WO2020108598A1 - 风向标安装误差校正方法、装置及系统 - Google Patents

风向标安装误差校正方法、装置及系统 Download PDF

Info

Publication number
WO2020108598A1
WO2020108598A1 PCT/CN2019/121870 CN2019121870W WO2020108598A1 WO 2020108598 A1 WO2020108598 A1 WO 2020108598A1 CN 2019121870 W CN2019121870 W CN 2019121870W WO 2020108598 A1 WO2020108598 A1 WO 2020108598A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
unit
wind vane
outer rotor
blades
Prior art date
Application number
PCT/CN2019/121870
Other languages
English (en)
French (fr)
Inventor
魏蒙
杨博宇
叶阿敏
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US17/043,461 priority Critical patent/US11686288B2/en
Priority to EP19889545.0A priority patent/EP3770611B1/en
Priority to AU2019386038A priority patent/AU2019386038B2/en
Publication of WO2020108598A1 publication Critical patent/WO2020108598A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • G01P21/025Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers for measuring speed of fluids; for measuring speed of bodies relative to fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • G01P5/06Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using rotation of vanes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/329Azimuth or yaw angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/802Calibration thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • F05B2270/8041Cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/804Optical devices
    • F05D2270/8041Cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the field of wind power. More specifically, the present disclosure relates to a method, device and system for correcting the installation error of a wind vane.
  • the yaw system is an important part of the wind turbine. Its function is to quickly and smoothly align the wind direction when the wind direction changes, so that the wind wheel can obtain the maximum wind energy.
  • the yaw and wind strategy uses the wind vane as the front-end input. When there is a deviation from the wind direction measurement, it will cause power loss to the unit and increase the load of the unit.
  • the wind vane of the wind turbine is usually installed on the top of the nacelle, and the installation of the wind vane is manually performed by the staff.
  • the staff adjusts the direction of the wind vane so that the marking "S" on the shaft of the wind vane is facing the nose or the tail of the marking "N", and then the shaft of the vane is fixed on the top of the nacelle.
  • This results in an absolute error angle between the direction of the wind vane and the center line of the wind turbine's unit.
  • the absolute error angle causes the wind wheel not to face the wind direction.
  • An exemplary embodiment of the present disclosure is to provide a method, device, and system for correcting the installation error of a wind vane, so as to realize automatic correction of the installation error of the wind vane, and improve the accuracy of the installation of the wind vane.
  • a wind vane installation error correction method which includes: acquiring an image of a generator blade and an outer rotor of a generator; acquiring an outline of the generator blade from the image of the generator blade and the outer rotor of the generator and The outline of the outer rotor of the generator; according to the outline of the outer rotor of the generator and the outline of the two blades in the blades of the unit, the center line of the computer group; obtain the intersection of the center line of the unit and the outline of the outer rotor of the generator to obtain the first intersection point; The direction of the wind vane, according to the center line of the unit and the direction of the wind vane, determine whether the wind vane is aligned with the center line of the unit; determine the misalignment of the wind vane and the center line of the unit, and calculate the deviation between the wind vane and the center line of the unit according to the direction of the wind vane and the first intersection point And correct the direction of the wind vane according to the angle
  • the step of acquiring the outline of the generator blade and the outline of the outer rotor of the generator from the images of the generator blade and the outer rotor of the generator may include: acquiring the generator blade and the generator according to the image of the generator blade and the outer rotor of the generator
  • the grayscale image of the outer rotor performs edge detection on the grayscale image of the blades of the generator set and the outer rotor of the generator; the grayscale image of the blades of the generator set and the outer rotor of the generator is profiled according to the results of the edge detection.
  • the step of performing edge detection on the gray images of the unit blades and the outer rotor of the generator may include: performing a denoising process on the gray images of the unit blades and the outer rotor of the generator through a Gaussian filter; after calculating the denoising process The gradient amplitude of the grayscale of each pixel in the grayscale image; the preset enhancement processing is performed on the grayscale of each pixel according to the gradient amplitude; according to the grayscale and The relationship of setting the threshold determines the edge pixels of the blades of the unit and the outer rotor of the generator.
  • the step of obtaining the direction of the wind vane may include: obtaining a result of laser orientation of the wind vane, and determining the direction of the wind vane according to the result of the laser orientation.
  • the step of the center line of the computer group may include: extending the edge line of the contour of two blades in the blades of the unit to obtain the intersection of the extension line of the edge line of the contour of the two blades; connecting the two The intersection of the extension line of the edge line of the outline of the two blades and the center of the outline of the outer rotor of the generator obtain the center line of the unit.
  • the step of calculating the angle of deviation between the wind vane and the center line of the unit according to the wind vane orientation surface and the first intersection point may include: obtaining an intersection point of the wind vane orientation surface and the outline of the generator outer rotor to obtain a second intersection point; Calculate the number of pixels between the first intersection point and the second intersection point in the image of the unit blade and the outer rotor of the generator.
  • the image of the unit blade and the outer rotor of the generator are collected by an image fixed on the wind vane Device acquisition, the image acquisition device is fixed on the head of the wind vane; according to the width of the field of view of the image acquisition device and the number of pixels in the width of the image of the unit blade and the outer rotor of the generator, calculate the unit blade and The distance represented by each pixel in the image of the outer rotor of the generator; calculate the distance that the wind vane deviates from the center line of the unit every 1° deviation of the wind vane according to the distance from the image acquisition device obtained by ultrasonic ranging to the outer rotor of the generator; According to the distance represented by each pixel point in the image of the blades of the unit and the outer rotor of the generator and the distance of the wind vane deviating from the center line of the unit every 1° deviation of the wind vane, the angle of deviation between the wind vane and the center line of the unit is calculated.
  • a wind vane installation error correction device including: an image acquisition module configured to acquire images of a generator blade and an outer rotor of a generator; a contour acquisition module configured to be configured as the slave blade The outline of the generator blade and the outline of the outer rotor of the generator are obtained from the image of the outer rotor of the generator; the centerline calculation module is configured to calculate the center of the computer group according to the outline of the outer rotor of the generator and the outline of two blades in the generator blade Line; the first intersection obtaining module is configured to obtain the intersection of the center line of the unit and the outline of the outer rotor of the generator to obtain the first intersection; the alignment judgment module is configured to obtain the direction of the wind vane direction, according to the center line of the unit and the direction of the wind vane Determine whether the wind vane is aligned with the center line of the unit; and the angle correction module is configured to determine that the wind vane is not aligned with the center line of the unit, and calculate the
  • the contour acquisition module may be configured to acquire the grayscale images of the generator blades and the outer rotor of the generator according to the images of the generator blades and the outer rotor of the generator, and perform the grayscale images of the generator blades and the outer rotor of the generator Edge detection; based on the edge detection results, contour detection of the grayscale images of the blades of the unit and the outer rotor of the generator.
  • the contour acquisition module may be configured to: perform a denoising process on the grayscale image of the unit blade and the outer rotor of the generator through a Gaussian filter; calculate the grayscale of each pixel in the grayscale image after the denoising process The gradient amplitude value; according to the gradient amplitude, the gray level of each pixel is preset to be enhanced; the unit blade and the outer rotor of the generator are determined according to the relationship between the enhanced gray level of each pixel and the preset threshold Pixels of the edge.
  • the alignment judgment module may be configured to: obtain a result of laser orientation of the wind vane, and determine a face of the wind vane according to the result of the laser orientation.
  • the centerline calculation module may be configured to: extend the edge lines of the contours of the two blades in the unit blades to obtain the intersection of the extension lines of the edge lines of the contours of the two blades; connect the two The intersection of the extension line of the edge line of the outline of the two blades and the center of the outline of the outer rotor of the generator obtain the center line of the unit.
  • the angle correction module may be configured to: obtain an intersection point of the wind vane orientation surface and the outline of the generator outer rotor to obtain a second intersection point; in the images of the unit blades and the generator outer rotor, calculate the first The number of pixels between the intersection point and the second intersection point, the images of the blades of the unit and the outer rotor of the generator are acquired by an image acquisition device fixed on the wind vane, the image acquisition device is fixed on the header of the wind vane; The width of the field of view of the image acquisition device and the number of pixels in the width of the images of the blades of the generator set and the outer rotor of the generator, calculate the distance represented by each pixel in the images of the blades of the generator set and the outer rotor of the generator; The distance from the image acquisition device to the outer rotor of the generator obtained by the distance calculation calculates the distance that the wind vane deviates from the center line of the unit every 1° deviation of the wind vane; according to each pixel point in the image of the blades of the blade
  • a computer-readable storage medium having stored thereon a computer program which, when executed, implements the steps of the method for installing a wind vane installation error correction according to the present disclosure.
  • a computing device including: a memory, a processor, and a computer program stored on the memory and executable on the processor, and the processor implements the computer program when the processor executes the computer program.
  • a wind vane installation error correction system for a wind turbine generator set the wind turbine generator set includes a nacelle, a hub, a generator and a wind vane, the hub includes three blades, and the generator is disposed in the nacelle and the hub Between, the wind vane is set at the top of the nacelle, and the head of the wind vane faces the hub;
  • the system includes:
  • the image acquisition device is detachably provided on the head of the wind vane, and the image acquisition device collects images of the blades of the unit and the outer rotor of the generator;
  • a processor in communication with the image acquisition device
  • the processor is configured to:
  • the center line of the computer group According to the outline of the outer rotor of the generator and the outline of the two blades in the blades of the unit, the center line of the computer group;
  • the processor is further configured to:
  • the grayscale images of the blades of the unit and the outer rotor of the generator are profiled.
  • the processor is further configured to:
  • the grayscale images of the blades of the unit and the outer rotor of the generator are denoised
  • the edge pixel points of the blades of the unit and the outer rotor of the generator are determined according to the relationship between the enhanced gray level of each pixel point and the preset threshold.
  • the system further includes a laser scanning device for scanning the wind vane and the rotating shaft to collect data on the direction of the wind vane;
  • the processor is also configured to:
  • the processor is further configured to:
  • the processor is further configured to:
  • the angle of deviation between the wind vane and the center line of the unit is calculated.
  • images of the blades of the unit and the outer rotor of the generator are acquired, and whether the wind vane and the center of the unit are determined according to the relationship between the center line of the unit and the orientation of the wind vane Line alignment, when the wind vane is not aligned with the center line of the unit, calculate the angle of deviation between the wind vane and the center line of the unit, and correct the direction of the wind vane according to the angle of deviation between the wind vane and the center line of the unit, thus achieving automatic installation
  • the accuracy of the error is accurately judged and corrected, which improves the accuracy of the installation of the wind vane.
  • FIG. 1 shows a flowchart of a method for correcting an installation error of a wind vane according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing the outline detection results of images of the unit blades and the outer rotor of the generator acquired by the camera according to an exemplary embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of the unit center line and the intersection of the unit center line and the outline of the generator outer rotor according to an exemplary embodiment of the present disclosure
  • FIG. 4 shows a block diagram of a wind vane installation error correction device according to an exemplary embodiment of the present disclosure.
  • FIG. 5 shows a block diagram of a computing device according to an exemplary embodiment of the present disclosure
  • FIG. 6 shows a wind turbine generator according to an exemplary embodiment of the present disclosure
  • FIG. 7 shows a top view of a wind turbine generator according to an exemplary embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of a wind vane installation error correction system of a wind turbine generator according to an exemplary embodiment of the present disclosure
  • FIG. 9 shows a weather vane facing surface of an exemplary embodiment of the present disclosure.
  • Exemplary embodiments of the present disclosure are applicable to the field of wind power, and are particularly applicable to wind vane installation error correction devices or systems.
  • Fig. 6 shows a wind turbine 1 according to an exemplary embodiment of the present disclosure.
  • the wind turbine 1 includes a tower 2, a nacelle 3, a hub 4, a generator 6 and a wind vane 11.
  • the nacelle 3 is disposed at the top of the tower 2, and the hub 4 includes three blades 7.
  • the generator 6 is provided between the nacelle 3 and the hub 4.
  • the wind vane 11 is provided on the top of the nacelle 3.
  • the wind vane 11 recognizes the wind direction, and the nacelle 3 yaws according to the recognized wind direction to adjust the windward direction.
  • the wind turbine 1 has a unit centerline 12.
  • the wind vane 11 is rotatably connected to the top of the nacelle 3 through a rotating shaft 13.
  • the wind vane 11 has a long bar structure, and has a head 113 and a tail 112.
  • the wind vane 11 can rotate around the rotating shaft 13.
  • the wind vane 11 has a central axis 110, and the central axis 110 and the rotating shaft 13 position the wind vane facing surface 92.
  • the installation error angle of the wind vane means that when the operator installs the wind vane, the head 113 is set toward the hub 4 and the tail 112 is set toward the direction away from the hub 4 of the nacelle 3.
  • the central axis 110 of the wind vane 11 and the center line 12 of the unit The angle between 114.
  • the central axis 110 of the wind vane 11 is parallel to the center line 12 of the unit, and the wind vane 11 can recognize the accurate wind direction.
  • the angle 114 is the absolute error angle of yaw, which causes the nacelle 3 to not be aligned with the true wind direction 13.
  • the wind vane 11 may be a mechanical wind vane or an ultrasonic wind vane.
  • Exemplary embodiments of the present disclosure provide a wind vane installation error correction system for a wind turbine, as shown in FIG. 8, the system includes an image acquisition device and a processor.
  • the image acquisition device is detachably provided on the head 113 of the wind vane, and is used for acquiring images of the blades 7 and the generator 6 of the unit.
  • the processor is in communication connection with the image acquisition device through the image interface, and receives the image data of the unit blade and the generator collected by the image acquisition device.
  • the image acquisition device may be a video camera or a camera.
  • the system also includes a laser scanning device for scanning the wind vane 11 and the rotating shaft 13 to collect data on the direction of the wind vane.
  • the data of the direction of the wind vane determined by the laser scanning device can be input into the processor.
  • the processor may also be connected to the laser scanning device through the scanning interface and used to receive data of the direction of the wind vane generated by the laser scanning device.
  • the processor is configured to implement the flow of the method for correcting the installation error of the wind vane shown in FIG. 1.
  • FIG. 1 shows a flowchart of a method for correcting an installation error of a wind vane according to an exemplary embodiment of the present disclosure.
  • step S101 images of the blades of the unit and the outer rotor of the generator are acquired.
  • the image of the unit blade and the outer rotor of the generator may be obtained by an image acquisition device fixed to the wind vane, wherein the image acquisition device may be fixed to the header of the wind vane, and the unit blade obtained by the image acquisition device
  • the image of the outer rotor of the generator includes at least a portion of at least two of the blades of the unit and a part of the outer rotor of the generator, for example, two of the blades of the unit and the upper half of the outer rotor of the generator, or the blade of the unit The part of the two blades in and the part of the outer rotor of the generator that is close to the two blades.
  • step S102 the contours of the generator blades and the outer rotor of the generator are acquired from the images of the generator blades and the outer rotor of the generator.
  • the focus is on the unit blades and the outer rotor of the generator, so it is necessary
  • the original acquired images of the blades of the unit and the outer rotor of the generator are processed, and the target object to be measured is extracted, that is, the blades of the unit and the outer rotor of the generator.
  • the generator blades when the contours of the generator blades and the outer rotor of the generator are obtained from the images of the generator blades and the outer rotor of the generator, the generator blades may be first obtained from the images of the generator blades and the outer rotor of the generator And the grayscale image of the outer rotor of the generator, the edge detection of the grayscale image of the blade of the unit and the outer rotor of the generator, and then the contour detection of the grayscale image of the blade of the unit and the outer rotor of the generator according to the edge detection result, to obtain the blade of the unit
  • the outline of the generator and the outer rotor of the generator are shown in Figure 2.
  • FIG. 2 is a schematic diagram showing the outline detection results of the images of the unit blades and the outer rotor of the generator acquired by the image acquisition device according to an exemplary embodiment of the present disclosure, in which the partial outlines of two blades in the unit blades and The outline of the part of the outer rotor of the generator that is close to the two blades.
  • edge detection can be performed based on the first and second derivatives (or gradient amplitudes) of the gray values of pixels in the grayscale, but the derivatives (or gradient amplitudes) are usually very sensitive to noise Sensitive, resulting in reduced accuracy of edge detection results.
  • the grayscale images of the unit blades and the outer rotor of the generator may be first denoised by a Gaussian filter Processing, calculate the gradient amplitude of the gray level of each pixel in the gray image after denoising, and then perform the preset enhancement processing on the gray level of each pixel according to the gradient amplitude to convert the gray point of the image The points with significant changes in the neighborhood intensity value are highlighted. Finally, the edge pixels of the blades of the unit and the outer rotor of the generator are determined according to the relationship between the enhanced gray level of each pixel and the preset threshold.
  • the discretized Gaussian function can be used first to generate a set of normalized Gaussian kernels, Then, based on the Gaussian kernel function, each point of the image gray matrix is weighted and summed.
  • the gradient amplitude and direction can be calculated according to the following formula: Where G represents the gradient amplitude, ⁇ represents the direction, G x represents the gradient amplitude in the x direction, and G y represents the gradient amplitude in the y direction.
  • the gradient direction can be approximated first After one of the four possible angles (usually 0 degrees, 45 degrees, 90 degrees, and 135 degrees), non-maximum suppression is performed to pre-exclude non-edge pixels, and then according to the grayscale of the pixels that are not excluded The relationship between the value and the first threshold and the second threshold determines the edge pixel.
  • the pixel points whose gray value after the enhancement process is greater than the first threshold can be determined as the edge pixel points of the unit blade and the outer rotor of the generator; the gray value after the enhancement process can be determined Pixels less than the second threshold are determined as non-edge pixels of the blades of the unit and the outer rotor of the generator; the gray values after the enhancement process can be greater than the second threshold and less than the first threshold.
  • the pixels adjacent to the point are determined as the edge pixels of the blades of the unit and the outer rotor of the generator; the pixels whose gray value after the enhancement process is greater than the second threshold and less than the first threshold may be different from the determined edge pixels
  • Adjacent pixels are determined as non-edge pixels of the blades of the unit and the outer rotor of the generator.
  • the least square method when performing contour detection on the grayscale images of the unit blades and the outer rotor of the generator according to the edge detection result, the least square method may be used to determine the The edge pixels are curve-fitted.
  • step S103 according to the outline of the outer rotor of the generator and the outlines of the two blades in the blades of the unit, the center line of the computer group.
  • the edge line of the contour of two blades in the blades of the unit may be first extended to obtain the intersection of the extension line of the edge line of the contour of the two blades Then, connect the intersection of the extension line of the edge line of the outline of the two blades and the center of the outline of the outer rotor of the generator to obtain the center line of the unit, as shown in Figure 3.
  • FIG. 3 is a schematic diagram showing the unit center line and the intersection of the unit center line and the outline of the generator outer rotor according to an exemplary embodiment of the present disclosure, in which an extension line through an edge line connecting the outlines of two blades is shown The intersection point and the center of the outline of the outer rotor of the generator can get the unit center line L.
  • the edge lines of the contours of the two blades refer to the two adjacent edge lines 93 and 94 of the two blade contours.
  • step S104 the intersection point of the center line of the generator set and the outline of the outer rotor of the generator is obtained to obtain the first intersection point.
  • the intersection point M of the unit center line L and the outline of the generator outer rotor can be obtained as the first intersection point.
  • step S105 the direction of the wind vane is acquired.
  • the result of laser orientation of the wind vane may be acquired first, and then the wind vane orientation surface may be determined according to the laser orientation result.
  • step S106 according to the center line of the unit and the direction of the wind vane, it is determined whether the wind direction is aligned with the center line of the unit. If yes, step S108 is executed; otherwise, step S107 is executed.
  • judging whether the wind vane is aligned with the center line of the unit refers to judging whether the central axis 110 of the wind vane is parallel to the center line 12 of the unit.
  • the wind vane when determining whether the wind vane is aligned with the center line of the unit, it can be determined according to whether the center line of the unit and the direction of the wind vane are parallel, and if the center line of the unit and the direction of the wind vane are parallel, the wind vane and the center of the unit can be determined The line is aligned. If the center line of the unit and the direction of the wind vane are not parallel, it is judged that the wind direction is not aligned with the center line of the unit.
  • determining whether the wind vane is aligned with the center line of the unit it can also be determined according to the distance between the intersection of the center line of the unit and the direction of the wind vane and the contour of the outer rotor of the generator. In addition, it can also judge whether the wind vane is aligned with the center line of the unit according to its method.
  • step S107 it is determined that the wind vane is not aligned with the center line of the unit, the angle of deviation between the wind vane and the center line of the unit is calculated according to the direction of the wind vane and the first intersection, and the angle of the deviation between the wind vane and the center line of the unit Orientation is corrected.
  • each pixel in the image of the blades and the outer rotor of the generator may be first computerized
  • the distance between the wind vane and the center line of the unit is calculated every 1° deviation of the wind vane, and finally the distance between the wind vane and the unit is 1° according to the distance represented by each pixel in the image of the blades of the unit and the outer rotor of the generator.
  • the distance of the center line deviation calculate the angle of deviation between the wind vane and the unit center line.
  • the calculation order of the distance represented by each pixel point in the image of the unit blade and the outer rotor of the generator and the deviation of the wind vane by 1° every time the wind vane deviates from the center line of the unit is different Restrictions can be made as described above, first calculate the distance represented by each pixel in the image of the blades of the generator and the outer rotor of the generator, and then calculate the distance that the wind vane deviates from the center line of the unit every 1° deviation of the wind vane, or the wind vane can be calculated first Each 1° deviation deviates the distance between the wind vane and the center line of the unit, and then the distance represented by each pixel in the image of the blades of the computer group and the outer rotor of the generator, or both.
  • the wind vane orientation surface and the generator when calculating the angle of deviation between the wind vane and the center line of the unit according to the wind vane orientation surface 92 and the first intersection, can be obtained first
  • the intersection point Q of the rotor profile 91 is used as the second intersection point, and then in the image of the unit blade and the outer rotor of the generator, the number of pixels between the first intersection point and the second intersection point is calculated, and collected according to the image
  • the distance represented by each pixel in the image of the unit blade and the outer rotor of the generator may be first ° The distance between the wind vane and the center line of the unit, calculate the number of pixels that the wind vane deviates in the image of the unit blade and the outer rotor of the generator for every 1° deviation of the wind vane, and then the deviation of the wind vane in the image of the unit blade and the outer rotor of the generator.
  • the number of pixels and the number of pixels where the wind vane deviates by 1° each time causes the wind vane to deviate in the image of the blades of the unit and the outer rotor of the generator calculate the angle of deviation between the wind vane and the center line of the unit.
  • the distance represented by each pixel in the image of the unit blade and the outer rotor of the generator is 0.26cm, and the deviation of the wind vane by 1° makes the wind vane deviate from the center line of the unit by 6.98cm, then the deviation of the wind vane by 1 °
  • the number of pixels that make the wind vane deviate in the image of the unit blade and the outer rotor of the generator is 27. If the number of pixels that the wind vane deviates in the image of the unit blade and the outer rotor of the generator is 54, the deviation between the wind vane and the center line of the unit The angle is 2°.
  • step S108 when the wind vane is aligned with the center line of the unit, the installation error correction of the wind vane is ended.
  • the image of the unit blade and the outer rotor of the generator are first obtained, and then whether the wind vane is aligned with the center line of the unit is determined according to the relationship between the center line of the unit and the direction of the wind vane in the image ,
  • the wind vane is not aligned with the center line of the unit, calculate the angle of deviation between the wind vane and the center line of the unit, and correct the direction of the wind vane according to the angle of the deviation between the wind vane and the center line of the unit, thereby automatically adjusting the installation error Accurate judgment and correction improve the accuracy of wind vane installation.
  • wind vane installation error correction method according to an exemplary embodiment of the present disclosure has been described above with reference to FIGS. 1 to 3.
  • a wind vane installation error correction device and its module according to an exemplary embodiment of the present disclosure will be described with reference to FIG. 4.
  • FIG. 4 shows a block diagram of a wind vane installation error correction device according to an exemplary embodiment of the present disclosure.
  • the wind vane installation error correction device includes an image acquisition module 41, an outline acquisition module 42, a centerline calculation module 43, a first intersection acquisition module 44, an alignment judgment module 45, and an angle correction module 46.
  • the image acquisition module 41 is configured to acquire images of the blades of the unit and the outer rotor of the generator.
  • the image of the unit blade and the outer rotor of the generator may be obtained by an image acquisition device fixed to the wind vane, wherein the image acquisition device may be fixed to the header of the wind vane, and the unit blade obtained by the image acquisition device
  • the image of the outer rotor of the generator includes at least a portion of at least two of the blades of the unit and a part of the outer rotor of the generator, for example, two of the blades of the unit and the upper half of the outer rotor of the generator, or the blade of the unit The part of the two blades in and the part of the outer rotor of the generator that is close to the two blades.
  • the contour acquisition module 42 is configured to acquire the contours of the generator blades and the outer rotor of the generator from the images of the blades and outer rotors of the generator.
  • the focus is on the unit blades and the outer rotor of the generator, so it is necessary
  • the original acquired images of the blades of the unit and the outer rotor of the generator are processed, and the target object to be measured is extracted, that is, the blades of the unit and the outer rotor of the generator.
  • the contour acquisition module 42 may be configured to: when acquiring the contours of the generator blades and the outer rotor of the generator from the images of the generator blades and the outer rotor of the generator, first according to the generator blades And the image of the outer rotor of the generator to obtain the grayscale image of the blades of the generator unit and the outer rotor of the generator, and perform edge detection on the grayscale image of the blades of the generator unit and the outer rotor of the generator; Grayscale contour detection.
  • edge detection can be performed based on the first and second derivatives (or gradient amplitudes) of the gray values of pixels in the gray image, but the derivatives (or gradient amplitudes) are usually very sensitive to noise Sensitive, resulting in reduced accuracy of edge detection results.
  • the contour acquisition module 42 may be configured to: when performing edge detection on the grayscale image of the unit blades and the outer rotor of the generator, firstly, the Gaussian filter is used to detect the outer edges of the unit blades and the generator The grayscale image of the rotor is denoised; then the gradient amplitude of the grayscale of each pixel in the grayscale image after denoising is calculated, and the grayscale of each pixel is preset enhanced according to the gradient amplitude Processing; Finally, the edge pixels of the generator blades and the outer rotor of the generator are determined according to the relationship between the enhanced gray level of each pixel and the preset threshold.
  • the contour acquisition module 42 may be configured to: firstly use a discrete Gaussian function when denoising the grayscale image of the blades of the unit and the outer rotor of the generator through a Gaussian filter A set of normalized Gaussian kernels are generated, and then each point of the image gray matrix is weighted and summed based on the Gaussian kernel function.
  • the contour acquisition module 42 may be configured to determine the edge pixels of the blades of the unit and the outer rotor of the generator according to the relationship between the enhanced gray level of each pixel and the preset threshold At the point, you can first approximate the gradient direction to one of the four possible angles (generally can be 0 degrees, 45 degrees, 90 degrees, 135 degrees) and then perform non-maximum suppression to pre-exclude non-edge pixels, and then according to The relationship between the gray values of the pixels that are not excluded and the first threshold and the second threshold determines the edge pixels.
  • the contour acquisition module 42 may be configured to: determine that the pixels whose gray value after enhancement processing is greater than the first threshold are edge pixels of the generator blade and the outer rotor of the generator; The pixels whose gray value after processing is less than the second threshold are not the edge pixels of the blades of the unit and the outer rotor of the generator; it is determined that the pixels whose gray value after enhancement processing is greater than the second threshold and less than the first threshold are neutral and determined
  • the adjacent pixels are the edge pixels of the blades of the unit and the outer rotor of the generator; it is determined that the gray value after the enhancement process is greater than the second threshold and less than the first threshold and the determined edge pixels
  • the non-adjacent pixels are not the edge pixels of the generator blades and the outer rotor of the generator.
  • the contour acquisition module 42 may be configured to: when performing contour detection on the grayscale images of the blades of the generator set and the outer rotor of the generator according to the edge detection result, use least squares to determine the edge detection The edge pixels of the generator blade and the outer rotor of the generator are curve-fitted.
  • the centerline calculation module 43 is configured to calculate the centerline of the computer group based on the outline of the outer rotor of the generator and the outlines of two blades in the blades of the unit.
  • the centerline calculation module 43 may be configured to: when the computer group centerline, first extend the edge line of the contour of the two blades in the unit blades to obtain the two The intersection of the extension line of the edge line of the blade contour; then the intersection of the extension line of the edge line of the contour of the two blades and the center of the outline of the outer rotor of the generator to obtain the center line of the unit.
  • the first intersection obtaining module 44 is configured to obtain the intersection of the center line of the generator set and the outline of the outer rotor of the generator to obtain the first intersection.
  • the alignment determination module 45 is configured to obtain the wind vane orientation surface, and determine whether the wind vane is aligned with the unit center line according to the unit center line and the wind vane orientation surface.
  • the alignment judgment module 45 may be configured to: when acquiring the wind vane orientation surface, first obtain the result of laser orientation of the wind vane, and then determine the wind vane orientation surface according to the laser orientation result.
  • the alignment determination module 45 determines whether the wind vane is aligned with the center line of the unit, it can be determined according to whether the center line of the unit and the direction of the wind vane are parallel, if the center line of the unit and the direction of the wind vane are parallel, It is judged that the wind vane is aligned with the center line of the unit. If the center line of the unit and the direction of the wind vane are not parallel, it is determined that the wind vane is not aligned with the center line of the unit.
  • the alignment determination module 45 determines whether the wind vane is aligned with the center line of the unit, it can also be determined according to the distance between the intersection of the center line of the unit and the direction of the wind vane and the contour of the outer rotor of the generator. In addition, it can also judge whether the wind vane is aligned with the center line of the unit according to its method.
  • the angle correction module 46 is configured to determine the misalignment of the wind vane and the center line of the unit, calculate the angle of deviation between the wind vane and the center line of the unit according to the direction of the wind vane and the first intersection, and according to the deviation between the wind vane and the center line of the unit The angle corrects the direction of the wind vane.
  • the angle correction module 46 may be configured to: when calculating the angle of deviation between the wind vane and the center line of the unit according to the direction of the wind vane and the first intersection point, first of all, the computer sets the blades and generate electricity The distance represented by each pixel in the image of the outer rotor of the machine, then calculate the distance that the wind vane deviates from the center line of the unit every 1° deviation of the wind vane, and finally according to the distance represented by each pixel in the image of the unit blade and the outer rotor of the generator Every 1° deviation from the wind vane causes the wind vane to deviate from the centerline of the unit, and calculate the angle of deviation between the wind vane and the centerline of the unit.
  • the distance represented by each pixel in the image of the blades of the computer group and the outer rotor of the generator through the angle correction module 46 and the wind vane deviate from the center line of the unit by 1° for every 1° deviation of the wind vane
  • the calculation order of the two is not limited. As mentioned above, first calculate the distance represented by each pixel in the image of the blades and the outer rotor of the generator, and then calculate the distance that the wind vane deviates from the center line of the unit every 1° deviation of the wind vane.
  • It can also calculate the distance that the wind vane deviates from the center line of the unit every 1° deviation of the wind vane, and then calculate the distance represented by each pixel in the image of the blades of the computer group and the outer rotor of the generator, or calculate both at the same time.
  • the angle correction module 46 may be configured to: when calculating the angle of deviation between the wind vane and the center line of the unit according to the wind vane orientation surface and the first intersection, first obtain the wind vane orientation surface and the generator The intersection point of the contour of the outer rotor serves as the second intersection point; then in the image of the unit blade and the outer rotor of the generator, calculate the number of pixels between the first intersection point and the second intersection point; and according to the image acquisition device The width of the field of view and the number of pixels in the width of the image of the blades of the unit and the outer rotor of the generator, the distance represented by each pixel in the image of the blades of the computer group and the outer rotor of the generator; then based on the image obtained by ultrasonic ranging The distance from the collection device to the outer rotor of the generator calculates the distance that the wind vane deviates from the center line of the unit every 1° deviation of the wind vane; finally, according to the distance represented by each pixel in
  • the angle correction module 46 may be configured to: when calculating the angle of the deviation between the wind vane and the center line of the unit, each pixel point in the image of the unit blade and the outer rotor of the generator The representative distance and the distance that the wind vane deviates from the center line of the unit according to every 1° deviation of the wind vane, calculate the number of pixels where the wind vane 1° deviation causes the wind vane to deviate in the image of the unit blade and the outer rotor of the generator, and then according to the wind vane The number of pixels deviating from the image of the outer rotor of the generator and the wind vane every 1° makes the wind vane deviate from the image of the blades of the unit and the outer rotor of the generator, and calculates the angle of deviation between the wind vane and the center line of the unit.
  • the installation error correction of the wind vane is ended.
  • the image of the unit blade and the outer rotor of the generator are first obtained, and then whether the wind vane is aligned with the center line of the unit is determined according to the relationship between the center line of the unit and the direction of the wind vane in the image , When the wind vane is not aligned with the center line of the unit, calculate the angle of deviation between the wind vane and the center line of the unit, and correct the direction of the wind vane according to the angle of the deviation between the wind vane and the center line of the unit, thereby automatically adjusting the installation error Accurate judgment and correction improve the accuracy of wind vane installation.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed, the steps of the method for installing a wind vane installation error correction according to the present disclosure are implemented.
  • the following steps can be implemented when the program is executed: acquiring images of the generator blades and the outer rotor of the generator; acquiring the outlines of the generator blades and the outer rotor of the generator from the images of the generator blades and the outer rotor of the generator; according to the generator The contour of the outer rotor and the contours of the two blades in the blades of the unit, the center line of the computer group; get the intersection of the center line of the unit and the outline of the outer rotor of the generator to get the first intersection point; obtain the direction of the wind vane, according to the center line of the unit and the wind vane To determine whether the wind vane is aligned with the center line of the unit; when the wind vane is not aligned with the center line of the unit, calculate the angle of deviation between the wind vane and the center line of the unit according to the direction of the wind vane and the first intersection, and according to the center line of the wind vane and the unit The angle between the deviations corrects the direction of the wind van
  • FIG. 5 shows a block diagram of a computing device according to an exemplary embodiment of the present disclosure.
  • a computing device 5 includes a memory 51, a processor 52, and a computer program stored on the memory and executable on the processor, characterized in that the processor executes the The computer program implements the steps of the method for correcting the installation error of the wind vane according to the present disclosure.
  • the processor may be configured to execute a program including the steps of the wind vane installation error correction method: acquiring images of the generator blades and the outer rotor of the generator; acquiring the outlines of the generator blades and the images of the generator blades and the outer rotor of the generator The outline of the outer rotor of the generator; according to the outline of the outer rotor of the generator and the outline of the two blades in the blades of the unit, the center line of the computer group; obtain the intersection of the center line of the unit and the outline of the outer rotor of the generator to obtain the first intersection point; The direction of the wind vane, according to the unit center line and the direction of the wind vane, determine whether the wind vane is aligned with the center line of the unit; when the wind vane is not aligned with the center line of the unit, the deviation between the wind vane and the center line of the unit is calculated according to the direction of the wind vane and the first intersection point And correct the direction of the wind vane according to the angle of deviation between
  • wind vane installation error correction method and apparatus have been described above with reference to FIGS. 1 to 5.
  • the wind vane installation error correction device and its modules shown in FIG. 4 can be respectively configured as software, hardware, firmware or any combination of the above items to perform specific functions, and the computing device shown in FIG. 5 It is not limited to include the components shown above, but some components may be added or deleted as needed, and the above components may also be combined.
  • images of the unit blades and the outer rotor of the generator are obtained, and whether the wind vane is aligned with the center line of the unit is determined according to the relationship between the center line of the unit and the orientation of the wind vane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种风向标(11)安装误差校正方法、装置及系统。该风向标安装误差校正方法包括:获取机组叶片(7)和发电机外转子的图像(S101);从机组叶片(7)和发电机外转子的图像中获取机组叶片(7)的轮廓和发电机外转子的轮廓(S102);根据发电机外转子的轮廓和机组叶片(7)中的两个叶片的轮廓,计算机组中心线(12)(S103);获取机组中心线与发电机外转子的轮廓的交点,得到第一交点(S104);获取风向标(11)朝向面(S105);根据机组中心线和风向标(11)朝向面判断风向标(11)是否与机组中心线(12)对准(S106);确定风向标(11)与机组中心线(12)不对准,根据风向标(11)朝向面和第一交点计算风向标(11)与机组中心线(12)之间偏差的角度,并根据风向标(11)与机组中心线(12)之间偏差的角度对风向标(11)的朝向进行校正(S107)。

Description

风向标安装误差校正方法、装置及系统
本申请要求2018年11月29日提交中国专利局,申请号为201811442050.X,发明名称为“风向标安装误差校准方法及装置”的中国专利申请的优先权,以及2019年11月7日提交中国专利局,申请号为201911082745.6,发明名称为“风向标安装误差校准方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及风电领域。更具体地,本公开涉及一种风向标安装误差校正方法、装置及系统。
背景技术
偏航系统是风力发电机组的重要组成部分,其作用是当风力方向发生变化时,能够快速平稳的对准风向,以便风轮能获得最大的风能。偏航对风策略以风向标作为前端输入,当其对风向测量存在偏差会给机组带来功率损失,机组载荷增加的影响。
目前风力发电机组的风向标通常安装在机舱顶部,风向标的安装由工作人员手工操作完成。工作人员调整风向标朝向,使风向标转轴上的标识“S”正对机头或使标识“N”正对机尾,然后将风向标的转轴固定安装在机舱顶部。这导致风向标的指向与风力发电机的机组中心线之间具有绝对误差角度。该绝对误差角度导致风轮不能正对风向。
发明内容
本公开的示例性实施例在于提供一种风向标安装误差校正方法、装置及系统,以实现风向标安装误差的自动校正,并且提高风向标安装的精确性。
根据本公开的示例性实施例,提供一种风向标安装误差校正方法,包括:获取机组叶片和发电机外转子的图像;从所述机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓;根据发电机外转 子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线;获取机组中心线与发电机外转子的轮廓的交点,得到第一交点;获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准;确定风向标与机组中心线不对准,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
可选地,从所述机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓的步骤可包括:根据机组叶片和发电机外转子的图像获取机组叶片和发电机外转子的灰度图,对机组叶片和发电机外转子的灰度图进行边缘检测;根据边缘检测结果对机组叶片和发电机外转子的灰度图进行轮廓检测。
可选地,对机组叶片和发电机外转子的灰度图进行边缘检测的步骤可包括:通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理;计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值;根据梯度幅值对每一像素点的灰度进行预设的增强处理;根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点。
可选地,获取风向标朝向面的步骤可包括:获取对风向标的激光定向的结果,根据激光定向的结果确定风向标朝向面。
可选地,计算机组中心线的步骤可包括:对机组叶片中的两个叶片的轮廓的边缘线进行延长,得到所述两个叶片的轮廓的边缘线的延长线的交点;连接所述两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,得到机组中心线。
可选地,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度的步骤可包括:获取风向标朝向面与发电机外转子的轮廓的交点,得到第二交点;在所述机组叶片和发电机外转子的图像中,计算所述第一交点和所述第二交点之间的像素点数,所述机组叶片和发电机外转子的图像由固定在风向标上的图像采集装置获取,所述图像采集装置固定在风向标的标头上;根据所述图像采集装置的视野宽度和所述机组叶片和发电机外转子的图像在宽度上的像素点数,计算所述机组叶片和发电机外转子的图像中每个像素点代表的距离;根据通过超声波测距获取的所述 图像采集装置到发电机外转子的距离计算风向标每偏差1°使风向标与机组中心线偏离的距离;根据所述机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
根据本公开的示例性实施例,提供一种风向标安装误差校正装置,包括:图像获取模块,被配置为获取机组叶片和发电机外转子的图像;轮廓获取模块,被配置为所述从机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓;中心线计算模块,被配置为根据发电机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线;第一交点获取模块,被配置为获取机组中心线与发电机外转子的轮廓的交点,得到第一交点;对准判断模块,被配置为获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准;和角度校正模块,被配置为确定风向标与机组中心线不对准,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
可选地,轮廓获取模块可被配置为:根据所述机组叶片和发电机外转子的图像获取机组叶片和发电机外转子的灰度图,对机组叶片和发电机外转子的灰度图进行边缘检测;根据边缘检测结果对机组叶片和发电机外转子的灰度图进行轮廓检测。
可选地,轮廓获取模块可被配置为:通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理;计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值;根据梯度幅值对每一像素点的灰度进行预设的增强处理;根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点。
可选地,对准判断模块可被配置为:获取对风向标的激光定向的结果,根据激光定向的结果确定风向标朝向面。
可选地,中心线计算模块可被配置为:对机组叶片中的两个叶片的轮廓的边缘线进行延长,得到所述两个叶片的轮廓的边缘线的延长线的交点;连接所述两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,得到机组中心线。
可选地,角度校正模块可被配置为:获取风向标朝向面与发电机外转子的轮廓的交点,得到第二交点;在所述机组叶片和发电机外转子的图像中,计算所述第一交点和所述第二交点之间的像素点数,所述机组叶片和发电机外转子的图像由固定在风向标上的图像采集装置获取,所述图像采集装置固定在风向标的标头上;根据所述图像采集装置的视野宽度和所述机组叶片和发电机外转子的图像在宽度上的像素点数,计算所述机组叶片和发电机外转子的图像中每个像素点代表的距离;根据通过超声波测距获取的所述图像采集装置到发电机外转子的距离计算风向标每偏差1°使风向标与机组中心线偏离的距离;根据所述机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
根据本公开的示例性实施例,提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被执行时实现根据本公开的风向标安装误差校正方法的步骤。
根据本公开的示例性实施例,提供一种计算装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现根据本公开的风向标安装误差校正检测方法的步骤。
根据本公开的示例性实施例,提供一种风力发电机组的风向标安装误差校正系统,所述风力发电机组包括机舱、轮毂、发电机和风向标,轮毂包括三支叶片,发电机设置在机舱和轮毂之间,风向标设置在机舱的顶部,风向标的头部朝向轮毂;
所述系统包括:
图像采集装置,可拆卸地设置于风向标的头部,所述图像采集装置采集机组叶片和发电机外转子的图像;
处理器,与所述图像采集装置通信连接;
所述处理器配置为:
获取机组叶片和发电机外转子的图像;
从所述机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓;
根据发电机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线;
获取机组中心线与发电机外转子的轮廓的交点,得到第一交点;
获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准;
确定风向标与机组中心线不对准,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
可选地,所述处理器还配置为:
根据机组叶片和发电机外转子的图像获取机组叶片和发电机外转子的灰度图,对机组叶片和发电机外转子的灰度图进行边缘检测;
根据边缘检测结果,对机组叶片和发电机外转子的灰度图进行轮廓检测。
可选地,所述处理器还配置为:
通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理;
计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值;
根据梯度幅值对每一像素点的灰度进行预设的增强处理;
根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点。
可选地,所述系统还包括激光扫描装置,用于扫描风向标和转轴,以采集风向标朝向面的数据;
所述处理器还配置为:
获取对风向标的激光定向的结果,根据激光定向的结果确定风向标朝向面。
可选地,所述处理器还配置为:
对机组叶片中的两个叶片的轮廓的边缘线进行延长,得到所述两个叶片的轮廓的边缘线的延长线的交点;
连接所述两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,得到机组中心线。
可选地,所述处理器还配置为:
获取风向标朝向面与发电机外转子的轮廓的交点,得到第二交点;
在所述机组叶片和发电机外转子的图像中,计算所述第一交点和所述第二交点之间的像素点数,所述机组叶片和发电机外转子的图像由固定在风向标上的图像采集装置获取;
根据所述图像采集装置的视野宽度和所述机组叶片和发电机外转子的图像在宽度上的像素点数,计算所述机组叶片和发电机外转子的图像中每个像素点代表的距离;
根据通过超声波测距获取的所述图像采集装置到发电机外转子的距离计算风向标每偏差1°使风向标与机组中心线偏离的距离;
根据所述机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
根据本公开的示例性实施例的风向标安装误差校正方法、装置及系统,获取机组叶片和发电机外转子的图像,根据图像中机组中心线和风向标朝向面之间的关系判断风向标是否与机组中心线对准,当风向标与机组中心线不对准时,计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正,从而实现了自动对安装的误差进行准确判断和校正,提高了风向标安装的精确性。
附图说明
通过下面结合示例性地示出实施例的附图进行的描述,本公开示例性实施例的上述和其他目的和特点将会变得更加清楚,其中:
图1示出根据本公开示例性实施例的风向标安装误差校正方法的流程图;
图2示出根据本公开示例性实施例的通过相机获取的机组叶片和发电机外转子的图像的轮廓检测结果的示意图;
图3示出根据本公开示例性实施例的机组中心线和机组中心线与发电机外转子的轮廓的交点的示意图;
图4示出根据本公开示例性实施例的风向标安装误差校正装置的框图;和
图5示出根据本公开示例性实施例的计算装置的框图;
图6示出本公开示例性实施例的风力发电机组;
图7示出本公开示例性实施例的风力发电机组的俯视图;
图8示出本公开示例性实施例的风力发电机组的风向标安装误差校正系统的示意图;
图9示出本公开示例性实施例的风向标朝向面。
具体实施方式
现将详细参照本公开的示例性实施例,所述实施例的示例在附图中示出,其中,相同的标号始终指的是相同的部件。以下将通过参照附图来说明所述实施例,以便解释本公开。
本公开示例性实施例适用于风电领域,尤其适用于风向标安装误差校正设备或系统。
图6示出根据本公开示例性实施例的风力发电机组1。风力发电机组1包括塔架2、机舱3、轮毂4、发电机6和风向标11。机舱3设置于塔架2的顶端,轮毂4包括三支叶片7。发电机6设置在机舱3和轮毂4之间。风向标11设置在机舱3的顶部。风向标11识别风向,机舱3根据识别的风向进行偏航来调整迎风方向。风力发电机组1具有机组中心线12。
风向标11通过转轴13与机舱3顶部转动连接。风向标11为长条形结构,具有头部113和尾部112。风向标11能够围绕转轴13进行转动,风向标11具有中心轴线110,中心轴线110与转轴13定位风向标朝向面92。
风向标的安装误差角度是指,操作人员安装风向标时,将头部113设置为朝向轮毂4方向,尾部112设置为朝向机舱3远离轮毂4的方向,风向标11的中心轴线110与机组中心线12之间的夹角114。
如图7所示,理想情况下风向标11的中心轴线110与机组中心线12平行,风向标11能识别到准确风向。然而由于安装误差导致风向标11的中心轴线110与机组中心线12存在夹角114,该夹角114是偏航绝对误差角度,导致机舱3不能对准真实风向13。
其中,风向标11可以为机械式风向标或者超声波风向标。
本公开示例性实施例提供一种风力发电机组的风向标安装误差校正系统,如图8所示,该系统包括图像采集装置和处理器。图像采集装置可拆卸地设置于风向标的头部113,用于采集机组叶片7和发电机6的图像。处理器通过图像接口与图像采集装置通信连接,接收图像采集装置采集到的机组叶片和发电机的图像数据。
其中,图像采集装置可以为摄像机或者相机等。
该系统还包括激光扫描装置,用于扫描风向标11及转轴13,以采集风向标朝向面的数据。可以将激光扫描装置确定的风向标朝向面的数据输入处理器。也可以使处理器通过扫描接口与激光扫描装置连接,用于接收激光扫描装置生成的风向标朝向面的数据。
处理器被配置为实现如图1所示的风向标安装误差校正方法的流程。
图1示出根据本公开示例性实施例的风向标安装误差校正方法的流程图。
参照图1,在步骤S101,获取机组叶片和发电机外转子的图像。
在本公开示例性实施例中,可通过固定在风向标的图像采集装置获取机组叶片和发电机外转子的图像,其中,图像采集装置可固定在风向标的标头上,图像采集装置获取的机组叶片和发电机外转子的图像中至少包括机组叶片中的至少两个叶片的一部分和发电机外转子的一部分,例如,机组叶片中的两个叶片和发电机外转子的上半部分,或者机组叶片中的两个叶片的部分和发电机外转子的与所述两个叶片靠近的部分。
在步骤S102,从机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓。
由于通过图像采集装置获取的机组叶片和发电机外转子的图像中可能会有例如天空、树等不需要的背景干扰信息,而在本公开中关注点为机组叶片和发电机外转子,因此需要对原始获取的机组叶片和发电机外转子的图像进行处理,并提取出目标待测物,即,机组叶片和发电机外转子。
在本公开示例性实施例中,在从机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓时,可首先根据机组叶片和发电机外转子的图像获取机组叶片和发电机外转子的灰度图,对机组叶片和发电机外转子的灰度图进行边缘检测,然后根据边缘检测结果对机组叶片和 发电机外转子的灰度图进行轮廓检测,得到机组叶片的轮廓和发电机外转子的轮廓,如图2所示。图2是示出根据本公开示例性实施例的通过图像采集装置获取的机组叶片和发电机外转子的图像的轮廓检测结果的示意图,其中,示出机组叶片中的两个叶片的部分轮廓和发电机外转子的与所述两个叶片靠近的部分轮廓。
在本公开示例性实施例中,可基于灰度图中像素点的灰度值的一阶和二阶导数(或者梯度幅值)进行边缘检测,但是导数(或者梯度幅值)通常对噪声很敏感,从而导致边缘检测结果准确性降低。
因此,在本公开示例性实施例中,在对机组叶片和发电机外转子的灰度图进行边缘检测时,可首先通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理,计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值,然后根据梯度幅值对每一像素点的灰度进行预设的增强处理,以将图像灰度点邻域强度值有显著变化的点凸显出来,最后根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点。
在本公开示例性实施例中,在通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理时,可首先采用离散化的高斯函数产生一组归一化的高斯核,然后基于高斯核函数对图像灰度矩阵的每一点进行加权求和。
在本公开示例性实施例中,在计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值时,可根据下列公式计算梯度幅值和方向:
Figure PCTCN2019121870-appb-000001
其中,G表示梯度幅值,θ表示方向,G x表示在x方向上的梯度幅值,G y表示在y方向上的梯度幅值。
其中,在本公开示例性实施例中,在根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点时,可首先将梯度方向近似到四个可能角度之一(一般可以是0度、45度、90 度、135度)之后进行非极大值抑制,以预排除非边缘像素点,然后根据未被排除的像素点的灰度值与第一阈值和第二阈值之间的关系确定边缘像素点。
在本公开示例性实施例中,可将经过增强处理后的灰度值大于第一阈值的像素点确定为机组叶片和发电机外转子的边缘像素点;可将经过增强处理后的灰度值小于第二阈值的像素点确定为机组叶片和发电机外转子的非边缘像素点;可将经过增强处理后的灰度值大于第二阈值并且小于第一阈值的像素点中与确定的边缘像素点相邻的像素点确定为机组叶片和发电机外转子的边缘像素点;可将经过增强处理后的灰度值大于第二阈值并且小于第一阈值的像素点中与确定的边缘像素点不相邻的像素点确定为机组叶片和发电机外转子的非边缘像素点。
在本公开示例性实施例中,在根据边缘检测结果对机组叶片和发电机外转子的灰度图进行轮廓检测时,可使用最小二乘法对边缘检测中确定的机组叶片和发电机外转子的边缘像素点进行曲线拟合。
在步骤S103,根据发电机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线。
在本公开示例性实施例中,在计算机组中心线时,可首先对机组叶片中的两个叶片的轮廓的边缘线进行延长,得到所述两个叶片的轮廓的边缘线的延长线的交点,然后连接所述两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,得到机组中心线,如图3所示。
图3是示出根据本公开示例性实施例的机组中心线和机组中心线与发电机外转子的轮廓的交点的示意图,其中,示出通过连接两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,可得到机组中心线L。如图9所示,两个叶片的轮廓的边缘线是指两个叶片轮廓的相邻的两条边缘线93和94。
在步骤S104,获取机组中心线与发电机外转子的轮廓的交点,得到第一交点。
如图3所示,在计算出机组中心线L之后,可获取机组中心线L与发电机外转子的轮廓的交点M,作为第一交点。
在步骤S105,获取风向标朝向面。
在本公开示例性实施例中,在获取风向标朝向面时,可首先获取对风向标的激光定向的结果,然后根据激光定向的结果确定风向标朝向面。
在步骤S106,根据机组中心线和风向标朝向面,判断风向标是否与机组中心线对准,是则执行步骤S108,否则执行步骤S107。
下文中,判断风向标是否与机组中心线对准,是指判断风向标的中心轴线110是否与机组中心线12平行。
在本公开示例性实施例中,在判断风向标是否与机组中心线对准时,可根据机组中心线和风向标朝向面是否平行来判断,如果机组中心线和风向标朝向面平行,则判断风向标与机组中心线对准,如果机组中心线和风向标朝向面不平行,则判断风向标与机组中心线不对准。此外,在判断风向标是否与机组中心线对准时,也可根据机组中心线和风向标朝向面两者分别与发电机外转子的轮廓的交点之间的距离来判断。另外,还可根据其方法判断风向标是否与机组中心线对准。
在步骤S107,确定风向标与机组中心线不对准,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
在本公开示例性实施例中,在根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度时,可首先计算机组叶片和发电机外转子的图像中每个像素点代表的距离,然后计算风向标每偏差1°使风向标与机组中心线偏离的距离,最后根据机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
其中,在本公开示例性实施例中,对机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离两者的计算顺序不进行限制,可如上所述,先计算机组叶片和发电机外转子的图像中每个像素点代表的距离,再计算风向标每偏差1°使风向标与机组中心线偏离的距离,也可先计算风向标每偏差1°使风向标与机组中心线偏离的距离,再计算机组叶片和发电机外转子的图像中每个像素点代表的距离,或者同时计算两者。
如图9所示,在本公开示例性实施例中,在根据风向标朝向面92和所述第一交点计算风向标与机组中心线之间偏差的角度时,可首先获取风向标朝向面与发电机外转子的轮廓91的交点Q,作为第二交点,然后在机组叶片和发电机外转子的图像中,计算所述第一交点和所述第二交点之间的像素点数,并根据所述图像采集装置的视野宽度和机组叶片和发电机外转子的图像在宽度上的像素点数,计算机组叶片和发电机外转子的图像中每个像素点代表的距离,之后根据通过超声波测距获取的所述图像采集装置到发电机外转子的距离计算风向标每偏差1°使风向标与机组中心线偏离的距离,最后根据机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
其中,以图像采集装置为相机作为示例,在计算机组叶片和发电机外转子的图像中每个像素点代表的距离时,如果相机的视野宽度为5米,相机获取的机组叶片和发电机外转子的图像在宽度上的像素点数为1920,则1像素点对应的实际距离=500cm/1920=0.26cm。
其中,作为示例,在计算风向标每偏差1°使风向标与机组中心线偏离的距离时,如果相机到发电机外转子的距离为4米,风向标每偏差1°使风向标与机组中心线偏离的距离=400cm×tan(1°)=6.98cm。
其中,在本公开示例性实施例中,在计算风向标与机组中心线之间偏差的角度时,可首先机组叶片和发电机外转子的图像中每个像素点代表的距离和根据风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标每偏差1°使风向标在机组叶片和发电机外转子的图像中偏差的像素点数,然后根据风向标在机组叶片和发电机外转子的图像中偏差的像素点数以及风向标每偏差1°使风向标在机组叶片和发电机外转子的图像中偏差的像素点数,计算风向标与机组中心线之间偏差的角度。
其中,作为示例,如果机组叶片和发电机外转子的图像中每个像素点代表的距离为0.26cm,风向标每偏差1°使风向标与机组中心线偏离的距离为6.98cm,则风向标每偏差1°使风向标在机组叶片和发电机外转子的图像中偏差的像素点数为27,如果风向标在机组叶片和发电机外转子的图像中偏差的像素点数为54,则风向标与机组中心线之间偏差的角度为2°。
在步骤S108,当风向标与机组中心线对准时,结束风向标的安装误差校正。
根据本公开示例性实施例的风向标安装误差校正方法,首先获取机组叶片和发电机外转子的图像,然后根据图像中机组中心线和风向标朝向面之间的关系判断风向标是否与机组中心线对准,当风向标与机组中心线不对准时,计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正,从而实现了自动对安装的误差进行准确判断和校正,提高了风向标安装的精确性。
以上已经结合图1至图3对根据本公开示例性实施例的风向标安装误差校正方法进行了描述。在下文中,将参照图4对根据本公开示例性实施例的风向标安装误差校正装置及其模块进行描述。
图4示出根据本公开示例性实施例的风向标安装误差校正装置的框图。
参照图4,风向标安装误差校正装置包括图像获取模块41、轮廓获取模块42、中心线计算模块43、第一交点获取模块44、对准判断模块45和角度校正模块46。
图像获取模块41,被配置为获取机组叶片和发电机外转子的图像。
在本公开示例性实施例中,可通过固定在风向标的图像采集装置获取机组叶片和发电机外转子的图像,其中,图像采集装置可固定在风向标的标头上,图像采集装置获取的机组叶片和发电机外转子的图像中至少包括机组叶片中的至少两个叶片的一部分和发电机外转子的一部分,例如,机组叶片中的两个叶片和发电机外转子的上半部分,或者机组叶片中的两个叶片的部分和发电机外转子的与所述两个叶片靠近的部分。
轮廓获取模块42,被配置为从机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓。
由于通过图像采集装置获取的机组叶片和发电机外转子的图像中可能会有例如天空、树等不需要的背景干扰信息,而在本公开中关注点为机组叶片和发电机外转子,因此需要对原始获取的机组叶片和发电机外转子的图像进行处理,并提取出目标待测物,即,机组叶片和发电机外转子。
其中,在本公开示例性实施例中,轮廓获取模块42可被配置为:在从机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子 的轮廓时,首先根据机组叶片和发电机外转子的图像获取机组叶片和发电机外转子的灰度图,对机组叶片和发电机外转子的灰度图进行边缘检测;然后根据边缘检测结果对机组叶片和发电机外转子的灰度图进行轮廓检测。
在本公开示例性实施例中,可基于灰度图中像素点的灰度值的一阶和二阶导数(或者梯度幅值)进行边缘检测,但导数(或者梯度幅值)通常对噪声很敏感,从而导致边缘检测结果准确性降低。
因此,在本公开示例性实施例中,轮廓获取模块42可被配置为:在对机组叶片和发电机外转子的灰度图进行边缘检测时,首先通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理;然后计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值,根据梯度幅值对每一像素点的灰度进行预设的增强处理;最后根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点。
其中,在本公开示例性实施例中,轮廓获取模块42可被配置为:在通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理时,首先采用离散化的高斯函数产生一组归一化的高斯核,然后基于高斯核函数对图像灰度矩阵的每一点进行加权求和。
其中,在本公开示例性实施例中,轮廓获取模块42可被配置为:在根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点时,可首先将梯度方向近似到四个可能角度之一(一般可以是0度、45度、90度、135度)之后进行非极大值抑制,以预排除非边缘像素点,然后根据未被排除的像素点的灰度值与第一阈值和第二阈值之间的关系确定边缘像素点。
在本公开示例性实施例中,轮廓获取模块42可被配置为:确定经过增强处理后的灰度值大于第一阈值的像素点是机组叶片和发电机外转子的边缘像素点;确定经过增强处理后的灰度值小于第二阈值的像素点不是机组叶片和发电机外转子的边缘像素点;确定经过增强处理后的灰度值大于第二阈值并且小于第一阈值的像素点中与确定的边缘像素点相邻的像素点是机组叶片和发电机外转子的边缘像素点;确定经过增强处理后的灰度值大于第二阈值并且小于第一阈值的像素点中与确定的边缘像素点不相邻的像素点不是机组叶片和发电机外转子的边缘像素点。
在本公开示例性实施例中,轮廓获取模块42可被配置为:在根据边缘检测结果对机组叶片和发电机外转子的灰度图进行轮廓检测时,使用最小二乘法对边缘检测中确定的机组叶片和发电机外转子的边缘像素点进行曲线拟合。
中心线计算模块43,被配置为根据发电机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线。
其中,在本公开示例性实施例中,中心线计算模块43可被配置为:在计算机组中心线时,首先对机组叶片中的两个叶片的轮廓的边缘线进行延长,得到所述两个叶片的轮廓的边缘线的延长线的交点;然后连接所述两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,得到机组中心线。
第一交点获取模块44,被配置为获取机组中心线与发电机外转子的轮廓的交点,得到第一交点。
对准判断模块45,被配置为获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准。
其中,在本公开示例性实施例中,对准判断模块45可被配置为:在获取风向标朝向面时,首先获取对风向标的激光定向的结果,然后根据激光定向的结果确定风向标朝向面。
在本公开示例性实施例中,在通过对准判断模块45判断风向标是否与机组中心线对准时,可根据机组中心线和风向标朝向面是否平行来判断,如果机组中心线和风向标朝向面平行,则判断风向标与机组中心线对准,如果机组中心线和风向标朝向面不平行,则判断风向标与机组中心线不对准。此外,在通过对准判断模块45判断风向标是否与机组中心线对准时,也可根据机组中心线和风向标朝向面两者分别与发电机外转子的轮廓的交点之间的距离来判断。另外,还可根据其方法判断风向标是否与机组中心线对准。
角度校正模块46,被配置为确定风向标与机组中心线不对准,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
其中,在本公开示例性实施例中,角度校正模块46可被配置为:在 根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度时,首先计算机组叶片和发电机外转子的图像中每个像素点代表的距离,然后计算风向标每偏差1°使风向标与机组中心线偏离的距离,最后根据机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
其中,在本公开示例性实施例中,对通过角度校正模块46计算机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离两者的计算顺序不进行限制,可如上所述,先计算机组叶片和发电机外转子的图像中每个像素点代表的距离,再计算风向标每偏差1°使风向标与机组中心线偏离的距离,也可先计算风向标每偏差1°使风向标与机组中心线偏离的距离,再计算机组叶片和发电机外转子的图像中每个像素点代表的距离,或者同时计算两者。
在本公开示例性实施例中,角度校正模块46可被配置为:在根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度时,首先获取风向标朝向面与发电机外转子的轮廓的交点,作为第二交点;然后在机组叶片和发电机外转子的图像中,计算所述第一交点和所述第二交点之间的像素点数;并根据所述图像采集装置的视野宽度和机组叶片和发电机外转子的图像在宽度上的像素点数,计算机组叶片和发电机外转子的图像中每个像素点代表的距离;之后根据通过超声波测距获取的所述图像采集装置到发电机外转子的距离计算风向标每偏差1°使风向标与机组中心线偏离的距离;最后根据机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
其中,在本公开示例性实施例中,角度校正模块46可被配置为:在计算风向标与机组中心线之间偏差的角度时,可首先机组叶片和发电机外转子的图像中每个像素点代表的距离和根据风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标每偏差1°使风向标在机组叶片和发电机外转子的图像中偏差的像素点数,然后根据风向标在机组叶片和发电机外转子的图像中偏差的像素点数和风向标每偏差1°使风向标在机组叶片和发 电机外转子的图像中偏差的像素点数,计算风向标与机组中心线之间偏差的角度。
在本公开示例性实施例中,当风向标与机组中心线对准时,结束风向标的安装误差校正。
根据本公开示例性实施例的风向标安装误差校正装置,首先获取机组叶片和发电机外转子的图像,然后根据图像中机组中心线和风向标朝向面之间的关系判断风向标是否与机组中心线对准,当风向标与机组中心线不对准时,计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正,从而实现了自动对安装的误差进行准确判断和校正,提高了风向标安装的精确性。
此外,根据本公开的示例性实施例,还提供一种计算机可读存储介质,其上存储有计算机程序,程序被执行时实现根据本公开的风向标安装误差校正方法的步骤。
作为示例,程序被执行时可实现以下步骤:获取机组叶片和发电机外转子的图像;从机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓;根据发电机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线;获取机组中心线与发电机外转子的轮廓的交点,得到第一交点;获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准;当风向标与机组中心线不对准时,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
接下来,结合图5对根据本公开的示例性实施例的计算装置进行描述。
图5示出根据本公开示例性实施例的计算装置的框图。
参照图5,根据本公开示例性实施例的计算装置5,包括存储器51、处理器52及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现根据本公开的风向标安装误差校正方法的步骤。
作为示例,处理器可被配置为执行包括以下风向标安装误差校正方法的步骤的程序:获取机组叶片和发电机外转子的图像;从机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓;根据发电 机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线;获取机组中心线与发电机外转子的轮廓的交点,得到第一交点;获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准;当风向标与机组中心线不对准时,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
以上已参照图1至图5描述了根据本公开示例性实施例的风向标安装误差校正方法及装置。然而,应该理解的是:图4中所示的风向标安装误差校正装置及其模块可分别被配置为执行特定功能的软件、硬件、固件或上述项的任意组合,图5中所示的计算装置并不限于包括以上示出的组件,而是可根据需要增加或删除一些组件,并且以上组件也可被组合。
根据本公开的示例性实施例的风向标安装误差校正方法及装置,获取机组叶片和发电机外转子的图像,根据图像中机组中心线和风向标朝向面之间的关系判断风向标是否与机组中心线对准,当风向标与机组中心线不对准时,计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正,从而实现了自动对安装的误差进行准确判断和校正,提高了风向标安装的精确性。
尽管已经参照其示例性实施例具体显示和描述了本公开,但是本领域的技术人员应该理解,在不脱离权利要求所限定的本公开的精神和范围的情况下,可以对其进行形式和细节上的各种改变。

Claims (20)

  1. 一种风向标安装误差校正方法,其特征在于,包括:
    获取机组叶片和发电机外转子的图像;
    从所述机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓;
    根据发电机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线;
    获取机组中心线与发电机外转子的轮廓的交点,得到第一交点;
    获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准;
    确定风向标与机组中心线不对准,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
  2. 根据权利要求1所述的方法,其特征在于,从所述机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓的步骤包括:
    根据机组叶片和发电机外转子的图像获取机组叶片和发电机外转子的灰度图,对机组叶片和发电机外转子的灰度图进行边缘检测;
    根据边缘检测结果,对机组叶片和发电机外转子的灰度图进行轮廓检测。
  3. 根据权利要求2所述的方法,其特征在于,对机组叶片和发电机外转子的灰度图进行边缘检测的步骤包括:
    通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理;
    计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值;
    根据梯度幅值对每一像素点的灰度进行预设的增强处理;
    根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点。
  4. 根据权利要求1所述的方法,其特征在于,获取风向标朝向面的步骤包括:
    获取对风向标的激光定向的结果,根据激光定向的结果确定风向标朝向面。
  5. 根据权利要求1所述的方法,其特征在于,计算机组中心线的步骤包括:
    对机组叶片中的两个叶片的轮廓的边缘线进行延长,得到所述两个叶片的轮廓的边缘线的延长线的交点;
    连接所述两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,得到机组中心线。
  6. 根据权利要求1所述的方法,其特征在于,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度的步骤包括:
    获取风向标朝向面与发电机外转子的轮廓的交点,得到第二交点;
    在所述机组叶片和发电机外转子的图像中,计算所述第一交点和所述第二交点之间的像素点数,所述机组叶片和发电机外转子的图像由固定在风向标上的图像采集装置获取,所述图像采集装置固定在风向标的标头上;
    根据所述图像采集装置的视野宽度和所述机组叶片和发电机外转子的图像在宽度上的像素点数,计算所述机组叶片和发电机外转子的图像中每个像素点代表的距离;
    根据通过超声波测距获取的所述图像采集装置到发电机外转子的距离计算风向标每偏差1°使风向标与机组中心线偏离的距离;
    根据所述机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
  7. 一种风向标安装误差校正装置,其特征在于,包括:
    图像获取模块,被配置为获取机组叶片和发电机外转子的图像;
    轮廓获取模块,被配置为从所述机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓;
    中心线计算模块,被配置为根据发电机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组中心线;
    第一交点获取模块,被配置为获取机组中心线与发电机外转子的轮廓的交点,得到第一交点;
    对准判断模块,被配置为获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准;和
    角度校正模块,被配置为确定风向标与机组中心线不对准,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
  8. 根据权利要求7所述的装置,其特征在于,轮廓获取模块被配置为:
    根据所述机组叶片和发电机外转子的图像获取机组叶片和发电机外转子的灰度图,对机组叶片和发电机外转子的灰度图进行边缘检测;
    根据边缘检测结果,对机组叶片和发电机外转子的灰度图进行轮廓检测。
  9. 根据权利要求8所述的装置,其特征在于,轮廓获取模块被配置为:
    通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理;
    计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值;
    根据梯度幅值对每一像素点的灰度进行预设的增强处理;
    根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点。
  10. 根据权利要求7所述的装置,其特征在于,对准判断模块被配置为:
    获取对风向标的激光定向的结果,根据激光定向的结果确定风向标朝向面。
  11. 根据权利要求7所述的装置,其特征在于,中心线计算模块被配置为:
    对机组叶片中的两个叶片的轮廓的边缘线进行延长,得到所述两个叶片的轮廓的边缘线的延长线的交点;
    连接所述两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,得到机组中心线。
  12. 根据权利要求7所述的装置,其特征在于,角度校正模块被配置为:
    获取风向标朝向面与发电机外转子的轮廓的交点,得到第二交点;
    在所述机组叶片和发电机外转子的图像中,计算所述第一交点和所述第二交点之间的像素点数,所述机组叶片和发电机外转子的图像由固定在风向标上的图像采集装置获取,所述图像采集装置固定在风向标的标头上;
    根据所述图像采集装置的视野宽度和所述机组叶片和发电机外转子的图像在宽度上的像素点数,计算所述机组叶片和发电机外转子的图像中每个像素点代表的距离;
    根据通过超声波测距获取的所述图像采集装置到发电机外转子的距离计算风向标每偏差1°使风向标与机组中心线偏离的距离;
    根据所述机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
  13. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述程序被执行时实现权利要求1至6任一项所述的方法的步骤。
  14. 一种计算装置,其特征在于,所述计算装置包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现权利要求1至6中任一项所述方法的步骤。
  15. 一种风力发电机组的风向标安装误差校正系统,所述风力发电机组包括机舱(3)、轮毂(4)、发电机(6)和风向标(11),轮毂(4)包括三支叶片(7),发电机(6)设置在机舱(3)和轮毂(4)之间,风向标(11)设置在机舱(3)的顶部,风向标的头部(113)朝向轮毂(4);
    其特征在于,所述系统包括:
    图像采集装置,可拆卸地设置于风向标的头部(113),所述图像采集装置拍摄机组叶片和发电机外转子的图像;
    处理器,与所述图像采集装置通信连接;
    所述处理器配置为:
    获取机组叶片和发电机外转子的图像;
    从所述机组叶片和发电机外转子的图像中获取机组叶片的轮廓和发电机外转子的轮廓;
    根据发电机外转子的轮廓和机组叶片中的两个叶片的轮廓,计算机组 中心线;
    获取机组中心线与发电机外转子的轮廓的交点,得到第一交点;
    获取风向标朝向面,根据机组中心线和风向标朝向面判断风向标是否与机组中心线对准;
    确定风向标与机组中心线不对准,根据风向标朝向面和所述第一交点计算风向标与机组中心线之间偏差的角度,并根据风向标与机组中心线之间偏差的角度对风向标的朝向进行校正。
  16. 根据权利要求15所述的系统,其特征在于,所述处理器还配置为:
    根据机组叶片和发电机外转子的图像获取机组叶片和发电机外转子的灰度图,对机组叶片和发电机外转子的灰度图进行边缘检测;
    根据边缘检测结果,对机组叶片和发电机外转子的灰度图进行轮廓检测。
  17. 根据权利要求16所述的系统,其特征在于,所述处理器还配置为:
    通过高斯滤波器对机组叶片和发电机外转子的灰度图进行去噪处理;
    计算去噪处理后的灰度图中每一像素点的灰度的梯度幅值;
    根据梯度幅值对每一像素点的灰度进行预设的增强处理;
    根据各像素点的经过增强处理后的灰度与预设阈值的关系确定机组叶片和发电机外转子的边缘像素点。
  18. 根据权利要求15所述的系统,其特征在于,所述系统还包括激光扫描装置,用于扫描风向标(11)和转轴(13),以采集风向标朝向面的数据;
    所述处理器还配置为:
    获取对风向标的激光定向的结果,根据激光定向的结果确定风向标朝向面。
  19. 根据权利要求15所述的系统,其特征在于,所述处理器还配置为:
    对机组叶片中的两个叶片的轮廓的边缘线进行延长,得到所述两个叶片的轮廓的边缘线的延长线的交点;
    连接所述两个叶片的轮廓的边缘线的延长线的交点和发电机外转子的轮廓的圆心,得到机组中心线。
  20. 根据权利要求15所述的系统,其特征在于,所述处理器还配置为:
    获取风向标朝向面与发电机外转子的轮廓的交点,得到第二交点;
    在所述机组叶片和发电机外转子的图像中,计算所述第一交点和所述第二交点之间的像素点数,所述机组叶片和发电机外转子的图像由固定在风向标上的图像采集装置获取;
    根据所述图像采集装置的视野宽度和所述机组叶片和发电机外转子的图像在宽度上的像素点数,计算所述机组叶片和发电机外转子的图像中每个像素点代表的距离;
    根据通过超声波测距获取的所述图像采集装置到发电机外转子的距离计算风向标每偏差1°使风向标与机组中心线偏离的距离;
    根据所述机组叶片和发电机外转子的图像中每个像素点代表的距离和风向标每偏差1°使风向标与机组中心线偏离的距离,计算风向标与机组中心线之间偏差的角度。
PCT/CN2019/121870 2018-11-29 2019-11-29 风向标安装误差校正方法、装置及系统 WO2020108598A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/043,461 US11686288B2 (en) 2018-11-29 2019-11-29 Method, device and system for correcting installation errors of wind vane
EP19889545.0A EP3770611B1 (en) 2018-11-29 2019-11-29 Method, device and system for correcting installation errors of wind vane
AU2019386038A AU2019386038B2 (en) 2018-11-29 2019-11-29 Method, device and system for correcting installation errors of wind vane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811442050.X 2018-11-29
CN201811442050 2018-11-29
CN201911082745.6 2019-11-07
CN201911082745.6A CN110632346B (zh) 2018-11-29 2019-11-07 风向标安装误差校正方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2020108598A1 true WO2020108598A1 (zh) 2020-06-04

Family

ID=68979094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121870 WO2020108598A1 (zh) 2018-11-29 2019-11-29 风向标安装误差校正方法、装置及系统

Country Status (5)

Country Link
US (1) US11686288B2 (zh)
EP (1) EP3770611B1 (zh)
CN (1) CN110632346B (zh)
AU (1) AU2019386038B2 (zh)
WO (1) WO2020108598A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393431A (zh) * 2021-06-09 2021-09-14 东方电气集团科学技术研究院有限公司 一种用于风机叶片缺陷检测的热成像图像增强训练方法和装置
CN113607168B (zh) * 2021-06-15 2023-06-20 成都农业科技职业学院 扦插机器视觉定位装置及方法
WO2023137299A1 (en) * 2022-01-11 2023-07-20 University Of Maryland, Baltimore County Novel zero-contact edge detection method for estimation of realtime angular positions and angular velocities of a rotating structure with application to rotating structure vibration measurement
CN117437129B (zh) * 2023-12-18 2024-03-08 山东心传矿山机电设备有限公司 一种矿用智能水泵叶轮故障图像细节增强方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051778A1 (en) * 2009-10-27 2011-05-05 Clipper Windpower, Inc. System for determining wind turbine blade pitch settings
CN103982379A (zh) * 2014-05-29 2014-08-13 国电联合动力技术有限公司 一种风机叶片零度安装角标定方法
CN105114258A (zh) * 2015-08-21 2015-12-02 东方电气风电有限公司 风力发电机风速风向仪安装对正方法及装置
CN205237496U (zh) * 2015-12-17 2016-05-18 中广核风电有限公司 一种风电机组风向标对准装置
CN207064155U (zh) * 2017-08-18 2018-03-02 北京金风慧能技术有限公司 风向标的安装角度测量装置及系统
CN207779275U (zh) * 2018-02-05 2018-08-28 北京三叶瑞风能源科技有限公司 一种风力发电机风向标安装零位误差检测及校准装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2506160C3 (de) 1975-02-14 1978-04-13 Alberto 8136 Percha Kling Windkraftwerk
DE102004051843B4 (de) 2004-10-25 2006-09-28 Repower Systems Ag Windenergieanlage und Verfahren zur automatischen Korrektur von Windfahnenfehleinstellungen
WO2009129617A1 (en) * 2008-04-24 2009-10-29 Mike Jeffrey A method and system for determining an imbalance of a wind turbine rotor
CN201348637Y (zh) 2008-11-05 2009-11-18 南京中网通信有限公司 一种风向观测设备自动校北装置
US20110135466A1 (en) * 2010-01-14 2011-06-09 General Electric Company System and method for monitoring and controlling wind turbine blade deflection
GB2481789A (en) * 2010-06-30 2012-01-11 Vestas Wind Sys As Reducing yaw error in wind turbines
US20120200699A1 (en) * 2011-02-08 2012-08-09 Steffen Bunge Balancing of Wind Turbine Parts
US9035231B2 (en) * 2012-08-24 2015-05-19 General Electric Company System and method for monitoring load-related parameters of a wind turbine rotor blade
CN104989592B (zh) * 2015-07-07 2018-05-04 中能电力科技开发有限公司 风力发电机组机舱风向校正方法
CN105134495B (zh) 2015-09-09 2018-01-05 中国石油大学(华东) 一种垂直轴风力发电机叶片攻角调节及限速装置
CN105486889B (zh) * 2015-11-25 2018-05-08 江苏天赋新能源工程技术有限公司 风向标零位校正系统的校正方法
CN105548615B (zh) * 2015-12-31 2018-06-12 北京金风科创风电设备有限公司 风力发电机组风向标的校准方法
CN105545593B (zh) * 2015-12-31 2018-08-10 北京金风科创风电设备有限公司 用于风力发电机组的激光器、对风方法、装置及系统
DK179018B1 (en) * 2016-03-14 2017-08-21 Ventus Eng Gmbh Method of condition monitoring one or more wind turbines and parts thereof and performing instant alarm when needed
US10724505B2 (en) * 2016-11-30 2020-07-28 Dji Technology, Inc. Aerial inspection in a movable object environment
CN107178469B (zh) * 2017-06-29 2019-02-15 北京金风科创风电设备有限公司 风力发电机组的偏航角度值的校正方法及装置
CN108303005B (zh) 2018-02-05 2023-07-21 马双龙 一种风力发电机风向标安装零位误差检测及校准装置
CN111120220B (zh) * 2018-10-31 2021-05-28 北京金风科创风电设备有限公司 风力发电机组叶片视频监测的方法及系统
US20220074386A1 (en) * 2018-12-20 2022-03-10 Vestas Wind Systems A/S Correcting pitch angle
US11698052B2 (en) * 2020-02-06 2023-07-11 General Electric Company Pitch control of a wind turbine based position data from position localization sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051778A1 (en) * 2009-10-27 2011-05-05 Clipper Windpower, Inc. System for determining wind turbine blade pitch settings
CN103982379A (zh) * 2014-05-29 2014-08-13 国电联合动力技术有限公司 一种风机叶片零度安装角标定方法
CN105114258A (zh) * 2015-08-21 2015-12-02 东方电气风电有限公司 风力发电机风速风向仪安装对正方法及装置
CN205237496U (zh) * 2015-12-17 2016-05-18 中广核风电有限公司 一种风电机组风向标对准装置
CN207064155U (zh) * 2017-08-18 2018-03-02 北京金风慧能技术有限公司 风向标的安装角度测量装置及系统
CN207779275U (zh) * 2018-02-05 2018-08-28 北京三叶瑞风能源科技有限公司 一种风力发电机风向标安装零位误差检测及校准装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770611A4

Also Published As

Publication number Publication date
EP3770611B1 (en) 2022-07-20
CN110632346B (zh) 2022-08-26
AU2019386038A1 (en) 2020-11-26
US20210115899A1 (en) 2021-04-22
AU2019386038B2 (en) 2022-07-14
US11686288B2 (en) 2023-06-27
CN110632346A (zh) 2019-12-31
EP3770611A4 (en) 2021-07-14
EP3770611A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2020108598A1 (zh) 风向标安装误差校正方法、装置及系统
CN116664557B (zh) 一种风机叶片表面缺陷视觉检测方法
CN102192717B (zh) 风力涡轮机和用于测量风力涡轮机转子叶片俯仰角的方法
WO2020108088A1 (zh) 确定风力发电机组的塔架净空的方法和装置
CN106935683B (zh) 一种太阳能电池片高速视觉定位及矫正系统及其方法
CN109489566B (zh) 锂电池隔膜材料分切宽度检测方法、检测系统及装置
CN111308448A (zh) 图像采集设备与雷达的外参确定方法及装置
CN109769116A (zh) 一种摄像机预置位校正方法及装置
WO2011051778A1 (en) System for determining wind turbine blade pitch settings
CN111798478A (zh) 风力发电机叶片前缘覆冰厚度测量方法
CN104537663A (zh) 一种图像抖动的快速校正方法
CN111679261B (zh) 一种基于反光板的激光雷达定位方法及系统
CN114442665A (zh) 基于无人机的风电叶片巡检线路规划方法
CN116484652B (zh) 基于叶根载荷的风电场中的尾流干扰检测方法
CN111815580B (zh) 一种图像边缘识别方法及小模数齿轮模数检测方法
US20230407839A1 (en) Multi-rotor wind turbine yaw control
US11898535B2 (en) Wind turbine blade measurement system and a method of improving accuracy of a wind turbine blade measurement system
US10330080B2 (en) Wind turbine control method and associated wind turbine
CN111325802A (zh) 一种直升机风洞试验中圆形标记点识别匹配方法
CN113724277A (zh) 一种基于Radon变换的电力线检测方法
CN110793721A (zh) 一种风力发电机叶片气动不平衡的检测方法和系统
US20240175426A1 (en) Method of imaging a wind turbine rotor blade
CN113818999B (zh) 风力发电机组零位自动校正方法、控制器和系统
CN117392243B (zh) 基于图像处理的编码器安装位置检测方法及系统
CN112340059B (zh) 一种旋翼桨叶形变测量数据采集设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019889545

Country of ref document: EP

Effective date: 20201020

ENP Entry into the national phase

Ref document number: 2019386038

Country of ref document: AU

Date of ref document: 20191129

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE