WO2020107278A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020107278A1
WO2020107278A1 PCT/CN2018/117986 CN2018117986W WO2020107278A1 WO 2020107278 A1 WO2020107278 A1 WO 2020107278A1 CN 2018117986 W CN2018117986 W CN 2018117986W WO 2020107278 A1 WO2020107278 A1 WO 2020107278A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
measurement gap
network device
time
measurement
Prior art date
Application number
PCT/CN2018/117986
Other languages
English (en)
French (fr)
Inventor
秦超
孔祥振
朱吉满
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880096454.XA priority Critical patent/CN112602281B/zh
Priority to EP18941478.2A priority patent/EP3869717A4/en
Priority to PCT/CN2018/117986 priority patent/WO2020107278A1/zh
Publication of WO2020107278A1 publication Critical patent/WO2020107278A1/zh
Priority to US17/326,896 priority patent/US11882566B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method and device.
  • the user equipment In the mobile communication system, the user equipment (User Equipment, UE) must first perform the measurement of the inter-frequency or inter-system before performing the inter-frequency or inter-system handover.
  • the base station Evolutional Node B, eNB
  • the measurement gap configuration indication includes the measurement Measurement period, measurement window for measuring gap, and measurement start time. For example, the measurement window for measuring gap is 6 ms, and the measurement period is 40 ms or 80 ms.
  • the UE After the UE receives the measurement gap configuration instruction, the UE starts the measurement gap according to the measurement gap configuration instruction.
  • the UE usually has only one receiver, and can only receive signals on one frequency point at a time. Therefore, in the measurement gap window, the UE cannot process all the uplink and downlink channels, that is, the UE does not perform data transmission. For example, when the measurement gap period is 40 ms, the UE In every 40ms, there are consecutive 6ms that cannot handle all the channels of upstream and downstream.
  • Frequency division duplex (Frequency, Division, Duplex, FDD) uplink is a synchronous hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ), the same HARQ channel retransmission is fixed after 8ms.
  • the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) initial transmission and retransmission will use different redundancy version numbers, the communication protocol 36.321 gives the redundancy version sequence is 0, 2, 3, 1, retransmission and The last transmission of the retransmission changes cumulatively according to the given redundancy version sequence.
  • the eNB increases the combining gain by combining the data blocks carrying different redundant parts.
  • the eNB If the initial transmission and retransmission of the eNB completely avoid the measurement gap during the uplink transmission, it is necessary to ensure that the physical downlink control channel (Physical Downlink Control Channel, PDCCH), PUSCH, and physical HARQ indicator channel (Physical HARQ Indicator Channel, PHICH) do not fall into the measurement. Within the gap window, the number of uplink schedulable subframes is greatly reduced, and the uplink rate drops significantly. Therefore, eNB uplink scheduling will only prevent some of the channels during the initial transmission from falling within the measurement gap window, and PUSCH retransmission may fall within the measurement gap window.
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical HARQ Indicator Channel
  • the communication protocol 36.321 stipulates that if the UE's uplink PUSCH transmission is unable to send data due to gap measurement, the HARQ channel will perform PUSCH non-adaptive retransmission on the next retransmission. When the non-adaptive retransmission, the UE uses the last PUSCH The transmitted resources are retransmitted, and the redundant version number used during the retransmission does not change cumulatively.
  • the present application provides a communication method and device to eliminate the risk of inconsistent redundant version numbers on both sides of the network device and the terminal device, and reduce the PUSCH bit error rate.
  • the present application provides a communication method, including:
  • the measurement gap configuration information of the terminal device determines whether the time when the terminal device does not send data this time is within the measurement gap window, and the measurement gap configuration information includes the measurement period of the measurement gap, the measurement gap window, and the measurement start time; It is determined that the time when the terminal device does not send data this time is within the measurement gap window, and then the redundancy version number used for the next HARQ retransmission is sent to the terminal device.
  • the network device after the network device sends a scheduling request to the terminal device, when the data sent by the terminal device through the PUSCH is not received, it is determined that the terminal device does not send data this time according to the measurement gap configuration information of the terminal device Whether the time is within the measurement gap window, if it is, the redundant version number used for the next HARQ retransmission is sent to the terminal device.
  • the terminal device can retransmit the data according to the redundant version number indicated by the network device, so the network device and The redundant version numbers on both sides of the terminal device are consistent, thereby eliminating the risk of inconsistent redundant version numbers on both sides of the network device and the terminal device, and reducing the PUSCH bit error rate.
  • the method further includes:
  • the determining, according to the measurement gap configuration information of the terminal device, whether the time that the terminal device does not transmit data this time is within the measurement gap window includes:
  • the measurement gap window Based on the measurement period of the measurement gap, the measurement gap window, and the measurement start time, calculate whether the time during which the terminal device does not perform data transmission this time is within the measurement gap window.
  • the method further includes:
  • the value of the measurement gap conflict identifier of the HARQ channel occupied by the terminal device that does not perform data transmission this time is set to the second value
  • the HARQ channel whose value of the measurement gap conflict identifier is the first value uses non-adaptive retransmission during the next retransmission, and the HARQ channel whose value of the measurement gap conflict identifier is the second value is used during the next retransmission Adaptive retransmission.
  • the initial value of the measurement gap conflict indicator is the first value.
  • the value of the measurement gap conflict identifier of the HARQ channel occupied by the terminal device this time without data transmission is set to the second value, so that when each HARQ channel is used for data transmission, the measurement gap conflict identifier can be used Value to determine the next data retransmission method for each HARQ channel, which can improve the efficiency of data retransmission and also record the historical status of each data transmission of the terminal device.
  • the sending of the redundant version number for the next hybrid automatic repeat request HARQ retransmission to the terminal device includes:
  • the present application provides a communication method, including:
  • the network device After receiving the scheduling request sent by the network device through the PDCCH, send data to the network device through the PUSCH according to a preset time interval; receive the redundant version number used by the network device for the next HARQ retransmission, the redundant The remaining version number is when the network device does not receive the data sent by the terminal device through the PUSCH, and determines that the time when the terminal device does not transmit data this time is within the measurement gap window according to the measurement gap configuration information of the terminal device Sent, the configuration information of the measurement gap includes the measurement period of the measurement gap, the measurement gap window, and the measurement start time; the HARQ channel occupied by the data transmission that is not used this time is sent to the network device according to the redundancy version number. ⁇ Transfer data.
  • the terminal device after receiving the scheduling request sent by the network device through the PDCCH, the terminal device sends data to the network device through the PUSCH according to a preset time interval, and receives the next HARQ retransmission sent by the network device
  • the redundant version number used is transmitted, and the HARQ channel occupied by the data transmission that is not used this time is used to retransmit data to the network device according to the redundant version number. Therefore, the redundancy version numbers on both sides of the network device and the terminal device can be guaranteed to be consistent, thereby eliminating the risk of inconsistent redundancy version numbers on both sides of the network device and the terminal device, and reducing the PUSCH bit error rate.
  • the method further includes:
  • the receiving a redundant version number for HARQ retransmission of the next hybrid automatic retransmission request sent by the network device includes:
  • this application provides a network device, including:
  • a sending module configured to send a scheduling request to the terminal device through the PDCCH, where the scheduling request is used to instruct the terminal device to send data to the network device according to a preset time interval;
  • the processing module is configured to determine whether the time when the terminal device does not transmit data this time is within the measurement gap window according to the measurement gap configuration information of the terminal device when the data sent by the terminal device through PUSCH is not received,
  • the measurement gap configuration information includes the measurement period of the measurement gap, the measurement gap window, and the measurement start time;
  • the sending module is further configured to: if the processing module determines that the time when the terminal device does not send data this time is within a measurement gap window, send the redundancy version number used for the next HARQ retransmission to the terminal device .
  • the sending module is also used to:
  • the processing module is used to:
  • the measurement gap window Based on the measurement period of the measurement gap, the measurement gap window, and the measurement start time, calculate whether the time during which the terminal device does not perform data transmission this time is within the measurement gap window.
  • the processing module is also used to:
  • the value of the measurement gap conflict identifier of the HARQ channel occupied by the terminal device that does not perform data transmission this time is set to the second value
  • the HARQ channel whose value of the measurement gap conflict identifier is the first value uses non-adaptive retransmission during the next retransmission, and the HARQ channel whose value of the measurement gap conflict identifier is the second value is used during the next retransmission Adaptive retransmission.
  • the sending module is specifically used to:
  • the present application provides a terminal device, including:
  • the receiving module is used to receive the scheduling request sent by the network device through the PDCCH;
  • a sending module configured to send data to the network device through the PUSCH according to a preset time interval
  • the receiving module is further configured to: receive a redundant version number for the next HARQ retransmission sent by the network device, where the redundant version number is when the network device does not receive the data sent by the terminal device through the PUSCH , Based on the measurement gap configuration information of the terminal device, which is determined when the time when the terminal device does not send data this time is within the measurement gap window, and the measurement gap configuration information includes the measurement period of the measurement gap, the measurement gap window, and Measurement start time;
  • the sending module is further configured to: use the HARQ channel occupied by the data not sent this time to retransmit data to the network device according to the redundancy version number.
  • the sending module is also used to:
  • the receiving module is further configured to receive the measurement gap configuration information sent by the network device.
  • the receiving module is specifically used to:
  • the present application provides a network device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is used to call program instructions in the memory to execute the first aspect and any possible communication method in the first design.
  • the present application provides a terminal device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is used to call program instructions in the memory to perform the second aspect and any possible design communication method of the second aspect.
  • the present application provides a readable storage medium in which an execution instruction is stored.
  • the network device executes the first aspect and any of the first aspect A possible communication method in the design.
  • the present application provides a readable storage medium in which an execution instruction is stored.
  • the terminal device executes the second aspect and any of the second aspect A possible communication method in the design.
  • the present application provides a program product, the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the network device may read the execution instruction from the readable storage medium, and the execution of the execution instruction by the at least one processor causes the network device to implement the communication method in the first aspect and any possible design of the first aspect.
  • the present application provides a program product, the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the terminal device can read the execution instruction from the readable storage medium, and the execution of the execution instruction by the at least one processor causes the terminal device to implement the communication method in the second aspect and any possible design of the second aspect.
  • the present application provides a chip, the chip is connected to a memory, or a memory is integrated on the chip, when the software program stored in the memory is executed, the first aspect and any possible design of the first aspect are implemented Or the second aspect and any possible communication method in the second aspect of the design.
  • Figure 1 is a schematic diagram of a communication system architecture
  • FIG. 4 is a schematic structural diagram of an embodiment of a network device provided by this application.
  • FIG. 5 is a schematic structural diagram of an embodiment of a terminal device provided by this application.
  • FIG. 6 is a schematic structural diagram of a network device provided by this application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by this application.
  • the embodiments of the present application can be applied to a wireless communication system.
  • the wireless communication systems mentioned in the embodiments of the present application include but are not limited to: narrow-band Internet of Things (Narrow-Band-Internet of Things, NB-IoT), global mobile Communication System (Global System for Mobile Communications, GSM), Enhanced Data Rate GSM Evolution System (Enhanced Data for Rate GSM Evolution, EDGE), Wideband Code Division Multiple Access System (WideBand Code Division Multiple Access, WCDMA), Code Division Multiple Access 2000 system (Code Division Multiple Access, CDMA2000), time division synchronization code division multiple access system (Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), long-term evolution system (Long Term Evolution, LTE) and fifth-generation mobile communication (LTE the 5th Generation mobile (communication 5technology) system.
  • Narrow-Band-Internet of Things NB-IoT
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate GSM Evolution
  • WCDMA Wideband Code Division Multiple Access System
  • the communication device involved in this application mainly includes network equipment and terminal equipment.
  • Network device It can be a base station, an access point, or an access network device, or it can refer to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the network device can be used to convert received air frames and IP packets to each other as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the network equipment can also coordinate attribute management of the air interface.
  • the network device may be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or access point, or a base station in a 5G network, such as gNB, etc., here Not limited.
  • Terminal device It can be a wireless terminal or a wired terminal.
  • a wireless terminal can be a device that provides users with voice and/or other business data connectivity, a handheld device with wireless connection capabilities, or other processing devices connected to a wireless modem .
  • the wireless terminal can communicate with one or more core networks via the RAN.
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal. For example, it can be portable, portable, Handheld, computer-built, or vehicle-mounted mobile devices that exchange language and/or data with wireless access networks.
  • the wireless terminal may also be called a system, a subscriber unit (Subscriber Unit), a subscriber station (Subscriber Station), a mobile station (Mobile Station), a mobile station (Mobile), a remote station (Remote Station), a remote terminal (Remote Terminal), an access terminal Access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), user equipment (User Device or User Equipment), not limited here.
  • FIG. 1 is a schematic diagram of a communication system architecture.
  • the communication system may include one or more network devices and one or more terminal devices, and the network devices and the terminal devices communicate.
  • the HARQ channel used to send the data will be retransmitted the next time.
  • the UE uses the last PUSCH transmission resource for retransmission. The redundancy version number used during retransmission does not change cumulatively.
  • the UE side may appear Due to implementation errors, the redundant version number used in the retransmission will change according to the redundancy version sequence, and the eNB side does not accumulate the redundant version number used in the retransmission according to the communication protocol 36.321, so there are both the eNB and the UE
  • the risk of inconsistent redundant version numbers causes the PUSCH error rate to increase.
  • the embodiments of the present application provide a communication method. When the network device does not receive the data sent by the terminal device PUSCH, it instructs the terminal by determining that the time when the terminal device does not send data is within the measurement gap window.
  • the redundant version number used by the device for the next HARQ retransmission, and the terminal device retransmits the data according to the redundant version number indicated by the network device, thus ensuring that the redundant version numbers on both sides of the network device and the terminal device are consistent, thereby eliminating the network
  • the risk of inconsistent redundancy version numbers on both sides of the device and terminal equipment reduces the PUSCH bit error rate.
  • FIG. 2 is an interaction flowchart of an embodiment of a communication method provided by this application. As shown in FIG. 2, the method in this embodiment may include:
  • the network device sends a scheduling request to the terminal device through the PDCCH.
  • the scheduling request is used to instruct the terminal device to send data to the network device according to a preset time interval.
  • the terminal device sends data to the network device through the PUSCH according to a preset time interval.
  • the network device sends a scheduling request to the terminal device through the PDCCH.
  • the scheduling request is used to indicate that the terminal device can send data to the network device.
  • the terminal device After receiving the call request, the terminal device starts to send data to the network device at a preset time interval , The preset time interval is known by the network device and the terminal device, or is carried in the scheduling request, for example, the time interval is 8ms, after the terminal device receives the call request, the PUSCH transmits the data to the network device for the first time. If the data fails, the first retransmission is performed after 8 ms. If the first retransmission fails, the second retransmission is performed after 8 ms of the first retransmission.
  • the network device receives the data sent by the terminal device at a preset time interval.
  • the network device does not receive the data sent by the terminal device through the PUSCH, determine whether the time when the terminal device does not send data this time is within the measurement gap window according to the measurement gap configuration information of the terminal device.
  • the measurement gap configuration information includes the measurement gap. Measurement period, measurement gap window and measurement start time.
  • the measurement gap configuration information includes the measurement period of the measurement gap, the measurement gap window, and the measurement start time.
  • the measurement gap window is 6 ms
  • the measurement period is 40 ms
  • the measurement gap configuration information is configured by the network device to the terminal device. As a configuration method, the method in this embodiment may further include:
  • the terminal device sends a measurement report to the network device indicating that the signal value of the current serving cell of the terminal device is less than a preset threshold.
  • the network device sends measurement gap configuration information to the terminal device when it receives a measurement report sent by the terminal device to indicate that the current serving cell signal value of the terminal device is less than a preset threshold.
  • a measurement report is sent to the network device to inform the network device that the current serving cell signal is poor, and the network device receives In the measurement report, the measurement gap configuration information is sent to the terminal device.
  • the terminal device After receiving the measurement gap configuration information, the terminal device starts the measurement of the inter-frequency or inter-system to perform inter-frequency or inter-system switching.
  • the measurement gap configuration information is configured by the network device to the terminal device, so the network device is known to configure the measurement gap configuration information of the terminal device.
  • the network device determines, according to the measurement gap configuration information of the terminal device, whether the time that the terminal device does not send data this time is within the measurement gap window, which may specifically be:
  • the network device calculates whether the time when the terminal device does not send data this time is within the measurement gap window. For example, the measurement gap window is 6 ms, and the measurement period is 80 ms. According to the scheduling request sent to the terminal device, the device can know the time of each time the terminal device transmits data. From the measurement start time, the network device can calculate whether the time that the terminal device does not send data this time is within 6ms in an 80ms measurement cycle Within the measurement gap window.
  • the network device determines that the time when the terminal device does not send data this time is within the measurement gap window, it sends the redundancy version number used for the next HARQ retransmission to the terminal device.
  • the network device sending the redundancy version number used for the next HARQ retransmission to the terminal device may be: the network device sends a PDCCH to the terminal device, and the PDCCH carries the redundancy version number.
  • the PDCCH may specifically indicate the redundancy version number to be used by the terminal device for the next HARQ retransmission through downlink control information (Downlink Control Information, DCI) 0.
  • the terminal device receives the PDCCH sent by the network device, where the PDCCH carries the redundancy version number.
  • the terminal device uses the HARQ channel occupied by the data transmission that is not performed this time to retransmit data to the network device according to the received redundant version number.
  • the method in this embodiment may further include:
  • the network device sets a measurement gap conflict identifier for each uplink HARQ channel of the terminal device, and sets the initial value of the measurement gap conflict identifier to a first value.
  • the network device sets the initial value of the measurement gap conflict identifier of the eight uplink HARQ channels to the first value.
  • the value of the measurement gap conflict identifier of the HARQ channel occupied by the terminal device that does not perform data transmission this time is set to the second value, where,
  • the HARQ channel whose measurement gap conflict value is the first value uses non-adaptive retransmission at the next retransmission, and the HARQ channel whose measurement gap conflict value is the second value uses the adaptive at the next retransmission Retransmission.
  • the first value is 0, the second value is 1, and the HARQ channel whose measurement gap conflict value is 0 uses non-adaptive retransmission during the next retransmission, and the terminal device uses non-adaptive retransmission during the next retransmission.
  • the last PUSCH transmission resource is retransmitted, and the redundancy version number used during the retransmission does not change cumulatively.
  • the HARQ channel with the value of the measurement gap collision identifier of 1 uses adaptive retransmission during the next retransmission.
  • the network device sends the redundant version number for the next HARQ retransmission to the terminal device by instructing the terminal device
  • the redundancy version number used in the next HARQ retransmission the terminal device retransmits the data according to the redundancy version number indicated by the network device, thus ensuring that the redundancy version numbers on both sides of the network device and the terminal device are consistent, thereby eliminating the network device Risk of inconsistency with the redundant version numbers on both sides of the terminal equipment, reducing the PUSCH bit error rate.
  • the first value and the second value may be other, and this embodiment of the present application does not limit this.
  • the initial value of the measurement gap conflict indicator is the first value
  • the value of the measurement gap conflict identifier of the HARQ channel occupied by the terminal device this time without data transmission is set to the second value, so that when each HARQ channel is used for data transmission, the value of the measurement gap conflict identifier can be determined according to the value of the measurement gap conflict identifier
  • the next data retransmission method of each HARQ channel can improve the efficiency of data retransmission, and can also record the historical status of each data transmission of the terminal device.
  • the terminal device after sending the scheduling request to the terminal device through the network device, when the data sent by the terminal device through the PUSCH is not received, it is determined that the terminal device does not send data this time according to the measurement gap configuration information of the terminal device Whether the time is within the measurement gap window, if it is, the redundant version number used for the next HARQ retransmission is sent to the terminal device.
  • the terminal device can retransmit the data according to the redundant version number indicated by the network device, so the network device and The redundant version numbers on both sides of the terminal device are consistent, thereby eliminating the risk of inconsistent redundant version numbers on both sides of the network device and the terminal device, and reducing the PUSCH bit error rate.
  • FIG. 3 is an interaction flowchart of an embodiment of a communication method provided by this application. As shown in FIG. 3, the method in this embodiment may include:
  • the terminal device sends a measurement report to the network device indicating that the signal value of the current serving cell of the terminal device is less than a preset threshold.
  • the network device When receiving the measurement report sent by the terminal device, the network device sends measurement gap configuration information to the terminal device.
  • the measurement gap configuration information includes the measurement period of the measurement gap, the measurement gap window, and the measurement start time.
  • the terminal device After receiving the measurement gap configuration information, the terminal device starts measurement of different frequencies or different systems to perform switching between different frequencies or different systems.
  • the network device sets a measurement gap conflict identifier for each uplink HARQ channel of the terminal device, and sets the initial value of the measurement gap conflict identifier to the first value.
  • the network device sets the initial value of the measurement gap conflict identifier of the eight uplink HARQ channels to the first value.
  • the network device sends a scheduling request to the terminal device through the PDCCH.
  • the scheduling request is used to instruct the terminal device to send data to the network device according to a preset time interval.
  • the preset time interval is known by the network device and the terminal device, or is carried in the scheduling request.
  • the terminal device sends data to the network device through the PUSCH according to a preset time interval.
  • the terminal device After receiving the call request, the terminal device starts to send data to the network device at a preset time interval, and accordingly, the network device receives the data sent by the terminal device at the preset time interval.
  • the network device determines that the time when the terminal device does not perform data transmission this time is within the measurement gap window, sets the value of the measurement gap conflict identifier of the HARQ channel occupied by the terminal device that does not perform data transmission this time to the second value.
  • the HARQ channel with the first value of the measurement gap collision identifier uses non-adaptive retransmission during the next retransmission
  • the HARQ channel with the second value of the measurement gap collision identifier uses adaptive retransmission during the next retransmission .
  • the network device determines that the value of the measurement gap conflict identifier of the HARQ channel is the second value, it is determined that the HARQ channel uses adaptive retransmission.
  • the terminal device sends the redundancy version number used in this HARQ retransmission.
  • the network device may send a PDCCH to the terminal device, and the PDCCH carries the redundancy version number.
  • the terminal device receives the PDCCH sent by the network device, where the PDCCH carries the redundancy version number.
  • the terminal device uses the HARQ channel to retransmit data to the network device according to the received redundant version number.
  • the communication method provided in this embodiment sets a measurement gap conflict identifier for each uplink HARQ channel of the terminal device through the network device, and sets the initial value of the measurement gap conflict identifier as the first value.
  • calculate whether the time that the terminal device does not send data this time is within the measurement gap window, if it is, Then, the value of the measurement gap conflict identifier of the HARQ channel occupied by the terminal device this time without data transmission is set to the second value, and the HARQ channel whose measurement gap conflict identifier value is the first value uses non-adaptive at the next retransmission Retransmission:
  • the HARQ channel with the second value of the measurement gap conflict identifier uses adaptive retransmission in the next retransmission.
  • the network device determines this time When HARQ uses adaptive retransmission, the redundant version number used for this HARQ retransmission is sent to the terminal device.
  • the terminal device can perform data retransmission according to the redundant version number sent by the network device, thus ensuring the network device and terminal device The redundant version numbers on both sides are the same, thereby eliminating the risk of inconsistent redundant version numbers on both sides of the network device and the terminal device, and reducing the PUSCH bit error rate.
  • the terminal device when the network device determines that the time when the terminal device does not send data this time is within the measurement gap window, the terminal device does not perform this time
  • the value of the measurement gap conflict identifier of the HARQ channel occupied by data transmission is set to the second value, so that when each HARQ channel is used for data transmission, the next data for each HARQ channel can be determined according to the value of the measurement gap conflict identifier
  • the retransmission method can improve the efficiency of data retransmission, and can also record the historical status of each data transmission of the terminal device.
  • the operations performed by the terminal device may also be implemented by components (such as chips and circuits) that can be used for the terminal, and the operations performed by the network device may also be implemented by components that can be used for the network device (for example, chip, circuit).
  • FIG. 4 is a schematic structural diagram of an embodiment of a network device provided by the present application.
  • the network device may also be a component (eg, chip, circuit) that can be used in a network device.
  • the network device of this embodiment may include : A sending module 11 and a processing module 12, wherein the sending module 11 is used to send a scheduling request to a terminal device through a PDCCH, and the scheduling request is used to instruct the terminal device to send data to a network device according to a preset time interval;
  • the processing module 12 is used to determine whether the time when the terminal device does not send data this time is within the measurement gap window according to the measurement gap configuration information of the terminal device when the data sent by the terminal device through PUSCH is not received,
  • the measurement gap configuration information includes the measurement period of the measurement gap, the measurement gap window, and the measurement start time;
  • the sending module 11 is further configured to: if the processing module 12 determines that the time when the terminal device does not send data this time is within a measurement gap window, send the next hybrid automatic retransmission request HARQ retransmission to the terminal device Transfer the redundant version number used.
  • the sending module 11 is also used to:
  • processing module 12 is used to:
  • the measurement gap window Based on the measurement period of the measurement gap, the measurement gap window, and the measurement start time, calculate whether the time during which the terminal device does not perform data transmission this time is within the measurement gap window.
  • processing module 12 is also used to:
  • the value of the measurement gap conflict identifier of the HARQ channel occupied by the terminal device that does not perform data transmission this time is set to the second value
  • the HARQ channel whose value of the measurement gap conflict identifier is the first value uses non-adaptive retransmission during the next retransmission, and the HARQ channel whose value of the measurement gap conflict identifier is the second value is used during the next retransmission Adaptive retransmission.
  • the sending module 11 is specifically used for:
  • the network device in this embodiment may be used to execute the technical solution of the method embodiment shown in FIG. 2 or FIG. 3, and its implementation principles and technical effects are similar.
  • For operations performed by each module reference may be made to the relevant description of the method embodiment. I will not repeat them here.
  • the modules here can also be replaced with components or circuits.
  • FIG. 5 is a schematic structural diagram of an embodiment of a terminal device provided by the present application.
  • the terminal device may also be a component (eg, chip, circuit) that can be used in the terminal device.
  • the terminal device in this embodiment may include : Receiving module 21 and sending module 22, where,
  • the receiving module 21 is used to receive the scheduling request sent by the network device through the physical downlink control channel PDCCH;
  • the sending module 22 is configured to send data to the network device through a physical uplink shared channel PUSCH according to a preset time interval;
  • the receiving module 21 is further configured to: receive a redundant version number used by the next hybrid automatic repeat request HARQ retransmission sent by the network device, where the redundant version number is when the network device has not received a terminal device
  • the measurement gap configuration information includes the measurement gap measurement Period, measurement gap window and measurement start time
  • the sending module 22 is further configured to: use the HARQ channel occupied by the data not sent this time to retransmit data to the network device according to the redundancy version number.
  • the sending module 22 is also used to:
  • the receiving module 21 is further configured to receive the measurement gap configuration information sent by the network device.
  • the receiving module 21 is specifically used for:
  • the terminal device of this embodiment may be used to execute the technical solution of the method embodiment shown in FIG. 2 or FIG. 3, and its implementation principles and technical effects are similar.
  • the operation of the implementation of each module may further refer to the related description of the method embodiment I won't repeat them here.
  • the modules here can also be replaced with components or circuits.
  • the present application may divide the function modules of the network device or the terminal device according to the above method example, for example, each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 6 is a schematic structural diagram of a network device provided by the present application.
  • the network device 200 includes:
  • the memory 201 is used to store program instructions, and the memory 201 may be a flash (flash memory).
  • the processor 202 is configured to call and execute program instructions in the memory to implement various steps of the corresponding network device in the communication method of FIG. 2 or FIG. 3. For details, refer to the related description in the foregoing method embodiment.
  • the input/output interface 203 may also be included.
  • the input/output interface 203 may include an independent output interface and an input interface, or an integrated interface that integrates input and output.
  • the output interface is used to output data, and the input interface is used to obtain input data.
  • the output data is the generic name output in the foregoing method embodiment, and the input data is the generic name input in the foregoing method embodiment.
  • the network device 200 may be used to execute various steps and/or processes corresponding to the corresponding network device in the foregoing method embodiments.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by the present application.
  • the terminal device 300 includes:
  • the memory 301 is used to store program instructions.
  • the memory 301 may be a flash (flash memory).
  • the processor 302 is configured to call and execute program instructions in the memory to implement various steps of the corresponding terminal device in the communication method of FIG. 2 or FIG. 3. For details, refer to the related description in the foregoing method embodiment.
  • the input/output interface 303 may also be included.
  • the input/output interface 303 may include an independent output interface and an input interface, or an integrated interface that integrates input and output.
  • the output interface is used to output data, and the input interface is used to obtain input data.
  • the output data is the generic name output in the foregoing method embodiment, and the input data is the generic name input in the foregoing method embodiment.
  • the terminal device 300 may be used to execute various steps and/or processes corresponding to the corresponding terminal device in the foregoing method embodiments.
  • the present application also provides a readable storage medium that stores execution instructions, and when at least one processor of the network device executes the execution instructions, the network device executes the communication method in the foregoing method embodiments.
  • the present application also provides a readable storage medium that stores execution instructions, and when at least one processor of the terminal device executes the execution instructions, the terminal device executes the communication method in the foregoing method embodiments.
  • the present application also provides a program product, the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the network device may read the execution instruction from the readable storage medium, and the execution of the execution instruction by the at least one processor causes the network device to implement the communication method in the foregoing method embodiments.
  • the present application also provides a program product, the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the terminal device may read the execution instruction from the readable storage medium, and the execution of the execution instruction by the at least one processor causes the terminal device to implement the communication method in the foregoing method embodiments.
  • the present application also provides a chip, the chip is connected to a memory, or the chip is integrated with a memory, and when the software program stored in the memory is executed, the communication method in the above method embodiment is implemented.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置。该方法包括:通过PDCCH向终端设备发送调度请求,调度请求用于指示终端设备根据预设的时间间隔向网络设备发送数据;在未接收到终端设备通过PUSCH发送的数据时,根据终端设备的测量间隙配置信息确定终端设备本次未进行数据发送的时间是否在测量间隙窗口内,测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;若确定终端设备本次未进行数据发送的时间在测量间隙窗口内,则向终端设备发送下一次HARQ重传使用的冗余版本号。终端设备可根据网络设备指示的冗余版本号进行数据重传,从而可消除网络设备和终端设备两侧冗余版本号不一致的风险,降低PUSCH误码率。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在移动通信系统中,用户设备(User Equipment,UE)在进行异频或异系统切换之前,首先要进行异频或异系统的测量。当UE所在的当前服务小区信号较差,异频或异系统测量被触发后,基站(Evolutional Node B,eNB)会下发测量间隙(gap)配置指示给UE,测量gap配置指示包括测量gap的测量周期、测量gap的测量窗口和测量起始时间,比如,测量gap的测量窗口是6ms,测量周期为40ms或80ms。UE接收到测量gap配置指示后,UE按照测量gap配置指示启动测量gap。UE通常只有一个接收机,同一时刻只能在一个频点上接收信号,所以在测量gap窗口内,UE无法处理上下行所有信道,即UE不进行数据传输,例如测量gap周期为40ms时,UE在每40ms有连续的6ms无法处理上下行所有信道。
频分双工(Frequency Division Duplex,FDD)上行是同步混合自动重传请求(Hybrid Automatic Repeat Request,HARQ),同一HARQ通道的重传固定在8ms之后。物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)初传和重传会使用不同的冗余版本号,通信协议36.321中给出冗余版本序列为0、2、3、1,重传和重传的上一次传输按照所给出的冗余版本序列累加变化,以初传和重传为例,如初传使用冗余版本号0,则下一次重传使用冗余版本号2,冗余版本号代表传输的数据块包含不同的冗余部分,eNB通过合并携带不同冗余部分的数据块增加合并增益。
如果eNB上行调度时初传和重传完全避让测量gap影响,需要保证物理下行控制信道(Physical Downlink Control Channel,PDCCH)、PUSCH以及物理HARQ指示信道(Physical HARQ Indicator Channel,PHICH)都不落在测量gap窗口内,上行可调度子帧数大幅减少,上行速率下降明显。所以,eNB上行调度只会避免初传时的部分信道落在测量gap窗口内,PUSCH重传有可能落在测量gap窗口内。而通信协议36.321规定,若UE上行PUSCH传输是由于测量gap导致无法发送数据时,此HARQ通道下一次重传时会进行PUSCH非自适应重传,非自适应重传时,UE使用上一次PUSCH传输的资源进行重传,重传时使用的冗余版本号不累加变化。在实际应用中,可能会出现UE侧实现错误导致重传时使用的冗余版本号会根据冗余版本序列发生变化,而eNB侧根据通信协议36.321的规定重传时使用的冗余版本号不累加变化,因此存在eNB和UE两侧冗余版本号不一致的风险,导致PUSCH误码率抬升。
发明内容
本申请提供一种通信方法及装置,以消除网络设备和终端设备两侧冗余版本号不一致的风险,降低PUSCH误码率。
第一方面,本申请提供一种通信方法,包括:
通过PDCCH向终端设备发送调度请求,所述调度请求用于指示所述终端设备根据预设的时间间隔向网络设备发送数据;在未接收到所述终端设备通过PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;若确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则向所述终端设备发送下一次HARQ重传使用的冗余版本号。
通过第一方面提供的通信方法,网络设备向终端设备发送调度请求之后,在未接收到终端设备通过PUSCH发送的数据时,根据终端设备的测量间隙配置信息确定终端设备本次未进行数据发送的时间是否在测量间隙窗口内,若是,则向终端设备发送下一次HARQ重传使用的冗余版本号,终端设备可根据网络设备指示的冗余版本号进行数据重传,因此可保证网络设备和终端设备两侧的冗余版本号一致,从而可消除网络设备和终端设备两侧冗余版本号不一致的风险,降低PUSCH误码率。
在一种可能的设计中,所述方法还包括:
接收到所述终端设备发送的用于指示所述终端设备当前服务小区信号值小于预设阈值的测量报告时,向所述终端设备发送所述测量间隙配置信息。
在一种可能的设计中,所述根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内,包括:
根据测量间隙的测量周期、测量间隙窗口和测量起始时间,计算所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内。
在一种可能的设计中,所述方法还包括:
为所述终端设备的每个上行HARQ通道设置一测量间隙冲突标识,并设置所述测量间隙冲突标识的初始值为第一值;
若确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则将所述终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值;
其中,测量间隙冲突标识的值为所述第一值的HARQ通道在下一次重传时使用非自适应重传,测量间隙冲突标识的值为所述第二值的HARQ通道在下一次重传时使用自适应重传。
通过该实施方式提供的通信方法,通过为每个HARQ通道设置一测量间隙冲突标识,测量间隙冲突标识的初始值为第一值,当网络设备确定终端设备本次未进行数据发送的时间在测量间隙窗口内,则将终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值,从而在使用每个HARQ通道进行数据传输时,可根据测量间隙冲突标识的值来确定每个HARQ通道下一次进行数据重传的方式,可提高数据重传的效率,还可记录终端设备每一次数据传输的历史状态。
在一种可能的设计中,所述向所述终端设备发送下一次混合自动重传请求HARQ 重传使用的冗余版本号,包括:
向所述终端设备发送PDCCH,所述PDCCH中携带所述冗余版本号。
第二方面,本申请提供一种通信方法,包括:
接收到网络设备通过PDCCH发送的调度请求后,根据预设的时间间隔通过PUSCH向所述网络设备发送数据;接收所述网络设备发送的下一次HARQ重传使用的冗余版本号,所述冗余版本号为所述网络设备在未接收到终端设备通过PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内时发送的,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;使用本次未进行数据发送所占用的HARQ通道根据所述冗余版本号向所述网络设备重传数据。
通过第二方面提供的通信方法,终端设备接收到网络设备通过PDCCH发送的调度请求后,根据预设的时间间隔通过PUSCH向所述网络设备发送数据,接收所述网络设备发送的下一次HARQ重传使用的冗余版本号,使用本次未进行数据发送所占用的HARQ通道根据所述冗余版本号向所述网络设备重传数据。因此可保证网络设备和终端设备两侧的冗余版本号一致,从而可消除网络设备和终端设备两侧冗余版本号不一致的风险,降低PUSCH误码率。
在一种可能的设计中,所述方法还包括:
向所述网络设备发送用于指示终端设备当前服务小区信号值小于预设阈值的测量报告;
接收所述网络设备发送的所述测量间隙配置信息。
在一种可能的设计中,所述接收所述网络设备发送的下一次混合自动重传请求HARQ重传使用的冗余版本号,包括:
接收所述网络设备发送的PDCCH,所述PDCCH中携带所述冗余版本号。
第三方面,本申请提供一种网络设备,包括:
发送模块,用于通过PDCCH向终端设备发送调度请求,所述调度请求用于指示所述终端设备根据预设的时间间隔向网络设备发送数据;
处理模块,用于在未接收到所述终端设备通过PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;
所述发送模块还用于:若所述处理模块确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则向所述终端设备发送下一次HARQ重传使用的冗余版本号。
在一种可能的设计中,所述发送模块还用于:
接收到所述终端设备发送的用于指示所述终端设备当前服务小区信号值小于预设阈值的测量报告时,向所述终端设备发送所述测量间隙配置信息。
在一种可能的设计中,所述处理模块用于:
根据测量间隙的测量周期、测量间隙窗口和测量起始时间,计算所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内。
在一种可能的设计中,所述处理模块还用于:
为所述终端设备的每个上行HARQ通道设置一测量间隙冲突标识,并设置所述测量间隙冲突标识的初始值为第一值;
若确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则将所述终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值;
其中,测量间隙冲突标识的值为所述第一值的HARQ通道在下一次重传时使用非自适应重传,测量间隙冲突标识的值为所述第二值的HARQ通道在下一次重传时使用自适应重传。
在一种可能的设计中,所述发送模块具体用于:
向所述终端设备发送PDCCH,所述PDCCH中携带所述冗余版本号。
上述第三方面以及上述第三方面的各可能的设计中所提供的网络设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本申请提供一种终端设备,包括:
接收模块,用于接收网络设备通过PDCCH发送的调度请求;
发送模块,用于根据预设的时间间隔通过PUSCH向所述网络设备发送数据;
所述接收模块还用于:接收所述网络设备发送的下一次HARQ重传使用的冗余版本号,所述冗余版本号为所述网络设备在未接收到终端设备通过PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内时发送的,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;
所述发送模块还用于:使用本次未进行数据发送所占用的HARQ通道根据所述冗余版本号向所述网络设备重传数据。
在一种可能的设计中,所述发送模块还用于:
向所述网络设备发送用于指示终端设备当前服务小区信号值小于预设阈值的测量报告;
所述接收模块还用于:接收所述网络设备发送的所述测量间隙配置信息。
在一种可能的设计中,所述接收模块具体用于:
接收所述网络设备发送的PDCCH,所述PDCCH中携带所述冗余版本号。
上述第四方面以及上述第四方面的各可能的设计中所提供的终端设备,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第五方面,本申请提供一种网络设备,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第一方面及第一方面任一种可能的设计中的通信方法。
第六方面,本申请提供一种终端设备,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第二方面及第二方面任一种可能的设计 中的通信方法。
第七方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,网络设备执行第一方面及第一方面任一种可能的设计中的通信方法。
第八方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,终端设备执行第二方面及第二方面任一种可能的设计中的通信方法。
第九方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得网络设备实施第一方面及第一方面任一种可能的设计中的通信方法。
第十方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得终端设备实施第二方面及第二方面任一种可能的设计中的通信方法。
第十一方面,本申请提供一种芯片,芯片与存储器相连,或者芯片上集成有存储器,当存储器中存储的软件程序被执行时,实现第一方面及第一方面任一种可能的设计中或者第二方面及第二方面任一种可能的设计中的通信方法。
附图说明
图1为一种通信系统架构示意图;
图2为本申请提供的一种通信方法实施例的交互流程图;
图3为本申请提供的一种通信方法实施例的交互流程图;
图4为本申请提供的一种网络设备实施例的结构示意图;
图5为本申请提供的一种终端设备实施例的结构示意图;
图6为本申请提供的一种网络设备结构示意图;
图7为本申请提供的一种终端设备结构示意图。
具体实施方式
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(WideBand Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及第五代移动通信(the 5th Generation mobile communication technology,5G)系统。
本申请涉及的通信装置主要包括网络设备和终端设备。
网络设备:可以是基站,或者接入点,或者接入网设备,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。网络设备可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。网络设备还可协调对空中接口的属性管理。例如,网络设备可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站,例如gNB等,在此并不限定。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经RAN与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
图1为一种通信系统架构示意图,如图1所示,本申请实施例的通信系统可以包括一个或多个网络设备和一个或多个终端设备,网络设备和终端设备之间进行通信。
相关技术中,若按照通信协议36.321的规定,UE上行PUSCH传输是由于测量间隙导致无法发送数据时,即UE在测量间隙窗口内无法发送数据,发送数据所使用的HARQ通道下一次重传时会进行PUSCH非自适应重传,非自适应重传时,UE使用上一次PUSCH传输的资源进行重传,重传时使用的冗余版本号不累加变化,在实际应用中,可能会出现UE侧实现错误导致重传时使用的冗余版本号会根据冗余版本序列发生变化,而eNB侧根据通信协议36.321的规定重传时使用的冗余版本号不累加变化,因此存在eNB和UE两侧冗余版本号不一致的风险,导致PUSCH误码率抬升。为解决这一问题,本申请实施例提供一种通信方法,网络设备未接收到终端设备PUSCH发送的数据时,通过在确定出终端设备未进行数据发送的时间在测量间隙窗口内时,指示终端设备下一次HARQ重传使用的冗余版本号,终端设备根据网络设备指示的冗余版本号进行数据重传,因此可保证网络设备和终端设备两侧的冗余版本号一致,从而可消除网络设备和终端设备两侧冗余版本号不一致的风险,降低PUSCH误码率。下面结合附图详细说明本申请实施例提供的通信方法及装置。
图2为本申请提供的一种通信方法实施例的交互流程图,如图2所示,本实施例的方法可以包括:
S101、网络设备通过PDCCH向终端设备发送调度请求,调度请求用于指示终端 设备根据预设的时间间隔向网络设备发送数据。
S102、终端设备根据预设的时间间隔通过PUSCH向网络设备发送数据。
具体地,网络设备通过PDCCH向终端设备发送调度请求,该调度请求用于指示终端设备可向网络设备发送数据,终端设备接收到调用请求后,开始在预设的时间间隔上向网络设备发送数据,该预设的时间间隔是网络设备和终端设备已知的,或者携带在调度请求中,例如时间间隔为8ms,终端设备接收到调用请求后通过PUSCH向网络设备初传一次数据,若初传数据失败,则在8ms之后进行第一次重传,若第一次重传失败,则在第一次重传的8ms之后进行第二次重传。相应地,网络设备在预设的时间间隔上接收终端设备发送的数据。
S103、网络设备未接收到终端设备通过PUSCH发送的数据时,根据终端设备的测量间隙配置信息确定终端设备本次未进行数据发送的时间是否在测量间隙窗口内,测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间。
具体地,例如,网络设备在终端设备初传数据的时间未接收到数据,则根据终端设备的测量间隙配置信息确定终端设备初传数据的时间是否在测量间隙窗口内。测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间,例如,测量间隙窗口是6ms,测量周期为40ms,每40ms有连续的6ms是用于终端设备进行异频或异系统的测量的,每40ms有连续的6ms终端设备是不进行数据发送的,因此网络设备在这6ms内是接收不到终端设备发送的数据的。其中的测量间隙配置信息是网络设备配置给终端设备的,作为一种配置的方式,本实施例的方法还可以包括:
终端设备向网络设备发送用于指示终端设备当前服务小区信号值小于预设阈值的测量报告。
网络设备接收到终端设备发送的用于指示终端设备当前服务小区信号值小于预设阈值的测量报告时,向终端设备发送测量间隙配置信息。
具体地,当终端设备所在的当前服务小区信号较差,即终端设备当前服务小区信号值小于预设阈值时,向网络设备发送测量报告,告知网络设备当前服务小区信号较差,网络设备接收到测量报告时,向终端设备发送测量间隙配置信息,终端设备接收到测量间隙配置信息后,启动异频或异系统的测量,以进行异频或异系统切换。该测量间隙配置信息时网络设备配置给终端设备的,因此网络设备是已知配置给该终端设备的测量间隙配置信息的。
可选的,S103中网络设备根据终端设备的测量间隙配置信息确定终端设备本次未进行数据发送的时间是否在测量间隙窗口内,具体可以为:
网络设备根据测量间隙的测量周期、测量间隙窗口和测量起始时间,计算终端设备本次未进行数据发送的时间是否在测量间隙窗口内,例如,测量间隙窗口是6ms,测量周期为80ms,网络设备根据向终端设备发送的调度请求可获知终端设备每一次传输数据的时间,从测量起始时间开始,网络设备可计算出终端设备本次未进行数据发送的时间是否在一个80ms测量周期中6ms的测量间隙窗口内。
S104、若网络设备确定终端设备本次未进行数据发送的时间在测量间隙窗口内,则向终端设备发送下一次HARQ重传使用的冗余版本号。
具体地,作为一种可实施的方式,网络设备向终端设备发送下一次HARQ重传使 用的冗余版本号可以是:网络设备向所述终端设备发送PDCCH,所述PDCCH中携带所述冗余版本号。例如,具体可以是通过下行控制信息(Downlink Control Information,DCI)0指示终端设备下一次HARQ重传使用的冗余版本号。相应地,终端设备接收网络设备发送的PDCCH,所述PDCCH中携带所述冗余版本号。
S105、终端设备使用本次未进行数据发送所占用的HARQ通道根据所接收到的冗余版本号向网络设备重传数据。
本实施例中,可选的,在S101之前或之后,本实施例的方法还可以包括:
S106、网络设备为所述终端设备的每个上行HARQ通道设置一测量间隙冲突标识,并设置所述测量间隙冲突标识的初始值为第一值。
具体地,同一HARQ通道的重传固定在8ms之后,上行HARQ通道一共有8个,网络设备设置这8个上行HARQ通道的测量间隙冲突标识的初始值为第一值。
S107、若确定终端设备本次未进行数据发送的时间在测量间隙窗口内,则将终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值,其中,测量间隙冲突标识的值为所述第一值的HARQ通道在下一次重传时使用非自适应重传,测量间隙冲突标识的值为所述第二值的HARQ通道在下一次重传时使用自适应重传。
具体地,例如,第一值为0,第二值为1,测量间隙冲突标识的值为0的HARQ通道在下一次重传时使用非自适应重传,非自适应重传时,终端设备使用上一次PUSCH传输的资源进行重传,重传时使用的冗余版本号不累加变化。测量间隙冲突标识的值为1的HARQ通道在下一次重传时使用自适应重传,自适应重传时,网络设备向终端设备发送下一次HARQ重传使用的冗余版本号,通过指示终端设备下一次HARQ重传使用的冗余版本号,终端设备根据网络设备指示的冗余版本号进行数据重传,因此可保证网络设备和终端设备两侧的冗余版本号一致,从而可消除网络设备和终端设备两侧冗余版本号不一致的风险,降低PUSCH误码率。第一值和第二值还可以是其它,本申请实施例对此不做限制。
本实施例中,通过为每个HARQ通道设置一测量间隙冲突标识,测量间隙冲突标识的初始值为第一值,当网络设备确定终端设备本次未进行数据发送的时间在测量间隙窗口内,则将终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值,从而在使用每个HARQ通道进行数据传输时,可根据测量间隙冲突标识的值来确定每个HARQ通道下一次进行数据重传的方式,可提高数据重传的效率,还可记录终端设备每一次数据传输的历史状态。
本实施例提供的通信方法,通过网络设备向终端设备发送调度请求之后,在未接收到终端设备通过PUSCH发送的数据时,根据终端设备的测量间隙配置信息确定终端设备本次未进行数据发送的时间是否在测量间隙窗口内,若是,则向终端设备发送下一次HARQ重传使用的冗余版本号,终端设备可根据网络设备指示的冗余版本号进行数据重传,因此可保证网络设备和终端设备两侧的冗余版本号一致,从而可消除网络设备和终端设备两侧冗余版本号不一致的风险,降低PUSCH误码率。
下面采用一个具体的实施例,对图2所示方法实施例的技术方案进行详细说明。
图3为本申请提供的一种通信方法实施例的交互流程图,如图3所示,本实施例 的方法可以包括:
S201、终端设备向网络设备发送用于指示终端设备当前服务小区信号值小于预设阈值的测量报告。
S202、网络设备接收到终端设备发送的该测量报告时,向终端设备发送测量间隙配置信息,测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间。
具体地,终端设备接收到测量间隙配置信息后,启动异频或异系统的测量,以进行异频或异系统切换。
S203、网络设备为终端设备的每个上行HARQ通道设置一测量间隙冲突标识,并设置测量间隙冲突标识的初始值为第一值。
具体地,同一HARQ通道的重传固定在8ms之后,上行HARQ通道一共有8个,网络设备设置这8个上行HARQ通道的测量间隙冲突标识的初始值为第一值。
S204、网络设备通过PDCCH向终端设备发送调度请求,调度请求用于指示终端设备根据预设的时间间隔向网络设备发送数据。
具体地,该预设的时间间隔是网络设备和终端设备已知的,或者携带在调度请求中。
S205、终端设备根据预设的时间间隔通过PUSCH向网络设备发送数据。
具体地,终端设备接收到调用请求后,开始在预设的时间间隔上向网络设备发送数据,相应地,网络设备在预设的时间间隔上接收终端设备发送的数据。
S206、网络设备未接收到终端设备通过PUSCH发送的数据时,根据测量间隙的测量周期、测量间隙窗口和测量起始时间,计算终端设备本次未进行数据发送的时间是否在测量间隙窗口内。
S207、若网络设备确定终端设备本次未进行数据发送的时间在测量间隙窗口内,将终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值。
其中,测量间隙冲突标识的值为第一值的HARQ通道在下一次重传时使用非自适应重传,测量间隙冲突标识的值为第二值的HARQ通道在下一次重传时使用自适应重传。
S208、本次未进行数据发送所占用的HARQ通道8ms后进行重传时,网络设备确定HARQ通道的测量间隙冲突标识的值为第二值时,确定本次HARQ使用自适应重传,则向终端设备发送本次HARQ重传使用的冗余版本号。
具体地,可以是网络设备向所述终端设备发送PDCCH,PDCCH中携带所述冗余版本号。相应地,终端设备接收网络设备发送的PDCCH,所述PDCCH中携带所述冗余版本号。
S209、终端设备使用HARQ通道根据所接收到的冗余版本号向网络设备重传数据。
本实施例提供的通信方法,通过网络设备为终端设备的每个上行HARQ通道设置一测量间隙冲突标识,并设置测量间隙冲突标识的初始值为第一值,网络设备向终端设备发送调度请求之后,在未接收到终端设备通过PUSCH发送的数据时,根据测量间隙的测量周期、测量间隙窗口和测量起始时间,计算终端设备本次未进行数据发送 的时间是否在测量间隙窗口内,若是,则将终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值,测量间隙冲突标识的值为第一值的HARQ通道在下一次重传时使用非自适应重传,测量间隙冲突标识的值为第二值的HARQ通道在下一次重传时使用自适应重传,本次未进行数据发送所占用的HARQ通道8ms后进行重传时,网络设备确定本次HARQ使用自适应重传时,则向终端设备发送本次HARQ重传使用的冗余版本号,终端设备可根据网络设备发送的冗余版本号进行数据重传,因此可保证网络设备和终端设备两侧的冗余版本号一致,从而可消除网络设备和终端设备两侧冗余版本号不一致的风险,降低PUSCH误码率。而且,通过为每个HARQ通道设置一初始值为第一值的测量间隙冲突标识,当网络设备确定终端设备本次未进行数据发送的时间在测量间隙窗口内,则将终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值,从而在使用每个HARQ通道进行数据传输时,可根据测量间隙冲突标识的值来确定每个HARQ通道下一次进行数据重传的方式,可提高数据重传的效率,还可记录终端设备每一次数据传输的历史状态。
可以理解的是,上述各个方法实施例中,由终端设备执行的操作也可以由可用于终端的部件(例如芯片,电路)实现,由网络设备执行的操作也可以由可用于网络设备的部件(例如芯片,电路)实现。
图4为本申请提供的一种网络设备实施例的结构示意图,该网络设备也可以为可用于网络设备的部件(例如芯片,电路),如图4所示,本实施例的网络设备可以包括:发送模块11和处理模块12,其中,发送模块11用于通过PDCCH向终端设备发送调度请求,所述调度请求用于指示所述终端设备根据预设的时间间隔向网络设备发送数据;
处理模块12用于在未接收到所述终端设备通过PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;
所述发送模块11还用于:若所述处理模块12确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则向所述终端设备发送下一次混合自动重传请求HARQ重传使用的冗余版本号。
可选的,发送模块11还用于:
接收到所述终端设备发送的用于指示所述终端设备当前服务小区信号值小于预设阈值的测量报告时,向所述终端设备发送所述测量间隙配置信息。
可选的,处理模块12用于:
根据测量间隙的测量周期、测量间隙窗口和测量起始时间,计算所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内。
可选的,处理模块12还用于:
为所述终端设备的每个上行HARQ通道设置一测量间隙冲突标识,并设置所述测量间隙冲突标识的初始值为第一值;
若确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则将所述终 端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值;
其中,测量间隙冲突标识的值为所述第一值的HARQ通道在下一次重传时使用非自适应重传,测量间隙冲突标识的值为所述第二值的HARQ通道在下一次重传时使用自适应重传。
可选的,发送模块11具体用于:
向所述终端设备发送PDCCH,所述PDCCH中携带所述冗余版本号。
本实施例的网络设备,可以用于执行图2或图3所示方法实施例的技术方案,其实现原理和技术效果类似,其中各个模块实现的操作可以进一步参考方法实施例的相关描述,此处不再赘述。此处的模块也可以替换为部件或者电路。
图5为本申请提供的一种终端设备实施例的结构示意图,该终端设备也可以为可用于终端设备的部件(例如芯片,电路),如图5所示,本实施例的终端设备可以包括:接收模块21和发送模块22,其中,
接收模块21用于接收网络设备通过物理下行控制信道PDCCH发送的调度请求;
发送模块22用于根据预设的时间间隔通过物理上行链路共享信道PUSCH向所述网络设备发送数据;
所述接收模块21还用于:接收所述网络设备发送的下一次混合自动重传请求HARQ重传使用的冗余版本号,所述冗余版本号为所述网络设备在未接收到终端设备通过PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内时发送的,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;
所述发送模块22还用于:使用本次未进行数据发送所占用的HARQ通道根据所述冗余版本号向所述网络设备重传数据。
可选的,发送模块22还用于:
向所述网络设备发送用于指示终端设备当前服务小区信号值小于预设阈值的测量报告;
所述接收模块21还用于:接收所述网络设备发送的所述测量间隙配置信息。
可选的,接收模块21具体用于:
接收所述网络设备发送的PDCCH,所述PDCCH中携带所述冗余版本号。
本实施例的终端设备,可以用于执行图2或图3所示方法实施例的技术方案,其实现原理和技术效果类似,其中各个模块的实现的操作可以进一步参考方法实施例的相关描述,此处不再赘述。此处的模块也可以替换为部件或者电路。
本申请可以根据上述方法示例对网络设备或终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请各实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图6为本申请提供的一种网络设备结构示意图,该网络设备200包括:
存储器201,用于存储程序指令,该存储器201可以是flash(闪存)。
处理器202,用于调用并执行存储器中的程序指令,以实现图2或图3的通信方法中对应网络设备的各个步骤。具体可以参见前面方法实施例中的相关描述。
还可以包括输入/输出接口203。输入/输出接口203可以包括独立的输出接口和输入接口,也可以为集成输入和输出的集成接口。其中,输出接口用于输出数据,输入接口用于获取输入的数据,上述输出的数据为上述方法实施例中输出的统称,输入的数据为上述方法实施例中输入的统称。
该网络设备200可以用于执行上述方法实施例中相应的网络设备对应的各个步骤和/或流程。
图7为本申请提供的一种终端设备结构示意图,该终端设备300包括:
存储器301,用于存储程序指令,该存储器301可以是flash(闪存)。
处理器302,用于调用并执行存储器中的程序指令,以实现图2或图3的通信方法中对应终端设备的各个步骤。具体可以参见前面方法实施例中的相关描述。
还可以包括输入/输出接口303。输入/输出接口303可以包括独立的输出接口和输入接口,也可以为集成输入和输出的集成接口。其中,输出接口用于输出数据,输入接口用于获取输入的数据,上述输出的数据为上述方法实施例中输出的统称,输入的数据为上述方法实施例中输入的统称。
该终端设备300可以用于执行上述方法实施例中相应的终端设备对应的各个步骤和/或流程。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,网络设备执行上述方法实施例中的通信方法。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,终端设备执行上述方法实施例中的通信方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。网络设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得网络设备实施上述方法实施例中的通信方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得终端设备实施上述方法实施例中的通信方法。
本申请还提供一种芯片,所述芯片与存储器相连,或者所述芯片上集成有存储器,当所述存储器中存储的软件程序被执行时,实现上述方法实施例中的通信方法。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据 中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (20)

  1. 一种通信方法,其特征在于,包括:
    通过物理下行控制信道PDCCH向终端设备发送调度请求,所述调度请求用于指示所述终端设备根据预设的时间间隔向网络设备发送数据;
    在未接收到所述终端设备通过物理上行链路共享信道PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;
    若确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则向所述终端设备发送下一次混合自动重传请求HARQ重传使用的冗余版本号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收到所述终端设备发送的用于指示所述终端设备当前服务小区信号值小于预设阈值的测量报告时,向所述终端设备发送所述测量间隙配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内,包括:
    根据测量间隙的测量周期、测量间隙窗口和测量起始时间,计算所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    为所述终端设备的每个上行HARQ通道设置一测量间隙冲突标识,并设置所述测量间隙冲突标识的初始值为第一值;
    若确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则将所述终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值;
    其中,测量间隙冲突标识的值为所述第一值的HARQ通道在下一次重传时使用非自适应重传,测量间隙冲突标识的值为所述第二值的HARQ通道在下一次重传时使用自适应重传。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述向所述终端设备发送下一次混合自动重传请求HARQ重传使用的冗余版本号,包括:
    向所述终端设备发送PDCCH,所述PDCCH中携带所述冗余版本号。
  6. 一种通信方法,其特征在于,包括:
    接收到网络设备通过物理下行控制信道PDCCH发送的调度请求后,根据预设的时间间隔通过物理上行链路共享信道PUSCH向所述网络设备发送数据;
    接收所述网络设备发送的下一次混合自动重传请求HARQ重传使用的冗余版本号,所述冗余版本号为所述网络设备在未接收到终端设备通过PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内时发送的,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;
    使用本次未进行数据发送所占用的HARQ通道根据所述冗余版本号向所述网络设备重传数据。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送用于指示终端设备当前服务小区信号值小于预设阈值的测量报告;
    接收所述网络设备发送的所述测量间隙配置信息。
  8. 根据权利要求6或7所述的方法,其特征在于,所述接收所述网络设备发送的下一次混合自动重传请求HARQ重传使用的冗余版本号,包括:
    接收所述网络设备发送的PDCCH,所述PDCCH中携带所述冗余版本号。
  9. 一种网络设备,其特征在于,包括:
    发送模块,用于通过物理下行控制信道PDCCH向终端设备发送调度请求,所述调度请求用于指示所述终端设备根据预设的时间间隔向网络设备发送数据;
    处理模块,用于在未接收到所述终端设备通过物理上行链路共享信道PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;
    所述发送模块还用于:若所述处理模块确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则向所述终端设备发送下一次混合自动重传请求HARQ重传使用的冗余版本号。
  10. 根据权利要求9所述的网络设备,其特征在于,所述发送模块还用于:
    接收到所述终端设备发送的用于指示所述终端设备当前服务小区信号值小于预设阈值的测量报告时,向所述终端设备发送所述测量间隙配置信息。
  11. 根据权利要求9或10所述的网络设备,其特征在于,所述处理模块用于:
    根据测量间隙的测量周期、测量间隙窗口和测量起始时间,计算所述终端设备本次未进行数据发送的时间是否在测量间隙窗口内。
  12. 根据权利要求9所述的网络设备,其特征在于,所述处理模块还用于:
    为所述终端设备的每个上行HARQ通道设置一测量间隙冲突标识,并设置所述测量间隙冲突标识的初始值为第一值;
    若确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内,则将所述终端设备本次未进行数据发送所占用的HARQ通道的测量间隙冲突标识的值设置为第二值;
    其中,测量间隙冲突标识的值为所述第一值的HARQ通道在下一次重传时使用非自适应重传,测量间隙冲突标识的值为所述第二值的HARQ通道在下一次重传时使用自适应重传。
  13. 根据权利要求9-12任一项所述的网络设备,其特征在于,所述发送模块具体用于:
    向所述终端设备发送PDCCH,所述PDCCH中携带所述冗余版本号。
  14. 一种终端设备,其特征在于,包括:
    接收模块,用于接收网络设备通过物理下行控制信道PDCCH发送的调度请求;
    发送模块,用于根据预设的时间间隔通过物理上行链路共享信道PUSCH向所述网络设备发送数据;
    所述接收模块还用于:接收所述网络设备发送的下一次混合自动重传请求HARQ重传使用的冗余版本号,所述冗余版本号为所述网络设备在未接收到终端设备通过PUSCH发送的数据时,根据所述终端设备的测量间隙配置信息确定所述终端设备本次未进行数据发送的时间在测量间隙窗口内时发送的,所述测量间隙配置信息包括测量间隙的测量周期、测量间隙窗口和测量起始时间;
    所述发送模块还用于:使用本次未进行数据发送所占用的HARQ通道根据所述冗余版本号向所述网络设备重传数据。
  15. 根据权利要求14所述的终端设备,其特征在于,所述发送模块还用于:
    向所述网络设备发送用于指示终端设备当前服务小区信号值小于预设阈值的测量报告;
    所述接收模块还用于:接收所述网络设备发送的所述测量间隙配置信息。
  16. 根据权利要求14或15所述的终端设备,其特征在于,所述接收模块具体用于:
    接收所述网络设备发送的PDCCH,所述PDCCH中携带所述冗余版本号。
  17. 一种网络设备,其特征在于,包括:
    存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令执行权利要求1-5任一项所述的通信方法。
  18. 一种终端设备,其特征在于,包括:
    存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令执行权利要求6-8任一项所述的通信方法。
  19. 一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,当网络设备的至少一个处理器执行该执行指令时,所述网络设备执行权利要求1-5任一项所述的通信方法。
  20. 一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,当终端设备的至少一个处理器执行该执行指令时,所述终端设备执行权利要求6-8任一项所述的通信方法。
PCT/CN2018/117986 2018-11-28 2018-11-28 通信方法及装置 WO2020107278A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880096454.XA CN112602281B (zh) 2018-11-28 2018-11-28 通信方法及装置
EP18941478.2A EP3869717A4 (en) 2018-11-28 2018-11-28 COMMUNICATION PROCESS AND APPARATUS
PCT/CN2018/117986 WO2020107278A1 (zh) 2018-11-28 2018-11-28 通信方法及装置
US17/326,896 US11882566B2 (en) 2018-11-28 2021-05-21 Communications method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117986 WO2020107278A1 (zh) 2018-11-28 2018-11-28 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/326,896 Continuation US11882566B2 (en) 2018-11-28 2021-05-21 Communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2020107278A1 true WO2020107278A1 (zh) 2020-06-04

Family

ID=70854231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117986 WO2020107278A1 (zh) 2018-11-28 2018-11-28 通信方法及装置

Country Status (4)

Country Link
US (1) US11882566B2 (zh)
EP (1) EP3869717A4 (zh)
CN (1) CN112602281B (zh)
WO (1) WO2020107278A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220264622A1 (en) * 2019-07-19 2022-08-18 Lg Electronics Inc. Method and apparatus for performing measurement by user equipment in wireless communication system
CN115209557A (zh) * 2021-04-09 2022-10-18 华为技术有限公司 一种传输数据的方法及装置
CN116155463A (zh) * 2021-11-19 2023-05-23 维沃移动通信有限公司 Gap窗口的配置方法、装置、设备及介质
WO2023198039A1 (en) * 2022-04-13 2023-10-19 Mediatek Inc. Method and apparatus for data scheduling within measurement gaps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973418A (zh) * 2013-01-29 2014-08-06 中兴通讯股份有限公司 一种基于信道激活检测的传输方法及装置
WO2015175190A1 (en) * 2014-05-12 2015-11-19 Qualcomm Incorporated Inter-rat measurement, inter-frequency measurement and/or activity for a second sim of the ue during unnecessary retransmission time slots
CN105191389A (zh) * 2014-01-29 2015-12-23 三星电子株式会社 在移动通信系统中利用多个载波发送和接收数据的方法和装置
CN108028732A (zh) * 2015-09-24 2018-05-11 瑞典爱立信有限公司 用于配置的上行链路准予的lte harq反馈

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101025072B1 (ko) * 2004-12-30 2011-03-25 엘지에릭슨 주식회사 에이치에이알큐 방식을 사용하는 통신 시스템에서 최적의리던던시 버전 선택 방법
EP2183869B1 (en) * 2007-08-14 2017-10-04 Nokia Technologies Oy Resource scheduling enabling partially-constrained retransmission
WO2009157729A2 (en) * 2008-06-27 2009-12-30 Samsung Electronics Co., Ltd. A method of timing the harq feedback when the corresponding transmission overlaps with the measurement gaps in a wireless communication system
US9270409B2 (en) * 2012-03-09 2016-02-23 Blackberry Limited System and method for handling of an uplink transmission collision with an ACK/NACK signal
WO2014084638A1 (en) * 2012-11-28 2014-06-05 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in a wireless communication system
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
CN107889231B (zh) * 2016-09-30 2021-03-23 华为技术有限公司 免授权的传输上行信息的方法、网络设备和终端设备
CN108809547B (zh) * 2017-05-05 2020-09-01 维沃移动通信有限公司 一种数据传输方法、基站及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973418A (zh) * 2013-01-29 2014-08-06 中兴通讯股份有限公司 一种基于信道激活检测的传输方法及装置
CN105191389A (zh) * 2014-01-29 2015-12-23 三星电子株式会社 在移动通信系统中利用多个载波发送和接收数据的方法和装置
WO2015175190A1 (en) * 2014-05-12 2015-11-19 Qualcomm Incorporated Inter-rat measurement, inter-frequency measurement and/or activity for a second sim of the ue during unnecessary retransmission time slots
CN108028732A (zh) * 2015-09-24 2018-05-11 瑞典爱立信有限公司 用于配置的上行链路准予的lte harq反馈

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 36.321, vol. RAN WG2, no. V15.3.0, 1 October 2018 (2018-10-01), pages 1 - 127, XP051487508 *
See also references of EP3869717A4 *

Also Published As

Publication number Publication date
CN112602281A (zh) 2021-04-02
EP3869717A4 (en) 2021-10-27
EP3869717A1 (en) 2021-08-25
US20210289537A1 (en) 2021-09-16
CN112602281B (zh) 2021-11-09
US11882566B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2019091233A1 (zh) 一种带宽切换方法及装置
WO2020107278A1 (zh) 通信方法及装置
JP5380547B2 (ja) アップリンク半永続スケジューリングの明示的解放確認応答伝送
EP3520481B1 (en) Buffer management for wireless networks during handover
WO2020073756A1 (zh) 通信方法、装置、计算机可读介质及电子设备
WO2021012996A1 (zh) 信息传输方法及装置
WO2018171461A1 (zh) 信息传输方法、装置及系统
JPWO2016189916A1 (ja) 基地局
WO2018098762A1 (zh) 信息传输方法、基站和终端设备
WO2021155604A1 (zh) 信息处理方法及设备
WO2019157871A1 (zh) 一种无线回程网络、通信方法及装置
WO2021227798A1 (zh) 一种通信方法及装置
WO2022152092A1 (zh) 数据传输控制方法和装置
WO2022188437A1 (zh) 信息处理方法、装置及存储介质
WO2018120107A1 (zh) 通信方法、网络设备和终端设备
WO2018126410A1 (zh) 数据传输方法及终端与网络设备
US20220321274A1 (en) Information transmission method and device
WO2021114103A1 (zh) 建立双连接的方法和通信装置
CN111050383B (zh) 信号传输方法及装置
WO2020156002A1 (zh) 通信方法及通信装置
CN114501665A (zh) 一种处理信道冲突的方法及设备
WO2023143287A1 (zh) 数据传输方法、装置、设备及存储介质
WO2014179980A1 (zh) 混合自动重传请求harq反馈方法、用户设备及基站
WO2024041360A1 (zh) 报文处理方法、电子设备及存储介质
WO2014047892A1 (zh) 用于数据传输的方法、基站和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018941478

Country of ref document: EP

Effective date: 20210521

NENP Non-entry into the national phase

Ref country code: DE