a resin material.
  • the surface-modified barium titanate particle material of (1) or (2) described above preferably has a zeta potential of +40 mV to +150 mV when dispersed in ethanol at a concentration of 0.1% by mass. Further, it is preferable that the surface has —SiMe 3 groups and that the surface has substantially no OH groups.
  • a barium titanate-containing resin composition of the present invention which solves the above-mentioned problems comprises the surface-modified barium titanate particle material of (1) or (2) above and the surface-modified barium titanate particle material. And a resin material to be dispersed.
  • the barium titanate dispersion liquid of the present invention for solving the above-mentioned problems disperses the surface-modified barium titanate particle material of (1) or (2) above and the surface-modified barium titanate particle material. And a dispersion medium.
  • the surface-modified barium titanate particle material of the present invention has high dispersibility in the dispersion medium or the resin material because of having the above-mentioned constitution.
  • the surface-modified barium titanate particle material of the present embodiment is not particularly limited, but it can be used for applications utilizing the high relative dielectric constant of barium titanate. Applications that utilize high relative permittivity include materials for capacitors. When barium titanate is superior to resin materials in physical properties (high strength, low coefficient of thermal expansion) and high chemical stability, it can be used as a simple filler. Can also be adopted. When the surface-modified barium titanate particle material of the present embodiment is used, other particle materials (silica, alumina, titania, zirconia, etc.) can be mixed and used.
  • the surface-modified barium titanate particle material of the present embodiment has a particle material whose main component is barium titanate, and a surface treatment layer formed by reacting the surface of the particle material with a silane compound.
  • the IR spectrum measured by the FT-IR diffuse reflection method has a peak at 1500 to 1600 cm -1 .
  • the FT-IR diffuse reflection method is herein referred to as being measured by the powder diffuse reflection method.
  • the measurement conditions were a resolution of 4 cm ⁇ 1 and a scan count of 64.
  • the surface-modified barium titanate particle material of the present embodiment has an average particle diameter (hereinafter referred to as “D50”) of 10 nm or more by dynamic light scattering when dispersed in ethanol at a concentration of 0.1% by mass. It is 1000 nm.
  • the lower limit of D50 is preferably 20 nm, 30 nm, and 50 nm.
  • the upper limit of D50 is preferably 500 nm, 300 nm, and 250 nm.
  • the main component of the particle material is barium titanate. Whether or not it is the main component is judged by whether or not the content is 50% by mass or more. In particular, 60% or more, 75% or more, 90% or more, 95% or more, 99% or more, 100% (barium titanate other than inevitable impurities) can be used.
  • Barium titanate which is a raw material of the particle material, can be produced by a general method such as a solid phase method, a hydrothermal method, an alkoxide method, an oxalate method, and a sol-gel method. Then, if necessary, the particle size distribution can be adjusted by a crushing operation. The particle size of the particulate material is determined according to the particle size of the final surface modified barium titanate particulate material.
  • the surface treatment layer is chemically bonded to the surface of the particle material.
  • the surface treatment layer is formed by reacting the silane compound with the reactive groups present on the surface of the above-mentioned particle material.
  • the method of reacting the silane compound on the surface of the particle material is not particularly limited. For example, it can be carried out by contacting the surface of the particle material with a silane compound or by contacting a silane compound solution in which the silane compound is dissolved in an appropriate solvent.
  • When contacting the silane compound or the silane compound solution directly add to the particle material, atomize a liquid material and add it, or add it in a state of being heated and vaporized, and then stir and mix. be able to. Stirring and mixing can be performed with a stirrer or a crusher.
  • the silane compound can be promptly reacted with the new surface of the particulate material generated by the pulverization.
  • the stirring/mixing may be performed at room temperature or while heating.
  • the surface treatment layer has at least one of the following features (1) and (2).
  • the surface-modified barium titanate particle material of the present embodiment has a surface-treated layer formed by the reaction of the silane compound on the surface, and “Ti—O existing on the surface of the original particle material.
  • the “structure” and the “Ba—O” structure can properly interact with the dispersion medium and the resin material, respectively, and high dispersibility can be realized.
  • the type of silane compound is not particularly limited. Examples thereof include hexamethyldisilazane (HMDS), epoxysilane, vinylsilane, phenylsilane, methacrylsilane, phenylaminosilane, and alkenylsilane (having about 2 to 8 carbon atoms).
  • HMDS hexamethyldisilazane
  • the lower limit of the reaction of the silane compound 0.05 ⁇ mol / m 2, 0.2 ⁇ mol / m 2, can be employed is 0.5 [mu] mol / m 2, the upper limit value, 4.0 ⁇ mol / m 2, 5.0 ⁇ mol / m 2 can be adopted.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the zeta potential in ethanol is +40 mV to +150 mV because the dispersibility becomes high.
  • the zeta potential can be controlled by changing the type of silane compound and the amount of reaction.
  • —SiMe 3 groups on the surface and substantially no OH groups on the surface. Specifically, it can be realized by surface-treating a particle material (including one treated with another silane compound) with a compound having a —SiMe 3 group as a silane compound forming a surface treatment layer.
  • the barium titanate-containing resin composition of this embodiment has the above-described surface-modified barium titanate particle material of this embodiment and a resin material in which the surface-modified barium titanate particle material is dispersed.
  • the resin material is not particularly limited. Examples thereof include epoxy resin, polyphenylene sulfide, polyethylene terephthalate, polyvinylidene fluoride, and acrylic resin.
  • the mixing ratio of the surface-modified barium titanate particle material and the resin material is not particularly limited, but it is preferable that the surface-modified barium titanate particle material is as large as possible, and the surface-modified barium titanate particles based on the total mass.
  • the content of the material may be about 2% to 60%.
  • the barium titanate dispersion liquid of the present embodiment has the surface-modified barium titanate particle material of the present embodiment described above and a dispersion medium in which the surface-modified barium titanate particle material is dispersed. Then, the resin material described in the section of the barium titanate-containing resin composition described above can be dissolved in the dispersion medium or can be made into fine particles and dispersed. When dispersed, a dispersant such as a surfactant can be contained.
  • the dispersion medium is not particularly limited. Examples thereof include ethanol, toluene, isopropanol, ethyl methyl ketone, methyl isobutyl ketone, cyclohexanone, dimethylformamide, propylene glycol monomethyl ether, and mixed solvents thereof.
  • the mixing ratio of the surface-modified barium titanate particle material and the dispersion medium is not particularly limited, but it is preferable that the surface-modified barium titanate particle material is as large as possible, and the surface-modified barium titanate particle material is based on the total mass.
  • the content of 2% to 60% can be exemplified.
  • the surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion liquid of the present invention will be described in detail based on examples.
  • Test 1 Examination of surface treatment of barium titanate particle material: Table 1
  • ⁇ Test example 1 10 parts by mass of barium titanate (specific surface area 16 m 2 /g), 90 parts by mass of ethanol, 0.03 parts by mass of HMDS (1 ⁇ mol/m 2 : surface area standard of barium titanate, the same applies hereinafter), 0.3 mm zirconia
  • the beads were mixed and dispersed for 60 minutes at a rotation speed of 3000 rpm with a bead mill. Thereafter, the zirconia beads were removed, and a barium titanate dispersion liquid of this test example was obtained in which the surface-modified barium titanate particle material was dispersed in ethanol as a dispersion medium.
  • the average particle diameter (D50) by dynamic light scattering was 125 nm, and the zeta potential was 82 mV.
  • the measurement result of the particle size distribution is shown in FIG.
  • the barium titanate dispersion liquid of this test example did not cause coagulation sedimentation even when left standing for 1 week. Whether or not coagulation sedimentation occurred, when the slurry concentration was allowed to stand for 24 hours in a glass container having a liquid surface height of 10 cm, 10 mm or more from the liquid surface was transparent and a sedimentation layer of 1 mm or more from the bottom surface of the container was formed. When it did, it was judged that cohesive sedimentation had occurred.
  • the barium titanate dispersion liquid of this test example was subjected to centrifugal sedimentation, the obtained precipitate was washed with methyl ethyl ketone (MEK), and then dried at 120° C. to obtain a sample after washing. It can be inferred that the HMDS physically adsorbed on the surface of the surface-modified barium titanate particle material in the barium titanate dispersion can be washed by this washing and drying.
  • MEK methyl ethyl ketone
  • Test Example 2 All the HMDS of Test Example 1 were replaced by 0.09 parts by mass of 2-glycidyloxypropyltrimethoxysilane (KBM403) (2 ⁇ mol/m 2 ) and prepared in the same manner as the test sample of this Test Example. did. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
  • HMDS HMDS 0.03 parts by mass (1 ⁇ mol/m 2 ).
  • a test sample of this test example was prepared by the same procedure except for the above. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
  • ⁇ Test Example 5 Combined use of all two types of HMDS of Test Example 1, 0.09 parts by mass (2 ⁇ mol/m 2 ) of N-phenylaminopropyltrimethoxysilane (KBM573) and 0.03 parts by mass of HMDS (1 ⁇ mol/m 2 ).
  • a test sample of this test example was prepared by the same procedure except that the treatment was changed. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
  • HMDS ⁇ Test Example 7 All of the HMDS of Test Example 1 was replaced with a combined treatment using two types of octenyltrimethoxysilane (KBM1083) 0.08 parts by mass (2 ⁇ mol/m 2 ) and HMDS 0.03 parts by mass (1 ⁇ mol/m 2 ).
  • KBM1083 octenyltrimethoxysilane
  • HMDS HMDS 0.03 parts by mass (1 ⁇ mol/m 2 ).
  • a test sample of this test example was prepared by the same procedure except for the above. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
  • Test Example 9 A test sample of this test example was prepared by the same operation except that 90 parts by mass of ethanol in Test Example 1 was replaced with 45 parts by mass of ethanol and 45 parts by mass of toluene. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
  • Test Example 10 A test sample of this test example was prepared by the same operation except that 90 parts by mass of ethanol in Test Example 5 was replaced with 45 parts by mass of ethanol and 45 parts by mass of MEK. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
  • Test Example 11 A test sample of this test example was prepared by the same operation except that 90 parts by mass of ethanol in Test Example 1 was replaced with 45 parts by mass of ethanol and 45 parts by mass of MEK. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
  • ⁇ Test Example 12 10 parts by mass of barium titanate (specific surface area: 16 m 2 /g) and 0.03 parts by mass of hexamethyldisilazane (1 ⁇ mol/m 2 ) were mixed for surface modification. Then, 90 parts by mass of ethanol was mixed with 0.3 mm zirconia beads, and the mixture was dispersed by a bead mill at a rotation speed of 3000 rpm for 60 minutes. Thereafter, the zirconia beads were removed, and a barium titanate dispersion liquid of this test example was obtained in which the surface-modified barium titanate particle material was dispersed in ethanol as a dispersion medium. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
  • Test Example 2 All the HMDS of Test Example 1 were replaced by 0.34 parts by mass (6 ⁇ mol/m 2 ) of 8-methacryloxyoctyltrimethoxysilane (KBM5803) to prepare a test sample of the same test example. The same evaluation as in Test Example 1 was performed on the test sample of this test example. After standing for 1 day, aggregation and sedimentation was observed. The results are shown in Table 2.
  • test sample of this test example was prepared by the same procedure except that 0.27 parts by mass (6 ⁇ mol/m 2 ) of 8-octenyltrimethoxysilane (KBM1083) was used for all of the HMDS of Test Example 1.
  • KBM1083 8-octenyltrimethoxysilane
  • the same evaluation as in Test Example 1 was performed on the test sample of this test example. After standing for 1 day, aggregation and sedimentation was observed. The results are shown in Table 2.
  • the barium titanate dispersions of the test samples of Test Examples 1 to 13 did not show the occurrence of aggregation and sedimentation, whereas the barium titanate dispersions of the test samples of Comparative Examples 1 to 3 did. Occurrence of aggregation and sedimentation was observed. It can be inferred that agglomeration occurred because the addition amount of the silane compound was excessive. It has been found that the treatment amount of the silane compound is preferably smaller than 6 ⁇ mol/m 2 .
  • Test Example 3 D50 was slightly higher than that in the other test examples, and the zeta potential was 38 mV, which was lower than that in the other test examples. Therefore, the preferable range of the zeta potential was 40 mV which was higher than that in Test example 3. It turned out that it was above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided is a surface-modified barium titanate particle material that has high dispersibility in dispersion media and resin. This surface-modified barium titanate particle material that solves the problem above comprises (1) a particle material composed mainly of barium titanate, and a surface treated layer which is a silane compound reacted with the surface of the particle material in an amount of 0.05 to 6.0 μmol/m2 based on the surface area, or (2) a particle material composed mainly of barium titanate, and a surface treated layer which is a silane compound reacted with the surface of the particle material, the silane compound represented by X-(CH2)n-Si(OR)3 (in general formula (1), X is a vinyl group, a phenyl group, a methacryloxy group, an N-phenylamino group, a glycidyloxy group, or an amino group, R is a hydrocarbon group having 1 to 3 carbon atoms, and n is 4 to 10). The IR spectrum measured by the FTIR diffuse reflectance method has a peak from 1500 to 1600 cm-1, and the average particle size (D50) according to dynamic light scattering when dispersed in ethanol at a concentration of 0.1 mass% is 10 to 300 nm.

Description

表面改質チタン酸バリウム粒子材料、チタン酸バリウム含有樹脂組成物、及びチタン酸バリウム分散液Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion liquid
 本発明は、表面改質チタン酸バリウム粒子材料、チタン酸バリウム含有樹脂組成物、及びチタン酸バリウムを含有する粒子材料を分散したチタン酸バリウム分散液に関する。 The present invention relates to a surface-modified barium titanate particle material, a barium titanate-containing resin composition, and a barium titanate dispersion liquid in which a particle material containing barium titanate is dispersed.
 チタン酸バリウムは、高い比誘電率を示すことから、薄膜キャパシタなどの薄膜誘電体材料として用いられている。薄膜キャパシタを製造する際に誘電体層を形成する方法としては、チタン酸バリウムからなる粒子材料を分散媒に分散した分散液や、樹脂材料中に分散した樹脂組成物を用いる方法がある。 Barium titanate is used as a thin film dielectric material for thin film capacitors because it has a high dielectric constant. As a method of forming a dielectric layer when manufacturing a thin film capacitor, there is a method of using a dispersion liquid in which a particle material made of barium titanate is dispersed in a dispersion medium, or a resin composition dispersed in a resin material.
 ところで、近年、電子機器の大きさは小さくなる一方であり、薄膜キャパシタの形成膜厚が薄くなる傾向にある。そのため、使用されるチタン酸バリウムについても粒径が小さいものが要求され、また、その粉末を分散させたチタン酸バリウム分散液や樹脂組成物についても高い均質性が要求される。 By the way, in recent years, the size of electronic devices has been decreasing, and the film thickness of thin-film capacitors is becoming thinner. Therefore, the barium titanate used is also required to have a small particle size, and the barium titanate dispersion liquid in which the powder is dispersed and the resin composition are also required to have high homogeneity.
特開2008-74699号公報JP 2008-74699 JP
 本発明は上記実情に鑑み完成したものであり、分散媒や樹脂中での分散性が高い表面改質チタン酸バリウム粒子材料、その表面改質チタン酸バリウム粒子材料を分散させたチタン酸バリウム含有樹脂組成物、並びにチタン酸バリウム分散液を提供することを解決すべき課題とする。 The present invention has been completed in view of the above circumstances, surface-modified barium titanate particle material having high dispersibility in a dispersion medium or resin, and barium titanate-containing dispersion of the surface-modified barium titanate particle material. It is an object to be solved to provide a resin composition and a barium titanate dispersion liquid.
 上記課題を解決する目的で本発明者らは鋭意検討を行った結果、チタン酸バリウムの表面に特定条件での表面処理を行うことで分散性が向上できることを見出し以下の発明を完成した。 As a result of intensive studies made by the present inventors for the purpose of solving the above-mentioned problems, they have found that dispersibility can be improved by performing surface treatment on the surface of barium titanate under specific conditions, and completed the following invention.
 (1)上記課題を解決する本発明の表面改質チタン酸バリウム粒子材料は、主成分がチタン酸バリウムである粒子材料と、表面積を基準として0.05以上6.0μmol/m未満の量でシラン化合物が前記粒子材料の表面に反応した表面処理層とをもち、
 FT-IR 拡散反射法により測定したIRスペクトルが、1500~1600cm-1にピークをもち、
 エタノール中に0.1質量%の濃度で分散させたときの動的光散乱による平均粒径(D50)が10nm~1000nmである。
(1) The surface-modified barium titanate particle material of the present invention which solves the above-mentioned problems, is a particle material whose main component is barium titanate, and an amount of 0.05 or more and less than 6.0 μmol/m 2 based on the surface area. A silane compound having a surface treatment layer reacted on the surface of the particle material,
FT-IR IR spectrum measured by diffuse reflection method has a peak at 1500-1600 cm -1 ,
The average particle diameter (D50) by dynamic light scattering when dispersed in ethanol at a concentration of 0.1% by mass is 10 nm to 1000 nm.
 (2)上記課題を解決する本発明の表面改質チタン酸バリウム粒子材料は、主成分がチタン酸バリウムである粒子材料と、一般式(1):X-(CH-Si(OR)(一般式(1)中、Xはビニル基、フェニル基、メタクリルオキシ基、N-フェニルアミノ基、グリジシルオキシ基、アミノ基で表され、Rは炭素数1~3の炭化水素基、nは4~10である。)で表されるシラン化合物で前記粒子材料の表面に反応した表面処理層とをもち、
 FT-IR 拡散反射法により測定したIRスペクトルが、1500~1600cm-1にピークをもち、
 エタノール中に0.1質量%の濃度で分散させたときの動的光散乱による平均粒径(D50)が10nm~1000nmである。
(2) The surface-modified barium titanate particle material of the present invention which solves the above-mentioned problems, comprises a particle material whose main component is barium titanate and a compound represented by the general formula (1): X—(CH 2 ) n —Si(OR 3 (in the general formula (1), X is a vinyl group, a phenyl group, a methacryloxy group, an N-phenylamino group, a glycidyloxy group or an amino group, and R is a hydrocarbon group having 1 to 3 carbon atoms, n Has a surface treatment layer reacted with the surface of the particulate material with a silane compound represented by
FT-IR IR spectrum measured by diffuse reflection method has a peak at 1500-1600 cm -1 ,
The average particle diameter (D50) by dynamic light scattering when dispersed in ethanol at a concentration of 0.1% by mass is 10 nm to 1000 nm.
 上述した(1)又は(2)の表面改質チタン酸バリウム粒子材料は、分散媒や樹脂材料中における分散性に優れる。 The above-mentioned surface-modified barium titanate particle material (1) or (2) has excellent dispersibility in a dispersion medium or a resin material.
 特に、上記(1)又は(2)の表面改質チタン酸バリウム粒子材料は、エタノール中に0.1質量%の濃度で分散させたときのゼータ電位が+40mV~+150mVであることが好ましい。また、表面に-SiMe基を有し、且つ、OH基を表面に実質的に有しないことが好ましい。 In particular, the surface-modified barium titanate particle material of (1) or (2) described above preferably has a zeta potential of +40 mV to +150 mV when dispersed in ethanol at a concentration of 0.1% by mass. Further, it is preferable that the surface has —SiMe 3 groups and that the surface has substantially no OH groups.
 (3)上記課題を解決する本発明のチタン酸バリウム含有樹脂組成物は、上述の(1)又は(2)の表面改質チタン酸バリウム粒子材料と、前記表面改質チタン酸バリウム粒子材料を分散する樹脂材料とを有する。 (3) A barium titanate-containing resin composition of the present invention which solves the above-mentioned problems comprises the surface-modified barium titanate particle material of (1) or (2) above and the surface-modified barium titanate particle material. And a resin material to be dispersed.
 (4)上記課題を解決する本発明のチタン酸バリウム分散液は、上述の(1)又は(2)の表面改質チタン酸バリウム粒子材料と、前記表面改質チタン酸バリウム粒子材料を分散する分散媒とを有する。 (4) The barium titanate dispersion liquid of the present invention for solving the above-mentioned problems disperses the surface-modified barium titanate particle material of (1) or (2) above and the surface-modified barium titanate particle material. And a dispersion medium.
 本発明の表面改質チタン酸バリウム粒子材料は、上述の構成を有することにより、分散媒や樹脂材料中における分散性が高くなる。 The surface-modified barium titanate particle material of the present invention has high dispersibility in the dispersion medium or the resin material because of having the above-mentioned constitution.
実施例における試験例1の試験試料の粒度分布を示す図である。It is a figure which shows the particle size distribution of the test sample of Test Example 1 in an Example. 上から順番に試験例1,2及び原料のチタン酸バリウムの粉末についてのFT-IRスペクトルである。3 is FT-IR spectra of Test Examples 1 and 2 and a raw material barium titanate powder in order from the top. 上から順番に試験例3~8についてのFT-IRスペクトルである。It is an FT-IR spectrum about Test Examples 3 to 8 in order from the top. 上から順番に比較例1~3についてのFT-IRスペクトルである。3 is an FT-IR spectrum for Comparative Examples 1 to 3 in order from the top.
 本発明の表面改質チタン酸バリウム粒子材料、チタン酸バリウム含有樹脂組成物、及び、チタン酸バリウム分散液について以下実施形態に基づき詳細に説明を行う。 The surface-modified barium titanate particle material, the barium titanate-containing resin composition, and the barium titanate dispersion liquid of the present invention will be described in detail based on the following embodiments.
 (表面改質チタン酸バリウム粒子材料)
 本実施形態の表面改質チタン酸バリウム粒子材料は特に限定しないが、チタン酸バリウムが有する高い比誘電率を利用した用途に用いることができる。高い比誘電率を利用した用途としてはコンデンサの材料などである。また、樹脂材料よりもチタン酸バリウムの方が物理的特性(強度の高さ、熱膨張率の低さ)、化学的安定性の高さに優れている場合には、単純なフィラーとしての用途も採用できる。本実施形態の表面改質チタン酸バリウム粒子材料を用いる場合には他の粒子材料(シリカ、アルミナ、チタニア、ジルコニアなど)を混合して用いることもできる。
(Surface modified barium titanate particle material)
The surface-modified barium titanate particle material of the present embodiment is not particularly limited, but it can be used for applications utilizing the high relative dielectric constant of barium titanate. Applications that utilize high relative permittivity include materials for capacitors. When barium titanate is superior to resin materials in physical properties (high strength, low coefficient of thermal expansion) and high chemical stability, it can be used as a simple filler. Can also be adopted. When the surface-modified barium titanate particle material of the present embodiment is used, other particle materials (silica, alumina, titania, zirconia, etc.) can be mixed and used.
 本実施形態の表面改質チタン酸バリウム粒子材料は、主成分がチタン酸バリウムである粒子材料と、粒子材料の表面にシラン化合物を反応させて生成される表面処理層とを有する。FT-IR 拡散反射法にて測定したIRスペクトルが1500~1600cm-1にピークを持つ。FT-IR 拡散反射法は、本明細書において、粉体拡散反射法で測定することを意味する。測定条件は分解能4cm-1、スキャン回数64で行った。 The surface-modified barium titanate particle material of the present embodiment has a particle material whose main component is barium titanate, and a surface treatment layer formed by reacting the surface of the particle material with a silane compound. The IR spectrum measured by the FT-IR diffuse reflection method has a peak at 1500 to 1600 cm -1 . The FT-IR diffuse reflection method is herein referred to as being measured by the powder diffuse reflection method. The measurement conditions were a resolution of 4 cm −1 and a scan count of 64.
 本実施形態の表面改質チタン酸バリウム粒子材料は、エタノール中に0.1質量%の濃度で分散させたときの動的光散乱による平均粒径(以下、「D50」と称する)が10nm~1000nmである。特にD50の下限は、20nm、30nm、50nmであることが好ましい。D50の上限は、500nm、300nm、250nmであることが好ましい。D50のこれらの下限値及び上限値は任意に組み合わせることが可能である。 The surface-modified barium titanate particle material of the present embodiment has an average particle diameter (hereinafter referred to as “D50”) of 10 nm or more by dynamic light scattering when dispersed in ethanol at a concentration of 0.1% by mass. It is 1000 nm. In particular, the lower limit of D50 is preferably 20 nm, 30 nm, and 50 nm. The upper limit of D50 is preferably 500 nm, 300 nm, and 250 nm. These lower limit values and upper limit values of D50 can be arbitrarily combined.
 粒子材料は、主成分がチタン酸バリウムからなる。主成分であるか否かは50質量%以上含有するか否かで判断する。特に、60%以上、75%以上、90%以上、95%以上、99%以上、100%(不可避不純物以外はチタン酸バリウム)を採用することができる。 The main component of the particle material is barium titanate. Whether or not it is the main component is judged by whether or not the content is 50% by mass or more. In particular, 60% or more, 75% or more, 90% or more, 95% or more, 99% or more, 100% (barium titanate other than inevitable impurities) can be used.
 粒子材料の原料となるチタン酸バリウムは、固相法、水熱法、アルコキシド法、シュウ酸塩法、ゾルゲル法などの一般的な方法にて製造できる。その後、必要であれば粉砕操作により粒度分布を調節することができる。粒子材料の粒径は、最終的な表面改質チタン酸バリウム粒子材料の粒径に応じて決定される。 Barium titanate, which is a raw material of the particle material, can be produced by a general method such as a solid phase method, a hydrothermal method, an alkoxide method, an oxalate method, and a sol-gel method. Then, if necessary, the particle size distribution can be adjusted by a crushing operation. The particle size of the particulate material is determined according to the particle size of the final surface modified barium titanate particulate material.
 表面処理層は、粒子材料の表面に化学結合している。表面処理層は、シラン化合物を前述の粒子材料の表面に存在する反応性基と反応させて生成したものである。粒子材料の表面にシラン化合物を反応させる方法としては特に限定しない。例えば、粒子材料の表面にシラン化合物を接触させたり、シラン化合物を適正な溶媒に溶解させたシラン化合物溶液を接触させたりすることで行うことができる。シラン化合物やシラン化合物溶液の接触は、そのまま粒子材料に投入したり、液状のものを霧状にして噴霧して投入したり、加熱して気化した状態で投入したりした後、撹拌・混合することができる。撹拌・混合は、撹拌機や粉砕機により行うことができる。 The surface treatment layer is chemically bonded to the surface of the particle material. The surface treatment layer is formed by reacting the silane compound with the reactive groups present on the surface of the above-mentioned particle material. The method of reacting the silane compound on the surface of the particle material is not particularly limited. For example, it can be carried out by contacting the surface of the particle material with a silane compound or by contacting a silane compound solution in which the silane compound is dissolved in an appropriate solvent. When contacting the silane compound or the silane compound solution, directly add to the particle material, atomize a liquid material and add it, or add it in a state of being heated and vaporized, and then stir and mix. be able to. Stirring and mixing can be performed with a stirrer or a crusher.
 特に粉砕操作を行いながらシラン化合物を反応させることにより粉砕により生成した粒子材料の新たな表面にシラン化合物を速やかに反応させることができる。撹拌・混合は常温で行っても良いし、加熱しながら行っても良い。 Particularly, by reacting the silane compound while performing the pulverization operation, the silane compound can be promptly reacted with the new surface of the particulate material generated by the pulverization. The stirring/mixing may be performed at room temperature or while heating.
 シラン化合物を粒子材料の表面に反応させた後に反応していないシラン化合物を除去することもできる。除去の方法としては、加熱して気化させる方法、何らかの溶媒にて洗浄する方法が挙げられる。 It is also possible to remove the unreacted silane compound after reacting the silane compound on the surface of the particle material. Examples of the method of removal include heating and vaporizing, and washing with some solvent.
 表面処理層は、以下の(1)及び(2)のうちの少なくとも一方の特徴を備える。これらの特徴を有することによって、本実施形態の表面改質チタン酸バリウム粒子材料の表面にはシラン化合物が反応して生成した表面処理層と、元々の粒子材料の表面に存在した「Ti-O」構造や「Ba-O」構造とが、それぞれ適正に分散媒や樹脂材料と相互作用することが可能になり、高い分散性が実現できる。 The surface treatment layer has at least one of the following features (1) and (2). By virtue of these characteristics, the surface-modified barium titanate particle material of the present embodiment has a surface-treated layer formed by the reaction of the silane compound on the surface, and “Ti—O existing on the surface of the original particle material. The “structure” and the “Ba—O” structure can properly interact with the dispersion medium and the resin material, respectively, and high dispersibility can be realized.
 (1)粒子材料の表面積を基準として0.05以上6.0μmol/m未満の量でシラン化合物を反応させて生成した層である。シラン化合物の種類としては特に限定しない。例えばヘキサメチルジシラザン(HMDS)、エポキシシラン、ビニルシラン、フェニルシラン、メタクリルシラン、フェニルアミノシラン、アルケニルシラン(炭素数2~8程度)が挙げられる。 (1) A layer formed by reacting a silane compound in an amount of 0.05 or more and less than 6.0 μmol/m 2 based on the surface area of the particle material. The type of silane compound is not particularly limited. Examples thereof include hexamethyldisilazane (HMDS), epoxysilane, vinylsilane, phenylsilane, methacrylsilane, phenylaminosilane, and alkenylsilane (having about 2 to 8 carbon atoms).
 シラン化合物の反応量の下限値は、0.05μmol/m、0.2μmol/m、0.5μmol/mが採用でき、上限値は、4.0μmol/m、5.0μmol/mが採用できる。上限値と下限値は任意に組み合わせ可能である。これらの下限値以上、上限値以下の範囲にシラン化合物を反応させることにより粒子材料の表面と分散媒や樹脂材料との親和性が向上できる。 The lower limit of the reaction of the silane compound, 0.05μmol / m 2, 0.2μmol / m 2, can be employed is 0.5 [mu] mol / m 2, the upper limit value, 4.0μmol / m 2, 5.0μmol / m 2 can be adopted. The upper limit value and the lower limit value can be arbitrarily combined. By reacting the silane compound in the range of the lower limit value or more and the upper limit value or less, the affinity between the surface of the particle material and the dispersion medium or the resin material can be improved.
 (2)一般式(1):X-(CH-Si(OR)(一般式(1)中、Xはビニル基、フェニル基、メタクリルオキシ、N-フェニルアミノ基、グリジシルオキシ基、アミノ基で表され、Rは炭素数1~3の炭化水素基、nは4~10である。)で表されるシラン化合物Xはビニル基、フェニル基、メタクリルオキシ基、N-フェニルアミノ基、グリジシルオキシ基、アミノ基で表されるシラン化合物を反応させて生成した層である。シラン化合物を反応させる量としては特に限定しないが上述した(1)と同程度の量を反応させることができる。 (2) General formula (1): X—(CH 2 ) n —Si(OR) 3 (In the general formula (1), X is a vinyl group, a phenyl group, a methacryloxy group, an N-phenylamino group, a glycidyloxy group, A silane compound X represented by an amino group, R is a hydrocarbon group having 1 to 3 carbon atoms, and n is 4 to 10) is a vinyl group, a phenyl group, a methacryloxy group, an N-phenylamino group , A layer formed by reacting a silane compound represented by a glydicyloxy group and an amino group. The amount of the silane compound to be reacted is not particularly limited, but the same amount as (1) described above can be reacted.
 ・その他
 エタノール中におけるゼータ電位が+40mV~+150mVであることで分散性が高くなるため好ましい。ゼータ電位は前述したシラン化合物の種類や反応させる量を変動させることで制御可能である。
-Others It is preferable that the zeta potential in ethanol is +40 mV to +150 mV because the dispersibility becomes high. The zeta potential can be controlled by changing the type of silane compound and the amount of reaction.
 表面に-SiMe基を有し、且つ、OH基を表面に実質的に有しないことが好ましい。具体的には、表面処理層を形成するシラン化合物として-SiMe基を有する化合物により粒子材料(他のシラン化合物にて処理したものを含む)を表面処理することで実現できる。 It is preferable to have —SiMe 3 groups on the surface and substantially no OH groups on the surface. Specifically, it can be realized by surface-treating a particle material (including one treated with another silane compound) with a compound having a —SiMe 3 group as a silane compound forming a surface treatment layer.
 (チタン酸バリウム含有樹脂組成物)
 本実施形態のチタン酸バリウム含有樹脂組成物は、上述した本実施形態の表面改質チタン酸バリウム粒子材料と、表面改質チタン酸バリウム粒子材料を分散する樹脂材料とを有する。
(Resin composition containing barium titanate)
The barium titanate-containing resin composition of this embodiment has the above-described surface-modified barium titanate particle material of this embodiment and a resin material in which the surface-modified barium titanate particle material is dispersed.
 樹脂材料としては特に限定されない。例えば、エポキシ樹脂、ポリフェニレンサルファイド、ポリエチレンテレフタラート、ポリフッ化ビリニデン、アクリル樹脂が挙げられる。 The resin material is not particularly limited. Examples thereof include epoxy resin, polyphenylene sulfide, polyethylene terephthalate, polyvinylidene fluoride, and acrylic resin.
 表面改質チタン酸バリウム粒子材料と樹脂材料との混合比は、特に限定しないが、表面改質チタン酸バリウム粒子材料ができるだけ多い方が好ましく、全体の質量を基準として表面改質チタン酸バリウム粒子材料の含有量を2%~60%程度が例示できる。 The mixing ratio of the surface-modified barium titanate particle material and the resin material is not particularly limited, but it is preferable that the surface-modified barium titanate particle material is as large as possible, and the surface-modified barium titanate particles based on the total mass. The content of the material may be about 2% to 60%.
 (チタン酸バリウム分散液)
 本実施形態のチタン酸バリウム分散液は、上述した本実施形態の表面改質チタン酸バリウム粒子材料と、表面改質チタン酸バリウム粒子材料を分散する分散媒とを有する。そして、前述したチタン酸バリウム含有樹脂組成物の欄にて説明した樹脂材料を分散媒中に溶解させたり、微粒子化して分散させることもできる。分散させる場合には界面活性剤などの分散剤を含有させることができる。
(Barium titanate dispersion)
The barium titanate dispersion liquid of the present embodiment has the surface-modified barium titanate particle material of the present embodiment described above and a dispersion medium in which the surface-modified barium titanate particle material is dispersed. Then, the resin material described in the section of the barium titanate-containing resin composition described above can be dissolved in the dispersion medium or can be made into fine particles and dispersed. When dispersed, a dispersant such as a surfactant can be contained.
 分散媒としては特に限定されない。例えば、エタノール、トルエン、イソプロパノール、エチルメチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジメチルホルムアミド、プロピレングリコールモノメチルエーテル並びにこれらの混合溶媒が挙げられる。 The dispersion medium is not particularly limited. Examples thereof include ethanol, toluene, isopropanol, ethyl methyl ketone, methyl isobutyl ketone, cyclohexanone, dimethylformamide, propylene glycol monomethyl ether, and mixed solvents thereof.
 表面改質チタン酸バリウム粒子材料と分散媒との混合比は、特に限定しないが表面改質チタン酸バリウム粒子材料ができるだけ多い方が好ましく、全体の質量を基準として表面改質チタン酸バリウム粒子材料の含有量を2%~60%程度が例示できる。 The mixing ratio of the surface-modified barium titanate particle material and the dispersion medium is not particularly limited, but it is preferable that the surface-modified barium titanate particle material is as large as possible, and the surface-modified barium titanate particle material is based on the total mass. The content of 2% to 60% can be exemplified.
 本発明の表面改質チタン酸バリウム粒子材料、チタン酸バリウム含有樹脂組成物、及びチタン酸バリウム分散液について実施例に基づき詳細に説明を行う。 The surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion liquid of the present invention will be described in detail based on examples.
 (試験1:チタン酸バリウム粒子材料の表面処理の検討:表1)
 ・試験例1
 チタン酸バリウム(比表面積16m/g)を10質量部、エタノールを90質量部、HMDSを0.03質量部(1μmol/m:チタン酸バリウムの表面積基準、以下同じ)、0.3mmジルコニアビーズを混合し、ビーズミル装置で回転数3000rpmで60分間分散を実施した。その後、ジルコニアビーズを除去し、表面改質チタン酸バリウム粒子材料が分散媒としてのエタノール中に分散された、本試験例のチタン酸バリウム分散液を得た。本試験例のチタン酸バリウム分散液について動的光散乱による平均粒径(D50)は125nm、ゼータ電位は82mVであった。粒度分布の測定結果を図1に示す。
(Test 1: Examination of surface treatment of barium titanate particle material: Table 1)
・Test example 1
10 parts by mass of barium titanate (specific surface area 16 m 2 /g), 90 parts by mass of ethanol, 0.03 parts by mass of HMDS (1 μmol/m 2 : surface area standard of barium titanate, the same applies hereinafter), 0.3 mm zirconia The beads were mixed and dispersed for 60 minutes at a rotation speed of 3000 rpm with a bead mill. Thereafter, the zirconia beads were removed, and a barium titanate dispersion liquid of this test example was obtained in which the surface-modified barium titanate particle material was dispersed in ethanol as a dispersion medium. With respect to the barium titanate dispersion liquid of this test example, the average particle diameter (D50) by dynamic light scattering was 125 nm, and the zeta potential was 82 mV. The measurement result of the particle size distribution is shown in FIG.
 本試験例のチタン酸バリウム分散液は1週間静置しても凝集沈降は発生しなかった。凝集沈降が発生したかどうかは、スラリー濃度が液面高さ10cmのガラス容器中に24時間静置した場合に、液面から10mm以上が透明でかつ、容器底面から1mm以上の沈降層が生成した場合に凝集沈降が発生したと判断した。 The barium titanate dispersion liquid of this test example did not cause coagulation sedimentation even when left standing for 1 week. Whether or not coagulation sedimentation occurred, when the slurry concentration was allowed to stand for 24 hours in a glass container having a liquid surface height of 10 cm, 10 mm or more from the liquid surface was transparent and a sedimentation layer of 1 mm or more from the bottom surface of the container was formed. When it did, it was judged that cohesive sedimentation had occurred.
 本試験例のチタン酸バリウム分散液を遠心沈降し、得られた沈降物をメチルエチルケトン(MEK)で洗浄した後、120℃で乾燥し洗浄後試料とした。この洗浄・乾燥によりチタン酸バリウム分散液中の表面改質チタン酸バリウム粒子材料の表面に物理吸着しているHMDSが洗浄できたものと推測できる。 The barium titanate dispersion liquid of this test example was subjected to centrifugal sedimentation, the obtained precipitate was washed with methyl ethyl ketone (MEK), and then dried at 120° C. to obtain a sample after washing. It can be inferred that the HMDS physically adsorbed on the surface of the surface-modified barium titanate particle material in the barium titanate dispersion can be washed by this washing and drying.
 洗浄後試料を50mg、40%フッ化水素酸を0.5mL、60%硝酸を5mLを密閉容器に入れ、200℃40分間マイクロ波加熱後、常温に戻し溶解液を回収した。回収した溶解液について、ICP分析を行った結果、Si量が0.05質量%だった。洗浄後試料についてFT-IRを上述した条件で測定した結果、TiO-H(3690cm-1)のピークがほぼ消失し、1558cm-1にピークが生成していることを確認した。そして、洗浄後試料についてカーボン量を測定した結果、0.9質量%であった。これらの評価値について表2に示す。 After washing, 50 mg of the sample, 0.5 mL of 40% hydrofluoric acid, and 5 mL of 60% nitric acid were placed in a closed container, heated at 200° C. for 40 minutes by microwave, and then returned to room temperature to recover the dissolved solution. As a result of ICP analysis of the recovered solution, the amount of Si was 0.05% by mass. As a result of measuring the FT-IR of the sample after washing under the above-mentioned conditions, it was confirmed that the peak of TiO—H (3690 cm −1 ) almost disappeared and a peak was generated at 1558 cm −1 . The carbon content of the sample after washing was measured and found to be 0.9% by mass. Table 2 shows these evaluation values.
 ・試験例2
 試験例1のHMDSを全て、3-グリジシルオキシプロピルトリメトキシシラン(KBM403)0.09質量部(2μmol/m)に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test example 2
All the HMDS of Test Example 1 were replaced by 0.09 parts by mass of 2-glycidyloxypropyltrimethoxysilane (KBM403) (2 μmol/m 2 ) and prepared in the same manner as the test sample of this Test Example. did. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例3
 試験例1のHMDSを全て、8-グリジシルオキシオクチルトリメトキシシラン(KBM4803)0.10質量部(2μmol/m)と、HMDS0.03質量部(1μmol/m)の2種類を併用した併用処理に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。ここで、シラン化合物の2種類の併用処理とは、2つのシラン化合物を記載の順で順次反応させることを言う。
・Test example 3
All the HMDS in Test Example 1, 8-glycidyl di sill oxy octyltrimethoxysilane (KBM4803) 0.10 parts by mass (2 [mu] mol / m 2), a combination of two of HMDS0.03 parts by (1 [mu] mol / m 2) A test sample of this test example was prepared by the same operation except that the combined treatment was changed. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2. Here, the two types of combined treatment of silane compounds means that two silane compounds are sequentially reacted in the order described.
 ・試験例4
 試験例1のHMDSを全て、ビニルトリメトキシシラン(KBM1003)0.05質量部(2μmol/m)と、HMDS0.03質量部(1μmol/m)の2種類を併用した併用処理に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 4
All of the HMDS of Test Example 1 was changed to a combined treatment using two types of vinyltrimethoxysilane (KBM1003) 0.05 parts by mass (2 μmol/m 2 ) and HMDS 0.03 parts by mass (1 μmol/m 2 ). A test sample of this test example was prepared by the same procedure except for the above. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例5
 試験例1のHMDSを全て、N-フェニルアミノプロピルトリメトキシシラン(KBM573)0.09質量部(2μmol/m)と、HMDS0.03質量部(1μmol/m)の2種類を併用した併用処理に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 5
Combined use of all two types of HMDS of Test Example 1, 0.09 parts by mass (2 μmol/m 2 ) of N-phenylaminopropyltrimethoxysilane (KBM573) and 0.03 parts by mass of HMDS (1 μmol/m 2 ). A test sample of this test example was prepared by the same procedure except that the treatment was changed. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例6
 試験例1のHMDSを全て、メタクリルオキシオクチルトリメトキシシラン(KBM5803)0.12質量部(2μmol/m)と、HMDS0.03質量部(1μmol/m)の2種類を併用した併用処理に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 6
All of the HMDS of Test Example 1 was subjected to a combined treatment using two kinds of methacryloxyoctyltrimethoxysilane (KBM5803) 0.12 parts by mass (2 μmol/m 2 ) and HMDS 0.03 parts by mass (1 μmol/m 2 ). A test sample of this test example was prepared by the same procedure except that it was replaced. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例7
 試験例1のHMDSを全て、オクテニルトリメトキシシラン(KBM1083)0.08質量部(2μmol/m)と、HMDS0.03質量部(1μmol/m)の2種類を併用した併用処理に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 7
All of the HMDS of Test Example 1 was replaced with a combined treatment using two types of octenyltrimethoxysilane (KBM1083) 0.08 parts by mass (2 μmol/m 2 ) and HMDS 0.03 parts by mass (1 μmol/m 2 ). A test sample of this test example was prepared by the same procedure except for the above. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例8
 試験例1のHMDSを全て、フェニルトリメトキシシラン(KBM103)0.07質量部(2μmol/m)と、HMDS0.03質量部(1μmol/m)の2種類を併用した併用処理に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 8
All of the HMDS of Test Example 1 was replaced with a combined treatment using two types of phenyltrimethoxysilane (KBM103) 0.07 parts by mass (2 μmol/m 2 ) and HMDS 0.03 parts by mass (1 μmol/m 2 ). A test sample of this test example was prepared by the same procedure except for the above. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例9
 試験例1のエタノール90質量部をエタノール45質量部とトルエン45質量部に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 9
A test sample of this test example was prepared by the same operation except that 90 parts by mass of ethanol in Test Example 1 was replaced with 45 parts by mass of ethanol and 45 parts by mass of toluene. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例10
 試験例5のエタノール90質量部をエタノール45質量部とMEK45質量部に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 10
A test sample of this test example was prepared by the same operation except that 90 parts by mass of ethanol in Test Example 5 was replaced with 45 parts by mass of ethanol and 45 parts by mass of MEK. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例11
 試験例1のエタノール90質量部をエタノール45質量部とMEK45質量部に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 11
A test sample of this test example was prepared by the same operation except that 90 parts by mass of ethanol in Test Example 1 was replaced with 45 parts by mass of ethanol and 45 parts by mass of MEK. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例12
 チタン酸バリウム(比表面積16m/g)10質量部と、ヘキサメチルジシラザン0.03質量部(1μmol/m)を混合し表面改質を行った。その後、エタノール 90質量部と0.3mmジルコニアビーズで混合し、ビーズミル装置で回転数3000rpmで60分間分散を実施した。その後、ジルコニアビーズを除去し、表面改質チタン酸バリウム粒子材料が分散媒としてのエタノール中に分散された、本試験例のチタン酸バリウム分散液を得た。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 12
10 parts by mass of barium titanate (specific surface area: 16 m 2 /g) and 0.03 parts by mass of hexamethyldisilazane (1 μmol/m 2 ) were mixed for surface modification. Then, 90 parts by mass of ethanol was mixed with 0.3 mm zirconia beads, and the mixture was dispersed by a bead mill at a rotation speed of 3000 rpm for 60 minutes. Thereafter, the zirconia beads were removed, and a barium titanate dispersion liquid of this test example was obtained in which the surface-modified barium titanate particle material was dispersed in ethanol as a dispersion medium. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・試験例13
 試験例12のHMDSを全て、N-フェニルアミノプロピルトリメトキシシラン(KBM573)0.09質量部(2μmol/m)と、ヘキサメチルジシラザン0.03質量部(1μmol/m)の2種類を併用した併用処理に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。試験例1の試験試料と同様に1週間静置しても凝集沈降は認められなかった。結果を表2に示す。
・Test Example 13
Two types of HMDS of Test Example 12, N-phenylaminopropyltrimethoxysilane (KBM573) 0.09 parts by mass (2 μmol/m 2 ) and hexamethyldisilazane 0.03 parts by mass (1 μmol/m 2 ). A test sample of this test example was prepared in the same manner except that the combined treatment was used in combination. The same evaluation as in Test Example 1 was performed on the test sample of this test example. Similar to the test sample of Test Example 1, no cohesive sedimentation was observed even after standing for 1 week. The results are shown in Table 2.
 ・比較例1
 試験例1のHMDSを全て、8-グリジシルオキシオクチルトリメトキシシラン(KBM4803)0.30質量部(6μmol/m)に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。1日静置したところ凝集沈降が認められた。結果を表2に示す。
・Comparative example 1
All the HMDS of Test Example 1 were replaced by 0.30 parts by mass (6 μmol/m 2 ) of 8-glycidyloxyoctyltrimethoxysilane (KBM4803), and prepared in the same manner as the test sample of this Test Example. did. The same evaluation as in Test Example 1 was performed on the test sample of this test example. After standing for 1 day, aggregation and sedimentation was observed. The results are shown in Table 2.
 ・比較例2
 試験例1のHMDSを全て、8-メタクリルオキシオクチルトリメトキシシラン(KBM5803)0.34質量部(6μmol/m)に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。1日静置したところ凝集沈降が認められた。結果を表2に示す。
-Comparative example 2
All the HMDS of Test Example 1 were replaced by 0.34 parts by mass (6 μmol/m 2 ) of 8-methacryloxyoctyltrimethoxysilane (KBM5803) to prepare a test sample of the same test example. The same evaluation as in Test Example 1 was performed on the test sample of this test example. After standing for 1 day, aggregation and sedimentation was observed. The results are shown in Table 2.
 ・比較例3
 試験例1のHMDSを全て、8-オクテニルトリメトキシシラン(KBM1083)0.27質量部(6μmol/m)に代えた以外は同様の操作で調製し本試験例の試験試料とした。本試験例の試験試料について試験例1と同様の評価を行った。1日静置したところ凝集沈降が認められた。結果を表2に示す。
-Comparative example 3
A test sample of this test example was prepared by the same procedure except that 0.27 parts by mass (6 μmol/m 2 ) of 8-octenyltrimethoxysilane (KBM1083) was used for all of the HMDS of Test Example 1. The same evaluation as in Test Example 1 was performed on the test sample of this test example. After standing for 1 day, aggregation and sedimentation was observed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表より明らかなように、試験例1~13の試験試料のチタン酸バリウム分散液は凝集沈降の発生が認められなかったのに対して比較例1~3の試験試料のチタン酸バリウム分散液では凝集沈降の発生が認められた。シラン化合物の添加量が過剰であるため凝集が発生したものと推測できる。シラン化合物の処理量としては6μmol/mよりも小さいことが好ましいことが分かった。 As is clear from the table, the barium titanate dispersions of the test samples of Test Examples 1 to 13 did not show the occurrence of aggregation and sedimentation, whereas the barium titanate dispersions of the test samples of Comparative Examples 1 to 3 did. Occurrence of aggregation and sedimentation was observed. It can be inferred that agglomeration occurred because the addition amount of the silane compound was excessive. It has been found that the treatment amount of the silane compound is preferably smaller than 6 μmol/m 2 .
 試験例1~13のD50とゼータ電位の結果から、以下のことが分かった。試験例3ではD50が他の試験例よりも僅かではあるが大きいことと、ゼータ電位が38mVで他の試験例より低かったこととから、ゼータ電位の好ましい範囲としては、試験例3より大きい40mV以上であることが分かった。 From the results of D50 and Zeta potential of Test Examples 1 to 13, the following was found. In Test Example 3, D50 was slightly higher than that in the other test examples, and the zeta potential was 38 mV, which was lower than that in the other test examples. Therefore, the preferable range of the zeta potential was 40 mV which was higher than that in Test example 3. It turned out that it was above.
 ここで、試験例1の洗浄後試料、試験例2の洗浄後試料、粒子材料(チタン酸バリウム原料)についてそれぞれFT-IRスペクトルを測定した結果を図2に示し、試験例3~8の洗浄後試料についてそれぞれ測定したFT-IRスペクトルを図3に示し、比較例1~3の洗浄後試料についてそれぞれ測定したFT-IRスペクトルを図4に示す。 Here, the FT-IR spectrum of the washed sample of Test Example 1, the washed sample of Test Example 2, and the particle material (barium titanate raw material) were measured and the results are shown in FIG. An FT-IR spectrum measured for each of the post-samples is shown in FIG. 3, and an FT-IR spectrum measured for each of the post-washing samples of Comparative Examples 1 to 3 is shown in FIG.
 図2~4より明らかなように、試験例1~8では、1550cm-1~1600cm-1にピーク(1400cm-1~1500cm-1に存在する大きなピークのショルダーに観測される)が観測されるのに対して、チタン酸バリウム原料である粒子材料ではそのようなピークは存在しないことが分かった。そして、過剰なシラン化合物により処理した比較例1~3では1550cm-1~1600cm-1にあるピークが大きくなることが分かった。つまり、1550cm-1~1600cm-1にあるピークの存在はシラン化合物による処理を行っているか否かによって変化することが分かった。 2-4 As is evident, in Test Example 1-8, a peak in 1550cm -1 ~ 1600cm -1 (observed in the shoulder of the large peaks at 1400cm -1 ~ 1500cm -1) is observed On the other hand, it was found that such a peak does not exist in the particulate material that is the barium titanate raw material. The peaks at 1550 cm -1 ~ 1600 cm -1 Comparative Example 1-3 was treated with an excess of silane compounds was found to increase. That is, it was found that the existence of the peaks at 1550 cm -1 to 1600 cm -1 changes depending on whether or not the treatment with the silane compound is performed.

Claims (6)

  1.  主成分がチタン酸バリウムである粒子材料と、表面積を基準として0.05以上6.0μmol/m未満の量でシラン化合物が前記粒子材料の表面に反応した表面処理層とをもち、
     FT-IR 拡散反射法により測定したIRスペクトルが、1500~1600cm-1にピークをもち、
     エタノール中に0.1質量%の濃度で分散させたときの動的光散乱による平均粒径(D50)が10nm~1000nmである表面改質チタン酸バリウム粒子材料。
    A particle material whose main component is barium titanate, and a surface treatment layer in which a silane compound reacts on the surface of the particle material in an amount of 0.05 or more and less than 6.0 μmol/m 2 based on the surface area,
    FT-IR IR spectrum measured by diffuse reflection method has a peak at 1500-1600 cm -1 ,
    A surface-modified barium titanate particle material having an average particle diameter (D50) by dynamic light scattering of 10 nm to 1000 nm when dispersed in ethanol at a concentration of 0.1% by mass.
  2.  主成分がチタン酸バリウムである粒子材料と、一般式(1):X-(CH-Si(OR)(一般式(1)中、Xはビニル基、フェニル基、メタクリルオキシ基、N-フェニルアミノ基、グリジシルオキシ基、アミノ基で表され、Rは炭素数1~3の炭化水素基、nは4~10である。)で表されるシラン化合物が前記粒子材料の表面に反応した表面処理層とをもち、
     FT-IR 拡散反射法により測定したIRスペクトルが、1500~1600cm-1にピークをもち、
     エタノール中に0.1質量%の濃度で分散させたときの動的光散乱による平均粒径(D50)が10nm~1000nmである表面改質チタン酸バリウム粒子材料。
    A particle material whose main component is barium titanate, and a general formula (1): X—(CH 2 ) n —Si(OR) 3 (in the general formula (1), X is a vinyl group, a phenyl group, a methacryloxy group) , N-phenylamino group, glycidyloxy group, amino group, R is a hydrocarbon group having 1 to 3 carbon atoms, and n is 4 to 10) on the surface of the particle material. Having a reacted surface treatment layer,
    FT-IR IR spectrum measured by diffuse reflection method has a peak at 1500-1600 cm -1 ,
    A surface-modified barium titanate particle material having an average particle diameter (D50) by dynamic light scattering of 10 nm to 1000 nm when dispersed in ethanol at a concentration of 0.1% by mass.
  3.  エタノール中に0.1質量%の濃度で分散させたときのゼータ電位が+40mV~+150mVである請求項1又は2に記載の表面改質チタン酸バリウム粒子材料。 The surface-modified barium titanate particle material according to claim 1 or 2, which has a zeta potential of +40 mV to +150 mV when dispersed in ethanol at a concentration of 0.1% by mass.
  4.  表面に-SiMe基を有し、且つ、OH基を表面に実質的に有しない請求項1~3の何れか1項に記載の表面改質チタン酸バリウム粒子材料。 The surface-modified barium titanate particle material according to any one of claims 1 to 3, which has —SiMe 3 groups on the surface and substantially no OH groups on the surface.
  5.  請求項1~4の何れか1項に記載の表面改質チタン酸バリウム粒子材料と、
     前記表面改質チタン酸バリウム粒子材料を分散する樹脂材料と、
     を有するチタン酸バリウム含有樹脂組成物。
    A surface-modified barium titanate particle material according to any one of claims 1 to 4,
    A resin material in which the surface-modified barium titanate particle material is dispersed,
    A barium titanate-containing resin composition having:
  6.  請求項1~4の何れか1項に記載の表面改質チタン酸バリウム粒子材料と、
     前記表面改質チタン酸バリウム粒子材料を分散する分散媒と、
     を有するチタン酸バリウム分散液。
    A surface-modified barium titanate particle material according to any one of claims 1 to 4,
    A dispersion medium in which the surface-modified barium titanate particle material is dispersed,
    Dispersion of barium titanate having
PCT/JP2018/043461 2018-11-27 2018-11-27 Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion WO2020110183A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019520170A JP6564551B1 (en) 2018-11-27 2018-11-27 Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion
PCT/JP2018/043461 WO2020110183A1 (en) 2018-11-27 2018-11-27 Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043461 WO2020110183A1 (en) 2018-11-27 2018-11-27 Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion

Publications (1)

Publication Number Publication Date
WO2020110183A1 true WO2020110183A1 (en) 2020-06-04

Family

ID=67692194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043461 WO2020110183A1 (en) 2018-11-27 2018-11-27 Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion

Country Status (2)

Country Link
JP (1) JP6564551B1 (en)
WO (1) WO2020110183A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878032A (en) * 2022-04-02 2022-08-09 华南理工大学 Flexible self-powered pressure sensor and preparation method and application thereof
WO2024009948A1 (en) * 2022-07-07 2024-01-11 テイカ株式会社 Mtio3 alkaline earth metal titanate powder and resin composition using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518290A (en) * 1998-06-23 2002-06-25 キャボット コーポレイション Barium titanate dispersion
JP2002521305A (en) * 1998-07-30 2002-07-16 ミネソタ マイニング アンド マニュファクチャリング カンパニー Nano-sized metal oxide particles for producing transparent metal oxide colloids and ceramers
WO2009090943A1 (en) * 2008-01-18 2009-07-23 Toray Industries, Inc. High dielectric constant paste composition and dielectric composition using the same
WO2016140305A1 (en) * 2015-03-05 2016-09-09 戸田工業株式会社 Barium titanate particle powder, and dispersion and coating film containing said powder
WO2016157954A1 (en) * 2015-03-27 2016-10-06 株式会社村田製作所 Dielectric material production method
JP2018024566A (en) * 2016-08-05 2018-02-15 テイカ株式会社 Composite oxide material containing titanium oxide compound as main component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518290A (en) * 1998-06-23 2002-06-25 キャボット コーポレイション Barium titanate dispersion
JP2002521305A (en) * 1998-07-30 2002-07-16 ミネソタ マイニング アンド マニュファクチャリング カンパニー Nano-sized metal oxide particles for producing transparent metal oxide colloids and ceramers
WO2009090943A1 (en) * 2008-01-18 2009-07-23 Toray Industries, Inc. High dielectric constant paste composition and dielectric composition using the same
WO2016140305A1 (en) * 2015-03-05 2016-09-09 戸田工業株式会社 Barium titanate particle powder, and dispersion and coating film containing said powder
WO2016157954A1 (en) * 2015-03-27 2016-10-06 株式会社村田製作所 Dielectric material production method
JP2018024566A (en) * 2016-08-05 2018-02-15 テイカ株式会社 Composite oxide material containing titanium oxide compound as main component

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IIJIMA, M. ET AL.: "Surface modification of BaTiO3 particles by silane coupling agents in different solvents and their effect on dielectric properties of BaTiO3/epoxy composites", COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 352, 8 October 2009 (2009-10-08), pages 88 - 93, XP026761845, DOI: 10.1016/j.colsurfa.2009.10.005 *
LIANG, S ET AL.: "Barium Titanate/Epoxy Composite Dielectric Materials for Integrated Thin Film Capacitors", 1998 PROCEEDINGS. 48TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE {CAT. NO.98 CH 36206, 1998, pages 171 - 175, XP000803613 *
RAMEJO, L. ET AL.: "BaTiO3-Epoxy Composites for Electronic Applications", INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, vol. 7, 2 July 2010 (2010-07-02), pages 444 - 451, XP55712097 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878032A (en) * 2022-04-02 2022-08-09 华南理工大学 Flexible self-powered pressure sensor and preparation method and application thereof
WO2024009948A1 (en) * 2022-07-07 2024-01-11 テイカ株式会社 Mtio3 alkaline earth metal titanate powder and resin composition using same

Also Published As

Publication number Publication date
JP6564551B1 (en) 2019-08-21
JPWO2020110183A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP4279465B2 (en) Nano-sized metal oxide particles for producing transparent metal oxide colloids and ceramers
KR101587933B1 (en) High-refractive index powder and production method and application of same
US6432526B1 (en) Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
Shen et al. Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrylate
US20080150184A1 (en) Composites of polymers and metal/metalloid oxide nanoparticles and methods for forming these composites
WO2008044685A1 (en) Core-shell-type cerium oxide microparticle, dispersion solution comprising the microparticle, and process for production of the microparticle or dispersion solution
JP6099297B2 (en) Inorganic powder mixture and filler-containing composition
WO2020110183A1 (en) Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion
Kobayashi et al. Fabrication of barium titanate nanoparticles‐polymethylmethacrylate composite films and their dielectric properties
TW201811929A (en) Composite particles having coated aggregates with low structure carbon black cores, coatings and inks with high resistivity and optical density, devices made therewith, and methods for making same
JP4382607B2 (en) Titanium oxide particles
JPH11189416A (en) Production of anhydrous zinc antimonate
Kobayashi et al. Fabrication of barium titanate nanoparticles‐epoxy resin composite films and their dielectric properties
JP4895366B2 (en) Highly dispersed solid-liquid dispersion and coating liquid containing the same
TWI673235B (en) Monoclinic zirconia-based nano particle and preparation method thereof
JP6179015B2 (en) Granules, method for producing the same, and property modifying material
JP4382872B1 (en) Method for producing titanium oxide particles
JP3979465B2 (en) Conductive powder organic solvent dispersion and conductive paint
Stawski et al. Nanostructure development in alkoxide-carboxylate-derived precursor films of barium titanate
JP2014133697A (en) Surface treatment method for silica particles
JP6064338B2 (en) Method for producing a nonpolar organic solvent dispersion of titanium oxide
Gerasimova et al. Preparation and Characteristics of Titanium Silicate Filler for Functional Materials
JP2004244599A (en) Modified carbon black particle powder, its manufacturing method, and coating material and resin composition containing it
CN112424297A (en) Inorganic oxide dispersions with high transparency
JPS63176308A (en) Zirconia based particle having treated surface and production thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019520170

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941513

Country of ref document: EP

Kind code of ref document: A1