WO2020108064A1 - 基于柔性电感-硅基电感结构的风速传感器 - Google Patents

基于柔性电感-硅基电感结构的风速传感器 Download PDF

Info

Publication number
WO2020108064A1
WO2020108064A1 PCT/CN2019/108032 CN2019108032W WO2020108064A1 WO 2020108064 A1 WO2020108064 A1 WO 2020108064A1 CN 2019108032 W CN2019108032 W CN 2019108032W WO 2020108064 A1 WO2020108064 A1 WO 2020108064A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductance
silicon
flexible
wind speed
inductor
Prior art date
Application number
PCT/CN2019/108032
Other languages
English (en)
French (fr)
Inventor
易真翔
万煜
邓文俊
王立峰
秦明
黄庆安
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/054,133 priority Critical patent/US11585825B2/en
Publication of WO2020108064A1 publication Critical patent/WO2020108064A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer

Definitions

  • the invention discloses a wind speed sensor based on a flexible inductance-silicon base inductance structure, relates to a MEMS device, and belongs to the technical field of measurement and testing.
  • Wind speed measurement which is closely related to people's lives, is widely used in industrial construction, agricultural production, aerospace, transportation and tourism, weather forecast, and environmental protection. A long time ago, the measurement of wind speed was mainly achieved by mechanical wind cups and wind vanes. In recent years, wind speed sensors based on the principles of ultrasound and Doppler have appeared, but in general, these wind speed sensors are The cost is too high to meet the application requirements of miniaturization and low power consumption in the Internet of Things technology.
  • Mutual inductance is widely used in circuits, and energy or signals can be transferred from one coil to another.
  • the basic principle of mutual inductance is magnetic coupling. If two coils are close to each other, part of the magnetic flux generated by the current in the first coil is linked to the second coil, and the current change in the first coil will cause it The magnetic flux of the chain link with the second coil changes, and an induced electromotive force is generated in the second coil.
  • the size of the mutual inductance depends on the geometry, size, relative position of the two coils, the number of turns and the magnetic permeability of the medium around them.
  • This application aims to use the Bernoulli effect and the coil mutual inductance effect to realize a wind speed sensor with light structure and low loss.
  • the purpose of the invention of the present invention is to provide a wind speed sensor based on the flexible inductance-silicon based inductance structure in view of the above-mentioned deficiencies of the background art, realize the wind speed measurement based on the Bernoulli effect and the principle of coil mutual inductance, and solve the existing wind speed sensor due to the volume
  • the huge and high cost can not meet the technical problems of the application requirements of the Internet of Things technology such as miniaturization and low power consumption.
  • Wind speed sensor based on flexible inductance-silicon based inductance structure including upper flexible inductance and lower silicon based inductance, flexible inductance is composed of PET substrate and spiral coil located on the lower surface of PET substrate, silicon inductance is composed of silicon substrate and located on substrate The spiral coil on the upper surface is composed of contact blocks at both ends of the spiral coil. There is an air gap between the upper flexible inductor and the lower silicon-based inductor. The contact block on the upper surface of the silicon substrate constitutes the measurement port.
  • the flexible inductor and the silicon-based inductor are parallel to each other, and the mutual inductance is fixed, and the center frequency point of the silicon-based inductor is unchanged; when there is wind, due to the Bernoulli effect, the flexible inductor-silicon-based inductor double-layer structure is formed
  • the pressure in the air cavity is less than the external pressure, the flexible inductor bends downward, and the degree of bending strengthens as the wind speed increases, so that the mutual inductance between the flexible inductor and the silicon-based inductor changes, resulting in a change in the center frequency of the silicon-based inductor.
  • the detection method of the above speed sensor is to obtain the center frequency point by measuring the input return loss (S 11 ) curve of the silicon-based inductance measurement port, and the corresponding wind speed value can be converted to achieve wind speed measurement.
  • the wind speed sensor disclosed in the present application can also be realized by a double-layer inductor structure composed of an upper layer silicon-based inductor and a lower layer flexible inductor, and its working principle and detection method are the same as the double inductor structure of the upper layer flexible inductor and the lower layer silicon based inductor.
  • the present invention realizes a wind speed sensor through a double-layer inductance structure including a flexible inductance. Applying a flexible inductance with the characteristics of instantaneous deformation to the wind speed sensor can make the entire wind speed sensor structure light and fast in response speed.
  • the present application can be realized by using existing flexible inductors and silicon-based inductors, which has the advantages of small size and low cost compared to existing wind speed sensors.
  • FIG. 1 is a schematic structural diagram of a wind speed sensor based on a flexible inductance-silicon based inductance structure.
  • Fig. 2 is a flexible inductor metal layer of a wind speed sensor based on a flexible inductor-silicon based inductor structure.
  • Fig. 3 is a cross-sectional view of the flexible inductance of the wind speed sensor based on the flexible inductance-silicon-based inductance structure along AA'.
  • FIG. 4 is a silicon-based inductor metal layer of a wind speed sensor based on a flexible inductor-silicon-based inductor structure.
  • Fig. 5 is a cross-sectional view of a silicon-based inductor of a wind speed sensor based on a flexible inductor-silicon-based inductor structure along BB'.
  • FIG. 6 is a schematic diagram of the Bernoulli effect of a wind speed sensor based on a flexible inductance-silicon based inductance structure.
  • the wind speed sensor disclosed in this application is divided into an upper layer flexible inductor and a lower layer silicon-based inductor, and an air cavity is formed between the two to communicate with the outside world.
  • the flexible inductor is composed of a PET substrate 1 and a spiral coil 2 located on the lower surface of the PET substrate 1.
  • the silicon-based inductor is composed of a silicon substrate 3, a spiral coil 4 on the upper surface of the silicon substrate 3, and contact blocks 5 and 6 on both ends of the spiral coil.
  • the silicon-based inductance When the wind speed sensor is actually working, the silicon-based inductance is connected to the test circuit through the contact block 5 and the contact block 6, the test circuit passes current into the spiral coil 4, due to electromagnetic induction, a magnetic field is generated around the spiral coil 4, the magnetic field is coupled due to the mutual inductance effect Into the flexible inductor and generate a mutual inductive electromotive force in the spiral coil 2.
  • the flexible inductor and the silicon-based inductor remain parallel, the mutual inductance between the two remains unchanged, and the center frequency point of the silicon-based inductor does not change; in the case of wind, as shown in Figure 6, the wind penetrates Through the air cavity, the air velocity in the cavity is greater than the external air velocity ⁇ 0.
  • the pressure P in the cavity is less than the external pressure P 0.
  • the flexible inductor bends downwards due to the difference between the upper and lower pressures and the silicon-based inductor The distance becomes smaller, the mutual inductance between the two increases, and the center frequency of the silicon-based inductor changes.
  • the center frequency point can be obtained, and the size of the wind speed to be measured can be deduced.
  • the wind speed sensor based on the flexible inductance-silicon-based inductance structure adopts flexible materials, which is light in structure, instantaneous in deformation and fast in response speed; in addition, the inductor has small heat loss and reduces the sensor power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种基于柔性电感-硅基电感结构的风速传感器,为柔性电感和硅基电感组成的双层电感结构,所述柔性电感的金属层与硅基电感的金属层面对面且二者之间留有足够互感电动势的空气腔,硅基电感金属层中淀积有构成测定端口的接触块,结构轻便,响应速度快,利用伯努利效应及线圈互感效应实现风速检测,电感自身热损耗小,降低了传感器功率。

Description

基于柔性电感-硅基电感结构的风速传感器 技术领域
本发明公开了基于柔性电感-硅基电感结构的风速传感器,涉及MEMS器件,属于测量测试的技术领域。
背景技术
与人们的生活息息相关的风速测量广泛应用在工业建设、农业生产、航天航空、交通旅游、气象预报以及环境保护等领域。很早之前,风速的测量主要采用机械式风杯和风向标来实现,近些年来,又出现了基于超声原理和多普勒原理的风速传感器,但总的来说,这些风速传感器由于体积庞大、成本高而无法满足物联网技术中的小型化、低功耗等应用需求。
尼尔·伯努利在1726年提出了“伯努利原理”,这是在流体力学的连续介质理论方程建立之前水力学所采用的基本原理,其实质是流体的机械能守恒,即:动能+重力势能+压力势能=常数。伯努利原理往往被表述为p+1/2ρv 2+ρgh=C,这个式子被称为伯努利方程,式中,p为流体中某点的压强,v为流体在该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。根据伯努利原理,我们可以得到一个重要的推论:等高流动时,流速越大,压力越小。
互感现象在电路中广泛应用,能量或信号可以由一个线圈传递到另外一个线圈。互感的基本原理是磁的耦合,如果有两只线圈互相靠近,第一个线圈中电流所产生的磁通有一部分与第二个线圈相环链,第一个线圈中的电流变化会导致其与第二个线圈环链的磁通变化,在第二个线圈中产生感应电动势。互感系数的大小取决于两个线圈的几何形状、大小、相对位置、各自的匝数以及它们周围介质的磁导率。
本申请旨在利用伯努利效应及线圈互感效应实现结构轻便、损耗小的风速传感器。
发明内容
本发明的发明目的是针对上述背景技术的不足,提供了基于柔性电感-硅基电感结构的风速传感器,实现了基于伯努利效应及线圈互感原理的风速测量,解决了现有风速传感器由于体积庞大、成本高无法满足物联网技术中小型化、低功耗等应用需求的技术问题。
本发明为实现上述发明目的采用如下技术方案:
基于柔性电感-硅基电感结构的风速传感器,包括上层柔性电感和下层硅基电感,柔性电感由PET衬底及位于PET衬底下表面的螺旋线圈组成,硅基电感由硅衬底及位于衬底上表面的螺旋线圈、螺旋线圈两端的接触块组成,上层柔性电感和下层硅基电感之间留有气隙,硅衬底上表面的接触块构成测定端口。
无风时,柔性电感和硅基电感相互平行,两者互感一定,硅基电感的中心频率点不变;有风时,由于伯努利效应,柔性电感-硅基电感双层结构之间形成的空气腔内的压强小 于外界压强,柔性电感向下弯曲,弯曲程度随风速加大而加强,使得柔性电感与硅基电感间的互感改变,导致硅基电感的中心频率点发生改变。
上述速度传感器的检测方法为:通过测定硅基电感测定端口的输入回波损耗(S 11)曲线得到中心频率点,即可转换得到对应的风速值,实现风速的测量。
本申请公开的风速传感器还可以通过上层硅基电感和下层柔性电感组成的双层电感结构实现,其工作原理及检测方法均与上层柔性电感和下层硅基电感的双电感结构相同。
本发明采用上述技术方案,具有以下有益效果:
(1)本发明通过包含柔性电感的双层电感结构实现了风速传感器,将具有形变即时性特点的柔性电感应用于风速传感器,能够使得整个风速传感器结构轻便,响应速度快。
(2)利用伯努利效应及线圈互感效应实现风速检测,电感自身热损耗小,降低了传感器功率。
(3)本申请利用已有的柔性电感及硅基电感即可实现,相较于现有风速传感器而言具有体积小成本低的优势。
附图说明
图1是基于柔性电感-硅基电感结构的风速传感器的结构示意图。
图2是基于柔性电感-硅基电感结构的风速传感器的柔性电感金属层。
图3是基于柔性电感-硅基电感结构的风速传感器柔性电感沿AA’的剖面图。
图4是基于柔性电感-硅基电感结构的风速传感器的硅基电感金属层。
图5是基于柔性电感-硅基电感结构的风速传感器硅基电感沿BB’的剖面图。
图6是基于柔性电感-硅基电感结构的风速传感器的伯努利效应示意图。
图中标号说明:1、PET衬底,2、螺旋线圈,3、硅衬底,4、螺旋线圈,5、接触块,6、接触块。
具体实施方式
下面结合附图对发明的技术方案进行详细说明。
本申请公开的风速传感器如图1所示,分为上层柔性电感、下层硅基电感两部分,两者之间形成空气腔与外界连通。柔性电感如图2、图3所示,由PET衬底1及位于PET衬底1下表面的螺旋线圈2组成。硅基电感如图4、图5所示,由硅衬底3以及位于硅衬底3上表面的螺旋线圈4以及螺旋线圈两端的接触块5、接触块6组成。
该风速传感器实际工作时,硅基电感通过接触块5、接触块6接入测试电路,测试电路向螺旋线圈4内通入电流,由于电磁感应,螺旋线圈4周围产生磁场,磁场因互感效应耦合到柔性电感中并在螺旋线圈2内产生互感电动势。在无风情况下,柔性电感与硅基电感保持平行,两者之间的互感维持不变,硅基电感的中心频率点不发生变化;在有风情况下,如图6所示,风穿过空气腔,使腔内空气流速υ大于外界空气流速υ 0,根据伯努利原理,腔内压强P小于外界压强P 0,柔性电感由于上下压差向下弯曲使得其与硅基电感之间的距离变小,两者之间的互感增强,硅基电感的中心频率点发生变化。最终,根据测定硅基电感的S 11曲线得到中心频率点,即可反推出待测的风速大小。
相对于传统的MEMS风速传感器,基于柔性电感-硅基电感结构的风速传感器采用柔性材料,结构轻便,形变具有即时性,响应速度快;此外,电感自身热损耗小,降低了传感器功耗。
本申请提出的基于柔性螺旋线圈结构的风速传感器的制备流程如下:
(1)上层柔性电感
①准备PET衬底1;
②旋涂光刻胶,光刻并刻蚀,去除制备螺旋线圈2处的光刻胶;
③蒸发Cu淀积,剥离光刻胶,形成螺旋线圈2;
(2)下层硅基电感
①准备硅衬底3;
②旋涂光刻胶,光刻并刻蚀,去除制备螺旋线圈4和接触块5、接触块6处的光刻胶;
③蒸发Cu淀积,剥离光刻胶,形成螺旋线圈4和接触块5、接触块6。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 基于柔性电感-硅基电感结构的风速传感器,其特征在于,所述风速传感器为柔性电感和硅基电感组成的双层电感结构,所述柔性电感的金属层与硅基电感的金属层面对面且二者之间留有足够互感电动势的空气腔,所述硅基电感金属层中淀积有构成测定端口的接触块。
  2. 根据权利要求1所述基于柔性电感-硅基电感结构的风速传感器,其特征在于,所述柔性电感为上层电感结构,硅基电感为下层电感结构。
  3. 根据权利要求1所述基于柔性电感-硅基电感结构的风速传感器,其特征在于,所述硅基电感为上层电感结构,柔性电感为下层电感结构。
  4. 根据权利要求1所述基于柔性电感-硅基电感结构的风速传感器,其特征在于,所述柔性电感通过在柔性衬底上淀积金属层形成,在柔性衬底上旋涂光刻胶,刻蚀需要制备电感线圈的部位的光刻胶,采用蒸发法淀积金属层后剥离光刻胶形成电感线圈。
  5. 根据权利要求1所述基于柔性电感-硅基电感结构的风速传感器,其特征在于,所述硅基电感通过在硅衬底上淀积金属层形成,在硅衬底上旋涂光刻胶,刻蚀需要制备电感线圈和接触块的部位的光刻胶,采用蒸发法淀积金属层后剥离光刻胶形成电感线圈和接触块。
  6. 根据权利要求4所述基于柔性电感-硅基电感结构的风速传感器,其特征在于,所述柔性衬底为聚对苯二甲酸类衬底。
  7. 利用权利要求1至6中任意一项所述基于柔性电感-硅基电感结构的风速传感器检测风速的方法,其特征在于,固定柔性电感和硅基电感并调整二者之间的距离以使二者之间的空气腔足够互感电动势,向空气腔内送风,检测测定端口的输入回波损耗,根据输入回波损耗曲线确定硅基电感的中心频率点,反推硅基电感的中心频率点与风速的关系式确定风速测量值。
PCT/CN2019/108032 2018-11-27 2019-09-26 基于柔性电感-硅基电感结构的风速传感器 WO2020108064A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/054,133 US11585825B2 (en) 2018-11-27 2019-09-26 Wind speed sensor based on a flexible inductor and a silicon-based inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811423034.6 2018-11-27
CN201811423034.6A CN109580981B (zh) 2018-11-27 2018-11-27 基于柔性电感-硅基电感结构的风速传感器

Publications (1)

Publication Number Publication Date
WO2020108064A1 true WO2020108064A1 (zh) 2020-06-04

Family

ID=65924740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108032 WO2020108064A1 (zh) 2018-11-27 2019-09-26 基于柔性电感-硅基电感结构的风速传感器

Country Status (3)

Country Link
US (1) US11585825B2 (zh)
CN (1) CN109580981B (zh)
WO (1) WO2020108064A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580981B (zh) * 2018-11-27 2020-03-31 东南大学 基于柔性电感-硅基电感结构的风速传感器
CN113687097B (zh) * 2021-08-23 2022-10-18 东南大学 一种基于柔性电感结构的无源无线风速传感器
CN115042204A (zh) * 2022-06-28 2022-09-13 合肥工业大学 一种高效驱动的自感知软体致动器
CN115165005B (zh) * 2022-08-26 2024-03-08 南京高华科技股份有限公司 一种mems流量传感器及其制备方法
CN115561481B (zh) * 2022-10-11 2024-03-08 南京高华科技股份有限公司 一种mems风速传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819214A (zh) * 2010-01-29 2010-09-01 东南大学 基于陶瓷圆片级封装的集成风速风向传感器及其制备方法
CN101900743A (zh) * 2010-05-28 2010-12-01 东南大学 颗粒速度的线性静电传感器阵列测量方法及装置
US20110283811A1 (en) * 2010-05-18 2011-11-24 Siargo Ltd. Integrated Micromachined Wind and Gas Velocity Profiler
WO2014116205A1 (en) * 2013-01-22 2014-07-31 Mingqiang Yi A mems chip for wind speed measurements
CN204008693U (zh) * 2014-07-18 2014-12-10 苏州能斯达电子科技有限公司 一种热膜风速风向传感器
CN107907707A (zh) * 2017-12-28 2018-04-13 东南大学 一种基于双层热电堆结构的风速风向传感器及检测方法
CN109580981A (zh) * 2018-11-27 2019-04-05 东南大学 基于柔性电感-硅基电感结构的风速传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036703A1 (de) * 2009-08-05 2011-02-17 Technische Universität Ilmenau Vorrichtung und Verfahren zur Messung der Bewegungsgeschwindigkeit bewegter elektrisch leitfähiger Substanzen
CN202512134U (zh) * 2012-04-09 2012-10-31 杜飞翔 风速测量头
CN202956389U (zh) * 2012-10-08 2013-05-29 华北电力大学 一种便携式风速测量装置
CN105097788A (zh) * 2014-05-22 2015-11-25 上海北京大学微电子研究院 一种新型的电感结构及实现方法
CN106771337A (zh) * 2016-11-23 2017-05-31 南京理工大学 基于压电片的风速信号采集方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819214A (zh) * 2010-01-29 2010-09-01 东南大学 基于陶瓷圆片级封装的集成风速风向传感器及其制备方法
US20110283811A1 (en) * 2010-05-18 2011-11-24 Siargo Ltd. Integrated Micromachined Wind and Gas Velocity Profiler
CN101900743A (zh) * 2010-05-28 2010-12-01 东南大学 颗粒速度的线性静电传感器阵列测量方法及装置
WO2014116205A1 (en) * 2013-01-22 2014-07-31 Mingqiang Yi A mems chip for wind speed measurements
CN204008693U (zh) * 2014-07-18 2014-12-10 苏州能斯达电子科技有限公司 一种热膜风速风向传感器
CN107907707A (zh) * 2017-12-28 2018-04-13 东南大学 一种基于双层热电堆结构的风速风向传感器及检测方法
CN109580981A (zh) * 2018-11-27 2019-04-05 东南大学 基于柔性电感-硅基电感结构的风速传感器

Also Published As

Publication number Publication date
CN109580981B (zh) 2020-03-31
US11585825B2 (en) 2023-02-21
US20210123940A1 (en) 2021-04-29
CN109580981A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020108064A1 (zh) 基于柔性电感-硅基电感结构的风速传感器
CN105938021B (zh) 一种多层电感无源无线lc温度传感器
CN106569155B (zh) 一种基于超磁致伸缩薄膜的悬臂梁叉指电容磁场传感探头
CN103213942B (zh) 一种无源无线电容式湿度传感器的制备方法
CN105675916B (zh) 高灵敏硅二维热式风速计及其制备方法
CN103105592B (zh) 单芯片三轴磁场传感器及制备方法
CN203365045U (zh) 一种微电子机械系统的电容式气压传感器
WO2020082857A1 (zh) 一种抗振型双涡街传感器流体测量装置及测量方法
CN103983395B (zh) 一种微压力传感器及其制备与检测方法
CN103471740B (zh) 一种电容式温度传感器
CN105043581B (zh) 一种无线无源mems温度传感器及其制备方法
CN107576821A (zh) 电感悬臂梁无线无源加速度传感器
CN105203251B (zh) 压力传感芯片及其加工方法
CN103837290B (zh) 高精度的电容式压力传感器
CN105116019B (zh) 一种电感式mems湿度传感器及其制备方法
CN104833710B (zh) 一种无线无源mems湿度传感器及其制备方法
CN101832960A (zh) 一种围护结构热阻现场检测的测量方法
CN106644205A (zh) 一种基于mems在线式微波功率传感器结构的压力传感器
CN104977425B (zh) 一种测风传感器芯片结构及其制造方法
CN107765036A (zh) 电感双端固支梁无线无源加速度传感器
CN206280312U (zh) 一种利用磁感应检测活塞位移的活塞式蓄能器
CN104986719A (zh) 一种无线无源mems温湿度集成传感器及其制备方法
CN107702827A (zh) 一种基于超材料结构的压力传感器
CN107817058A (zh) 电感悬臂梁无线无源温度传感器
CN107747981A (zh) 电感悬臂梁无线无源流量传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890684

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19890684

Country of ref document: EP

Kind code of ref document: A1