WO2020108267A1 - 自动行走设备、其避障方法及装置 - Google Patents
自动行走设备、其避障方法及装置 Download PDFInfo
- Publication number
- WO2020108267A1 WO2020108267A1 PCT/CN2019/116259 CN2019116259W WO2020108267A1 WO 2020108267 A1 WO2020108267 A1 WO 2020108267A1 CN 2019116259 W CN2019116259 W CN 2019116259W WO 2020108267 A1 WO2020108267 A1 WO 2020108267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- automatic walking
- distance
- light
- obstacle
- signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000003287 optical effect Effects 0.000 claims abstract description 84
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 12
- 239000002699 waste material Substances 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001417527 Pempheridae Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
Definitions
- the invention relates to the field of garden technology, in particular to an automatic walking device, its obstacle avoidance method and device.
- the intelligent lawn mower has the function of automatic walking, and can complete the work of mowing the lawn independently. There is no need for direct human control and operation, which greatly reduces manual operation. It is a tool suitable for lawn mowing and maintenance in places such as family courtyards and public green spaces.
- the intelligent lawnmower has the obstacle avoidance function.
- One is to collide with the obstacle through the lawnmower, and use the collision sensor to realize the concession.
- One is to use ultrasonic sensors or photoelectric sensors to detect obstacles such as trees. When the lawnmower is close to the obstacles, make an evasive or detour action in advance to avoid collision with the obstacles.
- an automatic walking device, an obstacle avoidance method and device thereof can be provided, which can accurately detect whether there is an obstacle, and can also save energy.
- the automatic walking device is equipped with a photoelectric sensor.
- the photoelectric sensor includes a light emitting unit and a light receiving unit, including:
- adjusting the transmit optical power of the light emitting unit includes:
- the intensity of the reflected optical signal is less than the minimum value of the threshold range, increase the optical transmit power of the optical transmit unit.
- the method before the detecting whether the intensity of the reflected light signal reflected back is within a preset threshold range, the method further includes:
- the method further includes:
- the distance between the automatic walking device and the obstacle is calculated, and the operation of the automatic walking device is controlled.
- the method for calculating the distance between the automatic walking device and the obstacle includes one or more of the following:
- the third distance between the obstacle and the automatic walking device is calculated by triangulation.
- An obstacle avoidance device for an automatic walking device is equipped with a light emitting unit and a light receiving unit.
- the device includes:
- a transmitting module configured to transmit an optical signal to an obstacle through the optical transmitting unit
- a receiving module configured to receive the reflected light signal reflected by the obstacle through the light receiving unit
- a detection module configured to detect whether the intensity of the reflected light signal is within a preset threshold range
- the adjustment module is used to adjust the light emission power of the light emission unit if not.
- An automatic walking equipment including:
- the light emitting unit is used to emit light signals to obstacles
- the light receiving unit is used to receive the reflected light signal reflected by the obstacle
- the processing unit is connected to the light receiving unit, and is used to detect whether the intensity of the reflected light signal reflected back is within a preset threshold range, and if not, adjust the transmit optical power of the light emitting unit.
- the light receiving unit converts the reflected light signal into a light intensity electrical signal and a light energy electrical signal
- the processing unit is also used to calculate the intensity of the reflected light signal based on the light intensity electrical signal.
- the processing unit is further configured to calculate the distance between the automatic walking device and the obstacle based on the light intensity electric signal and the light energy electric signal, and to control the operation of the automatic walking device.
- the processing unit is used to calculate the distance between the automatic walking device and the obstacle in one or more of the following ways:
- the third distance between the obstacle and the automatic walking device is calculated by triangulation.
- it further includes a control unit for controlling the operation of the automatic walking device according to one or more of the first distance, the second distance, and the third distance .
- the optical signal transmitting unit and the optical receiving unit are integrated on the same photosensor.
- the optical signal transmitting unit includes one photosensor, and the optical signal receiving unit includes at least two photosensors.
- the above-mentioned automatic walking equipment, its obstacle avoidance method and device emit light signals to obstacles through the light emitting unit; receive reflected light signals reflected back from the obstacle through the light receiving unit; and detect the reflected light Whether the intensity of the reflected light signal is within a preset threshold range, and if not, adjust the intensity of the emitted light signal of the photosensor.
- the transmission power is adjusted according to the intensity of the reflected light signal, to avoid waste of energy caused by the transmission power, and to improve the accuracy of obstacle detection. Adjust the transmission power according to the intensity of the reflected light signal to prevent the reflected signal from being too weak and erroneously judged that there is no obstacle.
- FIG. 1 is a schematic flowchart of an obstacle avoidance method of an automatic walking device in an embodiment
- FIG. 2 is a schematic flowchart of an obstacle avoidance method of an automatic walking device in an embodiment
- FIG. 3 is a schematic flowchart of an obstacle avoidance method of an automatic walking device in an embodiment
- FIG. 4 is a schematic flowchart of an obstacle avoidance method of an automatic walking device in an embodiment
- FIG. 5 is a schematic flowchart of an obstacle avoidance method of an automatic walking device in an embodiment
- FIG. 6 is a schematic flowchart of an obstacle avoidance method of an automatic walking device in an embodiment
- FIG. 7 is a schematic flowchart of an obstacle avoidance method of an automatic walking device in an embodiment
- FIG. 8 is a structural block diagram of an obstacle avoidance device of an automatic walking device in an embodiment
- 9a is a structural block diagram of an automatic walking device in an embodiment
- 9b is a structural block diagram of an automatic walking device in an embodiment.
- the automatic walking device is equipped with a photoelectric sensor, and the photoelectric sensor includes a light emitting unit and a light receiving unit.
- the photoelectric sensor includes a light emitting unit and a light receiving unit.
- S110 Transmit the optical signal to the obstacle through the optical transmission unit.
- the photoelectric sensor is a device that converts optical signals into electrical signals. Its working principle is based on the photoelectric effect.
- the photoelectric effect means that when light is irradiated on certain substances, the electrons of the substances absorb the energy of photons and a corresponding electrical effect phenomenon occurs.
- the automatic walking device may be an intelligent device with an automatic walking function, such as an intelligent lawn mower, an intelligent snow blower, an intelligent sweeper, an intelligent scrubber, and the like.
- the automatic walking device is installed with a photoelectric sensor, and the photoelectric sensor includes a light emitting unit and a light receiving unit.
- the optical signal is transmitted to the surrounding environment through the light emitting unit.
- the optical signal is transmitted to the obstacle through the light emitting unit.
- the obstacle reflects the emitted light signal, and the photoelectric sensor is illuminated by the reflected light signal, that is, the reflected light signal reflected by the obstacle is received by the light receiving unit.
- the selection of the threshold range is related to the accuracy of identifying obstacles in the work scene.
- the threshold range is too wide to ensure the sensitivity of the automatic walking device to the reflected light signal. If the threshold range is too narrow, the response of the automatic walking device to the reflected light signal will be too sensitive, which will affect the working efficiency of the automatic walking device and may also affect the user experience. Therefore, the setting of the threshold range can be determined according to the actual situation. The specific value that defines the threshold range.
- the reflected light signal reflected by the obstacle is received by the light receiving unit, and the intensity of the reflected light signal is compared with a preset threshold range to detect whether the intensity of the reflected light signal is within the preset threshold range .
- the intensity of the reflected light signal is related to the intensity of the emitted light signal, the ability of the obstacle to absorb light, and so on. For example, if an obstacle has a strong ability to absorb light, the reflected light intensity is too weak, resulting in a reflected signal received by the photoelectric sensor that is too low to be mistaken as an obstacle. At this time, the transmit power of the photosensor needs to be increased to increase the intensity of the emitted light signal. For example, if the intensity of the transmitted light signal is too weak, the reflected light signal reflected by the surrounding environment is also very small, resulting in a false judgment as an obstacle. As another example, if the transmitted light signal strength is too strong, the reflected light signal reflected back from the surrounding environment is also very strong. At this time, the reflected light signal strength is sufficient to judge the obstacles in the surrounding environment, and the reflected light signal strength It is used to judge the obstacles in the surrounding environment by surplus, then, it causes a waste of energy.
- the intensity of the reflected light signal reflected back is compared with a preset threshold range to detect whether the intensity of the reflected light signal is in Within the preset threshold range. If the intensity of the reflected light signal is not within a preset threshold range, it indicates that the intensity of the light emitted by the photosensor is too large or too small, and the transmit power of the photosensor needs to be adjusted, that is, the intensity of the light emitted by the photo sensor.
- the intensity of the reflected light signal is greater than the maximum value in the threshold range, the light emission power of the photosensor is reduced. If the intensity of the reflected light signal is less than the minimum value of the threshold range, increase the optical power of the photoelectric sensor.
- the intensity of the reflected light signal reflected from the surrounding environment is acquired by the photoelectric sensor, and it is detected whether the intensity of the reflected light signal is within a preset threshold range, and if not, the intensity of the emitted light signal of the photoelectric sensor is adjusted.
- the transmission power is adjusted according to the intensity of the reflected light signal, energy waste caused by the transmission power is avoided, and the accuracy of obstacle detection is improved. Adjust the transmission power according to the intensity of the reflected light signal to prevent the reflected signal from being too weak and erroneously judged that there is no obstacle.
- the method before detecting whether the intensity of the reflected light signal reflected back is within a preset threshold range, the method further includes:
- the light energy electrical signal refers to an electrical signal used to represent light energy.
- Light intensity electrical signals refer to electrical signals used to represent light intensity.
- the photoelectric sensor emits an optical signal to the surrounding environment. When there is an obstacle in the surrounding environment, the obstacle reflects the light signal emitted by the photoelectric sensor. When the photoelectric sensor is irradiated by the reflected light signal, it is converted into a light intensity electrical signal and a light energy electrical signal through analog-to-digital conversion. Further, the intensity of the reflected light signal can be calculated based on the light intensity electrical signal.
- an embodiment of the present application provides an obstacle avoidance method for an automatic walking device, the method further includes: calculating the distance between the automatic walking device and the obstacle based on the light intensity electric signal and the light energy electric signal, and controlling the automatic walking device run.
- controlling the operation of the automatic walking device may be to adjust the walking path and walking speed of the automatic walking device, and may also control the automatic walking device to continue to move forward, backward, stop moving, or stop working, etc.
- the method for calculating the distance between the automatic walking device and the obstacle may include the following steps:
- the photoelectric sensor emits light signals to the surrounding environment.
- the obstacles will reflect the light signals emitted by the photoelectric sensor.
- the photoelectric sensor is illuminated by the reflected light signal, the light energy electrical signal is obtained through analog-to-digital conversion.
- Calculate the ratio of the intensity of the electric light signal to the intensity of the emitted light signal and calculate the first distance between the obstacle and the automatic walking device based on the ratio of the intensity of the electric light signal to the intensity of the emitted light signal. If the first distance between the obstacle and the automatic walking device is relatively small, the automatic walking device is controlled to perform an evasive action to change the walking path of the automatic walking device, thereby avoiding collision between the obstacle and the automatic walking device.
- the automatic walking device can maintain the direction of travel and continue to move for a period of time, and in the process of continuing to move, it always detects the first distance between the obstacle and the automatic walking device Distance, when the automatic walking equipment needs to perform evasive actions, the walking path of the automatic walking equipment can be changed to avoid collision of obstacles with the automatic walking equipment.
- the method for calculating the distance between the automatic walking device and the obstacle may include the following steps:
- the unit controls the operation of the automatic walking device according to the first distance and the second distance.
- the photoelectric sensor emits light signals to the surrounding environment.
- the obstacles will reflect the light signals emitted by the photoelectric sensor.
- the photoelectric sensor receives the reflected light signal.
- an amplitude modulated carrier is usually performed on the optical signal, and the second distance between the obstacle and the automatic walking device is calculated by detecting the phase difference of the carrier of the transmitted optical signal and the reflected optical signal.
- the average distance between the obstacle and the automatic walking device may be obtained according to the first distance and the second distance between the obstacle and the automatic walking device, and the operation of the automatic walking device may be controlled according to the average distance.
- the priority of the first distance and the second distance may be set according to experience, for example, if the accuracy of the first distance is higher than the accuracy of the second distance, when the automatic walking device calculates the first distance and the second distance In the distance, the operation of the automatic walking equipment is controlled according to the first distance. For another example, if the accuracy of the second distance is higher than the accuracy of the first distance, when the automatic walking device calculates the first distance and the second distance, the operation of the automatic walking device is controlled according to the second distance.
- the distance between the obstacle and the automatic walking device is calculated more accurately based on the first distance and the second distance, so as to determine whether the machine should continue to move or take other actions, which can control the automatic more effectively
- the operation of the walking equipment can effectively identify and avoid any obstacles within a certain range around.
- an embodiment of the present application provides an obstacle avoidance method for an automatic walking device, which further includes the following steps:
- the unit controls the operation of the automatic walking device according to the first distance, the second distance, and the third distance.
- the photoelectric sensor emits light signals to the surrounding environment.
- the obstacles will reflect the light signals emitted by the photoelectric sensor.
- the photoelectric sensor receives the reflected light signal.
- the timing is started at the same time as the photoelectric sensor emits the light signal.
- the photoelectric sensor receives the reflected light signal that is reflected back, it immediately stops the timing, and the time difference T between the time of the emitted light signal and the time of the received light signal is recorded.
- the average distance between the obstacle and the automatic walking device may be obtained according to the first distance, the second distance, and the third distance between the obstacle and the automatic walking device, and the automatic walking device may be controlled according to the average distance run.
- the priority of the first distance, the second distance, and the third distance may be set according to experience, for example, if the accuracy of the first distance is higher than the accuracy of the second distance, the third distance, when the automatic walking device When the first distance, the second distance, and the third distance are calculated, the operation of the automatic walking device is controlled according to the first distance. For example, if the accuracy of the second distance is higher than the accuracy of the first distance and the third distance, when the automatic walking device calculates the first distance, the second distance, and the third distance, the automatic walking is controlled according to the second distance The operation of the equipment. As another example, if the accuracy of the third distance is higher than the accuracy of the first distance and the second distance, when the automatic walking device calculates the first distance, the second distance, and the third distance, the automatic control is performed according to the third distance Operation of walking equipment.
- the distance between the obstacle and the automatic walking device is calculated more accurately, so as to determine whether the machine should continue to move or take other actions. Effectively control the operation of automatic walking equipment, and then effectively identify and avoid any obstacles within a certain range around.
- an embodiment of the present application provides an obstacle avoidance method for an automatic walking device, which further includes the following steps:
- the unit controls the walking path of the automatic walking device according to the first distance, the second distance, the third distance, and the fourth distance.
- Three or more photoelectric sensors are installed on the automatic walking equipment.
- the photoelectric sensors are used to emit light signals to the surrounding environment, and the remaining photoelectric sensors are used to receive reflected light signals in the surrounding environment.
- three photosensors are used to receive the reflected light signals in the surrounding environment, and are matched to calculate the time difference between the reflected light signals and the three photosensors as ⁇ t12, ⁇ t13, and ⁇ t23.
- the distances d1, d2, and d3 of the three photosensors from the obstacle are calculated by the time differences ⁇ t12, ⁇ t13, and ⁇ t23.
- V is the speed of the optical signal under the current working condition. According to the above formula, the fourth distance between the obstacle and the automatic walking device can be obtained.
- the average distance between the obstacle and the automatic walking device can be obtained according to the first distance, the second distance, the third distance, and the fourth distance between the obstacle and the automatic walking device, and the average value of the distance can be used to control Operation of automatic walking equipment.
- the priority of the first distance, the second distance, the third distance, and the fourth distance may be set according to experience, for example, if the accuracy of the first distance is higher than the second distance, the third distance, and the fourth distance
- the operation of the automatic walking equipment is controlled according to the first distance. For example, if the accuracy of the second distance is higher than the accuracy of the first distance, the third distance, and the fourth distance, when the automatic walking device calculates the first distance, the second distance, the third distance, and the fourth distance, then According to the second distance, the operation of the automatic walking equipment is controlled.
- the operation of the automatic walking equipment is controlled.
- the accuracy of the fourth distance is higher than the accuracy of the first distance, second distance, and third distance, when the automatic walking device calculates the first distance, second distance, third distance, and fourth distance, then According to the fourth distance, the operation of the automatic walking equipment is controlled.
- the distance between the obstacle and the automatic walking device is calculated more accurately, so as to judge whether the machine should continue to move forward or take other Actions can more effectively control the operation of automatic walking equipment, and then effectively identify and avoid any obstacles within a certain range around.
- the automatic walking device can control the operation of the automatic walking device according to any one or several of the first distance, the second distance, the third distance, and the fourth distance, wherein the operation of the automatic walking device can be adjusted automatically
- the walking path and speed of the walking equipment can also control the automatic walking equipment to stop advancing or stop working, etc.
- an embodiment of the present application provides an obstacle avoidance method for an automatic walking device, including the following steps:
- the unit controls the walking path of the automatic walking device according to the first distance, the second distance, the third distance, and the fourth distance.
- steps in the flowcharts of FIGS. 1-7 are displayed in order according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless clearly stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least some of the steps in FIGS. 1-7 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. These sub-steps or stages The execution order of is not necessarily sequential, but may be executed in turn or alternately with at least a part of other steps or sub-steps or stages of other steps.
- an embodiment of the present application provides an obstacle avoidance device 800 for an automatic walking device.
- the device includes:
- the transmitting module 810 is used to transmit an optical signal to an obstacle through the optical transmitting unit;
- the receiving module 820 is configured to receive the reflected light signal reflected by the obstacle through the light receiving unit;
- the detection module 830 is configured to detect whether the intensity of the reflected light signal is within a preset threshold range
- the adjustment module 840 is used to adjust the light emission power of the light emission unit if not.
- Each module in the obstacle avoidance device of the above-mentioned automatic walking device may be implemented in whole or in part by software, hardware, or a combination thereof.
- the above modules may be embedded in the hardware or independent of the processor in the computer device, or may be stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
- an embodiment of the present application provides an automatic walking device. Please refer to FIG. 9a.
- the automatic walking device includes:
- the light emitting unit 910 is used to emit an optical signal to an obstacle
- the light receiving unit 920 is used to receive the reflected light signal reflected by the obstacle;
- the processing unit 930 is connected to the light receiving unit, and is used to detect whether the intensity of the reflected light signal reflected back is within a preset threshold range, and if not, adjust the transmit optical power of the light emitting unit.
- the light receiving unit 910 converts the reflected light signal into a light intensity electrical signal and a light energy electrical signal.
- the processing unit 930 is also used to calculate the intensity of the reflected light signal based on the light intensity electrical signal.
- the processing unit 930 is further configured to calculate the distance between the automatic walking device and the obstacle based on the light intensity electric signal and the light energy electric signal, and control the operation of the automatic walking device.
- the processing unit 930 is used to calculate the distance between the automatic walking device and the obstacle in one or more of the following ways:
- the automatic walking device further includes a control unit 940, configured to control the operation of the automatic walking device according to one or more of the first distance, the second distance, and the third distance.
- the optical signal transmitting unit and the optical receiving unit are integrated on the same photosensor.
- the optical signal transmitting unit includes one photosensor, and the optical signal receiving unit includes at least two photosensors.
- Each module of the above-mentioned automatic walking device may be implemented in whole or in part by software, hardware, or a combination thereof.
- the above modules may be embedded in the hardware or independent of the processor in the computer device, or may be stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种自动行走设备、其避障方法及装置(800),通过光发射单元(910)向障碍物发射光信号(S110);通过光接收单元(920)接收障碍物反射回来的反射光信号(S120);检测反射回来的反射光信号的强度是否在预设的阈值范围内(S130),若否,则调整光发射单元(910)的发射光功率(S140)。实现了根据反射光信号的强度调节发射功率,避免发射功率造成的能源浪费,并且提高了障碍物检测的准确性。根据反射光信号的强度调整发射功率,避免发射功率过小导致反射信号过弱而误判为没有障碍物。
Description
本申请要求了申请日为2018年11月30日,申请号为201811456314.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及园林工艺领域,特别是涉及一种自动行走设备、其避障方法及装置。
智能割草机具备自动行走功能,且能够自主完成修剪草坪的工作,无须人为直接控制和操作,大幅度降低人工操作,是一种适合家庭庭院、公共绿地等场所进行草坪修剪维护的工具。
通常智能割草机具有避障功能,一种是通过割草机与障碍物碰撞,利用碰撞传感器实现退让。一种是利用超声波传感器或光电传感器探测树木等障碍物,割草机靠近障碍物时,提前做出避让或绕行的动作,避免与障碍物碰撞。
传统技术中,智能割草机在进行障碍物检测时,存在能源浪费、检测结果不准确等技术问题。
发明内容
基于此,提供一种自动行走设备、其避障方法及装置,能够准确检测是否存在障碍物,还能够节约能源。
一种自动行走设备的避障方法,所述自动行走设备安装有光电传感器,所述光电传感器包括光发射单元和光接收单元,包括:
通过所述光发射单元向障碍物发射光信号;
通过所述光接收单元接收所述障碍物反射回来的反射光信号;
检测所述反射回来的反射光信号的强度是否在预设的阈值范围内;
若否,则调整所述光发射单元的发射光功率。
在其中一个实施例中,所述若否,则调整所述光发射单元的发射光功率, 包括:
若所述反射光信号的强度大于所述阈值范围的最大值,减小所述光发射单元的发射光功率;
若所述反射光信号的强度小于所述阈值范围的最小值,增大所述光发射单元的发射光功率。
在其中一个实施例中,在所述检测所述反射回来的反射光信号的强度是否在预设的阈值范围内之前,所述方法还包括:
将所述反射光信号转换为光强电信号和光能量电信号,基于所述光强电信号计算所述反射光信号的强度。
在其中一个实施例中,所述方法还包括:
基于所述光强电信号和所述光能量电信号计算自动行走设备与障碍物的距离,控制自动行走设备的运行。
在其中一个实施例中,所述计算自动行走设备与障碍物的距离方法包括以下的一种或几种:
根据所述反射光的光强电信号及所述发射光信号强度,计算所述障碍物与所述自动行走设备之间的第一距离;
根据发射的光信号与接收的反射光信号之间的时间差,计算所述障碍物与所述自动行走设备之间的第二距离;
通过三角测距的方式计算所述障碍物与所述自动行走设备之间的第三距离。
一种自动行走设备的避障装置,所述自动行走设备安装有光发射单元和光接收单元,所述装置包括:
发射模块,用于通过所述光发射单元向障碍物发射光信号;
接收模块,用于通过所述光接收单元接收所述障碍物反射回来的反射光信号;
检测模块,用于检测所述反射光信号的强度是否在预设的阈值范围内;
调整模块,用于若否,则调整所述光发射单元的发射光功率。
一种自动行走设备,包括:
光发射单元,用于向障碍物发射光信号;
光接收单元,用于接收所述障碍物反射的反射光信号;
处理单元,与所述光接收单元连接,用于检测所述反射回来的反射光信号的强度是否在预设的阈值范围,若否,则调整所述光发射单元的发射光功率。
在其中一个实施例中,所述光接收单元将所述反射光信号转换为光强电信号和光能量电信号;
所述处理单元还用于基于所述光强电信号计算所述反射光信号的强度。
在其中一个实施例中,所述处理单元还用于基于所述光强电信号和光能量电信号计算自动行走设备与障碍物的距离,控制自动行走设备的运行。
在其中一个实施例中,所述处理单元用于通过以下方式的一种或多种计算自动行走设备与障碍物的距离:
根据所述反射光的光强电信号及所述发射光信号强度,计算所述障碍物与所述自动行走设备之间的第一距离;
根据发射的光信号与接收的反射光信号之间的时间差,计算所述障碍物与所述自动行走设备之间的第二距离;
通过三角测距的方式计算所述障碍物与所述自动行走设备之间的第三距离。
在其中一个实施例中,还包括控制单元,所述控制单元,用于根据所述第一距离、所述第二距离、所述第三距离的一种或多种,控制自动行走设备的运行。
在其中一个实施例中,所述光信号发射单元和光接收单元集成在同一个光电传感器上。
在其中一个实施例中,所述光信号发射单元包括一个光电传感器,所述光信号接收单元包括至少两个光电传感器。
上述自动行走设备、其避障方法及装置,通过所述光发射单元向障碍物发射光信号;通过所述光接收单元接收所述障碍物反射回来的反射光信号;并检测所述反射回来的反射光信号的强度是否在预设的阈值范围内,如果不在,则调整所述光电传感器的发射光信号强度。实现了根据反射光信号的强度调节发 射功率,避免发射功率造成的能源浪费,并且提高了障碍物检测的准确性。根据反射光信号的强度调整发射功率,避免发射功率过小导致反射信号过弱而误判为没有障碍物。
图1为一个实施例中自动行走设备的避障方法的流程示意图;
图2为一个实施例中自动行走设备的避障方法的流程示意图;
图3为一个实施例中自动行走设备的避障方法的流程示意图;
图4为一个实施例中自动行走设备的避障方法的流程示意图;
图5为一个实施例中自动行走设备的避障方法的流程示意图;
图6为一个实施例中自动行走设备的避障方法的流程示意图;
图7为一个实施例中自动行走设备的避障方法的流程示意图;
图8为一个实施例中自动行走设备的避障装置的结构框图;
图9a为一个实施例中自动行走设备的结构框图;
图9b为一个实施例中自动行走设备的结构框图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在一个实施例中,自动行走设备安装有光电传感器,光电传感器包括光发射单元和光接收单元。请参见图1,本申请实施例提供一种自动行走设备的避障方法,包括以下步骤:
S110、通过光发射单元向障碍物发射光信号。
S120、通过光接收单元接收障碍物反射回来的反射光信号。
其中,光电传感器是将光信号转换为电信号的一种器件。其工作原理基于光电效应。光电效应是指光照射在某些物质上时,物质的电子吸收光子的能量而发生了相应的电效应现象。自动行走设备可以是智能割草机、智能扫雪机、 智能扫地车、智能洗地车等类似的具有自动行走功能的智能设备。
具体地,自动行走设备安装有光电传感器,光电传感器包括光发射单元和光接收单元。通过光发射单元向周围环境发射光信号,周围环境中存在障碍物时,即通过光发射单元向障碍物发射光信号。障碍物会对发射光信号进行反射,光电传感器受到反射光信号照射,即通过光接收单元接收障碍物反射回来的反射光信号。
S130、检测反射回来的反射光信号的强度是否在预设的阈值范围内。
其中,阈值范围的选取关系到识别工作场景中的障碍物的准确性,该阈值范围太宽不能保证自动行走设备对反射光信号的灵敏性。阈值范围太窄又会导致自动行走设备对反射光信号的反应过于灵敏,影响自动行走设备的工作效率,同时还可能影响用户体验,所以阈值范围的设置可以根据实际情况进行确定,此处并不限定阈值范围的具体数值。
具体地,通过光接收单元接收障碍物反射回来的反射光信号,将反射回来的反射光信号的强度与预设的阈值范围进行比较,检测该反射光信号的强度是否处于预设的阈值范围内。
S140、若否,则调整光发射单元的发射光功率。
其中,反射光信号强度与发射光信号强度、障碍物对光的吸收能力等有关。比如,如果障碍物对光的吸收能力较强,使反射回来的光强太弱,从而导致光电传感器接收到的反射信号过低以致于误判为无障碍物。此时,需要增大光电传感器的发射功率以增加发射光信号强度。比如,如果发射光信号强度太弱,被周围环境反射回来的反射光信号亦是很小,从而导致误判为无障碍物。再比如,如果发射光信号强度太强,被周围环境反射回来的反射光信号亦是很强,此时的反射光信号强度足以用来判断周围环境中的障碍物,而且,该反射光信号强度用于判断周围环境中的障碍物是由盈余的,那么,就造成了能源浪费。
具体地,为了保证光电传感器的发射光信号强度时适宜识别障碍物且不存在能源浪费,将反射回来的反射光信号的强度与预设的阈值范围进行比较,检测该反射光信号的强度是否处于预设的阈值范围内。如果该反射光信号的强度没有处于预设的阈值范围内,说明光电传感器的发射光信号强度过大或者过小, 需要调整光电传感器的发射功率,即调整光电传感器的发射光信号强度。
进一步地,若反射光信号的强度大于阈值范围的最大值,减小光电传感器的发射光功率。若反射光信号的强度小于阈值范围的最小值,增大光电传感器的发射光功率。
本实施例中,通过光电传感器获取周围环境反射回来的反射光信号强度,并检测反射光信号强度是否在预设的阈值范围内,如果不在,则调整光电传感器的发射光信号强度。实现了根据反射光信号的强度调节发射功率,避免发射功率造成的能源浪费,并且提高了障碍物检测的准确性。根据反射光信号的强度调整发射功率,避免发射功率过小导致反射信号过弱而误判为没有障碍物。
在一个实施例中,请参见图2,在检测反射回来的反射光信号的强度是否在预设的阈值范围内之前,该方法还包括:
S210、将反射光信号转换为光强电信号和光能量电信号,基于光强电信号计算反射光信号的强度。
其中,光能量电信号指的是用于表示光能量的电信号。光强电信号指的是用于表示光强的电信号。具体地,光电传感器向周围环境发射光信号,周围环境中存在障碍物时,障碍物会对光电传感器的发射光信号进行反射。光电传感器受到反射光信号照射时,通过模数转换将转换为光强电信号和光能量电信号。进一步地,可以基于光强电信号计算反射光信号的强度。
在一个实施例中,本申请实施例提供一种自动行走设备的避障方法,该方法还包括:基于光强电信号和光能量电信号计算自动行走设备与障碍物的距离,控制自动行走设备的运行。其中,控制自动行走设备的运行可以是调整自动行走设备行走路径、行走速度,也可以控制自动行走设备继续前进、后退、停止前进或者停止工作等。
具体地,请参见图3,计算自动行走设备与障碍物的距离方法可以包括以下步骤:
S310、获取反射光的光强电信号。
S320、根据反射光的光强电信号及发射光信号强度,计算障碍物与自动行走设备之间的第一距离。
S330、根据第一距离,控制自动行走设备的运行。
光电传感器向周围环境发射光信号,周围环境中存在障碍物时,障碍物会对光电传感器的发射光信号进行反射。光电传感器受到反射光信号照射时,通过模数转换获取到光能量电信号。计算光强电信号与发射光信号强度的比值,根据光强电信号与发射光信号强度的比值计算障碍物与自动行走设备之间的第一距离。如果障碍物与自动行走设备之间的第一距离比较小,则控制自动行走设备进行规避动作以改变自动行走设备的行走路径,进而避免障碍物与自动行走设备的碰撞。如果障碍物与自动行走设备之间的第一距离比较大,若自动行走设备可以保持行进方向继续移动一段时间,且在继续移动的过程中,一直检测障碍物与自动行走设备之间的第一距离,当自动行走设备需要进行规避动作,则可以改变自动行走设备的行走路径,以避免障碍物与自动行走设备的碰撞。
请参见图4,计算自动行走设备与障碍物的距离方法可以包括以下步骤:
S410、根据发射的光信号和反射光信号之间的相位差,计算障碍物与自动行走设备之间的第二距离。
S420、联合根据第一距离及第二距离,控制自动行走设备的运行。
光电传感器向周围环境发射光信号,周围环境中存在障碍物时,障碍物会对光电传感器的发射光信号进行反射。光电传感器接收到反射光信号。其中,对于光电信号,通常是在光信号上进行调幅载波,通过检测发射光信号和反射光信号的载波的相位差,计算障碍物与自动行走设备之间的第二距离。
示例性地,可以根据障碍物与自动行走设备之间的第一距离、第二距离,得到障碍物与自动行走设备之间距离平均值,根据该距离平均值控制自动行走设备的运行。
示例性地,可以根据经验设定第一距离与第二距离的优先级,比如,如果第一距离的准确度高于第二距离的准确度,当自动行走设备计算出第一距离与第二距离时,则根据第一距离,控制自动行走设备的运行。再比如,如果第二距离的准确度高于第一距离的准确度,当自动行走设备计算出第一距离与第二距离时,则根据第二距离,控制自动行走设备的运行。
在本实施例中,联合根据第一距离及第二距离,更加准确地计算出障碍物 与自动行走设备之间的距离,从而判断机器是否要继续前进或采取其它动作,可以更有效的控制自动行走设备的运行,进而有效辨识并避开周边一定范围内的任意障碍物。
请参见图5,本申请实施例提供一种自动行走设备的避障方法,还包括以下步骤:
S510、根据发射光信号与接收反射光信号之间的时间差,计算障碍物与自动行走设备之间的第三距离。
S520、联合根据第一距离、第二距离及第三距离,控制自动行走设备的运行。
光电传感器向周围环境发射光信号,周围环境中存在障碍物时,障碍物会对光电传感器的发射光信号进行反射。光电传感器接收到反射光信号。其中,在光电传感器发射光信号时刻的同时开始计时,光电传感器接收到被反射回来的反射光信号,就立即停止计时,则记录了发射光信号时刻与接收光信号时刻的时间差T。在发射光信号时刻与接收反射光信号时刻的时间段内,光信号在障碍物与自动行走设备两者之间来回运动。将光信号在空气中的传播速度记为V,根据时间差T,就可以计算出悬崖识别探头的测量距离S,即:S=V*T/2。
示例性地,可以根据障碍物与自动行走设备之间的第一距离、第二距离及第三距离,得到障碍物与自动行走设备之间距离平均值,根据该距离平均值控制自动行走设备的运行。
示例性地,可以根据经验设定第一距离、第二距离、第三距离的优先级,比如,如果第一距离的准确度高于第二距离、第三距离的准确度,当自动行走设备计算出第一距离、第二距离及第三距离时,则根据第一距离,控制自动行走设备的运行。比如,如果第二距离的准确度高于第一距离、第三距离的准确度,当自动行走设备计算出第一距离、第二距离、第三距离时,则根据第二距离,控制自动行走设备的运行。再比如,如果第三距离的准确度高于第一距离、第二距离的准确度,当自动行走设备计算出第一距离、第二距离、第三距离时,则根据第三距离,控制自动行走设备的运行。
在本实施例中,联合根据第一距离、第二距离及第三距离,更加准确地计 算出障碍物与自动行走设备之间的距离,从而判断机器是否要继续前进或采取其它动作,可以更有效的控制自动行走设备的运行,进而有效辨识并避开周边一定范围内的任意障碍物。
请参见图6,本申请实施例提供一种自动行走设备的避障方法,还包括以下步骤:
S610、通过三角测距的方式计算障碍物与自动行走设备之间的第四距离。
S620、联合根据第一距离、第二距离、第三距离及第四距离,控制自动行走设备的行走路径。
自动行走设备上安装有三个及三个以上的光电传感器,其中,光电传感器用于向周围环境发射光信号,其余的光电传感器用于接收周围环境中的反射光信号。比如,三个光电传感器用于接收周围环境中的反射光信号,并进行匹配以计算出反射光信号至三个光电传感器的时间差为Δt12、Δt13和Δt23。通过时间差Δt12、Δt13和Δt23计算三个光电传感器距障碍物的距离d1、d2和d3。
d1-d2=V*Δt12;
d1-d3=V*Δt13;
d2-d3=V*Δt23;
其中,V是当前工况下的光信号的速度。根据上述公式可以障碍物与自动行走设备之间的第四距离。
示例性地,可以根据障碍物与自动行走设备之间的第一距离、第二距离、第三距离及第四距离,得到障碍物与自动行走设备之间距离平均值,根据该距离平均值控制自动行走设备的运行。
示例性地,可以根据经验设定第一距离、第二距离、第三距离及第四距离的优先级,比如,如果第一距离的准确度高于第二距离、第三距离及第四距离的准确度,当自动行走设备计算出第一距离、第二距离、第三距离及第四距离时,则根据第一距离,控制自动行走设备的运行。比如,如果第二距离的准确度高于第一距离、第三距离及第四距离的准确度,当自动行走设备计算出第一距离、第二距离、第三距离及第四距离时,则根据第二距离,控制自动行走设备的运行。比如,如果第三距离的准确度高于第一距离、第二距离及第四距离 的准确度,当自动行走设备计算出第一距离、第二距离、第三距离及第四距离时,则根据第三距离,控制自动行走设备的运行。比如,如果第四距离的准确度高于第一距离、第二距离及第三距离的准确度,当自动行走设备计算出第一距离、第二距离、第三距离及第四距离时,则根据第四距离,控制自动行走设备的运行。
在本实施例中,联合根据第一距离、第二距离、第三距离及第四距离,更加准确地计算出障碍物与自动行走设备之间的距离,从而判断机器是否要继续前进或采取其它动作,可以更有效的控制自动行走设备的运行,进而有效辨识并避开周边一定范围内的任意障碍物。
需要说明的是,自动行走设备可以根据第一距离、第二距离、第三距离及第四距离中任一个或几个控制自动行走设备的运行,其中,控制自动行走设备的运行可以是调整自动行走设备行走路径、行走速度,也可以控制自动行走设备停止前进或者停止工作等。
在一个实施例中,请参见图7,本申请实施例提供一种自动行走设备的避障方法,包括以下步骤:
S710、通过光发射单元向障碍物发射光信号。
S720、通过光接收单元接收障碍物反射回来的反射光信号。
S730、将反射光信号转换为光强电信号和光能量电信号。
S740、基于光强电信号计算反射光信号的强度。
S750、检测反射回来的反射光信号的强度是否在预设的阈值范围内。
S761、若反射光信号的强度大于阈值范围的最大值,减小光电传感器的发射光功率。
S762、若反射光信号的强度小于阈值范围的最小值,增大光电传感器的发射光功率。
S770、获取反射光的光强电信号。
S781、根据反射光的光强电信号及发射光信号强度,计算障碍物与自动行走设备之间的第一距离。
S782、根据发射的光信号和反射光信号之间的相位差,计算障碍物与自动 行走设备之间的第二距离。
S783、根据发射光信号与接收反射光信号之间的时间差,计算障碍物与自动行走设备之间的第三距离。
S784、通过三角测距的方式计算障碍物与自动行走设备之间的第四距离。
S790、联合根据第一距离、第二距离、第三距离及第四距离,控制自动行走设备的行走路径。
应该理解的是,虽然图1-7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-7中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,请参见图8,本申请实施例中提供一种自动行走设备的避障装置800,该装置包括:
发射模块810,用于通过光发射单元向障碍物发射光信号;
接收模块820,用于通过光接收单元接收障碍物反射回来的反射光信号;
检测模块830,用于检测反射光信号的强度是否在预设的阈值范围内;
调整模块840,用于若否,则调整光发射单元的发射光功率。
关于自动行走设备的避障装置的具体限定可以参见上文中对于自动行走设备的避障方法的限定,在此不再赘述。上述自动行走设备的避障装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,本申请实施例中提供一种自动行走设备,请参见图9a,该自动行走设备包括:
光发射单元910,用于向障碍物发射光信号;
光接收单元920,用于接收障碍物反射的反射光信号;
处理单元930,与光接收单元连接,用于检测反射回来的反射光信号的强度是否在预设的阈值范围,若否,则调整光发射单元的发射光功率。
在一个实施例中,光接收单元910将反射光信号转换为光强电信号和光能量电信号。处理单元930还用于基于光强电信号计算反射光信号的强度。
在一个实施例中,处理单元930还用于基于光强电信号和光能量电信号计算自动行走设备与障碍物的距离,控制自动行走设备的运行。
在一个实施例中,处理单元930用于通过以下方式的一种或多种计算自动行走设备与障碍物的距离:
根据反射光的光强电信号及发射光信号强度,计算障碍物与自动行走设备之间的第一距离;
根据发射的光信号与接收的反射光信号之间的时间差,计算障碍物与自动行走设备之间的第二距离;
通过三角测距的方式计算障碍物与自动行走设备之间的第三距离。
在一个实施例中,请参见图9b,该自动行走设备还包括控制单元940,用于根据第一距离、第二距离、第三距离的一种或多种,控制自动行走设备的运行。
在一个实施例中,光信号发射单元和光接收单元集成在同一个光电传感器上。
在一个实施例中,光信号发射单元包括一个光电传感器,光信号接收单元包括至少两个光电传感器。
关于自动行走设备的具体限定可以参见上文中对于自动行走设备的避障方法的限定,在此不再赘述。上述自动行走设备的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (13)
- 一种自动行走设备的避障方法,所述自动行走设备安装有光电传感器,所述光电传感器包括光发射单元和光接收单元,其特征在于,包括:通过所述光发射单元向障碍物发射光信号;通过所述光接收单元接收所述障碍物反射回来的反射光信号;检测所述反射回来的反射光信号的强度是否在预设的阈值范围内;若否,则调整所述光发射单元的发射光功率。
- 根据权利要求1所述的方法,其特征在于,所述若否,则调整所述光发射单元的发射光功率,包括:若所述反射光信号的强度大于所述阈值范围的最大值,减小所述光发射单元的发射光功率;若所述反射光信号的强度小于所述阈值范围的最小值,增大所述光发射单元的发射光功率。
- 根据权利要求1所述的方法,其特征在于,在所述检测所述反射回来的反射光信号的强度是否在预设的阈值范围内之前,所述方法还包括:将所述反射光信号转换为光强电信号和光能量电信号,基于所述光强电信号计算所述反射光信号的强度。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:基于所述光强电信号和所述光能量电信号计算自动行走设备与障碍物的距离,控制自动行走设备的运行。
- 根据权利要求4所述的方法,其特征在于,所述计算自动行走设备与障碍物的距离方法包括以下的一种或几种:根据所述反射光的光强电信号及所述发射光信号强度,计算所述障碍物与所述自动行走设备之间的第一距离;根据发射的光信号与接收的反射光信号之间的时间差,计算所述障碍物与所述自动行走设备之间的第二距离;通过三角测距的方式计算所述障碍物与所述自动行走设备之间的第三距离。
- 一种自动行走设备的避障装置,所述自动行走设备安装有光发射单元和 光接收单元,其特征在于,所述装置包括:发射模块,用于通过所述光发射单元向障碍物发射光信号;接收模块,用于通过所述光接收单元接收所述障碍物反射回来的反射光信号;检测模块,用于检测所述反射光信号的强度是否在预设的阈值范围内;调整模块,用于若否,则调整所述光发射单元的发射光功率。
- 一种自动行走设备,其特征在于,包括:光发射单元,用于向障碍物发射光信号;光接收单元,用于接收所述障碍物反射的反射光信号;处理单元,与所述光接收单元连接,用于检测所述反射回来的反射光信号的强度是否在预设的阈值范围,若否,则调整所述光发射单元的发射光功率。
- 根据权利要求7所述的自动行走设备,其特征在于,所述光接收单元将所述反射光信号转换为光强电信号和光能量电信号;所述处理单元还用于基于所述光强电信号计算所述反射光信号的强度。
- 根据权利要求8所述的自动行走设备,其特征在于,所述处理单元还用于基于所述光强电信号和光能量电信号计算自动行走设备与障碍物的距离,控制自动行走设备的运行。
- 根据权利要求9所述的自动行走设备,其特征在于,所述处理单元用于通过以下方式的一种或多种计算自动行走设备与障碍物的距离:根据所述反射光的光强电信号及所述发射光信号强度,计算所述障碍物与所述自动行走设备之间的第一距离;根据发射的光信号与接收的反射光信号之间的时间差,计算所述障碍物与所述自动行走设备之间的第二距离;通过三角测距的方式计算所述障碍物与所述自动行走设备之间的第三距离。
- 根据权利要求10所述的自动行走设备,其特征在于,还包括控制单元,所述控制单元,用于根据所述第一距离、所述第二距离、所述第三距离的一种或多种,控制自动行走设备的运行。
- 根据权利要求7所述的自动行走设备,其特征在于,所述光信号发射单元和光接收单元集成在同一个光电传感器上。
- 根据权利要求7所述的自动行走设备,其特征在于,所述光信号发射单元包括一个光电传感器,所述光信号接收单元包括至少两个光电传感器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811456314.7A CN111338332B (zh) | 2018-11-30 | 2018-11-30 | 自动行走设备、其避障方法及装置 |
CN201811456314.7 | 2018-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020108267A1 true WO2020108267A1 (zh) | 2020-06-04 |
Family
ID=70851904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/116259 WO2020108267A1 (zh) | 2018-11-30 | 2019-11-07 | 自动行走设备、其避障方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111338332B (zh) |
WO (1) | WO2020108267A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113495567A (zh) * | 2021-08-27 | 2021-10-12 | 湖南格兰博智能科技有限责任公司 | 一种悬崖检测方法及扫地机器人 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112596111B (zh) * | 2020-11-04 | 2024-02-13 | 普联技术有限公司 | 障碍物识别方法、装置、设备及可读存储介质 |
CN112731412B (zh) * | 2020-12-28 | 2023-09-15 | 南京苏美达智能技术有限公司 | 一种超声波避障方法及自动行走设备 |
CN113331744B (zh) * | 2021-06-16 | 2022-08-09 | 深圳银星智能集团股份有限公司 | 清洁机器人的行进控制方法、避障模组及清洁机器人 |
CN113655470B (zh) * | 2021-08-09 | 2023-10-10 | 珠海格力电器股份有限公司 | 对象检测方法、装置、设备及存储介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2355523A (en) * | 1999-10-21 | 2001-04-25 | Notetry Ltd | Infrared detection system |
CN101435869A (zh) * | 2008-10-22 | 2009-05-20 | 上海科勒电子科技有限公司 | 距离检测感应装置的功耗节省方法 |
CN102301684A (zh) * | 2011-06-24 | 2011-12-28 | 华为终端有限公司 | 一种终端确定物体接近的方法及装置 |
CN104811546A (zh) * | 2015-04-02 | 2015-07-29 | 深圳市金立通信设备有限公司 | 一种终端 |
US20160274238A1 (en) * | 2015-03-05 | 2016-09-22 | Horizon Hobby, LLC | Optical spread spectrum detection and ranging |
CN205679994U (zh) * | 2015-08-16 | 2016-11-09 | 北醒(北京)光子科技有限公司 | 一种智能测距及避障装置的电路 |
CN107045352A (zh) * | 2017-05-31 | 2017-08-15 | 珠海市微半导体有限公司 | 基于多红外的机器人避障装置、其控制方法及机器人沿边控制方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2820216B1 (fr) * | 2001-01-26 | 2003-04-25 | Wany Sa | Procede et dispositif de detection d'obstacle et de mesure de distance par rayonnement infrarouge |
EP1388739A1 (de) * | 2002-08-09 | 2004-02-11 | HILTI Aktiengesellschaft | Laserdistanzmessgerät mit Phasenlaufzeitmessung |
JP4855749B2 (ja) * | 2005-09-30 | 2012-01-18 | 株式会社トプコン | 距離測定装置 |
IE20060275A1 (en) * | 2006-04-10 | 2007-11-14 | Trinity College Dublin | A method and aparatus for determining distance between two spaced apart surfaces |
JP5180501B2 (ja) * | 2007-03-23 | 2013-04-10 | 富士フイルム株式会社 | 測距装置及び測距方法 |
TWI385360B (zh) * | 2008-12-22 | 2013-02-11 | Asia Optical Co | 雷射測距裝置及其控制方法 |
JP5602538B2 (ja) * | 2010-03-03 | 2014-10-08 | キヤノン株式会社 | 光波干渉計測装置 |
DE102011081561B4 (de) * | 2011-08-25 | 2024-06-13 | pmdtechnologies ag | Lichtlaufzeitkamerasystem mit Signalpfadüberwachung |
EP2821748B1 (en) * | 2012-03-01 | 2019-07-31 | Nissan Motor Co., Ltd | Range finding device and range finding method |
CN102749927A (zh) * | 2012-07-20 | 2012-10-24 | 常州大学 | 无人飞机自动规避障碍物的系统及其规避方法 |
EP2894491B1 (en) * | 2013-12-18 | 2020-05-27 | LG Electronics Inc. | Distance measuring device and method thereof |
CN103941306B (zh) * | 2014-01-13 | 2017-02-01 | 苏州爱普电器有限公司 | 清洁机器人及用于控制其避开障碍物的方法 |
DE102014117705B3 (de) * | 2014-12-02 | 2016-02-18 | Odos Imaging Ltd. | Abstandsmessvorrichtung und Verfahren zum Bestimmen eines Abstands |
CN205809293U (zh) * | 2015-09-06 | 2016-12-14 | 北醒(北京)光子科技有限公司 | 无人机、无人车和行走机器人用红外测距及避障装置 |
EP3505641A1 (en) * | 2015-12-18 | 2019-07-03 | Paris Sciences et Lettres - Quartier Latin | Optical device for measuring the position of an object |
EP3459334B1 (en) * | 2016-05-19 | 2022-09-07 | Positec Power Tools (Suzhou) Co., Ltd. | Self-moving device and control method thereof |
CN106646189A (zh) * | 2016-11-14 | 2017-05-10 | 无锡爱睿芯电子有限公司 | 一种障碍物探测模块 |
CN106597404B (zh) * | 2016-11-29 | 2019-06-14 | 上海无线电设备研究所 | 太赫兹云雷达信号处理方法及系统 |
CN108196264B (zh) * | 2016-12-08 | 2020-06-23 | 北京万集科技股份有限公司 | 一种激光测距方法、装置及系统 |
CN108267752B (zh) * | 2016-12-15 | 2022-01-18 | 苏州宝时得电动工具有限公司 | 自移动设备的工作区域的分区方法、装置和电子设备 |
IT201600127506A1 (it) * | 2016-12-16 | 2018-06-16 | St Microelectronics Srl | Procedimento per rilevare oggetti e corrispondente apparecchiatura |
US11592556B2 (en) * | 2017-02-17 | 2023-02-28 | Hokuyo Automatic Co., Ltd. | Object capturing device, capture target, and object capturing system |
CN108664014A (zh) * | 2017-03-29 | 2018-10-16 | 苏州宝时得电动工具有限公司 | 一种自动行走设备回归充电的控制方法及装置 |
CN108519601A (zh) * | 2018-04-13 | 2018-09-11 | 深圳臻迪信息技术有限公司 | 测距方法、装置和测距仪器 |
-
2018
- 2018-11-30 CN CN201811456314.7A patent/CN111338332B/zh active Active
-
2019
- 2019-11-07 WO PCT/CN2019/116259 patent/WO2020108267A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2355523A (en) * | 1999-10-21 | 2001-04-25 | Notetry Ltd | Infrared detection system |
CN101435869A (zh) * | 2008-10-22 | 2009-05-20 | 上海科勒电子科技有限公司 | 距离检测感应装置的功耗节省方法 |
CN102301684A (zh) * | 2011-06-24 | 2011-12-28 | 华为终端有限公司 | 一种终端确定物体接近的方法及装置 |
US20160274238A1 (en) * | 2015-03-05 | 2016-09-22 | Horizon Hobby, LLC | Optical spread spectrum detection and ranging |
CN104811546A (zh) * | 2015-04-02 | 2015-07-29 | 深圳市金立通信设备有限公司 | 一种终端 |
CN205679994U (zh) * | 2015-08-16 | 2016-11-09 | 北醒(北京)光子科技有限公司 | 一种智能测距及避障装置的电路 |
CN107045352A (zh) * | 2017-05-31 | 2017-08-15 | 珠海市微半导体有限公司 | 基于多红外的机器人避障装置、其控制方法及机器人沿边控制方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113495567A (zh) * | 2021-08-27 | 2021-10-12 | 湖南格兰博智能科技有限责任公司 | 一种悬崖检测方法及扫地机器人 |
Also Published As
Publication number | Publication date |
---|---|
CN111338332A (zh) | 2020-06-26 |
CN111338332B (zh) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020108267A1 (zh) | 自动行走设备、其避障方法及装置 | |
CN109791195B (zh) | 用于光达的自适应发射功率控制 | |
US20220299613A1 (en) | Pulse ranging device and method, and automatic cleaning apparatus having same | |
US11693427B2 (en) | Plurality of autonomous mobile robots and controlling method for the same | |
CN105849620B (zh) | 扫描测距仪 | |
US11998159B2 (en) | Vacuum cleaner and control method thereof | |
GB2355523A (en) | Infrared detection system | |
US12059115B2 (en) | Cleaner and method for controlling same | |
CN108283466A (zh) | 一种扫地机器人的障碍物高度检测装置和方法以及跨越装置和方法 | |
US20210186289A1 (en) | Ultrasonic sensor and robot cleaner equipped therewith | |
US20230341528A1 (en) | Optical time of flight sensor for navigation systems in robotic applications | |
US11945124B2 (en) | Controlling movement of a mobile robot | |
KR100662638B1 (ko) | 로봇 청소기의 장애물 감지 오차 보정 장치 및 그 방법 | |
CN105380573B (zh) | 用于智能吸尘器寻找充电设备的装置、方法及智能吸尘器 | |
CN116381711A (zh) | 一种抗干扰的距离测量方法、深度相机 | |
US20230225580A1 (en) | Robot cleaner and robot cleaner control method | |
WO2019061399A1 (zh) | 一种地面识别装置及清洁设备 | |
CN114879690A (zh) | 场景参数调整方法、装置、电子设备及存储介质 | |
CN207937608U (zh) | 检测组件、扫地机器人及检测其行走路况的系统 | |
CN108431715A (zh) | 自动识别前方物体的自移动设备及其识别方法 | |
CN210593621U (zh) | 基于NB-IoT的带清扫功能的智能垃圾桶 | |
CN114305260A (zh) | 一种清洁机器人的控制方法、装置、介质和清洁机器人 | |
WO2023159974A1 (zh) | 测距方法、光电探测模组、芯片、电子设备及介质 | |
WO2019104733A1 (zh) | 扫地机器人和扫地机器人的避障方法及装置 | |
CN221827069U (zh) | 测距装置和自行走设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19890933 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19890933 Country of ref document: EP Kind code of ref document: A1 |