WO2020107812A1 - 一种基于压力能回收的流量倍增系统及方法 - Google Patents

一种基于压力能回收的流量倍增系统及方法 Download PDF

Info

Publication number
WO2020107812A1
WO2020107812A1 PCT/CN2019/086261 CN2019086261W WO2020107812A1 WO 2020107812 A1 WO2020107812 A1 WO 2020107812A1 CN 2019086261 W CN2019086261 W CN 2019086261W WO 2020107812 A1 WO2020107812 A1 WO 2020107812A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
stream
energy exchanger
medium
low
Prior art date
Application number
PCT/CN2019/086261
Other languages
English (en)
French (fr)
Inventor
邓建强
樊一楠
杜如雪
刘辉
康祥
杨栋
叶芳华
曹峥
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2020107812A1 publication Critical patent/WO2020107812A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B3/00Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids

Definitions

  • the Chinese patent (CN103438032B) discloses a gas flow multiplier, including a bracket, a gas distribution bag for providing a constant pressure gas source, and an output The working gas interface of the final gas flow and at least two Venturi tube systems for increasing the gas flow rate.
  • the Venturi tube system includes the first-level Venturi tube, the second-level Venturi tube, the third-level Venturi tube, and is provided with air communication holes
  • the first-stage gas mixing chamber and the second-stage gas mixing chamber provided with air communication holes
  • the first-stage venturi passes through the first gas mixing chamber
  • the second-stage venturi passes through the second-stage gas mixing chamber
  • first stage The input end of the venturi is connected to the gas distribution bag through a gas pipeline, the output end of the first-level venturi leads into the second-level venturi, and the input end of the second-level venturi is connected to the first-stage gas mixing chamber.
  • the output of the second-level venturi leads to the third-level venturi, the input of the third-level venturi is connected to the second-stage gas mixing chamber, and the output of the third-level venturi is connected to the working gas interface.
  • the multiplier directly uses the Venturi tube to realize the gas in the high-pressure air distribution bag to inject low-pressure air to double the flow rate; the Chinese patent (CN207111579U) discloses a booster cylinder with double flow rate.
  • the cylinder body is provided with a liquid inlet cavity and two Pressure chamber, two liquid pushing chambers, two liquid storage chambers, two thrust pistons, electromagnetic directional valves, etc., the cross-sectional area of the pressure chamber is smaller than the cross-sectional area of the liquid pushing chamber, and the increase is achieved by the difference in cross-sectional area Pressure effect, the liquid in the liquid chamber pushes the two thrust pistons, the pressure in the two pressure chambers rises, and the high-pressure liquid in the pressure chamber is continuously transported out to achieve the simultaneous output of high-pressure liquid in multiple chambers, compared with conventional pressurized cylinders , The output high-pressure liquid flow is multiplied.
  • the above two devices have a complicated structure, inconvenient daily maintenance, many components, and high equipment investment costs, and the latter requires an electromagnetic directional valve, which consumes extra energy.
  • the method used is to recover the pressure energy of the high-pressure stream and then use it to pressurize the low-pressure target fluid.
  • the Chinese patent (CN102865259A) discloses a rotary pressure energy exchanger that uses high and low pressure fluids to directly contact to achieve high pressure fluid pressurization and low pressure fluids, and uses the tangential impact of high and low pressure water flow as the rotor rotation power;
  • the Chinese patent (CN102442716A) discloses a valve-controlled pressure energy exchanger, including a four-way spool valve, a four-way rotary valve, a set of two pressure exchange tubes and four one-way check valves.
  • the pressure-exchange tube has a built-in free piston, and divides the pressure-exchange tube into two working chambers, namely a working chamber for conveyed fluid and a working chamber for energy recovery fluid;
  • the Chinese patent (CN105782021B) discloses a sliding plate type pressure energy exchanger, including The pressure of the high-pressure stream can be transmitted to the low-pressure stream through the rotor and the cylinder and the slider, and the high-pressure fluid can pressurize the low-pressure fluid.
  • the flow rates of the high-pressure stream and the low-pressure target fluid to be pressurized are theoretically equal or similar, the flow rate of the target fluid has not been doubled, and the target fluid flow cannot be flexibly adjusted.
  • the object of the present invention is to provide a flow doubling system and method based on pressure energy recovery, which obtains high-pressure fluid by pumping pressure, and then forms a flow doubling through the combination of pressure energy exchanger and pipeline
  • the system enables the output fluid flow of the system to double the fluid flow delivered by the pump in the system.
  • the system has simple structure, reasonable design, simple operation, high efficiency and energy saving; the flow doubling method has been verified to be scientific and feasible.
  • the invention discloses a flow multiplying system based on pressure energy recovery, which includes a pump, a pressure energy exchanger, a temporary fluid storage tank and a back pressure valve;
  • the pressure energy exchanger is provided with a high-pressure inlet, a low-pressure inlet and two medium-pressure outlets;
  • the pumped high-pressure stream A flows into the pressure energy exchanger through the high-pressure inlet, and the low-pressure stream B flows into the pressure energy exchanger through the low-pressure inlet.
  • the high-pressure stream A performs work on the low-pressure stream B, and the high-pressure stream After the pressure of the strand A decreases, it flows out from the medium-pressure outlet A, and after the pressure of the low-pressure stream B rises, it flows out from the medium-pressure outlet B;
  • the stream A flowing out from the medium-pressure outlet A and the stream B flowing out from the medium-pressure outlet B both flow into the temporary fluid storage tank, and then flow out through the back pressure valve to output, to obtain the medium-pressure stream C.
  • the pressure energy exchanger is a rotary pressure energy exchanger, a valve-controlled pressure energy exchanger, or a sliding vane pressure energy exchanger.
  • one or more pressure energy exchangers are used, and a plurality of pressure energy exchangers are connected in series pipe network, parallel pipe network or series-parallel hybrid pipe network.
  • fluid pressures output from all medium pressure outlets that are no longer connected to the pressure energy exchanger are equal.
  • N pressure energy exchangers including a first pressure energy exchanger, a second pressure energy exchanger, ... an Nth pressure energy exchanger, and N pressure energy exchangers are connected in series;
  • the pumped high-pressure stream A flows into the first pressure energy exchanger through the first high-pressure inlet, and the first low-pressure stream B flows into the first pressure energy exchanger through the first low-pressure inlet, in the first pressure energy exchanger High-pressure stream A does work on the first low-pressure stream B;
  • the pressure of the high-pressure stream A decreases and flows out from the first medium-pressure outlet A of the first pressure energy exchanger, flows into the second pressure energy exchanger through the second high-pressure inlet, and the pressure of the first low-pressure stream B increases After that, it flows into the temporary fluid storage tank from the first medium pressure outlet B of the first pressure energy exchanger;
  • the second low-pressure stream B flows into the second pressure energy exchanger through the second low-pressure inlet.
  • the high-pressure stream A from the first pressure energy exchanger performs work on the second low-pressure stream B ;
  • the pressure of the high-pressure stream A continues to decrease, and flows out from the second medium-pressure outlet A of the second pressure energy exchanger through the Nth high-pressure inlet to the Nth pressure energy exchanger, and the pressure of the second low-pressure stream B increases After that, it flows into the temporary fluid storage tank from the second medium pressure outlet B of the second pressure energy exchanger;
  • N pressure energy exchangers including a first pressure energy exchanger, a second pressure energy exchanger, ... an Nth pressure energy exchanger, and N pressure energy exchangers are connected in parallel;
  • the pumped first high-pressure stream A flows into the first pressure energy exchanger through the first high-pressure inlet, and the first low-pressure stream B flows into the first pressure energy exchanger through the first low-pressure inlet.
  • the first high-pressure stream A in the exchanger performs work on the first low-pressure stream B;
  • the pressure of the first high-pressure stream A decreases and flows out from the first medium-pressure outlet A of the first pressure energy exchanger into the fluid temporary storage tank; the pressure of the first low-pressure stream B increases from the pressure The first medium-pressure outlet B of the energy exchanger 1 flows out and flows into the temporary fluid storage tank;
  • the pumped second high-pressure stream A flows into the second pressure energy exchanger through the second high-pressure inlet, and the second low-pressure stream B flows into the second pressure energy exchanger through the second low-pressure inlet.
  • the second high-pressure stream A in the exchanger performs work on the second low-pressure stream B;
  • the pressure of the second high-pressure stream A decreases and flows out from the second medium-pressure outlet A of the second pressure energy exchanger into the fluid temporary storage tank; the pressure of the second low-pressure stream B increases from the second The second medium-pressure outlet B of the two-pressure energy exchanger flows out and flows into the temporary fluid storage tank;
  • the pumped Nth high-pressure stream A flows into the Nth pressure energy exchanger through the Nth high-pressure inlet, and the Nth low-pressure stream B flows into the Nth pressure energy exchanger through the Nth low-pressure inlet.
  • the Nth high-pressure stream A in the N-pressure energy exchanger performs work on the Nth low-pressure stream B;
  • the pressure of the Nth high-pressure stream A decreases and flows out from the Nth medium-pressure outlet A of the Nth pressure energy exchanger and flows into the fluid temporary storage tank;
  • the Nth medium pressure outlet B of the N pressure energy exchanger flows out and flows into the temporary fluid storage tank;
  • the first stream B flowing out of the medium pressure outlet B, the second stream B flowing out of the second medium pressure outlet B, ... the Nth stream B flowing out of the Nth medium pressure outlet B all flow into the temporary fluid storage tank, and then After flowing through the back pressure valve, it is output to obtain the medium pressure stream C.
  • N pressure energy exchangers including a first pressure energy exchanger, a second pressure energy exchanger, ... the Nth pressure energy exchanger, and the N pressure energy exchangers are connected in series and parallel Connected
  • the pumped high-pressure stream A is input to the first pressure energy exchanger through the first high-pressure inlet, and the first low-pressure stream B is input to the first pressure energy exchanger from the first low-pressure inlet, and the first pressure energy exchanger
  • the internal high-pressure stream A performs work on the first low-pressure stream B. After the work is performed, the pressure of the stream A decreases and is output from the first medium-pressure outlet A, and the pressure of the first stream B increases from the first medium-pressure outlet B;
  • Stream A output from the first medium-pressure outlet A enters the second pressure energy exchanger through the second high-pressure inlet, and the second low-pressure stream B enters the second pressure energy exchanger from the second low-pressure inlet.
  • the stream A in the exchanger performs work on the second low-pressure stream B. After the work is performed, the pressure of the stream A continues to decrease and is output from the second medium-pressure outlet A, and the pressure of the second stream B increases from the second medium-pressure outlet B;
  • the stream B output from the first medium-pressure outlet B enters the third pressure energy exchanger through the third high-pressure inlet, and the third low-pressure stream B enters the third pressure energy exchanger from the third low-pressure inlet.
  • the stream A in the exchanger performs work on the third low-pressure stream B. After the work is performed, the pressure of the stream A decreases and is output from the third medium-pressure outlet A, and the pressure of the third stream B increases from the third medium-pressure outlet B;
  • the fourth pressure energy exchanger is connected in series or parallel with the first pressure energy exchanger, or in series or parallel with the second pressure energy exchanger, or in series or parallel with the third pressure energy exchanger;
  • the Nth pressure energy exchanger is connected in series or parallel with the first pressure energy exchanger, or in series or parallel with the second pressure energy exchanger, or in series or parallel with the third pressure energy exchanger, ... or with the Nth -1 Pressure energy exchanger connected in series or parallel;
  • the fluid output from all the medium-pressure outlets that are no longer connected to the pressure energy exchanger flows into the fluid temporary storage tank 3, and then flows through the back pressure valve 4 to output, to obtain the medium-pressure stream C.
  • the invention also discloses a pressure energy recovery method using the flow multiplication system based on pressure energy recovery, the process is as follows:
  • High-pressure fluid A is obtained by boosting with only one pump
  • the stream A and stream B respectively flowing out from the two medium-pressure outlets of the pressure energy exchanger both flow into the temporary storage tank of fluid, pass through the back pressure valve, and then output to obtain the medium-pressure stream C.
  • the present invention has the following beneficial effects:
  • the invention discloses a flow multiplication system based on pressure energy recovery, which obtains high-pressure fluid through pump boosting, and then forms a flow multiplication system through the combination of a pressure energy exchanger and a pipeline, so that the output fluid flow of the system can realize the pump delivery Double the fluid flow.
  • the flow multiplication system of the present invention has reasonable structure design, convenient use, high efficiency and energy saving. Only one pump is an energy-consuming device, and a single pump works in the entire system, eliminating the single machine flow reduction phenomenon caused by multiple pumps connected in parallel, that is, without increasing the pump Under the condition of the number, the flow rate is doubled, which saves equipment investment and space. Therefore, by adopting the combination of pressure energy recovery equipment and rational design of pipelines, the system design can achieve the purpose of high efficiency and energy saving, and at the same time, it also expands the application of pressure energy recovery technology.
  • the pressure energy exchanger can be a rotary pressure energy exchanger, a vane pressure energy exchanger, and a valve-controlled pressure energy exchanger.
  • the first two are fluid self-driving devices, which do not require other external power conditions and can save Extra energy consumption.
  • the flow doubling system based on pressure energy recovery of the present invention can adopt series, parallel or hybrid pipe network connection methods, and can rationally design the pipeline structure according to actual needs to achieve the target flow doubling effect with different magnifications.
  • Example 1 is a schematic structural diagram of a flow rate doubling method based on pressure energy recovery in Example 1;
  • FIG. 2 is a schematic structural diagram of a flow rate doubling method based on pressure energy recovery of Example 2;
  • Example 3 is a schematic structural view of a flow rate multiplication method based on pressure energy recovery in Example 3;
  • FIG. 4 is a schematic structural diagram of a flow rate doubling method based on pressure energy recovery in Example 3.
  • FIG. 4 is a schematic structural diagram of a flow rate doubling method based on pressure energy recovery in Example 3.
  • a flow multiplier system based on pressure energy recovery includes a pump 1, a pressure energy exchanger 2, a temporary fluid storage tank 3 and a back pressure valve 4, the pressure energy exchanger 2 includes a high pressure inlet 5, First medium pressure outlet 6, low pressure inlet 7, second medium pressure outlet 8;
  • the high-pressure stream A after being boosted by the pump 1 is input to the pressure energy exchanger 2 through the high-pressure inlet 5, and the low-pressure stream B is input to the pressure energy exchanger 2 from the low-pressure inlet 7.
  • the high-pressure stream A is subjected to low pressure Stream B does work.
  • the pressure of stream A decreases and is output from the first medium-pressure outlet 6.
  • the pressure of stream B increases and is output from the second medium-pressure outlet 8.
  • the stream A and the output of the first medium-pressure outlet 6 The streams B output from the second intermediate pressure outlet 8 all flow into the fluid temporary storage tank 3, and then flow through the back pressure valve 4 to be output, to obtain the intermediate pressure stream C.
  • the high-pressure stream A after being boosted by the pump 1 is input to the pressure energy exchanger 2 through the high-pressure inlet 5, and the low-pressure stream B is input from the low-pressure inlet 7 In the exchanger 2, the high-pressure stream A performs work on the low-pressure stream B in the pressure energy exchanger 2.
  • the pressure of the stream A decreases to 1 MPa and is output from the first medium-pressure outlet 6, and the pressure of the stream B increases to 1 MPa.
  • the second medium-pressure outlet 8 is output; the stream A output from the first medium-pressure outlet 6 and the stream B output from the second medium-pressure outlet 8 all flow into the fluid temporary storage tank 3, and then output after flowing through the back pressure valve 4 , Double-flow medium-pressure stream C is obtained, so that the output fluid flow of the system can double the fluid flow delivered by the pump in the system.
  • FIG. 2 it is an embodiment of a flow multiplying system based on pressure energy recovery using a serial pipe network connection. It includes a pump 1, a first pressure energy exchanger 9, a second pressure energy exchanger 10, a temporary fluid storage tank 3 and a back pressure valve 4.
  • the high-pressure stream A boosted by the pump 1 enters the first pressure energy exchanger 9 through the first high-pressure inlet 11, and a low-pressure stream B enters the first pressure energy exchanger 9 from the first low-pressure inlet 13, in the first
  • the high-pressure stream A in the pressure energy exchanger 9 performs work on the low-pressure stream B.
  • the pressure of the stream A decreases and is output from the first medium-pressure outlet A12, and the pressure of the stream B increases from the first medium-pressure outlet B14;
  • the stream A output from the first medium-pressure outlet A12 is input to the second pressure energy exchanger 10 through the second high-pressure inlet 15, and the other low-pressure stream B is input to the second pressure energy exchanger 10 from the second low-pressure inlet 17.
  • the stream A in the second pressure energy exchanger 10 performs work on the low-pressure stream B.
  • the pressure of the stream A continues to decrease and is output from the medium and second medium pressure outlet A16, and the pressure of the stream B increases from the second medium pressure outlet B18 Output; stream A output from the second medium pressure outlet A16, stream B output from the first medium pressure outlet B14 and second medium pressure outlet B18 all flow into the temporary fluid storage tank 3, and then flow through the back pressure After the output of valve 4, a medium-pressure stream C is obtained.
  • FIG. 3 it is an embodiment of a flow multiplier pipe system based on pressure energy recovery using a parallel pipe network connection. It includes a pump 1, a first pressure energy exchanger 9, a second pressure energy exchanger 10, a temporary fluid storage tank 3 and a back pressure valve 4.
  • a high-pressure stream A after being boosted by the pump 1 is input into the first pressure energy exchanger 9 through the first high-pressure inlet 11, and a low-pressure stream B is input into the first pressure energy exchanger 9 from the first low-pressure inlet 13, in The high-pressure stream A in the first pressure energy exchanger 9 performs work on the low-pressure stream B.
  • the pressure of the stream A decreases and is output from the first medium-pressure outlet A 12, and the pressure of the stream B increases from the first medium-pressure outlet B 14 output;
  • another high-pressure stream A after being boosted by the pump 1 enters the second pressure energy exchanger 10 through the second high-pressure inlet 15 and another low-pressure stream B inputs the second pressure energy from the second low-pressure inlet 17
  • the exchanger 10, in the second pressure energy exchanger 10, the high-pressure stream A performs work on the low-pressure stream B.
  • the pressure of the stream A decreases and is output from the second medium-pressure outlet A16.
  • the pressure of the stream B increases from the first The second medium-pressure outlet B 18 output; the first medium-pressure outlet A 12 and the second medium-pressure outlet A 16 output stream A, the first medium-pressure outlet B 14 and the second medium-pressure outlet B 18 output stream Both B flow into the fluid temporary storage tank 3, and then flow through the back pressure valve 4 to output, to obtain a medium pressure stream C.
  • a high-pressure stream A after pressurized by the pump is input to the first pressure energy exchanger 9 through the first high-pressure inlet 11, and a low-pressure stream B
  • the first pressure energy exchanger 9 is input from the first low pressure inlet 13, and the high pressure stream A performs work on the low pressure stream B in the first pressure energy exchanger 9, and after the work is performed, the pressure of the stream A decreases to 1 MPa from the first intermediate pressure Output A 12 is output, and the pressure of stream B is increased to 1 MPa from the first medium-pressure outlet B 14;
  • another high-pressure stream A after pressurized by the pump 1 is input to the second pressure energy exchanger through the second high-pressure inlet 15 10.
  • Another low-pressure stream B is input from the second low-pressure inlet 17 to the second pressure energy exchanger 10, and the high-pressure stream A performs work on the low-pressure stream B in the second pressure energy exchanger 10, and after the work is done, the stream A
  • the pressure is reduced to 1 MPa from the second medium-pressure outlet A 16 and the stream B pressure is increased to 1 MPa from the second medium-pressure outlet B 18;
  • FIG. 4 it is an embodiment of a flow multiplying system based on pressure energy recovery using a hybrid pipe network connection. It includes a pump 1, a first pressure energy exchanger 9, a second pressure energy exchanger 10, a third pressure energy exchanger 19, a fluid temporary storage tank 3 and a back pressure valve 4.
  • the high-pressure stream A boosted by the pump 1 enters the first pressure energy exchanger 9 through the first high-pressure inlet 11, and a low-pressure stream B enters the first pressure energy exchanger 9 from the first low-pressure inlet 13, in the first
  • the high-pressure stream A in the pressure energy exchanger 9 performs work on the low-pressure stream B. After one work, the pressure of the stream A decreases and is output from the first medium-pressure outlet A12, and the pressure of the stream B increases from the first medium-pressure outlet B14 Output; stream A output from the first medium-pressure outlet A12 is input to the second pressure energy exchanger 10 through the second high-pressure inlet 15 and another low-pressure stream B is input to the second pressure energy exchanger from the second low-pressure inlet 17 10.
  • the stream A performs work on the low-pressure stream B.
  • the pressure of the stream A continues to decrease and is output from the second medium-pressure outlet A16.
  • the pressure of the stream B increases from the second Pressure outlet B 18 output; stream B output from the first medium pressure outlet B 14 enters the third pressure energy exchanger 19 through the third high pressure inlet 20, another low pressure stream B enters the third from the third low pressure inlet 22 Pressure energy exchanger 19, in the third pressure energy exchanger 19, stream A performs work on low-pressure stream B.
  • the pressure of stream A decreases and is output from the third intermediate pressure outlet A 21, and the pressure of stream B increases from The output of the third medium-pressure outlet B 23; the stream A output from the second medium-pressure outlet A 16 and the third medium-pressure outlet A 21, the second medium-pressure outlet B 18 and the third medium-pressure outlet B 23
  • the streams B all flow into the temporary fluid storage tank 3, and then flow through the back pressure valve 4 to output, to obtain a medium-pressure stream C.
  • the high-pressure stream A after being boosted by the pump 1 is input to the first pressure energy exchanger 9 through the first high-pressure inlet 11, and a low-pressure stream B is changed from The first low-pressure inlet 13 inputs the first pressure energy exchanger 9, in which the high-pressure stream A performs work on the low-pressure stream B, and after one work, the pressure of the stream A decreases to 2 MPa from the first intermediate pressure Output A 12 is output, and the pressure of stream B is increased to 2 MPa from the first medium-pressure outlet B 14; the stream A output from the first medium-pressure outlet A 12 is input to the second pressure energy exchanger 10 through the second high-pressure inlet 15 , Another low-pressure stream B enters the second pressure energy exchanger 10 from the second low-pressure inlet 17, and the stream A performs work on the low-pressure stream B in the second pressure energy exchanger 10, and the pressure of the stream A continues after the work is done Reduced to 1MPa output from the second medium pressure
  • the pressure energy exchanger exemplified in the above embodiments of the present invention may be a rotary pressure energy exchanger, a valve-controlled pressure energy exchanger, or a sliding vane pressure energy exchanger.
  • the flow doubling factor can be adjusted within a certain range by designing the asymmetric structure of the pressurizing chamber and the pressure reducing chamber.
  • the present invention discloses a flow doubling system based on pressure energy recovery, which obtains high-pressure fluid by pumping pressure, and then combines the pressure energy exchanger and pipeline to form a flow doubling system to realize the output fluid flow of the system Double the flow of fluid delivered by the pump in the system.
  • the flow doubling method has strong feasibility, reasonable system structure design, simple use, high efficiency and energy saving.
  • a new efficient and energy-saving flow doubling technology is proposed, on the other hand, the application of pressure energy recovery technology is expanded.

Abstract

一种基于压力能回收的流量倍增系统,由泵(1)、压力能交换器(2)、流体暂存罐(3)和背压阀(4)构成,通过泵增压获得高压流体,再通过压力能交换器和管路组合,构成流量倍增系统,使系统输出流体流量实现对系统中泵输送流体流量的翻倍。流量倍增系统可采用串联式、并联式或混联式管网连接方式,进而实现不同倍率的流量倍增效果。还公开了一种基于压力能回收的流量倍增方法,该方法科学,使用简便;该系统结构设计合理,高效节能,为流体流量倍增技术提供了新思路,同时拓展了压力能回收技术的应用。

Description

一种基于压力能回收的流量倍增系统及方法 技术领域
本发明涉及流体流量倍增技术领域和余压回收技术领域,具体涉及一种基于压力能回收的流量倍增系统及方法。
背景技术
工业生产生活对流量调节,尤其是流量倍增技术提出了越来越高的要求。目前流量倍增大多依靠并联多台泵的方法实现,该方法增加了泵的个数和设备成本投入,占用了更多场地空间。且多台泵并联工作,并联运行时的总流量并非随泵的台数成倍增加。从泵的并联台数来看,并联台数越多所能增加的流量越少,即每台泵输送的流量减少,因而并联台数过多并不经济。
现有的中国专利提出了一些新型的流体流量倍增技术,具体地,中国专利(CN103438032B)公开了一种气体流量倍增器,包括支架、用于提供恒定压力气源的分气包、用于输出最终气流的工作气体接口和至少两个用于增大气体流量的文氏管系,文氏管系包括首级文氏管、二级文氏管、三级文氏管、开设有空气连通孔的第一级气体混合室和开设有空气连通孔的第二级气体混合室,首级文氏管穿过第一气体混合室,二级文氏管穿过第二级气体混合室,首级文氏管的输入端通过气体管路与分气包连通,首级文氏管的输出端通入二级文氏管中,二级文氏管的输入端与第一级气体混合室连通,二级文氏管的输出端通入三级文氏管中,三级文氏管输入端与第二级气体混合室连通,三级文氏管的输出端与工作气体接口连接,所述流量倍增器直接利用文氏管实现高压分气包内的气体引射低压空气,进行流量倍增;中国专利(CN207111579U)公开了一种流量倍增的增压缸,缸体内设有进液腔、两个压力腔、两个推液腔、两个储液腔、两个推力活塞、电磁换向阀等,压力腔的横截面积小于推液腔的横截面积,通过横截面积差异来实现 增压效果,进液腔进液推动两个推力活塞,两压力腔内压力升高,压力腔内的高压液体被不断输送出去,实现多个腔体同步输出高压液体,相比常规的增压缸,输出的高压液体流量是成倍增加的。
上述两种设备结构复杂,日常维护不便,组成部件较多,设备投资成本高,而且后者需要电磁换向阀,耗用额外能耗。
对于压力能回收技术,采用的方法是回收高压流股的压力能然后用于增压低压目标流体。具体地,中国专利(CN102865259A)公开了一种旋转式压力能交换器,采用高、低压流体直接接触实现高压流体增压低压流体,以高、低压水流的切向冲击力作为转子转动的动力;中国专利(CN102442716A)公开了一种阀控式压力能交换器,包括四通滑阀、四通旋转阀、一组两根压力交换管和四只单向止回阀。压力交换管内置自由活塞,并将压力交换管分成两个工作腔,分别是被输送流体工作腔和能量回收流体工作腔;中国专利(CN105782021B)公开了一种滑片式压力能交换器,包括转子、缸体和滑片,高压流股的压力能通过转子和滑片传递给低压流股,实现高压流体增压低压流体。
使用上述三种压力能交换器的回收方法,高压流股和待增压低压目标流体的流量理论上是相等或相近的,目标流体的流量并未实现倍增,对目标流体流量不能灵活调节。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种基于压力能回收的流量倍增系统及方法,通过泵增压获得高压流体,再通过压力能交换器和管路组合,构成流量倍增系统,使系统输出流体流量实现对系统中泵输送流体流量的翻倍。该系统结构简单,设计合理,操作简便,高效节能;该流量倍增方法经验证科学可行。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种基于压力能回收的流量倍增系统,包括泵、压力能交换器、流体暂存罐和背压阀;
压力能交换器设有高压进口、低压进口及两个中压出口;
经泵增压的高压流股A经过高压进口流入压力能交换器,低压流股B经低压进口流入压力能交换器,在压力能交换器中高压流股A对低压流股B做功,高压流股A压力降低后从中压出口A流出,低压流股B压力升高后从中压出口B流出;
从中压出口A流出的流股A、从中压出口B流出的流股B均流入流体暂存罐,再流经背压阀后输出,得到中压流股C。
优选地,压力能交换器采用旋转式压力能交换器、阀控式压力能交换器或滑片式压力能交换器。
优选地,压力能交换器采用一个或多个,多个压力能交换器采用串联管网连接、并联管网连接或串并混联式管网连接。
进一步优选地,从所有的不再连接压力能交换器的中压出口输出的流体压力均相等。
进一步优选地,压力能交换器为N个,包括第一压力能交换器、第二压力能交换器、……第N压力能交换器,且N个压力能交换器串联相连;
经泵增压的高压流股A经过第一高压进口流入第一压力能交换器,第1股低压流股B经第一低压进口流入第一压力能交换器,在第一压力能交换器中高压流股A对第1低压流股B做功;
做功后,高压流股A压力降低,并从第一压力能交换器的第一中压出口A流出,经第二高压进口流入第二压力能交换器,第1股低压流股B压力升高后从第一压力能交换器的第一中压出口B流入流体暂存罐;
第2股低压流股B经第二低压进口流入第二压力能交换器,在第二压力能交 换器中,来第一自压力能交换器的高压流股A对第2低压流股B做功;
做功后,高压流股A压力继续降低,并从第二压力能交换器的第二中压出口A流出经第N高压进口流入第N压力能交换器,第2股低压流股B压力升高后从第二压力能交换器的第二中压出口B流入流体暂存罐;
依次类推,直至第N股低压流股B在第N压力能交换器中被高压流股A做功后,压力升高,由第N压力能交换器的第N中压出口B流入流体暂存罐,N次降压后的流股A从压力能交换器N的第N中压出口A流出;
从第N中压出口A流出的流股A、从第一中压出口B流出的第1流股B、第二中压出口B流出的第2流股B、……第N中压出口B流出的第N流股B,均流入流体暂存罐,再流经背压阀后输出,得到中压流股C。
进一步优选地,压力能交换器为N个,包括第一压力能交换器、第二压力能交换器、……第N压力能交换器,且N个压力能交换器并联相连;
经泵增压的第1股高压流股A经过第一高压进口流入第一压力能交换器,第1股低压流股B经第一低压进口流入第一压力能交换器,在第一压力能交换器中第1股高压流股A对第1低压流股B做功;
做功后,第1股高压流股A压力降低,并从第一压力能交换器的第一中压出口A流出,流入流体暂存罐中;第1股低压流股B压力升高后从压力能交换器1的第一中压出口B流出,流入流体暂存罐中;
经泵增压的第2股高压流股A经过第二高压进口流入第二压力能交换器,第2股低压流股B经第二低压进口流入第二压力能交换器,在第二压力能交换器中第2股高压流股A对第2低压流股B做功;
做功后,第2股高压流股A压力降低,并从第二压力能交换器的第二中压出口A流出,流入流体暂存罐中;第2股低压流股B压力升高后从第二压力能交换器的第二中压出口B流出,流入流体暂存罐中;
依次类推,经泵增压的第N股高压流股A经过第N高压进口流入第N压力能交换器,第N股低压流股B经第N低压进口流入第N压力能交换器,在第N压力能交换器中第N股高压流股A对第N低压流股B做功;
做功后,第N股高压流股A压力降低,并从第N压力能交换器的第N中压出口A流出,流入流体暂存罐中;第N股低压流股B压力升高后从第N压力能交换器的第N中压出口B流出,流入流体暂存罐中;
从第一中压出口A流出的第1流股A、从第二中压出口A流出的第2流股A……从第N中压出口A流出的第N流股A,以及从第一中压出口B流出的第1流股B、第二中压出口B流出的第2流股B、……第N中压出口B流出的第N流股B,均流入流体暂存罐,再流经背压阀后输出,得到中压流股C。
进一步优选地,压力能交换器为N个,包括第一压力能交换器、第二压力能交换器、……第N压力能交换器,且N个压力能交换器采用串、并混联式相连;
经泵增压后的高压流股A通过第一高压进口输入第一压力能交换器,第1股低压流股B从第一低压进口输入第一压力能交换器,在第一压力能交换器内高压流股A对第1股低压流股B做功,做功后流股A压力降低从第一中压出口A输出,第1流股B压力升高从第一中压出口B输出;
从第一中压出口A输出的流股A通过第二高压进口输入第二压力能交换器,第2股低压流股B从第二低压进口输入第二压力能交换器,在第二压力能交换器内流股A对第2低压流股B做功,经过做功后流股A压力继续降低从第二中压出口A输出,第2流股B压力升高从第二中压出口B输出;
从第一中压出口B输出的流股B通过第三高压进口输入第三压力能交换器,第3股低压流股B从第三低压进口输入第三压力能交换器,在第三压力能交换器内流股A对第3股低压流股B做功,经过做功后流股A压力降低从第三中压出 口A输出,第3流股B压力升高从第三中压出口B输出;
第四压力能交换器与第一压力能交换区串联或并联,或与第二压力能交换器串联或并联,或与第三压力能交换器串联或并联;
依次类推,第N压力能交换器与第一压力能交换器串联或并联,或与第二压力能交换器串联或并联,或与第三压力能交换器串联或并联,……或与第N-1压力能交换器串联或并联;
从所有的不再连接压力能交换器的中压出口输出的流体均流入流体暂存罐3,然后流经背压阀4后输出,得到中压流股C。
本发明还公开了采用上述的基于压力能回收的流量倍增系统的压力能回收方法,过程如下:
仅通过一个泵增压获得高压流体A;
将高压流体A和低压流体B均输送至压力能交换器中进行做功换能;
高压流体A压力降低,低压流体B压力升高;
从压力能交换器的两个中压出口分别流出的流股A和流股B均流入流体暂存罐中,流经背压阀后输出,得到中压流股C。
与现有技术相比,本发明具有以下有益效果:
本发明公开的一种基于压力能回收的流量倍增系统,通过泵增压获得高压流体,再通过压力能交换器和管路组合,构成流量倍增系统,使系统输出流体流量实现对系统中泵输送流体流量的翻倍。本发明的流量倍增系统结构设计合理,使用方便,高效节能,只有一个泵为耗能设备,整个系统中单个泵工作,消除了并联多台泵带来的单机流量降低现象,即在不增加泵个数的条件下实现了流量倍增,节省了设备投资和场地空间。因此,本发明通过采用压力能回收设备和合理设计管路组合,系统设计能够达到高效节能的目的,同时也拓展了压力能回收技术的应用。
进一步地,压力能交换器可选用旋转式压力能交换器、滑片式压力能交换器及阀控式压力能交换器,前两者为流体自驱式设备,无需其他外界动力条件,可节省额外能耗。
进一步地,本发明的基于压力能回收的流量倍增系统,可采用串联式、并联式或混联式管网连接方式,可根据实际需要合理设计管路结构,实现不同倍率的目标流量倍增效果。
附图说明
图1为实施例1的基于压力能回收的流量倍增方法的结构示意图;
图2为实施例2的基于压力能回收的流量倍增方法的结构示意图;
图3为实施例3的基于压力能回收的流量倍增方法的结构示意图;
图4为实施例3的基于压力能回收的流量倍增方法的结构示意图。
图中,1为泵;2为压力能交换器;3为流体暂存罐;4为背压阀;5为高压进口;6为第一中压出口;7为低压进口;8为第二中压出口;9为第一压力能交换器;10为第二压力能交换器;11为第一高压进口;12为第一中压出口A;13为第一低压进口;14为第一中压出口B;15为第二高压进口;16为第二中压出口A;17为第二低压进口;18为第二中压出口B;19为第三压力能交换器;20为第三高压进口;21为第三中压出口A;22为第三低压进口;23为第三中压出口B。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
实施例1,参见图1,一种基于压力能回收的流量倍增系统,包括泵1、压力能交换器2、流体暂存罐3和背压阀4,压力能交换器2包括高压进口5、第一中压出口6、低压进口7、第二中压出口8;
经泵1增压后的高压流股A通过高压进口5输入压力能交换器2,低压流股B从低压进口7输入压力能交换器2,在压力能交换器2内高压流股A对低压流股B做功,经过做功后流股A压力降低从第一中压出口6输出,流股B压力升高从第二中压出口8输出;从第一中压出口6输出的流股A、从第二中压出口8输出的流股B均流入流体暂存罐3,然后流经背压阀4后输出,得到中压流股C。
具体地,给定流股的流量和压力值,进行实例分析:经泵1增压后的高压流股A通过高压进口5输入压力能交换器2,低压流股B从低压进口7输入压力能交换器2,在压力能交换器2内高压流股A对低压流股B做功,经过做功后流股A压力降低至1MPa从第一中压出口6输出,流股B压力升高至1MPa从第二中压出口8输出;从第一中压出口6输出的流股A、从第二中压出口8输出的流股B均流入流体暂存罐3,然后流经背压阀4后输出,得到双倍流量的中压流股C,使系统输出流体流量实现对系统中泵输送流体流量的翻倍。
实施例2
参见图2,为采用串联式管网连接方式的基于压力能回收的流量倍增系统的一种实施方式。包括泵1、第一压力能交换器9、第二压力能交换器10、流体暂存罐3和背压阀4。经泵1增压后的高压流股A通过第一高压进口11输入第一压力能交换器9,一股低压流股B从第一低压进口13输入第一压力能交换器9,在第一压力能交换器9内高压流股A对低压流股B做功,经过一次做功后流股A压力降低从第一中压出口A12输出,流股B压力升高从第一中压出口B14输出;从第一中压出口A12输出的流股A通过第二高压进口15输入第二压力能交换器10,另一股低压流股B从第二低压进口17输入第二压力能交换器10,在第二压力能交换器10内流股A对低压流股B做功,经过做功后流股A压力继续降低从中第二中压出口A 16输出,流股B压力升高从第二中压出口B18输出;从第二中压出口A 16输出的流股A、从第一中压出口B 14和第二中压出口B 18输出的流股B均流入流体暂存罐3,然后流经背压阀4后输出,得到中压流股C。
具体地,给定流股的流量和压力值,进行实例分析:经泵1增压后的高压流股A通过第一高压进口11输入第一压力能交换器9,一股低压流股B从低压进口1输入第一压力能交换器9,在第一压力能交换器9内高压流股A对低压流股B做功,经过一次做功后流股A压力降低至2MPa从第一中压出口A 12输出,流股B压力升高至1MPa从第一中压出口B 14输出;从第一中压出口A 12输出的流股A通过第二高压进口15输入第二压力能交换器10,另一股低压流股B从第二低压进口17输入第二压力能交换器10,在第二压力能交换器10内流股A对低压流股B做功,经过做功后流股A压力继续降低至1MPa从第二中压出口A 16输出,流股B压力升高至1MPa从第二中压出口B 18输出;从第二中压出口A 16输出的流股A、从中压出口1B和第二中压出口B 18输出的流股B均流入流体暂存罐3,然后流经背压阀4后输出,得到三倍流量的中压流股C,使系统 输出流体流量实现对系统中泵输送流体流量的翻两倍。
实施例3
参见图3,为采用并联式管网连接方式的基于压力能回收的流量倍增管系统的一种实施方式。包括泵1、第一压力能交换器9、第二压力能交换器10、流体暂存罐3和背压阀4。经泵1增压后的一股高压流股A通过第一高压进口11输入第一压力能交换器9,一股低压流股B从第一低压进口13输入第一压力能交换器9,在第一压力能交换器9内高压流股A对低压流股B做功,经过做功后流股A压力降低从第一中压出口A 12输出,流股B压力升高从第一中压出口B 14输出;经泵1增压后的另一股高压流股A通过第二高压进口15输入第二压力能交换器10,另一股低压流股B从第二低压进口17输入第二压力能交换器10,在第二压力能交换器10内高压流股A对低压流股B做功,经过做功后流股A压力降低从第二中压出口A 16输出,流股B压力升高从第二中压出口B 18输出;从第一中压出口A 12和第二中压出口A 16输出的流股A、从第一中压出口B 14和第二中压出口B 18输出的流股B均流入流体暂存罐3,然后流经背压阀4后输出,得到中压流股C。
具体地,给定流股的流量和压力值,进行实例分析:经泵增压后的一股高压流股A通过第一高压进口11输入第一压力能交换器9,一股低压流股B从第一低压进口13输入第一压力能交换器9,在第一压力能交换器9内高压流股A对低压流股B做功,经过做功后流股A压力降低至1MPa从第一中压出口A 12输出,流股B压力升高至1MPa从第一中压出口B 14输出;经泵1增压后的另一股高压流股A通过第二高压进口15输入第二压力能交换器10,另一股低压流股B从第二低压进口17输入第二压力能交换器10,在第二压力能交换器10内高压流股A对低压流股B做功,经过做功后流股A压力降低至1MPa从第二中压出口A 16输出,流股B压力升高至1MPa从第二中压出口B 18输出;从第一中压 出口A 12和第二中压出口A 16输出的流股A、从第一中压出口B 14和第二中压出口B 18输出的流股B均流入流体暂存罐3,然后流经背压阀4后输出,得到双倍流量的中压流股C,使系统输出流体流量实现对系统中泵输送流体流量的翻一倍。
实施例4
参见图4,为采用混联式管网连接方式的基于压力能回收的流量倍增系统的一种实施方式。包括泵1、第一压力能交换器9、第二压力能交换器10、第三压力能交换器19、流体暂存罐3和背压阀4。
经泵1增压后的高压流股A通过第一高压进口11输入第一压力能交换器9,一股低压流股B从第一低压进口13输入第一压力能交换器9,在第一压力能交换器9内高压流股A对低压流股B做功,经过一次做功后流股A压力降低从第一中压出口A 12输出,流股B压力升高从第一中压出口B 14输出;从第一中压出口A 12输出的流股A通过第二高压进口15输入第二压力能交换器10,另一股低压流股B从第二低压进口17输入第二压力能交换器10,在第二压力能交换器10内流股A对低压流股B做功,经过做功后流股A压力继续降低从第二中压出口A 16输出,流股B压力升高从第二中压出口B 18输出;从第一中压出口B 14输出的流股B通过第三高压进口20输入第三压力能交换器19,另一股低压流股B从第三低压进口22输入第三压力能交换器19,在第三压力能交换器19内流股A对低压流股B做功,经过做功后流股A压力降低从第三中压出口A 21输出,流股B压力升高从第三中压出口B 23输出;从第二中压出口A 16和从第三中压出口A 21输出的流股A、从第二中压出口B 18和从第三中压出口B 23输出的流股B均流入流体暂存罐3,然后流经背压阀4后输出,得到中压流股C。
具体地,给定流股的流量和压力值,进行实例分析:经泵1增压后的高压流股A通过第一高压进口11输入第一压力能交换器9,一股低压流股B从第一低 压进口13输入第一压力能交换器9,在第一压力能交换器9内高压流股A对低压流股B做功,经过一次做功后流股A压力降低至2MPa从第一中压出口A 12输出,流股B压力升高至2MPa从第一中压出口B 14输出;从第一中压出口A 12输出的流股A通过第二高压进口15输入第二压力能交换器10,另一股低压流股B从第二低压进口17输入第二压力能交换器10,在第二压力能交换器10内流股A对低压流股B做功,经过做功后流股A压力继续降低至1MPa从第二中压出口A 16输出,流股B压力升高至1MPa从第二中压出口B 18输出;从第一中压出口B 14输出的流股B通过第三高压进口20输入第三压力能交换器19,另一股低压流股B从第三低压进口22输入第三压力能交换器19,在第三压力能交换器19内流股A对低压流股B做功,经过做功后流股A压力降低至1MPa从第三中压出口A 21输出,流股B压力升高至1MPa从第三中压出口B 23输出;从第二中压出口A 16和从第三中压出口A 21输出的流股A、从第二中压出口B 18和从第三中压出口B 23输出的流股B均流入流体暂存罐3,然后流经背压阀4后输出,得到四倍流量的中压流股C,使系统输出流体流量实现对系统中泵输送流体流量的翻三倍。
进一步地,本发明上述实施例中所例举的压力能交换器可为旋转式压力能交换器、阀控式压力能交换器或滑片式压力能交换器。当选用滑片式压力能交换器时,可通过对增压腔和降压腔非对称结构设计,在一定范围内调节流量倍增倍数。
需要说明的是,本发明所述压力值均指表压,忽略压力能传递过程中的能量损失,忽略设备内部泄漏。
综上所述,本发明公开了一种基于压力能回收的流量倍增系统,通过泵增压获得高压流体,再通过压力能交换器和管路组合,构成流量倍增系统,使系统输出流体流量实现对系统中泵输送流体流量的翻倍。该流量倍增方法可行性强,系统结构设计合理,使用简便,高效节能。一方面提出了一种新型高效节能的流量 倍增技术,另一方面拓展了压力能回收技术的应用。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (8)

  1. 一种基于压力能回收的流量倍增系统,其特征在于,包括泵(1)、压力能交换器、流体暂存罐(3)和背压阀(4);
    压力能交换器设有高压进口、低压进口及两个中压出口;
    经泵(1)增压的高压流股A经过高压进口流入压力能交换器,低压流股B经低压进口流入压力能交换器,在压力能交换器中高压流股A对低压流股B做功,高压流股A压力降低后从中压出口A流出,低压流股B压力升高后从中压出口B流出;
    从中压出口A流出的流股A、从中压出口B流出的流股B均流入流体暂存罐(3),再流经背压阀(4)后输出,得到中压流股C。
  2. 根据权利要求1所述的基于压力能回收的流量倍增系统,其特征在于,压力能交换器采用旋转式压力能交换器、阀控式压力能交换器或滑片式压力能交换器。
  3. 根据权利要求1或2所述的基于压力能回收的流量倍增系统,其特征在于,压力能交换器采用一个或多个,多个压力能交换器采用串联管网连接、并联管网连接或串并混联式管网连接。
  4. 根据权利要求3所述的基于压力能回收的流量倍增系统,其特征在于,从所有的不再连接压力能交换器的中压出口输出的流体压力均相等。
  5. 根据权利要求3所述的基于压力能回收的流量倍增系统,其特征在于,压力能交换器为N个,包括第一压力能交换器、第二压力能交换器、……第N压力能交换器,且N个压力能交换器串联相连;
    经泵(1)增压的高压流股A经过第一高压进口流入第一压力能交换器,第1股低压流股B经第一低压进口流入第一压力能交换器,在第一压力能交换器中高压流股A对第1低压流股B做功;
    做功后,高压流股A压力降低,并从第一压力能交换器的第一中压出口A 流出,经第二高压进口流入第二压力能交换器,第1股低压流股B压力升高后从第一压力能交换器的第一中压出口B流入流体暂存罐(3);
    第2股低压流股B经第二低压进口流入第二压力能交换器,在第二压力能交换器中,来第一自压力能交换器的高压流股A对第2低压流股B做功;
    做功后,高压流股A压力继续降低,并从第二压力能交换器的第二中压出口A流出经第N高压进口流入第N压力能交换器,第2股低压流股B压力升高后从第二压力能交换器的第二中压出口B流入流体暂存罐(3);
    依次类推,直至第N股低压流股B在第N压力能交换器中被高压流股A做功后,压力升高,由第N压力能交换器的第N中压出口B流入流体暂存罐(3),N次降压后的流股A从压力能交换器N的第N中压出口A流出;
    从第N中压出口A流出的流股A、从第一中压出口B流出的第1流股B、第二中压出口B流出的第2流股B、……第N中压出口B流出的第N流股B,均流入流体暂存罐(3),再流经背压阀(4)后输出,得到中压流股C。
  6. 根据权利要求3所述的基于压力能回收的流量倍增系统,其特征在于,压力能交换器为N个,包括第一压力能交换器、第二压力能交换器、……第N压力能交换器,且N个压力能交换器并联相连;
    经泵(1)增压的第1股高压流股A经过第一高压进口流入第一压力能交换器,第1股低压流股B经第一低压进口流入第一压力能交换器,在第一压力能交换器中第1股高压流股A对第1低压流股B做功;
    做功后,第1股高压流股A压力降低,并从第一压力能交换器的第一中压出口A流出,流入流体暂存罐(3)中;第1股低压流股B压力升高后从压力能交换器1的第一中压出口B流出,流入流体暂存罐(3)中;
    经泵(1)增压的第2股高压流股A经过第二高压进口流入第二压力能交换器,第2股低压流股B经第二低压进口流入第二压力能交换器,在第二压力能交 换器中第2股高压流股A对第2低压流股B做功;
    做功后,第2股高压流股A压力降低,并从第二压力能交换器的第二中压出口A流出,流入流体暂存罐(3)中;第2股低压流股B压力升高后从第二压力能交换器的第二中压出口B流出,流入流体暂存罐(3)中;
    依次类推,经泵(1)增压的第N股高压流股A经过第N高压进口流入第N压力能交换器,第N股低压流股B经第N低压进口流入第N压力能交换器,在第N压力能交换器中第N股高压流股A对第N低压流股B做功;
    做功后,第N股高压流股A压力降低,并从第N压力能交换器的第N中压出口A流出,流入流体暂存罐(3)中;第N股低压流股B压力升高后从第N压力能交换器的第N中压出口B流出,流入流体暂存罐(3)中;
    从第一中压出口A流出的第1流股A、从第二中压出口A流出的第2流股A……从第N中压出口A流出的第N流股A,以及从第一中压出口B流出的第1流股B、第二中压出口B流出的第2流股B、……第N中压出口B流出的第N流股B,均流入流体暂存罐(3),再流经背压阀(4)后输出,得到中压流股C。
  7. 根据权利要求3所述的基于压力能回收的流量倍增系统,其特征在于,压力能交换器为N个,包括第一压力能交换器、第二压力能交换器、……第N压力能交换器,且N个压力能交换器采用串、并混联式相连;
    经泵(1)增压后的高压流股A通过第一高压进口输入第一压力能交换器,第1股低压流股B从第一低压进口输入第一压力能交换器,在第一压力能交换器内高压流股A对第1股低压流股B做功,做功后流股A压力降低从第一中压出口A输出,第1流股B压力升高从第一中压出口B输出;
    从第一中压出口A输出的流股A通过第二高压进口输入第二压力能交换器,第2股低压流股B从第二低压进口输入第二压力能交换器,在第二压力能交换器内流股A对第2低压流股B做功,经过做功后流股A压力继续降低从第二中压 出口A输出,第2流股B压力升高从第二中压出口B输出;
    从第一中压出口B输出的流股B通过第三高压进口输入第三压力能交换器,第3股低压流股B从第三低压进口输入第三压力能交换器,在第三压力能交换器内流股A对第3股低压流股B做功,经过做功后流股A压力降低从第三中压出口A输出,第3流股B压力升高从第三中压出口B输出;
    第四压力能交换器与第一压力能交换区串联或并联,或与第二压力能交换器串联或并联,或与第三压力能交换器串联或并联;
    依次类推,第N压力能交换器与第一压力能交换器串联或并联,或与第二压力能交换器串联或并联,或与第三压力能交换器串联或并联,……或与第N-1压力能交换器串联或并联;
    从所有的不再连接压力能交换器的中压出口输出的流体均流入流体暂存罐3,然后流经背压阀4后输出,得到中压流股C。
  8. 采用权利要求1~7中任意一项所述的基于压力能回收的流量倍增系统的压力能回收方法,其特征在于,过程如下:
    仅通过一个泵增压获得高压流体A;
    将高压流体A和低压流体B均输送至压力能交换器中进行做功换能;
    高压流体A压力降低,低压流体B压力升高;
    从压力能交换器的两个中压出口分别流出的流股A和流股B均流入流体暂存罐中,流经背压阀后输出,得到中压流股C。
PCT/CN2019/086261 2018-11-26 2019-05-09 一种基于压力能回收的流量倍增系统及方法 WO2020107812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811418878.1A CN109538547B (zh) 2018-11-26 2018-11-26 一种基于压力能回收的流量倍增系统及方法
CN201811418878.1 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020107812A1 true WO2020107812A1 (zh) 2020-06-04

Family

ID=65849853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086261 WO2020107812A1 (zh) 2018-11-26 2019-05-09 一种基于压力能回收的流量倍增系统及方法

Country Status (2)

Country Link
CN (1) CN109538547B (zh)
WO (1) WO2020107812A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109538547B (zh) * 2018-11-26 2020-11-10 西安交通大学 一种基于压力能回收的流量倍增系统及方法
CN110594209A (zh) * 2019-10-11 2019-12-20 中联煤层气有限责任公司 一种气波增压装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201538698U (zh) * 2009-06-29 2010-08-04 北京中联动力技术有限责任公司 反渗透浓水能量回收装置及车载海水淡化装置
US20120318737A1 (en) * 2011-06-20 2012-12-20 King Abdullah University Of Science And Technology Processes and apparatus for inhibiting membrane bio-fouling
CN106640778A (zh) * 2016-11-15 2017-05-10 西安交通大学 一种滑片与型线匹配设计的滑片式压力能交换器
KR20170049853A (ko) * 2015-10-29 2017-05-11 한국과학기술연구원 해수담수화 시스템의 에너지 회수장치
CN106988977A (zh) * 2017-04-30 2017-07-28 浙江大学 海水淡化能量回收及压力提升一体机装置
CN109538547A (zh) * 2018-11-26 2019-03-29 西安交通大学 一种基于压力能回收的流量倍增系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167438A (zh) * 2010-12-09 2011-08-31 宜兴能达环保科技有限公司 利用谷段电力压缩空气储存峰段供气的方法与装置
CN102865259A (zh) * 2011-07-07 2013-01-09 无锡协丰节能技术有限公司 一种压力交换器
US9708924B2 (en) * 2013-01-18 2017-07-18 Kuwait University Combined pump and energy recovery turbine
JP6437529B2 (ja) * 2014-03-27 2018-12-12 株式会社荏原製作所 エネルギー回収システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201538698U (zh) * 2009-06-29 2010-08-04 北京中联动力技术有限责任公司 反渗透浓水能量回收装置及车载海水淡化装置
US20120318737A1 (en) * 2011-06-20 2012-12-20 King Abdullah University Of Science And Technology Processes and apparatus for inhibiting membrane bio-fouling
KR20170049853A (ko) * 2015-10-29 2017-05-11 한국과학기술연구원 해수담수화 시스템의 에너지 회수장치
CN106640778A (zh) * 2016-11-15 2017-05-10 西安交通大学 一种滑片与型线匹配设计的滑片式压力能交换器
CN106988977A (zh) * 2017-04-30 2017-07-28 浙江大学 海水淡化能量回收及压力提升一体机装置
CN109538547A (zh) * 2018-11-26 2019-03-29 西安交通大学 一种基于压力能回收的流量倍增系统及方法

Also Published As

Publication number Publication date
CN109538547B (zh) 2020-11-10
CN109538547A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
US7214315B2 (en) Pressure exchange apparatus with integral pump
WO2020107812A1 (zh) 一种基于压力能回收的流量倍增系统及方法
EP2112379A3 (en) Variable displacement vane pump with enhanced discharge port
CN113216326B (zh) 一种带有夜间小流量功能的无负压供水设备和供水方法
CN105545833B (zh) 一种节能型机床液压动力单元及其传动方法
CN102003419A (zh) 一种蒸汽喷射器组合装置
CN103230745A (zh) 一种基于反渗透系统的差压增压式能量回收装置
WO2008141587A1 (fr) Dispositif de pompage d'eau à économie d'énergie et de type à différence de pression d'air
CN202954935U (zh) 一种多级流量液压扳手专用电动液压泵
CN205897890U (zh) 一种用于火力发电厂的真空机组配置系统
CN102312839A (zh) 一种高效高承压卧式多级离心泵
WO2000070221A1 (fr) Pompe de compression hydraulique
CN208441155U (zh) 一种消防药剂生产用供水装置
CN203525570U (zh) 一种基于反渗透系统的差压增压式能量回收装置
CN215691715U (zh) 一种高效节能浓缩器进料系统
CN210398377U (zh) 氢混天然气用的氢气增压器设备
RU209266U1 (ru) Многоступенчатый центробежный насос
JP3424064B2 (ja) アキュムレータ試験装置
TWI766808B (zh) 懸空式液壓變壓器
CN212317032U (zh) 多止回阀供水装置
CN219220661U (zh) 一种多隔膜泵系统
CN108488117A (zh) 一种新型手动流体压力发生器的设计方法
CN214247429U (zh) 一种汽缸泵水系统
CN219345132U (zh) 一种大容积流量液驱增压缸
CN108488872B (zh) 一种应用于湿冷机组的低品质蒸汽供热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890407

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19890407

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19890407

Country of ref document: EP

Kind code of ref document: A1