WO2020107498A1 - 一种光纤升级后弹性光网络的光放大器重排列方法 - Google Patents

一种光纤升级后弹性光网络的光放大器重排列方法 Download PDF

Info

Publication number
WO2020107498A1
WO2020107498A1 PCT/CN2018/118842 CN2018118842W WO2020107498A1 WO 2020107498 A1 WO2020107498 A1 WO 2020107498A1 CN 2018118842 W CN2018118842 W CN 2018118842W WO 2020107498 A1 WO2020107498 A1 WO 2020107498A1
Authority
WO
WIPO (PCT)
Prior art keywords
upgrade
link
optical
cost
amplifiers
Prior art date
Application number
PCT/CN2018/118842
Other languages
English (en)
French (fr)
Inventor
李泳成
沈纲祥
郭宁宁
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2020107498A1 publication Critical patent/WO2020107498A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2933Signal power control considering the whole optical path
    • H04B10/2939Network aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the invention relates to the technical field of optical networks, in particular to a method for rearranging optical amplifiers of an elastic optical network after fiber upgrade.
  • ULL fiber has a lower attenuation coefficient than standard single-mode fiber (SSMF), which makes the signal transmission quality of the network using ULL fiber better, suitable for the future large-capacity, ultra-long-distance optical network. Therefore, ULL fiber is considered to be a necessary technology to realize advanced modulation formats and high spectral efficiency super optical channels in future optical transmission networks. Moreover, as many SSMFs deployed in the backbone network in the last century are about to reach the end of their service life, the use of ULL fiber to replace these old SSMFs will significantly improve the transmission performance of today's optical transmission networks. Fiber upgrades will become a trend among network operators.
  • SSMF standard single-mode fiber
  • the technical problem to be solved by the present invention is to provide a method for rearranging optical amplifiers in an elastic optical network after fiber upgrade, which can minimize the number of optical amplifiers without significantly reducing the utilization rate of spectrum resources, while saving costs Improve resource utilization.
  • the present invention provides a method for rearranging optical amplifiers of an optical fiber link. After an optical fiber link is upgraded in an optical network, an upgraded link is obtained. For the single upgraded link, do the following: Use the redundancy removal method to traverse the amplifier of the upgrade link, remove the redundant EDFA on the upgrade link, and calculate the cost C RR obtained by removing the redundancy; try to use the complete rearrangement method for the upgrade Rearrange the amplifiers of the link, rearrange all EDFAs on the upgrade link, and calculate the cost savings C FR of obtaining a complete rearrangement; compare the cost savings of the redundancy removal method in the upgrade link C RR and the cost savings of the complete rearrangement method C FR , select the cost-saving optical amplifier rearrangement method as the upgrade link; repeat the above steps, in turn for all optical amplifiers on the upgrade link Complete the rearrangement of all upgrade links.
  • the attempt to traverse the amplifier of the upgrade link in a redundant way to remove redundant EDFA on the upgrade link specifically includes:
  • the attempt to rearrange the amplifiers of the upgraded link using a complete rearrangement method, and rearrange all EDFAs on the upgraded link specifically including:
  • the EDFA is relocated along the upgrade link so that the amplification span distance between two adjacent EDFAs is M, and the amplification span distance M satisfies:
  • l is the distance between the two adjacent amplification spans of the amplifier
  • D is the maximum amplification span distance of the upgrade link.
  • C FR Ne ((C e + C p )- ⁇ r ⁇ C r , C e is the hardware cost, and C p is EDFA
  • ⁇ r is the number of newly built space
  • C r is the cost of building a new space
  • Ne is the reduced number of amplifiers on the link.
  • the beneficial effects of the present invention by comparing the redundant removal method and the complete rearrangement method, and selecting the method that saves more cost to rearrange the amplifiers in the optical fiber link, while minimizing the number of optical amplifiers, it will not be obvious Reduce the utilization of spectrum resources and increase resource utilization while saving costs.
  • FIG. 1 is a schematic diagram of an optical amplifier with an ultra-low loss optical fiber link removed according to the present invention
  • FIG. 2 is a schematic diagram of the redundant EDFA removal strategy and EDFA rearrangement strategy of the present invention
  • FIG. 5 is a schematic diagram of cost savings of the present invention through different EDFA rearrangement strategies
  • Figure 6 is a schematic diagram of the performance of the CM strategy at different magnification span distances.
  • the erbium-doped fiber amplifier is EDFA
  • the standard single-mode fiber is SSMF
  • the ultra-low loss fiber is ULL fiber, all of which are proprietary technical terms in the art.
  • Figure 1 shows an example of how the removal of EDFA changes the number of EDFAs used and the optical signal-to-noise ratio (OSNR) of the optical channel.
  • This example includes two links: A-B and B-C. They all use ULL fiber to upgrade.
  • the pre-amplifier and the post-amplifier are managed by the node equipment in the same equipment room. Separate spaces are usually established for placing and managing each line amplifier.
  • the amplification span distance is usually not greater than 80km.
  • the amplification span distance can be extended to a maximum of 120km. Therefore, some EDFAs on the link become redundant and can be removed.
  • R1 and R2 compare two rearrangement schemes R1 and R2, where R1 removes optical amplifiers OA2 and OA7, and R2 removes more EDFA, including OA2, OA6, and OA8. As these EDFAs are removed, the OSNR through these links also decreases accordingly. For example, in R1, the OSNR of the optical channel A-C is reduced from 18dB to 17.5dB, but it still meets the OSNR requirements of QPSK.
  • the initial modulation format is QPSK
  • the OSNR of the optical channel is reduced from 18dB to 16.9dB, which does not meet the QPSK OSNR tolerance requirements.
  • BPSK lower-level modulation format
  • the present invention discloses a method for rearranging optical amplifiers in an elastic optical network after optical fiber upgrade. After the optical fiber link in the optical network is upgraded, an upgrade link is obtained. Operate as follows:
  • the attempt to traverse the amplifier of the upgrade link using the method of removing redundancy to remove redundant EDFA on the upgrade link specifically includes:
  • the distance between two adjacent amplification spans before and after amplifier E 1 is summed as l 1. Since l 1 is less than D, E 1 can be removed; two adjacent amplifications before and after amplifier E 2 The sum of the distances of the spans is l 2 , and since l 2 is greater than D, E 2 cannot be further removed, so is E 3 . Therefore, we can reduce an EDFA.
  • the FR strategy can reduce an EDFA.
  • the optical network includes two test networks, namely 14 nodes, 21 links NSFNET network and 24 nodes, 43 links US backbone network (USNET) for improvement.
  • the attenuation coefficient of ULL fiber is 0.168dB/km.
  • there are 320 FSs on each fiber link and the bandwidth of each FS is 12.5 GHz.
  • Four modulation formats ie BPSK, QPSK, 8-QAM and 16-QAM are used for optical path establishment. The traffic demand between each node pair is randomly distributed in the range of [10,400] Gb/s.
  • the legend "NR” corresponds to the case without EDFA rearrangement.
  • the legends "RR”, “FR” and “CM” correspond to the strategies of RR, FR and CM respectively.
  • NR strategy requires the largest number of EDFAs, but its maximum used FS is the smallest.
  • the FR strategy requires the least number of EDFAs, but the largest number of FSs is used. This is because the FR strategy reduces the number of EDFAs used as much as possible, which significantly affects the OSNR of the link on the optical channel.
  • the performance of the CM strategy changes as the distance between different amplification spans increases.
  • This figure shows the performance of the USNET network with the maximum zoom span distance under the CM strategy.
  • the total cost of NR strategy deployment and operation of EDFA is standardized to 1.0, and as the maximum amplification span distance increases, the advantages of the CM strategy become stronger. However, this comes at the cost of a potential increase in the maximum number of FS used.
  • the maximum amplification span distance is 100km
  • the maximum FS number used by the CM strategy is slightly larger than the NR case, about 2% (and still much smaller than the maximum FS number used by the NU strategy, about 24%).
  • the total cost savings of the CM strategy is as high as about 9%. Therefore, in this case, 100km is the best amplification span distance for the CM strategy to maximize its benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

一种光纤升级后弹性光网络的光放大器重排列方法,包括针对单根升级链路做如下操作:使用去除冗余方式对升级链路的放大器进行遍历,去除升级链路上多余的EDFA,并计算获得去除冗余所节省的成本;使用完全重排列方式对升级链路的放大器重新布置,重新排列升级链路上的所有EDFA,并计算获得完全重排列所节省的成本;比较升级链路中的所述去除冗余方式所节省的成本和完全重排列方式所节省的成本,选择节约成本较多的作为所述升级链路的光放大器重排列方法;重复以上步骤,依次对所有升级链路上的光放大器进行了重排列操作。所述方法能够最大限度地减少光放大器数量的同时,不会明显降低频谱资源利用率,在节约成本的同时提高资源利用率。

Description

一种光纤升级后弹性光网络的光放大器重排列方法 技术领域
本发明涉及光网络技术领域,具体涉及一种光纤升级后弹性光网络的光放大器重排列方法。
背景技术
目前,制造超低损耗(ULL)光纤的技术已经成熟。ULL光纤比标准单模光纤(SSMF)具有更低的衰减系数,这使得使用ULL光纤的网络信号传输质量更好,适合未来超大容量,超长距离的光网络使用。因此,ULL光纤被认为是在未来的光传输网络中实现先进调制格式和高频谱效率的超级光通道所必需的技术。而且,随着上个世纪在骨干网中部署的许多SSMF即将达到使用寿命,使用ULL光纤来取代这些旧的SSMF,将显著地改善当今光传输网络的传输性能,这种针对光传输网络的ULL光纤升级将在网络运营商中成为一种趋势。
目前,国内外研究都是基于光放大器(例如,EDFA)的位置不变,然而在使用ULL光纤升级网络链路之后,由于其较低的衰减系数,其光放大器的最大放大跨度距离可以极大增加。因此,为了节省包括硬件成本和维护成本的系统成本,网络运营商希望通过沿着链路最佳地重新布置光放大器以减少网络中使用光放大器的数量。然而,增加放大跨度距离可能需要更高的放大增益,这导致更高的放大器自发发射(ASE)噪声,因此也将降低光信号的传输质量。这将导致光通道采用低级的调制格式,占用更多的频谱资源,从而影响网络的频谱使用效率。
发明内容
本发明要解决的技术问题是提供一种光纤升级后弹性光网络的光放大器重排列方法,其能够最大限度地减少光放大器数量的同时,不会明显降低频谱资源利用率,在节约成本的同时提高资源利用率。
为了解决上述技术问题,本发明提供了一种光纤链路的光放大器重排列方法,在光网络中光纤链路升级后,获得升级链路,针对单根所述升级链路做如下操作:尝试使用去除冗余方式对所述升级链路的放大器进行遍历,去除所述升级链路上多余的EDFA,并计算获得去除冗余所节省的成本C RR;尝试使用完全重排列方式对所述升级链路的放大器重新布置,重新排列所述升级链路上的所有EDFA,并计算获得完全重排列所节省的成本C FR;比较所述升级链路中的所述去除冗余方式所节省的成本C RR和所述完全重排列方式所节省的成本C FR,选择节约成本较多的作为所述升级链路的光放大器重排列方法;重复以上步骤,依次对所有升级链路上的光放大器进行了重排列操作,完成所有升级链路的重排列。
作为优选的,所述尝试使用去除冗余方式对所述升级链路的放大器进行遍历,去除所述升级链路上多余的EDFA,具体包括:
S11、设定升级链路的最大放大跨度距离D;
S12、对所述升级链路中每一个放大器的前后两个相邻放大跨度的距离求和,获得求和值l;
S13、比较求和值l和最大放大跨度距离D;当求和值l小于最大放大跨度距离D时,去除所述放大器;当求和值l大于最大放大跨度距离D时,保留所述放大器。
作为优选的,所述尝试使用完全重排列方式对所述升级链路的放大器重新布置,重新排列所述升级链路上的所有EDFA,具体包括:
S21、移除所述升级链路上所有的放大器;
S22、沿所述升级链路重新放置EDFA。
作为优选的,所述沿所述升级链路重新放置EDFA,使得相邻两个EDFA之间的放大跨度距离为M,而放大跨度距离M满足:
Figure PCTCN2018118842-appb-000001
其中,l为放大器的前后两个相邻放大跨度的距离和,D为升级链路的最大放大跨度距离。
作为优选的,
Figure PCTCN2018118842-appb-000002
作为优选的,所述计算获得去除冗余所节省的成本C RR,其中,C RR=N e·(C e+C p),C e为硬件成本,C p为EDFA供电和维护的总成本。
作为优选的,所述计算获得完全重排列所节省的成本C FR,其中,C FR=N e·(C e+C p)-φ r·C r,C e为硬件成本,C p为EDFA供电和维护的总成本,φ r为新建的放置空间数,C r为构建新的放置空间的成本,N e是链路上减少的放大器数量。
本发明的有益效果:通过对比去除冗余方式和完全重排列方式,选取节约成本较多的方式对光纤链路中的放大器进行重排列,在最大限度地减少光放大器数量的同时,不会明显降低频谱资源利用率,在节约成本的同时提高资源利用率。
附图说明
图1是本发明的移除超低损耗光纤链路上光放大器的示意图;
图2是本发明的去除冗余EDFA策略和EDFA重排列策略的示意图;
图3是本发明对USNET网络的不同EDFA重排策略性能;
图4是本发明对NSFNET网络的不同EDFA重排策略性能;
图5是本发明通过不同的EDFA重排策略节省成本示意图;
图6是不同放大跨度距离下CM策略的性能示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
所理解的是,本申请中所出现的以下名词,掺铒光纤放大器即为EDFA,标准单模光纤即为SSMF,超低损耗光纤即为ULL光纤,均为本领域专有技术名词。
在使用ULL光纤升级网络链路之后,其较低的衰减特性允许网络运营商增加链路上两个相邻EDFA之间的放大跨度距离。图1显示了EDFA的移除如何改变所使用的EDFA的数量和光通道的光信噪比(OSNR)的示例。该示例中包括两个链路:A-B与B-C。它们都使用了ULL光纤进行升级。在每个链路的两端,有一对前置和后置放大器,中间有线路放大器。前置放大器和后置放大器由节点设备托管在相同的设备室中。通常建立独立空间用于放置和管理每个线路放大器。对于SSMF链路,放大跨度距离通常不大于80km。升级后,由于ULL光纤的衰减系数较低,其放大跨度距离最大可以扩展到120km。因此,链路上的某些EDFA变得多余并且可以被移除。比较两个重排列方案R1和R2,其中R1去除光放大器OA2和OA7,R2去除更多的EDFA,包括OA2,OA6和OA8。随着这些EDFA的移除,通过这些链路的OSNR也相应地减小。例如,在R1中,光信道A-C的OSNR从18dB降低到17.5dB,但是仍然满足QPSK的OSNR要求。因此,在其初始调制格式为QPSK的情况下,信道使用的FS数量没有变化。相反,在R2中,光信道的OSNR从18dB降低到16.9dB,不满足QPSK的OSNR容限要求。这就必须使用较低级别的调制格式(即BPSK),这需要使用更多的FS。该示例表明,不同的重新排列方案可导致所使用的EDFA数量与消耗的频谱资源之间的不同折衷。
参照图1所示,本发明的公开了一种光纤升级后弹性光网络的光放大器重排列方法,在光网络中光纤链路升级后,获得升级链路,针对单根所述升级链路做如下操作:
(1)去除冗余(简称RR策略):尝试使用去除冗余方式对所述升级链路的放大器进行遍历,去除所述升级链路上多余的EDFA,并计算获得去除冗余所节省的成本C RR;所述计算获得去除冗余所节省的成本C RR,其中,C RR=N e·(C e+C p),C e为硬件成本,C p为EDFA供电和维护的总成本,N e是链路上减少的放大器数量。
所述尝试使用去除冗余方式对所述升级链路的放大器进行遍历,去除所述升级链路上多余的EDFA,具体包括:
S11、设定升级链路的最大放大跨度距离D;
S12、对所述升级链路中每一个放大器的前后两个相邻放大跨度的距离求和,获得求和值l;
S13、比较求和值l和最大放大跨度距离D;当求和值l小于最大放大跨度距离D时,去除所述放大器;当求和值l大于最大放大跨度距离D时,保留所述放大器。
例如,在图2(a)中,放大器E 1前后两个相邻放大跨度的距离求和为l 1,由于l 1小于D,因此可以移除E 1;放大器E 2前后两个相邻放大跨度的距离求和为l 2,而由于l 2大于D,所以不能进一步去除E 2,因此E 3也是如此。因此,我们可以减少一个EDFA。
(2)完全重排列(简称FR策略):尝试使用完全重排列方式对所述升级链路的放大器重新布置,重新排列所述升级链路上的所有EDFA,并计算获得完全重排列所节省的成本C FR;所述计算获得完全重排列所节省的成本C FR,其中,C FR=N e·(C e+C p)-φ r·C r,C e为硬件成本,C p为EDFA供电和维护的总成本,φ r为 新建的放置空间数,C r为构建新的放置空间的成本。
所述尝试使用完全重排列方式对所述升级链路的放大器重新布置,重新排列所述升级链路上的所有EDFA,具体包括:
S21、移除所述升级链路上所有的放大器;
S22、沿所述升级链路重新放置EDFA,相邻两个EDFA之间的放大跨度距离为M,使得放大跨度距离M满足:
Figure PCTCN2018118842-appb-000003
其中,l为放大器的前后两个相邻放大跨度的距离和,D为升级链路的最大放大跨度距离,并且上限
Figure PCTCN2018118842-appb-000004
例如,在图2(b)中,如果l=170km和D=120km,则放大跨度距离M分布在
Figure PCTCN2018118842-appb-000005
范围内,可以去除两个EDFA。与RR策略相比,FR策略可以减少一个EDFA。
(3)基于成本最小化(简称CM策略):比较所述升级链路中的所述去除冗余方式所节省的成本C RR和所述完全重排列方式所节省的成本C FR,选择节约成本较多的作为所述升级链路的光放大器重排列方法。
例如,我们将EDFA的硬件成本C e的标准化为1.0单位,并且EDFA构建新的放置空间的成本C r也是1.0单位。生命周期内为EDFA供电和维护的总成本C p为7.0单位,如图2(a)和(b)所示,RR策略的成本节省为8个单位,FR的成本节省为15个单位。因此,我们选择FR策略来重新排列EDFA。
(4)重复以上步骤(1)(2)(3),依次对所有升级链路上的光放大器进行了重排列操作,完成所有升级链路的重排列。
在另一示例中,该光网络包括两个测试网络,即14节点,21链路NSFNET网络和24节点,43链路美国骨干网络(USNET)进行改进。例如ULL光纤的衰减系数为0.168dB/km。对于基于SSMF链路的初始EDFA放置,初始设置的 最大放大跨度距离为D=80km。基于此初始放置,通过本发明中的方法对升级的ULL光纤链路的网络执行EDFA的重新布置。此外,每条光纤链路上有320个FS,每个FS的带宽为12.5GHz。四种调制格式(即BPSK,QPSK,8-QAM和16-QAM)用于光路建立。每个节点对之间的流量需求随机分布在[10,400]Gb/s的范围内。
图3显示了不同EDFA重排策略在所使用的EDFA数量和USNET网络中使用的最大FS数量方面的性能,其中D=100km。图例“NR”对应于没有EDFA重排的情况。图例“RR”,“FR”和“CM”分别对应于RR,FR和CM的策略。我们可以看到NR策略需要的EDFA数量最多,但其最大使用的FS数最小。相反,FR策略需要的EDFA数量最少,但最大使用的FS数最多。这是因为FR策略尽可能的减少了使用的EDFA数量,这显着地影响了光通道上链路的OSNR。这会降低部分光通道的调制格式,从而影响频谱效率,最终增加网络中最大使用的FS数。RR策略的结果与NR接近。最后,CM策略是最好的,在实现接近NR和RR策略的最大使用的FS数。但是,其使用的EDFA数量接近FR策略的数量。这是因为CM策略具备RR和FR策略的优点。此外,与使用SSMF的场景(即图例“NU”)相比,当在所有策略下将所有链路升级到ULL光纤时,使用的FS的数量显着减少。我们对NSFNET网络进行了类似的研究,其结果如图4所示,与之前一样,CM策略在使用的EDFA数量和消耗的频谱资源方面达到了最佳性能。
我们也评估了不同策略节省的总成本。节省的成本由C RR=N e·(C e+C p)和C FR=N e·(C e+C p)-φ r·C r计算。如图5所示,CM策略在节约成本方面的表现最佳,在USENT和NSFNET网络中,其节约的成本分别高达9%和10%。该现象的原因与减少的使用的EDFA数量的原因一致。
如图6所示,CM策略的性能随着不同放大跨度距离增加而改变。该图显示了在CM策略下最大放大跨度距离如何USNET网络的性能。此处,将NR策略部署和运行EDFA的总成本标准化为1.0,随着最大放大跨度距离的增加,CM策略 的优势变得更强。然而,这是以使用的最大FS数的潜在增加为代价的。当最大放大跨度距离为100km时,CM策略使用的最大FS数略大于NR情况下,约为2%(并且仍远小于NU策略的使用的最大FS数,约24%)。然而,在该最大放大跨度距离下,CM策略的总成本节省高达约9%。因此,在这种情况下,100km是CM策略最大限度地获得其益处的最佳放大跨度距离。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (7)

  1. 一种光纤升级后弹性光网络的光放大器重排列方法,其特征在于,在光网络中光纤链路升级后,获得升级链路,针对单根所述升级链路做如下操作:
    尝试使用去除冗余方式对所述升级链路的放大器进行遍历,去除所述升级链路上多余的EDFA,并计算获得去除冗余所节省的成本C RR
    尝试使用完全重排列方式对所述升级链路的放大器重新布置,重新排列所述升级链路上的所有EDFA,并计算获得完全重排列所节省的成本C FR
    比较所述升级链路中的所述去除冗余方式所节省的成本C RR和所述完全重排列方式所节省的成本C FR,选择节约成本较多的作为所述升级链路的光放大器重排列方法;
    重复以上步骤,依次对所有升级链路上的光放大器进行了重排列操作,完成所有升级链路的重排列。
  2. 如权利要求1所述的光纤升级后弹性光网络的光放大器重排列方法,其特征在于,所述尝试使用去除冗余方式对所述升级链路的放大器进行遍历,去除所述升级链路上多余的EDFA,具体包括:
    S11、设定升级链路的最大放大跨度距离D;
    S12、对所述升级链路中每一个放大器的前后两个相邻放大跨度的距离求和,获得求和值l;
    S13、比较求和值l和最大放大跨度距离D;当求和值l小于最大放大跨度距离D时,去除所述放大器;当求和值l大于最大放大跨度距离D时,保留所述放大器。
  3. 如权利要求1所述的光纤升级后弹性光网络的光放大器重排列方法,其特征在于,所述尝试使用完全重排列方式对所述升级链路的放大器重新布置,重新排列所述升级链路上的所有EDFA,具体包括:
    S21、移除所述升级链路上所有的放大器;
    S22、沿所述升级链路重新放置EDFA。
  4. 如权利要求3所述的光纤升级后弹性光网络的光放大器重排列方法,其特征在于,所述沿所述升级链路重新放置EDFA,具体包括:
    沿所述升级链路重新放置EDFA,使得相邻两个EDFA之间的放大跨度距离为M,而所述放大跨度距离M满足:
    Figure PCTCN2018118842-appb-100001
    其中,l为放大器的前后两个相邻放大跨度的距离和,D为升级链路的最大放大跨度距离。
  5. 如权利要求4所述的光纤升级后弹性光网络的光放大器重排列方法,其特征在于,
    Figure PCTCN2018118842-appb-100002
  6. 如权利要求1所述的光纤升级后弹性光网络的光放大器重排列方法,其特征在于,所述计算获得去除冗余所节省的成本C RR,其中,C RR=N e·(C e+C p),C e为硬件成本,C p为EDFA供电和维护的总成本,N e是链路上减少的放大器数量。
  7. 如权利要求1所述的光纤升级后弹性光网络的光放大器重排列方法,其特征在于,所述计算获得完全重排列所节省的成本C FR,其中,C FR=N e·(C e+C p)-φ r·C r,C e为硬件成本,C p为EDFA供电和维护的总成本,φ r为新建的放置空间数,C r为构建新的放置空间的成本。
PCT/CN2018/118842 2018-11-27 2018-12-03 一种光纤升级后弹性光网络的光放大器重排列方法 WO2020107498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811426325.0A CN109543314B (zh) 2018-11-27 2018-11-27 一种光纤升级后弹性光网络的光放大器重排列方法
CN201811426325.0 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020107498A1 true WO2020107498A1 (zh) 2020-06-04

Family

ID=65851596

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/118842 WO2020107498A1 (zh) 2018-11-27 2018-12-03 一种光纤升级后弹性光网络的光放大器重排列方法
PCT/CN2019/104401 WO2020107994A1 (zh) 2018-11-27 2019-09-04 一种光纤升级后弹性光网络的光放大器重排列方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104401 WO2020107994A1 (zh) 2018-11-27 2019-09-04 一种光纤升级后弹性光网络的光放大器重排列方法

Country Status (3)

Country Link
US (1) US11121775B2 (zh)
CN (1) CN109543314B (zh)
WO (2) WO2020107498A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543314B (zh) * 2018-11-27 2022-04-15 苏州大学 一种光纤升级后弹性光网络的光放大器重排列方法
CN110365589B (zh) * 2019-07-30 2021-09-28 国网福建省电力有限公司 一种基于弹性光网络的电力光传输路由与频谱分配方法
CN115278413B (zh) * 2022-06-29 2023-08-04 苏州大学 一种超低损耗光纤升级方法、装置及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487685A (zh) * 2016-11-15 2017-03-08 苏州大学 一种光网络中的光纤替换方法
CN108199881A (zh) * 2017-12-29 2018-06-22 苏州大学 骨干网中超低损耗光纤替换调度方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046426B2 (en) * 2002-09-05 2006-05-16 Tropic Networks Inc. Method for determining locations and gain settings of amplifiers in an optical network
US7295960B2 (en) * 2003-01-22 2007-11-13 Wireless Valley Communications, Inc. System and method for automated placement or configuration of equipment for obtaining desired network performance objectives
ITMI20041481A1 (it) * 2004-07-22 2004-10-22 Marconi Comm Spa "metodo per l'ottimizzazione della collocazione di ripetitori rigenerativi o non-rigenerativi in un collegamento wdm"
EP2101426B1 (en) * 2008-03-13 2011-05-11 Nokia Siemens Networks Oy Method for controlling an erbium doped fibre amplifier (EDFA) and amplifier arrangement
EP2109242A1 (en) 2008-04-07 2009-10-14 Nokia Siemens Networks Oy Upgradeable passive optical Network
US8873956B2 (en) * 2008-08-15 2014-10-28 Tellabs Operations, Inc. Method and apparatus for planning network configuration in an optical network
US9014022B2 (en) * 2010-11-15 2015-04-21 Level 3 Communications, Llc Wavelength regeneration in a network
US8879906B2 (en) * 2011-10-05 2014-11-04 Nec Laboratories America, Inc. Optimal combined 2R/3R regenerators placement method for line network topologies in optical WDM networks
CN104917564A (zh) * 2015-04-24 2015-09-16 苏州大学 一种光路的fec选择方法及装置
US11017131B2 (en) * 2016-01-19 2021-05-25 Schneider Electric USA, Inc. System and methods for optimizing distribution network designs in real-time
US10476587B2 (en) * 2016-05-31 2019-11-12 Alibaba Group Holding Limited System and method for enhancing reliability in a transport network
CN106788751A (zh) 2016-11-30 2017-05-31 武汉光迅科技股份有限公司 一种应用多波长双向泵浦高阶双向拉曼放大光纤通信传输系统及方法
US10432342B1 (en) * 2018-04-18 2019-10-01 At&T Intellectual Property I, L.P. Routing and regenerator planning in a carrier's core reconfigurable optical network
CN109543314B (zh) 2018-11-27 2022-04-15 苏州大学 一种光纤升级后弹性光网络的光放大器重排列方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487685A (zh) * 2016-11-15 2017-03-08 苏州大学 一种光网络中的光纤替换方法
CN108199881A (zh) * 2017-12-29 2018-06-22 苏州大学 骨干网中超低损耗光纤替换调度方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI-MIN JIANG ET AL: "Ultra Low Loss Fiber and Its Application in Quantum Key Distribution System", ELECTRIC POWER INFORMATION AND COMMUNICATION TECHNOLOGY, vol. 16, no. 4, 30 April 2018 (2018-04-30), pages 24 - 28, XP055710457, ISSN: 2095-641X, DOI: 10.16543/j.2095-641x.electric.power.ict.2018.04.004 *
XIAOLIANG MA: "Research on Application of ULL and LL Optical Fiber in Trunk Optical Cable Network", TELECOMMUNICATIONS INFORMATION, no. 4, 30 April 2014 (2014-04-30), pages 39 - 42, XP009521349, ISSN: 1006-1339 *
YAO LI ET AL: "CapEx-minimized Incremental Network Design Based on Multi-core Fibers", JOURNAL OF TSINGHUA UNIVERSITY SCIENCE AND TECHNOLOGY, vol. 56, no. 9, 30 September 2016 (2016-09-30), pages 937 - 941, XP055710464, ISSN: 1000-0054, DOI: 10.16511/j.cnki.qhdxxb.2016.21.048 *

Also Published As

Publication number Publication date
US11121775B2 (en) 2021-09-14
CN109543314B (zh) 2022-04-15
US20210021343A1 (en) 2021-01-21
WO2020107994A1 (zh) 2020-06-04
CN109543314A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2020107994A1 (zh) 一种光纤升级后弹性光网络的光放大器重排列方法
RU2382527C2 (ru) Способ осуществления системы распределения загрузки в беспроводной локальной сети передачи данных
CN106487685B (zh) 一种光网络中的光纤替换方法
WO2019041682A1 (zh) 一种分布式拉曼光纤放大器的增益瞬态控制系统和方法
JP2003501940A (ja) リバースリンク信号対雑音比に基づくcdma負荷および周波数再使用の監視
CN113114365B (zh) 一种光纤部署方法、存储介质、电子设备及系统
JP2003124881A (ja) 光伝送装置および光伝送システム
CN104782189A (zh) 一种基站节能的方法及基站
JP2008507223A (ja) 波長分割多重光通信リンクにおける再生または非再生中継器の数と位置の最適化.
CN112333092A (zh) 一种用于多跳自组网路由寻址的方法与系统
CN1205777C (zh) 用于访问通信媒体的方法
CN101908942B (zh) 一种损伤信息传送方法、节点和网络系统
Morette et al. On the robustness of a ML-based method for QoT tool parameter refinement in partially loaded networks
WO2023029127A1 (zh) 一种基于全光波长转换的路由和波长分配方法及装置
CN109120535B (zh) 一种自组织拓扑的光通信网络系统及其拓扑自组织方法
Ibrahimi et al. Selective hybrid EDFA/Raman amplifier placement to avoid lightpath degradation in (C+ L) networks
JP5028426B2 (ja) 光増幅伝送システムにおける利得傾斜制御
Li et al. Rearranging optical amplifiers for upgraded ultra-low loss (ULL) fiber links in an elastic optical network
Vareille et al. 3.65 Tbit/s (365/spl times/11.6 Gbit/s) transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format
Wang et al. A novel traffic grooming scheme for nonlinear elastic optical network
CN114204992B (zh) 一种超长距无中继光纤传输系统中的混合放大方法及系统
Mitra et al. Upgrading to low loss ROADMs and additional line amplifiers for increased capacity in EDFA and Raman flexgrid networks
CN112203168A (zh) 一种基于任播和多播的节能路由频谱分配方法
WO2023169655A1 (en) Controller device and method for amplifier configuration in an ultra-wideband optical network
Sticca et al. Throughput maximization in (C+ L+ S) networks with incremental deployment of HFAs and 3Rs

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941407

Country of ref document: EP

Kind code of ref document: A1