WO2020107954A1 - 一种测量方法及装置 - Google Patents

一种测量方法及装置 Download PDF

Info

Publication number
WO2020107954A1
WO2020107954A1 PCT/CN2019/101446 CN2019101446W WO2020107954A1 WO 2020107954 A1 WO2020107954 A1 WO 2020107954A1 CN 2019101446 W CN2019101446 W CN 2019101446W WO 2020107954 A1 WO2020107954 A1 WO 2020107954A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch block
value
pbch
fields
unit
Prior art date
Application number
PCT/CN2019/101446
Other languages
English (en)
French (fr)
Inventor
黄煌
高宽栋
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020107954A1 publication Critical patent/WO2020107954A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of communications, and in particular to a measurement method and device.
  • Beamforming technology is used to limit the energy of transmitted signals within a certain beam direction, thereby increasing the efficiency of signals and reception. Beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, thereby achieving higher communication efficiency and obtaining higher network capacity.
  • it is first necessary to match the transmission beam and the reception beam to maximize the gain from the transmission end to the reception end, otherwise, it is impossible to obtain relatively high communication efficiency. And in order to achieve full coverage, the beam at the base station is required to be scanned.
  • SS/PBCH Block half-frame synchronization signals/physical broadcast channel
  • the present application provides a measurement method and device, which can reduce the time for a terminal device to measure a beam.
  • the specific plan is as follows:
  • a measurement method includes: receiving a plurality of half frames from a network device within a synchronization signal/physical broadcast channel SS/PBCH block period, at least two of the plurality of half frames
  • the half-frame includes SS/PBCH blocks; the signal strength of the SS/PBCH blocks is measured.
  • the solution provided by the present application configures multiple half-frames containing SS/PBCH blocks in one SS/PBCH block period, so that the terminal device completes beam measurement in one SS/PBCH block period or a short period of time, There is no need to span multiple cycles, which effectively reduces the time of beam measurement.
  • a measurement method includes: generating a plurality of field frames, at least two field fields of the plurality of field frames including an SS/PBCH block, and a SS/PBCH block in a synchronization signal/physical broadcast channel During the period, the multiple half-frames are sent.
  • the terminal device can complete the beam measurement within one period or a shorter period of time without cross Multiple cycles greatly reduce the time of beam measurement.
  • an apparatus including: a receiving unit for receiving a plurality of half frames from a network device within a synchronization signal/physical broadcast channel SS/PBCH block period, at least The two fields include the SS/PBCH block; the processing unit is used to measure the signal strength of the SS/PBCH block.
  • the terminal device by configuring multiple half-frames containing SS/PBCH blocks within one SS/PBCH block period, the terminal device completes the beam within one SS/PBCH block period or a relatively short period of time The measurement does not need to span multiple cycles, which effectively reduces the time of beam measurement.
  • an apparatus including: a processing unit for generating a plurality of fields, at least two fields of the plurality of fields include an SS/PBCH block; a transmission unit is used to synchronize a signal/ During the SS/PBCH block period of the physical broadcast channel, the multiple fields are transmitted.
  • a measurement method includes: receiving a plurality of SS/PBCH block-based radio resource management measurement time configuration SMTCs from a network device within a synchronization signal/physical broadcast channel SS/PBCH block period, At least two of the plurality of SMTCs include SS/PBCH blocks, wherein one SMTC includes one SS/PBCH block; and the signal strength of the SS/PBCH block is measured.
  • the solution provided by this application configures multiple SMTCs containing SS/PBCH blocks in one SS/PBCH block period, so that the terminal device completes beam measurement in one SS/PBCH block period or a short period of time, without Across multiple cycles, the time for beam measurement is effectively reduced.
  • a measurement method includes: generating a plurality of SSTCs based on SS/PBCH block radio resource management measurement time configuration SMTCs, at least two of the plurality of SMTCs including SS/PBCH blocks, wherein The SMTC includes one SS/PBCH block; in one SS/PBCH block period, the multiple SMTCs are sent.
  • an apparatus includes: a receiving unit configured to receive multiple SS/PBCH block-based radio resource management measurement time configurations from a network device within a synchronization signal/physical broadcast channel SS/PBCH block period SMTC, at least two SMTCs of the plurality of SMTCs include SS/PBCH blocks; wherein, one SMTC contains one SS/PBCH block; a processing unit is used to measure the signal strength of the SS/PBCH block.
  • the terminal device by configuring multiple SMTCs containing SS/PBCH blocks in one SS/PBCH block period, the terminal device completes beam measurement in one SS/PBCH block period or a relatively short period of time , No need to span multiple cycles, effectively reducing the time of beam measurement.
  • an apparatus including: a processing unit for generating a plurality of SMTCs, at least two of the plurality of SMTCs including SS/PBCH blocks; wherein, one SMTC includes one SS/PBCH block; The unit is configured to send the multiple SMTCs in a synchronization signal/physical broadcast channel SS/PBCH block period.
  • the number of SS/PBCH blocks in different fields is the same.
  • the SS/PBCH blocks of different fields are quasi-co-located QCL.
  • the SS/PBCH block of the second field of the at least two fields is opposite to the first block of the at least two fields
  • the SS/PBCH block of the field has a time offset X or the first field in the at least two fields has a time offset X relative to the starting position of the SS/PBCH block period, and the unit of X is Milliseconds or fields.
  • the SS/PBCH blocks of different SMTCs are quasi-co-located QCL.
  • the SS/PBCH block of the second SMTC of the at least two SMTCs is relative to the SS of the first SMTC of the at least two SMTCs
  • the /PBCH block has a time offset X or the first SMTC of the at least two SMTCs has a time offset X relative to the start position of the SS/PBCH block period, and the unit of the X is milliseconds or fields.
  • the value of X is received from the network device.
  • the terminal device receives the value of X or information indicating the value of X through one or more of the following signaling:
  • Radio resource control RRC Radio resource control RRC, media access control element MAC-CE, downlink control information DCI, system information block SIB1 or SIB2 or SIB3.
  • the value of X is one or more of the following:
  • a communication device includes a memory and a processor.
  • the memory is used to store instructions.
  • the processor is used to execute the instructions stored in the memory and to the instructions stored in the memory. The execution of causes the processor to execute the method in the first aspect or any possible implementation manner of the first aspect or perform the method in the fifth aspect or any possible implementation manner of the fifth aspect.
  • a communication device includes a memory and a processor, the memory is used to store instructions, the processor is used to execute instructions stored in the memory, and the instructions stored in the memory The execution causes the processor to execute the method in the second aspect or any possible implementation manner of the second aspect or perform the method in the sixth aspect or any possible implementation manner of the sixth aspect.
  • a chip is provided.
  • the chip includes a processing module and a communication interface.
  • the processing module is used to control the communication interface to communicate with the outside.
  • the processing module is also used to implement the first aspect or the first aspect.
  • the method in any possible implementation manner of the aspect or the method in the fifth aspect or any possible implementation manner of the fifth aspect.
  • a chip including a processing module and a communication interface, the processing module is used to control the communication interface to communicate with the outside, and the processing module is further used to implement the second aspect or the second The method in any possible implementation manner of the aspect or the method in the sixth aspect or any possible implementation manner of the sixth aspect.
  • a computer-readable storage medium on which a computer program is stored, which when executed by a computer causes the computer to implement the first aspect or any possible implementation manner of the first aspect
  • the method or the method in the fifth aspect or any possible implementation manner of the fifth aspect is provided.
  • a fourteenth aspect there is provided a computer-readable storage medium on which a computer program is stored, which when executed by a computer causes the computer to implement the second aspect or any possible implementation manner of the second aspect
  • the method or the method in the sixth aspect or any possible implementation manner of the sixth aspect is provided.
  • a computer program product containing instructions which, when executed by a computer, cause the computer to implement the method of the first aspect or any possible implementation manner of the first aspect or the fifth aspect or The method in any possible implementation manner of the fifth aspect.
  • a computer program product containing instructions that when executed by a computer causes the computer to implement the method of the second aspect or any possible implementation manner of the second aspect or the sixth aspect or The method in any possible implementation manner of the sixth aspect.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of this application.
  • FIG. 2 is a schematic block diagram of a cross-period measurement beam
  • FIG. 3 is a schematic block diagram of a cross-period measurement beam
  • FIG. 5 is a schematic block diagram of a measurement beam provided by this application.
  • FIG. 6 is a schematic block diagram of a measurement beam provided by this application.
  • FIG. 7 is a schematic block diagram of the time domain offset of the SS/PBCH block
  • FIG. 8 is a schematic block diagram of a terminal device provided by this application.
  • FIG. 9 is a schematic block diagram of a network device provided by this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by this application.
  • the embodiment of the beam in the NR protocol can be a spatial filter, or a spatial filter or spatial parameters.
  • the beam used to send a signal can be called a transmission beam (transmission beam, Tx beam), can be called a spatial transmission filter (spatial domain domain transmit filter) or a spatial transmission parameter (spatial domain domain transmission parameter);
  • the beam used to receive a signal can It is called the reception beam (reception beam, Rx beam), and it can be called the spatial reception filter (spatial domain reception filter) or the spatial reception parameter (spatial domain reception parameter).
  • the transmit beam may refer to the signal intensity distribution formed in different directions of the space after the signal is transmitted through the antenna
  • the receive beam may refer to the signal intensity distribution of the wireless signal received from the antenna in different directions of the space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the technique of forming a beam may be a beam forming technique or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports can be included in a beam to transmit data channels, control channels, and sounding signals.
  • One or more antenna ports forming a beam can also be regarded as a set of antenna ports.
  • the sending end can send downlink signals by beam scanning, and the receiving end can also receive downlink signals by beam scanning.
  • the transmitting end can form beams with different directivities in the space through beamforming, and can poll on multiple beams with different directivities to transmit downlink signals through beams with different directivities, so that The power of the downlink signal to transmit the downlink signal in the direction pointed by the transmission beam can reach the maximum.
  • the receiving end can also form beams with different directivities in the space through beamforming, and can poll on multiple beams with different directivities to receive downlink signals through beams with different directivities, so that the receiving end receives The power of the downlink signal can be maximized in the direction pointed by the receive beam.
  • the receiving end can perform channel measurement based on the received downlink signal, and report the measurement result to the sending end. For example, the receiving end may report a portion of the downlink signal resources with a large reference signal receiving power (RSRP) to the sending end, such as reporting the identifier of the downlink signal resources, so that the sending end uses the channel when transmitting data or signaling Receive and send signals with better quality beam pairing.
  • RSRP reference signal receiving power
  • the downlink signal may be a synchronization signal/physical broadcast channel SS/PBCH block, broadcast channel, broadcast signal demodulation signal, channel state information downlink signal (channel state information reference (CSI-RS), cell-specific reference signal (cell specific reference signal , CS-RS), UE-specific reference signal (user-specific reference (US-RS), downlink control channel demodulation reference signal, downlink data channel demodulation reference signal, and downlink phase noise tracking signal.
  • CSI-RS channel state information reference
  • cell-specific reference signal cell specific reference signal
  • CS-RS cell specific reference signal
  • US-RS user-specific reference
  • downlink control channel demodulation reference signal downlink data channel demodulation reference signal
  • downlink phase noise tracking signal downlink phase noise tracking signal.
  • the current 3GPP R15 has standardized the beam management method, which is briefly described as follows:
  • the network device configures the beam measurement report to the terminal device.
  • the beam measurement report includes one or more of the following parameters: the report configuration ID, the time-frequency domain position of the reference signal resource used for beam measurement, the time domain behavior of the report configuration (periodic/semi-static/triggered), and the report configuration Frequency domain behavior (subband/bandwidth, etc.), specific content reported (for example, RSRP/CQI/PMI/RI/LI/CRI/SS/PBCH-ID), etc.
  • the network device sends a beam measurement signal to the terminal device based on the beam measurement report configuration. For example, the network device configures resources of the channel state information reference signal of the non-zero power to the terminal or configures the SS/PBCH signal to the terminal.
  • the terminal device When the information bit "repetition" in the beam measurement resource configured by the network device for the terminal device is set to OFF, the terminal device is informed that the network device sends different transmission beams. In this case, the terminal device needs to report based on the beam measurement report configuration Behavior, report the measurement information of the transmitted beam.
  • the terminal device receives the measurement signal at the corresponding time-frequency domain position based on the beam measurement report configuration.
  • the terminal device selects N (N is an integer greater than 1) transmission beams from the transmission beams delivered by the network device, and reports the resource IDs corresponding to the N beams (in 3GPP, the resource ID may be CSI -RS resource, index or SS/PBCH index and signal receiving power to the network device.
  • the selection criterion of the beam reported by the terminal device may be specified by the network device, or may be an internal implementation algorithm of the terminal device. For example, the terminal device may select the first few beams with the best beam quality from the configured non-zero-power CSI-RS resource set for beam management to report.
  • NR's definition of SS/PBCH block period can be understood as:
  • the terminal For the reception of SS/PBCH blocks in each serving cell, the terminal is periodically configured in each serving cell through high-level parameters ssb-periodicityServingCell every half-frame.
  • high-level parameters ssb-periodicityServingCell For the understanding of this Chinese, please refer to the following English: A perserving cell by higher layer parameter ssb-periodicityServingCell aperiodicity of the half frames for the reception of SS/PBCH blocks for the serving cell.
  • An SS/PBCH block is included in a field, and the position of the SS/PBCH block in the field is related to the subcarrier spacing of the system.
  • the SS/PBCH block in the present invention includes at least one of a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and a physical broadcast channel PBCH signal.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the length of one half-frame is 5 ms. At different subcarrier intervals, the half-frame contains different numbers of time slots, and one time slot includes 14 OFDM symbols.
  • the SS/PBCH block occupies 4 OFDM symbols in the field, the first symbol bit is the primary synchronization signal (Primary Synchronization Signal, PSS), the second symbol bit is PBCH, the third symbol bit PBCH and the auxiliary synchronization signal ( Secondery Synchronization Signal (SSS), the fourth sign bit PBCH, where the PBCH symbol contains the PBCH demodulation reference signal (De-Modulation Reference Signal, DMRS).
  • PSS Primary Synchronization Signal
  • PBCH the third symbol bit
  • auxiliary synchronization signal Secondery Synchronization Signal
  • DMRS De-Modulation Reference Signal
  • the position of the SS/PBCH block in a half frame is determined.
  • there are 5 patterns in the time domain position of the SS/PBCH block in a half frame namely patternA, patternB, patternC, pattern D, pattern E.
  • pattern A is mainly for the case where the subcarrier spacing is 15 kHz
  • pattern B and pattern C are mainly for the subcarrier spacing of 30 kHz
  • pattern D and pattern E are mainly for the 120 kHz and 240 kHz situations.
  • the time domain position of the SS/PBCH block in the field meets the following formula:
  • the index of the first OFDM symbol of the SS/PBCH block is ⁇ 2,8 ⁇ +14*n.
  • n 0,1.
  • n 0,1,2,3.
  • the index of the first OFDM symbol of the SS/PBCH block is ⁇ 4,8,16,20 ⁇ +28*n.
  • n 0.
  • n 0,1.
  • the time domain position of the SS/PBCH block in the field meets the following formula:
  • the index of the first OFDM symbol of the SS/PBCH block is ⁇ 2,8 ⁇ +14*n.
  • n is 0,1; when the carrier frequency or operating frequency is greater than 3GHz and less than 6GHz, the value of n is 0,1,2,3.
  • the first OFDM symbol index of the SS/PBCH block is ⁇ 4,8,16,20 ⁇ +28*n, when the carrier frequency or operating frequency is greater than 6GHz, the value of n is 0,1,2,3,5 ,6,7,8,10,11,12,13,15,16,17,18.
  • the first OFDM symbol index of the SS/PBCH block is ⁇ 8,12,16,20,32,36,40,44 ⁇ +56*n, when the carrier frequency or operating frequency is greater than 6GHz, the value of n is 0 ,1,2,3,5,6,7,8.
  • the embodiments of the present application may be applied to a beam-based multi-carrier communication system, for example, a 5G system or a new radio (NR) system.
  • a beam-based multi-carrier communication system for example, a 5G system or a new radio (NR) system.
  • NR new radio
  • FIG. 1 is a schematic diagram of a communication system 100 according to an embodiment of this application.
  • the communication system 100 includes a network device 110 and a plurality of terminal devices 120 (terminal device 120a and terminal device 120b shown in FIG. 1).
  • the network device 110 may simultaneously transmit multiple analog beams through multiple radio frequency channels to transmit data for multiple terminal devices.
  • the network device sends beam 1 and beam 2, wherein beam 1 is used to transmit data for terminal device 120a and beam 2 is used to transmit data for terminal device 120b.
  • Beam 1 may be referred to as a transmission beam of terminal device 120a
  • beam 2 may be referred to as a transmission beam of terminal device 120b.
  • the network device 101 may be a base station, and the base station may be used to communicate with one or more terminals, or may be used to communicate with one or more base stations with partial terminal functions (such as a macro base station and a micro base station, such as an access point, Communication).
  • the base station can be a base station transceiver (Base Transceiver Station, BTS) in a time division synchronization code division multiple access (Time-Division Synchronous Code Division Multiple Access, TD-SCDMA) system, or it can be an evolutionary base station (Evolutional Node B) in an LTE system , ENB), and base stations in 5G systems and New Air Interface (NR) systems.
  • BTS Base Transceiver Station
  • TD-SCDMA time division synchronization code division multiple access
  • Evolutional Node B evolutional Node B
  • ENB Long-Division Synchronous Code Division Multiple Access
  • NR New Air Interface
  • the base station may also be an access point (Access Point, AP), a transmission
  • Terminal equipment can refer to user equipment (user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminals in future public land mobile communications networks (PLMN) Equipment etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PLMN public land mobile communications networks
  • the maximum number of SS/PBCH blocks in an SS/PBCH block period is 4 or 8 at low frequencies and 64 at high frequencies.
  • the terminal device is in the idle state (idle) when receiving the SS/PBCH block, and the paging message (paging) is also in the idle state.
  • the transmission beam of the paging message and the SS/PBCH block may be the same beam, that is, the SS/PBCH block.
  • the paging message has a quasi-co-location relationship.
  • the terminal device wakes up before receiving the paging message and needs to measure the beam.
  • the measurement beam can use the SS/PBCH block signal.
  • the current NR protocol stipulates that only one half-frame of an SS/PBCH block period has SS/PBCH block signals. If multiple beams are measured, it needs to span multiple SS/PBCH block periods, resulting in a longer beam measurement time.
  • the terminal needs to measure these two beams, then it takes 20ms to complete the beam reception.
  • the network device sends 4 beams, and the terminal needs to measure these four beams. Only one half-frame of a period includes the SS/PBCH block. One beam measurement, then it takes 160ms.
  • the present application proposes a measurement method and device, which can make the beam measurement time shorter than in the prior art.
  • Embodiments of the present invention provide a measurement method, which can reduce the measurement time.
  • FIG. 4 is a schematic interaction flowchart of a measurement method 400 provided by an embodiment of the present application.
  • the method 400 includes:
  • the network device sends multiple half frames to the terminal, and at least two half frames of the multiple half frames include the SS/PBCH block;
  • the terminal device receives the plurality of half frames and measures the signal strength of the SS/PBCH block.
  • the embodiments provided in the present application can reduce the time of beam measurement and save the overhead of the terminal device.
  • the measurement beam of the terminal may be a beam corresponding to all SS/PBCH blocks or a beam corresponding to some SS/PBCH blocks.
  • the method 400 further includes: the network device sends a message using the beam corresponding to the SS/PBCH block.
  • the network device sends a message using the beam corresponding to the SS/PBCH block.
  • a beam corresponding to the SS/PBCH block is used to send a paging message.
  • each SS/PBCH block period has 2 half frames with SS/PBCH blocks. If the network device sends through the SS/PBCH block With 2 beams, the terminal only needs 10ms to complete beam reception and measurement.
  • the prior art needs 40ms to complete the beam measurement; using the solution provided by the embodiment of the present invention, it can be completed in less than 20ms Beam measurement.
  • the solution provided in this application assumes that the period of the SS/PBCH block is 40 ms, and the network device sends 4 beams.
  • the terminal needs to use these four beams to receive and measure the SS/PBCH block.
  • 4 half-frames containing SS/PBCH blocks are configured in the /PBCH block period, so that the terminal can use 20ms to complete the beam measurement, saving 140ms and greatly reducing overhead.
  • the value of the period of the SS/PBCH block may be sent through high-level signaling, for example, through the parameter ssb-periodicityServingCell of the high-level signaling.
  • the SS/PBCH block of the second field in the plurality of fields has a time offset X relative to the SS/PBCH block of the first field in the plurality of fields,
  • the unit of X can be milliseconds, half-frames, sub-frames, time slots, OFDM symbols.
  • the starting position of the SS/PBCH block period may be used as a reference point, and the SS/PBCH block of the first field in the plurality of fields has a time offset X relative to the reference point
  • the unit of X can be milliseconds, half-frames, sub-frames, time slots, OFDM symbols.
  • a specific value may be sent, or an index indicating the specific value may be sent.
  • the SS/PBCH block period T is 30 ms, and the field length is 5 ms, and there are 6 half frames in a period T, where the 6 half frames contain 3 SS/PBCH blocks.
  • the 6 half frames contain 3 SS/PBCH blocks.
  • the first SS/PBCH block is located in the first field
  • the second SS/PBCH block is located in the third field
  • the third SS/PBCH block is located in the fifth field.
  • the length of time between the first SS/PBCH block and the second SS/PBCH block is the offset value offset.
  • the offset value is 10 ms, or the offset value is 2 fields.
  • the offset value may be the same or different.
  • the network device may also configure the time position of one SS/PBCH block within the SS/PBCH period, and then configure the offset of each SS/PBCH block relative to the SS/PBCH block.
  • the network device may also select a fixed position within the SS/PBCH block period as the reference point of the offset value, for example, the starting position of the period (the first in the period) The first time slot of the frame) is configured as a reference point, and then the time offset of the field where each SS/PBCH block is located relative to the reference point.
  • the value of the time offset offset may be positive or negative.
  • the above offset values can also be different.
  • the number of fields that can be configured within the period of the SS/PBCH block and contains the SS/PBCH block is 1, 2, or 3.
  • the configurable offset is 5ms, 10ms, or 15ms.
  • the number of half frames of the SS/PBCH block in the period of the SS/PBCH block may be all, or part of 1, 2, 3, 4, 5, 6, and 7.
  • the specific position value of the field where the SS/PBCH block is located in the SSB period or the relative time offset value of the SS/PBCH block offset can be 5, 10, 15, 20, 25, 30, 35 part or all; the unit is ms; if the unit is a half frame, the value of offset is part or all of 1,2,3,4,5,6,7.
  • the period of the SS/PBCH block is 80ms
  • the number of half frames of the SS/PBCH block in the period of the SS/PBCH block can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12,13,14,15 in whole or in part.
  • the specific position value of the field within the SS/PBCH block in the SSB period or the relative time offset value of the SS/PBCH block offset can be 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 ,50,55,60,65,70,75 part or all, the unit is ms; if the unit is half frame, the value of offset is part or all of 1-15.
  • the period of the SS/PBCH block is 160ms
  • the number of half-frames of the SS/PBCH block in the period of the SS/PBCH block can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 all or part of the SS/PBCH block
  • the specific position value of the field in the SSB period or the relative time offset value of the SS/PBCH block offset can be 5,10,15,20,25,30,35,40,45,50,55,60, 65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155 part or all, the unit is ms; if the unit is half-frame, the value of offset is 1-31 Part or all of
  • the solution provided in this application sends multiple half-frames within a period T of one SS/PBCH block, where multiple half-frames contain SS/PBCH blocks (there is only one SS/PBCH block on one half-frame), and the terminal equipment is Multiple SS/PBCH blocks can be measured in one cycle, saving the time of beam measurement and improving efficiency.
  • Step 1 In a period of one SS/PBCH block, the network device is configured with multiple SMTCs, at least two of the multiple SMTCs include SS/PBCH blocks, and one SMTC contains one SS/PBCH block;
  • Step 2 The terminal measures the signal strength of the received SS/PBCH block. It should be understood that the terminal measurement beam may be a beam corresponding to all SS/PBCH blocks or a beam corresponding to some SS/PBCH blocks.
  • the description of the time offset of the SS/PBCH can directly refer to the description of the above embodiment, which will not be repeated here.
  • the method and operation implemented by the terminal device may also be implemented by components (such as chips or circuits) that can be used for the terminal device, and the method and operation implemented by the network device may also be implemented by It can be used for the realization of components (such as chips or circuits) of network equipment.
  • each network element for example, a transmitter device or a receiver device.
  • each network element for example, a transmitter device or a receiver device.
  • it includes hardware structures and/or software modules corresponding to performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the function modules of the transmitting end device or the receiving end device according to the above method examples, for example, each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module in.
  • the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner. The following uses an example of dividing each function module corresponding to each function as an example.
  • FIG. 8 is a schematic block diagram of a terminal device 800 provided by an embodiment of the present application.
  • the terminal device 800 may correspond to the terminal device in the foregoing method embodiment.
  • the terminal device 800 includes the following units:
  • the receiving unit 810 is configured to receive a plurality of half frames, at least two of which include SS/PBCH blocks; or, to receive a plurality of SMTCs, at least some of the plurality of SMTCs SS/PBCH blocks are included in the two SMTCs;
  • the processing unit 820 is configured to measure the signal strength of the SS/PBCH block.
  • the beam measured by the terminal device may be a beam corresponding to all SS/PBCH blocks, or may be a beam corresponding to some SS/PBCH blocks, which is not limited in the present invention.
  • the solution provided by the present application can reduce the beam measurement time and save the overhead of the terminal device by sending the SS/PBCH block in multiple half frames.
  • the receiving unit 810 is further configured to receive indication information of the period of the SS/PBCH block from the network device.
  • the value of the period T of the SS/PBCH block can be received through high-level signaling, for example, through the parameter ssb-periodicityServingCell of the high-level signaling.
  • the receiving unit 810 is further configured to receive the SS/PBCH block of the second field within the plurality of fields with a time offset relative to the SS/PBCH block of the first field within the plurality of fields X or the SS/PBCH block of the first field of the at least two fields has a time offset X relative to the start position of the SS/PBCH block period, and the unit of X is milliseconds or fields.
  • FIG. 9 is a schematic block diagram of a network device 900 provided by an embodiment of this application.
  • the network device 900 may correspond to the network device in the foregoing method embodiment.
  • the network device 900 includes the following units:
  • the processing unit 910 is configured to generate a plurality of fields, at least two fields of the plurality of fields include SS/PBCH blocks; or, generate a plurality of SMTCs, at least two of the plurality of SMTCs include SS /PBCH block;
  • the sending unit 920 is configured to send the multiple half frames or the multiple SMTCs to the terminal device within one SS/PBCH block period.
  • the sending unit 920 is further configured to send a paging message using the beam corresponding to the SS/PBCH block.
  • the network device may select a beam corresponding to some SS/PBCH blocks to send a paging message, or may select a beam corresponding to all SS/PBCH blocks to send a paging message, which is not limited in the present invention.
  • An embodiment of the present application further provides a first communication device, and the first communication device may be a terminal device or a chip.
  • the first communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 10 shows a simplified structural diagram of the terminal device. It is easy to understand and convenient to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and input and output devices.
  • the processor is mainly used for processing communication protocols and communication data, as well as controlling terminal devices, executing software programs, and processing software program data.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input/output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only one memory and processor are shown in FIG. 10. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium, storage device, or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiments of the present application.
  • an antenna and a radio frequency circuit with a transceiver function can be regarded as a transceiver unit of a terminal device, and a processor with a processing function can be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device used to implement the receiving function in the transceiver unit 1001 may be regarded as a receiving unit
  • the device used to implement the sending function in the transceiver unit 1001 may be regarded as a sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 1002 is used to perform step 420 in FIG. 4 and/or the processing unit 1002 is also used to perform other processing steps on the terminal device side in the embodiments of the present application.
  • the transceiver unit 1001 is also used to perform step 410 shown in FIG. 4, and/or the transceiver unit 1001 is also used to perform other transceiver steps on the terminal device side.
  • FIG. 10 is only an example and not a limitation, and the above terminal device including the transceiver unit and the processing unit may not depend on the structure shown in FIG. 10.
  • the chip When the first communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • An embodiment of the present application further provides a second communication device, and the second communication device may be a network device or a chip.
  • the second communication device may be used to perform the actions performed by the network device in the foregoing method embodiments.
  • FIG. 11 shows a simplified schematic structural diagram of a base station.
  • the base station includes part 1101 and part 1102.
  • Part 1101 is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; part 1102 is mainly used for baseband processing and control of base stations.
  • Part 1101 can usually be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the part 1102 is usually a control center of the base station, and may generally be called a processing unit, which is used to control the base station to perform the action of the network device generating the first message in the above method embodiment.
  • a processing unit which is used to control the base station to perform the action of the network device generating the first message in the above method embodiment.
  • the transceiver unit in part 1101 may also be called a transceiver, or a transceiver, etc. It includes an antenna and a radio frequency unit, where the radio frequency unit is mainly used for radio frequency processing.
  • the device used to realize the receiving function in the part 1101 can be regarded as a receiving unit
  • the device used to realize the sending function can be regarded as the sending unit, that is, the part 1101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, receiver, or receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, transmitter, or transmitting circuit, etc.
  • Part 1102 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processors are used to read and execute programs in the memory to implement baseband processing functions and control. If there are multiple boards, each board can be interconnected to increase processing power. As an optional embodiment, multiple boards may share one or more processors, or multiple boards may share one or more memories, or multiple boards may share one or more processes at the same time. Device.
  • the transceiver unit is used to perform the sending operation on the network device side in step 410 in FIG. 4, and/or the transceiver unit is also used to perform other transceiver steps on the network device side in the embodiments of the present application.
  • the processing unit is used to perform an action of generating multiple half frames, at least two half frames including the SS/PBCH block, and/or the processing unit is also used to execute other processing steps on the network device side in the embodiments of the present application.
  • FIG. 11 is only an example and not a limitation, and the above network device including the transceiver unit and the processing unit may not depend on the structure shown in FIG. 11.
  • the chip When the second communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • Embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, which when executed by a computer causes the computer to implement the method on the terminal device side or the method on the network device side in the above method embodiments.
  • Embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer causes the computer to implement the method on the terminal device side or the method on the network device side in the above method embodiments.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • the computer-readable medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, compact discs (CDs), digital universal discs (DVDs)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or may be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits ( Application Specific (Integrated Circuit, ASIC), ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种测量方法,包括:在一个SS/PBCH块周期内,接收来自网络设备的多个半帧,所述多个半帧中至少两个半帧包括有SS/PBCH块;测量所述SS/PBCH块的信号强度。本申请提供的方案可以节省波束测量的时间,降低了终端设备的开销。

Description

一种测量方法及装置 技术领域
本申请涉及通信领域,并且具体地涉及一种测量方法与装置。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高。在未来无线通信系统中,波束成型技术用来将传输信号的能量限制在某个波束方向内,从而增加信号和接收的效率。波束成型技术能够有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获取更高的网络容量。然而,在采用波束成型技术的通信网络中,首先需要将发送波束和接收波束匹配,使得发送端到接收端的增益最大,否则无法获取比较高的通信效率。而且为了达到全覆盖,要求基站端波束进行扫描。
当终端有多个波束的时候,需要使用多个半帧的同步信号/物理广播信道块(Synchronization signal/physical broadcast channel block,SS/PBCH Block)测量波束。现有技术是一个SS/PBCH块周期内只有一个半帧有SS/PBCH块,终端设备测量多个波束需要跨多个周期,因此终端设备测量波束的时间比较长。
发明内容
本申请提供一种测量方法与装置,可以减少终端设备测量波束的时间。具体方案如下:
第一方面,提供一种测量方法,该方法包括:在一个同步信号/物理广播信道SS/PBCH块周期内,接收来自网络设备的多个半帧,所述多个半帧中至少有两个半帧包括SS/PBCH块;测量所述SS/PBCH块的信号强度。
因此,本申请提供的方案通过在一个SS/PBCH块周期内配置多个包含SS/PBCH块的半帧,使得终端设备在一个SS/PBCH块周期内或者一个较短的时间段完成波束测量,无需跨多个周期,有效地减少了波束测量的时间。
第二方面,提供一种测量方法,该方法包括:生成多个半帧,所述多个半帧中至少两个半帧包括SS/PBCH块,在一个同步信号/物理广播信道SS/PBCH块周期内,发送所述多个半帧。
因此,本申请提供的方案,通过在一个SS/PBCH块周期内配置多个包含SS/PBCH块的半帧,使得终端设备可以在一个周期或一个较短的时间段内完成波束测量,无需跨多个周期,大大地减少了波束测量的时间。
第三方面,提供一种装置,包括:接收单元,用于在一个同步信号/物理广播信道SS/PBCH块周期内,接收来自网络设备的多个半帧,所述多个半帧中至少有两个半帧包括SS/PBCH块;处理单元,用于测量所述SS/PBCH块的信号强度。
因此,本申请提供的方案,通过在一个SS/PBCH块周期内配置多个包含SS/PBCH块的半帧,使得终端设备在一个SS/PBCH块周期内或者一个相对较短的时间段完成波束测量,无需跨多个周期,有效地减少了波束测量的时间。
第四方面,提供一种装置,包括:处理单元,用于生成多个半帧,所述多个半帧中至少两个半帧包括SS/PBCH块;发送单元,用于在一个同步信号/物理广播信道SS/PBCH块周期内,发送所述多个半帧。
第五方面,提供一种测量方法,该方法包括:在一个同步信号/物理广播信道SS/PBCH块周期内,接收来自网络设备的多个基于SS/PBCH块的无线资源管理测量时间配置SMTC,所述多个SMTC中至少有两个SMTC包括SS/PBCH块,其中,一个SMTC中包含一个SS/PBCH块;测量所述SS/PBCH块的信号强度。
因此,本申请提供的方案通过在一个SS/PBCH块周期内配置多个包含SS/PBCH块的SMTC,使得终端设备在一个SS/PBCH块周期内或者一个较短的时间段完成波束测量,无需跨多个周期,有效地减少了波束测量的时间。
第六方面,提供一种测量方法,该方法包括:生成多个基于SS/PBCH块的无线资源管理测量时间配置SMTC,所述多个SMTC中至少两个SMTC包括SS/PBCH块,其中,一个SMTC中包含一个SS/PBCH块;在一个SS/PBCH块周期内,发送所述多个SMTC。
第七方面,提供一种装置,包括:接收单元,用于在一个同步信号/物理广播信道SS/PBCH块周期内,接收来自网络设备的多个基于SS/PBCH块的无线资源管理测量时间配置SMTC,所述多个SMTC中至少有两个SMTC包括SS/PBCH块;其中,一个SMTC中包含一个SS/PBCH块;处理单元,用于测量所述SS/PBCH块的信号强度。
因此,本申请提供的方案,通过在一个SS/PBCH块周期内配置多个包含SS/PBCH块的SMTC,使得终端设备在一个SS/PBCH块周期内或者一个相对较短的时间段完成波束测量,无需跨多个周期,有效地减少了波束测量的时间。
第八方面,提供一种装置,包括:处理单元,用于生成多个SMTC,所述多个SMTC中至少两个SMTC包括SS/PBCH块;其中,一个SMTC中包含一个SS/PBCH块;发送单元,用于在一个同步信号/物理广播信道SS/PBCH块周期内,发送所述多个SMTC。
结合第一方面至第四方面任一种,在一种可能的实现方式中,不同半帧的SS/PBCH块数目相同。
结合第一方面至第四方面任一种,在一种可能的实现方式中,不同半帧的SS/PBCH块之间是准共址QCL的。
结合第一方面至第四方面任一种,在一种可能的实现方式中,所述至少两个半帧的第二半帧的SS/PBCH块相对与所述至少两个半帧的第一半帧的SS/PBCH块具有时间偏移X或者所述至少两个半帧中的第一半帧相对所述SS/PBCH块周期的起始位置具有时间偏移X,所述X的单位为毫秒或者半帧。
结合第五方面至第八方面任一种,在一种可能的实现方式中,不同SMTC的SS/PBCH块之间是准共址QCL的。
结合第五方面至第八方面任一种,在一种可能的实现方式中,所述至少两个SMTC的第二SMTC的SS/PBCH块相对与所述至少两个SMTC的第一SMTC的SS/PBCH块具有时间偏移X或者所述至少两个SMTC中的第一SMTC相对所述SS/PBCH块周期的起始位置具有时间偏移X,所述X的单位为毫秒或者半帧。
结合第一方面至第八方面任一种,在一种可能的实现方式中,所述X的值是从从所述网络设备接收的。
结合第一方面至第八方面任一种,在一种可能的实现方式中,终端设备通过以下信令的一种或多种接收X的取值或者指示X取值的信息:
无线资源控制RRC,媒体接入控制控制元素MAC-CE,下行控制信息DCI,系统信息块SIB1 或SIB2或SIB3。
结合第一方面至第八方面任一种,在一种可能的实现方式中,所述X的取值为以下的一种或多种:
5ms,10ms,15ms,20ms,25ms,30ms,35ms,40ms,45ms,50ms,55ms,60ms,65ms,70ms,75ms,80ms,85ms,90ms,95ms,100ms,105ms,110ms,115ms,120ms,125ms,130ms,135ms,140ms,145ms,150ms,155ms。
结合第一方面至第八方面任一种,在一种可能的实现方式中,所述X的取值为:
整数1至31中的任意一个整数。
第九方面,提供一种通信装置,所述通信装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第一方面或第一方面的任一可能的实现方式中的方法或者执行如第五方面或第五方面的任一可能的实现方式中的方法。
第十方面,提供一种通信装置,所述通信装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第二方面或第二方面的任一可能的实现方式中的方法或者执行如第六方面或第六方面的任一可能的实现方式中的方法。
第十一方面,提供一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于实现第一方面或第一方面的任一可能的实现方式中的方法或者实现第五方面或第五方面的任一可能的实现方式中的方法。
第十二方面,提供一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于实现第二方面或第二方面的任一可能的实现方式中的方法或者实现第六方面或第六方面的任一可能的实现方式中的方法。
第十三方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现第一方面或第一方面的任一可能的实现方式中的方法或者实现第五方面或第五方面的任一可能的实现方式中的方法。
第十四方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现第二方面或第二方面的任一可能的实现方式中的方法或者实现第六方面或第六方面的任一可能的实现方式中的方法。
第十五方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得所述计算机实现第一方面或第一方面的任一可能的实现方式中的方法或者实现第五方面或第五方面的任一可能的实现方式中的方法。
第十六方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得所述计算机实现第二方面或第二方面的任一可能的实现方式中的方法或者实现第六方面或第六方面的任一可能的实现方式中的方法。
附图说明
图1为本申请实施例应用的场景示意图;
图2为一种跨周期测量波束的示意性框图;
图3为一种跨周期测量波束的示意图框图;
图4为本申请实施例提供的测量方法的示意性交互流程图;
图5为本申请提供的一种测量波束的示意性框图;
图6为本申请提供的一种测量波束的示意性框图;
图7为SS/PBCH块时域偏移的示意性框图;
图8为本申请提供的终端设备的示意性框图;
图9为本申请提供的网络设备的示意性框图;
图10为本申请提供的一种通信装置的结构示意图;
图11为本申请提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、波束。
波束在NR协议中的体现可以是空域滤波器(spatial filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameters)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空间发送滤波器(spatial domain transmit filter)或空间发射参数(spatial domain transmit parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空间接收滤波器(spatial domain receive filter)或空间接收参数(spatial domain receive parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
应理解,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
2、波束测量
发送端可通过波束扫描的方式发送下行信号,接收端也可通过波束扫描的方式接收下行信号。具体地,发送端可通过波束赋形的方式在空间形成不同指向性的波束,并可以在多个具有不同指向性的波束上轮询,以通过不同指向性的波束将下行信号发射出去,使得下行信号在发送波束所指向的方向上发射下行信号的功率可以达到最大。接收端也可通过波束赋形的方式在空间形成不同指向性的波束,并可以在多个具有不同指向性的波束上轮 询,以通过不同指向性的波束接收下行信号,使得该接收端接收下行信号的功率在接收波束所指向的方向上可以达到最大。
通过遍历各发送波束和接收波束,接收端可基于接收到的下行信号进行信道测量,并将测量得到的结果上报发送端。例如,接收端可以将下行信号接收功率(reference signal receiving power,RSRP)较大的部分下行信号资源上报给发送端,如上报下行信号资源的标识,以便发送端在传输数据或信令时采用信道质量较好的波束配对关系来收发信号。
下行信号可以是同步信号/物理广播信道SS/PBCH块、广播信道、广播信号解调信号、信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号,下行数据信道解调参考信号,下行相位噪声跟踪信号中任意一种。本发明实施例以SS/PBCH块为下行信号为示例进行介绍。
当前的3GPP R15对波束管理方法已标准化,简述如下:
1)配置波束管理资源。
网络设备向终端设备配置波束测量上报。波束测量上报包含以下参数的一种或多种:上报配置ID、用于波束测量的参考信号资源时频域位置、上报配置的时域行为(周期性/半静态/触发式)、上报配置的频域行为(子带/带宽等)、上报的具体内容(例如RSRP/CQI/PMI/RI/LI/CRI/SS/PBCH-ID)等。
网络设备基于波束测量上报配置,向终端设备发送波束测量信号。例如,网络设备向终端配置非零功率的信道状态信息参考信号的资源或者向终端配置SS/PBCH信号。
2)测量和选择波束,以及上报波束。
当网络设备为终端设备配置的波束测量资源内的信息位“repetition”设为OFF时,终端设备被告知网络设备发送不同的发送波束,这种情形下,终端设备需要基于波束测量上报配置的上报行为,上报发送波束的测量信息。
例如,终端设备基于波束测量上报配置,在相应的时频域位置接收测量信号。
终端设备基于特定的准则,从网络设备下发的发送波束中选择N(N为大于1的整数)个发送波束,并上报这N个波束对应的资源ID(在3GPP中,资源ID可以是CSI-RS resource index,也可以是SS/PBCH index)和信号接收功率给该网络设备。
终端设备上报波束的选取准则可以是网络设备指定的,也可以是终端设备的内部实现算法。例如,终端设备可以从配置的用于波束管理的非零功率的CSI-RS的资源集合中选择波束质量最好的前几个波束进行上报。
3、SS/PBCH块周期
NR对于SS/PBCH块周期的定义可以理解为:
对于每个服务小区中SS/PBCH块的接收,终端在每个服务小区通过高层参数ssb-periodicityServingCell每半帧周期性地被配置,对于该中文的理解也可以参考下列英文:A Terminal can be provided per serving cell by higher layer parameter ssb-periodicityServingCell a periodicity of the half frames for reception of the SS/PBCH blocks for the serving cell。
4、SS/PBCH块
一个半帧中包含一个SS/PBCH块,该SS/PBCH块在半帧中的位置与系统的子载波间隔有关。本发明中的SS/PBCH块包含主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS),和物理广播信道PBCH信号当中的至少一种。
一个半帧的长度为5ms,不同的子载波间隔下,半帧包含不同的时隙数目,一个时隙包括14个OFDM符号。其中,SS/PBCH块在半帧中占用4个OFDM符号,第一个符号位主同步信号(Primary Synchronization Signal,PSS),第二个符号位PBCH,第三个符号位PBCH和辅同步信号(Secondery Synchronization Signal,SSS),第四个符号位PBCH,其中PBCH符号上包含有PBCH的解调参考信号(De-Modulation Reference Signal,DMRS)。
在现有的NR协议中,SS/PBCH块在半帧内的位置是确定的,目前SS/PBCH块在半帧内的时域位置有5中模式(pattern),分别是patternA、pattern B、patternC、pattern D、pattern E。其中,pattern A主要针对子载波间隔为15kHz的情况,pattern B和pattern C主要针对是子载波间隔为30kHz的情况,pattern D和pattern E主要针对的是120kHz和240kHz的情况。
例如,对于pattern A,SS/PBCH块在半帧中的时域位置满足以下公式:
SS/PBCH块的第1个OFDM符号索引为{2,8}+14*n。对于载波频率小于等于3GHz,有n=0,1。对于载波频率大于3GHz且小于6GHz,有n=0,1,2,3。
对于pattern B,SS/PBCH块在半帧中的时域位置满足以下公式:
SS/PBCH块的第1个OFDM符号索引为{4,8,16,20}+28*n。对于载波频率小于等于3GHz,有n=0。对于载波频率大于3GHz且小于6GHz,有n=0,1。
对于patternC,SS/PBCH块在半帧中的时域位置满足以下公式:
SS/PBCH块的第1个OFDM符号索引为{2,8}+14*n。对于载波频率或工作频率小于3GHz的时候,n为0,1;当载波频率或工作频率大于3GHz小于6GHz的时候,n的值为0,1,2,3。
对于pattern D,SS/PBCH块在半帧中的时域位置满足以下公式:
SS/PBCH块的第1个OFDM符号索引为{4,8,16,20}+28*n,当载波频率或工作频率大于6GHz的时候,n的值为0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
对于pattern E,SS/PBCH块在半帧中的时域位置满足以下公式:
SS/PBCH块的第1个OFDM符号索引为{8,12,16,20,32,36,40,44}+56*n,当载波频率或工作频率大于6GHz的时候,n的值为0,1,2,3,5,6,7,8。
以上为本申请相关术语和知识的介绍,下面开始介绍本发明的具体实施方式。
本申请实施例可以应用于基于波束的多载波通信系统,例如,5G系统或新无线(new radio,NR)系统。
图1为本申请实施例的通信系统100的示意图。该通信系统100包括一个网络设备110与多个终端设备120(如图1中所示的终端设备120a和终端设备120b)。网络设备110可以通过多个射频通道同时发送多个模拟波束来为多个终端设备传输数据。如图1所示,网络设备发送波束1和波束2,其中波束1用于为终端设备120a传输数据,波束2用于为终端设备120b传输数据。波束1可以称为终端设备120a的发送波束,波束2可以称为终端设备120b的发送波束。
网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通 信)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
根据现有的新空口(New Radio,NR)标准规定一个SS/PBCH块周期内SS/PBCH块的最大数目在低频为4个或8个,在高频最大数目为64个。终端设备接收SS/PBCH块时处于空闲态(idle),接收寻呼消息(paging)也是在空闲态,寻呼消息和SS/PBCH块的发送波束可以是相同的波束,即SS/PBCH块与寻呼消息具有准共址(quasi-co-location)关系。终端设备在接收寻呼消息之前提前醒来,需要测量波束,测量波束可以采用SS/PBCH block信号。但当前NR协议规定一个SS/PBCH块周期内只有一个半帧有SS/PBCH块信号,如果测量多个波束,需要跨多个SS/PBCH块周期,导致波束测量的时间比较长。
如图2所示,假设SS/PBCH块的周期为10ms,半帧的长度为5ms,每一个SS/PBCH块周期只有一个半帧有SS/PBCH块,如果发送端通过SS/PBCH块发送了2个波束,终端需要测量这两个波束,那么需要20ms的时间才能完成波束接收。
如图3所示,假设SS/PBCH块的周期为40ms,网络设备发送了4个波束,终端需要对这四个波束进行测量,一个周期只有一个半帧包括SS/PBCH块,如果需要完成4个波束测量,那么需要160ms的时间。
本申请针对上述问题,提出一种测量的方法与装置,可以使得波束测量的时间相比现有技术更短。
本发明实施例提供一种测量的方法,可以降低测量的时间。
图4为本申请实施例提供的测量方法400的示意性交互流程图。该方法400包括:
S410,在一个SS/PBCH块周期T内,网络设备发送多个半帧至终端,所述多个半帧中至少有两个半帧内包括有SS/PBCH块;
S420,终端设备接收所述多个半帧,并测量所述SS/PBCH块的信号强度。
本申请提供的实施例与现有技术相比,可以降低波束测量的时间,节省终端设备的开销。
应理解,终端测量波束可以是所有的SS/PBCH块对应的波束,也可以是部分SS/PBCH块对应的波束。
可选地,所述方法400还包括:网络设备采用所述SS/PBCH块对应的波束发送消息。比如,采用所述SS/PBCH块对应的波束发送寻呼消息。
如图5所示,假设SS/PBCH块的周期为10ms,半帧的长度为5ms,每一个SS/PBCH块周期有2个半帧有SS/PBCH块,如果网络设备通过SS/PBCH块发送了2个波束,终端只需要10ms的时间就可以完成波束接收与测量。
以SS/PBCH块周期为20ms,终端设备通过SS/PBCH块测量4个波束为例,现有技术需要40ms才能完成波束测量;采用本发明实施例提供的方案,只需要不到20ms就可以完成波束测量。
如图6所示,本申请提供的方案,假设SS/PBCH块的周期为40ms,网络设备发送4个波束,终端需使用这四个波束进行对SS/PBCH块进行接收和测量,在一个SS/PBCH块周期内配置了4个包含SS/PBCH块的半帧,使得终端可以使用20ms的时间就可以完成对波束的测量,节省了140ms的时间,大大地降低了开销。
该SS/PBCH块的周期的取值可以通过高层信令发送,比如,通过高层信令的参数ssb-periodicityServingCell发送。
在一种实现方式中,所述多个半帧内的第二半帧的SS/PBCH块相对于所述多个半帧内的第一半帧的SS/PBCH块的具有时间偏移X,X的单位可以是毫秒,半帧,子帧,时隙,OFDM符号。
在另一种实现方式中,可以以SS/PBCH块周期的起始位置为参考点,所述多个半帧中的第一半帧的SS/PBCH块相对于该参考点具有时间偏移X,X的单位可以是毫秒,半帧,子帧,时隙,OFDM符号。
例如,当时间偏移值单位为毫秒时,可以发送具体的取值,也可以发送用于指示具体值的一个索引。
示例性地,假设SS/PBCH块周期T为30ms,半帧的时间长度为5ms,一个周期T内具有6个半帧,其中,该6个半帧中包含3个SS/PBCH块。如图7所示,
第一个SS/PBCH块位于第1个半帧中;
第二个SS/PBCH块位于第3个半帧中;
第三个SS/PBCH块位于第5个半帧中。
第一个SS/PBCH块与第二个SS/PBCH块之间的时间长度为偏移值offset,比如,如图7所示,offset取值为10ms,或者offset取值为2个半帧。
在一个SS/PBCH周期内,偏移值可以相同,也可以不同。
可选地,网络设备配置所述偏移值时,也可以配置其中一个SS/PBCH块在SS/PBCH周期内的时间位置,再配置各个SS/PBCH块相对于该SS/PBCH块的offset。
例如,可以配置第一个SS/PBCH所在半帧的位置值或者配置最后一个SS/PBCH所在半帧的时间位置,再配置其他剩余的SS/PBCH块所在半帧相对于第一个SS/PBCH块所在半帧的时间偏移或者相对于最后一个SS/PBCH块所在半帧的时间偏移。
可选地,网络设备配置所述偏移值时,也可以选定SS/PBCH块周期内的某一固定位置为偏移值的参考点,例如将周期的起始位置(周期内第一个帧的第一个时隙)配置为参考点,再配置各个SS/PBCH块所在半帧相对于该参考点的时间偏移。
所述时间偏移offset的值可以为正,也可以为负。
不同的SS/PBCH块周期长度,上述偏移值也可以不同。
比如,SS/PBCH块的周期为20ms,则在SS/PBCH块周期内可以配置的、包含SS/PBCH块的 半帧数目为1、2或3。可以配置的offset为5ms,10ms,或者15ms。
再比如,SS/PBCH块的周期为40ms,则SS/PBCH块在SS/PBCH块周期内的半帧数目可以为1,2,3,4,5,6,7全部或部分。SS/PBCH块所在的半帧在SSB周期内的具体的位置值或SS/PBCH块的相对时间偏移值offset可以为5,10,15,20,25,30,35部分或者全部;单位为ms;如果单位为半帧,offset的取值为1,2,3,4,5,6,7中的部分或全部。
再比如,SS/PBCH块的周期为80ms,则SS/PBCH块在SS/PBCH块周期内的半帧数目可以为1,2,3,4,5,6,7,8,9,10,11,12,13,14,15全部或部分。SS/PBCH块所在的半帧在SSB周期内的具体的位置值或SS/PBCH块的相对时间偏移值offset可以为0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75部分或者全部,单位为ms;如果单位为半帧,offset的取值为1-15中的部分或全部。
再比如,SS/PBCH块的周期为160ms,则SS/PBCH块在SS/PBCH块周期内的半帧数目可以为1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31全部或部分,SS/PBCH块所在的半帧在SSB周期内的具体的位置值或SS/PBCH块的相对时间偏移值offset可以为5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155的部分或全部,单位为ms;如果单位为半帧,offset的取值为1-31中的部分或全部。
本申请提供的方案,在一个SS/PBCH块的周期T内发送多个半帧,其中,多个半帧包含有SS/PBCH块(一个半帧上只有一个SS/PBCH块),终端设备在一个周期内可以对多个SS/PBCH块进行测量,节省波束测量的时间,提升了效率。
在另一个实施例中,本申请的技术方案原理还可以应用在基于SS/PBCH块的无线资源管理测量时间配置(SS/PBCH block based RRM measurement timing configuration,SMTC)中,具体的应用如下:
步骤1:在一个SS/PBCH块的周期内,网络设备配置多个SMTC,该多个SMTC中至少两个SMTC包括有SS/PBCH块,其中,一个SMTC中包含一个SS/PBCH块;
步骤2:终端测量收到的SS/PBCH块的信号强度应理解,终端测量波束可以是所有的SS/PBCH块对应的波束,也可以是部分SS/PBCH块对应的波束。
对于SMTC来说,在一个SS/PBCH块周期内,SS/PBCH的时间偏移的描述可以直接参考上面实施例的描述,这里不再赘述。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文描述了本申请实施例提供的方法实施例,下文将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件 的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图8为本申请实施例提供的终端设备800的示意性框图。该终端设备800可以对应于上文方法实施例中的终端设备。该终端设备800包括如下单元:
接收单元810,用于接收多个半帧,所述多个半帧中至少有两个半帧内包括有SS/PBCH块;或者,用于接收多个SMTC,所述多个SMTC中至少有两个SMTC中包括有SS/PBCH块;
处理单元820,用于测量所述SS/PBCH块的信号强度。
应理解,终端设备测量的波束可以是所有SS/PBCH块对应的波束,也可以是部分SS/PBCH块对应的波束,本发明对此不予限定。
因此,本申请提供的方案,通过在多个半帧中发送SS/PBCH块,可以减少波束测量的时间,节省终端设备的开销。
可选地,所述接收单元810,还用于接收来自网络设备的SS/PBCH块的周期的指示信息。该SS/PBCH块的周期T的取值可以通过高层信令接收,比如,通过高层信令的参数ssb-periodicityServingCell接收。
所述接收单元810,还用于接收所述多个半帧内的第二半帧的SS/PBCH块相对于所述多个半帧内的第一半帧的SS/PBCH块具有时间偏移X或者所述至少两个半帧的第一半帧的SS/PBCH块相对于SS/PBCH块周期的起始位置具有时间偏移X,所述X的单位为毫秒或者半帧。
图9为本申请实施例提供的网络设备900的示意性框图。该网络设备900可以对应于上文方法实施例中的网络设备。该网络设备900包括如下单元:
处理单元910,用于生成多个半帧,所述多个半帧中至少两个半帧包括SS/PBCH块;或者,生成多个SMTC,所述多个SMTC中至少有两个SMTC包括SS/PBCH块;
发送单元920,用于在一个SS/PBCH块周期内,向终端设备发送所述多个半帧或所述多个SMTC。
可选地,所述发送单元920,还用于采用所述SS/PBCH块对应的波束发送寻呼消息。
应理解,网络设备可以选择部分SS/PBCH块对应的波束发送寻呼消息,也可以选择全部的SS/PBCH块对应的波束发送寻呼消息,本发明不予限定。
因此,本申请提供的方案,通过在一个SS/PBCH块周期内发送多个半帧,多个半帧中至少两个半帧中包括有SS/PBCH块,大大减少了波束测量的时间。
本申请实施例还提供一种第一通信装置,该第一通信装置可以是终端设备也可以是芯片。该第一通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该第一通信装置为终端设备时,图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理 器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图10所示,终端设备包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1002,用于执行图4中的步骤420,和/或处理单元1002还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元1001还用于执行图4中所示的步骤410,和/或收发单元1001还用于执行终端设备侧的其他收发步骤。
应理解,图10仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图10所示的结构。
当该第一通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种第二通信装置,该第二通信装置可以是网络设备也可以是芯片。该第二通信装置可以用于执行上述方法实施例中由网络设备所执行的动作。
当该第二通信装置为网络设备时,例如为基站。图11示出了一种简化的基站结构示意图。基站包括1101部分以及1102部分。1101部分主要用于射频信号的收发以及射频信号与基带信号的转换;1102部分主要用于基带处理,对基站进行控制等。1101部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1102部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备生成第一消息的动作。具体可参见上述相关部分的描述。
1101部分的收发单元,也可以称为收发机,或收发器等,其包括天线和射频单元,其 中射频单元主要用于进行射频处理。可选的,可以将1101部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1101部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1102部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,收发单元用于执行图4中步骤410中网络设备侧的发送操作,和/或收发单元还用于执行本申请实施例中网络设备侧的其他收发步骤。处理单元用于执行生成多个半帧,至少两个半帧中包括SS/PBCH块的动作,和/或处理单元还用于执行本申请实施例中网络设备侧的其他处理步骤。
应理解,图11仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图11所示的结构。
当该第二通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法或网络设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法或网络设备侧的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile  disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种测量方法,其特征在于,所述方法包括:
    在一个同步信号/物理广播信道SS/PBCH块周期内,接收来自网络设备的多个半帧,所述多个半帧中至少有两个半帧包括SS/PBCH块;
    测量所述SS/PBCH块的信号强度。
  2. 根据权利要求1所述的方法,其特征在于,不同半帧的SS/PBCH块数目相同。
  3. 根据权利要求1或2所述的方法,其特征在于,不同半帧的SS/PBCH块之间是准共址QCL的。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述至少两个半帧的第二半帧的SS/PBCH块相对所述至少两个半帧的第一半帧的SS/PBCH块具有时间偏移X或者所述至少两个半帧的第一半帧的SS/PBCH块相对SS/PBCH块周期的起始位置具有时间偏移X,所述X的单位为毫秒或者半帧。
  5. 根据权利要求4所述的方法,其特征在于,从所述网络设备接收所述X的取值,或者从所述网络设备接收用于指示所述X取值的信息。
  6. 根据权利要求4或5所述的方法,其特征在于,通过以下信令的一种或多种接收X的取值或者指示X取值的信息:
    无线资源控制RRC,媒体接入控制控制元素MAC-CE,下行控制信息DCI,系统信息块SIB1或SIB2或SIB3。
  7. 根据权利要求4-6任意一项所述的方法,其特征在于,当X的单位为毫秒,所述X的取值为以下的一种或多种:
    5ms,10ms,15ms,20ms,25ms,30ms,35ms,40ms,45ms,50ms,55ms,60ms,65ms,70ms,75ms,80ms,85ms,90ms,95ms,100ms,105ms,110ms,115ms,120ms,125ms,130ms,135ms,140ms,145ms,150ms,155ms;
    当X的单位为半帧,所述X的取值为:
    整数1至31中的任意一个或多个整数。
  8. 根据权利要求1-7任意一项所述的方法,其特征在于,通过高层信令接收所述SS/PBCH块周期。
  9. 一种测量方法,其特征在于,所述方法包括:
    生成多个半帧,其中,所述多个半帧中至少两个半帧包括SS/PBCH块;
    在一个SS/PBCH块周期内,发送所述多个半帧。
  10. 根据权利要求9所述的方法,其特征在于,不同半帧的SS/PBCH块数目相同。
  11. 根据权利要求9或10所述的方法,其特征在于,不同半帧的SS/PBCH块之间是准共址QCL的。
  12. 根据权利要求9-11任意一项所述的方法,其特征在于,所述至少两个半帧的第二半帧的SS/PBCH块相对与所述至少两个半帧的第一半帧的SS/PBCH块具有时间偏移X或者所述至少两个半帧的第一半帧的SS/PBCH块相对SS/PBCH块周期的起始位置具有时间偏移X,所述X的单位为毫秒或者半帧。
  13. 根据权利要求12所述的方法,其特征在于,向所述终端设备发送所述X的值;或者,向所述终端设备发送指示X取值的信息。
  14. 根据权利要求12或13所述的方法,其特征在于,通过以下信令中的一种或多种发送X的值或者指示X取值的信息:
    无线资源控制RRC,媒体接入控制控制元素MAC-CE,下行控制信息DCI,系统信息SIB1或SIB2或SIB3。
  15. 根据权利要求13-14任意一项所述的方法,其特征在于,当X的单位为毫秒,所述X的取值为以下的一种或多种:
    5ms,10ms,15ms,20ms,25ms,30ms,35ms,40ms,45ms,50ms,55ms,60ms,65ms,70ms,75ms,80ms,85ms,90ms,95ms,100ms,105ms,110ms,115ms,120ms,125ms,130ms,135ms,140ms,145ms,150ms,155ms;
    当X的单位为半帧,所述X的取值为:
    整数1至31中的任意一个或多个整数。
  16. 根据权利要求9-15任意一项所述的方法,其特征在于,通过高层信令发送所述SS/PBCH块周期。
  17. 一种装置,其特征在于,包括:
    接收单元,用于在一个同步信号/物理广播信道SS/PBCH块周期内,接收来自网络设备的多个半帧,所述多个半帧中至少有两个半帧包括SS/PBCH块;
    处理单元,用于测量所述SS/PBCH块的信号强度。
  18. 根据权利要求17所述的装置,其特征在于,不同半帧的SS/PBCH块数目相同。
  19. 根据权利要求17或18所述的装置,其特征在于,不同半帧的SS/PBCH块之间是准共址QCL的。
  20. 根据权利要求17-19任意一项所述的装置,其特征在于,所述至少两个半帧的第二半帧的SS/PBCH块相对所述至少两个半帧的第一半帧的SS/PBCH块具有时间偏移X或者所述至少两个半帧的第一半帧的SS/PBCH块相对SS/PBCH块周期的起始位置具有时间偏移X,所述X的单位为毫秒或者半帧。
  21. 根据权利要求20所述的装置,其特征在于,所述接收单元,还用于从所述网络设备接收所述X的取值,或者从所述网络设备接收用于指示所述X取值的信息。
  22. 根据权利要求20或21所述的装置,其特征在于,所述接收单元通过以下信令的一种或多种接收X的取值或者指示X取值的信息:
    无线资源控制RRC,媒体接入控制控制元素MAC-CE,下行控制信息DCI,系统信息块SIB1或SIB2或SIB3。
  23. 根据权利要求20-22任意一项所述的装置,其特征在于,当X的单位为毫秒时,所述X的取值为以下的一种或多种:
    5ms,10ms,15ms,20ms,25ms,30ms,35ms,40ms,45ms,50ms,55ms,60ms,65ms,70ms,75ms,80ms,85ms,90ms,95ms,100ms,105ms,110ms,115ms,120ms,125ms,130ms,135ms,140ms,145ms,150ms,155ms;
    当X的单位为半帧时,所述X的取值为:
    整数1至31中的任意一个或多个整数。
  24. 根据权利要求17-23任意一项所述的装置,其特征在于,所述接收单元通过高层信令接收所述SS/PBCH块周期。
  25. 一种装置,其特征在于,包括:
    处理单元,用于生成多个半帧,其中,所述多个半帧中至少两个半帧包括同步信号/物理广播信道SS/PBCH块;
    发送单元,用于在一个SS/PBCH块周期内,发送所述多个半帧。
  26. 根据权利要求25所述的装置,其特征在于,不同半帧的SS/PBCH块数目相同。
  27. 根据权利要求25或26所述的装置,其特征在于,不同半帧的SS/PBCH块之间是准共址的。
  28. 根据权利要求25-27所述的装置,其特征在于,所述至少两个半帧的第二半帧的SS/PBCH块相对所述至少两个半帧的第一半帧的SS/PBCH块具有时间偏移X或者所述至少两个半帧的第一半帧的SS/PBCH块相对SS/PBCH块周期的起始位置具有时间偏移X,所述X的单位为毫秒或者半帧。
  29. 根据权利要求25-28任意一项所述的装置,其特征在于,所述发送单元,用于向所述终端设备发送所述X的值,或者,向所述终端设备发送指示X取值的信息。
  30. 根据权利要求28或29所述的装置,其特征在于,所述发送单元通过以下信令中的一种或多种发送X的值或者指示X取值的信息:
    无线资源控制RRC,媒体接入控制控制元素MAC-CE,下行控制信息DCI,系统信息SIB1或SIB2或SIB3。
  31. 根据权利要求28-30任意一项所述的装置,其特征在于,所述X的单位为毫秒时,所述X的取值为以下的一种或多种:
    5ms,10ms,15ms,20ms,25ms,30ms,35ms,40ms,45ms,50ms,55ms,60ms,65ms,70ms,75ms,80ms,85ms,90ms,95ms,100ms,105ms,110ms,115ms,120ms,125ms,130ms,135ms,140ms,145ms,150ms,155ms;
    所述X的单位为半帧时,所述X的取值为:
    整数1至31中的任意一个或多个整数。
  32. 根据权利要求25-31任意一项所述装置,其特征在于,所述发送单元通过高层信令发送所述SS/PBCH块周期。
  33. 一种计算机存储介质,其特征在于,所述存储介质存储有指令,当运行所述指令时,使得计算机执行如权利要求1-8或9-15任意一项所述的方法。
PCT/CN2019/101446 2018-11-29 2019-08-19 一种测量方法及装置 WO2020107954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811443577.4 2018-11-29
CN201811443577.4A CN111245537B (zh) 2018-11-29 2018-11-29 一种测量方法及装置

Publications (1)

Publication Number Publication Date
WO2020107954A1 true WO2020107954A1 (zh) 2020-06-04

Family

ID=70854353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101446 WO2020107954A1 (zh) 2018-11-29 2019-08-19 一种测量方法及装置

Country Status (2)

Country Link
CN (1) CN111245537B (zh)
WO (1) WO2020107954A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840359B (zh) * 2020-06-24 2023-07-18 华为技术有限公司 通信方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811073A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 通信方法和通信装置
EP3402100A1 (en) * 2017-02-06 2018-11-14 LG Electronics Inc. -1- Method for transmitting and receiving signals between terminal and base station in wireless communication system, and apparatus for supporting same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465374B (zh) * 2014-05-30 2020-11-10 夏普株式会社 终端装置、基站装置以及通信方法
SG11202009721WA (en) * 2018-04-02 2020-10-29 Beijing Xiaomi Mobile Software Co Ltd Method and apparatus for transmitting synchronized broadcast information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3402100A1 (en) * 2017-02-06 2018-11-14 LG Electronics Inc. -1- Method for transmitting and receiving signals between terminal and base station in wireless communication system, and apparatus for supporting same
CN108811073A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Summary of Discussions for Rel-15 NR mobility", 3GPP DRAFT; R1-1814009, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 12, XP051494454 *
ZTE ET AL: "Considerations on RS/Channel Design and Measurement for NR-U", 3GPP DRAFT; R1-1803951, 20 April 2018 (2018-04-20), Sanya, China, pages 1 - 10, XP051413759 *

Also Published As

Publication number Publication date
CN111245537B (zh) 2021-06-01
CN111245537A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021031921A1 (zh) 用于测量的方法与装置
WO2020034889A1 (zh) 信号传输的方法和通信装置
WO2018210243A1 (zh) 一种通信方法和装置
CN110381588B (zh) 通信的方法和通信装置
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
TWI733801B (zh) 傳輸系統訊息的方法、基地台和終端
US20210152309A1 (en) Reference signal sending method, reference signal receiving method, apparatus, and device
WO2021017773A1 (zh) 上报信道状态信息的方法和装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2019238007A1 (zh) 检测波束的方法和装置
WO2021204089A1 (zh) 一种激活小区的方法和装置
WO2021056509A1 (en) Sounding reference signal based downlink transmission configuration indication
CN111865535B (zh) 通信方法和装置
WO2020187125A1 (zh) 数据传输方法和装置
WO2020107954A1 (zh) 一种测量方法及装置
CN116235607A (zh) 用于新空口覆盖的增强的信道估计的基站信令
CN114007257A (zh) 确定传输功率的方法及装置
US20220416857A1 (en) Data transmission method and apparatus
WO2022152037A1 (zh) 资源配置、获取方法及装置
CN115915167A (zh) 一种通信方法及通信装置
CN112703808B (zh) Bwp切换的方法和设备
KR20220085825A (ko) Uci 멀티플렉싱 향상들
CN114073146A (zh) 一种发送波束失败恢复请求的方法及装置
WO2024061113A1 (zh) 测量小区的方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889354

Country of ref document: EP

Kind code of ref document: A1