WO2020108667A1 - 空气净化系统及净化控制的方法、装置及计算机存储介质 - Google Patents

空气净化系统及净化控制的方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2020108667A1
WO2020108667A1 PCT/CN2020/071647 CN2020071647W WO2020108667A1 WO 2020108667 A1 WO2020108667 A1 WO 2020108667A1 CN 2020071647 W CN2020071647 W CN 2020071647W WO 2020108667 A1 WO2020108667 A1 WO 2020108667A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
purification
value
concentration value
fine particle
Prior art date
Application number
PCT/CN2020/071647
Other languages
English (en)
French (fr)
Inventor
盛琳
李朋
鞠旋
张青花
曹壬艳
王玉林
王磊
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020108667A1 publication Critical patent/WO2020108667A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of smart home appliances, in particular to an air purification system and a purification control method, device and computer storage medium.
  • Air conditioners not only have basic core functions such as cooling and heating, but also have functions such as self-cleaning, heating, and air purification.
  • the main function of the purification module configured in the air conditioner is to reduce the concentration of PM2.5 in the environment in the area of the air conditioner and improve air quality.
  • the user's home or work area may have multiple air conditioners, for example: a family has multiple rooms, each room has an air conditioner, and each air conditioner can be controlled according to the detected PM2.5 value
  • the work of the purification module in the air conditioner because each air conditioner performs air purification separately, so that the PM2.5 value may be higher in the entire family. Due to the limitation of the startup time of the purification module, the problem cannot be completely purified, or, In some locations where the PM2.5 value is low, the purification modules in multiple air conditioners work and consume a large amount of energy.
  • Embodiments of the present invention provide an air purification system and a purification control method, device, and computer storage medium.
  • a brief summary is given below. This summary section is not a general comment, nor is it to determine key/important elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simple form as a preface to the detailed description that follows.
  • an air purification system includes: a controller, and at least two air conditioners carrying air purification modules located in the same enclosed space; wherein,
  • the controller is used to obtain the fine particle concentration value detected by each air conditioner, determine the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and determine other air conditioners as the second air conditioner, and obtain the second air conditioner
  • the average fine particle concentration value corresponding to the air conditioner, and the difference in concentration value between the maximum fine particle concentration value and the average fine particle concentration value determining the operating mode of each air conditioner corresponding to the concentration value difference, And send to each of the air conditioners a coordinated purification instruction carrying a corresponding operation mode;
  • the air conditioner is used to control the operation of the purification module or the purification module and the fan according to the operation mode in the cooperative purification instruction received.
  • the controller is specifically configured to send a collaborative cleaning instruction carrying the first operating mode to each air conditioner when the difference in concentration value is less than the first set value; when the difference in concentration value When it is greater than or equal to the first set value and less than or equal to the second set value, it sends a coordinated purification instruction carrying the first operating mode to the first air conditioner, and sends a carrying second operating mode to each second air conditioner Collaborative purification instruction; when the difference in concentration value is greater than the second set value, send a collaborative purification instruction carrying the first operating mode to the first air conditioner, and send a third operation to each second air conditioner A collaborative cleanup instruction of a mode, wherein the second set value is greater than the first set value;
  • the air conditioner is specifically configured to start the operation of the purification module when receiving the collaborative purification instruction carrying the first operation mode, and control the wind speed of the fan according to the current fine particle concentration value obtained through regular sampling; When receiving the coordinated purification instruction carrying the second operating mode, control the purification module to turn off and the wind speed of the fan according to the acquired current fine particle concentration value and current humidity value; and, when receiving the When carrying the collaborative cleaning instruction of the third operating mode, the cleaning module is turned off.
  • the air conditioner is specifically used to receive the current fine particle concentration value obtained for the first time after receiving the coordinated purification instruction carrying the first operating mode, Determine the current fan wind speed corresponding to the current fine particle concentration value according to the correspondence between the stored fine particle concentration value range value and the fan wind speed; if the current fine particle concentration value is the same as the previous fine When the particle concentration value is not in the same range value in the corresponding relationship, according to the set rule, the fan speed adjacent to the previous fan speed in the corresponding relationship is determined as the current fan speed, and the fan is controlled to the current The fan runs at wind speed.
  • the air conditioner is specifically configured to receive the current fine particle concentration value in the first set concentration range and the acquired current humidity after receiving the cooperative purification instruction carrying the second operating mode When the value is in the first set humidity range, start the purification module and control the fan to run at the minimum speed; when the current fine particle concentration value is in the first set concentration range, and the current humidity value is in the first 2.
  • the controller is further configured to send a stop collaborative cleaning instruction to the air conditioner;
  • the air conditioner is also used to stop the running cooperative purification mode when receiving the cooperative deactivation instruction.
  • a method for purifying control in an air purification system includes: a controller, and at least two air conditioners carrying air purifying modules located in the same enclosed space.
  • the method described is applied to the controller and includes:
  • the sending of the collaborative cleaning instruction carrying the corresponding operation mode to each of the air conditioners includes:
  • a cooperative cleaning instruction carrying the first operating mode is sent to each air conditioner, so that the air conditioner starts the cooperative cleaning instruction carrying the first operating mode
  • the purification module operates, and controls the wind speed of the fan according to the current fine particle concentration value obtained through regular sampling;
  • a coordinated purification instruction carrying a first operating mode is sent to the first air conditioner, and each of the second The air conditioner sends a coordinated purification instruction carrying the second operating mode, so that when the first air conditioner receives the coordinated purification instruction carrying the first operating mode, the purification module is started to operate, and according to the current fine particle concentration obtained by regular sampling Value, control the wind speed of the fan, and when the second air conditioner receives the coordinated purification instruction carrying the second operating mode, control the purification module to turn off and on according to the acquired current fine particle concentration value and current humidity value , And the wind speed of the fan;
  • a collaborative cleaning instruction carrying a first operating mode is sent to the first air conditioner, and a collaborative cleaning instruction carrying a third operating mode is sent to each second air conditioner So that when the first air conditioner receives the cooperative purification instruction carrying the first operation mode, it starts the purification module to operate, and controls the wind speed of the fan according to the current fine particle concentration value obtained through regular sampling and When the second air conditioner receives the cooperative purification instruction carrying the third operation mode, the purification module is turned off;
  • the second set value is greater than the first set value.
  • the method further includes:
  • a device for purification control in an air purification system includes a controller and at least two air conditioners carrying air purification modules located in the same enclosed space.
  • the device described is used in the controller and includes:
  • An obtaining unit configured to obtain the fine particle concentration value detected by each air conditioner, determine the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and determine the other air conditioners as the second air conditioner;
  • a obtaining unit configured to obtain an average fine particle concentration value corresponding to the second air conditioner, and a concentration value difference between the maximum fine particle concentration value and the average fine particle concentration value;
  • a determining and sending unit configured to determine an operation mode of each air conditioner corresponding to the difference in concentration value, and send a coordinated purification instruction carrying the corresponding operation mode to each of the air conditioners, so that the air conditioner receives the
  • the operation mode in the cooperative purification instruction controls the operation of the purification module, or the purification module and the fan.
  • the determining sending unit includes:
  • the first determining sending subunit is configured to send a coordinated purification instruction carrying the first operating mode to each air conditioner when the difference in concentration value is less than the first set value, so that the air conditioner receives the carrying first operating mode
  • the collaborative purification instruction is started, the purification module is started to operate, and the wind speed of the fan is controlled according to the current fine particle concentration value obtained through regular sampling;
  • a second determining sending subunit configured to send the first air conditioner a collaborative purification carrying the first operating mode to the first air conditioner when the difference in concentration value is greater than or equal to the first set value and less than or equal to the second set value
  • a third determining sending subunit configured to send a coordinated cleaning instruction carrying the first operating mode to the first air conditioner when the difference in the concentration value is greater than the second setting value, to carry to each second air conditioner Sending a collaborative cleaning instruction in the third operating mode, so that when the first air conditioner receives the collaborative cleaning instruction carrying the first operating mode, it starts the purification module to operate, and according to the current fine particle concentration value obtained by regular sampling, Controlling the wind speed of the fan, and when the second air conditioner receives the cooperative purification instruction carrying the third operating mode, shuts down the purification module;
  • the second set value is greater than the first set value.
  • the device further includes:
  • a stop notification unit is used to send a cooperative deactivation instruction to the air conditioner, and to control the air conditioner to stop the running cooperative decontamination mode when receiving the cooperative deactivation instruction.
  • a computer-readable storage medium on which computer instructions are stored, characterized in that, when the instructions are executed by a processor, the steps of the above method are implemented.
  • the controller may be based on the PM.5 value of the fine particle concentration corresponding to each air conditioner.
  • the first air conditioner corresponding to the maximum fine particle concentration value is determined, and the operating mode of the first air conditioner and other air conditioners is determined according to the concentration value difference between the maximum fine particle concentration value and the average fine particle concentration value of other air conditioners, thereby , Collaborative control of the purification module of each air conditioner, or the operation of the purification module and the fan, so as to ensure the maximum purification effect of PM2.5, improve the overall utilization rate of the purification module, and at the same time, quickly reduce PM2 in the space. 5 value, improve the air quality in the space.
  • Fig. 1 is an architectural diagram of an air purification system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a correspondence relationship between a range value of PM2.5 and a wind speed of a fan according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing a region division of PM2.5 value and humidity value according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a purification control method in an air purification system according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a purification control method in an air purification system according to an exemplary embodiment
  • Fig. 6-1 is a flowchart of a purification control method in an air purification system according to an exemplary embodiment
  • Fig. 6-2 is a flowchart of a purification control method in an air purification system according to an exemplary embodiment
  • Fig. 6-3 is a flowchart of a purification control method in an air purification system according to an exemplary embodiment
  • Fig. 7 is a block diagram of a purification control device in an air purification system according to an exemplary embodiment
  • Fig. 8 is a block diagram of a purification control device in an air purification system according to an exemplary embodiment.
  • the air conditioner has a variety of working functions, including: cooling, heating or purification, etc.
  • two or more air conditioners are included, and the purification module in each air conditioner not only operates independently, but also cooperates in purification operation, that is, the controller can
  • the corresponding fine particle concentration PM.5 value determines the first air conditioner corresponding to the maximum fine particle concentration value, and determines the first air conditioner according to the difference between the maximum fine particle concentration value and the average fine particle concentration value of other air conditioners.
  • One air conditioner and other air conditioner operation modes so as to coordinate the control of the purification module of each air conditioner, or the operation of the purification module and the fan, so as to ensure the maximum purification effect of PM2.5 and improve the overall utilization rate of the purification module At the same time, it quickly reduces the PM2.5 value in the space and improves the air quality in the space.
  • Fig. 1 is an architectural diagram of an air purification system according to an exemplary embodiment. As shown in FIG. 1, the air purification system includes a controller 100 and two or more air conditioners 200 carrying air purification modules located in the same enclosed space.
  • the home where the user is located may have multiple rooms, each room is equipped with an air conditioner 200 with an air purification module, each room can be individually sealed, or the windows of each room are closed, but each room is connected
  • the door opens so that all air conditioners can be in the same confined space.
  • the working area where the user is located may also be the same enclosed space including two or more air conditioners 200 carrying air purification modules.
  • the air conditioner may be a "one-to-multiple" air conditioner, that is, one indoor air conditioner is configured in each room, and two or more indoor air conditioners may share an outdoor unit.
  • the controller 100 can communicate with each air conditioner 200. In this way, the controller 100 is used to obtain the fine particle concentration value detected by each air conditioner 200, determine the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and The air conditioner is determined to be the second air conditioner, and the average fine particle concentration value corresponding to the second air conditioner is obtained, as well as the difference in concentration value between the maximum fine particle concentration value and the average fine particle concentration value; The operation mode of each air conditioner, and sends to each air conditioner 200 a coordinated purification instruction carrying the corresponding operation mode;
  • the air conditioner 200 is used to control the operation of the purification module or the purification module and the fan according to the operation mode in the received collaborative purification instruction.
  • each air conditioner 200 can detect the PM2.5 value of the fine particle concentration in the action area. In this way, the controller 100 can obtain each PM2.5 value and then compare it to maximize the PM2.
  • the air conditioner corresponding to the 5 value A is determined as the first air conditioner. All air conditioners except the first air conditioner are determined as the second air conditioner.
  • the PM2.5 values detected by each second air conditioner are b1, b2, ... bn, respectively, where n is the number of second air conditioners, and may be one, two, or more.
  • the controller may determine the operation mode of each air conditioner according to the concentration difference X, and then send a cooperative purification instruction carrying the corresponding operation mode to the corresponding air conditioner, that is, start the cooperative operation process of the purification module in the air conditioner.
  • the first correspondence between the concentration value range and the operation mode can be saved in advance, so that the operation mode of each air conditioner corresponding to the obtained concentration difference value X can be determined according to the saved first correspondence.
  • Table 1 shows a first correspondence between a concentration value range and an operation mode according to an exemplary embodiment.
  • the second setting value is greater than the first setting value, for example: the first setting value is 100, the second setting value is 700, or, the first setting value is 80, the second setting The value is 600, or the first setting is 60, the second setting is 650, etc.
  • the first setting is a value less than or equal to 100
  • the second setting is a value greater than 500
  • each air conditioner can be operated in the same operating mode, that is, the first operating mode , Each air conditioner performs purification operation. If the first set value ⁇ the acquired concentration value difference X ⁇ the second set value, the PM2.5 value of the area where the first air conditioner is located is larger, so that the first air conditioner continues to operate in the first operating mode, and Air conditioners in other areas, that is, the second air conditioner can be operated in the second operation mode to assist in purification. If the second set value ⁇ the obtained concentration value difference X, the PM2.5 value of the area where the first air conditioner is located is very large, and the air pollution is relatively serious.
  • the first air conditioner may be mainly used for purification operation. That is, the operating mode of the first air conditioner is still the first operating mode, and the second air conditioner may adopt the third operating mode, that is, the second air conditioner may stop operating the purification module.
  • the controller can determine the operation mode of each air conditioner, and then send to each air conditioner a coordinated purification instruction carrying the corresponding operation mode, thereby enabling the cooperative operation of the purification module.
  • the controller communicates with the air conditioner to obtain the fine particle concentration value detected by each air conditioner, and then determines the first air conditioner, and the process of the second air conditioner can be started according to user instructions, or periodically, for example: every 20 minutes or 30 minutes
  • the controller obtains the concentration value of the fine particles detected by each air conditioner, and then determines the first air conditioner and the second air conditioner, and sends the corresponding collaborative cleaning instruction carrying the working mode.
  • the air conditioner may control the operation of the purification module or the purification module and the fan according to the operation mode carried in the cooperative purification instruction.
  • the purification module when the air conditioner receives the cooperative purification instruction carrying the first operation mode, the purification module can be turned on all the time, that is, the purification module is started, and the current fine particle concentration value is periodically sampled to obtain, and then, according to the obtained current fine particle concentration value The wind speed of the fan.
  • the air conditioner receives the cooperative purification command in the second operation mode, it can control the purification module to turn off and the wind speed of the fan according to the acquired current fine particle concentration value and current humidity value.
  • the air conditioner receives the cooperative purification instruction in the third operation mode, it can turn off the purification module.
  • the controller 100 is specifically configured to send a cooperative cleaning instruction carrying the first operation mode to each air conditioner 200 when the difference in concentration value is less than the first set value; when the difference in concentration value is greater than Or equal to the first set value and less than or equal to the second set value, send a coordinated purification instruction carrying the first operating mode to the first air conditioner, and send a coordinated purification instruction carrying the second operating mode to each second air conditioner;
  • the first air conditioner is sent a coordinated cleaning instruction carrying the first operating mode
  • the second air conditioner is sent a coordinated purification instruction of the third operating mode, where the second setting The set value is greater than the first set value.
  • the air conditioner 200 is specifically used to start the operation of the purification module when receiving the coordinated purification instruction carrying the first operating mode, and to control the wind speed of the fan according to the current fine particle concentration value obtained by regular sampling; when receiving the carrying second operating mode During the collaborative cleaning instruction, according to the current fine particle concentration value and the current humidity value, control the cleaning module to turn on and off, and the wind speed of the fan; and, when receiving the collaborative cleaning instruction carrying the third operating mode, turn off the purification module.
  • the purification module When the air conditioner is operating in the first operation mode, the purification module is always on, and the wind speed of the fan can be controlled according to the current fine particle concentration value obtained through regular sampling.
  • the process of controlling the wind speed of the fan may include a variety of, for example: pre-save a corresponding relationship between the PM2.5 value and wind speed, and then directly determine the current fine particles according to the corresponding relationship The current wind speed corresponding to the concentration value, and then control the fan according to the current wind speed.
  • the current fine particle concentration value is the current fine particle concentration value acquired for the first time, and the current fan wind speed corresponding to the current fine particle concentration value is determined according to the correspondence between the saved fine particle concentration value range value and the fan wind speed ; If the current fine particle concentration value and the previous fine particle concentration value obtained from the previous sampling are not in the same range value in the corresponding relationship, according to the setting rules, the fan wind speed adjacent to the previous fan wind speed in the corresponding relationship is determined as Current fan speed, control the fan to run at the current fan speed. In this way, the adjustment of the fan is relatively smooth, and it will not be suddenly high and suddenly low, which further protects the fan.
  • the air conditioner 200 is specifically used to receive the coordinated purification instruction carrying the first operation mode, and if the current fine particle concentration value is the current fine particle concentration value acquired for the first time, according to the saved fine particles Correspondence between the concentration value range value and the fan wind speed, determine the current fan wind speed corresponding to the current fine particle concentration value; if the current fine particle concentration value and the previous fine particle concentration value obtained from the previous sampling are not in the same relationship
  • the fan speed adjacent to the previous fan speed in the corresponding relationship is determined as the current fan speed, and the fan is controlled to run at the current fan speed.
  • Fig. 2 is a schematic diagram showing a correspondence between a range value of PM2.5 and a wind speed of a fan according to an exemplary embodiment.
  • the current fine particle concentration value is the current fine particle concentration value acquired for the first time, that is, the initial PM2.5 value
  • the initial PM 2.5 value is 800, greater than 700
  • the current The wind speed of the fan is the speed of the strong wind of the air conditioner.
  • To the set sampling time such as 2 minutes, 3 minutes, 4 minutes or 5 minutes, so that the current fine particle concentration value obtained is not the initial PM2.5 value.
  • the PM 2.5 value is 750, according to the figure
  • the corresponding relationship shown in 2 still belongs to the range value greater than 700, so keep the current fan wind speed as the strong wind of the air conditioner.
  • the PM 2.5 value is 450, it is not the same as the previous fine particle concentration value 800 obtained by the previous sampling.
  • the high wind adjacent to the previous wind speed that is, the strong wind
  • the fan runs at the high wind speed.
  • the current fine particle concentration value is the current fine particle concentration value acquired for the first time, that is, the initial PM2.5 value
  • the initial PM 2.5 value is 50, less than 100
  • the re-acquired current fine particle concentration value is not the initial PM2.5 value.
  • the PM 2.5 value is 80, according to the corresponding relationship shown in Figure 2, it still falls within the range of less than 100 Value, the current wind speed of the fan is kept at the mute level of the air conditioner.
  • the low wind adjacent to the previous fan wind speed that is, mute
  • the current wind speed of the fan can be determined according to the above rules, or it can be directly determined according to the corresponding relationship shown in FIG. 2
  • the current wind speed of the fan corresponding to the .5 value is not listed one by one.
  • the air conditioner may control the purification module to turn off and the wind speed of the fan according to the acquired current fine particle concentration value and current humidity value.
  • the intersection may include: when the acquired current fine particle concentration value is in the first set concentration range, and the acquired current humidity value is in the first set humidity range, start the purification module to control the fan to run at the minimum speed; when the current When the fine particle concentration value is in the first set concentration range and the current humidity value is in the second set humidity range, turn off the purification module and control the fan to run at the set wind speed; when the current fine particle concentration value is in the second set concentration range , And when the current humidity value is in the first set humidity range, start the purification module and control the fan to run at the set wind speed; when the current fine particle concentration value is in the second set concentration range, and the current humidity value is in the second set humidity In the range, the purification module is activated to control the fan to run at the minimum speed.
  • the air conditioner 200 in the air purification system is specifically used to receive the coordinated purification instruction carrying the second operating mode, when the acquired current fine particle concentration value is in the first set concentration range, and the acquired current humidity value is in the first When the humidity range is set, start the purification module to control the fan to run at the minimum speed; when the current fine particle concentration value is in the first set concentration range and the current humidity value is in the second set humidity range, turn off the purification module and control The fan runs at the set wind speed; when the current fine particle concentration value is in the second set concentration range and the current humidity value is in the first set humidity range, the purification module is started to control the fan to run at the set wind speed; when the current fine particles When the concentration value is in the second set concentration range and the current humidity value is in the second set humidity range, start the purification module to control the fan to run at the minimum gear speed, where the lower limit of the first set concentration range and the second The upper limit value of the set concentration range matches, and the upper limit value of the first set humidity range matches the lower limit value of the
  • Fig. 3 is a schematic diagram showing a region division of PM2.5 value and humidity value according to an exemplary embodiment.
  • the first set concentration range corresponding to the PM2.5 value is [500,700]
  • the second set east range is [100,500]
  • the first set humidity corresponding to the humidity value The range is [30,50]
  • the second set humidity range is [50,70].
  • the first set concentration range and the first set humidity range make up area one
  • the first set concentration range and the second set humidity range make up area two
  • the humidity range constitutes area three
  • the second set concentration range and the second set humidity range constitute area four.
  • the current PM2.5 value obtained is 600 ⁇ g/m3, and the current humidity value is 40 RH%, it can be determined that it corresponds to the area in FIG. 3, so that the purification module is started, and the fan is controlled to operate at the minimum speed. If the current PM2.5 value obtained is 600 ⁇ g/m3, and the current humidity value is 60 RH%, it can be determined to correspond to the area 2 in FIG. 3, so that the purification module is turned off, and the fan is controlled to operate at a set wind speed, for example, a stroke Run at wind speed. If the current PM2.5 value obtained is 200 ⁇ g/m3, and the current humidity value is 35 RH%, it can be determined to correspond to area 3 in FIG.
  • the purification module is started and the fan is controlled to operate at the set wind speed; and if the obtained When the current PM2.5 value is 200 ⁇ g/m3 and the current humidity value is 55 RH%, it can be determined to correspond to the area 4 in FIG. 3, so that the purification module is started, and the fan is controlled to operate at the minimum speed.
  • the area division of the PM2.5 value and the humidity value in the embodiment of the present invention is not limited to this, and may also be other setting range values, which are not listed one by one.
  • the air conditioner when the air conditioner receives the cooperative purification instruction carrying the third operation mode, it can directly turn off the purification module, that is, the air conditioner does not need to operate the purification module.
  • the controller can determine the PM.5 value of the fine particle concentration corresponding to each air conditioner , Determine the first air conditioner corresponding to the maximum fine particle concentration value, and determine the operating mode of the first air conditioner and other air conditioners according to the difference in concentration value between the maximum fine particle concentration value and the average fine particle concentration value of other air conditioners,
  • the purification module of each air conditioner is cooperatively controlled, or the operation of the purification module and the fan, so as to ensure the maximum purification effect of PM2.5, improve the overall utilization rate of the purification module, and at the same time, quickly reduce the PM2 in the space
  • the value of .5 improves the air quality in the space.
  • the controller can control two or more air conditioners to perform cooperative purification operation together.
  • the control can also control the mode in which the air conditioner terminates the cooperative purification operation. Therefore, in the air purification system, the controller 100 is also used to send to the air conditioner 200 Stop cooperative cleaning instruction.
  • the air conditioner 200 is also used to stop the running cooperative cleaning mode when receiving the cooperative cleaning stopping instruction.
  • the controller controls the cooperative purification process of the air conditioner. Therefore, the purification control method in the air purification system can be applied to the controller.
  • Fig. 4 is a flow chart showing a purification control method in an air purification system according to an exemplary embodiment. As shown in Figure 4, the process of purification control in the air purification system is applied to the controller and may include:
  • Step 401 Acquire the fine particle concentration value detected by each air conditioner, determine the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and determine the other air conditioners as the second air conditioner.
  • the controller may communicate with each air conditioner to obtain the fine particle concentration value detected by each air conditioner, and then determine the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and determine the other air conditioners as the second air conditioner.
  • Step 402 Obtain the average fine particle concentration value corresponding to the second air conditioner, and the difference between the maximum fine particle concentration value and the average fine particle concentration value.
  • the PM2.5 values detected by each second air conditioner are b1, b2, ... bn, respectively, where n is the number of second air conditioners, and may be one, two, or more.
  • n is the number of second air conditioners, and may be one, two, or more.
  • Step 403 Determine the operation mode of each air conditioner corresponding to the difference in concentration value, and send a coordinated purification instruction carrying the corresponding operation mode to each air conditioner, so that the air conditioner controls the purification module according to the operation mode received in the coordinated purification instruction Or, the operation of the purification module and the fan.
  • the first correspondence between the concentration value range and the operation mode can be saved in advance, so that the operation mode of each air conditioner corresponding to the obtained concentration difference value X can be determined according to the saved first correspondence, and then Send a collaborative cleanup instruction that carries the corresponding operating mode.
  • sending the coordinated purification instruction carrying the corresponding operation mode to each air conditioner includes: when the concentration value difference is less than the first set value, sending the coordinated purification instruction carrying the first operation mode to each air conditioner, so that the air conditioner When receiving the coordinated purification instruction carrying the first operation mode, start the purification module to operate, and control the wind speed of the fan according to the current fine particle concentration value obtained by regular sampling; when the difference in concentration value is greater than or equal to the first set value and less than Or equal to the second set value, send a coordinated purification instruction carrying the first operating mode to the first air conditioner, and send a coordinated purification instruction carrying the second operating mode to each second air conditioner, so that the first air conditioner receives the carrying first
  • the cooperative purification instruction of the operation mode is started, the purification module is started, and the wind speed of the fan is controlled according to the current fine particle concentration value obtained by regular sampling, and when the second air conditioner receives the cooperative purification instruction carrying the second operation mode, according to the obtained The current fine particle concentration value and the current humidity value, control the purification module
  • the first air conditioner starts the purification module to operate, and controls the wind speed of the fan according to the current fine particle concentration value obtained through regular sampling.
  • each second air conditioner receives the coordinated purification instruction carrying the second operation mode, it controls the purification module to turn off and the wind speed of the fan according to the acquired current fine particle concentration value and current humidity value.
  • the method further includes: sending a cooperative deactivation instruction to the air conditioner, and controlling the air conditioner to stop the running cooperative decontamination mode when receiving the cooperative deactivation instruction. That is, the controller can control the air conditioner to terminate the cooperative purification operation.
  • the controller may determine the first air conditioner corresponding to the maximum fine particle concentration value according to the PM.5 value of the fine particle concentration corresponding to each air conditioner, and according to the maximum fine particle concentration value and the average fineness of other air conditioners
  • concentration value difference between the particle concentration values to determine the operation mode of the first air conditioner and other air conditioners so as to cooperatively control the operation of the purification module of each air conditioner, or the purification module and the fan, so as to ensure PM2.5
  • the largest purification effect improves the overall utilization rate of the purification module. At the same time, it quickly reduces the PM2.5 value in the space and improves the air quality in the space.
  • the controller controls the cooperative purification process of the air conditioner. Therefore, the purification control method in the air purification system can be applied to the air conditioner.
  • Fig. 5 is a flow chart showing a purification control method in an air purification system according to an exemplary embodiment. As shown in Fig. 5, the process of purification control in the air purification system is applied to the air conditioner and may include:
  • Step 501 Receive a collaborative cleaning instruction sent by a controller.
  • the controller in the air purification system can communicate with each air conditioner, so that the controller obtains the fine particle concentration value detected by each air conditioner, determines the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and determines the other air conditioners For the second air conditioner, and obtain the average fine particle concentration value corresponding to the second air conditioner, and the concentration value difference between the maximum fine particle concentration value and the average fine particle concentration value; determine each air conditioner corresponding to the concentration value difference
  • the corresponding collaborative cleaning instruction carrying the operating mode is generated and sent. Therefore, the collaborative cleaning instruction is that the controller obtains the fine particle concentration value detected by each air conditioner, and determines the air conditioner corresponding to the maximum fine particle concentration value.
  • For the first air conditioner determine other air conditioners as the second air conditioner, and obtain the average fine particle concentration value corresponding to the second air conditioner, and the difference between the maximum fine particle concentration value and the average fine particle concentration value; determine and The operating mode of each air conditioner corresponding to the difference in concentration value is generated and sent according to the operating mode.
  • Step 502 Control the operation of the purification module or the purification module and the fan according to the operation mode in the received collaborative purification instruction.
  • controlling the purification module, or the operation of the purification module and the fan includes: when receiving a coordinated purification instruction carrying the first operation mode, starting the purification module to operate, and according to the current fine particle concentration value obtained by regular sampling, control The wind speed of the fan; when receiving the coordinated purification instruction carrying the second operation mode, the purification module is turned off and on, and the wind speed of the fan is controlled according to the acquired current fine particle concentration value and the current humidity value; when the carrying third operation mode is received When the coordinated purification instruction of the system is turned off, the purification module is turned off; where the coordinated purification instruction carrying the first operating mode is sent by the controller to the first air conditioner, and when the difference in concentration value is less than the first set value, it is sent to the second air conditioner ; The coordinated purification instruction that carries the second operating mode is sent by the controller to the second air conditioner when the difference in concentration value is greater than or equal to the first set value and less than or equal to the second set value; carries the third operating mode
  • the collaborative cleaning instruction is sent by the controller to
  • the first air conditioner starts the purification module to operate, and controls the wind speed of the fan according to the current fine particle concentration value obtained through regular sampling.
  • each second air conditioner receives the coordinated purification instruction carrying the second operation mode, it controls the purification module to turn off and the wind speed of the fan according to the acquired current fine particle concentration value and current humidity value.
  • the air conditioner can control the wind speed of the fan in various ways. For example, according to the correspondence between the saved fine particle concentration value range and the fan wind speed, the current fine particle concentration is determined. The current fan speed corresponding to the value. Or, according to the setting rule, determine the current fan wind speed corresponding to the current fine particle concentration value.
  • it may include: if the current fine particle concentration value is the current fine particle concentration value acquired for the first time, according to the correspondence between the stored fine particle concentration value range value and the fan wind speed, determine the current fine particle concentration The current fan wind speed corresponding to the value; if the current fine particle concentration value and the previous fine particle concentration value obtained from the previous sampling are not in the same range of values in the corresponding relationship, according to the setting rules, the corresponding relationship is compared with the previous fan wind speed The wind speed of the adjacent fan is determined as the current wind speed of the fan, and the fan is controlled to operate at the current wind speed of the fan.
  • controlling the purification module to turn off, and the wind speed of the fan includes: when the obtained current fine particle concentration value is in the first set concentration range, and the obtained current humidity When the value is in the first set humidity range, start the purification module to control the fan to run at the minimum speed; when the current fine particle concentration value is in the first set concentration range and the current humidity value is in the second set humidity range, turn off The purification module controls the fan to run at the set wind speed; when the current fine particle concentration value is in the second set concentration range and the current humidity value is in the first set humidity range, the purification module is started to control the fan to run at the set wind speed; When the current fine particle concentration value is in the second set concentration range and the current humidity value is in the second set humidity range, start the purification module to control the fan to run at the minimum speed; where, the lower limit of the first set concentration range The value coincides with the upper limit value of the second set concentration range, and the upper limit value of the first set humidity range
  • the controller controls the cooperative purification operation of the air conditioner, and can also terminate the cooperative purification operation of the air conditioner. Therefore, the method further includes: stopping the running cooperative purification mode when receiving the cooperative deactivation instruction sent by the controller.
  • the collaborative cleaning operation can also be stopped.
  • the air purification system may include a controller and two or more air conditioners as shown in FIG.
  • the first correspondence between the concentration value range saved in the controller and the operating mode can be shown in Table 1, where the first set value can be 100 and the second set value can be 700.
  • the correspondence between the PM2.5 range value saved in the air conditioner and the wind speed of the fan can be shown in FIG. 2, and the schematic diagram of the area division of the saved PM2.5 value and the humidity value can be shown in FIG. 3.
  • Fig. 6-1 is a flowchart illustrating a purification control method in an air purification system according to an exemplary embodiment.
  • Fig. 6-2 is a flowchart illustrating a purification control method in an air purification system according to an exemplary embodiment.
  • Fig. 6-3 is a flowchart of a purification control method in an air purification system according to an exemplary embodiment.
  • the purification control process in the air purification system includes:
  • Step 601 The controller obtains the fine particle concentration value detected by each air conditioner, determines the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and determines the other air conditioners as the second air conditioner.
  • Step 602 The controller obtains the average fine particle concentration value corresponding to the second air conditioner, and the difference between the maximum fine particle concentration value and the average fine particle concentration value.
  • Step 603 The controller determines the operation mode of each air conditioner corresponding to the difference in concentration value, and sends to each air conditioner a coordinated purification instruction carrying the corresponding operation mode.
  • Step 604 The air conditioner judges whether the received collaborative purification instruction carries the first operation mode? If yes, go to step 605; otherwise, go to step 613.
  • Step 605 Start the purification module operation.
  • Step 606 Determine whether the period of periodic sampling reaches 4 minutes? If yes, go to step 607, otherwise, go back to step 606.
  • Step 607 Obtain the current number of adoptions and the corresponding current fine particle concentration value, and save it.
  • Step 608 Determine whether the current number of adoptions is 1? If yes, go to step 609, otherwise, go to step 610.
  • Step 609 Determine the current fan wind speed corresponding to the current fine particle concentration value according to the correspondence between the stored fine particle concentration value range value and the fan wind speed. Return to step 606.
  • Step 610 Determine whether the current fine particle concentration value and the previous fine particle concentration value obtained in the previous sampling are in the same range value in the corresponding relationship? If yes, go to step 611; otherwise, go to step 612.
  • Step 611 Determine the previous fan wind speed as the current fan wind speed, and control the fan to run at the current fan wind speed. Return to step 606.
  • Step 612 According to the set rule, determine the wind speed of the fan adjacent to the current wind speed in the corresponding relationship as the first wind speed of the fan, and control the wind turbine to run at the first wind speed. Return to step 606.
  • the saved correspondence can be shown in Figure 2. If the previous PM2.5 value is 800, the current PM2.5 value is 450, and the previous fine particle concentration value 800 obtained by the previous sampling is not in the relationship shown in Figure 2.
  • the high wind adjacent to the previous wind speed that is, the strong wind
  • the current fine particle concentration value obtained for the first time is used, that is, the initial PM2.5 value, if the initial PM 2.5 value is 50, less than 100, then according to the corresponding relationship shown in Figure 2, it can be determined that the current fan wind speed is the air conditioner mute Gear wind speed.
  • the current fine particle concentration value re-acquired is 250, and the previous fine particle concentration value 50 obtained from the previous sampling is not in the same range value in the relationship shown in Figure 2.
  • the low wind adjacent to the previous fan wind speed that is, mute, is determined as the current wind speed of the fan, so that the fan can be controlled to operate at the low wind block speed.
  • Step 613 The air conditioner judges whether the received collaborative purification instruction carries the second operation mode? If yes, go to step 614, otherwise, go to step 616.
  • Step 614 Determine whether the period of periodic sampling reaches 4 minutes? If yes, go to step 615, otherwise, go back to step 614.
  • Step 615 Obtain the current fine particle concentration value and the current humidity value, and according to the obtained current fine particle concentration value and the current humidity value, control the purification module to turn off and the wind speed of the fan, and return to step 614.
  • Step 616 The air conditioner judges whether the received collaborative cleaning instruction carries the third operation mode? If yes, go to step 617, otherwise, the process ends.
  • Step 617 The air conditioner turns off the purification module.
  • the controller can determine the PM.5 value of the fine particle concentration corresponding to each air conditioner , Determine the first air conditioner corresponding to the maximum fine particle concentration value, and determine the operating mode of the first air conditioner and other air conditioners according to the difference in concentration value between the maximum fine particle concentration value and the average fine particle concentration value of other air conditioners,
  • the purification module of each air conditioner is cooperatively controlled, or the operation of the purification module and the fan, so as to ensure the maximum purification effect of PM2.5, improve the overall utilization rate of the purification module, and at the same time, quickly reduce the PM2 in the space
  • the value of .5 improves the air quality in the space.
  • a device for purification control in the air purification system can be constructed.
  • Fig. 7 is a block diagram of a purification control device in an air purification system according to an exemplary embodiment.
  • the air purification system includes a controller and at least two air conditioners carrying air purification modules in the same enclosed space.
  • the device is applied to the controller.
  • the device may include: an acquisition unit 710 and an acquisition unit 720 ⁇ determination sending unit 730.
  • the obtaining unit 710 is configured to obtain the fine particle concentration value detected by each air conditioner, determine the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and determine the other air conditioners as the second air conditioner.
  • the obtaining unit 720 is configured to obtain an average fine particle concentration value corresponding to the second air conditioner, and a concentration value difference between the maximum fine particle concentration value and the average fine particle concentration value.
  • the determining and sending unit 730 is used to determine the operation mode of each air conditioner corresponding to the difference in concentration value, and send to each air conditioner a coordinated purification instruction carrying the corresponding operation mode, so that the air conditioner receives the operation mode in the coordinated purification instruction To control the operation of the purification module, or the purification module and the fan.
  • the determining sending unit 730 includes:
  • the first determining sending subunit is configured to send a collaborative cleaning instruction carrying the first operating mode to each air conditioner when the difference in concentration value is less than the first set value, so that the air conditioner receives the collaborative cleaning instruction carrying the first operating mode , Start the purification module operation, and control the wind speed of the fan according to the current fine particle concentration value obtained by regular sampling;
  • the second determining sending subunit is used to send a coordinated purification instruction carrying the first operating mode to the first air conditioner when the difference in concentration value is greater than or equal to the first set value and less than or equal to the second set value.
  • Each second air conditioner sends a coordinated purification command carrying the second operating mode, so that when the first air conditioner receives the coordinated purification command carrying the first operating mode, it starts the purification module to operate and controls based on the current fine particle concentration value obtained by regular sampling The wind speed of the fan, and when the second air conditioner receives the coordinated purification command carrying the second operation mode, the purification module is turned off and on, and the wind speed of the fan is controlled according to the obtained current fine particle concentration value and current humidity value;
  • the third determining sending subunit is used to send a coordinated cleaning instruction carrying the first operating mode to the first air conditioner when the concentration value difference is greater than the second setting value, and to send the third operating mode to each second air conditioner
  • the coordinated purification instruction enables the first air conditioner to start the purification module when it receives the coordinated purification instruction carrying the first operation mode, and controls the wind speed of the fan according to the current fine particle concentration value obtained by regular sampling, and the second air conditioner receives the carry When the collaborative purification instruction of the third operating mode is turned off, the purification module is turned off;
  • the second set value is greater than the first set value.
  • the device further includes:
  • the stop notification unit is used to send a stop collaborative cleaning instruction to the air conditioner, and control the air conditioner to stop the running cooperative cleaning mode when receiving the stop cooperative cleaning instruction.
  • Fig. 8 is a block diagram of a purification control device in an air purification system according to an exemplary embodiment.
  • the air purification system includes: a controller, and at least two air conditioners carrying air purification modules in the same enclosed space.
  • the device is applied to the air conditioner.
  • the device may include: a receiving unit 810 and a purification control unit 820 .
  • the receiving unit 810 is configured to receive a coordinated purification instruction sent by the controller, wherein the coordinated purification instruction is that the controller acquires the fine particle concentration value detected by each air conditioner, and determines the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, Determine other air conditioners as the second air conditioner, and obtain the average fine particle concentration value corresponding to the second air conditioner, and the difference in concentration value between the maximum fine particle concentration value and the average fine particle concentration value; determine the difference corresponding to the concentration value
  • the operating mode of each air conditioner is generated and sent according to the operating mode;
  • the purification control unit 820 is configured to control the operation of the purification module or the purification module and the fan according to the operation mode in the received collaborative purification instruction.
  • the purification control unit 820 includes:
  • the first purification control subunit is used to start the operation of the purification module when receiving the coordinated purification instruction carrying the first operation mode, and control the wind speed of the fan according to the current fine particle concentration value obtained through regular sampling;
  • the second purification control subunit is used to control the purification module to turn off and the wind speed of the fan according to the acquired current fine particle concentration value and the current humidity value when receiving the collaborative purification instruction carrying the second operating mode;
  • the third purification control subunit is used to turn off the purification module when receiving the cooperative purification instruction carrying the third operating mode
  • the coordinated purification instruction carrying the first operating mode is sent by the controller to the first air conditioner, and is sent to the second air conditioner when the difference in concentration value is less than the first set value;
  • the collaborative purification carrying the second operating mode The command is sent by the controller to the second air conditioner when the difference in concentration value is greater than or equal to the first set value and less than or equal to the second set value;
  • the coordinated purification command with the third operating mode is the controller when the concentration value When the difference is greater than the second set value, it is sent to the second air conditioner, where the second set value is greater than the first set value.
  • the first purification control sub-unit is specifically used if the current fine particle concentration value is the current fine particle concentration value acquired for the first time, according to the range between the saved fine particle concentration value range and the fan wind speed
  • the corresponding relationship between the current fine particle concentration value and the current fine particle concentration value is determined; and, if the current fine particle concentration value and the previous fine particle concentration value obtained from the previous sampling are not in the same range of values in the corresponding relationship, according to the setting
  • the wind speed of the fan adjacent to the previous wind speed in the corresponding relationship is determined as the current wind speed of the fan, and the fan is controlled to run at the current wind speed of the fan.
  • the second purification control subunit is specifically configured to start purification when the acquired current fine particle concentration value is within the first set concentration range and the acquired current humidity value is within the first set humidity range
  • the module controls the fan to run at the minimum wind speed; when the current fine particle concentration value is in the first set concentration range and the current humidity value is in the second set humidity range, turn off the purification module and control the fan to run at the set wind speed; When the current fine particle concentration value is in the second set concentration range and the current humidity value is in the first set humidity range, start the purification module and control the fan to run at the set wind speed; when the current fine particle concentration value is in the second set concentration Range, and when the current humidity value is within the second set humidity range, start the purification module to control the fan to run at the minimum speed; wherein, the lower limit of the first set concentration range and the upper limit of the second set concentration range In agreement, the upper limit of the first set humidity range is consistent with the lower limit of the second set humidity range.
  • the device further includes:
  • the stop control unit is used to stop the running cooperative cleaning mode when receiving the stop cooperative cleaning command sent by the controller.
  • a device for purifying control in an air purifying system includes: a controller, and at least two air conditioners carrying air purifying modules located in the same enclosed space.
  • the device includes:
  • Memory for storing processor executable instructions
  • the processor is configured as:
  • a device for purifying control in an air purifying system includes a controller and at least two air conditioners carrying air purifying modules located in the same enclosed space. :
  • Memory for storing processor executable instructions
  • the processor is configured as:
  • the collaborative purification instruction is that the controller acquires the fine particle concentration value detected by each air conditioner, determines the air conditioner corresponding to the maximum fine particle concentration value as the first air conditioner, and determines other air conditioners as the Second air conditioner, and obtain the average fine particle concentration value corresponding to the second air conditioner, and the concentration value difference between the maximum fine particle concentration value and the average fine particle concentration value; determine the operation of each air conditioner corresponding to the concentration value difference Mode, generated and sent according to the operating mode;
  • An embodiment of the present invention provides a computer-readable storage medium on which computer instructions are stored, characterized in that, when the instructions are executed by a processor, the steps of the above method are implemented.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage media including but not limited to disk storage and optical storage, etc.
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Abstract

空气净化系统及净化控制的方法、装置及计算机存储介质,属于智能家电技术领域。该系统包括:控制器(100),以及位于同一密闭空间中的至少两个携带空气净化模块的空调(200);所述控制器(100),用于获取每个空调(200)检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调(200)确定为第一空调,将其他空调确定为第二空调,并得到与所述第二空调对应的平均细颗粒浓度值,以及所述最大细颗粒浓度值与所述平均细颗粒浓度值之间的浓度值差值;确定与所述浓度值差值对应的每个空调(200)的运行模式,并向每个所述空调(200)发送携带对应的运行模式的协同净化指令;所述空调(200),用于根据接收到所述协同净化指令中的所述运行模式,控制所述净化模块,或者,所述净化模块和风机的运行。

Description

空气净化系统及净化控制的方法、装置及计算机存储介质
本申请基于申请号为201811444512.1、申请日为2018年11月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及智能家电技术领域,特别涉及空气净化系统及净化控制的方法、装置及计算机存储介质。
背景技术
随着生活水平的提高,空调已经是人们日常生活的必备品。空调不仅具有制冷、制热等基本核心功能,还可以具有自清洁、加热、净化空气等功能。
空调中配置的净化模块的主要功能为降低空调作用区域内的环境细颗粒物浓度PM2.5,提高空气质量。目前,用户所在的家庭或者工作区域可能有多个空调,例如:一户家庭有多个房间,每个房间都有一个空调,每个空调都可根据各自检测到的PM2.5值,来控制空调中的净化模块的工作,由于每个空调单独进行空气净化,这样整个家庭范围可能会出现PM2.5值较高的位置,由于净化模块启动时间的限制,而无法彻底净化问题,或者,出现有些PM2.5值较低的位置,多个空调中的净化模块都工作而消耗较大能耗的问题。
发明内容
本发明实施例提供了一种空气净化系统及净化控制的方法、装置及计算机存储介质。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面提供了一种空气净化系统,所述系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调;其中,
所述控制器,用于获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调,并得到与所述第二空调对应的平均细颗粒浓度值,以及所述最大细颗粒浓度值与所述平均细颗粒浓度值之间的浓度值差值;确定与所述浓度值差值对应的每个空调的运行模式,并向每个所述空调发送携带对应的运行模式的协同净化指令;
所述空调,用于根据接收到所述协同净化指令中的所述运行模式,控制所述净化模块,或者,所述净化模块和风机的运行。
本发明一实施例中,所述控制器,具体用于当浓度值差值小于第一设定值时,向每个 空调发送携带第一运行模式的协同净化指令;当所述浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调发送携带第二运行模式的协同净化指令;当所述浓度值差值大于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调携带发送第三运行模式的协同净化指令,其中,所述第二设定值大于所述第一设定值;
所述空调,具体用于当接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速;当接收到所述携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制所述净化模块关启,以及所述风机的风速;以及,当接收到所述携带第三运行模式的协同净化指令时,关闭所述净化模块。
本发明一实施例中,所述空调,具体用于接收到所述携带第一运行模式的协同净化指令后,若所述当前细颗粒浓度值为第一次采用获取的当前细颗粒浓度值,根据保存的细颗粒浓度值范围值与风机风速之间的对应关系,确定与所述当前细颗粒浓度值对应的当前风机风速;若所述当前细颗粒浓度值与前一次采样获取的前次细颗粒浓度值不在所述对应关系中的同一范围值时,根据设定规则,将所述对应关系中,与前一次风机风速邻近的风机风速确定为当前风机风速,控制所述风机以所述当前风机风速运行。
本发明一实施例中,所述空调,具体用于接收到所述携带第二运行模式的协同净化指令后,当获取的当前细颗粒浓度值在第一设定浓度范围,且获取的当前湿度值在第一设定湿度范围时,启动所述净化模块,控制所述风机以最小档风速运行;当所述当前细颗粒浓度值在第一设定浓度范围,且所述当前湿度值在第二设定湿度范围时,关闭所述净化模块,控制所述风机以设定风速运行;当所述当前细颗粒浓度值在第二设定浓度范围,且所述当前湿度值在第一设定湿度范围时,启动所述净化模块,控制所述风机以设定风速运行;当所述当前细颗粒浓度值在第二设定浓度范围,且所述当前湿度值在第二设定湿度范围时,启动所述净化模块,控制所述风机以最小档风速运行,其中,所述第一设定浓度范围的下限值与所述第二设定浓度范围的上限值一致,所述第一设定湿度范围的上限值与所述第二设定湿度范围的下限值一致。
本发明一实施例中,所述控制器,还用于向所述空调发送停止协同净化指令;
所述空调,还用于当接收到所述停止协同净化指令时,停止正在运行的协同净化模式。
根据本发明实施例的第二方面提供了一种空气净化系统中净化控制的方法,所述空气净化系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调,所述方法应用于控制器中,包括:
获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调;
得到与所述第二空调对应的平均细颗粒浓度值,以及所述最大细颗粒浓度值与所述平均细颗粒浓度值之间的浓度值差值;
确定与所述浓度值差值对应的每个空调的运行模式,并向每个所述空调发送携带对应的运行模式的协同净化指令,使得所述空调根据接收到所述协同净化指令中的所述运行模式,控制所述净化模块,或者,所述净化模块和风机的运行。
本发明一实施例中,所述向每个所述空调发送携带对应的运行模式的协同净化指令包括:
当浓度值差值小于第一设定值时,向每个空调发送携带第一运行模式的协同净化指令,使得所述空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速;
当所述浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调发送携带第二运行模式的协同净化指令,使得所述第一空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速,以及所述第二空调接收到所述携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制所述净化模块关启,以及所述风机的风速;
当所述浓度值差值大于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调携带发送第三运行模式的协同净化指令,使得所述第一空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速,以及所述第二空调接收到所述携带第三运行模式的协同净化指令时,关闭所述净化模块;
其中,所述第二设定值大于所述第一设定值。
本发明一实施例中,所述方法还包括:
向所述空调发送停止协同净化指令,控制所述空调接收到所述停止协同净化指令时,停止正在运行的协同净化模式。
根据本发明实施例的第三方面提供了一种空气净化系统中净化控制的装置,所述空气净化系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调,所述装置应用于控制器中,包括:
获取单元,用于获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调;
得到单元,用于得到与所述第二空调对应的平均细颗粒浓度值,以及所述最大细颗粒浓度值与所述平均细颗粒浓度值之间的浓度值差值;
确定发送单元,用于确定与所述浓度值差值对应的每个空调的运行模式,并向每个所述空调发送携带对应的运行模式的协同净化指令,使得所述空调根据接收到所述协同净化指令中的所述运行模式,控制所述净化模块,或者,所述净化模块和风机的运行。
本发明一实施例中,所述确定发送单元包括:
第一确定发送子单元,用于当浓度值差值小于第一设定值时,向每个空调发送携带第 一运行模式的协同净化指令,使得所述空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速;
第二确定发送子单元,用于当所述浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调发送携带第二运行模式的协同净化指令,使得所述第一空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速,以及所述第二空调接收到所述携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制所述净化模块关启,以及所述风机的风速;
第三确定发送子单元,用于当所述浓度值差值大于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调携带发送第三运行模式的协同净化指令,使得所述第一空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速,以及所述第二空调接收到所述携带第三运行模式的协同净化指令时,关闭所述净化模块;
其中,所述第二设定值大于所述第一设定值。
本发明一实施例中,所述装置还包括:
停止通知单元,用于向所述空调发送停止协同净化指令,控制所述空调接收到所述停止协同净化指令时,停止正在运行的协同净化模式。
根据本发明实施例的第四方面提供了一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现上述方法的步骤。
本发明实施例提供的技术方案可以包括以下有益效果:
本发明实施例中,在包括控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调的空气净化系统中,控制器可根据每个空调对应的细颗粒物浓度PM.5值,确定出最大细颗粒浓度值对应的第一空调,并根据最大细颗粒浓度值与其他空调的平均细颗粒浓度值之间的浓度值差值,来确定第一空调以及其他空调的运行模式,从而,协同控制每个空调的净化模块,或者,净化模块和风机的运行,这样,确保了PM2.5最大出的净化效果,提高了净化模块总体的利用率,同时,快速降低了空间内PM2.5值,提高了空间内的空气质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种空气净化系统的架构图;
图2是根据一示例性实施例示出的一种PM2.5范围值与风机风速之间的对应关系示意图;
图3是根据一示例性实施例示出的一种PM2.5值与湿度值的区域划分示意图;
图4是是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图;
图5是是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图;
图6-1是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图;
图6-2是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图;
图6-3是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图;
图7是根据一示例性实施例示出的一种空气净化系统中净化控制装置的框图;
图8是根据一示例性实施例示出的一种空气净化系统中净化控制装置的框图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的结构、产品等而言,由于其与实施例公开的部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
空调具有多种工作功能,包括:制冷,制热或净化等等。本发明实施例中,在一个可密闭的空间中,包括有两个或多个空调,每个空调中的净化模块不仅仅单独运行,还可协同进行净化运行,即控制器可根据每个空调对应的细颗粒物浓度PM.5值,确定出最大细颗粒浓度值对应的第一空调,并根据最大细颗粒浓度值与其他空调的平均细颗粒浓度值之间的浓度值差值,来确定第一空调以及其他空调的运行模式,从而,协同控制每个空调的净化模块,或者,净化模块和风机的运行,这样,确保了PM2.5最大出的净化效果,提高了净化模块总体的利用率,同时,快速降低了空间内PM2.5值,提高了空间内的空气质量。
图1是根据一示例性实施例示出的一种空气净化系统的架构图。如图1所示,空气净 化系统包括:控制器100,以及位于同一密闭空间中的两个或多个携带空气净化模块的空调200。
用户所处的家庭,可能有多个房间,每个房间中都配置有一个携带空气净化模块的空调200,每个房间可单独密闭,或者,每个房间的窗户关闭,但是每个房间连通的门开启,这样,所有空调都可处于同一密闭空间中。或者,用户所处的工作区域,也可是一个包括两个或多个携带空气净化模块的空调200的同一密闭空间。并且,本实施例中的,空调可以为“一拖多”空调,即每个房间内都配置一个空调内机,两个或多个空调室内机可共用一个室外机。
控制器100可与每个空调200进行通讯,这样,控制器100,用于获取每个空调200检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调,并得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒浓度值与平均细颗粒浓度值之间的浓度值差值;确定与浓度值差值对应的每个空调的运行模式,并向每个空调200发送携带对应的运行模式的协同净化指令;
空调200,用于根据接收到协同净化指令中的运行模式,控制净化模块,或者,净化模块和风机的运行。
本发明实施例中,每个空调200都可检测到作用区域内的细颗粒浓度PM2.5值,这样,控制器100可获取到每个PM2.5值,然后进行比对,将最大PM2.5值A对应的空调确定为第一空调。除第一空调的其他空调都确定为第二空调。每个第二空调检测到的PM2.5值分别为b1、b2、…bn,其中,n为第二空调的个数,可以为一个、两个或多个。从而,可得到第二空调对应的平均PM2.5值bp=(b1+b2+…+bn)/n。这样,即可得到最大PM2.5值与平均PM2.5值之间的浓度值差值X=A-bp。控制器可根据浓度值差值X,来确定每个空调的运行模式,然后,分别向对应的空调发送携带对应的运行模式的协同净化指令,即启动空调中净化模块的协同运行过程。
可预先保存浓度值范围与运行模式之间的第一对应关系,从而,可根据保存的第一对应关系,确定得到的浓度差值X对应的每个空调的运行模式。
表1是根据一示例性实施例示出的一种浓度值范围与运行模式之间的第一对应关系。
浓度值范围 第一空调运行模式 第二空调运行模式
X<第一设定值 第一运行模式 第一运行模式
第一设定值≤X≤第二设定值 第一运行模式 第二运行模式
第二设定值<X 第一运行模式 第三运行模式
表1
如表1所示,第二设定值大于第一设定值,例如:第一设定值为100,第二设定值为700,或者,第一设定值为80,第二设定值为600,或者,第一设定值为60,第二设定值为650等等,较佳地第一设定为小于或等于100的数值,第二设定值为大于500的数值, 具体就不一一列举了。
若获取的浓度值差值X<第一设定值,那么整个密闭空间内PM2.5值相差不大,因此,每个空调都可采用同一个运行模式进行运行,即采用第一运行模式运行,每个空调都进行净化运行。若第一设定值≤获取的浓度值差值X≤第二设定值,则第一空调所在区域的PM2.5值较大,这样,第一空调继续采用第一运行模式进行运行,而其他区域的空调,即第二空调可采用第二运行模式运行,辅助进行净化。而若第二设定值<获取的浓度值差值X,则第一空调所在区域的PM2.5值非常大,空气污染比较严重,在污染扩散之前,可主要有第一空调进行净化运行,即第一空调的运行模式仍为第一运行模式,而第二空调可采用第三运行模式,即第二空调可停止运行净化模块。
可见,可根据表1,控制器可确定每个空调的运行模式,然后,向每个空调发送携带对应的运行模式的协同净化指令,从而,开启了净化模块的协同运行。
控制器与空调通讯,获取每个空调检测到的细颗粒物浓度值,然后确定第一空调,第二空调的过程可以根据用户指令进行启动,或者,定期进行,例如:每间隔20分钟或30分钟,控制器获取每个空调检测到的细颗粒物浓度值,然后确定第一空调,第二空调,并发送对应的携带工作模式的协同净化指令。
空调接收到协同净化指令后,可根据协同净化指令中携带的运行模式,控制净化模块,或者,净化模块和风机的运行。
其中,空调接收到携带第一运行模式的协同净化指令时,净化模块可一直开启,即启动净化模块运行,并定期采样获取当前细颗粒浓度值,然后,根据获取的当前细颗粒浓度值,控制风机的风速。空调接收到第二运行模式的协同净化指令时,则可根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速。空调接收到第三运行模式的协同净化指令时,则可关闭净化模块。
因此,本发明实施例中,控制器100,具体用于当浓度值差值小于第一设定值时,向每个空调200发送携带第一运行模式的协同净化指令;当浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向第一空调发送携带第一运行模式的协同净化指令,向每个第二空调发送携带第二运行模式的协同净化指令;当浓度值差值大于第二设定值时,向第一空调发送携带第一运行模式的协同净化指令,向每个第二空调携带发送第三运行模式的协同净化指令,其中,第二设定值大于第一设定值。
空调200,具体用于当接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速;当接收到携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速;以及,当接收到携带第三运行模式的协同净化指令时,关闭净化模块。
空调在第一运行模式运行时,净化模块一直开启运行,而风机的风速可根据定期采样获取的当前细颗粒浓度值进行控制。而根据定期采样获取的当前细颗粒浓度值,控制风机的风速的过程可包括多种,例如:预先保存一个PM2.5值与风速的对应关系,然后根据该 对应关系,直接确定出当前细颗粒浓度值对应的当前风速,然后根据当前风速控制风机。或者,当前细颗粒浓度值为第一次采用获取的当前细颗粒浓度值,根据保存的细颗粒浓度值范围值与风机风速之间的对应关系,确定与当前细颗粒浓度值对应的当前风机风速;若当前细颗粒浓度值与前一次采样获取的前次细颗粒浓度值不在对应关系中的同一范围值时,根据设定规则,将对应关系中,与前一次风机风速邻近的风机风速确定为当前风机风速,控制风机以当前风机风速运行。这样,风机的调整比较平缓,不会忽然很高,忽然很低,进一步保护了风机。
这样,空气净化系统中,空调200,具体用于接收到携带第一运行模式的协同净化指令后,若当前细颗粒浓度值为第一次采用获取的当前细颗粒浓度值,根据保存的细颗粒浓度值范围值与风机风速之间的对应关系,确定与当前细颗粒浓度值对应的当前风机风速;若当前细颗粒浓度值与前一次采样获取的前次细颗粒浓度值不在对应关系中的同一范围值时,根据设定规则,将对应关系中,与前一次风机风速邻近的风机风速确定为当前风机风速,控制风机以当前风机风速运行。
图2是根据一示例性实施例示出的一种PM2.5范围值与风机风速之间的对应关系示意图。若当前细颗粒浓度值为第一次采用获取的当前细颗粒浓度值,即初始PM2.5值,若初始PM 2.5值为800,大于700,那么根据图2所示的对应关系,可确定当前风机风速为空调强力风这档风速。到的设定的采样时间,例如2分钟、3分钟、4分钟或5分钟,这样,获取的当前细颗粒浓度值不为初始PM2.5值,此时,若PM 2.5值为750,根据图2所示的对应关系,仍然属于大于700这一范围值,则保持当前风机风速为空调强力风这档风速,若PM 2.5值为450,与前一次采样获取的前次细颗粒浓度值800不在图2所示应关系中的同一范围值时,此时,可根据预设的两边向中心靠拢规则,将与前一次风机风速即强力风邻近的高风确定为当前风机风速,从而,可控制风机以高风这挡风速运行。若当前细颗粒浓度值为第一次采用获取的当前细颗粒浓度值,即初始PM2.5值,若初始PM 2.5值为50,小于100,那么根据图2所示的对应关系,可确定当前风机风速为空调静音这档风速。到的设定的采样时间,重新获取的当前细颗粒浓度值不为初始PM2.5值,此时,若PM 2.5值为80,根据图2所示的对应关系,仍然属于小于100这一范围值,则保持当前风机风速为空调静音这档风速,若PM 2.5值为250,与前一次采样获取的前次细颗粒浓度值50不在图2所示应关系中的同一范围值时,此时,可根据预设的中心向两边扩散规则,将与前一次风机风速即静音邻近的低风确定为当前风机风速,从而,可控制风机以低风这挡风速运行。当然,前一次PM2.5值在100-700之间,当前PM2.5值对应的当前风机风速可根据上述规则进行确定,也可直接根据图2所示的对应关系,直接确定出与当前PM2.5值对应的当前风机风速,具体就不一一列举了。
本发明实施例中,空调接收到携带第二运行模式的协同净化指令后,可根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速。交集地可包括:当获取的当前细颗粒浓度值在第一设定浓度范围,且获取的当前湿度值在第一设定湿度范围 时,启动净化模块,控制风机以最小档风速运行;当当前细颗粒浓度值在第一设定浓度范围,且当前湿度值在第二设定湿度范围时,关闭净化模块,控制风机以设定风速运行;当当前细颗粒浓度值在第二设定浓度范围,且当前湿度值在第一设定湿度范围时,启动净化模块,控制风机以设定风速运行;当当前细颗粒浓度值在第二设定浓度范围,且当前湿度值在第二设定湿度范围时,启动净化模块,控制风机以最小档风速运行,其中,第一设定浓度范围的下限值与第二设定浓度范围的上限值一致,第一设定湿度范围的上限值与第二设定湿度范围的下限值一致。
即空气净化系统中的空调200,具体用于接收到携带第二运行模式的协同净化指令后,当获取的当前细颗粒浓度值在第一设定浓度范围,且获取的当前湿度值在第一设定湿度范围时,启动净化模块,控制风机以最小档风速运行;当当前细颗粒浓度值在第一设定浓度范围,且当前湿度值在第二设定湿度范围时,关闭净化模块,控制风机以设定风速运行;当当前细颗粒浓度值在第二设定浓度范围,且当前湿度值在第一设定湿度范围时,启动净化模块,控制风机以设定风速运行;当当前细颗粒浓度值在第二设定浓度范围,且当前湿度值在第二设定湿度范围时,启动净化模块,控制风机以最小档风速运行,其中,第一设定浓度范围的下限值与第二设定浓度范围的上限值一致,第一设定湿度范围的上限值与第二设定湿度范围的下限值一致。
图3是根据一示例性实施例示出的一种PM2.5值与湿度值的区域划分示意图。如图3所示,本实施例中,PM2.5值对应的第一设定浓度范围为【500,700】,第二设定东都范围为【100,500】;而湿度值对应的第一设定湿度范围为【30,50】,而第二设定湿度范围为【50,70】。这样,第一设定浓度范围与第一设定湿度范围组成了区域一,而第一设定浓度范围与第二设定湿度范围组成了区域二,第二设定浓度范围与第一设定湿度范围组成了区域三,而第二设定浓度范围与第二设定湿度范围组成了区域四。若获取的当前PM2.5值为600μg/m3,当前湿度值为40RH%时,可确定与图3中的区域一对应,从而,启动净化模块,控制风机以最小档风速运行。若获取的当前PM2.5值为600μg/m3,当前湿度值为60RH%时,可确定与图3中的区域二对应,从而,关闭净化模块,控制风机以设定风速运行,例如,中风档风速运行。若获取的当前PM2.5值为200μg/m3,当前湿度值为35RH%时,可确定与图3中的区域三对应,从而,启动净化模块,控制风机以设定风速运行;而若获取的当前PM2.5值为200μg/m3,当前湿度值为55RH%时,可确定与图3中的区域四对应,从而,启动净化模块,控制风机以最小档风速运行。
当然,本发明实施例中的PM2.5值和湿度值的区域划分不限于此,还可为其他的设定范围值,就不一一列举了。
本发明实施例中,空调接收到携带第三运行模式的协同净化指令时,可直接关闭净化模块,即该空调不需要运行净化模块了。
可见,本身实施例中,在包括控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调的空气净化系统中,控制器可根据每个空调对应的细颗粒物浓度PM.5值, 确定出最大细颗粒浓度值对应的第一空调,并根据最大细颗粒浓度值与其他空调的平均细颗粒浓度值之间的浓度值差值,来确定第一空调以及其他空调的运行模式,从而,协同控制每个空调的净化模块,或者,净化模块和风机的运行,这样,确保了PM2.5最大出的净化效果,提高了净化模块总体的利用率,同时,快速降低了空间内PM2.5值,提高了空间内的空气质量。
控制器可控制两个或多个空调一起进行协同净化的运行,当然,控制也可控制空调终止协同净化运行的模式,因此,在空气净化系统中,控制器100,还用于向空调200发送停止协同净化指令.而空调200,还用于当接收到停止协同净化指令时,停止正在运行的协同净化模式。
在空气净化系统中,控制器控制空调的协同净化过程,因此,空气净化系统中净化控制的方法可应用于控制器中。
图4是是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图。如图4所示,空气净化系统中净化控制的过程应用于控制器中,可包括:
步骤401:获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调。
控制器可与每个空调进行通讯,获取每个空调检测到的细颗粒物浓度值,然后,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调。
步骤402:得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒浓度值与平均细颗粒浓度值之间的浓度值差值。
每个第二空调检测到的PM2.5值分别为b1、b2、…bn,其中,n为第二空调的个数,可以为一个、两个或多个。从而,可得到第二空调对应的平均PM2.5值bp=(b1+b2+…+bn)/n。这样,即可得到最大PM2.5值与平均PM2.5值之间的浓度值差值X=A-bp。
步骤403:确定与浓度值差值对应的每个空调的运行模式,并向每个空调发送携带对应的运行模式的协同净化指令,使得空调根据接收到协同净化指令中的运行模式,控制净化模块,或者,净化模块和风机的运行。
可预先保存浓度值范围与运行模式之间的第一对应关系,从而,可根据保存的第一对应关系,确定得到的浓度差值X对应的每个空调的运行模式,然后,向每个空调发送携带对应的运行模式的协同净化指令。
较佳地,向每个空调发送携带对应的运行模式的协同净化指令包括:当浓度值差值小于第一设定值时,向每个空调发送携带第一运行模式的协同净化指令,使得空调接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速;当浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向第一空调发送携带第一运行模式的协同净化指令,向每个第二空调发送携带第二运行模式的协同净化指令,使得第一空调接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速,以及第二 空调接收到携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速;当浓度值差值大于第二设定值时,向第一空调发送携带第一运行模式的协同净化指令,向每个第二空调携带发送第三运行模式的协同净化指令,使得第一空调接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速,以及第二空调接收到携带第三运行模式的协同净化指令时,关闭净化模块;其中,第二设定值大于第一设定值。
如表1所示,若第一设定值≤获取的浓度值差值X≤第二设定值,则第一空调所在区域的PM2.5值较大,这样,第一空调继续采用第一运行模式进行运行,而其他区域的空调,即第二空调可采用第二运行模式运行,辅助进行净化,从而,可向第一空调发送携带第一运行模式的协同净化指令,而向第二空调发送携带第二运行模式的协同净化指令。这样,第一空调接收到携带第一运行模式的协同净化指令后,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速。而每个第二空调接收携带第二运行模式的协同净化指令后,根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速。
当然,本发明一实施例中,该方法还包括:向空调发送停止协同净化指令,控制空调接收到停止协同净化指令时,停止正在运行的协同净化模式。即控制器可控制空调终止协同净化的运行。
可见,本实施例中,控制器可根据每个空调对应的细颗粒物浓度PM.5值,确定出最大细颗粒浓度值对应的第一空调,并根据最大细颗粒浓度值与其他空调的平均细颗粒浓度值之间的浓度值差值,来确定第一空调以及其他空调的运行模式,从而,协同控制每个空调的净化模块,或者,净化模块和风机的运行,这样,确保了PM2.5最大出的净化效果,提高了净化模块总体的利用率,同时,快速降低了空间内PM2.5值,提高了空间内的空气质量。
在空气净化系统中,控制器控制空调的协同净化过程,因此,空气净化系统中净化控制的方法可应用于空调中。
图5是是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图。如图5所示,空气净化系统中净化控制的过程应用于空调中,可包括:
步骤501:接收控制器发送的协同净化指令。
空气净化系统中的控制器可与每个空调进行通讯,这样,控制器获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调,并得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒浓度值与平均细颗粒浓度值之间的浓度值差值;确定与浓度值差值对应的每个空调的运行模式,根据运行模式生成对应的携带运行模式的协同净化指令并发送,因此,协同净化指令是控制器获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调,并得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒 浓度值与平均细颗粒浓度值之间的浓度值差值;确定与浓度值差值对应的每个空调的运行模式,根据运行模式生成并发送的。
步骤502:根据接收到协同净化指令中的运行模式,控制净化模块,或者,净化模块和风机的运行。
较佳地,控制净化模块,或者,净化模块和风机的运行包括:当接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速;当接收到携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速;当接收到携带第三运行模式的协同净化指令时,关闭净化模块;其中,携带第一运行模式的协同净化指令是控制器发送给第一空调的,以及当浓度值差值小于第一设定值时,发送给第二空调的;携带第二运行模式的协同净化指令是控制器当浓度值差值大于或等于第一设定值且小于或等于第二设定值时,发送给第二空调的;携带第三运行模式的协同净化指令是控制器当浓度值差值大于第二设定值时,发送给第二空调的,其中,第二设定值大于第一设定值。
如表1所示,若第一设定值≤获取的浓度值差值X≤第二设定值,则第一空调所在区域的PM2.5值较大,这样,第一空调继续采用第一运行模式进行运行,而其他区域的空调,即第二空调可采用第二运行模式运行,辅助进行净化,从而,控制可向第一空调发送携带第一运行模式的协同净化指令,而向第二空调发送携带第二运行模式的协同净化指令。这样,第一空调接收到携带第一运行模式的协同净化指令后,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速。而每个第二空调接收携带第二运行模式的协同净化指令后,根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速。
而空调根据定期采样获取的当前细颗粒浓度值,控制风机的风速的过程可以有多种,例如:根据保存的细颗粒浓度值范围值与风机风速之间的对应关系,确定与当前细颗粒浓度值对应的当前风机风速。或是,根据设定规则,确定与当前细颗粒浓度值对应的当前风机风速。较佳地,可包括:若当前细颗粒浓度值为第一次采用获取的当前细颗粒浓度值,根据保存的细颗粒浓度值范围值与风机风速之间的对应关系,确定与当前细颗粒浓度值对应的当前风机风速;若当前细颗粒浓度值与前一次采样获取的前次细颗粒浓度值不在对应关系中的同一范围值时,根据设定规则,将对应关系中,与前一次风机风速邻近的风机风速确定为当前风机风速,控制风机以当前风机风速运行。
较佳地,根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速包括:当获取的当前细颗粒浓度值在第一设定浓度范围,且获取的当前湿度值在第一设定湿度范围时,启动净化模块,控制风机以最小档风速运行;当当前细颗粒浓度值在第一设定浓度范围,且当前湿度值在第二设定湿度范围时,关闭净化模块,控制风机以设定风速运行;当当前细颗粒浓度值在第二设定浓度范围,且当前湿度值在第一设定湿度范围时,启动净化模块,控制风机以设定风速运行;当当前细颗粒浓度值在第二设定浓度范 围,且当前湿度值在第二设定湿度范围时,启动净化模块,控制风机以最小档风速运行;其中,第一设定浓度范围的下限值与第二设定浓度范围的上限值一致,第一设定湿度范围的上限值与第二设定湿度范围的下限值一致。
同样,控制器控制空调的协同净化运行,也可终止空调的协同净化运行,因此,方法还包括:当接收到控制器发送的停止协同净化指令时,停止正在运行的协同净化模式。当然,若每个空调下协同净化运行的过程中,接收都手动的其他控制指令,也可停止协同净化运行。
下面将操作流程集合到具体实施例中,举例说明本公开实施例提供的控制方法。
本实施例中,空气净化系统可如图1所示,包括控制器,两个或多个空调。控制器中保存的浓度值范围与运行模式之间的第一对应关系可如表1所示,其中,第一设定值可为100,第二设定值可为700。这样,空调中保存的PM2.5范围值与风机风速之间的对应关系可如图2所示,而保存的PM2.5值与湿度值的区域划分示意图可如图3所示。
图6-1是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图。图6-2是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图。图6-3是根据一示例性实施例示出的一种空气净化系统中净化控制方法的流程图。如图6-1、图6-2以及6-3所示,空气净化系统中净化控制的过程包括:
步骤601:控制器获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调。
步骤602:控制器得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒浓度值与平均细颗粒浓度值之间的浓度值差值。
步骤603:控制器确定与浓度值差值对应的每个空调的运行模式,并向每个空调发送携带对应的运行模式的协同净化指令。
步骤604:空调判断接收到的协同净化指令是否携带第一运行模式?若是,执行步骤605,否则,执行步骤613。
步骤605:启动净化模块运行。
步骤606:判断定期采样的周期4分钟是否到达?若是,执行步骤607,否则,返回步骤606。
步骤607:获取当前采用次数,以及对应的当前细颗粒浓度值,并保存。
步骤608:判断当前采用次数是否为1?若是,执行步骤609,否则,步骤610。
步骤609:根据保存的细颗粒浓度值范围值与风机风速之间的对应关系,确定与当前细颗粒浓度值对应的当前风机风速。返回步骤606。
保存的对应关系可如图2所示,若当前PM2.5值为450μg/m3,则对应当前风机风速为中风档风速。
步骤610:判断当前细颗粒浓度值与前一次采样获取的前次细颗粒浓度值是否在对应关系中的同一范围值?若是,执行步骤611,否则,执行步骤612。
步骤611:将前一次风机风速确定为当前风机风速,控制风机以当前风机风速运行。返回步骤606。
步骤612:根据设定规则,将对应关系中,与当前风机风速邻近的风机风速确定为第一风机风速,控制风机以第一风机风速运行。返回步骤606。
保存的对应关系可如图2所示,若前一次前PM2.5值为800,当前PM 2.5值为450,与前一次采样获取的前次细颗粒浓度值800不在图2所示应关系中的同一范围值时,此时,可根据预设的两边向中心靠拢规则,将与前一次风机风速即强力风邻近的高风确定为当前风机风速,从而,可控制风机以高风这挡风速运行。若第一次采用获取的当前细颗粒浓度值,即初始PM2.5值,若初始PM 2.5值为50,小于100,那么根据图2所示的对应关系,可确定当前风机风速为空调静音这档风速。到的设定的采样时间,重新获取的当前细颗粒浓度值为250,与前一次采样获取的前次细颗粒浓度值50不在图2所示应关系中的同一范围值时,此时,可根据预设的中心向两边扩散规则,将与前一次风机风速即静音邻近的低风确定为当前风机风速,从而,可控制风机以低风这挡风速运行。
步骤613:空调判断接收到的协同净化指令是否携带第二运行模式?若是,执行步骤614,否则,执行步骤616。
步骤614:判断定期采样的周期4分钟是否到达?若是,执行步骤615,否则,返回步骤614。
步骤615:获取当前细颗粒浓度值和当前湿度值,并根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速,返回步骤614。
可根据图3所示的PM2.5值与湿度值的区域划分示意图,若当前PM2.5值在【500,700】之中,且当前湿度值在【30,50】时,启动净化模块,控制风机以最小档风速运行;若当前PM2.5值在【500,700】之中,且当前湿度值在【50,70】时,关闭净化模块,控制风机以设定风速运行。当前PM2.5值在【100,500】之中,且当前湿度值在【30,50】时,启动净化模块,控制风机以设定风速运行;若当前PM2.5值在【100,500】之中,且当前湿度值在【50,70】时,启动净化模块,控制风机以最小档风速运行。
步骤616:空调判断接收到的协同净化指令是否携带第三运行模式?若是,执行步骤617,否则,流程结束。
步骤617:空调关闭净化模块。
可见,本身实施例中,在包括控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调的空气净化系统中,控制器可根据每个空调对应的细颗粒物浓度PM.5值,确定出最大细颗粒浓度值对应的第一空调,并根据最大细颗粒浓度值与其他空调的平均细颗粒浓度值之间的浓度值差值,来确定第一空调以及其他空调的运行模式,从而,协同控制每个空调的净化模块,或者,净化模块和风机的运行,这样,确保了PM2.5最大出的净化效果,提高了净化模块总体的利用率,同时,快速降低了空间内PM2.5值,提高了空间内的空气质量。
根据上述空气净化系统中净化控制的过程,可构建一种空气净化系统中净化控制的装置。
图7是根据一示例性实施例示出的一种空气净化系统中净化控制装置的框图。空气净化系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调,装置应用于控制器中,如图7所示,该装置可包括:获取单元710、得到单元720以及确定发送单元730。
获取单元710,用于获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调。
得到单元720,用于得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒浓度值与平均细颗粒浓度值之间的浓度值差值。
确定发送单元730,用于确定与浓度值差值对应的每个空调的运行模式,并向每个空调发送携带对应的运行模式的协同净化指令,使得空调根据接收到协同净化指令中的运行模式,控制净化模块,或者,净化模块和风机的运行。
本发明一实施例中,确定发送单元730包括:
第一确定发送子单元,用于当浓度值差值小于第一设定值时,向每个空调发送携带第一运行模式的协同净化指令,使得空调接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速;
第二确定发送子单元,用于当浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向第一空调发送携带第一运行模式的协同净化指令,向每个第二空调发送携带第二运行模式的协同净化指令,使得第一空调接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速,以及第二空调接收到携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速;
第三确定发送子单元,用于当浓度值差值大于第二设定值时,向第一空调发送携带第一运行模式的协同净化指令,向每个第二空调携带发送第三运行模式的协同净化指令,使得第一空调接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速,以及第二空调接收到携带第三运行模式的协同净化指令时,关闭净化模块;
其中,第二设定值大于第一设定值。
本发明一实施例中,装置还包括:
停止通知单元,用于向空调发送停止协同净化指令,控制空调接收到停止协同净化指令时,停止正在运行的协同净化模式。
图8是根据一示例性实施例示出的一种空气净化系统中净化控制装置的框图。空气净化系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调,装置应用于空调中,如图8所示,该装置可包括:接收单元810和净化控制单元820。
接收单元810,用于接收控制器发送的协同净化指令,其中,协同净化指令是控制器获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调,并得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒浓度值与平均细颗粒浓度值之间的浓度值差值;确定与浓度值差值对应的每个空调的运行模式,根据运行模式生成并发送的;
净化控制单元820,用于根据接收到协同净化指令中的运行模式,控制净化模块,或者,净化模块和风机的运行。
本发明一实施例中,净化控制单元820包括:
第一净化控制子单元,用于当接收到携带第一运行模式的协同净化指令时,启动净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制风机的风速;
第二净化控制子单元,用于当接收到携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制净化模块关启,以及风机的风速;
第三净化控制子单元,用于当接收到携带第三运行模式的协同净化指令时,关闭净化模块;
其中,携带第一运行模式的协同净化指令是控制器发送给第一空调的,以及当浓度值差值小于第一设定值时,发送给第二空调的;携带第二运行模式的协同净化指令是控制器当浓度值差值大于或等于第一设定值且小于或等于第二设定值时,发送给第二空调的;携带第三运行模式的协同净化指令是控制器当浓度值差值大于第二设定值时,发送给第二空调的,其中,第二设定值大于第一设定值。
本发明一实施例中,第一净化控制子单元,具体用于若当前细颗粒浓度值为第一次采用获取的当前细颗粒浓度值,根据保存的细颗粒浓度值范围值与风机风速之间的对应关系,确定与当前细颗粒浓度值对应的当前风机风速;以及,若当前细颗粒浓度值与前一次采样获取的前次细颗粒浓度值不在对应关系中的同一范围值时,根据设定规则,将对应关系中,与前一次风机风速邻近的风机风速确定为当前风机风速,控制风机以当前风机风速运行。
本发明一实施例中,第二净化控制子单元,具体用于当获取的当前细颗粒浓度值在第一设定浓度范围,且获取的当前湿度值在第一设定湿度范围时,启动净化模块,控制风机以最小档风速运行;当当前细颗粒浓度值在第一设定浓度范围,且当前湿度值在第二设定湿度范围时,关闭净化模块,控制风机以设定风速运行;当当前细颗粒浓度值在第二设定浓度范围,且当前湿度值在第一设定湿度范围时,启动净化模块,控制风机以设定风速运行;当当前细颗粒浓度值在第二设定浓度范围,且当前湿度值在第二设定湿度范围时,启动净化模块,控制风机以最小档风速运行;其中,第一设定浓度范围的下限值与第二设定浓度范围的上限值一致,第一设定湿度范围的上限值与第二设定湿度范围的下限值一致。
本发明一实施例中,装置还包括:
停止控制单元,用于当接收到控制器发送的停止协同净化指令时,停止正在运行的协 同净化模式。
本发明一实施例中,提供了一种空气净化系统中净化控制的装置,空气净化系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调,装置用于空调器,装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调;
得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒浓度值与平均细颗粒浓度值之间的浓度值差值;
确定与浓度值差值对应的每个空调的运行模式,并向每个空调发送携带对应的运行模式的协同净化指令,使得空调根据接收到协同净化指令中的运行模式,控制净化模块,或者,净化模块和风机的运行。
本发明一实施例中,提供了空气净化系统中净化控制的装置,空气净化系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调,装置用于空调,装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
接收控制器发送的协同净化指令,其中,协同净化指令是控制器获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调,并得到与第二空调对应的平均细颗粒浓度值,以及最大细颗粒浓度值与平均细颗粒浓度值之间的浓度值差值;确定与浓度值差值对应的每个空调的运行模式,根据运行模式生成并发送的;
根据接收到协同净化指令中的运行模式,控制净化模块,或者,净化模块和风机的运行。
本发明实施例提供一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现上述方法的步骤。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图 和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种空气净化系统,其特征在于,所述系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调;其中,
    所述控制器,用于获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调,并得到与所述第二空调对应的平均细颗粒浓度值,以及所述最大细颗粒浓度值与所述平均细颗粒浓度值之间的浓度值差值;确定与所述浓度值差值对应的每个空调的运行模式,并向每个所述空调发送携带对应的运行模式的协同净化指令;
    所述空调,用于根据接收到所述协同净化指令中的所述运行模式,控制所述净化模块,或者,所述净化模块和风机的运行。
  2. 如权利要求1所述的系统,其特征在于,
    所述控制器,具体用于当浓度值差值小于第一设定值时,向每个空调发送携带第一运行模式的协同净化指令;当所述浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调发送携带第二运行模式的协同净化指令;当所述浓度值差值大于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调携带发送第三运行模式的协同净化指令,其中,所述第二设定值大于所述第一设定值;
    所述空调,具体用于当接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速;当接收到所述携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制所述净化模块关启,以及所述风机的风速;以及,当接收到所述携带第三运行模式的协同净化指令时,关闭所述净化模块。
  3. 如权利要求2所述的系统,其特征在于,
    所述空调,具体用于接收到所述携带第一运行模式的协同净化指令后,若所述当前细颗粒浓度值为第一次采用获取的当前细颗粒浓度值,根据保存的细颗粒浓度值范围值与风机风速之间的对应关系,确定与所述当前细颗粒浓度值对应的当前风机风速;若所述当前细颗粒浓度值与前一次采样获取的前次细颗粒浓度值不在所述对应关系中的同一范围值时,根据设定规则,将所述对应关系中,与前一次风机风速邻近的风机风速确定为当前风机风速,控制所述风机以所述当前风机风速运行。
  4. 如权利要求2所述的系统,其特征在于,
    所述空调,具体用于接收到所述携带第二运行模式的协同净化指令后,当获取的当前细颗粒浓度值在第一设定浓度范围,且获取的当前湿度值在第一设定湿度范围时,启动所述净化模块,控制所述风机以最小档风速运行;当所述当前细颗粒浓度值在第一设定浓度范围,且所述当前湿度值在第二设定湿度范围时,关闭所述净化模块,控制所述风机以设定风速运行;当所述当前细颗粒浓度值在第二设定浓度范围,且所述当前湿度值在第一设 定湿度范围时,启动所述净化模块,控制所述风机以设定风速运行;当所述当前细颗粒浓度值在第二设定浓度范围,且所述当前湿度值在第二设定湿度范围时,启动所述净化模块,控制所述风机以最小档风速运行,其中,所述第一设定浓度范围的下限值与所述第二设定浓度范围的上限值一致,所述第一设定湿度范围的上限值与所述第二设定湿度范围的下限值一致。
  5. 如权利要求1或2所述的系统,其特征在于,
    所述控制器,还用于向所述空调发送停止协同净化指令;
    所述空调,还用于当接收到所述停止协同净化指令时,停止正在运行的协同净化模式。
  6. 一种空气净化系统中净化控制的方法,其特征在于,所述空气净化系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调,所述方法应用于控制器中,包括:
    获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调;
    得到与所述第二空调对应的平均细颗粒浓度值,以及所述最大细颗粒浓度值与所述平均细颗粒浓度值之间的浓度值差值;
    确定与所述浓度值差值对应的每个空调的运行模式,并向每个所述空调发送携带对应的运行模式的协同净化指令,使得所述空调根据接收到所述协同净化指令中的所述运行模式,控制所述净化模块,或者,所述净化模块和风机的运行。
  7. 如权利要求6所述的方法,其特征在于,所述向每个所述空调发送携带对应的运行模式的协同净化指令包括:
    当浓度值差值小于第一设定值时,向每个空调发送携带第一运行模式的协同净化指令,使得所述空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速;
    当所述浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调发送携带第二运行模式的协同净化指令,使得所述第一空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速,以及所述第二空调接收到所述携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制所述净化模块关启,以及所述风机的风速;
    当所述浓度值差值大于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调携带发送第三运行模式的协同净化指令,使得所述第一空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速,以及所述第二空调接收到所述携带第三运行模式的协同净化指令时,关闭所述净化模块;
    其中,所述第二设定值大于所述第一设定值。
  8. 一种空气净化系统中净化控制的装置,其特征在于,所述空气净化系统包括:控制器,以及位于同一密闭空间中的至少两个携带空气净化模块的空调,所述装置应用于控制器中,包括:
    获取单元,用于获取每个空调检测到的细颗粒物浓度值,将最大细颗粒浓度值对应的空调确定为第一空调,将其他空调确定为第二空调;
    得到单元,用于得到与所述第二空调对应的平均细颗粒浓度值,以及所述最大细颗粒浓度值与所述平均细颗粒浓度值之间的浓度值差值;
    确定发送单元,用于确定与所述浓度值差值对应的每个空调的运行模式,并向每个所述空调发送携带对应的运行模式的协同净化指令,使得所述空调根据接收到所述协同净化指令中的所述运行模式,控制所述净化模块,或者,所述净化模块和风机的运行。
  9. 如权利要求8所述的装置,其特征在于,所述确定发送单元包括:
    第一确定发送子单元,用于当浓度值差值小于第一设定值时,向每个空调发送携带第一运行模式的协同净化指令,使得所述空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速;
    第二确定发送子单元,用于当所述浓度值差值大于或等于第一设定值且小于或等于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调发送携带第二运行模式的协同净化指令,使得所述第一空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速,以及所述第二空调接收到所述携带第二运行模式的协同净化指令时,根据获取的当前细颗粒浓度值和当前湿度值,控制所述净化模块关启,以及所述风机的风速;
    第三确定发送子单元,用于当所述浓度值差值大于第二设定值时,向所述第一空调发送携带第一运行模式的协同净化指令,向每个所述第二空调携带发送第三运行模式的协同净化指令,使得所述第一空调接收到所述携带第一运行模式的协同净化指令时,启动所述净化模块运行,并根据定期采样获取的当前细颗粒浓度值,控制所述风机的风速,以及所述第二空调接收到所述携带第三运行模式的协同净化指令时,关闭所述净化模块;
    其中,所述第二设定值大于所述第一设定值。
  10. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求6-7所述方法的步骤。
PCT/CN2020/071647 2018-11-29 2020-01-13 空气净化系统及净化控制的方法、装置及计算机存储介质 WO2020108667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811444512.1A CN109855241B (zh) 2018-11-29 2018-11-29 空气净化系统及净化控制的方法、装置及计算机存储介质
CN201811444512.1 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020108667A1 true WO2020108667A1 (zh) 2020-06-04

Family

ID=66890359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071647 WO2020108667A1 (zh) 2018-11-29 2020-01-13 空气净化系统及净化控制的方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN109855241B (zh)
WO (1) WO2020108667A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021116570A1 (de) 2021-06-28 2022-12-29 Viessmann Climate Solutions Se Verfahren und system zum steuern einer luftkenngrösse mittels einer vielzahl von lüftungseinheiten

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855241B (zh) * 2018-11-29 2020-11-03 青岛海尔空调器有限总公司 空气净化系统及净化控制的方法、装置及计算机存储介质
CN109855242B (zh) * 2018-11-29 2020-11-03 青岛海尔空调器有限总公司 空气净化系统中净化控制的方法、装置及计算机存储介质
CN111795478B (zh) * 2020-07-09 2022-02-01 苏州舒房住宅科技有限公司 一种空气净化器及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214915A (ja) * 2013-04-23 2014-11-17 清水建設株式会社 清浄化空調システム
CN104235957A (zh) * 2014-10-14 2014-12-24 北京恒泰实达科技股份有限公司 一种室内空气净化系统及方法
CN105352115A (zh) * 2015-10-28 2016-02-24 北京艾浦乐科技有限公司 智能空气净化系统及其控制方法
CN105910181A (zh) * 2016-04-26 2016-08-31 成都秉德科技有限公司 组合式空气净化器
CN106352494A (zh) * 2016-10-10 2017-01-25 青岛海信日立空调系统有限公司 一种联动环境调节系统及其控制方法
CN107575990A (zh) * 2017-08-15 2018-01-12 李佩东 一种基于云平台的空气处理设备控制系统及其控制方法
CN109855242A (zh) * 2018-11-29 2019-06-07 青岛海尔空调器有限总公司 空气净化系统中净化控制的方法、装置及计算机存储介质
CN109855241A (zh) * 2018-11-29 2019-06-07 青岛海尔空调器有限总公司 空气净化系统及净化控制的方法、装置及计算机存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299787B (zh) * 2014-11-27 2019-03-05 上海市建筑科学研究院(集团)有限公司 一种高过滤效率低运行能耗总风段处理的组合式空调系统
KR101791056B1 (ko) * 2015-07-21 2017-10-27 삼성전자주식회사 공기조화기 및 그 제어 방법
CN107883436A (zh) * 2016-09-29 2018-04-06 殷晓冬 可调洁净度的弱湍流空气净化系统
CN107328022A (zh) * 2017-07-05 2017-11-07 Tcl德龙家用电器(中山)有限公司 移动空调器的控制方法及移动空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214915A (ja) * 2013-04-23 2014-11-17 清水建設株式会社 清浄化空調システム
CN104235957A (zh) * 2014-10-14 2014-12-24 北京恒泰实达科技股份有限公司 一种室内空气净化系统及方法
CN105352115A (zh) * 2015-10-28 2016-02-24 北京艾浦乐科技有限公司 智能空气净化系统及其控制方法
CN105910181A (zh) * 2016-04-26 2016-08-31 成都秉德科技有限公司 组合式空气净化器
CN106352494A (zh) * 2016-10-10 2017-01-25 青岛海信日立空调系统有限公司 一种联动环境调节系统及其控制方法
CN107575990A (zh) * 2017-08-15 2018-01-12 李佩东 一种基于云平台的空气处理设备控制系统及其控制方法
CN109855242A (zh) * 2018-11-29 2019-06-07 青岛海尔空调器有限总公司 空气净化系统中净化控制的方法、装置及计算机存储介质
CN109855241A (zh) * 2018-11-29 2019-06-07 青岛海尔空调器有限总公司 空气净化系统及净化控制的方法、装置及计算机存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021116570A1 (de) 2021-06-28 2022-12-29 Viessmann Climate Solutions Se Verfahren und system zum steuern einer luftkenngrösse mittels einer vielzahl von lüftungseinheiten
EP4113026A1 (de) 2021-06-28 2023-01-04 Viessmann Climate Solutions SE Verfahren und system zum steuern einer luftkenngrösse mittels einer vielzahl von lüftungseinheiten

Also Published As

Publication number Publication date
CN109855241A (zh) 2019-06-07
CN109855241B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2020108667A1 (zh) 空气净化系统及净化控制的方法、装置及计算机存储介质
WO2020108666A1 (zh) 空气净化系统中净化控制的方法、装置及计算机存储介质
CN100385178C (zh) 空调器的睡眠运行模式
WO2020114192A1 (zh) 空调自清洁控制的方法、装置及计算机存储介质
CN105928136B (zh) 空调节能控制方法、控制装置及空调
WO2020134439A1 (zh) 空气调节装置的控制方法、装置和空气调节装置
CN113091265B (zh) 用于空气调节设备控制的方法和空气调节设备
WO2019214293A1 (zh) 具有空气净化功能的空调的控制方法及装置
WO2021227801A1 (zh) 空调器的控制方法、空调器及可读存储介质
CN107166690B (zh) 新风机的节能控制系统及运行方法
CN103322629A (zh) 家用空气净化处理及热能回收装置和方法
WO2021073400A1 (zh) 一种空调控制方法、装置、设备和存储介质
CN113091240A (zh) 空调控制方法、装置、空调、存储介质及程序产品
CN111795470B (zh) 一种杀菌控制方法及杀菌设备、存储介质、处理器
CN202868922U (zh) 一种智能精控小型中央空调系统
CN204285666U (zh) 一种用于洁净室的新风空调系统
CN111720986A (zh) 一种温度控制方法、装置、电子设备及存储介质
CN109084425B (zh) 空调器及其的控制方法和计算机可读存储介质
CN111351174B (zh) 一种空调器的控制方法、装置、空调器及存储介质
CN106288198B (zh) 空气净化器、空气加湿器的控制方法及装置
CN109186046B (zh) 空调器及其的控制方法和计算机可读存储介质
CN113280492A (zh) 空调及其睡眠模式的控制方法、控制系统
CN114234380A (zh) 一种空调杀菌控制方法及空调
CN112128929A (zh) 新风空调器的控制方法
CN203413741U (zh) 家用空气净化处理及热能回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20728894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20728894

Country of ref document: EP

Kind code of ref document: A1