WO2020108990A1 - Turbocompresseur - Google Patents

Turbocompresseur Download PDF

Info

Publication number
WO2020108990A1
WO2020108990A1 PCT/EP2019/081123 EP2019081123W WO2020108990A1 WO 2020108990 A1 WO2020108990 A1 WO 2020108990A1 EP 2019081123 W EP2019081123 W EP 2019081123W WO 2020108990 A1 WO2020108990 A1 WO 2020108990A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
turbocompressor
shaft
compressor
bearings
Prior art date
Application number
PCT/EP2019/081123
Other languages
German (de)
English (en)
Inventor
Thomas Esche
Matthias Faust
Mirko Göpfert
Jörg Auerswald
Ralf Werner
Original Assignee
Voith Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent Gmbh filed Critical Voith Patent Gmbh
Publication of WO2020108990A1 publication Critical patent/WO2020108990A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/03Machines characterised by thrust bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a turbocompressor which is particularly suitable for ensuring the air supply to a fuel cell.
  • turbocompressors have been known for a long time.
  • a turbocompressor has a compressor wheel in a compressor housing, which is arranged in a rotationally fixed manner on a rotatably mounted shaft.
  • an electric motor and / or a turbine are provided for driving the compressor wheel.
  • the turbine is driven by the exhaust gas from the fuel cell, as is known, for example, from DE 10 201 087 601 A1.
  • the high speeds at which they have to be operated in order to achieve good efficiencies or pressure ratios are characteristic of turbocompressors.
  • exhaust gas turbochargers reach comparable speeds. With increasing speed, however, the requirements for the bearing of the shaft also increase. Furthermore, it is necessary that the air that reaches the fuel cell is free of foreign substances. For example, no oil should get into the fuel cells.
  • the object of the invention is to propose a turbocompressor by means of which the air supply to a fuel cell, in particular in a motor vehicle, is improved.
  • the object is achieved according to the invention by designing the turbocompressor in accordance with claim 1. Further advantageous features of the embodiment according to the invention can be found in the subclaims.
  • the embodiment according to the invention is a turbocompressor which is suitable for supplying air to a fuel cell, comprising a housing, a shaft with first and second ends which is rotatably mounted relative to the housing, and an electrical machine arranged in the housing, wherein the shaft can be driven by the electrical machine.
  • a first and a second bearing concept be provided for mounting the shaft, at least the first bearing concept comprising a magnetic bearing, the magnetic field of the electrical machine being used for the bearing.
  • the use of two bearing concepts enables the shaft to be safely stored, even when it is switched off, i.e. when the power supply for the first bearing concept, the magnetic bearing, is interrupted.
  • the use of the magnetic field of the electrical machine corresponds to the principle of a bearingless motor.
  • turbocompressor can be a two-stage turbocompressor, a compressor wheel being arranged at each of the first and second ends of the shaft.
  • Two electrical machines can preferably be arranged on the shaft between the compressor wheels, so that a stable radial mounting of the shaft is ensured.
  • a very wide electric machine is also conceivable, which enables a very wide magnetic bearing.
  • an axial bearing can be provided between the electrical machines, wherein the axial bearing can be a magnetic bearing.
  • the second storage concept can include storage that is designed to only function as a catch storage.
  • the catch bearing does not have to be a wear-free bearing, but can be, for example, a sliding or rolling bearing.
  • the catch bearing comprises two catch bearings, the catch bearings having a bearing gap.
  • the bearing gap is preferably so large that the shaft can be positioned in the catch bearings by means of the magnetic bearing in such a way that a circumferential bearing air gap is created in the catch bearings.
  • the bearing concept according to the invention is the combination of bearing concepts in which, among other things, the advantages of a bearingless motor and a conventional radial magnetic bearing are used.
  • An inverter with a high-frequency pulse frequency and low latency is preferably used to control the magnetic bearing.
  • the angular position of the shaft will be recorded with sensors, which are arranged between the catch bearing and the electric machine.
  • FIG. 1 shows a sketch of the preferred embodiment.
  • a turbocompressor 1 is shown with two compressor stages 3a, b, a compressor wheel 6, 7 being arranged at each of the first and second ends 10a, b of the shaft 2.
  • the compressor wheels 6, 7 are arranged in mirror image to one another, so that the Axial forces that occur when air is compressed, act against each other and thus at least partially cancel each other out.
  • the axial bearing 8 is also arranged centrally between the compressor wheels 6, 7.
  • the shaft 2 is rotatably supported relative to the housing 5, a first and a second bearing concept being provided for mounting the shaft 2.
  • the first bearing concept is a magnetic bearing 9a, b, in which the magnetic fields of the two electrical machines 4a, b are used for the radial bearing of the shaft 2.
  • the electric machines or their rotors are arranged on the shaft 2 at a distance.
  • the axial bearing 8 is provided, which is also designed as a magnetic bearing, consisting of the coils 13 and the disk 14
  • the second bearing concept is provided for the de-energized state, in which storage via magnetism is not possible.
  • This consists of the catch bearings 12a, b, which are arranged in the vicinity of the shaft ends 10a, b.
  • the catch bearings 12a, b are bearings with a relatively large bearing gap 18 or bearing play.
  • the bearing gap 18 is chosen so large that the magnetic bearing enables the shaft 2 to be positioned, in which an annular gap is formed between the bearing parts, inner part and outer part, the catching bearings 12a, b.
  • the turbocompressor can be switched off completely when there is no load demand, that is to say it can be switched off, the bearing of the shaft 2 then being taken over by the backup bearings 12a, b.
  • the shaft can also be kept in a floating state when no load is required
  • the compressor wheels 6, 7 are arranged in compressor chambers 20a, b of the housing 5, with each compressor wheel 6, 7 being assigned an air inlet 16a, b and an air outlet 17a, b.
  • the air outlet 17a of the first compressor stage 3a is connected to the air inlet 16b of the second compressor stage 3b via a connecting duct 11.
  • a cooling device 19 is arranged between the two compressor stages 3a, b to cool the compressed air of the first compressor stage 3a heated by the compression. This cools the pre-compressed air of the first compressor stage 3a before it is introduced into the second compressor stage 3b, so that the efficiency of the second compressor stage 3b is improved.
  • the cooling device 19 can be used to cool the electric machines 4a, b and the axial bearing 8.
  • Humidification 21 of the pre-compressed air during or after cooling is also conceivable. This leads, in particular during the further compression in the second compressor stage 3b, to additional cooling of the compressor wheel 7 by the evaporation cold that arises.
  • a plurality of sensors 15a, b, c are provided, by means of which the position of the compressor shaft 2 in the magnetic field is determined and with the aid of which the magnetic field of the axial bearing and the magnetic fields for radial bearing and for generating the torque of the electric motor are regulated .
  • the regulation can take place, for example, by means of a high-frequency frequency converter for regulating the magnetic fields of the axial bearing 8 and the electric motors 4a, b.
  • the position of the compressor shaft 2 is regulated in the radial direction, so that the backup bearings 12a, b no longer have a bearing function when the turbocompressor is in operation.
  • the speed of the electric motors can also be regulated.
  • the magnetic bearing enables a black / white (ON / OFF) switching. This means that at zero load the compressor could be switched off, it could even be braked magnetically.
  • the regulation of the compressor is ideally coupled with the regulation of the fuel cell, in particular the hydrogen pressure or control valve, so that the performance of the turbocompressor can always be adapted to the fuel cell performance. In normal operation, the turbocompressor 1 generally does without a blow-off valve 22.
  • the compressed air volume to the fuel cell can be additionally regulated via an additional blow-off valve 22, in particular a quick exhaust valve, downstream of the second compressor stage.
  • an additional blow-off valve 22 to switch off the fuel cell, it is sufficient to open the blow-off valve 22 so that air can no longer be supplied to the fuel cell. This enables a quick reduction in power in the fuel cell, for example if the vehicle suddenly stops accelerating or brakes.
  • the vented fuel cell is pre-flooded with the stored compressed air.
  • the compressor is started, which means that the system start time is reduced to below t ⁇ 1. Furthermore, the blowing off of compressed air is reduced, the response time of the system and the dynamic demands on the compressor are reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel Cell (AREA)

Abstract

Le mode de réalisation selon l'invention concerne un turbocompresseur qui est approprié à l'alimentation en air d'une pile à combustible, comportant un carter, un arbre doté d'une première et d'une deuxième extrémité, lequel arbre est monté rotatif par rapport au carter, et un moteur électrique disposé dans le carter, l'arbre pouvant être entraîné au moyen du moteur électrique. L'invention vise à améliorer le turbocompresseur. À cet effet, un premier et un deuxième concept de palier sont prévus pour le montage de l'arbre. Au moins le premier concept de palier comporte un montage sur palier magnétique. Le champ magnétique du moteur électrique est utilisé pour le montage.
PCT/EP2019/081123 2018-11-27 2019-11-13 Turbocompresseur WO2020108990A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018129854.4 2018-11-27
DE102018129854.4A DE102018129854A1 (de) 2018-11-27 2018-11-27 Turboverdichter

Publications (1)

Publication Number Publication Date
WO2020108990A1 true WO2020108990A1 (fr) 2020-06-04

Family

ID=68621240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/081123 WO2020108990A1 (fr) 2018-11-27 2019-11-13 Turbocompresseur

Country Status (2)

Country Link
DE (1) DE102018129854A1 (fr)
WO (1) WO2020108990A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074285A1 (fr) 2020-10-05 2022-04-14 Lappeenrannan-Lahden Teknillinen Yliopisto Lut Accouplement élastique doté d'un capot et système électromécanique comprenant un tel accouplement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018006699U1 (de) 2018-11-27 2022-03-08 Voith Patent Gmbh Turboverdichter
DE102020132249B4 (de) 2020-12-04 2023-01-26 Edc Electronic Design Chemnitz Gmbh Turboverdichter
CN217783803U (zh) * 2022-07-01 2022-11-11 开利公司 用于制冷系统的离心压缩机和制冷系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011087601A1 (de) 2011-12-01 2013-06-06 Robert Bosch Gmbh Turboverdichter, Brennstoffzellensystem
EP2677177A1 (fr) * 2012-06-22 2013-12-25 Skf Magnetic Mechatronics Compresseur centrifuge électrique pour véhicules
WO2018207767A1 (fr) * 2017-05-09 2018-11-15 ダイキン工業株式会社 Turbocompresseur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063753B1 (fr) * 1999-06-22 2009-07-22 Levitronix LLC Entraînement électrique rotatif comprenant un rotor suspendu magnétiquement
EP1170025B1 (fr) * 2000-06-26 2005-08-24 Drägerwerk Aktiengesellschaft Dispositif d'alimentation en gaz pour appareils de ventilation et anesthésie
DE102008050314A1 (de) * 2008-08-18 2010-02-25 Daimler Ag Verdichter und Verfahren zum Betreiben eines Verdichters sowie Brennstoffzelleneinrichtung mit einem Verdichter
DE102011051885A1 (de) * 2011-07-15 2013-01-17 Atlas Copco Energas Gmbh Turbomaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011087601A1 (de) 2011-12-01 2013-06-06 Robert Bosch Gmbh Turboverdichter, Brennstoffzellensystem
EP2677177A1 (fr) * 2012-06-22 2013-12-25 Skf Magnetic Mechatronics Compresseur centrifuge électrique pour véhicules
WO2018207767A1 (fr) * 2017-05-09 2018-11-15 ダイキン工業株式会社 Turbocompresseur
EP3579390A1 (fr) * 2017-05-09 2019-12-11 Daikin Industries, Ltd. Turbocompresseur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074285A1 (fr) 2020-10-05 2022-04-14 Lappeenrannan-Lahden Teknillinen Yliopisto Lut Accouplement élastique doté d'un capot et système électromécanique comprenant un tel accouplement

Also Published As

Publication number Publication date
DE102018129854A1 (de) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2020108990A1 (fr) Turbocompresseur
DE69734819T2 (de) Motor-generator unterstützter turbolader für verbrennungsmotoren sowie dazugehoriges steuersystem
DE4334662C2 (de) Maschine mit einer Welle
EP1995427B1 (fr) Système de compresseur
DE69727835T2 (de) Lagersystem für motorunterstützte turbolader für verbrennungsmotoren
DE102017220855A1 (de) Turbokompressor, insbesondere für ein Brennstoffzellensystem
EP2580444B1 (fr) Compresseur pour moteur à combustion
DE10011419C2 (de) Abgasturbolader für eine Brennkraftmaschine
EP2600007A2 (fr) Dispositif de système automobile et procédé de fonctionnement d'un dispositif de système automobile
DE102007052831A1 (de) Turbokompressor-Abschaltmechanismus
WO2016058739A1 (fr) Dispositif de suralimentation pour moteur à combustion interne et procédé de fonctionnement du dispositif de suralimentation
DE19518317A1 (de) Verfahren und Vorrichtung zum Betrieb eines elektrisch unterstützten Turboladers
DE102013205623A1 (de) Turboladereinheit und Verfahren zum Betrieb einer Turboladereinheit
DE202017107685U1 (de) Aufladeanordnung für einen Verbrennungsmotor
EP2519745B1 (fr) Dispositif de suralimentation
DE102008035086B4 (de) Turbolader mit einer Magnetlageranordnung zur Lagerung einer Welle des Turboladers und ein Verfahren zur Lagerung der Welle
DE102012000512A1 (de) Vorrichtung zum Aufladen eines Verbrennungsmotors
DE102012216337A1 (de) Primärbaugruppe für eine Flüssigkeitsreibungskupplung, Flüssigkeitsreibungskupplung, Verfahren und Steuergerät zum Ansteuern einer Flüssigkeitsreibungskupplung
EP1504177B1 (fr) Turbocompresseur a gaz d'echappement, a geometrie variable et a entrainement supplementaire pour un moteur a combustion interne
DE202018006699U1 (de) Turboverdichter
DE202015101916U1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasturbolader
DE102015219299B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuergerät zum Betreiben eines Verbrennungsmotors mit Zusatzverdichter
DE102021210026A1 (de) Rotor-Baugruppe mit Rotorhohlwelle für einen Turbolader mit elektromotorischem Zusatzantrieb und Turbolader
DE102020132249A1 (de) Turboverdichter
EP1144823B1 (fr) Compresseur pour le moteur a combustion interne d'un vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806131

Country of ref document: EP

Kind code of ref document: A1