WO2020107468A1 - 一种无人设备的控制方法及无人车 - Google Patents

一种无人设备的控制方法及无人车 Download PDF

Info

Publication number
WO2020107468A1
WO2020107468A1 PCT/CN2018/118732 CN2018118732W WO2020107468A1 WO 2020107468 A1 WO2020107468 A1 WO 2020107468A1 CN 2018118732 W CN2018118732 W CN 2018118732W WO 2020107468 A1 WO2020107468 A1 WO 2020107468A1
Authority
WO
WIPO (PCT)
Prior art keywords
landing
drone
unmanned vehicle
target
control method
Prior art date
Application number
PCT/CN2018/118732
Other languages
English (en)
French (fr)
Inventor
许柏皋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880039873.XA priority Critical patent/CN110785721A/zh
Priority to PCT/CN2018/118732 priority patent/WO2020107468A1/zh
Publication of WO2020107468A1 publication Critical patent/WO2020107468A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1669Programme controls characterised by programming, planning systems for manipulators characterised by special application, e.g. multi-arm co-operation, assembly, grasping
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • G05D1/0684Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing on a moving platform, e.g. aircraft carrier

Definitions

  • the invention relates to the technical field of unmanned equipment, in particular to a method for controlling unmanned equipment and an unmanned vehicle.
  • a drone will start from a logistics base and deliver items to users at its destination. Or, the unmanned vehicle departs from the courier site and delivers the item to the destination user.
  • the drone In the current logistics transportation process, due to the cruising range of the drone, the drone needs to return to the starting point frequently to replace the battery, which reduces the transportation efficiency. Moreover, in the process of using unmanned vehicles for transportation, although the labor cost is saved, compared with the direct delivery of items by the drone to the user, the transportation efficiency is also reduced.
  • Embodiments of the present invention provide a method for controlling unmanned equipment and an unmanned vehicle to solve the problem of low efficiency of existing unmanned equipment.
  • an embodiment of the present invention discloses a control method for an unmanned device, which is applied to an unmanned vehicle.
  • the control method includes:
  • the cruising operation is performed for the drone.
  • an embodiment of the present invention also discloses a control method for an unmanned device, which is applied to a drone.
  • the control method includes:
  • an embodiment of the present invention also discloses an unmanned vehicle, which includes a processor, a manipulator, and a battery storage compartment; both the battery storage compartment and the manipulator are provided on the vehicle body, wherein, UAV batteries are stored in the battery storage compartment;
  • the processor executes:
  • the manipulator is triggered to obtain the drone battery to perform the endurance operation for the drone.
  • the first landing preparation operation is performed; after it is determined that the drone has successfully landed on the unmanned vehicle, it is performed for the drone Endurance operation. Therefore, the UAV and the unmanned vehicle are combined, the unmanned vehicle is used to replace the battery of the drone, the endurance of the drone is improved, and the working efficiency of the unmanned equipment can be improved.
  • FIG. 1 shows a flowchart of steps of a method for controlling an unmanned device according to Embodiment 1 of the present invention
  • FIG. 2 shows a flowchart of steps in a method for controlling an unmanned device according to Embodiment 2 of the present invention
  • FIG. 3 shows a flowchart of steps of a method for controlling an unmanned device in real-time example 3 of the present invention
  • FIG. 4 shows a flowchart of steps of a method for controlling an unmanned device in real-time example 4 of the present invention
  • FIG. 5 shows a schematic structural diagram of an unmanned vehicle according to Embodiment 5 of the present invention.
  • FIG. 6 shows a schematic diagram of cooperation between a drone and an unmanned vehicle in an embodiment of the present invention
  • FIG. 7 shows a schematic diagram of a drone in an embodiment of the present invention.
  • FIG. 1 a flowchart of steps of a method for controlling an unmanned device according to Embodiment 1 of the present invention is shown.
  • the method is applied to an unmanned vehicle.
  • the control method may specifically include the following steps:
  • Step 101 After receiving the landing request of the drone, perform the first landing preparation operation.
  • the unmanned vehicle when the unmanned vehicle receives the landing request of the drone, the unmanned vehicle will learn that there is a drone that needs to land on the vehicle. Therefore, the unmanned vehicle The first landing preparation operation needs to be performed for the UAV to land safely.
  • Step 102 After determining that the drone has successfully landed on the unmanned vehicle, perform a cruising operation for the drone.
  • the unmanned vehicle can serve as a relay station for the energy supply of the drone.
  • the fully charged battery can be replaced for the drone, and of course, the drone can also be charged.
  • the first landing preparation operation is performed, and after it is determined that the drone has successfully landed on the unmanned vehicle, it is executed for the drone Endurance operation. Therefore, during the flight of the drone, it can land on the unmanned vehicle.
  • the unmanned vehicle carries a battery that is suitable for the drone.
  • the unmanned vehicle can serve as a supply station, replace the battery for the drone, or Man-machine charging improves the endurance of the drone and prevents the drone from returning to the starting point to replace the battery, which can improve the efficiency of unmanned equipment and give full play to the convenience of unmanned equipment.
  • Embodiment 2 a flowchart of steps of a method for controlling an unmanned device according to Embodiment 2 of the present invention is shown.
  • the method is applied to an unmanned vehicle.
  • the control method may specifically include the following steps:
  • Step 201 Send geographic location information to the drone.
  • the technician can set the range to 1km, It can realize the docking cooperation between the drone and the unmanned vehicle within 1km of the target user.
  • they can send their geographic location information to the drone for the screening and judgment of the drone.
  • the man-machine can determine the unmanned vehicle closest to the target user according to the received geographic location information and the distance relationship.
  • two drones before and after each send a landing request to the same unmanned vehicle then in accordance with the order, the first first drone cooperates with the unmanned vehicle first.
  • the unmanned vehicle sends the geographic location information to the previous first drone, it can be judged whether the second drone from the second drone with a different ID from the previous first drone is received at this time.
  • the landing request if received, can respond to the second landing request with a wait message, and wait for the first drone to complete the battery replacement before undertaking the landing of the second drone, or to the second drone Send a transfer message to inform the second drone of the geographic location of other unmanned unmanned vehicles and guide it to complete the landing. Therefore, the power consumption caused by the continuous waiting of the UAV and the congestion of the UAV sequence can be avoided.
  • Step 202 Receive a landing request from the drone, where the unmanned vehicle receiving the landing request is the unmanned vehicle closest to the target user obtained by the drone based on the geographic location information.
  • the unmanned vehicle closest to the target user can receive the landing request from the drone.
  • the target user is a certain user determined in advance by the drone.
  • the user can be determined according to the existing path planning algorithm. One of many users in different locations.
  • the purpose of selecting the unmanned vehicle closest to the target user to receive the landing request is to shorten the distance between the unmanned vehicle and the target user, shorten the travel time of the unmanned vehicle, and improve the working efficiency of the unmanned vehicle.
  • Step 203 Receive a landing request message from the drone.
  • the unmanned vehicle needs to respond to a corresponding action according to a notification message.
  • a notification message may be a received landing request message from the drone.
  • the landing request message is to request the unmanned vehicle to land.
  • Step 204 Determine the target landing position according to the landing request message.
  • the unmanned vehicle when the unmanned vehicle receives the landing request message from the drone, based on the trigger of the landing request message, the unmanned vehicle needs to determine a target landing position, which is the position suitable for the drone to land. Yes, to ensure that the landing process of the drone is not disturbed.
  • the above step 204 may include sub-steps 2041 to 2042:
  • Step 2041 Monitor the landing environment according to the landing request message.
  • the landing request message serves as a notification to inform the unmanned vehicle that the drone needs to land.
  • the unmanned vehicle can use the vehicle
  • Various sensors are installed to monitor the landing environment, for example, the obstacles are monitored by the onboard radar, the crowd density is monitored by infrared and cameras, and the electromagnetic interference in the vicinity is monitored by electromagnetic sensors, so as to find a suitable place for the drone to land. .
  • Step 2042 when the landing environment meets the preset landing conditions, it is determined as the target landing position.
  • the unmanned vehicle monitors the landing environment through the sensor, once the monitored environment meets the preset landing conditions, the corresponding position is determined as the target landing position.
  • the unmanned vehicles use infrared and cameras to determine that the crowd density at a location is less than the preset density value, the radar knows that there are no buildings, numbers, wires and other obstacles that affect the drone's landing at a location, and the electromagnetic sensors monitor nearby Electromagnetic radiation also meets the preset threshold and does not affect the communication of the drone. Based on these one or more conditions, the unmanned vehicle can determine a location that meets the landing conditions of the drone as the target landing position to ensure the landing process of the drone Not subject to physical interference and electromagnetic interference, while avoiding possible personal injury.
  • steps A1 to A2 For the specific steps regarding the determination of the target landing position disclosed in the above steps 2041 to 2042, there are alternative technical solutions as steps A1 to A2:
  • A1 according to the landing request message, query the permitted landing position in a preset map database
  • map data within the range of the unmanned vehicle's active area can be stored in advance, and obstacles and abnormalities such as no-fly zones, buildings and vegetation of the drone can be recorded in the map data Information such as the position of the electromagnetic environment, which can be stored locally in the unmanned vehicle for the unmanned vehicle to query the permitted landing position.
  • map data Information such as the position of the electromagnetic environment, which can be stored locally in the unmanned vehicle for the unmanned vehicle to query the permitted landing position.
  • some fixed permitted landing positions that meet the landing conditions can also be directly marked.
  • A2. Determine the permitted landing position closest to the current actual position as the target landing position
  • the unmanned vehicle can select the permitted landing position closest to the current actual position as the target landing position according to several permitted landing positions acquired from the local area, so that it can quickly go to the target landing position.
  • steps A1 to A2 provide another alternative solution, that is, the unmanned vehicle searches for a suitable target landing position from the local database, thereby saving time spent determining the position.
  • Step 205 Move to the target landing position.
  • the unmanned vehicle can start to move to the target landing position, and wait for the drone to land at the target landing position.
  • Step 206 Send a permission landing instruction to the drone, and accept the landing of the drone; wherein, the permission landing instruction carries the target landing position.
  • the unmanned vehicle in the process of moving the unmanned vehicle to the target landing position or after the unmanned vehicle reaches the target landing position, it sends a permission landing command to the drone to inform the drone that it can land. It carries the target landing position determined above, so that the target landing position can guide the UAV to fly to the target landing position where the unmanned vehicle is located, and ensure the consistency of the two positioning. While sending the permission landing command to the drone, the unmanned vehicle can also undertake the landing of the drone.
  • steps B1 to B3 For the specific steps disclosed in the above steps 203 to 206 regarding the execution of the first landing preparation operation after receiving the landing request of the drone, there are alternative technical solutions such as steps B1 to B3:
  • a notification message may be a received landing request message from the drone.
  • the purpose of the landing request message is to request a landing from the unmanned vehicle.
  • the landing request may carry the target landing position. It can be understood that the target landing position is notified by the drone to the unmanned vehicle.
  • the unmanned vehicle after receiving the aforementioned landing request message, the unmanned vehicle obtains the target landing position information, and the unmanned vehicle needs to be controlled to move to the target landing position.
  • the unmanned vehicle when it reaches the aforementioned target landing position, it can drive the motion of the mechanical components related to the landing, and undertake the landing of the drone at any time, thereby completing the ground preparation work for the landing of the drone.
  • step B3 it may also be:
  • a preliminary landing instruction from the drone is received; according to the preliminary landing instruction, the landing of the drone is undertaken.
  • the unmanned vehicle when it reaches the aforementioned target landing position, it can drive the action of the mechanical components related to the landing after receiving the preliminary landing command of the drone, preparing to undertake the landing of the drone, thereby avoiding the mechanical components
  • Man-made damage may be caused by earlier actions, for example: after the door is opened, the criminals steal the contents of the car.
  • the drone may include:
  • the automatic cabin door of the unmanned vehicle is opened, and the lifting platform is raised to undertake the landing of the drone.
  • an unmanned vehicle may be provided with a lifting platform for the drone to take off and land.
  • the lifting platform When the lifting platform is lowered and retracted, the automatic cabin door is in a closed state.
  • the unmanned vehicle can drive the mechanical component to open the automatic hatch, raise the lifting platform to undertake the landing of the drone, complete the landing preparation work, and ensure the safe and reliable landing of the drone.
  • Step 207 Receive a landing success message of the drone, where the landing success message includes the remaining power of the drone battery.
  • the unmanned vehicle may receive a successful landing message from the unmanned vehicle.
  • the successful landing message includes the remaining battery power information of the drone battery. It is understandable that when the unmanned vehicle learned of the successful landing of the drone, it also learned the remaining power of the drone battery, that is, the subsequent endurance of the drone.
  • step 207 it may also be:
  • the unmanned vehicle when it reaches the aforementioned target landing position, it can drive the action of the mechanical components related to the landing after receiving the preliminary landing command of the drone to undertake the landing of the drone, thereby avoiding the mechanical components
  • Early actions may cause man-made damage, for example: after the door is opened, criminals steal the contents of the car.
  • Step 208 When the remaining power is less than the preset remaining amount, replace the battery or charge the drone.
  • the unmanned vehicle can compare the remaining power with the preset remaining amount.
  • the drone's endurance can be considered It is not enough to complete the subsequent flight tasks, and the battery or charge can be replaced for the drone.
  • the preset margin can be set by a technician in an unmanned vehicle based on actual test data, and the present invention does not restrict this.
  • Step 209 Receive items delivered by the drone and/or load items onto the drone.
  • the courier package of the user will be carried on the drone. If the drone has landed safely on the unmanned vehicle, the unmanned vehicle can receive unmanned vehicles.
  • the items to be delivered by the aircraft are temporarily stored in the storage space of the car body and transported to the target user, or the unmanned vehicle can also load items from the target user onto the drone.
  • the process of this item exchange is not limited to express parcels.
  • it can be items such as inspection tools, and this process can be carried out before or after the battery is replaced.
  • the present invention makes no restriction on this. Therefore, when combining the use of drones and unmanned vehicles to deliver items in various industries, it can effectively ensure the endurance of the drones, give full play to their convenience, and improve transportation efficiency.
  • Step 210 Receive electronic data collected by the drone, where the electronic data includes at least multimedia data.
  • Step 211 Receive a takeoff command from the drone.
  • the tasks it performs can be to transfer virtual electronic data on the one hand, and to transfer real items on the other.
  • the unmanned vehicle can receive the take-off command from the drone, learn the completion of the transfer of items and electronic data, and learn that the drone needs to take off and leave.
  • Step 212 Perform a take-off preparation operation according to the take-off instruction.
  • the unmanned vehicle when the drone is landing, the unmanned vehicle performs a series of landing preparation operations to ensure the safe and stable landing of the drone. Accordingly, when the drone takes off and takes off, it is necessary to perform the takeoff preparation operation to drive Mechanical components to lift restrictions on drones and ensure their safe departure.
  • the take-off preparation operation may include:
  • the automatic cabin door of the unmanned vehicle is opened, and the lifting platform is raised to lift off takeoff restrictions.
  • a lifting platform can be set on the unmanned vehicle for the drone to take off and land. After the drone has landed on the unmanned vehicle, to avoid possible damage to unrelated personnel, the automatic door corresponding to the lifting platform is closed .
  • the unmanned vehicle can drive the mechanical component to open the automatic cabin door, raise the lifting platform to lift off the takeoff restrictions, complete the takeoff preparation work, and ensure the safe and reliable departure of the drone.
  • Step 213 Send a take-off permission instruction to the drone.
  • the unmanned vehicle may send the drone a take-off permission instruction to notify the drone that it has taken-off conditions and can safely leave.
  • Step 214 Automatically control the unmanned vehicle to travel to the destination of the items delivered by the drone.
  • the unmanned vehicle when the unmanned vehicle receives the item delivered by the drone, it can go to the shipping destination according to the address information pointed by the item.
  • the identification method of the specific address information is not limited to scanning the barcode two-dimensional code or OCR ( Optical, Character, Recognition, character recognition, etc.
  • OCR Optical, Character, Recognition, character recognition, etc.
  • the unmanned vehicle can automatically control its travel to the destination of the item, and realize the final transportation process of the item.
  • Step 215 Establish wireless communication between the unmanned vehicle and the elevator at the destination.
  • the unmanned vehicle when the unmanned vehicle receives the item delivered by the drone and learns the destination of the item, it can also establish wireless communication between the unmanned vehicle and the elevator at the destination.
  • the user pointed to by the item is on the 20th floor of the S building.
  • the unmanned vehicle After the unmanned vehicle receives the item, it can drive to the S building.
  • it can also establish wireless communication with the elevator of the S building, and call the idle elevator to run to the ground floor End station, thus avoiding the waiting of unmanned vehicles in the elevator hall, greatly improving the transportation efficiency.
  • FIG. 3 a flowchart of steps of a method for controlling an unmanned device according to Embodiment 3 of the present invention is shown.
  • the method is applied to a drone.
  • the control method may specifically include the following steps:
  • Step 301 After sending a landing request to the unmanned vehicle, perform a second landing preparation operation.
  • the drone when the drone is ready to land, it can send the landing request information to the unmanned vehicle, so that the unmanned vehicle movement is ready to undertake the landing of the drone. At the same time, the drone It is also possible to start performing the second landing preparation operation for a safe and reliable landing.
  • step 302 the drone is controlled to land on the unmanned vehicle for the unmanned vehicle to perform a cruising operation for the drone.
  • the unmanned vehicle can serve as a relay station for the energy supply of the drone.
  • the unmanned vehicle can perform the endurance operation.
  • the battery replaced by the drone landing on the unmanned vehicle can usually be replaced by a fully charged battery.
  • the drone can also be charged.
  • the drone after the drone sends a landing request to the unmanned vehicle, a second landing preparation operation is performed, and after the drone is controlled to land on the unmanned vehicle successfully, it is used for the
  • the unmanned vehicle performs the endurance operation for the UAV. Therefore, during the flight of the drone, it can land on the unmanned vehicle.
  • the unmanned vehicle carries a battery that is suitable for the drone.
  • the unmanned vehicle can serve as a supply station, replace the battery for the drone, or Man-machine charging improves the endurance of the drone and prevents the drone from returning to the starting point to replace the battery, which can improve the efficiency of unmanned equipment and give full play to the convenience of unmanned equipment.
  • FIG. 4 a flowchart of steps of a method for controlling an unmanned device according to Embodiment 4 of the present invention is shown.
  • the method is applied to a drone.
  • the control method may specifically include the following steps:
  • Step 401 Receive geographic location information of multiple unmanned vehicles.
  • the drone can receive geographic location information from multiple unmanned vehicles. The drone can be based on the received The geographic location information determines a most suitable unmanned vehicle as the landing vehicle.
  • Step 402 Determine the unmanned vehicle closest to the target user from the plurality of unmanned vehicles according to the geographic location information.
  • the UAV can perform screening and judgment based on the received geographic location information, and based on the distance relationship, determine the unmanned vehicle closest to the target user.
  • the target user is a user pre-determined and determined by the drone, and the user may be one of multiple users in different positions determined according to an existing path planning algorithm.
  • the purpose of selecting the unmanned vehicle closest to the target user to receive the landing request is to shorten the distance between the unmanned vehicle and the target user, shorten the travel time of the unmanned vehicle, and improve the working efficiency of the unmanned vehicle.
  • Step 403 Send a landing request message to the unmanned vehicle to trigger the unmanned vehicle to determine a target landing position.
  • the drone sends a landing request message to the unmanned vehicle to trigger the unmanned vehicle to determine the target landing position and prepare to undertake the landing of the drone.
  • the target landing position is just the position suitable for the drone landing to ensure that the landing process of the drone is not disturbed.
  • the first first drone cooperates with the unmanned vehicle first.
  • the second drone can receive the waiting message from the unmanned vehicle corresponding to the second landing request, and wait for the first drone to complete the battery replacement before undertaking the landing of the second drone, or the second unmanned
  • the aircraft receives the transfer message from the unmanned vehicle, informs the second UAV of the geographic location of other idle unmanned vehicles, and guides it to complete the landing. Therefore, the power consumption caused by the continuous waiting of the UAV and the congestion of the UAV sequence can be avoided.
  • Step 404 Receive a permission landing instruction, where the permission landing instruction carries the target landing position.
  • the unmanned vehicle when the unmanned vehicle receives the landing request message from the drone, based on the trigger of the landing request message, the unmanned vehicle needs to determine a target landing position, which is the position suitable for the drone to land. Yes, to ensure that the landing process of the drone is not disturbed.
  • the unmanned aerial vehicle can receive the permission landing command from the unmanned vehicle, and the target landing position is carried in the permission landing command. Therefore, after receiving the permission landing instruction, the drone can know where to go to land.
  • Step 405 Move to the target landing position according to the permission landing instruction.
  • the UAV can start to move to the target landing position and land on the unmanned vehicle at the target landing position.
  • Step 406 After reaching the target landing position, adjust the flying parameters of the drone to meet the landing conditions.
  • the drone can adjust the flight parameters to meet the landing conditions, such as: the drone adjusts the flight speed and direction , Altitude, etc. change the hovering position of the aircraft, ensure that it is aligned with the lifting platform, to accurately identify the landing graphics, and ensure a safe and reliable landing.
  • step 406 it may also be:
  • a preliminary landing command is sent to the unmanned vehicle and flight parameters are adjusted to meet landing conditions.
  • the drone can send a preparatory landing command to the unmanned vehicle to inform the unmanned vehicle to drive the movement of the mechanical components related to the landing, ready to undertake the landing of the drone,
  • the drone now adjusts flight parameters to meet landing conditions.
  • steps C1 to C3 which can be compared with the steps in the second embodiment B1 to B3 cooperation:
  • a notification message can be a landing request message sent by the drone.
  • the landing request message is to request a landing from the unmanned vehicle.
  • the target landing position may be carried, and it is understandable that the target landing position is notified by the drone to the unmanned vehicle.
  • generating a landing request message according to the determined target landing position it may include:
  • the UAV can use various sensors installed on the aircraft to monitor the landing environment, for example, the obstacles are monitored by the airborne radar, the crowd density is monitored by infrared and cameras, and the electromagnetic interference in the vicinity is monitored by electromagnetic sensors. Situation, so as to find a suitable place for drone landing.
  • the drone monitors the landing environment through sensors, once the monitored environment meets the preset landing conditions, the corresponding position is determined as the target landing position.
  • the UAV uses infrared and cameras to determine that the density of people in a location is less than the preset density value
  • the radar knows that there are no buildings, numbers, wires, and other obstacles that affect the landing of the UAV at a location
  • the electromagnetic sensors monitor nearby Electromagnetic radiation also meets the preset threshold and does not affect the communication of the drone. Based on these one or more conditions, the drone can determine a location that meets the landing conditions of the drone as the target landing position to ensure the landing process of the drone Not subject to physical interference and electromagnetic interference, while avoiding possible personal injury.
  • the drone After the drone determines a target landing position suitable for its own landing, it can generate a landing request message based on the target landing position information.
  • the landing request message serves to inform the unmanned vehicle that the drone has landed.
  • the unmanned vehicle was also informed of where the drone landed.
  • steps C11 to C13 Regard generating a landing request message according to the determined target landing position, there are alternative technical solutions as steps C11' to C13':
  • map data within the range of the UAV's active area can be pre-stored in the map database of the UAV's memory, which can record obstacles and abnormalities such as no-fly zones, buildings and vegetation of the UAV Information such as the location of the electromagnetic environment, which can be stored locally on the drone, for the drone to query the permitted landing position.
  • obstacles and abnormalities such as no-fly zones, buildings and vegetation of the UAV Information
  • the location of the electromagnetic environment which can be stored locally on the drone, for the drone to query the permitted landing position.
  • some fixed permitted landing positions that meet the landing conditions can also be directly marked.
  • the unmanned aerial vehicle may select the allowed landing position closest to the current actual position as the target landing position according to several allowed landing positions acquired from the local area, so that it can quickly go to the target landing position.
  • the drone After the drone determines a target landing position suitable for its own landing, it can generate a landing request message based on the target landing position information.
  • the landing request message serves to inform the unmanned vehicle that the drone has landed.
  • the unmanned vehicle was also informed of where the drone landed.
  • the unmanned vehicle knows where to go to undertake the landing of the drone.
  • the drone can adjust the flight parameters to meet the landing conditions, such as: the drone adjusts the flight speed, direction, altitude, etc. Change the hovering position of the aircraft to ensure that it is aligned with the lifting platform to accurately identify the landing graphics and ensure a safe and reliable landing.
  • Step 407 Send a landing success message to the unmanned vehicle, where the landing success message includes the remaining power of the drone battery.
  • the drone can send a landing success message to the unmanned vehicle, and the successful landing message includes the remaining battery power information of the drone battery. It is understandable that while the drone informed the unmanned vehicle that the drone had landed successfully, it also informed the remaining power of the drone battery, that is, the subsequent life of the drone.
  • Step 408 When the remaining power is less than the preset remaining capacity, receive a battery or charging behavior from the unmanned vehicle replacement.
  • the unmanned vehicle can compare the remaining power with the preset remaining amount.
  • the drone's endurance can be considered Not enough to complete the follow-up flight mission, the UAV can now receive the battery or charging behavior from the unmanned vehicle replacement.
  • the preset margin can be independently set by a technician in an unmanned vehicle based on actual test data, and the present invention does not restrict this.
  • Step 409 Deliver items to the unmanned vehicle and/or receive items loaded by the unmanned vehicle.
  • the courier package of the user will be carried on the drone.
  • the drone can The vehicle delivers the items, temporarily stores the items in the storage space of the car body and transports them to the target user, or the drone can also receive items from the target user loaded by the unmanned vehicle.
  • the process of this item exchange is not limited to express parcels.
  • it can be items such as inspection tools, and this process can be carried out before or after the battery is replaced.
  • the present invention makes no restriction on this. Therefore, when combining the use of drones and unmanned vehicles to deliver items in various industries, it can effectively ensure the endurance of the drones, give full play to their convenience, and improve transportation efficiency.
  • Step 410 Send the electronic data collected by the drone, where the electronic data includes at least multimedia data.
  • Step 411 Send a take-off instruction to the unmanned vehicle to trigger the unmanned vehicle to feedback a take-off permission instruction.
  • the tasks it performs can be to transfer virtual electronic data on the one hand, and to transfer real items on the other.
  • the drone can send a take-off command to the unmanned vehicle to trigger the unmanned vehicle to feedback the permission take-off instruction to inform whether the drone can take off.
  • Step 412 Receive the permission takeoff instruction to control the drone to take off from the unmanned vehicle.
  • the unmanned vehicle when the drone is landing, the unmanned vehicle performs a series of landing preparation operations to ensure the safe and stable landing of the drone. Accordingly, when the drone and the unmanned vehicle complete the transfer of items or information After the drone takes off and takes off, the unmanned vehicle performs the take-off preparation operation. For manned vehicles, the unmanned vehicles complete the follow-up item delivery process.
  • the unmanned vehicle 50 includes a processor 501, a robot 502, and a battery storage compartment 503; the battery storage compartment 503 and the robot 502 All are set on the car body, wherein the battery storage compartment 503 stores the drone battery;
  • the processor executes:
  • the manipulator is triggered to obtain the drone battery to perform the endurance operation for the drone.
  • the first landing preparation operation is performed, and after it is determined that the drone has successfully landed on the unmanned vehicle, it is executed for the drone Endurance operation. Therefore, during the flight of the drone, it can land on the unmanned vehicle.
  • the battery storage compartment of the unmanned vehicle carries a battery that is suitable for the drone.
  • the unmanned vehicle can serve as a supply station and hold the battery by the robot. Replacing the battery for the drone, or charging the drone, improve the endurance of the drone, and avoid replacing the battery when the drone returns to the starting point.
  • performing the first landing preparation operation includes:
  • the determining the target landing position includes:
  • the determining the target landing position includes:
  • the landing request message query the permitted landing position in a preset map database
  • performing the first landing preparation operation includes:
  • triggering the manipulator to perform a cruising operation for the drone includes:
  • the manipulator is triggered to replace the battery or charge the drone.
  • the method further includes:
  • the electronic data includes at least multimedia data.
  • the method further includes:
  • the unmanned vehicle receiving the landing request is the unmanned vehicle closest to the target user obtained by the drone based on the geographic location information.
  • the processor also executes:
  • the unmanned vehicle 50 further includes an automatic cabin door 504 and a lifting platform 505;
  • the automatic door 504 is a door that automatically opens and closes according to the trigger of the processor 501;
  • the lifting platform 505 is a platform that automatically lifts according to the trigger of the processor 501 for the drone to land or take off.
  • the unmanned vehicle 50 provided by the present invention further includes an automatic cabin door 504 and a lifting platform 505.
  • the automatic cabin door 504 is a cabin door that automatically opens and closes according to the trigger of the processor 501, that is, the processor Under the trigger of the program run by 501, the automatic hatch 504 can be automatically opened or closed, for example: it can be opened during the landing and takeoff of the drone, and can be closed during the battery replacement of the drone by the unmanned vehicle.
  • the lifting platform 505 is a platform that automatically lifts according to the trigger of the processor 501 for the drone to land or take off. When the drone needs to land and take off, it can be raised to send the drone to the top of the unmanned vehicle. The drone can be lowered during battery replacement and stored in the car. Therefore, the cooperative use of the automatic cabin door 504 and the lifting platform 505 can prevent the drone from being damaged or stolen, and prevent unrelated persons from interfering with the battery replacement process.
  • the processor also executes:
  • the processor also executes:
  • Embodiment 5 is a device embodiment corresponding to method embodiment 2. For a detailed description, reference may be made to embodiment 2, which will not be repeated here.
  • FIG. 6 a schematic diagram of a system for cooperation between a drone and an unmanned vehicle in the present invention is also provided.
  • the drone can determine a closest distance to target user A within a preset range around target user A
  • the unmanned vehicle communicates with each other and performs the aforementioned process steps to complete the battery replacement.
  • FIG. 7 a schematic diagram of the drone in the present invention is also provided, which includes a processor for performing the process steps involved in the foregoing Embodiment 3 and Embodiment 4.
  • the description is relatively simple, and the relevant part can be referred to the description of the method embodiment.
  • Existing drones deliver courier, the cruising range is short, the destination cannot be directly sent to the user, and the user needs to pick up the goods in advance.
  • the landing of drones is limited by the site. There can be no complicated electromagnetic interference environment near the landing site, and the personnel near the landing site cannot be too dense.
  • the speed of unmanned vehicle delivery is slow, which cannot reflect the advantages of cost and speed.
  • the system and method of the cooperation between the unmanned aerial vehicle and the unmanned vehicle of the above embodiment perfectly combine the delivery of the unmanned aerial vehicle and the unmanned vehicle, and can be directly delivered to the end user.
  • the unmanned vehicle is parked within a preset range around the delivery location, for example, within 1 km. When the drone flies near the delivery location, the drone communicates with the unmanned vehicle.
  • the drone recognizes the location of the unmanned vehicle and lands on the unmanned vehicle with a drone apron.
  • the unmanned vehicle exchanges the battery for the drone, and the drone unloads the cargo to the drone platform.
  • the drone returned, and the unmanned vehicle began to deliver courier. Because the battery can be changed automatically, the drone does not need to leave the power required for the return flight, and the delivery mileage of the drone directly doubles.
  • the unmanned car can deliver the last mile, which is much faster than the delivery speed of pure unmanned car. The combination of the two makes unmanned logistics possible.
  • modules in the device in the embodiment can be adaptively changed and set in one or more devices different from the embodiment.
  • the modules or units or components in the embodiments may be combined into one module or unit or component, and in addition, they may be divided into a plurality of submodules or subunits or subcomponents. Except that at least some of such features and/or processes or units are mutually exclusive, all features disclosed in this specification (including the accompanying claims, abstract and drawings) and any method so disclosed or All processes or units of equipment are combined. Unless expressly stated otherwise, each feature disclosed in this specification (including the accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose.
  • the various component embodiments of the present invention may be implemented in hardware, or implemented in software modules running on one or more processors, or implemented in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some or all components in the data buffering synchronization device according to an embodiment of the present invention.
  • DSP digital signal processor
  • the present invention may also be implemented as a device or device program (eg, computer program and computer program product) for performing part or all of the method described herein.
  • Such a program implementing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present invention essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present invention.
  • the foregoing storage media include various media that can store program codes, such as U disk, mobile hard disk, ROM, RAM, magnetic disk, or optical disk.

Abstract

一种无人设备的控制方法及无人车,控制方法应用于无人车,包括:在接收到无人机的着陆请求后,执行第一着陆准备操作(101);在确定无人机在无人车上着陆成功后,为无人机执行续航操作(102)。从而将无人机与无人车结合起来,使用无人车为无人机换电池或充电,提升无人机的续航能力,可提升无人设备的工作效率。

Description

一种无人设备的控制方法及无人车 技术领域
本发明涉及无人设备技术领域,尤其涉及一种无人设备的控制方法及无人车。
背景技术
随着无人控制技术的发展进步,无人机、无人车逐渐开始参与物流运输、安全巡检等领域。以物流运输为例,无人机将从物流基地出发,可将物品传递给目的地的用户。或者,无人车从快递站点出发,将物品送至目的地的用户。
现有的物流运输过程中,受限于无人机的续航里程,无人机需频繁返回起点更换电池,降低了运输效率。而且使用无人车进行运输的过程中,虽节省了人力成本,但相对于无人机直接传递物品给用户而言,又降低了运输效率。
可以看出,现有的无人设备在工作过程中,工作效率较低,未充分发挥其便利性。
发明内容
本发明实施例提供一种无人设备的控制方法及无人车,以解决现有无人设备工作效率低的问题。
一方面,本发明实施例公开了一种无人设备的控制方法,应用于无人车,所述控制方法包括:
在接收到无人机的着陆请求后,执行第一着陆准备操作;
在确定所述无人机在所述无人车上着陆成功后,为所述无人机执行续航操作。
另一方面,本发明实施例还公开了一种无人设备的控制方法,应用于无人机,所述控制方法包括:
向无人车发送着陆请求后,执行第二着陆准备操作;
控制所述无人机着陆在所述无人车上,以供所述无人车为所述无人机执行续航操作。
再一方面,本发明实施例还公开了一种无人车,所述无人车包括处理器、机械手和电池存储舱;所述电池存储舱和所述机械手均设置在车体上,其中,所述电池存储舱中储放有无人机电池;
所述处理器执行:
在接收到无人机的着陆请求后,执行第一着陆准备操作;
在确定所述无人机在所述无人车上着陆成功后,触发所述机械手获取所述无人机电池为所述无人机执行续航操作。
在本发明实施例中,在接收到无人机的着陆请求后,执行第一着陆准备操作;在确定所述无人机在所述无人车上着陆成功后,为所述无人机执行续航操作。从而将无人机与无人车结合起来,使用无人车为无人机换电池,提升无人机的续航能力,可提升无人设备的工作效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例一的一种无人设备的控制方法的步骤流程图;
图2示出了本发明实施例二的一种无人设备的控制方法的步骤流程图;
图3示出了本发明实时例三的一种无人设备的控制方法的步骤流程图;
图4示出了本发明实时例四的一种无人设备的控制方法的步骤流程图;
图5示出了本发明实施例五的一种无人车的结构示意图;
图6示出了本发明实施例中的无人机与无人车协作的示意图;
图7示出了本发明实施例中的一种无人机的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面通过列举几个具体的实施例详细介绍本发明提供的一种控制操作切换方法及遥控设备。
参照图1,示出了本发明实施例一的一种无人设备的控制方法的步骤流程图,该方法应用于无人车,所述控制方法具体可以包括如下步骤:
步骤101,在接收到无人机的着陆请求后,执行第一着陆准备操作。
具体而言,从无人车的角度而言,当无人车接收到到无人机的着陆请求之后,无人车即就得知有无人机需要在车上着陆,因此,无人车需要执行第一着陆准备操作,供无人机稳妥地着陆。
步骤102,在确定所述无人机在所述无人车上着陆成功后,为所述无人机执行续航操作。
具体而言,在本发明中,无人车可充当为无人机进行能源补给的中继站,当无人机在无人车上着陆成功之后,无人车可执行续航操作,为在该无人车上着陆的无人机更换电池,通常而言,为保证无人机下一航程的电量,可为无人机更换满电的电池,当然还可以为无人机进行充电。
在本发明实施例中,在接收到无人机的着陆请求后,执行第一着陆准备操作,在确定所述无人机在所述无人车上着陆成功后,为所述无人机执行续航操作。从而在无人机飞行过程中,可在无人车上着陆,无人车携带有与该无人机适配的电池,无人车可充当补给站,为无人机更换电池,或者为无人机充电,提升无人机的续航能力,避免无人机返回起点位置更换电池,可提升无人设备的工作效率,充分发挥无人设备的便利性。
参照图2,示出了本发明实施例二的一种无人设备的控制方法的步骤流程图,该方法应用于无人车,所述控制方法具体可以包括如下步骤:
步骤201,向所述无人机发送地理位置信息。
具体而言,在无人机与无人车实际配合使用的过程中,以目标用户为中心在其周边一定的范围内可能存在多辆无人车,通常技术人员可设定该范围为1km,可实现无人机与目标用户1km内无人车的对接协作,对于多辆无人车而言,可将自身所处的地理位置信息发送给无人机,供无人机进行筛选判断,无人机可根据接收到的地理位置信息,根据距离的远近关系,确定出距离目标用户最近的无人车。当然,有可能存在一种情形,前后有两个无人机分别向同一个无人车发送了着陆请求,则依照先后的次序,在先的第一无人机先与无人车协作,此时,可在无人车向在先的第一无人机发送地理位置信息的之后,判断此时是否收到来自与在先的第一无人机ID不同的第二无人机的第二着陆请求,若收到的话,可针对该第二着陆请求反馈一等待消息,待在先的第一无人机完成换电池之后再承接第二无人机的着陆,或者向第二无人机发送一转移消息,告知第二无人机其他闲置无人车的地理位置,引导其完成着陆。从而可避免无人机的持续等待引起的耗电及无人机序列的拥堵。
步骤202,接收来自所述无人机的着陆请求,其中,接收所述着陆请求的无人车,为所述无人机基于所述地理位置信息得出的距离目标用户最近的无人车。
具体而言,距离目标用户最近的无人车可接收来自无人机的着陆请求,该目标用户为无人机预先判断确定的某一用户,该用户可以是根据现有路径规划的算法确定的多个不同位置用户中的一个。选择距离目标用户最近的无人车接收着陆请求的目的在于,缩短无人车与目标用户之间的距离,缩短无人车的行驶时间,提高无人车的工作效率。
步骤203,接收来自所述无人机的着陆请求消息。
具体而言,无人车需要根据一个通知消息响相应的动作,这样的通知消息可以为接收到的来自于无人机的着陆请求消息,该着陆请求消息作用在于 向无人车请求着陆。
步骤204,根据所述着陆请求消息,确定目标着陆位置。
具体而言,并非任何环境条件都适合无人机的着陆,比如建筑物和植物的阻碍,强烈电磁干扰环境等可能会影响无人机的着陆。因此,当无人车接收到来自于无人机的着陆请求消息后,基于该着陆请求消息的触发,无人车需要确定一个目标着陆位置,该目标着陆位置即适合无人机降落的位置即可,以确保无人机着落过程不受干扰。
可选地,在本发明的另一种实施例中,上述步骤204可以包括子步骤2041至2042:
步骤2041,根据所述着陆请求消息,监测着陆环境。
具体而言,当无人车接收到前述的着陆请求消息之后,该着陆请求消息即起到通知作用,告知无人车无人机需要着陆,基于该消息的触发,无人车可利用车上设置的各种传感器监测着陆环境,比如,通过车载的雷达进行障碍物的监测,通过红外以及摄像头等监测人群密度、通过电磁传感器监测附近的电磁干扰情况,从而寻找一个适合无人机着陆的场地。
步骤2042,当所述着陆环境符合预设着陆条件时,确定为目标着陆位置。
具体而言,无人车通过传感器对着陆环境监测时,一旦监测环境满足预设着陆条件时,则将对应的位置确定为目标着陆位置。比如,无人车通过红外以及摄像头判断某位置的人群密度小于预设密度值、通过雷达得知某位置不存在影响无人机着陆的建筑、数目、电线等障碍物、通过电磁传感器监测附近的电磁辐射也满足预设阈值不会影响无人机的通信,基于这些一个或多个条件,无人车可以确定一个满足无人机着陆条件的位置作为目标着陆位置,以确保无人机着落过程不受物理干扰和电磁干扰,同时避免可能产生的人身伤害。
对于上述步骤2041至步骤2042所公开的关于确定目标着陆位置的具体步骤,存在如步骤A1至A2的替代性的技术方案:
A1,根据所述着陆请求消息,在预置的地图数据库中查询许可着陆位置
具体而言,在无人车的存储器的地图数据库中可预先存储无人车活动区 域范围内的地图数据,该地图数据中可记录无人机的禁飞区、建筑及植被等障碍物、异常电磁环境位置等信息,这些信息可存储在无人车本地,供无人车查询许可着陆位置。当然,也可直接标记一些满足着陆条件的固定的许可着陆位置。
A2,确定距当前实际位置最近的许可着陆位置为所述目标着陆位置
具体而言,无人车可根据从本地获取的若干许可着陆位置中选择距离当前实际位置最近的许可着陆位置作为目标着陆位置,从而可较快地前往目标着陆位置。
步骤2041至步骤2042提供的无人车实时监测寻找目标着陆位置,能够保证获取的信息始终。相较于实时寻找目标着陆位置,步骤A1至A2提供了另外一种可选的方案,即无人车从本地数据库中查找合适的目标着陆位置,从而,可节省确定位置所耗费的时间。
步骤205,向所述目标着陆位置移动。
具体而言,当确定了上述目标着陆位置之后,无人车即可出发向目标着陆位置移动,在目标着陆位置等待无人机的着陆。
步骤206,发送许可着陆指令至所述无人机,并承接所述无人机的着陆;其中,所述许可着陆指令中携带有所述目标着陆位置。
具体而言,在无人车向目标着陆位置移动过程中或者无人车到达目标着陆位置后,通过向无人机发送许可着陆指令,以告知无人机可以着陆,在许可着陆指令中同时还携带有前述所确定的目标着陆位置,从而目标着陆位置可以引导无人机飞向无人车所在的目标着陆位置,保证两者定位的一致性。在发送许可着陆指令给无人机的同时,无人车还可承接无人机的着陆。
对于上述步骤203至步骤206所公开的关于在接收到无人机的着陆请求后,执行第一着陆准备操作的具体步骤,存在如步骤B1至B3的替代性的技术方案:
B1、接收来自所述无人机的着陆请求消息,其中,所述着陆请求消息中携带有目标着陆位置;
具体而言,无人车需要根据一个通知消息响相应的动作,这样的通知消 息可以为接收到的来自于无人机的着陆请求消息,该着陆请求消息作用在于向无人车请求着陆,在该着陆请求中可携带有目标着陆位置,可以理解的是,即该目标着陆位置是由无人机告知无人车的。
B2、根据所述着陆请求消息,控制所述无人车移动至所述目标着陆位置;
具体而言,由于着陆请求中携带有目标着陆位置,当收到前述的着陆请求消息之后,无人车即获得了目标着陆位置信息,需控制无人车移动至目标着陆位置。
B3、当到达所述目标着陆位置后,承接所述无人机的着陆。
具体而言,当无人车到达前述目标着陆位置后,即可驱动与着陆有关的机械组件的动作,随时承接无人机的着陆,从而完成无人机着陆的地面准备工作。
可选的,对于步骤B3而言,还可以为:
当到达所述目标着陆位置后,接收来自所述无人机的预备着陆指令;根据所述预备着陆指令,承接所述无人机的着陆。
具体而言,当无人车到达前述目标着陆位置后,可在收到无人机的预备着陆指令之后驱动与着陆有关的机械组件的动作,准备承接无人机的着陆,从而可避免机械组件较早动作可能引发的人为破坏,比如:舱门打开后,不法分子盗取车内物品。
可选的,对于承接所述无人机的着陆,可包括:
开启所述无人车的自动舱门,升起升降平台以承接所述无人机的着陆。
具体而言,在无人车上可以设置升降平台供无人机起降,当该升降平台降下收回时,自动舱门处于关闭状态。当无人机需要着陆时,无人车可以驱动机械组件打开该自动舱门,将升降平台升起以承接无人机的着陆,完成着落准备工作,保证无人机安全可靠的着陆。
步骤207,接收所述无人机的着陆成功消息,其中,所述着陆成功消息中包括所述无人机电池的剩余电量。
具体而言,当无人机在无人车上着陆成功之后,无人车可接收来自该无人机的着陆成功消息,该着陆成功的消息中包括有该无人机电池的剩余电量 信息。可以理解的是无人车获知无人机着陆成功的同时,也得知了无人机电池的剩余电量,也就是得知了无人机后续的续航能力。
可选的,对于步骤207而言,还可以为:
接收所述无人机基于许可着陆指令所述返回的预备着陆指令;根据所述预备着陆指令,承接所述无人机的着陆。
具体而言,当无人车到达前述目标着陆位置后,可在收到无人机的预备着陆指令之后驱动与着陆有关的机械组件的动作,承接无人机的着陆,从而可避免机械组件较早动作可能引发的人为破坏,比如:舱门打开后,不法分子盗取车内物品。
步骤208,当所述剩余电量小于预设余量时,为所述无人机更换电池或充电。
具体而言,无人车基于前述获得到的无人机电池的剩余电量,可将剩余电量与预设余量进行比较,当剩余电量小于预设余量时,可认为无人机的续航能力不足以完成后续飞行任务,可为无人机更换电池或充电,该预设余量可由技术人员在无人车中根据实际试验数据自主设定一阈值,本发明对此不做约束。
步骤209,接收所述无人机投递的物品和/或向所述无人机装载物品。
具体而言,当无人机用于物流领域中进行传递物品时,在无人机上会携带有用户的快递包裹,若无人机在无人车上已安全着陆,无人车可以接收无人机所要投递的物品,将物品暂时储存在车体的储藏空间中运送给目标用户,或者,无人车也可将来自目标用户的物品装载到无人机上。当然,该物品交换的过程不限于快递包裹,对于工程巡检领域而言,可以是巡检工具一类的物品,而且,该过程既可以在更换电池之前进行,也可在更换电池之后进行,本发明对此不做约束。从而,当在各行各业结合应用无人机和无人车传递物品时,可有效保证无人机的续航能力,充分发挥各自的便利性,提升运输效率。
步骤210,接收所述无人机采集到的电子数据,所述电子数据至少包括多媒体数据。
具体而言,通常而言,无人机在不同行业的不同的应用诞生了所谓的行业机,在行业机上挂载有不同的电子数据采集设备,比如摄像机、超声波传感器等,这些电子数据采集设备可以采集各种不同格式的多媒体数据,比如音频、视频、图片等,这些数据可供行业内专业人士用于远程巡检等。当无人机在无人车上着陆成功之后,为避免无人机接入互联网向服务器传递数据可能导致的泄密,可在无人车与无人机之间建立一临时的局域网,由无人车接收来自无人机的采集到的电子数据,存储于无人车中,避免网络侵入导致的安全风险。
步骤211,接收来自所述无人机的起飞指令。
具体而言,对于无人机而言,其执行的任务一方面可以是传递虚拟的电子数据,另一方面,也可以是传递实实在在的物品。当物品和电子数据均传递结束之后,无人车可接收来自无人机的起飞指令,得知物品和电子数据传递完成的信息,得知无人机需要起飞离开。
步骤212,根据所述起飞指令,执行起飞准备操作。
具体而言,在无人机着陆时,无人车执行了一系列的着陆准备操作保证了无人机安全稳定地着陆,相应地,在无人机起飞离开时,需要执行起飞准备操作,驱动机械组件以解除对无人机的限制,保证其安全离开。
可选的,对于执行起飞准备操作,可包括:
开启所述无人车的自动舱门,升起升降平台以以解除起飞限制。
具体而言,在无人车上可以设置升降平台供无人机起降,当无人机在无人车上着陆完成后,为避免无关人员可能的损坏,升降平台对应的自动舱门进行关闭。当无人机需要起飞时,无人车可以驱动机械组件打开该自动舱门,将升降平台升起以解除起飞限制,完成起飞准备工作,保证无人机安全可靠的离开。
步骤213,向所述无人机发送许可起飞指令。
具体而言,当起飞准备操作完成后,无人机的飞行限制解除后,无人车可向无人机发送许可起飞指令,通知无人机已具备起飞条件,可安全离开。
步骤214,自动控制所述无人车行驶至所述无人机投递的物品的寄送目 的地。
具体而言,当无人车接收到无人机投递的物品之后,可根据物品所指向的地址信息前往寄送目的地,当然,具体地址信息的识别方式不限于扫描条码二维码或者OCR(Optical Character Recognition,光学字符识别)识别字符信息等。无人车可以自动控制其行驶至物品的寄送目的地,实现物品最后的运输过程。
步骤215,建立所述无人车与所述寄送目的地的电梯之间的无线通信。
具体而言,当无人车接收到无人机投递的物品,得知了物品的寄送目的地之后,还可以建立无人车与寄送目的地的电梯之间的无线通信。比如:物品所指向的用户在S大厦的20层,无人车接收到物品之后,可以驱动前往S大厦,同时,还可以建立与S大厦的电梯的无线通信,提前呼叫闲置的电梯运行至底层端站,从而避免无人车在电梯厅的等待,极大地提升运输效率。
参照图3,示出了本发明实施例三的一种无人设备的控制方法的步骤流程图,该方法应用于无人机,所述控制方法具体可以包括如下步骤:
步骤301,向无人车发送着陆请求后,执行第二着陆准备操作。
具体而言,从无人机的角度而言,当无人机准备着陆时,可将着陆请求信息发送给无人车,以便无人车动作准备承接无人机的着陆,同时,无人机也可开始执行第二着陆准备操作以便安全可靠的着陆。
步骤302,控制所述无人机着陆在所述无人车上,以供所述无人车为所述无人机执行续航操作。
具体而言,在本发明中,无人车可充当为无人机进行能源补给的中继站,当无人机控制自身稳定的着陆在无人车上之后,无人车可执行续航操作,为在该无人车上着陆的无人机更换的电池,通常而言,为保证无人机下一航程的电量,可为无人机更换满电的电池,当然还可以为无人机进行充电。
在本发明实施例中,在无人机向无人车发出着陆请求后,执行第二着陆准备操作,在控制所述无人机着陆在所述无人车上着陆成功后,以供所述无人车为所述无人机执行续航操作。从而在无人机飞行过程中,可在无人车上 着陆,无人车携带有与该无人机适配的电池,无人车可充当补给站,为无人机更换电池,或者为无人机充电,提升无人机的续航能力,避免无人机返回起点位置更换电池,可提升无人设备的工作效率,充分发挥无人设备的便利性。
参照图4,示出了本发明实施例四的一种无人设备的控制方法的步骤流程图,该方法应用于无人机,所述控制方法具体可以包括如下步骤:
步骤401,接收多个无人车的地理位置信息。
具体而言,在无人机与无人车实际配合使用的过程中,以目标用户为中心在其周边一定的范围内可能存在多辆无人车,通常技术人员可设定该范围为1km,可实现无人机与目标用户1km内无人车的对接协作,对于多辆无人机而言,无人机可接收来自多个无人车的地理位置信息,无人机可根据接收到的地理位置信息确定一个最合适的无人车作为着陆的车辆。
步骤402,根据所述地理位置信息,从所述多个无人车中,确定距离目标用户最近的无人车。
具体而言,无人机可根据接收到的地理位置信息,进行筛选判断,基于距离的远近关系,确定出距离目标用户最近的无人车。该目标用户为无人机预先判断确定的某一用户,该用户可以是根据现有路径规划的算法确定的多个不同位置用户中的一个。选择距离目标用户最近的无人车接收着陆请求的目的在于,缩短无人车与目标用户之间的距离,缩短无人车的行驶时间,提高无人车的工作效率。
步骤403,向所述无人车发送着陆请求消息以触发所述无人车确定目标着陆位置。
具体而言,当距离目标用户最近的无人车确定之后,无人机将着陆请求消息发送给该无人车,以触发该无人车确定目标着陆位置,准备承接无人机的着陆。该目标着陆位置即适合无人机降落的位置即可,以确保无人机着落过程不受干扰。当然,有可能存在一种情形,前后有两个无人机分别向同一个无人车发送了着陆请求,则依照先后的次序,在先的第一无人机先与无人 车协作,第二无人机则可接收第二着陆请求对应的来自无人车的等待消息,待在先的第一个无人机完成换电池之后再承接第二无人机的着陆,或者第二无人机接收来自无人车的转移消息,告知第二无人机其他闲置无人车的地理位置,引导其完成着陆。从而可避免无人机的持续等待引起的耗电及无人机序列的拥堵。
步骤404,接收许可着陆指令,其中,所述许可着陆指令中携带有所述目标着陆位置。
具体而言,并非任何环境条件都适合无人机的着陆,比如建筑物和植物的阻碍,强烈电磁干扰环境等可能会影响无人机的着陆。因此,当无人车接收到来自于无人机的着陆请求消息后,基于该着陆请求消息的触发,无人车需要确定一个目标着陆位置,该目标着陆位置即适合无人机降落的位置即可,以确保无人机着落过程不受干扰。
无人机可接收来自无人车所发出的许可着陆指令,在许可着陆指令中携带有目标着陆位置。从而,收到该许可着陆指令之后,无人机即可获知该前往何地去着陆。
步骤405,根据所述许可着陆指令,向所述目标着陆位置移动。
具体而言,当得知了上述目标着陆位置之后,无人机即可出发向目标着陆位置移动,在目标着陆位置向无人车上着陆。
步骤406,当到达所述目标着陆位置后,调整所述无人机的飞行参数以满足着陆条件。
具体而言,具体而言,在无人机到达目标着陆位置后,为保证安全可靠地降落,无人机可对飞行参数进行调整以满足着陆条件,比如:无人机调整飞行的速度、方向、高度等改变飞机悬停位置,保证对准升降平台,以准确识别降落图形标志,保证安全可靠地降落。
可选的,对于步骤406而言,还可以为:
当到达所述目标着陆位置后,向所述无人车发送预备着陆指令并调整飞行参数以满足着陆条件。
具体而言,当无人车到达前述目标着陆位置后,无人机可向无人车发送 预备着陆指令以告知无人车驱动与着陆有关的机械组件的动作,准备承接无人机的着陆,无人机此时调整飞行参数以满足着陆条件。从而可避免机械组件较早动作可能引发的人为破坏,比如:舱门打开后,不法分子盗取车内物品。
对于上述步骤403至步骤406所公开的关于向无人车发送着陆请求后,执行第二着陆准备操作的具体步骤,存在如步骤C1至C3的替代性的技术方案,可与实施例二中步骤B1至B3配合:
C1,根据确定的目标着陆位置生成着陆请求消息。
具体而言,无人车需要根据一个通知消息响相应的动作,这样的通知消息可以为无人机发送的着陆请求消息,该着陆请求消息作用在于向无人车请求着陆,在该着陆请求中可携带有目标着陆位置,可以理解的是,即该目标着陆位置是由无人机告知无人车的。
可选的,对于根据确定的目标着陆位置生成着陆请求消息,可包括:
C11,监测着陆环境。
具体而言,无人机可利用飞机上设置的各种传感器监测着陆环境,比如,通过机载的雷达进行障碍物的监测,通过红外以及摄像头等监测人群密度、通过电磁传感器监测附近的电磁干扰情况,从而寻找一个适合无人机着陆的场地。
C12,当所述着陆环境符合预设着陆条件时,确定为目标着陆位置。
具体而言,无人机通过传感器对着陆环境监测时,一旦监测环境满足预设着陆条件时,则将对应的位置确定为目标着陆位置。比如,无人机通过红外以及摄像头判断某位置的人群密度小于预设密度值、通过雷达得知某位置不存在影响无人机着陆的建筑、数目、电线等障碍物、通过电磁传感器监测附近的电磁辐射也满足预设阈值不会影响无人机的通信,基于这些一个或多个条件,无人机可以确定一个满足无人机着陆条件的位置作为目标着陆位置,以确保无人机着落过程不受物理干扰和电磁干扰,同时避免可能产生的人身伤害。
C13,根据所述目标着陆位置生成着陆请求消息。
具体而言,当无人机确定了适合自身着陆的目标着陆位置之后,可根据该目标着陆位置信息生成着陆请求消息,一方面,着陆请求消息起到告知无人车有无人机着陆的信息,另一方面,还向无人车告知了无人机在哪里着陆的信息。
对于上述步骤C11至C13所公开的关于根据确定的目标着陆位置生成着陆请求消息的具体步骤,存在如步骤C11'至C13'的替代性的技术方案:
C11',在预置的地图数据库中查询许可着陆位置。
具体而言,在无人机的存储器的地图数据库中可预先存储无人机活动区域范围内的地图数据,该地图数据中可记录无人机的禁飞区、建筑及植被等障碍物、异常电磁环境位置等信息,这些信息可存储在无人机本地,供无人机查询许可着陆位置。当然,也可直接标记一些满足着陆条件的固定的许可着陆位置。
C12',确定距当前实际位置最近的许可着陆位置为所述目标着陆位置。
具体而言,无人机可根据从本地获取的若干许可着陆位置中选择距离当前实际位置最近的许可着陆位置作为目标着陆位置,从而可较快地前往目标着陆位置。
C13',根据所述目标着陆位置生成着陆请求消息。
具体而言,当无人机确定了适合自身着陆的目标着陆位置之后,可根据该目标着陆位置信息生成着陆请求消息,一方面,着陆请求消息起到告知无人车有无人机着陆的信息,另一方面,还向无人车告知了无人机在哪里着陆的信息。
C2,向所述无人车发送着陆请求消息,其中,所述着陆请求消息中携带有目标着陆位置。
具体而言,由于着陆请求消息中携带有目标着陆位置,只有将该消息发送给无人车,无人车才知道前往何地承接无人机的着陆。
C3,当所述无人车到达所述目标着陆位置后,调整所述无人机的飞行参数以满足着陆条件。
具体而言,当无人车到达前述目标着陆位置后,为保证安全可靠地降落, 无人机可对飞行参数进行调整以满足着陆条件,比如:无人机调整飞行的速度、方向、高度等改变飞机悬停位置,保证对准升降平台,以准确识别降落图形标志,保证安全可靠地降落。
步骤407,向所述无人车发送着陆成功消息,其中,所述着陆成功消息中包括所述无人机电池的剩余电量。
具体而言,当无人机在无人车上着陆成功之后,无人机可向无人车发送着陆成功消息,该着陆成功的消息中包括有该无人机电池的剩余电量信息。可以理解的是无人机向无人车告知无人机着陆成功的同时,也告知了无人机电池的剩余电量,也就是告知了无人机后续的续航能力。
步骤408,当所述剩余电量小于预设余量时,接收来自所述无人车更换的电池或充电行为。
具体而言,无人车基于前述获得到的无人机电池的剩余电量,可将剩余电量与预设余量进行比较,当剩余电量小于预设余量时,可认为无人机的续航能力不足以完成后续飞行任务,无人机此时可接收来自无人车更换的电池或充电行为。该预设余量可由技术人员在无人车中根据实际试验数据自主设定一阈值,本发明对此不做约束。
步骤409,向所述无人车投递物品和/或接收所述无人车装载的物品。
具体而言,当无人机用于物流领域中进行传递物品时,在无人机上会携带有用户的快递包裹,若无人机在无人车上已安全着陆,无人机可向无人车投递物品,将物品暂时储存在车体的储藏空间中运送给目标用户,或者,无人机也可接收来自无人车装载的目标用户的物品。当然,该物品交换的过程不限于快递包裹,对于工程巡检领域而言,可以是巡检工具一类的物品,而且,该过程既可以在更换电池之前进行,也可在更换电池之后进行,本发明对此不做约束。从而,当在各行各业结合应用无人机和无人车传递物品时,可有效保证无人机的续航能力,充分发挥各自的便利性,提升运输效率。
步骤410,发送所述无人机采集到的电子数据,所述电子数据至少包括多媒体数据。
具体而言,通常而言,无人机在不同行业的不同的应用诞生了所谓的行 业机,在行业机上挂载有不同的电子数据采集设备,比如摄像机、超声波传感器等,这些电子数据采集设备可以采集各种不同格式的多媒体数据,比如音频、视频、图片等,这些数据可供行业内专业人士用于远程巡检等。当无人机在无人车上着陆成功之后,为避免无人机接入互联网向服务器传递数据可能导致的泄密,可在无人车与无人机之间建立一临时的局域网,由无人机向无人车无人车发送采集到的电子数据,存储于无人车中,避免网络侵入导致的安全风险。
步骤411,向所述无人车发送起飞指令以触发所述无人车反馈许可起飞指令。
具体而言,对于无人机而言,其执行的任务一方面可以是传递虚拟的电子数据,另一方面,也可以是传递实实在在的物品。当物品和电子数据均传递结束之后,无人机可向无人车发送起飞指令以触发无人车反馈许可起飞指令,告知无人机是否可以起飞。
步骤412,接收所述许可起飞指令以控制所述无人机从所述无人车上起飞。
具体而言,在无人机着陆时,无人车执行了一系列的着陆准备操作保证了无人机安全稳定地着陆,相应地,当无人机与无人车完成物品或信息的传递之后,在无人机起飞离开时,无人车执行起飞准备操作完毕之后,无人机可接收来自无人车的许可起飞指令以控制无人机从所着陆的无人车上起飞,从而离开无人车,由无人车完成后续物品的传递过程。
参照图5,示出了本发明实施例五的一种无人车50,所述无人车50包括处理器501、机械手502和电池存储舱503;所述电池存储舱503和所述机械手502均设置在车体上,其中,所述电池存储舱503中储放有无人机电池;
所述处理器执行:
在接收到无人机的着陆请求后,执行第一着陆准备操作;
在确定所述无人机在所述无人车上着陆成功后,触发所述机械手获取所 述无人机电池为所述无人机执行续航操作。
在本发明实施例中,在接收到无人机的着陆请求后,执行第一着陆准备操作,在确定所述无人机在所述无人车上着陆成功后,为所述无人机执行续航操作。从而在无人机飞行过程中,可在无人车上着陆,无人车的电池存储舱中携带有与该无人机适配的电池,无人车可充当补给站,通过机械手夹持电池为无人机更换电池,或者为无人机充电,提升无人机的续航能力,避免无人机返回起点位置更换电池,可提升无人设备的工作效率,充分发挥无人设备的便利性。
可选的,所述在接收到无人机的着陆请求后,执行第一着陆准备操作包括:
接收来自所述无人机的着陆请求消息;
根据所述着陆请求消息,确定目标着陆位置;
向所述目标着陆位置移动;
发送许可着陆指令至所述无人机,并承接所述无人机的着陆;其中,所述许可着陆指令中携带有所述目标着陆位置。
可选的,所述确定目标着陆位置包括:
根据所述着陆请求消息,监测着陆环境;
当所述着陆环境符合预设着陆条件时,确定为目标着陆位置;
可选的,所述确定目标着陆位置包括:
根据所述着陆请求消息,在预置的地图数据库中查询许可着陆位置;
确定距当前实际位置最近的许可着陆位置为所述目标着陆位置;
可选的,所述在接收到无人机的着陆请求后,执行第一着陆准备操作包括:
接收来自所述无人机的着陆请求消息,其中,所述着陆请求消息中携带有目标着陆位置;
根据所述着陆请求消息,向所述目标着陆位置移动;
当到达所述目标着陆位置后,接收来自所述无人机的预备着陆指令;
根据所述预备着陆指令,承接所述无人机的着陆。
可选的,所述在确定所述无人机在所述无人车上着陆成功后,触发所述机械手为所述无人机执行续航操作包括:
接收所述无人机的着陆成功消息,其中,所述着陆成功消息中包括所述无人机电池的剩余电量;
当所述剩余电量小于预设余量时,触发所述机械手为所述无人机更换电池或充电。
可选的,所述在确定所述无人机在所述无人车上着陆成功后还包括:
接收所述无人机采集到的电子数据,所述电子数据至少包括多媒体数据。
可选的,所述在接收到无人机的着陆请求后,执行第一着陆准备操作之前还包括:
向所述无人机发送地理位置信息;
接收来自所述无人机的着陆请求,其中,接收所述着陆请求的无人车为所述无人机基于所述地理位置信息得出的距离目标用户最近的无人车。
可选的,所述处理器还执行:
接收来自所述无人机的起飞指令;
根据所述起飞指令,执行起飞准备操作;
向所述无人机发送许可起飞指令。
可选的,参照图5,所述无人车50还包括自动舱门504和升降平台505;
所述自动舱门504为根据所述处理器501的触发自动开闭的舱门;
所述升降平台505为根据所述处理器501的触发自动升降的平台供所述无人机着陆或起飞。
具体的,如图5所示,本发明提供的无人车50还包括自动舱门504和升降平台505,自动舱门504为根据处理器501的触发自动开闭的舱门,即在处理器501所运行程序的触发下,自动舱门504可自动打开或关闭,比如:在无人机着陆与起飞过程中可打开,在无人车给无人机换电池过程中可关闭。升降平台505为根据处理器501的触发自动升降的平台供无人机着陆或起飞,在无人机需要着陆与起飞时可升起将无人机送至无人车顶部,在无人 车给无人机换电池过程中可降下,将无人机收纳进车内。从而,自动舱门504和升降平台505的配合使用可避免无人机被破坏或窃取,防止无关人士干扰换电池的过程。
可选的,所述处理器还执行:
接收所述无人机投递的物品和/或向所述无人机装载物品。
可选的,所述处理器还执行:
自动控制所述无人车行驶至所述无人机投递的物品的寄送目的地;
建立所述无人车与所述寄送目的地的电梯之间的无线通信。
实施例五是方法实施例二对应的装置实施例,详细说明可以参照实施例二,在此不再赘述。
另外,如图6所示,还给出了本发明中的无人机与无人车协作的系统示意图,无人机可在目标用户A周边的预设范围内确定一个距离目标用户A最近的无人车,与其互相通讯,执行前述的流程步骤,从而完成电池的更换。如图7所示,还给出了本发明中无人机的示意图,其包括有处理器,用于执行前述实施例三和实施例四所涉及的流程步骤。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
现有无人机送快递,续航里程短,终点不能直接送给用户,需要用户提前来取货。另外,无人机降落受场地限制,降落地点附近不能有复杂的电磁干扰环境,且降落地点附近人员的不能太密集等等。而无人车送快递速度慢,不能体现成本和速度的优势。上述实施例的无人机与无人车协作的系统以及方法,将无人机和无人车送快递完美的结合起来,可以实现直接快速送到终端用户手中。例如,无人车停在寄送地点的周边预设范围内,例如,1公里范围内,当无人机飞到寄送地点的附近时,无人机和无人车通讯。无人机识别无人车位置,并降落到带有无人机停机坪的无人车上。无人车给无人机换电池,无人机把货物卸载到无人机平台。无人机返航,无人车开始送快递。因为可以自动换电池,无人机不用留下返航需要的电量,无人机送快递里程直接翻倍。而无人车送最后一公里,又比纯无人车 送快递速度快很多。两者的结合,使得无人物流成为可能。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的 任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的缓存数据的同步设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
本领域普通技术人员可以意识到,结合本发明实施例中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和 电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光 盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (35)

  1. 一种无人设备的控制方法,应用于无人车,其特征在于,所述控制方法包括:
    在接收到无人机的着陆请求后,执行第一着陆准备操作;
    在确定所述无人机在所述无人车上着陆成功后,为所述无人机执行续航操作。
  2. 根据权利要求1所述的控制方法,其特征在于,所述在接收到无人机的着陆请求后,执行第一着陆准备操作包括:
    接收来自所述无人机的着陆请求消息;
    根据所述着陆请求消息,确定目标着陆位置;
    向所述目标着陆位置移动;
    发送许可着陆指令至所述无人机,并承接所述无人机的着陆;其中,所述许可着陆指令中携带有所述目标着陆位置。
  3. 根据权利要求2所述的控制方法,其特征在于,所述确定目标着陆位置包括:
    根据所述着陆请求消息,监测着陆环境;
    当所述着陆环境符合预设着陆条件时,确定为目标着陆位置。
  4. 根据权利要求2所述的控制方法,其特征在于,所述确定目标着陆位置包括:
    根据所述着陆请求消息,在预置的地图数据库中查询许可着陆位置;
    确定距当前实际位置最近的许可着陆位置为所述目标着陆位置。
  5. 根据权利要求1所述的控制方法,其特征在于,所述在接收到无人机的着陆请求后,执行第一着陆准备操作包括:
    接收来自所述无人机的着陆请求消息,其中,所述着陆请求消息中携带有目标着陆位置;
    根据所述着陆请求消息,控制所述无人车移动至所述目标着陆位置;
    当到达所述目标着陆位置后,承接所述无人机的着陆。
  6. 根据权利要求1所述的控制方法,其特征在于,所述在确定所述无人机在所述无人车上着陆成功后,为所述无人机执行续航操作包括:
    接收所述无人机的着陆成功消息,其中,所述着陆成功消息中包括所述无人机电池的剩余电量;
    当所述剩余电量小于预设余量时,为所述无人机更换电池或充电。
  7. 根据权利要求6所述的控制方法,其特征在于,所述在确定所述无人机在所述无人车上着陆成功后还包括:
    接收所述无人机采集到的电子数据,所述电子数据至少包括多媒体数据。
  8. 根据权利要求1所述的控制方法,其特征在于,所述在接收到无人机的着陆请求后,执行第一着陆准备操作之前还包括:
    向所述无人机发送地理位置信息;
    接收来自所述无人机的着陆请求,其中,接收所述着陆请求的无人车,为所述无人机基于所述地理位置信息得出的距离目标用户最近的无人车。
  9. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    接收来自所述无人机的起飞指令;
    根据所述起飞指令,执行起飞准备操作;
    向所述无人机发送许可起飞指令。
  10. 根据权利要求2所述的控制方法,其特征在于,所述承接所述无人机的着陆包括:
    开启所述无人车的自动舱门,升起升降平台以承接所述无人机的着陆。
  11. 根据权利要求9所述的控制方法,其特征在于,所述执行起飞准备操作包括:
    开启所述无人车的自动舱门,升起升降平台以解除起飞限制。
  12. 根据权利要求1至11任一项所述的控制方法,其特征在于,所述控制方法还包括:
    接收所述无人机投递的物品和/或向所述无人机装载物品。
  13. 根据权利要求12所述的控制方法,其特征在于,所述控制方法还包括:
    自动控制所述无人车行驶至所述无人机投递的物品的寄送目的地;
    建立所述无人车与所述寄送目的地的电梯之间的无线通信。
  14. 一种无人设备的控制方法,应用于无人机,其特征在于,所述控制方法包括:
    向无人车发送着陆请求后,执行第二着陆准备操作;
    控制所述无人机着陆在所述无人车上,以供所述无人车为所述无人机执行续航操作。
  15. 根据权利要求14所述的控制方法,其特征在于,所述向无人车发送着陆请求后,执行第二着陆准备操作包括:
    向所述无人车发送着陆请求消息以触发所述无人车确定目标着陆位置;
    接收许可着陆指令,其中,所述许可着陆指令中携带有所述目标着陆位置;
    根据所述许可着陆指令,向所述目标着陆位置移动;
    当到达所述目标着陆位置后,调整所述无人机的飞行参数以满足着陆条 件。
  16. 根据权利要求14所述的控制方法,其特征在于,所述向无人车发送着陆请求后,执行第二着陆准备操作包括:
    根据确定的目标着陆位置生成着陆请求消息;
    向所述无人车发送着陆请求消息,其中,所述着陆请求消息中携带有目标着陆位置;
    当所述无人车到达所述目标着陆位置后,调整所述无人机的飞行参数以满足着陆条件。
  17. 根据权利要求16所述的控制方法,其特征在于,所述根据确定的目标着陆位置生成着陆请求消息包括:
    监测着陆环境;
    当所述着陆环境符合预设着陆条件时,确定为目标着陆位置;
    根据所述目标着陆位置生成着陆请求消息。
  18. 根据权利要求16所述的控制方法,其特征在于,所述根据确定的目标着陆位置生成着陆请求消息包括:
    在预置的地图数据库中查询许可着陆位置;
    确定距当前实际位置最近的许可着陆位置为所述目标着陆位置;
    根据所述目标着陆位置生成着陆请求消息。
  19. 根据权利要求14所述的控制方法,其特征在于,所述控制所述无人机着陆在所述无人车上,以供所述无人车为所述无人机执行续航操作包括:
    向所述无人车发送着陆成功消息,其中,所述着陆成功消息中包括所述无人机电池的剩余电量;
    当所述剩余电量小于预设余量时,接收来自所述无人车更换的电池或充 电行为。
  20. 根据权利要求14所述的控制方法,其特征在于,所述控制所述无人机着陆在所述无人车上之后还包括:
    发送所述无人机采集到的电子数据,所述电子数据至少包括多媒体数据。
  21. 根据权利要求14所述的控制方法,其特征在于,所述在向无人车发送着陆请求后,执行着陆准备操作之前还包括:
    接收多个无人车的地理位置信息;
    根据所述地理位置信息,从所述多个无人车中,确定距离目标用户最近的无人车。
  22. 根据权利要求14所述的控制方法,其特征在于,所述控制方法还包括:
    向所述无人车发送起飞指令以触发所述无人车反馈许可起飞指令;
    接收所述许可起飞指令以控制所述无人机从所述无人车上起飞。
  23. 根据权利要求14所述的控制方法,其特征在于,所述控制方法还包括:
    向所述无人车投递物品和/或接收所述无人车装载的物品。
  24. 一种无人车,其特征在于,所述无人车包括处理器、机械手和电池存储舱;所述电池存储舱和所述机械手均设置在车体上,其中,所述电池存储舱中储放有无人机电池;
    所述处理器执行:
    在接收到无人机的着陆请求后,执行第一着陆准备操作;
    在确定所述无人机在所述无人车上着陆成功后,触发所述机械手获取所 述无人机电池为所述无人机执行续航操作。
  25. 根据权利要求24所述的无人车,其特征在于,所述在接收到无人机的着陆请求后,执行第一着陆准备操作包括:
    接收来自所述无人机的着陆请求消息;
    根据所述着陆请求消息,确定目标着陆位置;
    向所述目标着陆位置移动;
    发送许可着陆指令至所述无人机,并承接所述无人机的着陆;其中,所述许可着陆指令中携带有所述目标着陆位置。
  26. 根据权利要求24所述的无人车,其特征在于,所述确定目标着陆位置包括:
    根据所述着陆请求消息,监测着陆环境;
    当所述着陆环境符合预设着陆条件时,确定为目标着陆位置;
  27. 根据权利要求24所述的无人车,其特征在于,所述确定目标着陆位置包括:
    根据所述着陆请求消息,在预置的地图数据库中查询许可着陆位置;
    确定距当前实际位置最近的许可着陆位置为所述目标着陆位置;
  28. 根据权利要求24所述的无人车,其特征在于,所述在接收到无人机的着陆请求后,执行第一着陆准备操作包括:
    接收来自所述无人机的着陆请求消息,其中,所述着陆请求消息中携带有目标着陆位置;
    根据所述着陆请求消息,向所述目标着陆位置移动;
    当到达所述目标着陆位置后,接收来自所述无人机的预备着陆指令;
    根据所述预备着陆指令,承接所述无人机的着陆。
  29. 根据权利要求24所述的无人车,其特征在于,所述在确定所述无人机在所述无人车上着陆成功后,触发所述机械手为所述无人机执行续航操作包括:
    接收所述无人机的着陆成功消息,其中,所述着陆成功消息中包括所述无人机电池的剩余电量;
    当所述剩余电量小于预设余量时,触发所述机械手为所述无人机更换电池或充电。
  30. 根据权利要求29所述的无人车,其特征在于,所述在确定所述无人机在所述无人车上着陆成功后还包括:
    接收所述无人机采集到的电子数据,所述电子数据至少包括多媒体数据。
  31. 根据权利要求24所述的无人车,其特征在于,所述在接收到无人机的着陆请求后,执行第一着陆准备操作之前还包括:
    向所述无人机发送地理位置信息;
    接收来自所述无人机的着陆请求,其中,接收所述着陆请求的无人车为所述无人机基于所述地理位置信息得出的距离目标用户最近的无人车。
  32. 根据权利要求24所述的无人车,其特征在于,所述处理器还执行:
    接收来自所述无人机的起飞指令;
    根据所述起飞指令,执行起飞准备操作;
    向所述无人机发送许可起飞指令。
  33. 根据权利要求24所述的无人车,其特征在于,所述无人车还包括自动舱门和升降平台;
    所述自动舱门为根据所述处理器的触发自动开闭的舱门;
    所述升降平台为根据所述处理器的触发自动升降的平台供所述无人机 着陆或起飞。
  34. 根据权利要求24至33任一项所述的无人车,其特征在于,所述处理器还执行:
    接收所述无人机投递的物品和/或向所述无人机装载物品。
  35. 根据权利要求34所述的控制方法,其特征在于,所述处理器还执行:
    自动控制所述无人车行驶至所述无人机投递的物品的寄送目的地;
    建立所述无人车与所述寄送目的地的电梯之间的无线通信。
PCT/CN2018/118732 2018-11-30 2018-11-30 一种无人设备的控制方法及无人车 WO2020107468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880039873.XA CN110785721A (zh) 2018-11-30 2018-11-30 一种无人设备的控制方法及无人车
PCT/CN2018/118732 WO2020107468A1 (zh) 2018-11-30 2018-11-30 一种无人设备的控制方法及无人车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118732 WO2020107468A1 (zh) 2018-11-30 2018-11-30 一种无人设备的控制方法及无人车

Publications (1)

Publication Number Publication Date
WO2020107468A1 true WO2020107468A1 (zh) 2020-06-04

Family

ID=69383060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118732 WO2020107468A1 (zh) 2018-11-30 2018-11-30 一种无人设备的控制方法及无人车

Country Status (2)

Country Link
CN (1) CN110785721A (zh)
WO (1) WO2020107468A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701718A (zh) * 2021-07-06 2021-11-26 宁波市海策测绘有限公司 一种测绘地图数据采集方法、系统、存储介质及智能终端
US11392130B1 (en) * 2018-12-12 2022-07-19 Amazon Technologies, Inc. Selecting delivery modes and delivery areas using autonomous ground vehicles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112817320A (zh) * 2021-04-19 2021-05-18 湖南大学 一种用于地空协同侦查的异构机器人系统
CN113190046A (zh) * 2021-05-17 2021-07-30 广东鸿源智能科技有限公司 无人机集群控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8511606B1 (en) * 2009-12-09 2013-08-20 The Boeing Company Unmanned aerial vehicle base station
CN105302150A (zh) * 2015-11-30 2016-02-03 上海理工大学 无人机无限续航系统
CN107943073A (zh) * 2017-11-14 2018-04-20 歌尔股份有限公司 无人机起降方法、设备、系统及无人机
CN207417175U (zh) * 2017-11-14 2018-05-29 歌尔科技有限公司 无人机起降设备及无人机起降系统
CN108873930A (zh) * 2018-05-31 2018-11-23 苏州市启献智能科技有限公司 基于移动平台的无人机起降方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016019567A1 (en) * 2014-08-08 2016-02-11 SZ DJI Technology Co., Ltd. Systems and methods for uav battery exchange

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8511606B1 (en) * 2009-12-09 2013-08-20 The Boeing Company Unmanned aerial vehicle base station
CN105302150A (zh) * 2015-11-30 2016-02-03 上海理工大学 无人机无限续航系统
CN107943073A (zh) * 2017-11-14 2018-04-20 歌尔股份有限公司 无人机起降方法、设备、系统及无人机
CN207417175U (zh) * 2017-11-14 2018-05-29 歌尔科技有限公司 无人机起降设备及无人机起降系统
CN108873930A (zh) * 2018-05-31 2018-11-23 苏州市启献智能科技有限公司 基于移动平台的无人机起降方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11392130B1 (en) * 2018-12-12 2022-07-19 Amazon Technologies, Inc. Selecting delivery modes and delivery areas using autonomous ground vehicles
CN113701718A (zh) * 2021-07-06 2021-11-26 宁波市海策测绘有限公司 一种测绘地图数据采集方法、系统、存储介质及智能终端
CN113701718B (zh) * 2021-07-06 2024-03-19 海策信息科技(浙江)有限公司 一种测绘地图数据采集方法、系统、存储介质及智能终端

Also Published As

Publication number Publication date
CN110785721A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2020107468A1 (zh) 一种无人设备的控制方法及无人车
JP6797239B2 (ja) 輸送用の移動する輸送車両における無人航空機の着陸
CN109074082B (zh) 用于机器人设备的传感器轨迹规划系统及方法
CN110998467B (zh) 确定运送位置处的下放点的模型
US10336543B1 (en) Selective encoding of packages
AU2018390417B2 (en) Anticipatory dispatch of UAVs to pre-staging locations
AU2015243644B2 (en) Method for delivering a shipment by an unmanned transport device
US20220048625A1 (en) Methods and Systems for Door-Enabled Loading and Release of Payloads in an Unmanned Aerial Vehicle (UAV)
US20180137454A1 (en) Autonomous Multimodal Logistics
US20180158018A1 (en) Systems for autonomous item delivery
CN109891443A (zh) 用于使用一个或多个内部监控无人机监控装运储存器的内部储存内容的系统和方法
WO2019036929A1 (zh) 机器人码放货物的方法、控制机器人码放货物的系统及机器人
US20200254619A1 (en) Teleoperation in a smart container yard
JP7199003B2 (ja) 搬送装置、受信機能付き搬送装置、搬送システム、上位システム、搬送装置の制御方法、及びプログラム
CN114174946B (zh) 由监控器管理自主停车机械手队列的方法
US20200133286A1 (en) Automatic power source charging and swapping system for an autonomous vehicle (av)
WO2020136703A1 (ja) 無人航空機制御システム、無人航空機制御方法、及びプログラム
US11816627B2 (en) Transport system, control device, and method
CN113657565A (zh) 机器人跨楼层移动方法、装置、机器人及云端服务器
US20190050789A1 (en) Method of delivering products using an unmanned delivery equipment
US20220281106A1 (en) Control platform, control system, service providing system, service providing method, and control method
JP7280174B2 (ja) 制御方法、及び物品受け渡しシステム
CN108016867B (zh) 一种机器人的控制装置、控制方法及控制系统
EP3757517B1 (en) Unmanned aerial vehicle delivery system
US11789469B1 (en) Systems and methods for package delivery with unmanned aerial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941237

Country of ref document: EP

Kind code of ref document: A1