WO2020107863A1 - 激光光源的驱动方法、激光光源和激光投影仪 - Google Patents

激光光源的驱动方法、激光光源和激光投影仪 Download PDF

Info

Publication number
WO2020107863A1
WO2020107863A1 PCT/CN2019/091297 CN2019091297W WO2020107863A1 WO 2020107863 A1 WO2020107863 A1 WO 2020107863A1 CN 2019091297 W CN2019091297 W CN 2019091297W WO 2020107863 A1 WO2020107863 A1 WO 2020107863A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
laser
fluorescence
light
output
Prior art date
Application number
PCT/CN2019/091297
Other languages
English (en)
French (fr)
Inventor
崔荣荣
李健锋
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to US16/708,415 priority Critical patent/US10928717B2/en
Publication of WO2020107863A1 publication Critical patent/WO2020107863A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the present application relates to the field of laser technology, in particular to a driving method of a laser light source, a laser light source and a laser projector.
  • a laser projector may include a laser light source and an optomechanical lighting device.
  • the laser light source includes an optical path component and a light source component.
  • the light source component is used to provide a laser light source
  • the optical path component is used to modulate the laser light emitted by the light source component and input the optomechanical lighting device.
  • the modulation process may include laser light emitted by the laser light source to excite light of other colors, and selection of light of different colors.
  • the laser light source inputs light to the optomechanical lighting component, according to the preset settings, different colored lights have different output periods. When the output period corresponding to any colored light arrives, the laser light source inputs the colored light corresponding to the period to the optomechanical lighting component .
  • the optomechanical lighting component is used to output light modulated by the optical path component.
  • a light source component in a laser light source includes a red laser and a blue laser, and an optical path component includes a fluorescent wheel.
  • the optical path component is used to control the red light emitted by the red laser to be directed toward the optomechanical lighting device.
  • the optical path component is used to control the blue laser light emitted by the blue laser to irradiate the fluorescent wheel to excite the colored light of other colors, and input the primary color light of other colors into the optical machine lighting component.
  • the related art has at least the following problems:
  • the red laser or green laser has a longer wavelength and the distance between the interference fringes is larger, which is easier for the human eye to observe
  • the interference fringe has a serious influence on the imaging quality of the light emitted by the light source device.
  • the embodiments of the present application provide a laser light source driving method, a laser light source, and a laser projector, which can solve the problem that the red laser or the green laser has a longer wavelength and the interference fringe spacing is larger in the light emitted by the light source device in the related art , A problem that has a relatively serious effect on the imaging quality of light emitted by the light source device.
  • the technical solution is as follows:
  • a method for driving a laser light source including:
  • the laser of the first color is continuously output by the first laser assembly
  • the laser light of the second color emitted by the second laser component excites the fluorescent sub-assembly to excite the fluorescence of the first color, and the The fluorescence output of the first color.
  • the at least part of the time period includes a continuous period of the output period of the light of the first color, and the length of the at least part of the period is less than or equal to the output period of the light of the first color length.
  • the at least part of the time period includes a plurality of discontinuous sub-time periods in the output period of the light rays of the first color.
  • the plurality of discrete sub-periods are evenly distributed in the output period of the light rays of the first color.
  • the laser light of the second color emitted by the second laser component excites the fluorescent sub-assembly to excite the fluorescence of the first color, and outputs the fluorescence of the first color, include:
  • the laser light of the second color is input to the third color fluorescent region of the fluorescent subassembly through the second laser assembly to excite the Fluorescence of the third color;
  • the fluorescence of the first color is output to the laser light source.
  • the first color is red and the second color is blue.
  • the third color is yellow and the fourth color is green.
  • the fluorescent sub-assembly includes a first third color fluorescent region and a second third color fluorescent region.
  • the first third color fluorescent region is used to excite and obtain the third color fluorescence.
  • the second and third color fluorescence regions are used to generate the third color fluorescence to further generate the first color fluorescence.
  • a laser light source includes an optical path assembly and at least two laser components, the optical path assembly includes a fluorescent subassembly, and the at least two laser components include a A first laser component of a colored laser and a second laser component for emitting a laser of a second color, the first laser component is used to continue the first laser light output period of the light of the first color Colored laser light is output from the laser light source;
  • the second laser component and the fluorescent sub-assembly are used to excite the fluorescence of the first color at least part of the output period of the light of the first color, and Fluorescence is output from the laser light source.
  • the optical path assembly further includes a color filter sub-assembly
  • the fluorescent sub-assembly includes a third-color fluorescence region for exciting third-color fluorescence
  • the third-color fluorescence is the first A mixed fluorescence of a color fluorescence and a fourth color fluorescence
  • the second laser assembly is used to direct the third of the fluorescent subassembly to at least part of the output period of the light of the first color
  • the laser light of the second color is input into the color fluorescent area to excite the fluorescence of the third color
  • the color filter subassembly is used to filter out the fluorescence of the fourth color in the fluorescence of the third color to obtain the fluorescence of the first color;
  • the optical path assembly is used to output the first-color fluorescence from the laser light source.
  • the third-color fluorescent area includes a first third-color fluorescent area and a second third-color fluorescent area, wherein the second third-color fluorescent area is used to generate fluorescence of the third color To further obtain the fluorescence of the first color.
  • the at least part of the time period includes a continuous period of the output period of the light of the first color, and the length of the at least part of the period is less than or equal to the output period of the light of the first color length.
  • the at least part of the time period includes a plurality of discontinuous sub-time periods in the output period of the light rays of the first color.
  • the plurality of discrete sub-periods are evenly distributed in the output period of the light rays of the first color.
  • the first color is red and the second color is blue.
  • the third color is yellow and the fourth color is green.
  • a laser projector including an optomechanical lighting device and the laser light source described in the second aspect.
  • the laser of the second color emitted by the second laser component excites the fluorescent sub-assembly to excite the first color Fluorescence, and simultaneously output the fluorescence of the first color to the laser light source, so that the laser light source can output the laser light of the first color and the fluorescence of the first color at the same time during the output period of the light of the first color. Due to the broad spectrum of the fluorescence of the first color, it is not easy to interfere with the laser light of the first color.
  • FIG. 1 is a schematic structural diagram of a laser projector provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural view of a fluorescent wheel and a color filter wheel in the laser projector shown in FIG. 1;
  • FIG. 3 is a waveform diagram of a control signal according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for driving a laser light source provided by an embodiment of the present application
  • FIG. 5 is a flowchart of another method for driving a laser light source provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a circuit structure in the embodiment shown in FIG. 5;
  • FIG. 7 is a waveform diagram of each signal in the circuit structure shown in FIG. 6;
  • FIG. 8 is a structural block diagram of a laser light source provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a laser light source provided by an embodiment of the present application.
  • the distance between the interference fringes will be larger, which will cause speckle phenomenon (granular bright spots appearing on the surface of the object irradiated by the laser) that is easily noticeable by the human eye, and then The effect of light imaging quality will be more severe.
  • speckle phenomenon granular bright spots appearing on the surface of the object irradiated by the laser
  • red light and green light with longer wavelengths are more prone to speckle.
  • the speckle phenomenon will seriously affect the imaging quality of the laser projector.
  • Embodiments of the present application provide a laser light source driving method, a light source device, and a laser projector, which can solve problems in the related art.
  • FIG. 1 is a schematic diagram of an implementation environment of some embodiments of the present application.
  • the implementation environment may include a laser light source 1 and an optomechanical lighting device 3.
  • the implementation environment may be a laser projector including a two-color light source.
  • the laser light source 1 includes a laser 10 and an optical path assembly 20.
  • the laser 10 is used to provide laser light as a light source, and the optical path assembly 20 is used to modulate the laser light emitted by the laser 10 and input into the optomechanical lighting device 3.
  • the modulation process may include the laser light emitted by the laser light source and other colors excited by the laser Light, and the choice of different colors of light.
  • the optomechanical lighting device 3 is used to output light modulated by the optical path device.
  • the optical path assembly 10 may include a lens assembly 11, a mirror assembly 12, a first light combining mirror 131, a second light combining mirror 132, a fluorescent wheel 14 (the fluorescent wheel may be a fluorescent sub-assembly), and a color filter 15 (the The color filter wheel may be a color filter sub-assembly) and the uniform light element 16, and the laser 10 may include a first laser assembly 21 for emitting laser light of a first color and a second laser assembly 22 for emitting laser light of a second color.
  • the light emitted by the first laser component 21 is reflected by the lens component 11 and the mirror component 12 and then passes through the two light-combining mirrors (131 and 132), the color filter 15 and the uniform light element 16, and then enters the optical device lighting device 3.
  • the light emitted by the first laser component 21 may be red light or green light with a longer wavelength.
  • the light emitted by the second laser component 22 may be used to excite light of other colors.
  • the light emitted by the second laser component 22 may be blue light with a shorter wavelength. Green and yellow light can be excited by blue light and fluorescent wheels (yellow light is used to increase the overall brightness of light and provide red fluorescence).
  • the light combining mirror 132 transmits red laser light and reflects blue laser light
  • the light combining mirror 131 transmits blue laser light and red laser light, and reflects other colors of light, such as reflecting green fluorescence and yellow fluorescence.
  • the fluorescent wheel 14 may include a light-transmitting area and a fluorescent area, and the fluorescent area may include a first third-color fluorescent area for exciting third-color fluorescence (including a reflective plate and a fluorescent plate disposed on the reflective plate for exciting third-color fluorescence Fluorescent material) and the second third-color fluorescent area, the third-color fluorescence is a mixed fluorescence of the first-color fluorescence and the fourth-color fluorescence.
  • the first and third color fluorescent regions can be used to provide the first color fluorescence.
  • the first color is red
  • the second color is blue
  • the third color is yellow
  • the fourth color is green
  • the fluorescent wheel includes a first yellow fluorescent region Y1 (the center angle of which is y) for exciting yellow fluorescence, a green fluorescent region G1 (the center angle of which is g) for exciting green fluorescence, and a transparent region B1 (which The center angle is b) and the second yellow fluorescent region R1 (its center angle is r) for exciting yellow fluorescence.
  • the color filter includes a green light-transmitting area G2 (the center angle of which is g), a transparent area (the transparent area includes a yellow-light transparent area Y2 (which has a center angle of y) for transmitting yellow light, and blue light for transmitting blue light
  • the transparent area B2 (the center angle of which is b)) and the red light transmission area R2 (the center angle of which is r) corresponds to the second yellow fluorescent area R1, and is used to filter out the second yellow fluorescence In the yellow light excited by the region R1, colored lights other than red light are obtained to obtain red fluorescence.
  • the rotation of the fluorescent wheel and the color wheel is a periodic rotation at a constant speed.
  • the corresponding R (red) G (green) Y (yellow) B (blue) output periods of the primary colors can be calculated If the rotation period of the fluorescent wheel and the filter wheel is T, and the rotation period can be 60 Hz, 120 Hz, or 240 Hz, the output periods of the red, green, yellow, and blue laser projectors are rT/360, gT/360, yT/360 and bT/360.
  • the primary color light control signal of the RGYB primary color light output period is high, such as the red light output period rT/360, the red light output control signal is high level, and the red light in other periods
  • the control signals are all low. This is because the four primary colors of red light, green light, yellow light, and blue light are output sequentially, not simultaneously. Therefore, the corresponding control signals when the green light, the yellow light, and the blue light are output are also high level, and are also low level in other time periods.
  • the blue light entering the optomechanical lighting device 3 is the laser light emitted by the second laser component 22 passing through the lens component 11 and the light combining mirror 131, passing through the light-transmitting area of the fluorescent wheel 14, and reflected by the mirror component 12, the light combining mirror 132 reflection, transmission of the combining mirror 131, transmission of the lens assembly 11, the color wheel 15 is filtered, and then the light is diffused by the light diffusing element 16, and then enters the optical machine lighting device 3.
  • the yellow fluorescence and the green fluorescence entering the optomechanical lighting device 3 may be the laser light emitted by the second laser assembly 22 passes through the lens assembly 11, passes through the light combining mirror 131, and is irradiated onto the fluorescent material on the fluorescent wheel 14, irradiated to the yellow
  • the fluorescent material or the green fluorescent material will excite the yellow fluorescent material or the green fluorescent material to produce yellow fluorescence and green fluorescence.
  • the generated colored light is reflected back by the reflector of the fluorescent wheel 14 and then reflected by the light combining mirror 131 through the lens assembly 11,
  • the color filter 15 filters the green fluorescence or the yellow fluorescence, enters the optomechanical lighting device 3 after being homogenized by the homogenizing element 16.
  • the red, green, blue, and yellow primary colors of the laser projector of the two-color light source shown in FIG. 1 can be generated by a blue laser and a red laser.
  • the red laser light source (which may be the first laser component 21) is lit when the red light is output, and the second laser component 22 can be lit according to the control to simultaneously output red fluorescence; and when the green light, When yellow light or blue light is output, the second laser module 22 is lit, and the first laser module 21 is not lit.
  • the control signals of the primary color light of the projection system only include the control signals of the three primary colors of red light, green light, and blue light, which are represented by R_EN, G_EN, and B_EN, respectively.
  • Yellow light is considered to be the combination of red light and green light, so the red light control signal R_EN and the green light control signal G_EN are both high-level logic signals to indicate the yellow light output control signal, that is, the red light control signal R_EN is high
  • the level is a two-level high level including a red light output period and a yellow light output period.
  • the high level of the green control signal G_EN is also two high levels including the green light output period and the yellow light output period. According to the angle values occupied by the red light, the green light, the yellow light and the blue light in the color wheel, the output time of each primary light in one rotation period can be obtained.
  • the logic control waveforms of the red light control signal R_EN, the green light control signal G_EN, and the blue light control signal B_EN in one cycle may be as shown in FIG. 3.
  • the laser light source driving control circuit (this circuit may be included in the laser 10) controls the lighting of the blue laser light source and the red laser light source after performing logical calculations based on the red, green, and blue control signals R_EN, G_EN, and B_EN to achieve fluorescence
  • the timing and output time of each primary color light of RGYB output after the wheel and the color filter wheel are synchronized with the lighting of the laser light source.
  • the red light control signal R_EN includes both the red light output control signal and the yellow light output control signal. Since the primary color light output timing of the laser projector is RGYB( It can also be other timings, which is not limited in this embodiment of the present application), so the periods of red light output and yellow light output are not adjacent, and are separated by the output period of green light, so the logic waveform of the red light control signal contains two high Level, one segment is the high level of the red light output time rT/360, the other segment is the high level of the yellow light output time yT/360; the green light control signal G_EN also includes the green light output control signal and the yellow light output control Signal, but the output timing of green light and yellow light is adjacent, so the waveform of green light control signal is a waveform including green light output time and yellow light output time gT/360+yT/360 is high level, two sections of high power The level is continuous; the blue light control signal B_EN contains only
  • FIG. 4 it is a flowchart of a method for driving a laser light source provided by an embodiment of the present application, which is used for a laser light source, and the laser light source may be as described in the foregoing embodiment.
  • the method includes the following steps:
  • Step 401 During the output period of the light of the first color, the laser of the first color is continuously output through the first laser assembly.
  • Step 402 During at least part of the output period of the light of the first color, the laser of the second color emitted by the second laser component excites the fluorescent sub-assembly to excite the fluorescence of the first color, and convert the fluorescence of the first color Output.
  • the at least partial time period may be a partial time period or all time periods in the output period of the light rays of the first color.
  • the distribution manner of at least part of the time period in the output period of the light of the first color may include two types:
  • At least part of the time period is a continuous time period, and the continuous time period is located in the output period of the light of the first color;
  • the second distribution manner at least part of the time period includes a plurality of discontinuous sub-periods, and the plurality of discontinuous sub-periods may be distributed in the output period of the light of the first color.
  • the plurality of discontinuous sub-periods are evenly distributed in the output period of the light of the first color, since the fluorescence of the first color is uniformly incorporated into the laser of the first color, compared with the first distribution mode, there is a For a longer period of time without fluorescence (the speckle phenomenon is easier to be observed by the human eye during this period), the second distribution method has a better effect on eliminating speckle.
  • the laser light of the first color is output to the laser light source by the first laser component, and the second laser component and
  • the fluorescent sub-assembly excites the fluorescence of the first color and outputs the fluorescence of the first color at the same time, so that the laser light source can output the laser light of the first color and the color of the first color at the same time during the output period of the light of the first color Fluorescence. Since the wavelengths of the laser light of the first color and the fluorescence of the first color are different, no coherence effect occurs.
  • the light emitted by the light source device in the related art causes the speckle phenomenon caused by interference of light with a longer wavelength, resulting in a lower imaging quality of the light emitted by the light source device.
  • the effect of avoiding speckle caused by the coherent effect of light and improving the quality of light imaging is achieved.
  • FIG. 5 it is a flowchart of another driving method of a laser light source provided by an embodiment of the present application, which is used for a laser light source, and the laser light source may be as described in the foregoing embodiment.
  • the method includes the following steps:
  • Step 501 During the output period of the light of the first color, the laser of the first color is continuously output through the first laser assembly.
  • the laser light of the first color can be output from the laser light source and input into the optomechanical lighting device.
  • the laser light source may include a control circuit, and the structure of the control circuit may be as shown in FIG. 6.
  • the red light control signal R_EN of the projection system contains the red light output and yellow light output control signals
  • the green light control signal G_EN contains the green light output and yellow light output control signals
  • the red light control signal The R_EN and the green light control signal G_EN are input to the device U4 to perform a logical AND operation to obtain a yellow light output control signal.
  • the yellow light output control signal and the red light control signal R_EN containing the yellow light output control signal are input to the device U5 to perform a logical XOR operation to obtain a red light output control signal R_LD. That is, the length of time for controlling the red laser light source to turn on is obtained.
  • the time of the high level of R_LD is the time when the red laser light source is lit, and the time length is r/360T, and its waveform can be as shown in FIG. 7.
  • the period in which R_LD is low level is the lighting time of the blue laser light source, and this period of time may be the green light output period, the blue light output period, and the yellow light output period.
  • Step 502 During at least part of the output period of the light of the first color, the second color laser is input to the third color fluorescent region of the fluorescent subassembly through the second laser component to excite the third color fluorescence.
  • At least part of the time period is a preset time period to output red fluorescence. That is, during the period when the red laser light source is lit, the blue laser light source can be lit to excite red fluorescence, and the length of the period of the red fluorescence output period can be 0 ⁇ t ⁇ r/360T, and the red fluorescence output The length of the period of time may be preset.
  • the red fluorescence is input into the optical path and mixed with the red laser, which can reduce the speckle phenomenon while enhancing the intensity of the red light.
  • the red light output control signal R_LD can be used as the selection signal of the selection device U10.
  • the selection device U10 When R_LD is high, the selection device U10 outputs the input signal of the B1 pin to the A pin of U10, that is, the red fluorescent
  • the output time is used as the control signal to turn on the blue laser light source to control the length of the red fluorescent output; when R_LD is low, it is the output period of green light, blue light and yellow light.
  • Select the device U10 to set B0 The input signal of the pin is output to the output pin A to light the blue laser light source.
  • the B0 pin of the device U10 is selected as the green light control signal G_EN and the blue light control signal B_EN through the device U1 after the logical OR operation of the blue laser light source lighting control signal B_LD, the B_LD signal controls the blue laser drive circuit to light blue Color laser, output the green light, blue light and yellow light of the system.
  • the setting mode of the period for outputting red fluorescence may include:
  • At least part of the time period includes one continuous time period in the output period of light rays of the first color, and the length of at least part of the period ⁇ length of the output period of light rays of the first color.
  • the single-chip computer triggers the single-chip microcomputer to start to emit red fluorescent light-emitting time t waveform according to the time length rT/360 of the red light output in one cycle.
  • the start time is the start time of the red light output.
  • the timer is used for timing.
  • the waveform emitted by the triggering microcontroller is changed to low level.
  • the waveform mode 1, 0 ⁇ t ⁇ rT/360 issued by the single-chip microcomputer is a continuous high-level waveform, and its length is t.
  • [0, t] is a continuous high level
  • [t, r/360T] is a low level, that is, within the red laser output time period r/360T
  • the laser light source is in a continuous high level period of [0, t] Red fluorescence is incorporated into it, and the blue laser light source is lit.
  • [t, r/360T] Red fluorescence is not output during the low level period, and the blue laser light source is not bright.
  • the circuit structure can be as shown in Fig. 6, the high level signal in the period of [0, t] issued by the single-chip microcomputer reverses to a low level through the inverter U12.
  • This low-level signal is input to pin 1 of device U11 as a selection signal, and pin 1 is active when the level is low.
  • Device U11 is gated.
  • the red light output control signal R_LD is output to obtain the red fluorescent output signal R_ON_LD, R_ON_LD is high level in the [0, t] period, and the red light output control signal R_LD controls U10 to select the output device to select the B1 channel output to the A pin, Lights up the red fluorescence of the blue laser light source output system; during the [t, r/360T] period, the single-chip microcomputer emits a low-level signal, and it is also low during other primary color light output periods, and then undergoes inversion After device U12 is high, device U11 is not gated. The input of the B1 pin of the U10 device is low, and the output to the A pin is low, and the blue laser light source is not bright.
  • At least part of the time period includes a plurality of discontinuous sub-periods in the output period of the light of the first color.
  • multiple discrete sub-periods are evenly distributed in the output period of the light of the first color.
  • the time length of red light output is r/360T. If red fluorescence is mixed into the red laser for a time length of t, then 0 ⁇ t ⁇ r/360T, and the red fluorescence mixed with the time t is divided into n outputs (that is, at least part of the period includes the light of the first color Multiple sub-periods in the output period), the control waveform output by the single-chip microcomputer is a pulse width modulation (English: Pulse Width Modulation; abbreviation: PWM) waveform with a high level of 1t/n time length. As shown in FIG.
  • PWM Pulse Width Modulation
  • the single-chip computer will be triggered by the red light output control signal R_LD to continuously output a PWM waveform with a high level of 1t/n time length, and the start time of the output of the single-chip PWM waveform is high, In this way, the preparation of the single-chip software is simple, and no complicated procedures such as timer counting are required.
  • the PWM waveform signal sent by the single-chip microcomputer passes through the inverter U12 and is input to the selection pin of U11 to control the output of the input waveform red light output control signal R_LD.
  • U11 When the PWM signal is high, U11 is gated and the output is high.
  • U11 When the PWM signal is low, U11 is off, the output is low, and the red fluorescent output signal R_ON_LD is obtained, and its waveform can be as shown in FIG. 7.
  • the red fluorescence output signal R_ON_LD is the result of the logical AND operation of the red light output control signal R_LD and the high-level 1t/n PWM waveform issued by the microcontroller.
  • the logic formula of the control signal R_LD that controls the red laser light source to light up The red laser light source is lit when there is only red light output; the red fluorescent output control signal
  • the output of the device U10 selects the red fluorescent output signal R_ON_LD of the B1 pin.
  • the red laser output signal R_ON_LD controls the blue laser light source to light up. Among them, when R_ON_LD is a high level, the blue laser light source is lit and outputs red fluorescence. When R_ON_LD is low, the blue laser light source is not bright and there is no red fluorescence output. Therefore, in the red light output period rT/360, there are n pieces of red fluorescence with a time length of 1t/n incorporated into the red laser. There is no red fluorescence mixed in rT/360-t time, and the blue laser light source is not bright.
  • the output of the device U10 selects the logical OR operation result of the B0 pin green light control signal G_EN and the blue light control signal B_EN as the control signal for lighting the blue laser light source, lighting blue
  • the laser light source outputs green light, blue light and yellow light.
  • Mode 2 not only is the MCU software program simpler than Mode 1, but it is doped n times in the red laser output process. Red fluorescence can be uniformly incorporated into the red laser. Compared with Mode 1, there is a longer undoped During the period of fluorescence (the speckle phenomenon is more easily observed by the human eye during this period), the second distribution method has a better effect on eliminating speckle.
  • Step 503 Filter the fluorescence of the fourth color from the fluorescence of the third color through the color filter subassembly to obtain the fluorescence of the first color.
  • Step 504 Output the fluorescence of the first color.
  • the laser light source can output the fluorescence of the first color and input it into the optomechanical lighting device.
  • the laser light of the first color is output to the laser light source by the first laser component, and the second laser component and
  • the fluorescent sub-assembly excites the fluorescence of the first color and outputs the fluorescence of the first color at the same time, so that the laser light source can output the laser light of the first color and the color of the first color at the same time during the output period of the light of the first color Fluorescence. Due to the broad spectrum of the fluorescence of the first color, it is not easy to interfere with the laser light of the first color.
  • the laser light source 800 includes an optical path assembly 810 and at least two laser assemblies 820.
  • the optical path assembly 810 includes a fluorescent subassembly 811.
  • the at least two laser assemblies 820 include a first laser assembly 821 for emitting laser light of a first color and The second laser component 822 of the second color laser.
  • the first laser assembly 821 is used to continuously output the laser light of the first color from the laser light source 800 during the output period of the light of the first color.
  • the second laser component 822 and the fluorescent sub-assembly 811 are used to excite the first color fluorescence and output the first color fluorescence from the laser light source 800 at least part of the output period of the light of the first color.
  • the optical path assembly 810 further includes a color filter sub-assembly 812, and the fluorescent sub-assembly 811 includes a third-color fluorescence region for exciting third-color fluorescence.
  • the third-color fluorescence is the first-color fluorescence and the third-color fluorescence.
  • the second laser component 822 is configured to input the laser light of the second color to the third color fluorescent region of the fluorescent subassembly 811 during at least part of the output period of the light of the first color to excite the fluorescence of the third color;
  • the color filter subassembly 812 is used to filter out the fluorescence of the fourth color in the fluorescence of the third color to obtain the fluorescence of the first color.
  • the optical path assembly 810 is used to output the first-color fluorescence from the laser light source 800.
  • the laser light source provided by the embodiment of the present application outputs the laser light of the first color through the first laser component to the laser light source during the output period of the light of the first color, and the second light emitted by the second laser component
  • the laser of the color excites the fluorescent sub-assembly to excite the fluorescence of the first color, and simultaneously outputs the fluorescence of the first color to the laser light source, so that the laser light source can simultaneously output the laser light of the first color during the output period of the light of the first color And the fluorescence of the first color. Due to the broad spectrum of the fluorescence of the first color, it is not easy to interfere with the laser light of the first color.
  • FIG. 9 it is a schematic structural diagram of a laser light source among the laser light sources shown in the embodiments of the present application. Among them, the structure of controlling the blue laser light source is basically the same as FIG. 6.
  • the image display control system can be a DMD main control chip. It is used to send red light power R_PWM signal, green light power G_PWM signal, blue light power B_PWM signal and yellow light power Y_PWM. These signals are input to the four input pins INA, INB, INC, and IND of the first digital-to-analog conversion module U7.
  • the analog optical power signals of red light, green light, blue light, and yellow light are output by OUTA, OUTB, OUTC, and OUTD of the first digital-to-analog conversion module U7, and respectively input to the input pins S5, S3, and S2 of the first selector U6.
  • the first selector U6 can be an 8-in-1 data selector.
  • the red, green, and blue enable signals R_EN, G_EN, and B_EN sent by the image display control system are sequentially input to the address terminals A2, A1, and A0 of the first selector U6, and the green, blue, and yellow are selected according to the binary decoding Light timing output.
  • the driving circuit module is used to light up the laser light source.
  • the single chip microcomputer can output 3 red light optical power signals R1_PWM, R2_PWM, R3_PWM. These three red light optical power signals are input to the second digital-to-analog conversion module U8. After being output from U8, they can be input to the second selector U9, which is the second selector U9 can be controlled by R_LD. After being selected by the second selector U9, the three signals can be controlled by the three drive circuit modules to control the three red laser light sources, so that the speckle phenomenon caused by the high coherence of the red laser can be reduced.
  • an embodiment of the present application further provides a laser projector, which includes an optomechanical lighting device and the laser light source shown in the foregoing embodiment.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the program may be stored in a computer-readable storage medium.
  • the mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光光源(1)的驱动方法、激光光源(1)和激光投影仪,属于激光技术领域。驱动方法包括:在第一色的光线的输出时段,通过第一激光组件(21)持续将第一色的激光输出(401);在第一色的光线的输出时段中的至少部分时段,通过第二激光组件(22)发出的第二色的激光激发荧光子组件(14)以激发出第一色的荧光,并将第一色的荧光输出(402)。

Description

激光光源的驱动方法、激光光源和激光投影仪
相关申请的交叉引用
本申请要求在2018年11月30日提交中国专利局、申请号为201811453168.2、申请名称为“激光光源的驱动方法、激光光源和激光投影仪”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光技术领域,特别涉及一种激光光源的驱动方法、激光光源和激光投影仪。
背景技术
目前,激光投影仪可以包括激光光源和光机照明装置,激光光源包括光路组件和光源组件,光源组件用于提供激光光源,光路组件用于将光源组件发出的激光进行调制并输入光机照明装置,该调制过程可以包括通过激光光源发出的激光激发出其他颜色的光线,以及对不同颜色光线的选择。激光光源在向光机照明组件输入光线时,根据预先的设定,不同色光有不同的输出时段,到达任一色光对应的输出时段时,激光光源就向光机照明组件输入该时段对应的色光。光机照明组件用于输出光路组件调制后的光线。
一种激光光源中的光源组件包括红色激光器和蓝色激光器,光路组件包括荧光轮。在红光输出时段,光路组件用于控制红色激光器发出的红光直接射向光机照明装置。在其他色光的输出时段,光路组件用于控制蓝色激光器发出的蓝色激光照射到荧光轮上,以激发出其他颜色的色光,并将该其他颜色的基色光输入光机照明组件。
在实现本申请的过程中,申请人发现相关技术至少存在以下问题:上述光源装置发出的光线中,红色激光或绿色激光由于波长较长,其干涉条纹的间距较大,人眼较容易观察到该干涉条纹,对光源装置发出的光线成像质量的影响较为严重。
发明内容
本申请实施例提供了一种激光光源的驱动方法、激光光源和激光投影仪,能够解决相关技术中光源装置发出的光线中,红色激光或绿色激光由于波长 较长,其干涉条纹的间距较大,对光源装置发出的光线成像质量的影响较为严重的问题。所述技术方案如下:
根据本申请的第一方面,提供了一种激光光源的驱动方法,包括:
在第一色的光线的输出时段,通过第一激光组件持续将所述第一色的激光输出;
在所述第一色的光线的输出时段中的至少部分时段,通过第二激光组件发出的第二色的激光激发所述荧光子组件以激发出所述第一色的荧光,并将所述第一色的荧光输出。
在一些实施例中,所述至少部分时段包括所述第一色的光线的输出时段中的一个连续时段,且所述至少部分时段的长度小于或等于所述第一色的光线的输出时段的长度。
在一些实施例中,所述至少部分时段包括所述第一色的光线的输出时段中的多个不连续的子时段。
在一些实施例中,所述多个不连续的子时段均匀分布在所述第一色的光线的输出时段中。
在一些实施例中,所述通过所述第二激光组件发出的第二色的激光激发所述荧光子组件以激发出所述第一色的荧光,并将所述第一色的荧光输出,包括:
在所述第一色的光线的输出时段中的至少部分时段,通过所述第二激光组件向所述荧光子组件的第三色荧光区输入所述第二色的激光,以激发出所述第三色的荧光;
通过滤色子组件滤除所述第三色的荧光中的所述第四色的荧光,以得到所述第一色的荧光;
将所述第一色的荧光输出所述激光光源。
在一些实施例中,所述第一色为红色,所述第二色为蓝色。
在一些实施例中,所述第三色为黄色,所述第四色为绿色。
在一些实施例中,所述荧光子组件包括第一第三色荧光区和第二第三色荧光区,所述第一第三色荧光区用于激发获得所述第三色的荧光,所述第二第三色荧光区用于生成所述第三色的荧光以进一步生成所述第一色的荧光。
根据本申请的第二方面,提供一种激光光源,所述激光光源包括光路组件和至少两个激光组件,所述光路组件包括荧光子组件,所述至少两个激光 组件包括用于发出第一色的激光的第一激光组件和用于发出第二色的激光的第二激光组件,所述第一激光组件,用于在所述第一色的光线的输出时段,持续将所述第一色的激光从所述激光光源输出;
所述第二激光组件以及所述荧光子组件,用于在所述第一色的光线的输出时段中的至少部分时段,激发出所述第一色的荧光,并将所述第一色的荧光从所述激光光源输出。
在一些实施例中,所述光路组件还包括滤色子组件,所述荧光子组件包括用于激发出第三色荧光的第三色荧光区,所述第三色的荧光为所述第一色的荧光和第四色的荧光的混合荧光,所述第二激光组件,用于在所述第一色的光线的输出时段中的至少部分时段,向所述荧光子组件的所述第三色荧光区输入所述第二色的激光,以激发出所述第三色的荧光;
所述滤色子组件用于滤除所述第三色的荧光中的所述第四色的荧光,以得到所述第一色的荧光;
所述光路组件用于将所述第一色的荧光从所述激光光源输出。
在一些实施例中,所述第三色荧光区包括第一第三色荧光区和第二第三色荧光区,其中所述第二第三色荧光区用于生成所述第三色的荧光以进一步获得所述第一色的荧光。
在一些实施例中,所述至少部分时段包括所述第一色的光线的输出时段中的一个连续时段,且所述至少部分时段的长度小于或等于所述第一色的光线的输出时段的长度。
在一些实施例中,所述至少部分时段包括所述第一色的光线的输出时段中的多个不连续的子时段。
在一些实施例中,所述多个不连续的子时段均匀分布在所述第一色的光线的输出时段中。
在一些实施例中,所述第一色为红色,所述第二色为蓝色。
在一些实施例中,所述第三色为黄色,所述第四色为绿色。
根据本申请的第三方面,提供一种激光投影仪,所述激光投影仪包括光机照明装置和第二方面所述的激光光源。
本申请实施例提供的技术方案带来的有益效果至少包括:
在第一色的光线的输出时段,通过第一激光组件将第一色的激光输出激光光源的同时,通过第二激光组件发出的第二色的激光激发荧光子组件以激 发出第一色的荧光,并将该第一色的荧光同时输出激光光源,这样激光光源即能够在第一色的光线的输出时段同时输出第一色的激光和第一色的荧光。由于第一色的荧光的光谱较宽,不易与第一色的激光发生干涉。解决了相关技术中光源装置发出的光线中,波长较长的红色激光或绿色激光发生的干涉对光源装置发出的光线成像质量的影响较为严重的问题。达到了提高光线成像质量的效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种激光投影仪的结构示意图;
图2是图1所示激光投影仪中一种荧光轮和滤色轮的结构示意图;
图3是本申请实施例一种控制信号的波形图;
图4是本申请实施例提供的一种激光光源的驱动方法的流程图;
图5是本申请实施例提供的另一种激光光源的驱动方法的流程图;
图6是图5所示实施例中的一种电路结构示意图;
图7是图6所示的电路结构中各个信号的波形图;
图8是本申请实施例提供的一种激光光源的结构框图;
图9是本申请实施例提供的一种激光光源的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
当激光的波长越长时,其干涉条纹的间距就会越大,会产生人眼容易察觉的散斑现象(被激光照射物体的表面出现的颗粒状的亮斑),进而对光源装置发出的光线成像质量的影响就会越严重。示例性的,波长较长的红光和绿 光较容易产生散斑现象。目前,当激光用于作为激光投影仪的光源时,散斑现象会严重的影响激光投影仪的成像质量。
本申请实施例提供了一种激光光源的驱动方法、光源装置和激光投影仪,能够解决相关技术中存在的问题。
图1是本申请一些实施例的实施环境的示意图,该实施环境可以包括激光光源1和光机照明装置3。该实施环境可以为一种包括双色光源的激光投影仪。
激光光源1包括激光器10和光路组件20。
激光器10用于提供作为光源的激光,光路组件20用于将激光器10发出的激光进行调制并输入光机照明装置3,该调制过程可以包括通过激光光源发出的激光以及激光激发出的其他颜色的光,以及对不同颜色光线的选择。光机照明装置3用于输出光路装置调制后的光线。
其中,光路组件10可以包括透镜组件11、反射镜组件12、第一合光镜131、第二合光镜132、荧光轮14(该荧光轮可以为荧光子组件)、滤色轮15(该滤色轮可以为滤色子组件)和匀光元件16,激光器10可以包括用于发出第一色的激光的第一激光组件21和用于发出第二色的激光的第二激光组件22。
第一激光组件21发出的光线经过透镜组件11、反射镜组件12反射后透过两个合光镜(131和132)、滤色轮15和匀光元件16后射入光机照明装置3。在一些实施例中,第一激光组件21发出的光线可以为波长较长的红光或绿光。
第二激光组件22发出的光线可以用于激发出其他颜色的光,在一些实施例中,第二激光组件22发出的光线可以为波长较短的蓝光。可以通过蓝光以及荧光轮激发出绿光和黄光(黄光用于提高光线的整体亮度,以及提供红色荧光)。
其中,合光镜132透射红色激光,反射蓝色激光,合光镜131透射蓝色激光和红色激光,反射其他颜色的光,如反射绿色荧光及黄色荧光等。荧光轮14可以包括透光区和荧光区,荧光区可以包括用于激发第三色的荧光的第一第三色荧光区(包括反光板和设置在反光板上用于激发第三色的荧光的荧光材料)和第二第三色荧光区,第三色的荧光为第一色的荧光和第四色的荧光的混合荧光。其中,第一第三色荧光区可以用于提供第一色的荧光。
在一些实施例中,第一色为红色,第二色为蓝色,第三色为黄色,以及第四色为绿色。
如图2所示,其为本申请实施例提供的一种荧光轮以及滤色轮的结构示意图。其中,荧光轮包括用于激发出黄色荧光的第一黄色荧光区Y1(其圆心角为y)、用于激发出绿色荧光的绿色荧光区G1(其圆心角为g)、透明区B1(其圆心角为b)和用于激发出黄色荧光的第二黄色荧光区R1(其圆心角为r)。该第二黄色荧光区R1可以用于提供红色荧光(黄色荧光中包括红色荧光)。r+g+y+b=360。
滤色轮包括绿色透光区G2(其圆心角为g)、透明区(透明区包括用于透过黄光的黄光透明区Y2(其圆心角为y)和用于透过蓝光的蓝光透明区B2(其圆心角为b))和红光透过光区R2(其圆心角为r),红光透光区R2与第二黄色荧光区R1对应,用于滤除第二黄色荧光区R1激发出的黄光中除红光外的色光,以得到红色荧光。
在一些实施例中,荧光轮和滤色轮的旋转为匀速周期性转动。根据红光、绿光、黄光以及蓝光各基色光在色轮中的角度可以计算出对应的R(红光)G(绿光)Y(黄光)B(蓝光)各基色光的输出时段,若荧光轮和滤色轮的一个旋转周期为T,一个旋转周期可以为60Hz,120Hz或240Hz,则激光投影仪的红光、绿光、黄光以及蓝光的输出时段分别为rT/360、gT/360、yT/360和bT/360。在一个周期内,RGYB基色光输出时段内各基色光控制信号为高电平,如在红光输出时段rT/360内,则红光输出控制信号为高电平,而其他时间段内红光控制信号都为低电平。这是由于红光、绿光、黄光以及蓝光这四种基色光是时序输出,而非同时输出。因此绿光、黄光以及蓝光输出时对应的控制信号也为高电平,其他时间段内也都为低电平。
进入光机照明装置3的蓝光,是由第二激光组件22发出的激光经过透镜组件11,合光镜131透射,透过荧光轮14的透光区,经反射镜组件12反射,合光镜132反射,合光镜131透射、透镜组件11透射,滤色轮15滤波后经匀光元件16匀光后进入光机照明装置3。
进入光机照明装置3的黄色荧光和绿色荧光,可以是由第二激光组件22发出的激光经过透镜组件11,透过合光镜131,照射到荧光轮14上的荧光材料上,照射到黄色荧光材料或绿色荧光材料上会激发黄色荧光材料或绿色荧光材料产生黄色荧光和绿色荧光,产生的色光被荧光轮14的反光板反射回来,再经过合光镜131反射,透过透镜组件11,滤色轮15对绿色荧光或黄色荧光进行滤波,经匀光元件16匀光后进入光机照明装置3。
图1示出的双色光源的激光投影仪的红、绿、蓝、黄基色光可以由蓝色激光和红色激光产生的。在一个基色光输出周期里,红光输出时为红色激光光源(可以为第一激光组件21)被点亮,第二激光组件22可以根据控制点亮以同时输出红色荧光;而当绿光、黄光或蓝光输出时,第二激光组件22被点亮,第一激光组件21不亮。
在一些实施例中,本申请实施例提供的激光投影仪中的光路组件12的结构还可以参考相关技术中的双色光源的激光投影仪,在此不再赘述。
相关技术中,激光投影仪通常不把黄光作为基色光,因此投影系统基色光的控制信号只包含红光、绿光、蓝光这三个基色的控制信号,分别用R_EN、G_EN、B_EN表示,黄光认为是红光和绿光的合光,因此使用红光控制信号R_EN和绿光控制信号G_EN同时为高电平的逻辑信号来表示黄光输出控制信号,即红光控制信号R_EN的高电平是包含红光输出时段和黄光输出时段的两段高电平。同样,绿色控制信号G_EN的高电平也是包含绿光输出时段和黄光输出时段的两段高电平。根据红光、绿光、黄光以及蓝光在滤色轮中所占的角度值,可以得到出各基色光在一个旋转周期内输出的时间。示例性的,在一个周期内红光控制信号R_EN、绿光控制信号G_EN、蓝光控制信号B_EN的逻辑控制波形可以如图3所示。激光光源驱动控制电路(该电路可以包括在激光器10中)根据红光、绿光以及蓝光控制信号R_EN、G_EN、B_EN进行逻辑计算后控制蓝色激光光源和红色激光光源的点亮,实现经过荧光轮和滤色轮后输出的RGYB各基色光时序及输出时间与激光光源的点亮同步。
如图3所示,在荧光轮和滤色轮的一个旋转周期内,红光控制信号R_EN同时包含红光输出控制信号和黄光输出控制信号,由于激光投影仪的基色光输出时序为RGYB(也可以为其他时序,本申请实施例不进行限制),因此红光输出和黄光输出的时间段不相邻,间隔了绿光的输出时段,因此红光控制信号的逻辑波形包含两段高电平,一段为红光输出时间rT/360的高电平,另一段为黄光输出时间yT/360的高电平;绿光控制信号G_EN也是同时包含绿光输出控制信号和黄光输出控制信号,但绿光与黄光的输出时序相邻,因此绿光控制信号的波形是包含绿光输出时间和黄光输出时间gT/360+yT/360为高电平的波形,两段高电平是连续的;蓝光控制信号B_EN只包含一段蓝光输出时间bT/360为高电平的波形。
如图4所示,其为本申请实施例提供的一种激光光源的驱动方法的流程 图,用于激光光源,该激光光源可以如上述实施例所述。该方法包括下面几个步骤:
步骤401、在第一色的光线的输出时段,通过第一激光组件持续将第一色的激光输出。
步骤402、在第一色的光线的输出时段中的至少部分时段,通过第二激光组件发出的第二色的激光激发荧光子组件以激发出第一色的荧光,并将第一色的荧光输出。
该至少部分时段可以是第一色的光线的输出时段中的部分时段或全部时段。至少部分时段在第一色的光线的输出时段中的分布方式可以包括两种:
在第一种分布方式中,至少部分时段是一个连续的时段,该连续的时段位于第一色的光线的输出时段中;
在第二种分布方式中,至少部分时段包括多个不连续的子时段,这多个不连续的子时段可以分布在第一色的光线的输出时段中。当这多个不连续的子时段均匀的分布在第一色的光线的输出时段时,由于第一色的荧光均匀的掺入第一色的激光,相较于第一种分布方式中存在一个较长的未掺入荧光的时段(人眼在这一时段较容易观察到散斑现象),第二种分布方式对于散斑的消除效果较好。综上所述,本申请实施例提供的激光光源的驱动方法,在第一色的光线的输出时段,通过第一激光组件将第一色的激光输出激光光源的同时,通过第二激光组件以及荧光子组件激发出第一色的荧光,并将该第一色的荧光同时输出激光光源,这样激光光源即能够在第一色的光线的输出时段同时输出第一色的激光和第一色的荧光。由于第一色的激光和第一色的荧光的波长不同,因而不会发生相干效应。解决了相关技术中光源装置发出的光线中,波长较长的光线发生干涉引起散斑现象,导致光源装置发出的光线成像质量较低的问题。达到了避免光线相干效应引起的散斑现象,提高光线成像质量的效果。
如图5所示,其为本申请实施例提供的另一种激光光源的驱动方法的流程图,用于激光光源,该激光光源可以如上述实施例所述。该方法包括下面几个步骤:
步骤501、在第一色的光线的输出时段,通过第一激光组件持续将第一色的激光输出。
第一激光组件输出第一色的激光的方式可以参考上述实施例,在此不再 赘述。
该第一色的激光可以从激光光源输出,并输入光机照明装置。
本申请实施例提供的激光光源的驱动方法所应用的激光光源中,激光光源可以包括控制电路,该控制电路的结构可以如图6所示。
在一个图像输出周期T内,投影系统的红光控制信号R_EN包含红光输出和黄光输出的控制信号,绿光控制信号G_EN包含绿光输出和黄光输出的控制信号,因此红光控制信号R_EN和绿光控制信号G_EN输入到器件U4进行逻辑与运算可以得到黄光输出控制信号。该黄光输出控制信号与包含黄光输出控制信号的红光控制信号R_EN输入到器件U5进行逻辑异或运算可以得到红光输出控制信号R_LD。即得到了控制红色激光光源点亮的时间长度。R_LD高电平的时间即为红色激光光源点亮的时间,其时间长度为r/360T,其波形可以如图7所示。R_LD为低电平的时间段内为蓝色激光光源点亮时间,这段时间可以为绿光输出时段、蓝光输出时段以及黄光输出时段。
步骤502、在第一色的光线的输出时段中的至少部分时段,通过第二激光组件向荧光子组件的第三色荧光区输入第二色的激光,以激发出第三色的荧光。
其中,至少部分时段即为预先设定的要输出红色荧光的时段。也即是,在红色激光光源点亮的这段时间内,可点亮蓝色激光光源激发出红色荧光,红色荧光输出的时段的长度范围可以是0≤t≤r/360T,且红色荧光输出的时段的长度可以是预先设定的。使红色荧光输入到光路中与红色激光混合,能够在增强红色光强度的情况下,减弱散斑现象。
如图6所示,红光输出控制信号R_LD可以作为选择器件U10的选择信号,当R_LD为高电平时,选择器件U10将B1管脚的输入信号输出到U10的A管脚,即把红色荧光输出的时间来作为点亮蓝色激光光源的控制信号,实现红色荧光输出的时间长短的控制;当R_LD为低电平时,此时是绿光、蓝光及黄光输出时段,选择器件U10将B0管脚的输入信号输出到输出管脚A,用来点亮蓝色激光光源。选择器件U10的B0管脚为绿光控制信号G_EN与蓝光控制信号B_EN经过器件U1进行逻辑或运算后得到的蓝色激光光源的点亮控制信号B_LD,B_LD信号控制蓝色激光驱动电路点亮蓝色激光,输出系统的绿光、蓝光及黄光。
在本申请实施例中,该输出红色荧光的时段的设置模式可以包括:
模式1、至少部分时段包括第一色的光线的输出时段中的一个连续的时段,且至少部分时段的长度≤第一色的光线的输出时段的长度。
如图6所示,单片机根据一个周期内红光输出的时间长度rT/360,由红光输出控制信号R_LD触发单片机开始发出红色荧光点亮的时间长度t波形。开始时刻为红色光输出开始时刻。使用定时器计时,当时间长度为t时,触发单片机发出的波形变为低电平。如图7所示,单片机发出的波形模式1,0≤t≤rT/360,为连续高电平波形,其长度为t。即[0,t]为连续高电平,[t,r/360T]为低电平,即在红色激光输出时间周期r/360T内,激光光源在[0,t]连续高电平时间段内掺入红色荧光,蓝色激光光源被点亮。[t,r/360T]低电平时段内红色荧光不输出,蓝色激光光源不亮。电路结构可以如图6所示,单片机发出的[0,t]时间段内高电平信号经过反相器U12反向变为低电平。此低电平信号输入到器件U11的1管脚作为选择信号,低电平时管脚1有效。器件U11选通。红光输出控制信号R_LD输出得到红色荧光输出信号R_ON_LD,[0,t]时间段内R_ON_LD为高电平,同时红光输出控制信号R_LD控制U10选择输出器件选通B1通道输出给A管脚,点亮蓝色激光光源输出系统的红色荧光;在[t,r/360T]时间段内单片机发出的为低电平信号,且在其他基色光输出时段内也为低电平,再经过反相器U12后为高电平,则器件U11不选通。U10器件的B1管脚输入为低电平,输出到A管脚为低电平,蓝色激光光源不亮。
模式2、至少部分时段包括第一色的光线的输出时段中的多个不连续的子时段。
在一些实施例中,多个不连续的子时段均匀分布在第一色的光线的输出时段中。
在一个基色光输出的周期T内,红光输出的时间长度为r/360T。若在红色激光中掺入t时间长度的红色荧光,则0≤t≤r/360T,把掺入t时间长度的红色荧光打散分成n份输出(即至少部分时段包括第一色的光线的输出时段中的多个子时段),则单片机输出的控制波形是高电平为1t/n时间长度的脉冲宽度调制(英文:Pulse Width Modulation;简称:PWM)波形。如图7所示,在一个基色光输出周期内单片机将受红光输出控制信号R_LD触发持续输出高电平为1t/n时间长度的PWM波形,且单片机输出PWM波形开始时刻为高电平,这种方式单片机软件的编写简单,可以不需要定时器计时等复杂程序。
单片机发出的PWM波形信号经过反相器U12后输入到U11的选择管脚 控制输入波形红光输出控制信号R_LD的输出。当PWM信号为高电平时,U11选通,输出为高电平。当PWM信号为低电平时,U11不通,输出为低,得到红色荧光输出信号R_ON_LD,其波形可以如图7所示。红色荧光输出信号R_ON_LD即为红光输出控制信号R_LD和单片机发出的高电平为1t/n的PWM波形的逻辑与运算的结果。
图7为本申请实施例提供的激光光源中,各个信号的波形图。控制红色激光光源点亮的控制信号R_LD的逻辑公式
Figure PCTCN2019091297-appb-000001
仅有红光输出时红色激光光源被点亮;红色荧光输出控制信号
Figure PCTCN2019091297-appb-000002
绿光、蓝光以及黄光输出时控制蓝色激光光源点亮的控制信号B_ON_LD=G_EN∪B_EN,蓝色激光光源点亮的控制信号B_LD=R_ON_LD∪B_ON_LD,为红色荧光、绿光、蓝光以及黄光输出时蓝色激光光源都被点亮。
如图6所示,当红光输出控制信号R_LD为高电平时,器件U10的输出选择B1管脚的红色荧光输出信号R_ON_LD。由红色荧光输出信号R_ON_LD控制蓝色激光光源点亮。其中,当R_ON_LD为高电平时蓝色激光光源点亮,并输出红色荧光。当R_ON_LD为低电平时蓝色激光光源不亮,无红色荧光输出。所以在红光输出周期rT/360内,是有n个时间长度为1t/n的红色荧光掺入到红色激光中。rT/360-t时间内没有掺入红色荧光,蓝色激光光源不亮。
当红光输出控制信号R_LD为低电平时,器件U10的输出选择B0管脚绿光控制信号G_EN与蓝光控制信号B_EN的逻辑或运算的结果作为点亮蓝色激光光源的控制信号,点亮蓝色激光光源输出绿光、蓝光及黄光。
当0<t<r T/360,在上述模式1中,是连续掺入t时间段的红色荧光,而在上述模式2中,是以PWM信号形式分n次掺入t时间段的红色荧光,模式2不仅单片机软件程序比模式1简单,而且在红色激光输出过程中是分n次掺入,红色荧光能够均匀的掺入红色激光中相较于模式1中存在一个较长的未掺入荧光的时段(人眼在这一时段较容易观察到散斑现象),第二种分布方式对于散斑的消除效果较好。
步骤503、通过滤色子组件滤除第三色的荧光中的第四色的荧光,以得到第一色的荧光。
该滤光子组件可以参考上述实施例中所述的滤色轮,在此不再赘述。
步骤504、将第一色的荧光输出。
激光光源可以将第一色的荧光输出,并输入光机照明装置。
综上所述,本申请实施例提供的激光光源的驱动方法,在第一色的光线的输出时段,通过第一激光组件将第一色的激光输出激光光源的同时,通过第二激光组件以及荧光子组件激发出第一色的荧光,并将该第一色的荧光同时输出激光光源,这样激光光源即能够在第一色的光线的输出时段同时输出第一色的激光和第一色的荧光。由于第一色的荧光的光谱较宽,不易与第一色的激光发生干涉。解决了相关技术中光源装置发出的光线中,波长较长的光线发生的干涉对光源装置发出的光线成像质量的影响较为严重的问题。达到了提高光线成像质量的效果。
图8是本申请实施例提供的一种激光光源的结构框图。该激光光源800包括光路组件810和至少两个激光组件820,光路组件810包括荧光子组件811,至少两个激光组件820包括用于发出第一色的激光的第一激光组件821和用于发出第二色的激光的第二激光组件822。
第一激光组件821,用于在第一色的光线的输出时段,持续将第一色的激光从激光光源800输出。
第二激光组件822以及荧光子组件811,用于在第一色的光线的输出时段中的至少部分时段,激发出第一色的荧光,并将第一色的荧光从激光光源800输出。
在一些实施例中,光路组件810还包括滤色子组件812,荧光子组件811包括用于激发出第三色荧光的第三色荧光区,第三色的荧光为第一色的荧光和第四色的荧光的混合荧光。
第二激光组件822,用于在第一色的光线的输出时段中的至少部分时段,向荧光子组件811的第三色荧光区输入第二色的激光,以激发出第三色的荧光;
滤色子组件812用于滤除第三色的荧光中的第四色的荧光,以得到第一色的荧光。
光路组件810用于将第一色的荧光从激光光源800输出。
综上所述,本申请实施例提供的激光光源,在第一色的光线的输出时段,通过第一激光组件将第一色的激光输出激光光源的同时,通过第二激光组件发出的第二色的激光激发荧光子组件以激发出第一色的荧光,并将该第一色的荧光同时输出激光光源,这样激光光源即能够在第一色的光线的输出时段 同时输出第一色的激光和第一色的荧光。由于第一色的荧光的光谱较宽,不易与第一色的激光发生干涉。解决了相关技术中光源装置发出的光线中,波长较长的光线发生的干涉对光源装置发出的光线成像质量的影响较为严重的问题。达到了避免光线相干效应引起的散斑现象,提高光线成像质量的效果。
如图9所示,其为本申请实施例示出的激光光源中的一种激光光源的结构示意图。其中,控制蓝色激光光源的结构与图6基本相同。
图像显示控制系统可以为DMD主控芯片。用于发送红光光功率R_PWM信号,绿光光功率G_PWM信号、蓝光光功率B_PWM信号以及黄光光功率Y_PWM。这些信号输入到第一数模转换模块U7的4路输入管脚INA、INB、INC、IND。红光、绿光、蓝光、黄光的模拟光功率信号由第一数模转换模块U7的OUTA、OUTB、OUTC、OUTD输出,分别输入到第一选择器U6的输入管脚S5、S3、S2、S7中,第一选择器U6可以是8选1数据选择器,通过数据选择端(地址端)A2、A1和A0,按照二进制译码的8种组合,从8路输入数据中选择一路输出,图像显示控制系统发送的红光、绿光、蓝光使能信号R_EN、G_EN、B_EN依次输入到第一选择器U6的地址端A2、A1、A0,按照二进制译码选择绿光、蓝光、黄光的时序输出。驱动电路模块用于点亮激光光源。
单片机可以输出3路红光光功率信号R1_PWM、R2_PWM、R3_PWM,这三路红光光功率信号输入第二数模转换模块U8,从U8输出后可以输入第二选择器U9,该第二选择器U9可以由R_LD来控制。经第二选择器U9选择后,三路信号可以通过三个驱动电路模块来分别控制三路红色激光光源,如此能够减小红色激光的高相干性引起的散斑现象。
此外,本申请实施例还提供一种激光投影仪,该激光投影仪包括光机照明装置和上述实施例所示的激光光源。
在本申请中,术语“第一”、“第二”、“第三”和“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或 一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种激光光源的驱动方法,包括:
    在第一色的光线的输出时段,通过第一激光组件持续将所述第一色的激光输出;
    在所述第一色的光线的输出时段中的至少部分时段,通过第二激光组件发出的第二色的激光激发荧光子组件以激发出所述第一色的荧光,并将所述第一色的荧光输出。
  2. 根据权利要求1所述的方法,其中,所述至少部分时段包括所述第一色的光线的输出时段中的一个连续时段,且所述至少部分时段的长度小于或等于所述第一色的光线的输出时段的长度。
  3. 根据权利要求1所述的方法,其中,所述至少部分时段包括所述第一色的光线的输出时段中的多个不连续的子时段。
  4. 根据权利要求3所述的方法,其中,所述多个不连续的子时段均匀分布在所述第一色的光线的输出时段中。
  5. 根据权利要求1所述的方法,其中,所述通过所述第二激光组件发出的第二色的激光激发所述荧光子组件以激发出所述第一色的荧光,并将所述第一色的荧光输出,包括:
    在所述第一色的光线的输出时段中的至少部分时段,通过所述第二激光组件向所述荧光子组件的第三色荧光区输入所述第二色的激光,以激发出第三色的荧光,其中所述第三色的荧光为所述第一色的荧光和第四色的荧光的混合荧光;
    通过滤色子组件滤除所述第三色的荧光中的所述第四色的荧光,以得到所述第一色的荧光;
    将所述第一色的荧光输出所述激光光源。
  6. 根据权利要求1所述的方法,其中,所述第一色为红色,所述第二色为蓝色。
  7. 根据权利要求5所述的方法,其中,所述第三色为黄色,所述第四色为绿色。
  8. 根据权利要求5所述的方法,其中,所述荧光子组件包括第一第三色荧光区和第二第三色荧光区,所述第一第三色荧光区用于激发获得所述第三色的荧光,所述第二第三色荧光区用于生成所述第三色的荧光以进一步生成 所述第一色的荧光。
  9. 一种激光光源,包括光路组件和至少两个激光组件,所述光路组件包括荧光子组件,所述至少两个激光组件包括用于发出第一色的激光的第一激光组件和用于发出第二色的激光的第二激光组件,所述第一激光组件,用于在所述第一色的光线的输出时段,持续将所述第一色的激光从所述激光光源输出;
    所述第二激光组件以及所述荧光子组件,用于在所述第一色的光线的输出时段中的至少部分时段,激发出所述第一色的荧光,并将所述第一色的荧光从所述激光光源输出。
  10. 根据权利要求9所述的激光光源,其中,所述光路组件还包括滤色子组件,所述荧光子组件包括用于激发出第三色的荧光的第三色荧光区,所述第三色的荧光为所述第一色的荧光和第四色的荧光的混合荧光,
    所述第二激光组件,用于在所述第一色的光线的输出时段中的至少部分时段,向所述荧光子组件的所述第三色荧光区输入所述第二色的激光,以激发出所述第三色的荧光;
    所述滤色子组件用于滤除所述第三色的荧光中的所述第四色的荧光,以得到所述第一色的荧光;
    所述光路组件用于将所述第一色的荧光从所述激光光源输出。
  11. 根据权利要求10所述的激光光源,其中,所述第三色荧光区包括第一第三色荧光区和第二第三色荧光区,其中所述第二第三色荧光区用于生成所述第三色的荧光以进一步获得所述第一色的荧光。
  12. 根据权利要求9所述的激光光源,其中,所述至少部分时段包括所述第一色的光线的输出时段中的一个连续时段,且所述至少部分时段的长度小于或等于所述第一色的光线的输出时段的长度。
  13. 根据权利要求9所述的激光光源,其中,所述至少部分时段包括所述第一色的光线的输出时段中的多个不连续的子时段。
  14. 根据权利要求13所述的激光光源,其中,所述多个不连续的子时段均匀分布在所述第一色的光线的输出时段中。
  15. 根据权利要求9所述的激光光源,其中,所述第一色为红色,所述第二色为蓝色。
  16. 根据权利要求10所述的激光光源,其中,所述第三色为黄色,所述 第四色为绿色。
  17. 一种激光投影仪,包括光机照明装置和如权利要求9所述的激光光源。
  18. 一种激光投影仪,包括光机照明装置和如权利要求10所述的激光光源。
PCT/CN2019/091297 2018-11-30 2019-06-14 激光光源的驱动方法、激光光源和激光投影仪 WO2020107863A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/708,415 US10928717B2 (en) 2018-11-30 2019-12-09 Laser light source driving method, laser light source and laser projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811453168.2A CN111258156B (zh) 2018-11-30 2018-11-30 激光光源的驱动方法、激光光源和激光投影仪
CN201811453168.2 2018-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/708,415 Continuation US10928717B2 (en) 2018-11-30 2019-12-09 Laser light source driving method, laser light source and laser projector

Publications (1)

Publication Number Publication Date
WO2020107863A1 true WO2020107863A1 (zh) 2020-06-04

Family

ID=70852713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091297 WO2020107863A1 (zh) 2018-11-30 2019-06-14 激光光源的驱动方法、激光光源和激光投影仪

Country Status (3)

Country Link
US (1) US10928717B2 (zh)
CN (1) CN111258156B (zh)
WO (1) WO2020107863A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905673B2 (ja) * 2019-03-25 2021-07-21 カシオ計算機株式会社 光源装置、投影装置及び光源制御方法
CN114323588B (zh) * 2021-12-30 2023-10-24 北京工业大学 一种测量ld侧泵模块激光晶体内部荧光分布的装置及方法
CN116828162B (zh) * 2023-08-28 2023-12-01 宜宾市极米光电有限公司 显示系统和显示控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093794A (zh) * 2015-06-03 2015-11-25 海信集团有限公司 一种双色激光光源
CN105353579A (zh) * 2015-12-11 2016-02-24 海信集团有限公司 一种滤光装置及激光光源
US20160077417A1 (en) * 2013-06-07 2016-03-17 Nec Display Solutions, Ltd. Light source apparatus and projection display apparatus provided with same
CN105425522A (zh) * 2015-12-23 2016-03-23 海信集团有限公司 光源装置及映像显示装置
CN108169990A (zh) * 2016-12-07 2018-06-15 中航国画(上海)激光显示科技有限公司 一种双色激光光源投影机及其控制方法
CN207676111U (zh) * 2017-11-20 2018-07-31 四川长虹电器股份有限公司 一种高效双色激光投影光源系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393598B (zh) * 2011-11-03 2014-03-26 海信集团有限公司 光源装置及应用其的投影机
CN108803220A (zh) * 2018-06-15 2018-11-13 成都九天光学技术有限公司 一种激光投影光源系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160077417A1 (en) * 2013-06-07 2016-03-17 Nec Display Solutions, Ltd. Light source apparatus and projection display apparatus provided with same
CN105093794A (zh) * 2015-06-03 2015-11-25 海信集团有限公司 一种双色激光光源
CN105353579A (zh) * 2015-12-11 2016-02-24 海信集团有限公司 一种滤光装置及激光光源
CN105425522A (zh) * 2015-12-23 2016-03-23 海信集团有限公司 光源装置及映像显示装置
CN108169990A (zh) * 2016-12-07 2018-06-15 中航国画(上海)激光显示科技有限公司 一种双色激光光源投影机及其控制方法
CN207676111U (zh) * 2017-11-20 2018-07-31 四川长虹电器股份有限公司 一种高效双色激光投影光源系统

Also Published As

Publication number Publication date
US20200174354A1 (en) 2020-06-04
CN111258156A (zh) 2020-06-09
US10928717B2 (en) 2021-02-23
CN111258156B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
US10451960B2 (en) Laser light source and projection display device
US9250506B2 (en) Illumination light source device and projector provided with the same, and control method of the projector
EP3309610B1 (en) Dual-colour laser light source
CN110161791B (zh) 照明系统及投影装置
JP6565846B2 (ja) 光源装置及び投影装置
WO2020107863A1 (zh) 激光光源的驱动方法、激光光源和激光投影仪
JP4924677B2 (ja) 光源装置、投影装置及び投影方法
JP6705600B2 (ja) プロジェクター及び画像表示方法
CN101825836A (zh) 光源系统
TW201109726A (en) Light source device, projector and projection method
WO2014041636A1 (ja) 照明光学装置、プロジェクタ、および照明光学装置の制御方法
JP2004070065A (ja) 映像表示装置
CN108303839B (zh) 一种激光投影照明光源及其投影系统
JP2011227525A (ja) 光源装置、光源ユニット及びプロジェクタ
WO2020108391A1 (zh) 激光投影显示方法及激光投影设备
JP2006294598A (ja) 光源装置、光源ユニット及びプロジェクタ
CN109991800A (zh) 光源装置及投影系统
JP5194870B2 (ja) 画像表示装置及び投影装置
US20200166826A1 (en) Illumination system and projection device
WO2020108233A1 (zh) 一种激光投影设备及激光投影方法
CN220709524U (zh) 一种光源系统及投影设备
CN220709523U (zh) 一种光源系统及投影设备
CN221149126U (zh) 一种单一蓝光源激光荧光粉光源发生装置
CN211014991U (zh) 一种混合光源照明系统
CN220252373U (zh) 一种脉冲式激光荧光粉光源发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889994

Country of ref document: EP

Kind code of ref document: A1