WO2020107655A1 - 显示系统及显示系统的驱动方法 - Google Patents

显示系统及显示系统的驱动方法 Download PDF

Info

Publication number
WO2020107655A1
WO2020107655A1 PCT/CN2019/070716 CN2019070716W WO2020107655A1 WO 2020107655 A1 WO2020107655 A1 WO 2020107655A1 CN 2019070716 W CN2019070716 W CN 2019070716W WO 2020107655 A1 WO2020107655 A1 WO 2020107655A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
displayed
value
color temperature
average
Prior art date
Application number
PCT/CN2019/070716
Other languages
English (en)
French (fr)
Inventor
饶洋
彭乐立
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020107655A1 publication Critical patent/WO2020107655A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to the field of display technology, and in particular, to a display system and a driving method of the display system.
  • liquid crystal display devices Liquid Crystal Display, LCD
  • organic light emitting diode display devices Organic Light Emitting Display, OLED
  • other flat display devices have high image quality, power saving, thin body and application range It has been widely used in various consumer electronic products such as mobile phones, televisions, personal digital assistants, digital cameras, notebook computers, desktop computers, etc., and has become the mainstream in display devices.
  • Most of the existing liquid crystal display devices generally include: a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates.
  • the liquid crystal molecules can be controlled to change the direction by turning on or off, and the backlight module light Refracted to produce a picture.
  • the existing OLED display device usually includes a substrate, an anode provided on the substrate, an organic light emitting layer provided on the anode, an electron transport layer provided on the organic light emitting layer, and a cathode provided on the electron transport layer.
  • the hole from the anode and the electron from the cathode are emitted to the organic light-emitting layer, and these electrons and holes are combined to generate an excited electron-hole pair, and the excited electron-hole pair is output from the excited state to the ground state Achieve glow.
  • color temperature is an important parameter used to characterize the color characteristics of light. The lower the color temperature, the more reddish the light color, and conversely, the lighter the color. The overall color temperature of the image can characterize the overall feeling of the image to the viewer.
  • the prior art generally only adjusts the display color temperature of the display device to achieve the best display effect of the image.
  • the display device performs display, if the ambient color temperature of the display device does not match the color temperature of the image displayed by the display device, It will reduce the presence of the user when viewing the image, and the user experience is poor.
  • An object of the present invention is to provide a display system that can enhance the presence of a user when viewing an image and enhance the user experience.
  • Another object of the present invention is to provide a driving method for a display system, which can enhance the presence of a user when viewing a video and enhance the user experience.
  • the present invention first provides a display system, including a processing unit, a display electrically connected to the processing unit, and a smart light bulb electrically connected to the processing unit;
  • the processing unit accesses the image to be displayed and calculates the color temperature value and average grayscale value of the image to be displayed, transmits the image to be displayed to the display, and transmits the color temperature value and average grayscale value of the image to be displayed to the smart light bulb;
  • the display displays the image to be displayed after receiving the image to be displayed;
  • the smart bulb stores a lookup table, the lookup table includes a plurality of preset reference color temperature values, a plurality of sets of red, green, blue, and grayscale values corresponding to the plurality of reference color temperature values, and a plurality of reference color temperature values respectively corresponding to Multiple original light source brightness; after receiving the color temperature value and average gray level value of the image to be displayed, the smart light bulb uses a look-up table to calculate the red, green, blue gray level value and the original light source brightness corresponding to the color temperature value of the image to be displayed, Use the original light source brightness corresponding to the color temperature value of the image to be displayed, the average grayscale value of the image to be displayed and the preset brightness adjustment coefficient formula to calculate the brightness adjustment coefficient corresponding to the image to be displayed and the brightness adjustment coefficient corresponding to the image to be displayed and The original light source brightness corresponding to the color temperature value of the image to be displayed is multiplied to obtain the actual light source brightness corresponding to the image to be displayed, and light is emitted according to the actual light source brightness
  • the gray level values of the red channel, the green channel and the blue channel of the smart bulb when emitting light are the red gray level value, the green gray level value and the blue gray level value among the red, green and blue gray level values corresponding to the color temperature value of the image to be displayed Value, the luminous brightness of the intelligent light bulb when illuminating is the actual light source brightness corresponding to the image to be displayed.
  • the image to be displayed includes a plurality of pixels arranged in an array, each pixel includes a red subpixel, a green subpixel, and a blue subpixel, and each red subpixel, green subpixel, and blue subpixel have a gray Order value.
  • the specific process of calculating the average grayscale value of the image to be displayed by the processing unit is: obtaining the average value of the grayscale values of the plurality of red sub-pixels in the image to be displayed, the average value of the grayscale values of the plurality of green sub-pixels, The average value of the grayscale values of the blue subpixels, using the average value of the grayscale values of the multiple red subpixels, the average value of the grayscale values of the multiple green subpixels, and the grayscale values of the multiple blue subpixels.
  • the average value and the preset average grayscale value calculation formula calculate the average grayscale value of the image to be displayed.
  • the preset formula for calculating the average gray scale value is:
  • GY ave R ave ⁇ 0.299+G ave ⁇ 0.587+B ave ⁇ 0.114;
  • GY ave is the average grayscale value of the image to be displayed
  • R ave is the average grayscale value of multiple red subpixels
  • G ave is the average grayscale value of multiple green subpixels
  • B ave is more The average value of the grayscale values of the blue sub-pixels.
  • the preset brightness adjustment coefficient formula is:
  • L ⁇ is the brightness adjustment coefficient corresponding to the image to be displayed
  • L ⁇ is the brightness proportional coefficient corresponding to the image to be displayed
  • L ⁇ L V /L Vmax
  • L V is the original light source brightness corresponding to the color temperature value of the image to be displayed
  • L Vmax is the maximum value of the brightness of the original light sources corresponding to the multiple reference color temperature values in the look-up table.
  • the invention also provides a display system including a processing unit, a display electrically connected to the processing unit, and a smart light bulb electrically connected to the processing unit;
  • the processing unit accesses the image to be displayed and calculates the color temperature value and average grayscale value of the image to be displayed, transmits the image to be displayed to the display and transmits the color temperature value and average grayscale value of the image to be displayed to the smart light bulb;
  • the display displays the image to be displayed after receiving the image to be displayed;
  • the smart bulb stores a lookup table, the lookup table includes a plurality of preset reference color temperature values, a plurality of sets of red, green, blue, and grayscale values corresponding to the plurality of reference color temperature values, and a plurality of reference color temperature values respectively corresponding to Multiple original light source brightness; after receiving the color temperature value and average gray level value of the image to be displayed, the smart light bulb uses a look-up table to calculate the red, green, blue gray level value and the original light source brightness corresponding to the color temperature value of the image to be displayed, Use the original light source brightness corresponding to the color temperature value of the image to be displayed, the average grayscale value of the image to be displayed and the preset brightness adjustment coefficient formula to calculate the brightness adjustment coefficient corresponding to the image to be displayed and the brightness adjustment coefficient corresponding to the image to be displayed and The original light source brightness corresponding to the color temperature value of the image to be displayed is multiplied to obtain the actual light source brightness corresponding to the image to be displayed, and light is emitted according to the actual light source brightness
  • the gray level values of the red channel, the green channel and the blue channel of the smart bulb when emitting light are the red gray level value, the green gray level value and the blue gray level value among the red, green and blue gray level values corresponding to the color temperature value of the image to be displayed Value, the luminous brightness of the intelligent light bulb when illuminating is the actual light source brightness corresponding to the image to be displayed;
  • the image to be displayed includes a plurality of pixels arranged in an array, each pixel includes a red subpixel, a green subpixel, and a blue subpixel, and each red subpixel, green subpixel, and blue subpixel have a gray Order value.
  • the preset brightness adjustment coefficient formula is:
  • L ⁇ is the brightness adjustment coefficient corresponding to the image to be displayed
  • L ⁇ is the brightness proportional coefficient corresponding to the image to be displayed
  • L ⁇ L V /L Vmax
  • L V is the original light source brightness corresponding to the color temperature value of the image to be displayed
  • L Vmax is the maximum value of the brightness of the original light sources corresponding to the multiple reference color temperature values in the look-up table.
  • the present invention also provides a driving method of a display system, including the following steps:
  • Step S1 Provide a display system;
  • the display system includes a processing unit, a display electrically connected to the processing unit, and a smart light bulb electrically connected to the processing unit;
  • the smart light bulb stores a look-up table, and the look-up table includes multiple Preset reference color temperature values, multiple sets of red, green, blue, and gray scale values corresponding to multiple reference color temperature values, respectively, and multiple original light source luminances corresponding to multiple reference color temperature values;
  • Step S2 The processing unit accesses the image to be displayed and calculates the color temperature value and average grayscale value of the image to be displayed, transmits the image to be displayed to the display and transmits the color temperature value and average grayscale value of the image to be displayed to the smart light bulb ;
  • Step S3 The display displays the image to be displayed; the smart light bulb uses a look-up table to calculate the red, green, blue and gray levels and the original light source brightness corresponding to the color temperature of the image to be displayed, and uses the color temperature corresponding to the image to be displayed
  • the original light source brightness, the average gray level value of the image to be displayed and the preset brightness adjustment coefficient formula calculate the brightness adjustment coefficient corresponding to the image to be displayed and the original brightness corresponding to the color temperature value of the image to be displayed Multiply the brightness of the light source to obtain the actual light source brightness corresponding to the image to be displayed, and emit light according to the actual light source brightness corresponding to the image to be displayed and the red, green, blue and gray levels corresponding to the color temperature value of the image to be displayed.
  • the gray level values of the channel and the blue channel are respectively the red gray level value, the green gray level value and the blue gray level value among the red, green and blue gray level values corresponding to the color temperature value of the image to be displayed.
  • the image to be displayed includes a plurality of pixels arranged in an array, each pixel includes a red subpixel, a green subpixel, and a blue subpixel, and each red subpixel, green subpixel, and blue subpixel have a gray Order value.
  • the specific process of calculating the average grayscale value of the image to be displayed by the processing unit in the step S2 is: obtaining the average value of the grayscale values of the plurality of red sub-pixels in the image to be displayed, and the grayscale values of the plurality of green sub-pixels Average value, average value of grayscale values of multiple blue subpixels, using average value of grayscale values of multiple red subpixels, average value of grayscale values of multiple green subpixels, multiple blue subpixels.
  • the average value of the grayscale values of the pixels and the preset average grayscale value calculation formula calculate the average grayscale value of the image to be displayed.
  • the preset formula for calculating the average gray scale value is:
  • GY ave R ave ⁇ 0.299+G ave ⁇ 0.587+B ave ⁇ 0.114;
  • GY ave is the average grayscale value of the image to be displayed
  • R ave is the average grayscale value of multiple red subpixels
  • G ave is the average grayscale value of multiple green subpixels
  • B ave is more The average value of the grayscale values of the blue sub-pixels.
  • the preset brightness adjustment coefficient formula is:
  • L ⁇ is the brightness adjustment coefficient corresponding to the image to be displayed
  • L ⁇ is the brightness proportional coefficient corresponding to the image to be displayed
  • L ⁇ L V /L Vmax
  • L V is the original light source brightness corresponding to the color temperature value of the image to be displayed
  • L Vmax is the maximum value of the brightness of the original light sources corresponding to the multiple reference color temperature values in the look-up table.
  • the display system of the present invention uses the processing unit to calculate the color temperature value and the average grayscale value of the image to be displayed, the display displays the image to be displayed, and the intelligent light bulb uses a lookup table to calculate the red and green corresponding to the color temperature value of the image to be displayed
  • the blue gray level value and the original light source brightness use the original light source brightness corresponding to the color temperature value of the image to be displayed, the average gray level value of the image to be displayed and the preset brightness adjustment coefficient formula to calculate the brightness adjustment coefficient corresponding to the image to be displayed and
  • the brightness adjustment coefficient corresponding to the image to be displayed is multiplied by the original light source brightness corresponding to the color temperature value of the image to be displayed to obtain the actual light source brightness corresponding to the image to be displayed, based on the actual light source brightness corresponding to the image to be displayed and the color temperature value corresponding to the image to be displayed
  • the red, green, blue and gray level values emit light, which can enhance the presence of the user when viewing the image and enhance the user experience.
  • FIG. 1 is a schematic structural diagram of a display system of the present invention
  • FIG. 3 is a schematic diagram of a chromatogram provided by the processing unit when calculating the color temperature value of the image to be displayed in an embodiment of the driving method of the display system of the present invention.
  • the present invention provides a display system including a processing unit 10, a display 20 electrically connected to the processing unit 10, and a smart light bulb 30 electrically connected to the processing unit 10.
  • the processing unit 10 accesses the image to be displayed and calculates the color temperature value and average grayscale value of the image to be displayed, transmits the image to be displayed to the display, and transmits the color temperature value and average grayscale value of the image to be displayed to the smart bulb 30.
  • the display 20 displays the image to be displayed after receiving the image to be displayed.
  • the smart bulb 30 stores a look-up table, which includes a plurality of preset reference color temperature values, a plurality of sets of red, green, blue, and gray-scale values corresponding to the plurality of reference color temperature values, and a plurality of reference color temperature values, respectively.
  • the brightness of multiple original light sources includes a plurality of preset reference color temperature values, a plurality of sets of red, green, blue, and gray-scale values corresponding to the plurality of reference color temperature values, and a plurality of reference color temperature values, respectively.
  • the smart light bulb 30 After receiving the color temperature value and the average gray level value of the image to be displayed, the smart light bulb 30 uses a look-up table to calculate the red, green, blue and gray level values and the original light source brightness corresponding to the color temperature value of the image to be displayed, and uses the image to be displayed
  • the original light source brightness corresponding to the color temperature value, the average grayscale value of the image to be displayed and the preset brightness adjustment coefficient formula calculate the brightness adjustment coefficient corresponding to the image to be displayed, and the brightness adjustment coefficient corresponding to the image to be displayed and the color temperature of the image to be displayed
  • the original light source brightness corresponding to the value is multiplied to obtain the actual light source brightness corresponding to the image to be displayed, and the light is emitted according to the actual light source brightness corresponding to the image to be displayed and the red, green, blue and gray levels corresponding to the color temperature value of the image to be displayed.
  • the grayscale values of the red channel, green channel and blue channel are the red grayscale value, green grayscale value and blue grayscale value of the red, green and blue grayscale values corresponding to the color temperature value of the image to be displayed
  • the light emitting brightness of the smart bulb 30 is the actual light source brightness corresponding to the image to be displayed.
  • the image to be displayed includes a plurality of pixels arranged in an array, each pixel includes a red subpixel, a green subpixel, and a blue subpixel, and each red subpixel, green subpixel, and blue subpixel Has a gray scale value.
  • the specific process of calculating the average grayscale value of the image to be displayed by the processing unit 10 is: obtaining the average value of the grayscale values of multiple red sub-pixels in the image to be displayed, and the grayscale values of multiple green sub-pixels
  • the average value of the grayscale values of and the preset average grayscale value calculation formula calculate the average grayscale value of the image to be displayed.
  • the preset formula for calculating the average gray scale value is:
  • GY ave R ave ⁇ 0.299 + G ave ⁇ 0.587 + B ave ⁇ 0.114.
  • GY ave is the average grayscale value of the image to be displayed
  • R ave is the average grayscale value of multiple red subpixels
  • G ave is the average grayscale value of multiple green subpixels
  • B ave is more The average value of the grayscale values of the blue sub-pixels.
  • the preset brightness adjustment coefficient formula is:
  • L ⁇ is the brightness adjustment coefficient corresponding to the image to be displayed
  • L ⁇ is the brightness proportional coefficient corresponding to the image to be displayed
  • L ⁇ L V /L Vmax
  • L V is the original light source brightness corresponding to the color temperature value of the image to be displayed
  • L Vmax is the maximum value of the brightness of the original light sources corresponding to the multiple reference color temperature values in the look-up table.
  • the range of the brightness adjustment coefficient corresponding to the image to be displayed is 0-100.
  • the method for manufacturing the look-up table specifically includes: setting a plurality of reference color temperature values, adjusting the gray-scale values of the red channel, the green channel, and the blue channel of the intelligent light bulb 30 so that the light emission exhibits different color temperatures.
  • the original light-emitting brightness when the smart light bulb 30 emits light at a plurality of reference color temperatures is measured to obtain a plurality of original light-emitting brightness corresponding to the plurality of reference color temperatures, respectively, thereby making a look-up table.
  • the smallest of the plurality of reference color temperatures is 1000K, and the largest is 15000K.
  • the difference between two adjacent reference color temperatures is 500k.
  • the processing unit 10 calculates the color temperature value of the image to be displayed based on the correlated color temperature and color coordinate partition.
  • the specific process of the processing unit 10 calculating the color temperature value of the image to be displayed includes the following steps:
  • Step S21 Create a statistical table.
  • the statistical table includes a plurality of node color temperatures that are sequentially increased and a plurality of weights respectively corresponding to the color temperature of the plurality of nodes, and the color temperature of the plurality of nodes includes a preset minimum color temperature of 1000K, a preset maximum color temperature of 15000K, and a plurality of intermediate Color temperature, all weights are 0.
  • Step S22 Please refer to FIG. 3 to provide a CIE1931 chromatogram, and divide the color gamut space in the CIE1931 chromatogram into a first area A, a second area B, and a third area C connected in twos.
  • the boundary between the first zone A and the second zone B, the boundary between the second zone B and the third zone C, and the boundary between the third zone C and the first zone A converge at a reference point O, the reference point O
  • the coordinates are (0.332, 0.1858)
  • the boundary between the first zone A and the second zone B coincides with the isochromatic temperature line corresponding to the maximum color temperature
  • the boundary between the first zone A and the third zone C corresponds to the isochromatic temperature corresponding to the minimum color temperature
  • the lines coincide, and the boundary between the second zone B and the third zone C is parallel to the y-axis of the CIE1931 chromatogram.
  • Step S23 Select one of the pixels of the image to be displayed as the processing pixel. Convert the grayscale values of the red, green, and blue subpixels of the processed pixel to the color coordinates of the processed pixel in the CIE1931 chromatogram.
  • the specific conversion method uses the red, green, and blue grayscale values that are common in the prior art The method of conversion to color coordinates is sufficient, and will not be repeated here.
  • CT is the pixel color temperature value, Determine whether the color temperature value of the processing pixel is one of the color temperatures of multiple nodes, if it is, increase the weight corresponding to the color temperature value of the processing pixel in the statistical table by 1, otherwise, the color temperature value and 1 of the processing pixel are regarded as the node color temperature and its corresponding The weight of is added to the statistics table. If the color coordinate of the processing pixel is located in the second area B, for example at the point P(B) in FIG.
  • the line between this point and the reference point O and the boundary between the first area A and the second area B The angle is ⁇ 1
  • the angle between the boundary between the first area A and the second area B and the boundary between the second area B and the third area C is ⁇ 1
  • the preset first weight value calculation formula calculates the weight value of the processed pixel, and adds the weight value to the statistical table
  • ⁇ 1 is the weight value of the processing pixel when the color coordinate of the processing pixel is in the second area B
  • ⁇ 1 is the line connecting the point corresponding to the color coordinate of the processing pixel and the reference point and the boundary between the first area A and the second area B
  • the angle between the lines, ⁇ 1 is the angle between the boundary between the first zone A and the second zone B and the boundary between the second zone B and the third zone C. If the color coordinate of the processing pixel is located in the third area C, for example, at the point P(C) in FIG.
  • the line between this point and the reference point O and the boundary line between the first area A and the third area C The angle is ⁇ 2, and the angle between the boundary between the first area A and the third area C and the boundary between the second area B and the third area C is ⁇ 2.
  • the point and reference corresponding to the color coordinates of the processed pixel The angle between the connection of the points and the boundary between the first area A and the third area C is ⁇ 2, the preset second weight value calculation formula calculates the weight value of the processed pixel, and adds the weight value to the statistical table
  • ⁇ 2 is the weight value of the processing pixel when the color coordinate of the processing pixel is in the third area C
  • ⁇ 2 is the line connecting the point corresponding to the color coordinate of the processing pixel and the reference point and the boundary between the first area A and the third area C
  • the angle between the lines, ⁇ 2 is the angle between the boundary between the first zone A and the third zone C and the boundary between the second zone B and the third zone C.
  • Step S25 Repeat steps S23 and S24 until multiple pixels all execute steps S23 and S24.
  • Step S26 Multiply the color temperature of each node in the statistical table by the corresponding weight, and divide the sum of the product of the color temperature of the multiple nodes and the corresponding weight and the sum of the weights of the color temperature of the multiple nodes to obtain the color temperature of the image to be displayed value.
  • the display system of the present invention uses the processing unit 10 to calculate the color temperature value and the average grayscale value of the image to be displayed, the display 20 displays the image to be displayed, and the smart light bulb 30 uses a lookup table to calculate the color temperature value corresponding to the image to be displayed.
  • Red, green and blue gray scale values and original light source brightness use the original light source brightness corresponding to the color temperature value of the image to be displayed, the average gray scale value of the image to be displayed and the preset brightness adjustment coefficient formula to calculate the brightness adjustment coefficient corresponding to the image to be displayed Multiplying the brightness adjustment coefficient corresponding to the image to be displayed and the original light source brightness corresponding to the color temperature value of the image to be obtained to obtain the actual light source brightness corresponding to the image to be displayed, based on the actual light source brightness corresponding to the image to be displayed and the color temperature value of the image to be displayed Corresponding red, green, blue and gray level values emit light.
  • the brightness and color temperature of the smart light bulb 30 when it emits light change with the brightness and color temperature of the image to be displayed. At different color temperatures, different brightness adjustment coefficients are introduced to adjust the brightness of the smart light bulb 30. The discomfort caused by the uneven brightness of the light bulb, and can enhance the presence of the user when viewing the image and enhance the user experience.
  • the present invention also provides a driving method of a display system, including the following steps:
  • Step S1 Provide a display system.
  • the display system includes a processing unit 10, a display 20 electrically connected to the processing unit 10, and a smart light bulb 30 electrically connected to the processing unit 10.
  • the smart bulb 30 stores a look-up table, which includes a plurality of preset reference color temperature values, a plurality of sets of red, green, blue, and gray-scale values corresponding to the plurality of reference color temperature values, and a plurality of reference color temperature values, respectively.
  • the brightness of multiple original light sources includes a plurality of preset reference color temperature values, a plurality of sets of red, green, blue, and gray-scale values corresponding to the plurality of reference color temperature values, and a plurality of reference color temperature values, respectively.
  • the brightness of multiple original light sources includes a plurality of preset reference color temperature values, a plurality of sets of red, green, blue, and gray-scale values corresponding to the plurality of reference color temperature values, and a plurality of reference color temperature values, respectively.
  • the method for manufacturing the lookup table specifically includes: setting a plurality of reference color temperature values, adjusting the gray level values of the red channel, the green channel, and the blue channel of the smart light bulb 30 so that the light emission exhibits different color temperatures.
  • the original light-emitting brightness when the smart light bulb 30 emits light at a plurality of reference color temperatures is measured to obtain a plurality of original light-emitting brightness corresponding to the plurality of reference color temperatures, respectively, thereby making a look-up table.
  • the smallest of the plurality of reference color temperatures is 1000K, and the largest is 15000K.
  • the difference between two adjacent reference color temperatures is 500k.
  • Step S2 The processing unit 10 accesses the image to be displayed and calculates the color temperature value and average grayscale value of the image to be displayed, transmits the image to be displayed to the display and transmits the color temperature value and average grayscale value of the image to be displayed to the intelligent Bulb 30.
  • the image to be displayed includes a plurality of pixels arranged in an array, each pixel includes a red subpixel, a green subpixel, and a blue subpixel, and each red subpixel, green subpixel, and blue subpixel Has a gray scale value.
  • the specific process of calculating the average grayscale value of the image to be displayed by the processing unit 10 in the step S2 is: obtaining the average value of the grayscale values of multiple red sub-pixels in the image to be displayed, and multiple green sub-pixels
  • the average value of the grayscale value of the multiple, the average value of the grayscale value of the plurality of blue subpixels, the average value of the grayscale value of the plurality of red subpixels, the average value of the grayscale value of the plurality of green subpixels, the The average value of the grayscale values of the blue sub-pixels and the preset average grayscale value calculation formula calculate the average grayscale value of the image to be displayed.
  • the preset formula for calculating the average gray scale value is:
  • GY ave R ave ⁇ 0.299 + G ave ⁇ 0.587 + B ave ⁇ 0.114.
  • GY ave is the average grayscale value of the image to be displayed
  • R ave is the average grayscale value of multiple red subpixels
  • G ave is the average grayscale value of multiple green subpixels
  • B ave is more The average value of the grayscale values of the blue sub-pixels.
  • the processing unit 10 calculates the color temperature value of the image to be displayed based on the correlation color temperature and the color coordinate partition.
  • the specific process of the processing unit 10 calculating the color temperature value of the image to be displayed includes the following steps:
  • Step S21 Create a statistical table.
  • the statistical table includes a plurality of node color temperatures that are sequentially increased and a plurality of weights respectively corresponding to the color temperature of the plurality of nodes, and the color temperature of the plurality of nodes includes a preset minimum color temperature of 1000K, a preset maximum color temperature of 15000K, and a plurality of intermediate Color temperature, all weights are 0.
  • Step S22 Please refer to FIG. 3 to provide a CIE1931 chromatogram, and divide the color gamut space in the CIE1931 chromatogram into a first area A, a second area B, and a third area C connected in twos.
  • the boundary between the first zone A and the second zone B, the boundary between the second zone B and the third zone C, and the boundary between the third zone C and the first zone A converge at a reference point O, the reference point O
  • the coordinates are (0.332, 0.1858)
  • the boundary between the first zone A and the second zone B coincides with the isochromatic temperature line corresponding to the maximum color temperature
  • the boundary between the first zone A and the third zone C corresponds to the isochromatic temperature corresponding to the minimum color temperature
  • the lines coincide, and the boundary between the second zone B and the third zone C is parallel to the y-axis of the CIE1931 chromatogram.
  • Step S23 Select one of the pixels of the image to be displayed as the processing pixel. Convert the grayscale values of the red, green, and blue subpixels of the processed pixel to the color coordinates of the processed pixel in the CIE1931 chromatogram.
  • the specific conversion method uses the red, green, and blue grayscale values that are common in the prior art The method of conversion to color coordinates is sufficient, and will not be repeated here.
  • CT is the pixel color temperature value, Determine whether the color temperature value of the processing pixel is one of the color temperatures of multiple nodes, if it is, increase the weight corresponding to the color temperature value of the processing pixel in the statistical table by 1, otherwise, the color temperature value and 1 of the processing pixel are regarded as the node color temperature and its corresponding The weight of is added to the statistics table. If the color coordinate of the processing pixel is located in the second area B, for example, at the point P(B) in FIG.
  • the line between this point and the reference point O and the boundary line between the first area A and the second area B The angle is ⁇ 1
  • the angle between the boundary between the first area A and the second area B and the boundary between the second area B and the third area C is ⁇ 1
  • the preset first weight value calculation formula calculates the weight value of the processed pixel, and adds the weight value to the statistical table
  • ⁇ 1 is the weight value of the processing pixel when the color coordinate of the processing pixel is in the second area B
  • ⁇ 1 is the line connecting the point corresponding to the color coordinate of the processing pixel and the reference point and the boundary between the first area A and the second area B
  • the angle between the lines, ⁇ 1 is the angle between the boundary between the first zone A and the second zone B and the boundary between the second zone B and the third zone C. . If the color coordinate of the processing pixel is located in the third area C, for example, at the point P(C) in FIG.
  • the line between this point and the reference point O and the boundary line between the first area A and the third area C The angle is ⁇ 2, and the angle between the boundary between the first area A and the third area C and the boundary between the second area B and the third area C is ⁇ 2.
  • the point and reference corresponding to the color coordinates of the processed pixel The angle between the connection of the points and the boundary between the first area A and the third area C is ⁇ 2, the preset second weight value calculation formula calculates the weight value of the processed pixel, and adds the weight value to the statistical table
  • ⁇ 2 is the weight value of the processing pixel when the color coordinate of the processing pixel is in the third area C
  • ⁇ 2 is the line connecting the point corresponding to the color coordinate of the processing pixel and the reference point and the boundary between the first area A and the third area C
  • the angle between the lines, ⁇ 2 is the angle between the boundary between the first zone A and the third zone C and the boundary between the second zone B and the third zone C.
  • Step S25 Repeat steps S23 and S24 until multiple pixels all execute steps S23 and S24.
  • Step S26 Multiply the color temperature of each node in the statistical table by the corresponding weight, and divide the sum of the product of the color temperature of the multiple nodes and the corresponding weight and the sum of the weights of the color temperature of the multiple nodes to obtain the color temperature of the image to be displayed value.
  • Step S3 The display 20 displays the image to be displayed.
  • the smart light bulb 30 uses a look-up table to calculate the red, green, blue and gray level values and the original light source brightness corresponding to the color temperature value of the image to be displayed, and uses the original light source brightness corresponding to the color temperature value of the image to be displayed and the average gray level of the image to be displayed
  • the value and the preset brightness adjustment coefficient formula calculate the brightness adjustment coefficient corresponding to the image to be displayed and multiply the brightness adjustment coefficient corresponding to the image to be displayed and the original light source brightness corresponding to the color temperature value of the image to obtain the actual light source corresponding to the image to be displayed Brightness, according to the actual light source brightness corresponding to the image to be displayed and the red, green, blue and gray level values corresponding to the color temperature value of the image to be displayed, the gray level values of the red channel, green channel and blue channel of the smart light bulb 30 are respectively The red gray level value, the green gray level value and the blue gray level value among the red, green and blue gray level values corresponding to
  • the preset brightness adjustment coefficient formula is:
  • L ⁇ is the brightness adjustment coefficient corresponding to the image to be displayed
  • L ⁇ is the brightness proportional coefficient corresponding to the image to be displayed
  • L ⁇ L V /L Vmax
  • L V is the original light source brightness corresponding to the color temperature value of the image to be displayed
  • L Vmax is the maximum value of the brightness of the original light sources corresponding to the multiple reference color temperature values in the look-up table.
  • the value range of the brightness adjustment coefficient corresponding to the image to be displayed is 0-100.
  • the processing unit 10 is used to calculate the color temperature value and the average grayscale value of the image to be displayed
  • the display 20 displays the image to be displayed
  • the smart bulb 30 uses a lookup table to calculate and display the image
  • the red, green, blue and gray scale values and the original light source brightness corresponding to the color temperature value of the image are calculated using the original light source brightness corresponding to the color temperature value of the image to be displayed, the average gray scale value of the image to be displayed and the preset brightness adjustment coefficient formula
  • the brightness and color temperature of the smart bulb 30 when it emits light change with the brightness and color temperature of the image to be displayed. Different brightness adjustment coefficients are introduced to adjust the smart bulb 30 at different color temperatures.
  • the brightness of the light bulb can alleviate the discomfort caused by the uneven brightness of the bulb, and can make the user feel more presence when viewing the image and enhance the user experience.
  • the display system of the present invention uses the processing unit to calculate the color temperature value and the average grayscale value of the image to be displayed, the display displays the image to be displayed, and the smart bulb uses a lookup table to calculate the red, green, and blue corresponding to the color temperature value of the image to be displayed Gray scale value and original light source brightness, use the original light source brightness corresponding to the color temperature value of the image to be displayed, the average gray scale value of the image to be displayed and the preset brightness adjustment coefficient formula to calculate the brightness adjustment coefficient corresponding to the image to be displayed
  • the brightness adjustment coefficient corresponding to the displayed image is multiplied by the original light source brightness corresponding to the color temperature value of the image to be displayed to obtain the actual light source brightness corresponding to the image to be displayed, based on the actual light source brightness corresponding to the image to be displayed and the red corresponding to the color temperature value of the image to be displayed
  • the green-blue gray-scale values emit light, which can enhance the presence of the user when viewing the image and enhance the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

一种显示系统及显示系统的驱动方法。显示系统利用处理单元计算待显示影像的色温值及平均灰阶值,显示器显示待显示影像,智能灯泡利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,能够使得使用者观看影像时的临场感增强,用户体验增强。

Description

显示系统及显示系统的驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种显示系统及显示系统的驱动方法。
背景技术
随着显示技术的发展,液晶显示装置(Liquid Crystal Display,LCD)和有机发光二极管显示装置(Organic Light Emitting Display,OLED)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
现有的液晶显示装置大部分一般包括:液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
现有的OLED显示装置通常包括:基板、设于基板上的阳极、设于阳极上的有机发光层,设于有机发光层上的电子传输层及设于电子传输层上的阴极。工作时向有机发光层发射来自阳极的空穴和来自阴极的电子,将这些电子和空穴组合产生激发性电子-空穴对,并将激发性电子-空穴对从受激态输出为基态实现发光。
在显示行业中,色温是用来表征光的颜色特性的重要参数,色温越低,光色越偏红,反之,光色越偏。影像整体的色温可以表征影像给观看者的整体感觉。
现有技术一般仅仅会对显示装置的显示色温进行调整,使得影像的显示效果达到最佳,当显示装置进行显示时,如果显示装置所处的环境色温与显示装置显示的影像的色温不匹配,则会降低使用者观看影像时的临场感,用户体验较差。
发明内容
本发明的目的在于提供一种显示系统,能够使得使用者观看影像时的临场感增强,用户体验增强。
本发明的另一目的在于提供一种显示系统的驱动方法,能够使得使用 者观看影像时的临场感增强,用户体验增强。
为实现上述目的,本发明首先提供一种显示系统,包括处理单元、与处理单元电性连接的显示器以及与处理单元电性连接的智能灯泡;
所述处理单元接入待显示影像并计算待显示影像的色温值及平均灰阶值,将待显示影像传输至显示器并将待显示影像的色温值及平均灰阶值传输至智能灯泡;
所述显示器在接收到待显示影像后显示所述待显示影像;
所述智能灯泡存储有查找表,所述查找表包括多个预设的参考色温值、分别与多个参考色温值对应的多组红绿蓝灰阶值及分别与多个参考色温值对应的多个原始光源亮度;所述智能灯泡在接收到待显示影像的色温值及平均灰阶值后,利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,发光时智能灯泡的红色通道、绿色通道及蓝色通道的灰阶值分别为待显示影像的色温值对应的红绿蓝灰阶值中的红色灰阶值、绿色灰阶值及蓝色灰阶值,发光时智能灯泡的发光亮度为待显示影像对应的实际光源亮度。
所述待显示影像包括呈阵列式排布的多个像素,每一像素包括红色子像素、绿色子像素及蓝色子像素,每一红色子像素、绿色子像素及蓝色子像素具有一灰阶值。
所述处理单元计算待显示影像的平均灰阶值的具体过程为:获取待显示影像中多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值,利用多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值及预设的平均灰阶值计算公式计算待显示影像的平均灰阶值。
所述预设的平均灰阶值计算公式为:
GY ave=R ave×0.299+G ave×0.587+B ave×0.114;
其中,GY ave为待显示影像的平均灰阶值,R ave为多个红色子像素的灰阶值的平均值,G ave为多个绿色子像素的灰阶值的平均值,B ave为多个蓝色子像素的灰阶值的平均值。
所述预设的亮度调节系数公式为:
L β=100×(GY ave/255)^L α
其中,L β为待显示影像对应的亮度调节系数,L α为待显示影像对应的亮度比例系数,L α=L V/L Vmax,L V为待显示影像的色温值对应的原始光源亮度,L Vmax为查找表中分别与多个参考色温值对应的多个原始光源亮度中的最大值。
本发明还提供一种显示系统,包括处理单元、与处理单元电性连接的显示器以及与处理单元电性连接的智能灯泡;
所述处理单元接入待显示影像并计算待显示影像的色温值及平均灰阶值,将待显示影像传输至显示器并将待显示影像的色温值及平均灰阶值传输至智能灯泡;
所述显示器在接收到待显示影像后显示所述待显示影像;
所述智能灯泡存储有查找表,所述查找表包括多个预设的参考色温值、分别与多个参考色温值对应的多组红绿蓝灰阶值及分别与多个参考色温值对应的多个原始光源亮度;所述智能灯泡在接收到待显示影像的色温值及平均灰阶值后,利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,发光时智能灯泡的红色通道、绿色通道及蓝色通道的灰阶值分别为待显示影像的色温值对应的红绿蓝灰阶值中的红色灰阶值、绿色灰阶值及蓝色灰阶值,发光时智能灯泡的发光亮度为待显示影像对应的实际光源亮度;
所述待显示影像包括呈阵列式排布的多个像素,每一像素包括红色子像素、绿色子像素及蓝色子像素,每一红色子像素、绿色子像素及蓝色子像素具有一灰阶值。
所述预设的亮度调节系数公式为:
L β=100×(GY ave/255)^L α
其中,L β为待显示影像对应的亮度调节系数,L α为待显示影像对应的亮度比例系数,L α=L V/L Vmax,L V为待显示影像的色温值对应的原始光源亮度,L Vmax为查找表中分别与多个参考色温值对应的多个原始光源亮度中的最大值。
本发明还提供一种显示系统的驱动方法,包括如下步骤:
步骤S1、提供显示系统;所述显示系统包括处理单元、与处理单元电性连接的显示器以及与处理单元电性连接的智能灯泡;所述智能灯泡存储有查找表,所述查找表包括多个预设的参考色温值、分别与多个参考色温值对应的多组红绿蓝灰阶值及分别与多个参考色温值对应的多个原始光源亮度;
步骤S2、所述处理单元接入待显示影像并计算待显示影像的色温值及平均灰阶值,将待显示影像传输至显示器并将待显示影像的色温值及平均灰阶值传输至智能灯泡;
步骤S3、所述显示器显示所述待显示影像;所述智能灯泡利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,发光时智能灯泡的红色通道、绿色通道及蓝色通道的灰阶值分别为待显示影像的色温值对应的红绿蓝灰阶值中的红色灰阶值、绿色灰阶值及蓝色灰阶值,发光时智能灯泡的发光亮度为待显示影像对应的实际光源亮度。
所述待显示影像包括呈阵列式排布的多个像素,每一像素包括红色子像素、绿色子像素及蓝色子像素,每一红色子像素、绿色子像素及蓝色子像素具有一灰阶值。
所述步骤S2中所述处理单元计算待显示影像的平均灰阶值的具体过程为:获取待显示影像中多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值,利用多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值及预设的平均灰阶值计算公式计算待显示影像的平均灰阶值。
所述预设的平均灰阶值计算公式为:
GY ave=R ave×0.299+G ave×0.587+B ave×0.114;
其中,GY ave为待显示影像的平均灰阶值,R ave为多个红色子像素的灰阶值的平均值,G ave为多个绿色子像素的灰阶值的平均值,B ave为多个蓝色子像素的灰阶值的平均值。
所述预设的亮度调节系数公式为:
L β=100×(GY ave/255)^L α
其中,L β为待显示影像对应的亮度调节系数,L α为待显示影像对应的亮度比例系数,L α=L V/L Vmax,L V为待显示影像的色温值对应的原始光源亮度,L Vmax为查找表中分别与多个参考色温值对应的多个原始光源亮度中的最大值。
本发明的有益效果:本发明的显示系统利用处理单元计算待显示影像的色温值及平均灰阶值,显示器显示待显示影像,智能灯泡利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,能够使得使用者观看影像时的临场感增强,用户体验增强。本发明的显示系统的驱动方法能够使得使用者观看影像时的临场感增强,用户体验增强。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的显示系统的结构示意图;
图2为本发明的显示系统的驱动方法的流程图;
图3为本发明的显示系统的驱动方法的一实施例中处理单元计算待显示影像的色温值时提供的色谱图的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种显示系统,包括处理单元10、与处理单元10电性连接的显示器20以及与处理单元10电性连接的智能灯泡30。
所述处理单元10接入待显示影像并计算待显示影像的色温值及平均灰阶值,将待显示影像传输至显示器并将待显示影像的色温值及平均灰阶值传输至智能灯泡30。
所述显示器20在接收到待显示影像后显示所述待显示影像。
所述智能灯泡30存储有查找表,所述查找表包括多个预设的参考色温值、分别与多个参考色温值对应的多组红绿蓝灰阶值及分别与多个参考色温值对应的多个原始光源亮度。所述智能灯泡30在接收到待显示影像的色温值及平均灰阶值后,利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,发光时智能灯泡30的红色通道、绿色通道及蓝色通道的灰阶值分别为待显示影像的色温值对应的红绿蓝灰阶值中的红色灰阶值、绿色灰阶值及蓝色灰阶值,发光时智能灯泡30的发光亮度为待显示影像对应的实际光源亮度。
具体地,所述待显示影像包括呈阵列式排布的多个像素,每一像素包括红色子像素、绿色子像素及蓝色子像素,每一红色子像素、绿色子像素及蓝色子像素具有一灰阶值。
具体地,所述处理单元10计算待显示影像的平均灰阶值的具体过程为:获取待显示影像中多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值,利用多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值及预设的平均灰阶值计算公式计算待显示影像的平均灰阶值。
进一步地,所述预设的平均灰阶值计算公式为:
GY ave=R ave×0.299+G ave×0.587+B ave×0.114。
其中,GY ave为待显示影像的平均灰阶值,R ave为多个红色子像素的灰阶值的平均值,G ave为多个绿色子像素的灰阶值的平均值,B ave为多个蓝色子像素的灰阶值的平均值。
具体地,所述预设的亮度调节系数公式为:
L β=100×(GY ave/255)^L α
其中,L β为待显示影像对应的亮度调节系数,L α为待显示影像对应的亮度比例系数,L α=L V/L Vmax,L V为待显示影像的色温值对应的原始光源亮度,L Vmax为查找表中分别与多个参考色温值对应的多个原始光源亮度中的最大值。待显示影像对应的亮度调节系数的范围为0-100。
具体地,所述查找表的制作方法具体为:设置多个参考色温值,对智 能灯泡30的红色通道、绿色通道及蓝色通道的灰阶值进行调整使其发光呈现不同色温。用色彩分析仪测量智能灯泡30发光呈现多个参考色温时对应的色谱图中的坐标,对多个色谱图中的坐标进行转换,得到分别与多个参考色温对应的多个红绿蓝灰阶值。量测智能灯泡30发光呈现多个参考色温时的原始发光亮度,得到分别与多个参考色温对应的多个原始发光亮度,从而制成查找表。
优选地,所述多个参考色温中最小的为1000K,最大的为15000K。相邻两个参考色温的差值为500k。
具体地,所述处理单元10采用基于相关色温和色坐标分区的方式计算待显示影像的色温值,处理单元10计算待显示影像的色温值的具体过程包括如下步骤:
步骤S21、建立统计表。所述统计表包括依次增大的多个节点色温及分别与多个节点色温对应的多个权重,所述多个节点色温包括预设的最小色温1000K、预设的最大色温15000K及多个中间色温,多个权重均为0。
步骤S22、请参阅图3,提供CIE1931色谱图,将CIE1931色谱图中的色域空间划分为两两相连的第一区A、第二区B及第三区C。第一区A与第二区B的交界线、第二区B与第三区C的交界线及第三区C与第一区A的交界线汇聚于一参考点O,所述参考点O的坐标为(0.332,0.1858),第一区A与第二区B的交界线与最大色温对应的等色温线重合,第一区A与第三区C的交界线与最小色温对应的等色温线重合,第二区B与第三区C的交界线平行于CIE1931色谱图的y轴。
步骤S23、选取待显示影像的多个像素中的一个为处理像素。将处理像素的红色子像素、绿色子像素及蓝色子像素的灰阶值转换为CIE1931色谱图中处理像素的色坐标,具体的转换方式采用现有技术中通用的将红绿蓝灰阶值转换为色坐标的方式即可,在此不再赘述。
步骤S24、判断处理像素的色坐标在色域空间中的位置。若处理像素的色坐标位于第一区A,例如位于图3中P(A)点,则依据处理像素的色坐标及预设的像素色温计算公式计算处理像素的色温值,预设的像素色温计算公式为:CT=-437×n 3+3601×n 2-6861×n+5514.31。其中,CT为像素色温值,
Figure PCTCN2019070716-appb-000001
判断处理像素的色温值是否为多个节点色温中的一个,若是则将统计表中与处理像素的色温值对应的权重增加1,否则将处理像素的色温值及1分别作为节点色温及其对应的权重增加至统计表中。若处理像素的色坐标位于第二区B,例如位于图3中的P(B)点,该点与参考点O 之间的连线和第一区A与第二区B的交界线间的角度为α1,而第一区A与第二区B的交界线和第二区B与第三区C的交界线间的角度为β1,此时依据处理像素的色坐标所对应的点与参考点的连线和第一区A与第二区B的交界线间的夹角也即α1、预设的第一权重值计算公式计算处理像素的权重值,并将该权重值加入统计表中与最大色温也即15000K对应的权重,预设的第一权重值计算公式为:γ1=1-α1/β1。其中,γ1为处理像素的色坐标位于第二区B时处理像素的权重值,α1为处理像素的色坐标所对应的点与参考点的连线和第一区A与第二区B的交界线间的夹角,β1为第一区A与第二区B的交界线和第二区B域与第三区C的交界线间的夹角。若处理像素的色坐标位于第三区C,例如位于图3中的P(C)点,该点与参考点O之间的连线和第一区A与第三区C的交界线间的角度为α2,而第一区A与第三区C的交界线和第二区B与第三区C的交界线间的角度为β2,此时依据处理像素的色坐标所对应的点与参考点的连线和第一区A与第三区C的交界线间的夹角也即α2、预设的第二权重值计算公式计算处理像素的权重值,并将该权重值加入统计表中与最小色温也即1000K对应的权重,预设的第二权重值计算公式为:γ2=1-α2/β2。其中,γ2为处理像素的色坐标位于第三区C时处理像素的权重值,α2为处理像素的色坐标所对应的点与参考点的连线和第一区A与第三区C的交界线间的夹角,β2为第一区A与第三区C的交界线和第二区B域与第三区C的交界线间的夹角。
步骤S25、重复步骤S23及S24,直至多个像素均执行步骤S23及S24。
步骤S26、将统计表中每一节点色温与对应的权重相乘,将多个节点色温与对应的权重的乘积之和与多个节点色温对应的权重之和相除,得到待显示影像的色温值。
需要说明的是,本发明的显示系统利用处理单元10计算待显示影像的色温值及平均灰阶值,显示器20显示待显示影像,智能灯泡30利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,智能灯泡30发光时的亮度与色温均随待显示影像的亮度和色温发生改变,不同色温时引入不同的亮度调节系数调节智能灯泡30的亮度,缓解由于灯泡亮度不均匀带来的不适,并且能够使得使用者观看影像时的临场感增强,用户体验增强。
请参阅图2,基于同一发明构思,本发明还提供一种显示系统的驱动方法,包括如下步骤:
步骤S1、提供显示系统。所述显示系统包括处理单元10、与处理单元10电性连接的显示器20以及与处理单元10电性连接的智能灯泡30。所述智能灯泡30存储有查找表,所述查找表包括多个预设的参考色温值、分别与多个参考色温值对应的多组红绿蓝灰阶值及分别与多个参考色温值对应的多个原始光源亮度。
具体地,所述查找表的制作方法具体为:设置多个参考色温值,对智能灯泡30的红色通道、绿色通道及蓝色通道的灰阶值进行调整使其发光呈现不同色温。用色彩分析仪测量智能灯泡30发光呈现多个参考色温时对应的色谱图中的坐标,对多个色谱图中的坐标进行转换,得到分别与多个参考色温对应的多个红绿蓝灰阶值。量测智能灯泡30发光呈现多个参考色温时的原始发光亮度,得到分别与多个参考色温对应的多个原始发光亮度,从而制成查找表。
优选地,所述多个参考色温中最小的为1000K,最大的为15000K。相邻两个参考色温的差值为500k。
步骤S2、所述处理单元10接入待显示影像并计算待显示影像的色温值及平均灰阶值,将待显示影像传输至显示器并将待显示影像的色温值及平均灰阶值传输至智能灯泡30。
具体地,所述待显示影像包括呈阵列式排布的多个像素,每一像素包括红色子像素、绿色子像素及蓝色子像素,每一红色子像素、绿色子像素及蓝色子像素具有一灰阶值。
具体地,所述步骤S2中所述处理单元10计算待显示影像的平均灰阶值的具体过程为:获取待显示影像中多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值,利用多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值及预设的平均灰阶值计算公式计算待显示影像的平均灰阶值。
进一步地,所述预设的平均灰阶值计算公式为:
GY ave=R ave×0.299+G ave×0.587+B ave×0.114。
其中,GY ave为待显示影像的平均灰阶值,R ave为多个红色子像素的灰阶值的平均值,G ave为多个绿色子像素的灰阶值的平均值,B ave为多个蓝色子像素的灰阶值的平均值。
具体地,所述步骤S2中,所述处理单元10采用基于相关色温和色坐 标分区的方式计算待显示影像的色温值,处理单元10计算待显示影像的色温值的具体过程包括如下步骤:
步骤S21、建立统计表。所述统计表包括依次增大的多个节点色温及分别与多个节点色温对应的多个权重,所述多个节点色温包括预设的最小色温1000K、预设的最大色温15000K及多个中间色温,多个权重均为0。
步骤S22、请参阅图3,提供CIE1931色谱图,将CIE1931色谱图中的色域空间划分为两两相连的第一区A、第二区B及第三区C。第一区A与第二区B的交界线、第二区B与第三区C的交界线及第三区C与第一区A的交界线汇聚于一参考点O,所述参考点O的坐标为(0.332,0.1858),第一区A与第二区B的交界线与最大色温对应的等色温线重合,第一区A与第三区C的交界线与最小色温对应的等色温线重合,第二区B与第三区C的交界线平行于CIE1931色谱图的y轴。
步骤S23、选取待显示影像的多个像素中的一个为处理像素。将处理像素的红色子像素、绿色子像素及蓝色子像素的灰阶值转换为CIE1931色谱图中处理像素的色坐标,具体的转换方式采用现有技术中通用的将红绿蓝灰阶值转换为色坐标的方式即可,在此不再赘述。
步骤S24、判断处理像素的色坐标在色域空间中的位置。若处理像素的色坐标位于第一区A,例如位于图3中P(A)点,则依据处理像素的色坐标及预设的像素色温计算公式计算处理像素的色温值,预设的像素色温计算公式为:CT=-437×n 3+3601×n 2-6861×n+5514.31。其中,CT为像素色温值,
Figure PCTCN2019070716-appb-000002
判断处理像素的色温值是否为多个节点色温中的一个,若是则将统计表中与处理像素的色温值对应的权重增加1,否则将处理像素的色温值及1分别作为节点色温及其对应的权重增加至统计表中。若处理像素的色坐标位于第二区B,例如位于图3中的P(B)点,该点与参考点O之间的连线和第一区A与第二区B的交界线间的角度为α1,而第一区A与第二区B的交界线和第二区B与第三区C的交界线间的角度为β1,此时依据处理像素的色坐标所对应的点与参考点的连线和第一区A与第二区B的交界线间的夹角也即α1、预设的第一权重值计算公式计算处理像素的权重值,并将该权重值加入统计表中与最大色温也即15000K对应的权重,预设的第一权重值计算公式为:γ1=1-α1/β1。其中,γ1为处理像素的色坐标位于第二区B时处理像素的权重值,α1为处理像素的色坐标所对应的点与参考点的连线和第一区A与第二区B的交界线间的夹角,β1为第一区A与第二区B的交界线和第二区B域与第三区C的交界线间的夹角。。若处理像 素的色坐标位于第三区C,例如位于图3中的P(C)点,该点与参考点O之间的连线和第一区A与第三区C的交界线间的角度为α2,而第一区A与第三区C的交界线和第二区B与第三区C的交界线间的角度为β2,此时依据处理像素的色坐标所对应的点与参考点的连线和第一区A与第三区C的交界线间的夹角也即α2、预设的第二权重值计算公式计算处理像素的权重值,并将该权重值加入统计表中与最小色温也即1000K对应的权重,预设的第二权重值计算公式为:γ2=1-α2/β2。其中,γ2为处理像素的色坐标位于第三区C时处理像素的权重值,α2为处理像素的色坐标所对应的点与参考点的连线和第一区A与第三区C的交界线间的夹角,β2为第一区A与第三区C的交界线和第二区B域与第三区C的交界线间的夹角。
步骤S25、重复步骤S23及S24,直至多个像素均执行步骤S23及S24。
步骤S26、将统计表中每一节点色温与对应的权重相乘,将多个节点色温与对应的权重的乘积之和与多个节点色温对应的权重之和相除,得到待显示影像的色温值。
步骤S3、所述显示器20显示所述待显示影像。所述智能灯泡30利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,发光时智能灯泡30的红色通道、绿色通道及蓝色通道的灰阶值分别为待显示影像的色温值对应的红绿蓝灰阶值中的红色灰阶值、绿色灰阶值及蓝色灰阶值,发光时智能灯泡30的发光亮度为待显示影像对应的实际光源亮度。
具体地,所述预设的亮度调节系数公式为:
L β=100×(GY ave/255)^L α
其中,L β为待显示影像对应的亮度调节系数,L α为待显示影像对应的亮度比例系数,L α=L V/L Vmax,L V为待显示影像的色温值对应的原始光源亮度,L Vmax为查找表中分别与多个参考色温值对应的多个原始光源亮度中的最大值。待显示影像对应的亮度调节系数的取值范围为0-100。
需要说明的是,本发明的显示系统的驱动方法中,利用处理单元10计算待显示影像的色温值及平均灰阶值,显示器20显示待显示影像,智能灯泡30利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的 平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,智能灯泡30发光时的亮度与色温均随待显示影像的亮度和色温发生改变,不同色温时引入不同的亮度调节系数调节智能灯泡30的亮度,缓解由于灯泡亮度不均匀带来的不适,并且能够使得使用者观看影像时的临场感增强,用户体验增强。
综上所述,本发明的显示系统利用处理单元计算待显示影像的色温值及平均灰阶值,显示器显示待显示影像,智能灯泡利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,能够使得使用者观看影像时的临场感增强,用户体验增强。本发明的显示系统的驱动方法能够使得使用者观看影像时的临场感增强,用户体验增强。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种显示系统,包括处理单元、与处理单元电性连接的显示器以及与处理单元电性连接的智能灯泡;
    所述处理单元接入待显示影像并计算待显示影像的色温值及平均灰阶值,将待显示影像传输至显示器并将待显示影像的色温值及平均灰阶值传输至智能灯泡;
    所述显示器在接收到待显示影像后显示所述待显示影像;
    所述智能灯泡存储有查找表,所述查找表包括多个预设的参考色温值、分别与多个参考色温值对应的多组红绿蓝灰阶值及分别与多个参考色温值对应的多个原始光源亮度;所述智能灯泡在接收到待显示影像的色温值及平均灰阶值后,利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,发光时智能灯泡的红色通道、绿色通道及蓝色通道的灰阶值分别为待显示影像的色温值对应的红绿蓝灰阶值中的红色灰阶值、绿色灰阶值及蓝色灰阶值,发光时智能灯泡的发光亮度为待显示影像对应的实际光源亮度。
  2. 如权利要求1所述的显示系统,其中,所述待显示影像包括呈阵列式排布的多个像素,每一像素包括红色子像素、绿色子像素及蓝色子像素,每一红色子像素、绿色子像素及蓝色子像素具有一灰阶值。
  3. 如权利要求2所述的显示系统,其中,所述处理单元计算待显示影像的平均灰阶值的具体过程为:获取待显示影像中多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值,利用多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值及预设的平均灰阶值计算公式计算待显示影像的平均灰阶值。
  4. 如权利要求3所述的显示系统,其中,所述预设的平均灰阶值计算公式为:
    GY ave=R ave×0.299+G ave×0.587+B ave×0.114;
    其中,GY ave为待显示影像的平均灰阶值,R ave为多个红色子像素的灰阶值的平均值,G ave为多个绿色子像素的灰阶值的平均值,B ave为多个蓝色子像素的灰阶值的平均值。
  5. 如权利要求1所述的显示系统,其中,所述预设的亮度调节系数公式为:
    L β=100×(GY ave/255)^L α
    其中,L β为待显示影像对应的亮度调节系数,L α为待显示影像对应的亮度比例系数,L α=L V/L Vmax,L V为待显示影像的色温值对应的原始光源亮度,L Vmax为查找表中分别与多个参考色温值对应的多个原始光源亮度中的最大值。
  6. 一种显示系统,包括处理单元、与处理单元电性连接的显示器以及与处理单元电性连接的智能灯泡;
    所述处理单元接入待显示影像并计算待显示影像的色温值及平均灰阶值,将待显示影像传输至显示器并将待显示影像的色温值及平均灰阶值传输至智能灯泡;
    所述显示器在接收到待显示影像后显示所述待显示影像;
    所述智能灯泡存储有查找表,所述查找表包括多个预设的参考色温值、分别与多个参考色温值对应的多组红绿蓝灰阶值及分别与多个参考色温值对应的多个原始光源亮度;所述智能灯泡在接收到待显示影像的色温值及平均灰阶值后,利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,发光时智能灯泡的红色通道、绿色通道及蓝色通道的灰阶值分别为待显示影像的色温值对应的红绿蓝灰阶值中的红色灰阶值、绿色灰阶值及蓝色灰阶值,发光时智能灯泡的发光亮度为待显示影像对应的实际光源亮度;
    其中,所述待显示影像包括呈阵列式排布的多个像素,每一像素包括红色子像素、绿色子像素及蓝色子像素,每一红色子像素、绿色子像素及蓝色子像素具有一灰阶值。
    其中,所述预设的亮度调节系数公式为:
    L β=100×(GY ave/255)^L α
    其中,L β为待显示影像对应的亮度调节系数,L α为待显示影像对应的亮度比例系数,L α=L V/L Vmax,L V为待显示影像的色温值对应的原始光源亮度,L Vmax为查找表中分别与多个参考色温值对应的多个原始光源亮度中的最大值。
  7. 如权利要求6所述的显示系统,其中,所述处理单元计算待显示影像的平均灰阶值的具体过程为:获取待显示影像中多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值,利用多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值及预设的平均灰阶值计算公式计算待显示影像的平均灰阶值。
  8. 如权利要求7所述的显示系统,其中,所述预设的平均灰阶值计算公式为:
    GY ave=R ave×0.299+G ave×0.587+B ave×0.114;
    其中,GY ave为待显示影像的平均灰阶值,R ave为多个红色子像素的灰阶值的平均值,G ave为多个绿色子像素的灰阶值的平均值,B ave为多个蓝色子像素的灰阶值的平均值。
  9. 一种显示系统的驱动方法,包括如下步骤:
    步骤S1、提供显示系统;所述显示系统包括处理单元、与处理单元电性连接的显示器以及与处理单元电性连接的智能灯泡;所述智能灯泡存储有查找表,所述查找表包括多个预设的参考色温值、分别与多个参考色温值对应的多组红绿蓝灰阶值及分别与多个参考色温值对应的多个原始光源亮度;
    步骤S2、所述处理单元接入待显示影像并计算待显示影像的色温值及平均灰阶值,将待显示影像传输至显示器并将待显示影像的色温值及平均灰阶值传输至智能灯泡;
    步骤S3、所述显示器显示所述待显示影像;所述智能灯泡利用查找表计算与待显示影像的色温值对应的红绿蓝灰阶值及原始光源亮度,利用与待显示影像的色温值对应的原始光源亮度、待显示影像的平均灰阶值及预设的亮度调节系数公式计算待显示影像对应的亮度调节系数并将待显示影像对应的亮度调节系数与待显示影像的色温值对应的原始光源亮度相乘获得待显示影像对应的实际光源亮度,依据待显示影像对应的实际光源亮度及待显示影像的色温值对应的红绿蓝灰阶值进行发光,发光时智能灯泡的红色通道、绿色通道及蓝色通道的灰阶值分别为待显示影像的色温值对应的红绿蓝灰阶值中的红色灰阶值、绿色灰阶值及蓝色灰阶值,发光时智能 灯泡的发光亮度为待显示影像对应的实际光源亮度。
  10. 如权利要求9所述的显示系统的驱动方法,其中,所述待显示影像包括呈阵列式排布的多个像素,每一像素包括红色子像素、绿色子像素及蓝色子像素,每一红色子像素、绿色子像素及蓝色子像素具有一灰阶值。
  11. 如权利要求10所述的显示系统的驱动方法,其中,所述步骤S2中所述处理单元计算待显示影像的平均灰阶值的具体过程为:获取待显示影像中多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值,利用多个红色子像素的灰阶值的平均值、多个绿色子像素的灰阶值的平均值、多个蓝色子像素的灰阶值的平均值及预设的平均灰阶值计算公式计算待显示影像的平均灰阶值。
  12. 如权利要求11所述的显示系统的驱动方法,其中,所述预设的平均灰阶值计算公式为:
    GY ave=R ave×0.299+G ave×0.587+B ave×0.114;
    其中,GY ave为待显示影像的平均灰阶值,R ave为多个红色子像素的灰阶值的平均值,G ave为多个绿色子像素的灰阶值的平均值,B ave为多个蓝色子像素的灰阶值的平均值。
  13. 如权利要求9所述的显示系统的驱动方法,其中,所述预设的亮度调节系数公式为:
    L β=100×(GY ave/255)^L α
    其中,L β为待显示影像对应的亮度调节系数,L α为待显示影像对应的亮度比例系数,L α=L V/L Vmax,L V为待显示影像的色温值对应的原始光源亮度,L Vmax为查找表中分别与多个参考色温值对应的多个原始光源亮度中的最大值。
PCT/CN2019/070716 2018-11-30 2019-01-07 显示系统及显示系统的驱动方法 WO2020107655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811460283.2A CN109410819B (zh) 2018-11-30 2018-11-30 显示系统及显示系统的驱动方法
CN201811460283.2 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020107655A1 true WO2020107655A1 (zh) 2020-06-04

Family

ID=65456783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070716 WO2020107655A1 (zh) 2018-11-30 2019-01-07 显示系统及显示系统的驱动方法

Country Status (2)

Country Link
CN (1) CN109410819B (zh)
WO (1) WO2020107655A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110388987B (zh) * 2019-07-24 2020-11-10 深圳市华星光电技术有限公司 获取影像色温的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170915A (ja) * 1996-12-12 1998-06-26 Hitachi Ltd 液晶表示装置
CN101188777A (zh) * 2007-07-25 2008-05-28 南京Lg新港显示有限公司 显示装置及色温调整方法
US20080266329A1 (en) * 2007-04-25 2008-10-30 Samsung Electronics Co., Ltd. Multi-color display device and driving method thereof
CN101425284B (zh) * 2008-12-04 2010-08-11 上海广电光电子有限公司 液晶显示装置及其驱动方法
CN105872748A (zh) * 2015-12-07 2016-08-17 乐视网信息技术(北京)股份有限公司 基于视频参数的灯光调节方法及装置
CN107622761A (zh) * 2017-11-07 2018-01-23 晶晨半导体(上海)股份有限公司 一种基于负反馈的屏幕显示校正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170915A (ja) * 1996-12-12 1998-06-26 Hitachi Ltd 液晶表示装置
US20080266329A1 (en) * 2007-04-25 2008-10-30 Samsung Electronics Co., Ltd. Multi-color display device and driving method thereof
CN101188777A (zh) * 2007-07-25 2008-05-28 南京Lg新港显示有限公司 显示装置及色温调整方法
CN101425284B (zh) * 2008-12-04 2010-08-11 上海广电光电子有限公司 液晶显示装置及其驱动方法
CN105872748A (zh) * 2015-12-07 2016-08-17 乐视网信息技术(北京)股份有限公司 基于视频参数的灯光调节方法及装置
CN107622761A (zh) * 2017-11-07 2018-01-23 晶晨半导体(上海)股份有限公司 一种基于负反馈的屏幕显示校正方法

Also Published As

Publication number Publication date
CN109410819A (zh) 2019-03-01
CN109410819B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
CN108630148B (zh) 显示面板亮度差异的补偿方法及显示器
CN105448245B (zh) 背光亮度补偿方法及显示装置
TWI411998B (zh) 有機發光二極體顯示器、資訊裝置、與在有機發光二極體顯示器中顯示影像之方法
US10629140B2 (en) Partitioned backlight display method of red, green, blue, and white (RGBW) display device
WO2016061944A1 (zh) 白光oled显示装置及其显示控制方法、显示控制装置
KR102207464B1 (ko) 표시 장치 및 그 구동 방법
WO2018176523A1 (zh) Rgbw液晶显示装置的亮度调节方法及装置
JP7311434B2 (ja) 色度補正方法及び装置、デバイス、表示装置、記憶媒体
CN110444176B (zh) 显示面板的像素色差补偿方法及系统、显示装置
WO2019071777A1 (zh) 显示驱动方法、装置及设备
CN107705753B (zh) Amoled显示面板的亮度补偿方法
WO2019080269A1 (zh) Amoled显示装置的亮度和色度自动调整方法及系统
US8314820B2 (en) Backlight adjustment device of a display and method thereof
WO2020223956A1 (en) Method and system for estimating and compensating aging of light emitting elements in display panel
KR20090096545A (ko) 디스플레이 장치 및 디스플레이 장치의 휘도 조정 방법
WO2019054178A1 (ja) 表示装置、及び信号処理装置
WO2019071783A1 (zh) 显示驱动方法及计算机设备
KR20110013925A (ko) 액정표시장치 및 그의 구동방법
WO2019071784A1 (zh) 显示驱动方法、装置及设备
WO2020172921A1 (zh) 图像处理系统及图像处理方法
WO2020107511A1 (zh) 影像色温的获取方法
KR100897141B1 (ko) 전자방출표시장치 및 그의 구동방법
US20100289811A1 (en) Dynamic Backlight Control System and Method with Color-Temperature Compensation
JP6593899B2 (ja) Oled表示パネルのコントラスト比向上方法及びそのシステム
WO2020107661A1 (zh) 影像色温的获取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889174

Country of ref document: EP

Kind code of ref document: A1