WO2020105497A1 - Production method for copper particles used in bonding , paste used in bonding, and semiconductor device and electric and electronic component - Google Patents

Production method for copper particles used in bonding , paste used in bonding, and semiconductor device and electric and electronic component

Info

Publication number
WO2020105497A1
WO2020105497A1 PCT/JP2019/044166 JP2019044166W WO2020105497A1 WO 2020105497 A1 WO2020105497 A1 WO 2020105497A1 JP 2019044166 W JP2019044166 W JP 2019044166W WO 2020105497 A1 WO2020105497 A1 WO 2020105497A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
copper
bonding
compound
copper particles
Prior art date
Application number
PCT/JP2019/044166
Other languages
French (fr)
Japanese (ja)
Inventor
知直 菊池
勇哉 似内
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2020105497A1 publication Critical patent/WO2020105497A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present disclosure relates to a method for manufacturing copper particles for bonding, a bonding paste, and a semiconductor device and an electric / electronic component manufactured by using the bonding paste.
  • Patent Document 1 discloses a copper paste containing copper composite particles in which copper hydride fine particles having secondary particles having an average particle diameter of 20 to 350 nm are attached to surfaces of metallic copper particles having an average particle diameter of primary particles of 1 to 20 ⁇ m. Is disclosed.
  • One aspect of the present disclosure has been made in view of such circumstances, and includes a method for manufacturing copper particles for bonding having high sinterability and thermal conductivity, and copper particles for bonding obtained by the manufacturing method.
  • a bonding paste and the bonding paste By using a bonding paste and the bonding paste, a semiconductor device and an electric / electronic component having high bonding strength and excellent reliability are provided.
  • a method for producing copper particles for bonding which has a step of further forming a copper layer on the surface of (A) metallic copper powder by a liquid phase reduction method.
  • [4] The method for producing copper particles for bonding according to any one of the above [1] to [3], wherein (D) an organic protective compound is further added in the step.
  • [5] The method for producing copper particles for bonding according to the above [4], wherein the (D) organic protective compound is at least one selected from carboxylic acids, alkylamines, and carboxylic acid amine salts.
  • [6] A bonding paste containing the bonding copper particles obtained by the manufacturing method according to any one of the above [1] to [5].
  • [7] A semiconductor device bonded by using the bonding paste according to the above [6].
  • [8] An electric / electronic component joined by using the joining paste according to the above [6].
  • a method of manufacturing a copper particle for bonding having high sinterability and thermal conductivity, a bonding paste containing the copper particles for bonding obtained by the manufacturing method, and a bonding paste by using the bonding paste It is possible to provide a semiconductor device and electric / electronic components having high bonding strength and excellent reliability.
  • Example 2 is an image of a cross section obtained by photographing the copper particles 1 obtained in Synthesis Example 1 with a scanning electron microscope (SEM) (magnification: 20,000 times).
  • the bonding paste of Example 1 is cured at 200 ° C. for 60 minutes, the obtained sintered film is photographed with a scanning electron microscope (SEM) (magnification: 20,000 times), and is an image of a cross section obtained.
  • 3 is an image of a cross section obtained by curing the bonding paste of Comparative Example 1 at 200 ° C. for 60 minutes, photographing the obtained sintered film with a scanning electron microscope (SEM) (magnification: 20,000 times).
  • the method for producing copper particles for bonding according to the present disclosure has a step of further forming a copper layer on the surface of (A) metallic copper powder by a liquid phase reduction method.
  • a new copper layer is formed on the surface of the (A) metallic copper powder while suppressing surface oxidation of the (A) metallic copper powder in the liquid phase.
  • Copper particles for bonding (hereinafter, also simply referred to as copper particles) excellent in sinterability and thermal conductivity can be obtained.
  • the method for producing copper particles for bonding includes a step (hereinafter, also simply referred to as a copper layer forming step) of further forming a copper layer on the surface of the (A) metallic copper powder by a liquid phase reduction method. If it does, it will not be specifically limited.
  • a step hereinafter, also simply referred to as a copper layer forming step
  • (A) metallic copper powder, (B) copper compound, and (C) reducing compound are mixed in the liquid phase.
  • the copper compound (B) is reduced by the reducing compound (C), and the metallic copper released from the copper compound (B) is deposited on the surface of the metallic copper powder (A) to form a copper layer.
  • the liberated metallic copper may be deposited on the surface of the (A) metallic copper powder, it does not deposit on the surface of the (A) metallic copper powder and is present in the liquid phase as small-sized copper particles. You may.
  • the proportion of metallic copper deposited on the surface of (A) metallic copper powder can be determined by appropriately selecting (A) the amount of metallic copper powder, (B) the amount of copper compound, and the temperature condition for the reduction reaction. Can be adjusted.
  • the metallic copper powder is not particularly limited, and is prepared by a known method such as an atomizing method, an electrolysis method, a chemical reduction method, a crushing / smashing method, a plasma rotary electrode method, a uniform droplet spraying method, a heat treatment method, or the like. What has been done can be used.
  • the metal copper powder (A) those prepared by an atomizing method, an electrolytic method, or a chemical reduction method may be used from the viewpoint of controlling the particle diameter and the particle shape.
  • the (A) metallic copper powder may have an average particle size of more than 0.5 ⁇ m and 30 ⁇ m or less, 0.5 ⁇ m or more and 20 ⁇ m or less, and 1 ⁇ m or more and 20 ⁇ m or less.
  • the shape of the metal copper powder (A) is not particularly limited, and examples thereof include spherical shape, plate shape, flake shape, scale shape, dendritic shape, rod shape, wire shape, and irregular shape.
  • the average particle diameter of the (A) metallic copper powder is a volume average particle diameter, and can be measured using a laser diffraction / scattering particle size distribution measuring device or the like.
  • the above (A) metallic copper powder may be treated with a lubricant or a rust preventive.
  • a typical example of such treatment is treatment with a carboxylic acid compound.
  • the carboxylic acid compound include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, palmitic acid, oleic acid, stearic acid, isostearic acid, oxalic acid, Malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, diglycolic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid, glycolic acid, lactic acid, Examples thereof include tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric
  • Carboxylic acid compounds are formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, palmitic acid, oleic acid, stearic acid, isostearic acid, from the viewpoint of enhancing sinterability.
  • Acid, oxalic acid, malonic acid, succinic acid may be glutaric acid, from the viewpoint of dispersibility and oxidation resistance, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, malonic acid, succinic acid, It may be glutaric acid.
  • the (B) copper compound is not particularly limited as long as it contains a copper atom.
  • Examples of the (B) copper compound include copper carboxylate, copper oxide, copper hydroxide, and copper nitride.
  • the copper compound (B) may be copper carboxylate from the viewpoint of uniformity during the reaction. These may be used alone or in combination of two or more.
  • Examples of the copper carboxylate include copper (I) formate, copper (I) acetate, copper (I) propionate, copper (I) butyrate, copper (I) valerate, copper (I) caproate, and copper (I) caprylate. ), Copper (I) caprate, copper (II) formate, copper (II) acetate, copper (II) propionate, copper (II) butyrate, copper (II) valerate, copper (II) caproate, caprylic acid Examples thereof include carboxylic acid copper anhydrides or hydrates such as copper (II), copper (II) caprate, and copper (II) citrate.
  • the copper carboxylate may be copper (II) acetate monohydrate from the viewpoint of productivity and availability. These may be used alone or in combination of two or more.
  • the copper carboxylate a commercially available product may be used, or a product obtained by synthesis may be used.
  • the synthesis of copper carboxylate can be carried out by a known method, for example, copper (II) hydroxide and a carboxylic acid compound can be obtained by mixing and heating.
  • Examples of copper oxide include copper (II) oxide and copper (I) oxide, and may be copper (I) oxide from the viewpoint of productivity.
  • Examples of copper hydroxide include copper (II) hydroxide and copper (I) hydroxide. These may be used alone or in combination of two or more.
  • the compounding amount of the (B) copper compound may be 0.1 to 10 mol, 0.5 to 5 mol, or 0.7 to 2 mol based on 1 mol of the (A) metal copper powder. Good.
  • the compounding amount of the (B) copper compound is 0.1 mol or more, the copper layer can be sufficiently formed on the surface of the (A) metallic copper powder, and when the compounding amount is 10 mol or less, the copper layer is formed on the surface. It is possible to suppress the aggregation of the (A) metal copper powders.
  • the reducing compound is not particularly limited as long as it has a reducing ability to reduce the copper compound (B) and release metallic copper from the copper compound (B).
  • the boiling point of the reducing compound (C) may be 70 ° C. or higher, or may be the heating temperature or higher in the heating step.
  • the (C) reducing compound may be a compound composed of carbon, hydrogen and oxygen, which is soluble in an organic solvent described later.
  • a typical example of such a (C) reducing compound is a hydrazine derivative.
  • the hydrazine derivative include hydrazine monohydrate, methylhydrazine, ethylhydrazine, n-propylhydrazine, i-propylhydrazine, n-butylhydrazine, i-butylhydrazine, sec-butylhydrazine, t-butylhydrazine, n.
  • -Pentylhydrazine i-pentylhydrazine, neo-pentylhydrazine, t-pentylhydrazine, n-hexylhydrazine, i-hexylhydrazine, n-heptylhydrazine, n-octylhydrazine, n-nonylhydrazine, n-decylhydrazine, n -Undecylhydrazine, n-dodecylhydrazine, cyclohexylhydrazine, phenylhydrazine, 4-methylphenylhydrazine, benzylhydrazine, 2-phenylethylhydrazine, 2-hydrazinoethanol, acetohydrazine and the like. These may be used alone or in combination of two or more.
  • the compounding amount of the reducing compound (C) may be 0.5 to 5 mol, 0.7 to 3 mol, or 0.9 to 2 mol with respect to 1 mol of the (B) copper compound. Good.
  • the compounding amount of the reducing compound (C) is 0.5 mol or more, the copper compound (B) can be sufficiently reduced and the metal copper powder (A) can be sufficiently coated, and the amount is 5 mol or less. In addition, it is possible to suppress an excessive reaction and suppress the aggregation of generated particles.
  • an organic protective compound may be further added.
  • Addition of the organic protective compound enhances sinterability.
  • the (D) organic protective compound is not particularly limited as long as it forms a complex with the (B) copper compound.
  • the organic protective compound (D) may be a compound containing at least one selected from a carboxylic acid, an alkylamine and a carboxylic acid amine salt, or may be a carboxylic acid amine salt, from the viewpoint of enhancing the sinterability. ..
  • the (D) organic protective compound serves as a reaction medium for the decomposition reaction of the (B) copper compound when the complex of the (B) copper compound and the (D) organic protective compound is heated and the (B) copper compound is decomposed. It works.
  • the (D) organic protective compound has a function of adhering to the surface of metallic copper liberated from the (B) copper compound by thermally decomposing and reducing the (B) copper compound and suppressing oxidation.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, oleic acid, stearic acid, isostearic acid and the like; oxalic acid.
  • Dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, diglycolic acid; benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid, etc.
  • Aromatic carboxylic acids such as glycolic acid, lactic acid, tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric acid, citric acid and isocitric acid.
  • the alkylamine is not particularly limited in its structure as long as it is an amine compound having an aliphatic hydrocarbon group such as an alkyl group as a group to be bonded to an amino group, and examples thereof include an alkylmonoamine having one amino group and an amino group. Examples thereof include alkyldiamine having two.
  • the alkyl group may further have a substituent.
  • alkyl monoamine examples include dipropylamine, butylamine, dibutylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, 3-aminopropyltriethoxysilane, dodecylamine, oleylamine and the like.
  • diamine examples include ethylenediamine, N, N-dimethylethylenediamine, N, N'-dimethylethylenediamine, N, N-diethylethylenediamine, N, N'-diethylethylenediamine, 1,3-propanediamine and 2,2-dimethyl-1.
  • alkyl monoamine such as primary amine (R 1 NH 2 ) or secondary amine (R 2 R 3 NH) efficiently reacts with the above-mentioned copper carboxylate to form a carboxylate copper-amine complex.
  • the carboxylic acid amine salt can be obtained from a carboxylic acid compound and an amine compound, and a commercially available product may be used, or a product obtained by synthesis in advance may be used. Further, the carboxylic acid amine salt may be generated in-situ by separately charging the carboxylic acid compound and the amine compound into the reaction vessel during the production process of the copper particles for bonding.
  • the carboxylic acid amine salt is produced by mixing a carboxylic acid compound and an amine compound in an organic solvent in an equivalent amount of functional groups and mixing them at a relatively mild temperature condition of room temperature (25 ° C.) to about 100 ° C. ..
  • the carboxylic acid amine salt may be taken out from the reaction solution containing the product by a distillation method or a recrystallization method.
  • the carboxylic acid compound constituting the carboxylic acid amine salt is not particularly limited as long as it is a compound having a carboxy group, and examples thereof include monocarboxylic acid, dicarboxylic acid, aromatic carboxylic acid, and hydroxy acid. These may be used alone or in combination of two or more.
  • the carboxylic acid compound may be a monocarboxylic acid or a dicarboxylic acid from the viewpoint of sinterability.
  • the thermal decomposition temperature of the carboxylic acid compound constituting the carboxylic acid amine salt may be 200 ° C. or lower, 190 ° C. or lower, or 180 ° C. or lower. If the thermal decomposition temperature is within this range, the sinterability will be good.
  • those having a boiling point in the lower temperature region than the thermal decomposition temperature may have a boiling point of 280 ° C. or lower, or 260 ° C. or lower, 240 It may be below the temperature. If the boiling point is in this range, the sinterability will be good.
  • carboxylic acid compounds constituting the carboxylic acid amine salt as monocarboxylic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, oleic acid, stearin Acid, isostearic acid, etc. are mentioned. These may be used alone or in combination of two or more.
  • the monocarboxylic acid may be formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, valeric acid, caproic acid. It may be caprylic acid, nonanoic acid, or octylic acid.
  • the dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, diglycolic acid and the like. Can be mentioned. These may be used alone or in combination of two or more. From the viewpoint of sinterability, the dicarboxylic acid may be oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, diglycolic acid, or oxalic acid, malonic acid, succinic acid, or diglycolic acid. May be.
  • aromatic carboxylic acids include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, and gallic acid. These may be used alone or in combination of two or more.
  • the aromatic carboxylic acid may be benzoic acid from the viewpoint of sinterability.
  • examples of the hydroxy acid include glycolic acid, lactic acid, tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric acid, citric acid, and isocitric acid. These may be used alone or in combination of two or more.
  • the hydroxy acid may be glycolic acid, lactic acid, or malic acid from the viewpoint of sinterability.
  • the amine compound constituting the carboxylic acid amine salt is not particularly limited as long as it is a compound having a carboxy group, and examples thereof include alkylmonoamine, alkyldiamine, and alkanolamine. These may be used alone or in combination of two or more.
  • the amine compound may be an alkylmonoamine or an alkanolamine from the viewpoint of improving the sinterability.
  • examples of the alkyl monoamine include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine and the like. These may be used alone or in combination of two or more.
  • the alkyl monoamine may be hexyl amine, octyl amine, or decyl amine from the viewpoint of improving the sinterability.
  • alkyldiamines include 1,1-methanediamine, 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine and 1,6-hexane. Examples thereof include diamine and 1,8-octanediamine. These may be used alone or in combination of two or more.
  • the alkyldiamine may be 1,4-butanediamine or 1,6-hexanediamine from the viewpoint of improving sinterability.
  • alkanolamines include monoethanolamine, monopropanolamine, monobutanolamine, 2- (2-aminoethylamino) ethanol, 2- (2-aminoethoxy) ethanol, 1-amino-2-propanol, 2-amino-1-propanol, 3-amino-1,2-propanediol and the like can be mentioned. These may be used alone or in combination of two or more.
  • the alkanolamine may be monoethanolamine, monopropanolamine, monobutanolamine, 1-amino-2-propanol or 2-amino-1-propanol from the viewpoint of improving the sinterability.
  • the boiling point of the organic protective compound (D) may be 70 ° C. or higher and 280 ° C. or lower, 100 ° C. or higher and 260 ° C. or lower, and 120 ° C. or higher and 240 ° C. or lower. When the boiling point of the organic protective compound (D) is within the above range, the obtained copper particles for bonding show even better sinterability.
  • the boiling point of the organic protective compound (D) may be equal to or higher than the heating temperature in the heating step and may be equal to or lower than the sintering temperature during use.
  • the compounding amount of the (D) organic protective compound may be 0.1 to 10 mol, 0.5 to 5 mol, or 1 to 3 mol with respect to 1 mol of the (B) copper compound. ..
  • the compounding amount of the (D) organic protective compound is 0.1 mol or more, the metal layer formed on the surface of the (A) metallic copper powder can be satisfactorily coated with the (D) organic protective compound and is 3 mol or less. If so, good sinterability can be obtained.
  • the solvent used in the copper layer forming step is not particularly limited as long as it can be used as a reaction solvent that does not inhibit the properties of the complex or the like produced from the mixture obtained by mixing the above raw materials. it can.
  • As the solvent an alcohol that is compatible with the reducing compound (C) may be used.
  • the reduction reaction of the copper ion by the reducing compound (C) is an exothermic reaction, it may be an organic solvent that does not volatilize during the reduction reaction.
  • the organic solvent has a boiling point of 70 ° C. or higher and may be composed of carbon, hydrogen and oxygen.
  • Examples of the alcohol used as the organic solvent include 1-propanol, 2-propanol, butanol, pentanol, hexanol, heptanol, octanol, ethylene glycol, 1,3-propanediol, 1,2-propanediol, butylcarbitol, Examples thereof include butyl carbitol acetate, ethyl carbitol, ethyl carbitol acetate, diethylene glycol diethyl ether, butyl cellosolve and the like. These may be used alone or in combination of two or more.
  • the organic solvent may be used in such an amount that each of the above-mentioned components can sufficiently react, and for example, about 50 to 2000 mL may be used.
  • an organic solvent is housed in a reaction container, and in the organic solvent, the above-mentioned (A) metallic copper powder, (B) copper compound, and ( C) Reducing compound and, if necessary, (D) organic protecting compound are mixed.
  • A) metallic copper powder, (B) copper compound, and ( C) Reducing compound and, if necessary, (D) organic protecting compound are mixed.
  • the order of mixing these compounds is not particularly limited, and the above compounds may be mixed in any order.
  • the copper compound (B) and the organic protective compound (D) are mixed first, and the mixture is heated at 0 to 110 ° C.
  • the mixture may be mixed for about 5 to 30 minutes, and then (A) metallic copper powder and (C) reducing compound may be added and mixed.
  • the mixture obtained by mixing the above is then sufficiently heated in a nitrogen atmosphere to advance the reduction reaction of the copper compound (B).
  • the metallic copper released from the copper compound (B) can be deposited on the surface of the metallic copper powder (A) to form a copper layer.
  • the (D) organic protective compound adheres to the surface of the metallic copper released from the (B) copper compound, the growth of the metallic copper is controlled, and the metallic copper is controlled. Can be prevented from becoming coarse.
  • the heating temperature for heating the above mixture may be lower than the boiling points of the raw material compound and the organic solvent, and may be, for example, 70 to 150 ° C. or 80 to 120 ° C. When the heating temperature is within the above range, the copper compound (B) can be sufficiently reacted while controlling the aggregation of particles.
  • the solid matter deposited here may be separated from the excess (D) organic protective compound by centrifugation or the like, washed with an organic solvent, and dried under reduced pressure. By such an operation, the copper particles for bonding can be obtained.
  • the type and amount of (A) metallic copper powder, (B) copper compound, and (C) reducing compound, and the reaction temperature are appropriately selected. By doing so, it can be adjusted to any shape and size.
  • the average particle size of the copper particles may be 0.5 to 30 ⁇ m, 0.5 to 20 ⁇ m, or 1 to 20 ⁇ m from the viewpoint of the denseness of the bonding layer.
  • the average particle size of the copper particles is a number average particle size, and can be determined by averaging the particle sizes of 10 or more particles measured by scanning electron microscope (SEM) observation. Specifically, it can be measured by the method described in Examples.
  • the thickness (average value) of the copper layer formed on the surface of the (A) copper metal powder may be 5 to 500 nm, 10 to 200 nm, or 20 to 100 nm. ..
  • the thickness of the copper layer is 5 nm or more, sufficient sinterability can be obtained, and when it is 500 nm or less, chemical stability is increased, and thus oxidation resistance can be obtained.
  • the thickness of the copper layer is an image of a cross section obtained by photographing the copper particles for bonding using a transmission electron microscope (Transmission Electron Microscope, TEM) or a scanning electron microscope (Scanning Electron Microscope, SEM). The thickness of the copper layer can be measured at 100 points and the average value can be obtained.
  • the coverage of the copper layer (A) with the metal copper powder may be 0.1% or more, 2% or more, or 5% or more.
  • the coverage of the copper layer is determined by observing the copper particles for bonding using a transmission electron microscope (TEM), an energy dispersive X-ray analyzer (Energy Dispersive X-ray microanalyzer, EDX), and the like (A).
  • TEM transmission electron microscope
  • EDX Energy dispersive X-ray analyzer
  • the ratio of the portion covering the surface of the metal copper powder can be calculated, and the average value thereof can be obtained.
  • the bonding paste of the present embodiment contains the bonding copper particles obtained by the above-described method for manufacturing the bonding copper particles. Therefore, the bonding paste of this embodiment can be bonded without pressure and has excellent adhesiveness. Further, since a cured product having good bonding characteristics can be obtained, it can be used as a die attach paste for element adhesion or a material for adhering a heat dissipation member.
  • the bonding paste of the present embodiment can be an adhesive material (paste) having an appropriate viscosity. Further, when the bonding paste of the present embodiment contains a thermosetting resin, the temperature of the bonding paste rises due to the reaction heat during curing, and the sinterability of the bonding copper particles is promoted.
  • the thermosetting resin is not particularly limited as long as it is a thermosetting resin generally used for adhesives.
  • the thermosetting resin may be a liquid resin or a liquid at room temperature (25 ° C.). Examples of the thermosetting resin include cyanate resin, epoxy resin, radical-polymerizable acrylic resin, and maleimide resin. These may be used alone or in combination of two or more.
  • Cyanate resin is a compound that has an —NCO group in its molecule, and is a resin that cures by forming a three-dimensional network structure when the —NCO group reacts when heated.
  • Specific examples include 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1, 6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis (4-Cyanatophenyl) methane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis (3,5-dibromo) -4-Cyanatophenyl
  • cyanate resin a prepolymer having a triazine ring formed by trimerizing the cyanate group of these polyfunctional cyanate resins can also be used.
  • the prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate resin monomer using, for example, a mineral acid, an acid such as Lewis acid, a sodium alcoholate, a base such as a tertiary amine, a salt such as sodium carbonate as a catalyst. Be done.
  • the curing accelerator for the cyanate resin generally known ones can be used.
  • metal salts such as aluminum chloride, tin chloride, zinc chloride, amines such as triethylamine and dimethylbenzylamine.
  • the present invention is not limited to these.
  • These curing accelerators can be used alone or in combination of two or more.
  • Epoxy resin is a compound that has one or more glycidyl groups in the molecule, and is a resin that forms a three-dimensional network structure by heating and reacts with the glycidyl groups to cure.
  • Two or more glycidyl groups may be contained in one molecule. This is because a compound having only one glycidyl group cannot exhibit sufficient cured product characteristics even when reacted.
  • the compound containing two or more glycidyl groups in one molecule can be obtained by epoxidizing a compound having two or more hydroxyl groups.
  • Examples of such a compound include bisphenol compounds such as bisphenol A, bisphenol F and biphenol or derivatives thereof, hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, alicyclic rings such as cyclohexanediol, cyclohexanedimethanol and cyclohexanediethanol.
  • Diols having a structure or their derivatives butanediol, hexanediol, octanediol, nonanediol, decanediol, and other aliphatic diols or their derivatives, etc., which are epoxidized, bifunctional, trihydroxyphenylmethane skeleton, aminophenol Examples include trifunctional compounds obtained by epoxidizing compounds having a skeleton, and polyfunctional compounds obtained by epoxidizing phenol novolac resins, cresol novolac resins, phenol aralkyl resins, biphenyl aralkyl resins, and naphthol aralkyl resins. It is not limited.
  • the above-mentioned epoxy resin is made into a paste at room temperature (25 ° C) as a bonding paste, it may be liquid at room temperature (25 ° C) alone or as a mixture.
  • reactive diluents include monofunctional aromatic glycidyl ethers such as phenyl glycidyl ether and cresyl glycidyl ether, and aliphatic glycidyl ethers.
  • a curing agent is used for the purpose of curing the epoxy resin
  • examples of the curing agent for the epoxy resin include aliphatic amines, aromatic amines, dicyandiamide, dihydrazide compounds, acid anhydrides, and phenol resins.
  • examples of the dihydrazide compound include adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, carboxylic acid dihydrazide such as p-oxybenzoic acid dihydrazide, and the like
  • acid anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, hexahydro.
  • Examples thereof include phthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenylsuccinic anhydride, a reaction product of maleic anhydride and polybutadiene, and a copolymer of maleic anhydride and styrene.
  • a curing accelerator can be blended to accelerate curing, and as the curing accelerator for the epoxy resin, imidazoles, triphenylphosphine or tetraphenylphosphine and salts thereof, amine compounds such as diazabicycloundecene, and The salt etc. are mentioned.
  • the curing accelerator include 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4.
  • An imidazole compound such as 5,5-dihydroxymethylimidazole, 2-C 11 H 23 -imidazole, an adduct of 2-methylimidazole and 2,4-diamino-6-vinyltriazine may be used.
  • the curing accelerator may be an imidazole compound having a melting point of 180 ° C. or higher.
  • Radically polymerizable acrylic resin is a compound that has a (meth) acryloyl group in its molecule, and is a resin that cures by forming a three-dimensional network structure by the reaction of the (meth) acryloyl group.
  • One or more (meth) acryloyl groups may be contained in the molecule.
  • examples of the acrylic resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl.
  • dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, and tetrahydrophthalic acid. , Hexahydrophthalic acid and their derivatives.
  • acrylic resin a polyether having a molecular weight of 100 to 10,000, a polyester, a polycarbonate, a poly (meth) acrylate compound having a (meth) acrylic group, a (meth) acrylate having a hydroxyl group, and a hydroxyl group (meth ) It may be acrylamide or the like.
  • Maleimide resin is a compound that contains one or more maleimide groups in one molecule, and is a resin that cures by forming a three-dimensional network structure by the reaction of maleimide groups by heating.
  • maleimide resins include N, N '-(4,4'-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2-bis [4- (4- Examples include bismaleimide resins such as maleimidophenoxy) phenyl] propane.
  • the maleimide resin may be a compound obtained by the reaction of a dimer acid diamine and maleic anhydride, or a compound obtained by the reaction of a maleimidated amino acid such as maleimidoacetic acid and maleimidocaproic acid with a polyol.
  • the maleimidated amino acid is obtained by reacting maleic anhydride with aminoacetic acid or aminocaproic acid
  • the polyol may be a polyether polyol, a polyester polyol, a polycarbonate polyol, or a poly (meth) acrylate polyol. It may not contain a group ring.
  • the blending amount is 1 to 20 parts by mass with respect to 100 parts by mass of the copper particles.
  • the amount of the thermosetting resin is 1 part by mass or more, the adhesiveness of the thermosetting resin becomes good.
  • the content of the thermosetting resin is 20 parts by mass or less, the content of the copper component increases, so that high thermal conductivity can be sufficiently ensured and heat dissipation can be improved.
  • the bonding paste does not have an excessive amount of organic components and suppresses deterioration due to light and heat, and as a result, the life of the light emitting device can be extended. By setting the content in such a range, it is possible to easily maintain the mechanical strength of the entire adhesive layer by utilizing the adhesive performance of the thermosetting resin.
  • Organic solvent a known solvent can be used as long as it functions as a reducing agent.
  • the organic solvent may be alcohol.
  • alcohols include aliphatic polyhydric alcohols.
  • examples of the aliphatic polyhydric alcohol include glycols such as ethylene glycol, diethylene glycol, propylene glycol, diproylene glycol, 1,4-butanediol, glycerin and polyethylene glycol. These organic solvents may be used alone or in combination of two or more.
  • the bonding paste increases the reducing power of alcohol by using alcohol as an organic solvent, and by increasing the temperature by heat treatment during paste hardening (sintering).
  • the copper oxide partially present in the copper particles and the metal oxide on the metal substrate are reduced by the alcohol to be a pure metal, and as a result, are more dense and highly conductive, and are It is considered that a cured film having high adhesion can be formed.
  • the alcohol since it is sandwiched between the semiconductor element and the metal substrate, the alcohol partially returns to the reflux state during the heat treatment during paste hardening, and the solvent alcohol is not immediately lost from the system due to volatilization.
  • the metal oxide is reduced more efficiently at the curing temperature.
  • the boiling point of the organic solvent may be 100 to 300 ° C, or 150 to 290 ° C.
  • the bonding paste does not have too high volatility even at room temperature, and it is possible to control the reduction of the reduction ability due to the volatilization of the dispersion medium, and obtain stable adhesive strength. You can When the boiling point is 300 ° C. or less, the bonding paste is likely to sinter the cured film (conductive film) and can form a film with excellent compactness, and at the same time volatilizes the organic solvent during sintering. Encourage.
  • the blending amount may be 7 to 20 parts by mass when the copper particles are 100 parts by mass.
  • the blending amount of the organic solvent is 7 parts by mass or more, the viscosity does not become too high and the workability can be improved.
  • the compounding amount of the organic solvent is 20 parts by mass or less, the viscosity change of the bonding paste is controlled and the sinking of the copper particles in the bonding paste is controlled, so that the reliability can be improved.
  • a curing accelerator, rubber, silicone, etc. which are generally blended in a composition of this type, in a range that does not impair the effects of the present disclosure, reduce stress.
  • Agents, coupling agents, defoaming agents, surfactants, colorants (pigments, dyes), various polymerization inhibitors, antioxidants, solvents, and other various additives can be blended as necessary. Each of these additives may be used alone or in combination of two or more.
  • the bonding paste of the present embodiment after sufficiently mixing the above-mentioned copper particles, and an additive such as a thermosetting resin, an organic solvent, and a coupling agent that are blended as necessary, further disperse and kneader. It can be prepared by kneading with a three-roll mill or the like and then defoaming.
  • the viscosity of the bonding paste of the present embodiment may be 20 to 300 Pa ⁇ s or 40 to 200 Pa ⁇ s.
  • the bonding strength of the bonding paste of the present embodiment may be 20 MPa or more, or 25 MPa or more.
  • the thermal conductivity of the bonding paste of this embodiment may be 100 W / mK or higher, or 120 W / mK or higher. The viscosity, bonding strength, and thermal conductivity can be measured by the methods described in the examples.
  • the thus obtained bonding paste of the present embodiment has excellent high heat conductivity and heat dissipation. Therefore, when it is used as a bonding material for an element or a heat dissipation member to a substrate or the like, the heat dissipation inside the device to the outside is improved, and the product characteristics can be stabilized.
  • the semiconductor device and the electric / electronic component of the present embodiment are excellent in reliability because they are joined by using the above-mentioned joining paste.
  • the semiconductor device of this embodiment is formed by adhering a semiconductor element onto a substrate that serves as an element supporting member, using the above-mentioned bonding paste. That is, the bonding paste is used here as a die attach paste, and the semiconductor element and the substrate are bonded and fixed via this paste.
  • the semiconductor element may be any known semiconductor element, and examples thereof include a transistor and a diode.
  • a light emitting element such as an LED can be mentioned.
  • the type of the light emitting element is not particularly limited, and examples thereof include those in which a nitride semiconductor such as InN, AlN, GaN, InGaN, AlGaN, or InGaAlN is formed as a light emitting layer on the substrate by the MOBVC method or the like. Be done.
  • a supporting member formed of a material such as copper, copper-plated copper, PPF (pre-plating lead frame), glass epoxy, or ceramics can be used.
  • the bonding paste of this embodiment can bond base materials that have not been metal-plated.
  • the semiconductor device thus obtained has dramatically improved connection reliability with respect to the temperature cycle after mounting as compared with the conventional one. Further, since the electric resistance value is sufficiently small and the change with time is small, there is an advantage that the output does not decrease with time even for long-time driving and the life is long.
  • the electric / electronic component of the present embodiment is formed by bonding the heat dissipation member to the heat dissipation member using the above-mentioned bonding paste. That is, here, the bonding paste is used as a material for bonding the heat dissipation member, and the heat dissipation member and the heat generating member are bonded and fixed via the bonding paste.
  • the heat generating member may be the above semiconductor element, a member having the semiconductor element, or any other heat generating member.
  • heat generating members other than semiconductor elements include optical pickups and power transistors.
  • the heat radiation member include a heat sink and a heat spreader.
  • the heat-generating member and the heat-dissipating member may be directly bonded to each other via a bonding paste, or may be indirectly bonded to each other with another member having high thermal conductivity interposed therebetween.
  • FIG. 1 shows an image obtained by photographing the copper particles 1 with a scanning electron microscope (SEM) (S-3400NX, manufactured by Hitachi High-Technologies Corporation) (magnification: 20,000 times).
  • SEM scanning electron microscope
  • the copper particles 1 have a polyhedral shape unlike the shape (spherical particles) of the (A) metallic copper powder, and it can be seen that a new copper layer is formed on the surface of the (A) metallic copper powder. ..
  • hydrazine monohydrate (C) as a reducing compound was added to 3 mL of 1-propanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name: A solution in which 20 mmol of hydrazine monohydrate) was dissolved was added to the metallic copper powder mixed solution in the sample bottle and stirred for 5 minutes. The mixture was again heated and stirred for 2 hours with an aluminum block type heating and stirring machine at 90 ° C. After 5 minutes, 2 mL of ethanol (special grade, manufactured by Kanto Chemical Co., Inc.) was added, and a solid substance was obtained by centrifugation (4000 rpm (1 minute)). The centrifuged solid matter was dried under reduced pressure to obtain powdery copper particles 3 having a copper luster and an average particle diameter of 1.6 ⁇ m.
  • Example 1 100 parts by mass of the copper particles 1 obtained in Synthesis Example 1 and 15 parts by mass of diethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) as an organic solvent were prepared and kneaded with a roll to obtain a bonding paste. ..
  • Example 2 to 4 and Comparative Example 1 A bonding paste was obtained in the same manner as in Example 1 except that the types and blending amounts shown in Table 2 were changed. In addition, in Table 2, a blank column represents no compounding.
  • the sinterability of the bonding paste was evaluated by the following procedure. (1) The bonding paste was applied to a glass substrate (thickness 1 mm) by screen printing so as to have a thickness of 25 ⁇ m. (2) The applied bonding paste was cured at 200 ° C. for 60 minutes to obtain a sintered film. (3) The electric resistance of the obtained sintered film was measured by a four-point needle method using Loresta GP (trade name, manufactured by Mitsubishi Chemical Analytical Co., Ltd.). (4) As a criterion, an electric resistance of 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less was “A”, and an electrical resistance of more than 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m was “C”.
  • the thermal conductivity of the bonding paste was evaluated by the following procedure. (1) The bonding paste was applied to a glass substrate (thickness 1 mm) by screen printing so as to have a thickness of 25 ⁇ m. (2) The applied bonding paste was cured at 200 ° C. for 60 minutes to obtain a sintered film. (3) The thermal conductivity of the obtained sintered film was measured by the laser flash method according to JIS R 1611-1997.
  • the SEM image of the bonding paste was evaluated by the following procedure. (1) The bonding paste of Example 1 and the bonding paste of Comparative Example 1 were each applied to a glass substrate (thickness 1 mm) by screen printing so as to have a thickness of 25 ⁇ m. (2) The applied bonding paste was cured at 200 ° C. for 60 minutes to obtain a sintered film. (3) The SEM image of the obtained sintered film was photographed at a magnification of 20,000 using a scanning electron microscope (SEM) (manufactured by Hitachi High-Technologies Corporation, S-3400NX). (4) An image of a cross section of the sintered film obtained from the bonding paste of Example 1 is shown in FIG. FIG. 3 shows an image of a cross section of a sintered film obtained from the bonding paste of Comparative Example 1.
  • SEM scanning electron microscope
  • the copper particles 1 obtained by the manufacturing method according to one embodiment of the present disclosure have excellent sinterability, the copper particles 1 themselves, and the copper particles 1 and small particles existing around them. It can be seen that the large diameter copper particles are sintered to form a dense sintered film.
  • the bonding paste of Comparative Example 1 obtained by mixing small-sized copper particles and large-sized metallic copper powder the large-sized metallic copper powder was sintered. Because of its low property, small-sized copper particles and large-sized metal copper powder do not sinter, only small-sized copper particles sinter each other, and voids exist in the sintered film. I understand.
  • an IR reflow treatment 260 ° C., 10 seconds
  • a thermal cycle treatment heating from ⁇ 55 ° C. to 150 ° C., and cooling to ⁇ 55 ° C. are set as one cycle, and 1000 cycles of this operation) Cycle.
  • the number of internal cracks in each semiconductor device was observed with an ultrasonic microscope (Hitachi Power Solution Co., Ltd., trade name: FineSAT).
  • the thermal shock resistance of the semiconductor device was evaluated by counting the number of samples in which cracks were generated out of 5 samples.
  • Examples 1 to 4 using the bonding paste containing the copper particles for bonding obtained by the manufacturing method according to one embodiment of the present disclosure have a high thermal conductivity of 150 W / mK, and both the coating state and the bonding state are sintered. It can be seen that it has excellent properties.
  • Comparative Example 1 which uses a bonding paste obtained by mixing small-sized copper particles and large-sized metal copper powder, shows high sinterability in a coating film state, but a bonded state. It was found that in No. 1 had poor sinterability and had a low thermal conductivity of 40 W / mK.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

A production method for copper particles used in bonding comprising a step in which, by means of a liquid-phase reduction method, (A) a copper layer is further formed on a surface of a metal copper powder.

Description

接合用銅粒子の製造方法、接合用ペースト及び半導体装置並びに電気・電子部品Manufacturing method of copper particles for bonding, bonding paste, semiconductor device, and electric / electronic component
 本開示は、接合用銅粒子の製造方法、接合用ペースト、及び当該接合用ペーストを使用して製造した半導体装置並びに電気・電子部品に関する。 The present disclosure relates to a method for manufacturing copper particles for bonding, a bonding paste, and a semiconductor device and an electric / electronic component manufactured by using the bonding paste.
 半導体製品の大容量、高速処理化及び微細配線化に伴い半導体製品作動中に発生する熱の処理が注目されてきている。特に、半導体製品から熱を逃がす、いわゆるサーマルマネージメントがますます重要となっている。このため半導体製品にヒートスプレッダー、ヒートシンクなどの放熱部材を取り付ける方法などが一般的に採用されており、放熱部材を接着する材料(接合用ペースト)自体の熱伝導率はより高いものが望まれてきている。 With the large capacity, high-speed processing and fine wiring of semiconductor products, attention has been paid to the processing of heat generated during the operation of semiconductor products. In particular, so-called thermal management, which dissipates heat from semiconductor products, is becoming increasingly important. For this reason, a method of attaching a heat spreader, a heat sink or other heat dissipation member to a semiconductor product is generally adopted, and a material (bonding paste) for adhering the heat dissipation member itself needs to have a higher thermal conductivity. ing.
 特許文献1には、一次粒子の平均粒子径が1~20μmである金属銅粒子表面に二次粒子の平均粒子径が20~350nmである水素化銅微粒子が付着した銅複合粒子を含む銅ペーストが開示されている。 Patent Document 1 discloses a copper paste containing copper composite particles in which copper hydride fine particles having secondary particles having an average particle diameter of 20 to 350 nm are attached to surfaces of metallic copper particles having an average particle diameter of primary particles of 1 to 20 μm. Is disclosed.
特開2010-285678号公報JP, 2010-285678, A
 しかしながら、特許文献1の銅複合粒子は、水素化銅微粒子の凝集体が金属銅粒子の表面に付着しているため、粒子の比表面積が増大し、接合用ペーストとして使用した場合にはペーストの粘度増加を引き起こすことで、銅粒子の充填率を高められず、熱伝導率の低下または接合層の強度低下を引き起こすおそれがあった。 However, in the copper composite particles of Patent Document 1, since the agglomerates of copper hydride fine particles are attached to the surface of the metal copper particles, the specific surface area of the particles increases, and when used as a bonding paste, Due to the increase in viscosity, the filling rate of the copper particles cannot be increased, which may cause a decrease in thermal conductivity or a decrease in strength of the bonding layer.
 本開示の一態様は、このような実情に鑑みてなされたものであり、高い焼結性及び熱伝導率を有する接合用銅粒子の製造方法、当該製造方法によって得られる接合用銅粒子を含む接合用ペースト並びに当該接合用ペーストを使用することで、接合強度が高く信頼性に優れた半導体装置及び電気・電子部品を提供する。 One aspect of the present disclosure has been made in view of such circumstances, and includes a method for manufacturing copper particles for bonding having high sinterability and thermal conductivity, and copper particles for bonding obtained by the manufacturing method. By using a bonding paste and the bonding paste, a semiconductor device and an electric / electronic component having high bonding strength and excellent reliability are provided.
 本発明者らは、上記の課題を解決するべく鋭意検討した結果、下記の発明により当該課題を解決できることを見出した。 The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the following inventions can solve the problems.
 すなわち、本願開示は、以下に関する。
[1]液相還元法により、(A)金属銅粉の表面にさらに銅層を形成する工程を有する接合用銅粒子の製造方法。
[2]前記工程において、液相中で(A)金属銅粉と、(B)銅化合物と、(C)還元性化合物とを混合する上記[1]に記載の接合用銅粒子の製造方法。
[3]前記(A)金属銅粉が、アトマイズ法、電解法、又は化学還元法により調製されたものである上記[1]又は[2]に記載の接合用銅粒子の製造方法。
[4]前記工程において、さらに(D)有機保護化合物を添加する上記[1]~[3]のいずれかに記載の接合用銅粒子の製造方法。
[5]前記(D)有機保護化合物が、カルボン酸、アルキルアミン、及びカルボン酸アミン塩から選ばれる少なくとも1種である上記[4]に記載の接合用銅粒子の製造方法。
[6]上記[1]~[5]のいずれかに記載の製造方法によって得られる接合用銅粒子を含む接合用ペースト。
[7]上記[6]に記載の接合用ペーストを用いて接合されてなる半導体装置。
[8]上記[6]に記載の接合用ペーストを用いて接合されてなる電気・電子部品。
That is, the present disclosure relates to the following.
[1] A method for producing copper particles for bonding, which has a step of further forming a copper layer on the surface of (A) metallic copper powder by a liquid phase reduction method.
[2] The method for producing copper particles for bonding according to the above [1], wherein (A) metallic copper powder, (B) copper compound, and (C) reducing compound are mixed in the liquid phase in the step. ..
[3] The method for producing copper particles for bonding according to the above [1] or [2], wherein the (A) metallic copper powder is prepared by an atomizing method, an electrolytic method, or a chemical reduction method.
[4] The method for producing copper particles for bonding according to any one of the above [1] to [3], wherein (D) an organic protective compound is further added in the step.
[5] The method for producing copper particles for bonding according to the above [4], wherein the (D) organic protective compound is at least one selected from carboxylic acids, alkylamines, and carboxylic acid amine salts.
[6] A bonding paste containing the bonding copper particles obtained by the manufacturing method according to any one of the above [1] to [5].
[7] A semiconductor device bonded by using the bonding paste according to the above [6].
[8] An electric / electronic component joined by using the joining paste according to the above [6].
 本開示によれば、高い焼結性及び熱伝導率を有する接合用銅粒子の製造方法、当該製造方法によって得られる接合用銅粒子を含む接合用ペースト並びに当該接合用ペーストを使用することで、接合強度が高く信頼性に優れた半導体装置及び電気・電子部品を提供することができる。 According to the present disclosure, a method of manufacturing a copper particle for bonding having high sinterability and thermal conductivity, a bonding paste containing the copper particles for bonding obtained by the manufacturing method, and a bonding paste by using the bonding paste, It is possible to provide a semiconductor device and electric / electronic components having high bonding strength and excellent reliability.
合成例1で得られた銅粒子1を走査型電子顕微鏡(SEM)で撮影し(倍率2万倍)、得られた断面の画像である。2 is an image of a cross section obtained by photographing the copper particles 1 obtained in Synthesis Example 1 with a scanning electron microscope (SEM) (magnification: 20,000 times). 実施例1の接合用ペーストを200℃で60分間硬化し、得られた焼結膜を走査型電子顕微鏡(SEM)で撮影し(倍率2万倍)、得られた断面の画像である。The bonding paste of Example 1 is cured at 200 ° C. for 60 minutes, the obtained sintered film is photographed with a scanning electron microscope (SEM) (magnification: 20,000 times), and is an image of a cross section obtained. 比較例1の接合用ペーストを200℃で60分間硬化し、得られた焼結膜を走査型電子顕微鏡(SEM)で撮影し(倍率2万倍)、得られた断面の画像である。3 is an image of a cross section obtained by curing the bonding paste of Comparative Example 1 at 200 ° C. for 60 minutes, photographing the obtained sintered film with a scanning electron microscope (SEM) (magnification: 20,000 times).
<接合用銅粒子の製造方法>
 本開示の接合用銅粒子の製造方法は、液相還元法により、(A)金属銅粉の表面にさらに銅層を形成する工程を有する。
 本開示の接合用銅粒子の製造方法では、液相中で(A)金属銅粉の表面酸化を抑制しつつ、当該(A)金属銅粉の表面にさらに新しい銅層が形成されるため、焼結性及び熱伝導率に優れた接合用銅粒子(以下、単に銅粒子ともいう)を得ることができる。
<Method of manufacturing copper particles for bonding>
The method for producing copper particles for bonding according to the present disclosure has a step of further forming a copper layer on the surface of (A) metallic copper powder by a liquid phase reduction method.
In the method for producing copper particles for bonding according to the present disclosure, a new copper layer is formed on the surface of the (A) metallic copper powder while suppressing surface oxidation of the (A) metallic copper powder in the liquid phase. Copper particles for bonding (hereinafter, also simply referred to as copper particles) excellent in sinterability and thermal conductivity can be obtained.
 以下、本開示について、一実施形態を参照しながら詳細に説明する。
 本開示の一態様の接合用銅粒子の製造方法は、液相還元法により、(A)金属銅粉の表面にさらに銅層を形成する工程(以下、単に銅層形成工程ともいう)を有すれば特に限定されない。
 銅層形成工程では、液相中で(A)金属銅粉と、(B)銅化合物と、(C)還元性化合物とを混合する。上記混合を液相中で行うことにより、(A)金属銅粉の表面酸化が抑制される。また、(B)銅化合物は、(C)還元性化合物により還元され、(B)銅化合物から遊離した金属銅が(A)金属銅粉の表面に堆積し銅層が形成されると推察される。
 なお、遊離した金属銅は、全て(A)金属銅粉の表面に堆積してもよいが、(A)金属銅粉の表面に堆積せずに小粒径の銅粒子として液相中に存在してもよい。
 また、(A)金属銅粉の表面に堆積する金属銅の割合は、(A)金属銅粉の配合量、(B)銅化合物の配合量、及び還元反応の温度条件を適宜選択することにより調整することができる。
Hereinafter, the present disclosure will be described in detail with reference to an embodiment.
The method for producing copper particles for bonding according to one aspect of the present disclosure includes a step (hereinafter, also simply referred to as a copper layer forming step) of further forming a copper layer on the surface of the (A) metallic copper powder by a liquid phase reduction method. If it does, it will not be specifically limited.
In the copper layer forming step, (A) metallic copper powder, (B) copper compound, and (C) reducing compound are mixed in the liquid phase. By performing the above mixing in the liquid phase, the surface oxidation of the (A) metallic copper powder is suppressed. Further, it is presumed that the copper compound (B) is reduced by the reducing compound (C), and the metallic copper released from the copper compound (B) is deposited on the surface of the metallic copper powder (A) to form a copper layer. It
In addition, although all the liberated metallic copper may be deposited on the surface of the (A) metallic copper powder, it does not deposit on the surface of the (A) metallic copper powder and is present in the liquid phase as small-sized copper particles. You may.
The proportion of metallic copper deposited on the surface of (A) metallic copper powder can be determined by appropriately selecting (A) the amount of metallic copper powder, (B) the amount of copper compound, and the temperature condition for the reduction reaction. Can be adjusted.
 (A)金属銅粉は特に限定されず、例えば、アトマイズ法、電解法、化学還元法、粉砕法/搗砕法、プラズマ回転電極法、均一液滴噴霧法、熱処理法等、公知の方法により調製されたものを用いることができる。(A)金属銅粉は、粒子径および粒子形状制御の観点から、アトマイズ法、電解法、又は化学還元法により調製されたものを用いてもよい。
 また、(A)金属銅粉は、市販品を用いることもでき、具体的には、Cu-HWQ(福田金属箔粉工業(株)製、D50=1.5μm、球状)、1200Y(三井金属鉱業(株)製、D50=2.1μm、不定形状)等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
(A) The metallic copper powder is not particularly limited, and is prepared by a known method such as an atomizing method, an electrolysis method, a chemical reduction method, a crushing / smashing method, a plasma rotary electrode method, a uniform droplet spraying method, a heat treatment method, or the like. What has been done can be used. As the metal copper powder (A), those prepared by an atomizing method, an electrolytic method, or a chemical reduction method may be used from the viewpoint of controlling the particle diameter and the particle shape.
Further, as the metal copper powder (A), a commercially available product may be used, and specifically, Cu-HWQ (manufactured by Fukuda Metal Foil & Powder Co., Ltd., D50 = 1.5 μm, spherical), 1200Y (Mitsui Metal Co., Ltd.) Mining Industry Co., Ltd., D50 = 2.1 μm, irregular shape) and the like. These may be used alone or in combination of two or more.
 上記(A)金属銅粉は、平均粒子径が0.5μmよりも大きく30μm以下であってもよく、0.5μm以上20μm以下であってもよく、1μm以上20μm以下であってもよい。また、(A)金属銅粉の形状は特に限定されず、球状、プレート型、フレーク状、鱗片状、樹枝状、ロッド状、ワイヤー状、不定形状等が挙げられる。
 なお、上記(A)金属銅粉の平均粒子径は体積平均粒子径のことであり、レーザー回折散乱式粒度分布測定装置等を用いて測定することができる。
The (A) metallic copper powder may have an average particle size of more than 0.5 μm and 30 μm or less, 0.5 μm or more and 20 μm or less, and 1 μm or more and 20 μm or less. Further, the shape of the metal copper powder (A) is not particularly limited, and examples thereof include spherical shape, plate shape, flake shape, scale shape, dendritic shape, rod shape, wire shape, and irregular shape.
The average particle diameter of the (A) metallic copper powder is a volume average particle diameter, and can be measured using a laser diffraction / scattering particle size distribution measuring device or the like.
 上記(A)金属銅粉は、滑材、防錆剤で処理されているものを使用してもよい。このような処理として典型的なものは、カルボン酸化合物による処理である。カルボン酸化合物としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、パルミチン酸、オレイン酸、ステアリン酸、イソステアリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ジグリコール酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸、グリコール酸、乳酸、タルトロン酸、リンゴ酸、グリセリン酸、ヒドロキシ酪酸、酒石酸、クエン酸、イソクエン酸などが挙げられる。カルボン酸化合物は、焼結性を高める観点から、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、パルミチン酸、オレイン酸、ステアリン酸、イソステアリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸であってもよく、分散性及び耐酸化性の観点から、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、マロン酸、コハク酸、グルタル酸であってもよい。 The above (A) metallic copper powder may be treated with a lubricant or a rust preventive. A typical example of such treatment is treatment with a carboxylic acid compound. Examples of the carboxylic acid compound include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, palmitic acid, oleic acid, stearic acid, isostearic acid, oxalic acid, Malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, diglycolic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid, glycolic acid, lactic acid, Examples thereof include tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric acid, citric acid and isocitric acid. Carboxylic acid compounds are formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, palmitic acid, oleic acid, stearic acid, isostearic acid, from the viewpoint of enhancing sinterability. Acid, oxalic acid, malonic acid, succinic acid, may be glutaric acid, from the viewpoint of dispersibility and oxidation resistance, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, malonic acid, succinic acid, It may be glutaric acid.
 (B)銅化合物は、銅原子を含むものであれば特に限定されるものではない。(B)銅化合物としては、例えば、カルボン酸銅、酸化銅、水酸化銅、窒化銅等が挙げられる。(B)銅化合物は、反応時の均一性の観点からカルボン酸銅であってもよい。これらは単独で用いてもよく、2種以上を併用してもよい。 The (B) copper compound is not particularly limited as long as it contains a copper atom. Examples of the (B) copper compound include copper carboxylate, copper oxide, copper hydroxide, and copper nitride. The copper compound (B) may be copper carboxylate from the viewpoint of uniformity during the reaction. These may be used alone or in combination of two or more.
 カルボン酸銅としては、ギ酸銅(I)、酢酸銅(I)、プロピオン酸銅(I)、酪酸銅(I)、吉草酸銅(I)、カプロン酸銅(I)、カプリル酸銅(I)、カプリン酸銅(I)、ギ酸銅(II)、酢酸銅(II)、プロピオン酸銅(II)、酪酸銅(II)、吉草酸銅(II)、カプロン酸銅(II)、カプリル酸銅(II)、カプリン酸銅(II)、クエン酸銅(II)等のカルボン酸銅無水物又は水和物が挙げられる。カルボン酸銅としては、生産性及び入手容易性の観点から酢酸銅(II)一水和物であってもよい。また、これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the copper carboxylate include copper (I) formate, copper (I) acetate, copper (I) propionate, copper (I) butyrate, copper (I) valerate, copper (I) caproate, and copper (I) caprylate. ), Copper (I) caprate, copper (II) formate, copper (II) acetate, copper (II) propionate, copper (II) butyrate, copper (II) valerate, copper (II) caproate, caprylic acid Examples thereof include carboxylic acid copper anhydrides or hydrates such as copper (II), copper (II) caprate, and copper (II) citrate. The copper carboxylate may be copper (II) acetate monohydrate from the viewpoint of productivity and availability. These may be used alone or in combination of two or more.
 また、カルボン酸銅は、市販のものを使用してもよいし、合成によって得られたものを使用してもよい。 Also, as the copper carboxylate, a commercially available product may be used, or a product obtained by synthesis may be used.
 カルボン酸銅の合成は、公知の方法で行うことができ、例えば、水酸化銅(II)とカルボン酸化合物とを混合・加熱によって得ることができる。 The synthesis of copper carboxylate can be carried out by a known method, for example, copper (II) hydroxide and a carboxylic acid compound can be obtained by mixing and heating.
 酸化銅としては、酸化銅(II)、酸化銅(I)が挙げられ、生産性の観点から酸化銅(I)であってもよい。また、水酸化銅としては、水酸化銅(II)、水酸化銅(I)が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of copper oxide include copper (II) oxide and copper (I) oxide, and may be copper (I) oxide from the viewpoint of productivity. Examples of copper hydroxide include copper (II) hydroxide and copper (I) hydroxide. These may be used alone or in combination of two or more.
 (B)銅化合物の配合量は、(A)金属銅粉1molに対し、0.1~10molであってもよく、0.5~5molであってもよく、0.7~2molであってもよい。(B)銅化合物の配合量が、0.1mol以上であると、(A)金属銅粉の表面に銅層を十分に形成することができ、10mol以下であると、表面に銅層が形成された(A)金属銅粉同士の凝集を抑えることができる。 The compounding amount of the (B) copper compound may be 0.1 to 10 mol, 0.5 to 5 mol, or 0.7 to 2 mol based on 1 mol of the (A) metal copper powder. Good. When the compounding amount of the (B) copper compound is 0.1 mol or more, the copper layer can be sufficiently formed on the surface of the (A) metallic copper powder, and when the compounding amount is 10 mol or less, the copper layer is formed on the surface. It is possible to suppress the aggregation of the (A) metal copper powders.
 (C)還元性化合物は、(B)銅化合物を還元し、当該(B)銅化合物から金属銅を遊離させる還元力を有するものであれば、特に限定されない。また、(C)還元性化合物は、その沸点が70℃以上であってもよく、加熱工程における加熱温度以上であってもよい。さらに、(C)還元性化合物は、炭素、水素及び酸素から構成される後述する有機溶剤に溶解する化合物であってもよい。 (C) The reducing compound is not particularly limited as long as it has a reducing ability to reduce the copper compound (B) and release metallic copper from the copper compound (B). The boiling point of the reducing compound (C) may be 70 ° C. or higher, or may be the heating temperature or higher in the heating step. Further, the (C) reducing compound may be a compound composed of carbon, hydrogen and oxygen, which is soluble in an organic solvent described later.
 このような(C)還元性化合物としては、典型的には、ヒドラジン誘導体が挙げられる。ヒドラジン誘導体としては、例えば、ヒドラジン一水和物、メチルヒドラジン、エチルヒドラジン、n-プロピルヒドラジン、i-プロピルヒドラジン、n-ブチルヒドラジン、i-ブチルヒドラジン、sec-ブチルヒドラジン、t-ブチルヒドラジン、n-ペンチルヒドラジン、i-ペンチルヒドラジン、neo-ペンチルヒドラジン、t-ペンチルヒドラジン、n-ヘキシルヒドラジン、i-ヘキシルヒドラジン、n-ヘプチルヒドラジン、n-オクチルヒドラジン、n-ノニルヒドラジン、n-デシルヒドラジン、n-ウンデシルヒドラジン、n-ドデシルヒドラジン、シクロヘキシルヒドラジン、フェニルヒドラジン、4-メチルフェニルヒドラジン、ベンジルヒドラジン、2-フェニルエチルヒドラジン、2-ヒドラジノエタノール、アセトヒドラジン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 A typical example of such a (C) reducing compound is a hydrazine derivative. Examples of the hydrazine derivative include hydrazine monohydrate, methylhydrazine, ethylhydrazine, n-propylhydrazine, i-propylhydrazine, n-butylhydrazine, i-butylhydrazine, sec-butylhydrazine, t-butylhydrazine, n. -Pentylhydrazine, i-pentylhydrazine, neo-pentylhydrazine, t-pentylhydrazine, n-hexylhydrazine, i-hexylhydrazine, n-heptylhydrazine, n-octylhydrazine, n-nonylhydrazine, n-decylhydrazine, n -Undecylhydrazine, n-dodecylhydrazine, cyclohexylhydrazine, phenylhydrazine, 4-methylphenylhydrazine, benzylhydrazine, 2-phenylethylhydrazine, 2-hydrazinoethanol, acetohydrazine and the like. These may be used alone or in combination of two or more.
 (C)還元性化合物の配合量は、(B)銅化合物1molに対し、0.5~5molであってもよく、0.7~3molであってもよく、0.9~2molであってもよい。(C)還元性化合物の配合量が、0.5mol以上であると、(B)銅化合物を十分に還元し、(A)金属銅粉を十分に被覆することができ、5mol以下であると、過剰な反応を抑制し、生成する粒子の凝集を抑制することができる。 The compounding amount of the reducing compound (C) may be 0.5 to 5 mol, 0.7 to 3 mol, or 0.9 to 2 mol with respect to 1 mol of the (B) copper compound. Good. When the compounding amount of the reducing compound (C) is 0.5 mol or more, the copper compound (B) can be sufficiently reduced and the metal copper powder (A) can be sufficiently coated, and the amount is 5 mol or less. In addition, it is possible to suppress an excessive reaction and suppress the aggregation of generated particles.
 銅層形成工程においては、さらに(D)有機保護化合物を添加してもよい。(D)有機保護化合物を添加することで焼結性が高くなる。上記(D)有機保護化合物は、上述の(B)銅化合物と錯体を形成するものであれば特に限定されない。(D)有機保護化合物は、焼結性を高める観点から、カルボン酸、アルキルアミン及びカルボン酸アミン塩から選ばれる少なくとも1種を含む化合物であってもよく、カルボン酸アミン塩であってもよい。
 上記(D)有機保護化合物は、(B)銅化合物と(D)有機保護化合物との錯体が加熱され(B)銅化合物が分解する際に、(B)銅化合物の分解反応の反応媒として機能するものである。さらに、上記(D)有機保護化合物は、(B)銅化合物を熱分解及び還元することで当該(B)銅化合物から遊離した金属銅の表面に付着し、酸化を抑制する機能を有する。
In the copper layer forming step, (D) an organic protective compound may be further added. (D) Addition of the organic protective compound enhances sinterability. The (D) organic protective compound is not particularly limited as long as it forms a complex with the (B) copper compound. The organic protective compound (D) may be a compound containing at least one selected from a carboxylic acid, an alkylamine and a carboxylic acid amine salt, or may be a carboxylic acid amine salt, from the viewpoint of enhancing the sinterability. ..
The (D) organic protective compound serves as a reaction medium for the decomposition reaction of the (B) copper compound when the complex of the (B) copper compound and the (D) organic protective compound is heated and the (B) copper compound is decomposed. It works. Furthermore, the (D) organic protective compound has a function of adhering to the surface of metallic copper liberated from the (B) copper compound by thermally decomposing and reducing the (B) copper compound and suppressing oxidation.
 カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、オレイン酸、ステアリン酸、イソステアリン酸等のモノカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ジグリコール酸等のジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸等の芳香族カルボン酸;グリコール酸、乳酸、タルトロン酸、リンゴ酸、グリセリン酸、ヒドロキシ酪酸、酒石酸、クエン酸、イソクエン酸等のヒドロキシ酸等が挙げられる。 Examples of the carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, oleic acid, stearic acid, isostearic acid and the like; oxalic acid. , Dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, diglycolic acid; benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid, etc. Aromatic carboxylic acids, such as glycolic acid, lactic acid, tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric acid, citric acid and isocitric acid.
 アルキルアミンは、アミノ基と結合する基としてアルキル基等の脂肪族炭化水素基を有するアミン化合物であれば、特にその構造に制限がなく、例えば、アミノ基を1個有するアルキルモノアミン、アミノ基を2個有するアルキルジアミン等が挙げられる。なお、上記アルキル基はさらに置換基を有していてもよい。 The alkylamine is not particularly limited in its structure as long as it is an amine compound having an aliphatic hydrocarbon group such as an alkyl group as a group to be bonded to an amino group, and examples thereof include an alkylmonoamine having one amino group and an amino group. Examples thereof include alkyldiamine having two. The alkyl group may further have a substituent.
 具体的には、アルキルモノアミンとしては、ジプロピルアミン、ブチルアミン、ジブチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、3-アミノプロピルトリエトキシシラン、ドデシルアミン、オレイルアミン等、アルキルジアミンとしては、エチレンジアミン、N,N-ジメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N-ジエチル-1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノ-2-メチルペンタン、1,6-ジアミノヘキサン、N,N’-ジメチル-1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン等が挙げられる。
 なお、一級アミン(RNH)又は二級アミン(RNH)等のアルキルモノアミンは、上述のカルボン酸銅と反応してカルボン酸銅-アミン錯体を効率的に形成する。
Specific examples of the alkyl monoamine include dipropylamine, butylamine, dibutylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, 3-aminopropyltriethoxysilane, dodecylamine, oleylamine and the like. Examples of the diamine include ethylenediamine, N, N-dimethylethylenediamine, N, N'-dimethylethylenediamine, N, N-diethylethylenediamine, N, N'-diethylethylenediamine, 1,3-propanediamine and 2,2-dimethyl-1. , 3-propanediamine, N, N-dimethyl-1,3-diaminopropane, N, N'-dimethyl-1,3-diaminopropane, N, N-diethyl-1,3-diaminopropane, 1,4- Diaminobutane, 1,5-diamino-2-methylpentane, 1,6-diaminohexane, N, N′-dimethyl-1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, etc. Can be mentioned.
The alkyl monoamine such as primary amine (R 1 NH 2 ) or secondary amine (R 2 R 3 NH) efficiently reacts with the above-mentioned copper carboxylate to form a carboxylate copper-amine complex.
 カルボン酸アミン塩はカルボン酸化合物とアミン化合物から得ることができ、市販のものを使用してもよいし、予め合成によって得られたものを使用してもよい。また、カルボン酸アミン塩は、接合用銅粒子の製造工程中では、反応容器内にカルボン酸化合物とアミン化合物をそれぞれ別々に投入し、in-situで生成させてもよい。 The carboxylic acid amine salt can be obtained from a carboxylic acid compound and an amine compound, and a commercially available product may be used, or a product obtained by synthesis in advance may be used. Further, the carboxylic acid amine salt may be generated in-situ by separately charging the carboxylic acid compound and the amine compound into the reaction vessel during the production process of the copper particles for bonding.
 カルボン酸アミン塩は、有機溶媒中でカルボン酸化合物とアミン化合物とを官能基等量で配合し、室温(25℃)乃至は100℃程度の比較的温和な温度条件で混合することで生成する。カルボン酸アミン塩は、生成物を含む反応液より、蒸留法または再結晶法などで取り出してもよい。 The carboxylic acid amine salt is produced by mixing a carboxylic acid compound and an amine compound in an organic solvent in an equivalent amount of functional groups and mixing them at a relatively mild temperature condition of room temperature (25 ° C.) to about 100 ° C. .. The carboxylic acid amine salt may be taken out from the reaction solution containing the product by a distillation method or a recrystallization method.
 カルボン酸アミン塩を構成するカルボン酸化合物としては、カルボキシ基を有する化合物であれば特に限定されず、例えば、モノカルボン酸、ジカルボン酸、芳香族カルボン酸、ヒドロキシ酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。上記カルボン酸化合物は、焼結性の観点から、モノカルボン酸、ジカルボン酸であってもよい。 The carboxylic acid compound constituting the carboxylic acid amine salt is not particularly limited as long as it is a compound having a carboxy group, and examples thereof include monocarboxylic acid, dicarboxylic acid, aromatic carboxylic acid, and hydroxy acid. These may be used alone or in combination of two or more. The carboxylic acid compound may be a monocarboxylic acid or a dicarboxylic acid from the viewpoint of sinterability.
 カルボン酸アミン塩を構成するカルボン酸化合物の熱分解温度は、200℃以下であってもよく、190℃以下であってもよく、180℃以下であってもよい。熱分解温度がこの範囲にあると焼結性が良好となる。 The thermal decomposition temperature of the carboxylic acid compound constituting the carboxylic acid amine salt may be 200 ° C. or lower, 190 ° C. or lower, or 180 ° C. or lower. If the thermal decomposition temperature is within this range, the sinterability will be good.
 また、カルボン酸アミン塩を構成するカルボン酸化合物のうち、熱分解温度より低温領域に沸点を有する化合物に関しては、沸点が280℃以下であってもよく、260℃以下であってもよく、240℃以下であってもよい。沸点がこの範囲にあると焼結性が良好となる。 Further, of the carboxylic acid compounds constituting the carboxylic acid amine salt, those having a boiling point in the lower temperature region than the thermal decomposition temperature may have a boiling point of 280 ° C. or lower, or 260 ° C. or lower, 240 It may be below the temperature. If the boiling point is in this range, the sinterability will be good.
 カルボン酸アミン塩を構成するカルボン酸化合物のうち、モノカルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、オレイン酸、ステアリン酸、イソステアリン酸などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記モノカルボン酸は、焼結性の観点から、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸であってもよく、吉草酸、カプロン酸、カプリル酸、ノナン酸、オクチル酸であってもよい。 Among the carboxylic acid compounds constituting the carboxylic acid amine salt, as monocarboxylic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, oleic acid, stearin Acid, isostearic acid, etc. are mentioned. These may be used alone or in combination of two or more. The monocarboxylic acid, from the viewpoint of sinterability, may be formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, valeric acid, caproic acid. It may be caprylic acid, nonanoic acid, or octylic acid.
 カルボン酸アミン塩を構成するカルボン酸化合物のうち、ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ジグリコール酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。上記ジカルボン酸は、焼結性の観点から、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ジグリコール酸であってもよく、シュウ酸、マロン酸、コハク酸、ジグリコール酸であってもよい。 Among the carboxylic acid compounds constituting the carboxylic acid amine salt, the dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, diglycolic acid and the like. Can be mentioned. These may be used alone or in combination of two or more. From the viewpoint of sinterability, the dicarboxylic acid may be oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, diglycolic acid, or oxalic acid, malonic acid, succinic acid, or diglycolic acid. May be.
 カルボン酸アミン塩を構成するカルボン酸化合物のうち、芳香族カルボン酸としては、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。上記芳香族カルボン酸は、焼結性の観点から、安息香酸であってもよい。 Among the carboxylic acid compounds that compose the carboxylic acid amine salt, examples of aromatic carboxylic acids include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, and gallic acid. These may be used alone or in combination of two or more. The aromatic carboxylic acid may be benzoic acid from the viewpoint of sinterability.
 カルボン酸アミン塩を構成するカルボン酸化合物のうち、ヒドロキシ酸としては、グリコール酸、乳酸、タルトロン酸、リンゴ酸、グリセリン酸、ヒドロキシ酪酸、酒石酸、クエン酸、イソクエン酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。上記ヒドロキシ酸は、焼結性の観点から、グリコール酸、乳酸、リンゴ酸であってもよい。 Among the carboxylic acid compounds constituting the carboxylic acid amine salt, examples of the hydroxy acid include glycolic acid, lactic acid, tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric acid, citric acid, and isocitric acid. These may be used alone or in combination of two or more. The hydroxy acid may be glycolic acid, lactic acid, or malic acid from the viewpoint of sinterability.
 カルボン酸アミン塩を構成するアミン化合物としては、カルボキシ基を有する化合物であれば特に限定されず、例えば、アルキルモノアミン、アルキルジアミン、アルカノールアミンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。上記アミン化合物は、焼結性を高める観点から、アルキルモノアミン、アルカノールアミンであってもよい。 The amine compound constituting the carboxylic acid amine salt is not particularly limited as long as it is a compound having a carboxy group, and examples thereof include alkylmonoamine, alkyldiamine, and alkanolamine. These may be used alone or in combination of two or more. The amine compound may be an alkylmonoamine or an alkanolamine from the viewpoint of improving the sinterability.
 カルボン酸アミン塩を構成するアミン化合物のうち、アルキルモノアミンとしては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。上記アルキルモノアミンは、焼結性を高める観点から、ヘキシルアミン、オクチルアミン、デシルアミンであってもよい。 Among the amine compounds constituting the carboxylic acid amine salt, examples of the alkyl monoamine include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine and the like. These may be used alone or in combination of two or more. The alkyl monoamine may be hexyl amine, octyl amine, or decyl amine from the viewpoint of improving the sinterability.
 カルボン酸アミン塩を構成するアミン化合物のうち、アルキルジアミンとしては、1,1-メタンジアミン、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。上記アルキルジアミンは、焼結性を高める観点から、1,4-ブタンジアミン、1,6-ヘキサンジアミンであってもよい。 Among the amine compounds constituting the carboxylic acid amine salt, alkyldiamines include 1,1-methanediamine, 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine and 1,6-hexane. Examples thereof include diamine and 1,8-octanediamine. These may be used alone or in combination of two or more. The alkyldiamine may be 1,4-butanediamine or 1,6-hexanediamine from the viewpoint of improving sinterability.
 カルボン酸アミン塩を構成するアミン化合物のうち、アルカノールアミンとしては、モノエタノールアミン、モノプロパノールアミン、モノブタノールアミン、2-(2-アミノエチルアミノ)エタノール、2-(2-アミノエトキシ)エタノール、1-アミノ-2-プロパノール、2-アミノ-1-プロパノール、3-アミノ-1,2-プロパンジオールなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。上記アルカノールアミンは、焼結性を高める観点から、モノエタノールアミン、モノプロパノールアミン、モノブタノールアミン、1-アミノ-2-プロパノール、2-アミノ-1-プロパノールであってもよい。 Among the amine compounds constituting the carboxylic acid amine salt, alkanolamines include monoethanolamine, monopropanolamine, monobutanolamine, 2- (2-aminoethylamino) ethanol, 2- (2-aminoethoxy) ethanol, 1-amino-2-propanol, 2-amino-1-propanol, 3-amino-1,2-propanediol and the like can be mentioned. These may be used alone or in combination of two or more. The alkanolamine may be monoethanolamine, monopropanolamine, monobutanolamine, 1-amino-2-propanol or 2-amino-1-propanol from the viewpoint of improving the sinterability.
 上記(D)有機保護化合物の沸点は、70℃以上280℃以下であってもよく、100℃以上260℃以下であってもよく、120℃以上240℃以下であってもよい。(D)有機保護化合物の沸点が上記範囲内であると、得られる接合用銅粒子はさらに良好な焼結性を示す。また、(D)有機保護化合物の沸点は、加熱工程における加熱温度以上であり、使用時における焼結温度以下であってもよい。 The boiling point of the organic protective compound (D) may be 70 ° C. or higher and 280 ° C. or lower, 100 ° C. or higher and 260 ° C. or lower, and 120 ° C. or higher and 240 ° C. or lower. When the boiling point of the organic protective compound (D) is within the above range, the obtained copper particles for bonding show even better sinterability. The boiling point of the organic protective compound (D) may be equal to or higher than the heating temperature in the heating step and may be equal to or lower than the sintering temperature during use.
 (D)有機保護化合物の配合量は、(B)銅化合物1molに対し、0.1~10molであってもよく、0.5~5molであってもよく、1~3molであってもよい。(D)有機保護化合物の配合量が、0.1mol以上であると、(A)金属銅粉の表面に生成した金属層を(D)有機保護化合物により良好に被覆することができ、3mol以下であると、良好な焼結性を得ることができる。 The compounding amount of the (D) organic protective compound may be 0.1 to 10 mol, 0.5 to 5 mol, or 1 to 3 mol with respect to 1 mol of the (B) copper compound. .. When the compounding amount of the (D) organic protective compound is 0.1 mol or more, the metal layer formed on the surface of the (A) metallic copper powder can be satisfactorily coated with the (D) organic protective compound and is 3 mol or less. If so, good sinterability can be obtained.
 銅層形成工程において用いられる溶媒としては、上述の各原料を混合して得られる混合物から生成する錯体等の性質を阻害しない反応溶媒として用いることができるものであれば、特に限定されずに使用できる。上記溶媒は、上述の(C)還元性化合物に対して相溶性を示すアルコールを用いてもよい。 The solvent used in the copper layer forming step is not particularly limited as long as it can be used as a reaction solvent that does not inhibit the properties of the complex or the like produced from the mixture obtained by mixing the above raw materials. it can. As the solvent, an alcohol that is compatible with the reducing compound (C) may be used.
 また、(C)還元性化合物による銅イオンの還元反応は発熱反応であるため、還元反応中に揮発しない有機溶剤であってもよい。有機溶剤はその沸点が70℃以上であり、炭素、水素及び酸素から構成されていてもよい。 Further, since the reduction reaction of the copper ion by the reducing compound (C) is an exothermic reaction, it may be an organic solvent that does not volatilize during the reduction reaction. The organic solvent has a boiling point of 70 ° C. or higher and may be composed of carbon, hydrogen and oxygen.
 有機溶剤として用いられる上記アルコールとしては、1-プロパノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、ブチルカルビトール、ブチルカルビトールアセテート、エチルカルビトール、エチルカルビトールアセテート、ジエチレングリコールジエチルエーテル、ブチルセロソルブ等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the alcohol used as the organic solvent include 1-propanol, 2-propanol, butanol, pentanol, hexanol, heptanol, octanol, ethylene glycol, 1,3-propanediol, 1,2-propanediol, butylcarbitol, Examples thereof include butyl carbitol acetate, ethyl carbitol, ethyl carbitol acetate, diethylene glycol diethyl ether, butyl cellosolve and the like. These may be used alone or in combination of two or more.
 有機溶剤は上述の各成分が十分に反応を行うことができる量であればよく、例えば、50~2000mL程度用いるようにすればよい。 The organic solvent may be used in such an amount that each of the above-mentioned components can sufficiently react, and for example, about 50 to 2000 mL may be used.
(混合物の形成)
 本開示の一態様の接合用銅粒子の製造方法は、まず、反応容器中に有機溶剤を収容し、当該有機溶剤中において、上述の(A)金属銅粉、(B)銅化合物、及び(C)還元性化合物、さらに必要に応じて(D)有機保護化合物を混合する。これらの化合物の混合の順番は特に限定されず、上記化合物をどのような順番で混合しても構わない。
(Formation of mixture)
In the method for producing copper particles for bonding according to one aspect of the present disclosure, first, an organic solvent is housed in a reaction container, and in the organic solvent, the above-mentioned (A) metallic copper powder, (B) copper compound, and ( C) Reducing compound and, if necessary, (D) organic protecting compound are mixed. The order of mixing these compounds is not particularly limited, and the above compounds may be mixed in any order.
 なお、(B)銅化合物と(D)有機保護化合物との錯体を効率的に形成させる場合は、先に(B)銅化合物と(D)有機保護化合物とを混合して、0~110℃で5~30分程度混合しておき、さらに、(A)金属銅粉、(C)還元性化合物を添加、混合してもよい。 In order to efficiently form a complex of the copper compound (B) and the organic protective compound (D), the copper compound (B) and the organic protective compound (D) are mixed first, and the mixture is heated at 0 to 110 ° C. The mixture may be mixed for about 5 to 30 minutes, and then (A) metallic copper powder and (C) reducing compound may be added and mixed.
(混合物の加熱)
 本開示の一態様の接合用銅粒子の製造方法は、次に、上記で混合して得られた混合物を窒素雰囲気下で十分に加熱して(B)銅化合物の還元反応を進行させる。これにより、(B)銅化合物から遊離した金属銅が、(A)金属銅粉の表面に堆積し銅層を形成することができる。このとき、(D)有機保護化合物を配合することにより、(D)有機保護化合物が(B)銅化合物から遊離した金属銅の表面に付着し、当該金属銅の成長が制御され、当該金属銅が粗大化するのを防ぐことができる。
(Heating the mixture)
In the method for producing copper particles for bonding according to one aspect of the present disclosure, the mixture obtained by mixing the above is then sufficiently heated in a nitrogen atmosphere to advance the reduction reaction of the copper compound (B). Thereby, the metallic copper released from the copper compound (B) can be deposited on the surface of the metallic copper powder (A) to form a copper layer. At this time, by blending the (D) organic protective compound, the (D) organic protective compound adheres to the surface of the metallic copper released from the (B) copper compound, the growth of the metallic copper is controlled, and the metallic copper is controlled. Can be prevented from becoming coarse.
 上記混合物の加熱における加熱温度は、原料化合物及び有機溶剤の沸点よりも低くてもよく、例えば、70~150℃であってもよく、80~120℃であってもよい。加熱温度が上記範囲内であると粒子の凝集を制御しながら(B)銅化合物を十分に反応させることが可能となる。 The heating temperature for heating the above mixture may be lower than the boiling points of the raw material compound and the organic solvent, and may be, for example, 70 to 150 ° C. or 80 to 120 ° C. When the heating temperature is within the above range, the copper compound (B) can be sufficiently reacted while controlling the aggregation of particles.
 ここで析出した固形物は、遠心分離等により過剰な(D)有機保護化合物と分離した後、有機溶剤で洗浄し、減圧乾燥すればよい。このような操作によって、接合用銅粒子を得ることができる。 The solid matter deposited here may be separated from the excess (D) organic protective compound by centrifugation or the like, washed with an organic solvent, and dried under reduced pressure. By such an operation, the copper particles for bonding can be obtained.
(接合用銅粒子の形状、サイズ)
 本実施形態の接合用銅粒子の製造方法により得られる銅粒子は、(A)金属銅粉、(B)銅化合物、及び(C)還元性化合物の種類、量、及び反応温度を適宜選択することによって、任意の形状及びサイズに調整することができる。
(Shape and size of copper particles for bonding)
For the copper particles obtained by the method for producing copper particles for bonding of the present embodiment, the type and amount of (A) metallic copper powder, (B) copper compound, and (C) reducing compound, and the reaction temperature are appropriately selected. By doing so, it can be adjusted to any shape and size.
 上記銅粒子の平均粒子径は、接合層の緻密性の観点から、0.5~30μmであってもよく、0.5~20μmであってもよく、1~20μmであってもよい。
 なお、上記銅粒子の平均粒子径は個数平均粒子径のことであり、走査電子顕微鏡(SEM)観察により測定した10個以上の粒子の粒子径を個数平均することにより求めることができる。具体的には実施例に記載の方法により測定することができる。
The average particle size of the copper particles may be 0.5 to 30 μm, 0.5 to 20 μm, or 1 to 20 μm from the viewpoint of the denseness of the bonding layer.
The average particle size of the copper particles is a number average particle size, and can be determined by averaging the particle sizes of 10 or more particles measured by scanning electron microscope (SEM) observation. Specifically, it can be measured by the method described in Examples.
 上記(A)金属銅粉の表面に形成された銅層の厚さ(平均値)は、5~500nmであってもよく、10~200nmであってもよく、20~100nmであってもよい。銅層の厚さが5nm以上であると十分な焼結性を得ることができ、500nm以下であると化学的安定性が増すため耐酸化性を得ることができる。
 なお、上記銅層の厚さは、透過型電子顕微鏡(Transmission Electron Microscope、TEM)又は走査型電子顕微鏡(Scanning Electron Microscope、SEM)を用いて接合用銅粒子を撮影し、得られた断面の画像から銅層の厚さを100箇所測定し、その平均値から求めることができる。
The thickness (average value) of the copper layer formed on the surface of the (A) copper metal powder may be 5 to 500 nm, 10 to 200 nm, or 20 to 100 nm. .. When the thickness of the copper layer is 5 nm or more, sufficient sinterability can be obtained, and when it is 500 nm or less, chemical stability is increased, and thus oxidation resistance can be obtained.
In addition, the thickness of the copper layer is an image of a cross section obtained by photographing the copper particles for bonding using a transmission electron microscope (Transmission Electron Microscope, TEM) or a scanning electron microscope (Scanning Electron Microscope, SEM). The thickness of the copper layer can be measured at 100 points and the average value can be obtained.
 上記(A)金属銅粉に対する銅層の被覆率は、0.1%以上であってもよく、2%以上であってもよく、5%以上であってもよい。
 なお、上記銅層の被覆率は、透過型電子顕微鏡(TEM)、エネルギー分散型X線分析装置(Energy Dispersive X-ray microanalyzer、EDX)等を用いて接合用銅粒子を観察し、(A)金属銅粉表面を覆っている部分の割合を算出し、その平均値から求めることができる。
The coverage of the copper layer (A) with the metal copper powder may be 0.1% or more, 2% or more, or 5% or more.
The coverage of the copper layer is determined by observing the copper particles for bonding using a transmission electron microscope (TEM), an energy dispersive X-ray analyzer (Energy Dispersive X-ray microanalyzer, EDX), and the like (A). The ratio of the portion covering the surface of the metal copper powder can be calculated, and the average value thereof can be obtained.
<接合用ペースト>
 本実施形態の接合用ペーストは、上述の接合用銅粒子の製造方法によって得られる接合用銅粒子を含む。したがって、本実施形態の接合用ペーストは、無加圧での接合が可能であり接着性に優れる。また、接合特性が良好な硬化物を得ることができることから、素子接着用ダイアタッチペースト又は放熱部材接着用材料として使用できる。
<Paste for bonding>
The bonding paste of the present embodiment contains the bonding copper particles obtained by the above-described method for manufacturing the bonding copper particles. Therefore, the bonding paste of this embodiment can be bonded without pressure and has excellent adhesiveness. Further, since a cured product having good bonding characteristics can be obtained, it can be used as a die attach paste for element adhesion or a material for adhering a heat dissipation member.
(熱硬化性樹脂)
 本実施形態の接合用ペーストは熱硬化性樹脂を含むことで、適度な粘度を有する接着材料(ペースト)とすることができる。また、本実施形態の接合用ペーストが熱硬化性樹脂を含むと、その硬化時の反応熱によって接合用ペーストの温度が上昇し、接合用銅粒子の焼結性を促進させる。
 熱硬化性樹脂は、一般に接着剤用途として使用される熱硬化性樹脂であれば特に限定されずに使用できる。上記熱硬化性樹脂は、液状樹脂であってもよく、室温(25℃)で液状であってもよい。上記熱硬化性樹脂としては、例えば、シアネート樹脂、エポキシ樹脂、ラジカル重合性のアクリル樹脂、マレイミド樹脂などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
(Thermosetting resin)
By including the thermosetting resin, the bonding paste of the present embodiment can be an adhesive material (paste) having an appropriate viscosity. Further, when the bonding paste of the present embodiment contains a thermosetting resin, the temperature of the bonding paste rises due to the reaction heat during curing, and the sinterability of the bonding copper particles is promoted.
The thermosetting resin is not particularly limited as long as it is a thermosetting resin generally used for adhesives. The thermosetting resin may be a liquid resin or a liquid at room temperature (25 ° C.). Examples of the thermosetting resin include cyanate resin, epoxy resin, radical-polymerizable acrylic resin, and maleimide resin. These may be used alone or in combination of two or more.
 シアネート樹脂は、分子内に-NCO基を有する化合物であり、加熱により-NCO基が反応することで3次元的網目構造を形成し、硬化する樹脂である。具体的に例示すると、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)メタン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-シアナトフェニル)プロパン、ビス(4-シアナトフ ェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、及びノボラック樹脂とハロゲン化シアンとの反応により得られるシアネート類などが挙げられる。また、シアネート樹脂は、これらの多官能シアネート樹脂のシアネート基を三量化することによって形成されるトリアジン環を有するプレポリマーも使用できる。当該プレポリマーは、上記の多官能シアネート樹脂モノマーを、例えば、鉱酸、ルイス酸などの酸、ナトリウムアルコラート、第三級アミン類などの塩基、炭酸ナトリウムなどの塩類を触媒として重合させることにより得られる。 Cyanate resin is a compound that has an —NCO group in its molecule, and is a resin that cures by forming a three-dimensional network structure when the —NCO group reacts when heated. Specific examples include 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1, 6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis (4-Cyanatophenyl) methane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis (3,5-dibromo) -4-Cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, tris (4-cyanatophenyl) phosphite, tris Examples thereof include (4-cyanatophenyl) phosphate, and cyanates obtained by reacting a novolac resin with a cyanogen halide. Further, as the cyanate resin, a prepolymer having a triazine ring formed by trimerizing the cyanate group of these polyfunctional cyanate resins can also be used. The prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate resin monomer using, for example, a mineral acid, an acid such as Lewis acid, a sodium alcoholate, a base such as a tertiary amine, a salt such as sodium carbonate as a catalyst. Be done.
 シアネート樹脂の硬化促進剤としては、一般に公知のものが使用できる。例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸コバルト、ナフテン酸亜鉛、アセチルアセトン鉄などの有機金属錯体、塩化アルミニウム、塩化錫、塩化亜鉛などの金属塩、トリエチルアミン、ジメチルベンジルアミンなどのアミン類が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は1種又は2種以上混合して用いることができる。 As the curing accelerator for the cyanate resin, generally known ones can be used. For example, zinc octylate, tin octylate, cobalt naphthenate, zinc naphthenate, organometallic complexes such as iron acetylacetone, metal salts such as aluminum chloride, tin chloride, zinc chloride, amines such as triethylamine and dimethylbenzylamine. However, the present invention is not limited to these. These curing accelerators can be used alone or in combination of two or more.
 エポキシ樹脂は、グリシジル基を分子内に1つ以上有する化合物であり、加熱によりグリシジル基が反応することで3次元的網目構造を形成し、硬化する樹脂である。グリシジル基は1分子に2つ以上含まれていてもよい。これはグリシジル基が1つの化合物のみでは反応させても十分な硬化物特性を示すことができないからである。グリシジル基を1分子に2つ以上含む化合物は、2つ以上の水酸基を有する化合物をエポキシ化して得ることができる。このような化合物としては、ビスフェノールA、ビスフェノールF、ビフェノールなどのビスフェノール化合物又はこれらの誘導体、水素添加ビスフェノールA、水素添加ビスフェノールF、水素添加ビフェノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シクロヘキサンジエタノールなどの脂環構造を有するジオール又はこれらの誘導体、ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオールなどの脂肪族ジオール又はこれらの誘導体などをエポキシ化した2官能のもの、トリヒドロキシフェニルメタン骨格、アミノフェノール骨格を有する化合物などをエポキシ化した3官能のもの、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂などをエポキシ化した多官能のものなどが挙げられるが、これらに限定されるわけではない。また、上記エポキシ樹脂は、接合用ペーストとして室温(25℃)でペースト状とするため、単独で又は混合物として室温(25℃)で液状のものであってもよい。通常行われるように反応性希釈剤を使用することも可能である。反応性希釈剤としては、フェニルグリシジルエーテル、クレジルグリシジルエーテルなどの1官能の芳香族グリシジルエーテル類、脂肪族グリシジルエーテル類などが挙げられる。 Epoxy resin is a compound that has one or more glycidyl groups in the molecule, and is a resin that forms a three-dimensional network structure by heating and reacts with the glycidyl groups to cure. Two or more glycidyl groups may be contained in one molecule. This is because a compound having only one glycidyl group cannot exhibit sufficient cured product characteristics even when reacted. The compound containing two or more glycidyl groups in one molecule can be obtained by epoxidizing a compound having two or more hydroxyl groups. Examples of such a compound include bisphenol compounds such as bisphenol A, bisphenol F and biphenol or derivatives thereof, hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, alicyclic rings such as cyclohexanediol, cyclohexanedimethanol and cyclohexanediethanol. Diols having a structure or their derivatives, butanediol, hexanediol, octanediol, nonanediol, decanediol, and other aliphatic diols or their derivatives, etc., which are epoxidized, bifunctional, trihydroxyphenylmethane skeleton, aminophenol Examples include trifunctional compounds obtained by epoxidizing compounds having a skeleton, and polyfunctional compounds obtained by epoxidizing phenol novolac resins, cresol novolac resins, phenol aralkyl resins, biphenyl aralkyl resins, and naphthol aralkyl resins. It is not limited. In addition, since the above-mentioned epoxy resin is made into a paste at room temperature (25 ° C) as a bonding paste, it may be liquid at room temperature (25 ° C) alone or as a mixture. It is also possible to use reactive diluents as is customary. Examples of the reactive diluent include monofunctional aromatic glycidyl ethers such as phenyl glycidyl ether and cresyl glycidyl ether, and aliphatic glycidyl ethers.
 このとき、エポキシ樹脂を硬化させる目的で硬化剤を使用するが、エポキシ樹脂の硬化剤としては、例えば、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジヒドラジド化合物、酸無水物、フェノール樹脂などが挙げられる。ジヒドラジド化合物としては、アジピン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、p-オキシ安息香酸ジヒドラジドなどのカルボン酸ジヒドラジドなどが挙げられ、酸無水物としては、フタル酸無水物、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロフタル酸無水物、ドデセニルコハク酸無水物、無水マレイン酸とポリブタジエンの反応物、無水マレイン酸とスチレンの共重合体などが挙げられる。 At this time, a curing agent is used for the purpose of curing the epoxy resin, and examples of the curing agent for the epoxy resin include aliphatic amines, aromatic amines, dicyandiamide, dihydrazide compounds, acid anhydrides, and phenol resins. .. Examples of the dihydrazide compound include adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, carboxylic acid dihydrazide such as p-oxybenzoic acid dihydrazide, and the like, and acid anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, hexahydro. Examples thereof include phthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenylsuccinic anhydride, a reaction product of maleic anhydride and polybutadiene, and a copolymer of maleic anhydride and styrene.
 さらに、硬化を促進するために硬化促進剤を配合でき、エポキシ樹脂の硬化促進剤としては、イミダゾール類、トリフェニルホスフィン又はテトラフェニルホスフィン及びそれらの塩類、ジアザビシクロウンデセンなどのアミン系化合物及びその塩類などが挙げられる。硬化促進剤は、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-C1123-イミダゾール、2-メチルイミダゾールと2,4-ジアミノ-6-ビニルトリアジンとの付加物などのイミダゾール化合物を用いてもよい。硬化促進剤は、融点が180℃以上のイミダゾール化合物であってもよい。 Furthermore, a curing accelerator can be blended to accelerate curing, and as the curing accelerator for the epoxy resin, imidazoles, triphenylphosphine or tetraphenylphosphine and salts thereof, amine compounds such as diazabicycloundecene, and The salt etc. are mentioned. Examples of the curing accelerator include 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4. An imidazole compound such as 5,5-dihydroxymethylimidazole, 2-C 11 H 23 -imidazole, an adduct of 2-methylimidazole and 2,4-diamino-6-vinyltriazine may be used. The curing accelerator may be an imidazole compound having a melting point of 180 ° C. or higher.
 ラジカル重合性のアクリル樹脂とは、分子内に(メタ)アクリロイル基を有する化合物であり、(メタ)アクリロイル基が反応することで3次元的網目構造を形成し、硬化する樹脂である。(メタ)アクリロイル基は分子内に1つ以上含まれていてもよい。 Radically polymerizable acrylic resin is a compound that has a (meth) acryloyl group in its molecule, and is a resin that cures by forming a three-dimensional network structure by the reaction of the (meth) acryloyl group. One or more (meth) acryloyl groups may be contained in the molecule.
 ここで、アクリル樹脂としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,2-シクロヘキサンジオールモノ(メタ)アクリレート、1,3-シクロヘキサンジオールモノ(メタ)アクリレート、1,4-シクロヘキサンジオールモノ(メタ)アクリレート、1,2-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,2-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジエタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレートなどの水酸基を有する(メタ)アクリレート及びこれら水酸基を有する(メタ)アクリレートとジカルボン酸又はその誘導体とを反応させて得られるカルボキシル基を有する(メタ)アクリレートなどが挙げられる。ここで使用可能なジカルボン酸としては、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸及びこれらの誘導体等が挙げられる。 Here, examples of the acrylic resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl. (Meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,2-cyclohexanediol mono (meth) acrylate, 1,3-cyclohexanediol mono (meth) acrylate, 1,4-cyclohexanediol mono (meth) acrylate, 1,2-Cyclohexanedimethanol mono (meth) acrylate, 1,3-Cyclohexanedimethanol mono (meth) acrylate, 1,4-Cyclohexanedimethanol mono (meth) acrylate, 1,2-Cyclohexanediethanol mono (meth) acrylate 1,3-cyclohexanediethanol mono (meth) acrylate, 1,4-cyclohexanediethanol mono (meth) acrylate, glycerin mono (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane mono (meth) acrylate, trimethylol Propane di (meth) acrylate, pentaerythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, neopentyl glycol mono (meth) acrylate and other (meth) acrylates having a hydroxyl group and these Examples thereof include a (meth) acrylate having a carboxyl group obtained by reacting a (meth) acrylate having a hydroxyl group with a dicarboxylic acid or a derivative thereof. Examples of the dicarboxylic acid that can be used here include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, and tetrahydrophthalic acid. , Hexahydrophthalic acid and their derivatives.
 アクリル樹脂としては、分子量が100~10,000のポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレートで(メタ)アクリル基を有する化合物、ヒドロキシル基を有する(メタ)アクリレート、ヒドロキシル基を有する(メタ)アクリルアミド等であってもよい。 As the acrylic resin, a polyether having a molecular weight of 100 to 10,000, a polyester, a polycarbonate, a poly (meth) acrylate compound having a (meth) acrylic group, a (meth) acrylate having a hydroxyl group, and a hydroxyl group (meth ) It may be acrylamide or the like.
 マレイミド樹脂は、1分子内にマレイミド基を1つ以上含む化合物であり、加熱によりマレイミド基が反応することで3次元的網目構造を形成し、硬化する樹脂である。例えば、マレイミド樹脂は、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンなどのビスマレイミド樹脂が挙げられる。マレイミド樹脂は、ダイマー酸ジアミンと無水マレイン酸の反応により得られる化合物、マレイミド酢酸、マレイミドカプロン酸といったマレイミド化アミノ酸とポリオールの反応により得られる化合物であってもよい。マレイミド化アミノ酸は、無水マレイン酸とアミノ酢酸又はアミノカプロン酸とを反応させることで得られ、ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリ(メタ)アクリレートポリオールであってもよく、芳香族環を含まないものであってもよい。 Maleimide resin is a compound that contains one or more maleimide groups in one molecule, and is a resin that cures by forming a three-dimensional network structure by the reaction of maleimide groups by heating. For example, maleimide resins include N, N '-(4,4'-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2-bis [4- (4- Examples include bismaleimide resins such as maleimidophenoxy) phenyl] propane. The maleimide resin may be a compound obtained by the reaction of a dimer acid diamine and maleic anhydride, or a compound obtained by the reaction of a maleimidated amino acid such as maleimidoacetic acid and maleimidocaproic acid with a polyol. The maleimidated amino acid is obtained by reacting maleic anhydride with aminoacetic acid or aminocaproic acid, and the polyol may be a polyether polyol, a polyester polyol, a polycarbonate polyol, or a poly (meth) acrylate polyol. It may not contain a group ring.
 ここで、熱硬化性樹脂を配合する場合は、上記銅粒子100質量部に対し、1~20質量部となるように配合する。熱硬化性樹脂が1質量部以上であると熱硬化性樹脂による接着性が良好となる。熱硬化性樹脂が20質量部以下であると銅成分の含有量が多くなるため、高熱伝導性を十分に確保することができ、熱放散性を向上させることができる。また、接合用ペーストは、有機成分が多くなり過ぎず、光及び熱による劣化を抑え、その結果、発光装置の寿命を高めることができる。このような配合範囲とすることで、熱硬化性樹脂の接着性能を利用して、接着層全体の機械的強度を保持することが容易にできる。 Here, when the thermosetting resin is blended, the blending amount is 1 to 20 parts by mass with respect to 100 parts by mass of the copper particles. When the amount of the thermosetting resin is 1 part by mass or more, the adhesiveness of the thermosetting resin becomes good. When the content of the thermosetting resin is 20 parts by mass or less, the content of the copper component increases, so that high thermal conductivity can be sufficiently ensured and heat dissipation can be improved. In addition, the bonding paste does not have an excessive amount of organic components and suppresses deterioration due to light and heat, and as a result, the life of the light emitting device can be extended. By setting the content in such a range, it is possible to easily maintain the mechanical strength of the entire adhesive layer by utilizing the adhesive performance of the thermosetting resin.
(有機溶剤)
 有機溶剤は、還元剤として機能する溶剤であれば公知の溶剤を用いることができる。
 上記有機溶剤としては、アルコールであってもよい。アルコールとしては、例えば、脂肪族多価アルコールを挙げることができる。脂肪族多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロビレングリコール、1,4-ブタンジオール、グリセリン、ポリエチレングリコールなどのグリコール類などを挙げることができる。これらの有機溶剤は、単独で用いてもよく、2種以上を併用してもよい。
(Organic solvent)
As the organic solvent, a known solvent can be used as long as it functions as a reducing agent.
The organic solvent may be alcohol. Examples of alcohols include aliphatic polyhydric alcohols. Examples of the aliphatic polyhydric alcohol include glycols such as ethylene glycol, diethylene glycol, propylene glycol, diproylene glycol, 1,4-butanediol, glycerin and polyethylene glycol. These organic solvents may be used alone or in combination of two or more.
 接合用ペーストは、有機溶剤として、アルコールを用いることにより、ペースト硬化(焼結)時の熱処理により高温となることでアルコールの還元力を増大させる。銅粒子中に一部存在している酸化銅及び金属基板上の酸化金属(例えば、酸化銅)は、アルコールによって還元され、純粋な金属となり、結果としてより緻密で導電性が高く、基板との密着性の高い硬化膜の形成ができると考えられる。また、半導体素子と金属基板に挟まれていることでペースト硬化時の熱処理中にアルコールが一部還流状態となり、溶剤であるアルコールが揮発により系中から直ちに失われることがなく、沸点以上のペースト硬化温度で酸化金属がより効率的に還元されるようになる。 The bonding paste increases the reducing power of alcohol by using alcohol as an organic solvent, and by increasing the temperature by heat treatment during paste hardening (sintering). The copper oxide partially present in the copper particles and the metal oxide on the metal substrate (for example, copper oxide) are reduced by the alcohol to be a pure metal, and as a result, are more dense and highly conductive, and are It is considered that a cured film having high adhesion can be formed. In addition, since it is sandwiched between the semiconductor element and the metal substrate, the alcohol partially returns to the reflux state during the heat treatment during paste hardening, and the solvent alcohol is not immediately lost from the system due to volatilization. The metal oxide is reduced more efficiently at the curing temperature.
 有機溶剤の沸点は、具体的には、100~300℃であってもよく、150~290℃であってもよい。沸点が100℃以上であると、接合用ペーストは、常温であっても揮発性が高くなり過ぎず、分散媒の揮発による還元能力の低下を制御することができ、安定した接着強度を得ることができる。また、沸点が300℃以下であると、接合用ペーストは、硬化膜(導電膜)の焼結が生じやすく、緻密性に優れた膜を形成することができると同時に焼結時に有機溶剤の揮発を促す。 Specifically, the boiling point of the organic solvent may be 100 to 300 ° C, or 150 to 290 ° C. When the boiling point is 100 ° C. or higher, the bonding paste does not have too high volatility even at room temperature, and it is possible to control the reduction of the reduction ability due to the volatilization of the dispersion medium, and obtain stable adhesive strength. You can When the boiling point is 300 ° C. or less, the bonding paste is likely to sinter the cured film (conductive film) and can form a film with excellent compactness, and at the same time volatilizes the organic solvent during sintering. Encourage.
 有機溶剤を配合する場合、その配合量は、銅粒子を100質量部としたとき、7~20質量部であってもよい。有機溶剤の配合量が、7質量部以上であると粘度が高くなり過ぎず、作業性を向上させることができる。有機溶剤の配合量が、20質量部以下であると接合用ペーストの粘度変化が制御され、接合用ペースト中の銅粒子の沈下が制御されることから、信頼性を高めることができる。 When blending the organic solvent, the blending amount may be 7 to 20 parts by mass when the copper particles are 100 parts by mass. When the blending amount of the organic solvent is 7 parts by mass or more, the viscosity does not become too high and the workability can be improved. When the compounding amount of the organic solvent is 20 parts by mass or less, the viscosity change of the bonding paste is controlled and the sinking of the copper particles in the bonding paste is controlled, so that the reliability can be improved.
 本実施形態の接合用ペーストには、以上の各成分の他、本開示の効果を阻害しない範囲で、この種の組成物に一般に配合される、硬化促進剤、ゴム、シリコーン等の低応力化剤、カップリング剤、消泡剤、界面活性剤、着色剤(顔料、染料)、各種重合禁止剤、酸化防止剤、溶剤、その他の各種添加剤を、必要に応じて配合することができる。これらの各添加剤はいずれも1種を使用してもよく、2種以上を混合して使用してもよい。 In the bonding paste of the present embodiment, in addition to the above respective components, a curing accelerator, rubber, silicone, etc., which are generally blended in a composition of this type, in a range that does not impair the effects of the present disclosure, reduce stress. Agents, coupling agents, defoaming agents, surfactants, colorants (pigments, dyes), various polymerization inhibitors, antioxidants, solvents, and other various additives can be blended as necessary. Each of these additives may be used alone or in combination of two or more.
 本実施形態の接合用ペーストは、上述した銅粒子、及び必要に応じて配合される熱硬化性樹脂、有機溶剤、カップリング剤等の添加剤等を十分に混合した後、さらにディスパース、ニーダー、3本ロールミル等により混練処理を行い、次いで、脱泡することにより調製することができる。 The bonding paste of the present embodiment, after sufficiently mixing the above-mentioned copper particles, and an additive such as a thermosetting resin, an organic solvent, and a coupling agent that are blended as necessary, further disperse and kneader. It can be prepared by kneading with a three-roll mill or the like and then defoaming.
 本実施形態の接合用ペーストの粘度は、20~300Pa・sであってもよく、40~200Pa・sであってもよい。
 本実施形態の接合用ペーストの接合強度は、20MPa以上であってもよく、25MPa以上であってもよい。
 また、本実施形態の接合用ペーストの熱伝導率は、100W/mK以上であってもよく、120W/mK以上であってもよい。
 なお、上記粘度、接合強度、及び熱伝導率は、実施例に記載の方法により測定することができる。
The viscosity of the bonding paste of the present embodiment may be 20 to 300 Pa · s or 40 to 200 Pa · s.
The bonding strength of the bonding paste of the present embodiment may be 20 MPa or more, or 25 MPa or more.
Further, the thermal conductivity of the bonding paste of this embodiment may be 100 W / mK or higher, or 120 W / mK or higher.
The viscosity, bonding strength, and thermal conductivity can be measured by the methods described in the examples.
 このようにして得られる本実施形態の接合用ペーストは、高熱伝導性、熱放散性に優れる。そのため、素子や放熱部材の基板等への接合材料として使用すると、装置内部の熱の外部への放散性が改善され、製品特性を安定させることができる。 The thus obtained bonding paste of the present embodiment has excellent high heat conductivity and heat dissipation. Therefore, when it is used as a bonding material for an element or a heat dissipation member to a substrate or the like, the heat dissipation inside the device to the outside is improved, and the product characteristics can be stabilized.
<半導体装置、及び電気・電子部品>
 本実施形態の半導体装置、及び電気・電子部品は、上述の接合用ペーストを用いて接合されてなることから、信頼性に優れる。
<Semiconductor device and electric / electronic parts>
The semiconductor device and the electric / electronic component of the present embodiment are excellent in reliability because they are joined by using the above-mentioned joining paste.
 本実施形態の半導体装置は、上述の接合用ペーストを用いて、半導体素子を素子支持部材となる基板上に接着してなるものである。すなわち、ここで接合用ペーストはダイアタッチペーストとして使用され、このペーストを介して半導体素子と基板とが接着し、固定される。 The semiconductor device of this embodiment is formed by adhering a semiconductor element onto a substrate that serves as an element supporting member, using the above-mentioned bonding paste. That is, the bonding paste is used here as a die attach paste, and the semiconductor element and the substrate are bonded and fixed via this paste.
 ここで、半導体素子は、公知の半導体素子であればよく、例えば、トランジスタ、ダイオード等が挙げられる。さらに、この半導体素子としては、LED等の発光素子が挙げられる。また、発光素子の種類は特に制限されるものではなく、例えば、MOBVC法等によって基板上にInN、AlN、GaN、InGaN、AlGaN、InGaAlN等の窒化物半導体を発光層として形成させたものが挙げられる。
 また、素子支持部材としては、銅、銅メッキ銅、PPF(プリプレーティングリードフレーム)、ガラスエポキシ、セラミックス等の材料で形成された支持部材が挙げられる。
Here, the semiconductor element may be any known semiconductor element, and examples thereof include a transistor and a diode. Further, as the semiconductor element, a light emitting element such as an LED can be mentioned. The type of the light emitting element is not particularly limited, and examples thereof include those in which a nitride semiconductor such as InN, AlN, GaN, InGaN, AlGaN, or InGaAlN is formed as a light emitting layer on the substrate by the MOBVC method or the like. Be done.
Further, as the element supporting member, a supporting member formed of a material such as copper, copper-plated copper, PPF (pre-plating lead frame), glass epoxy, or ceramics can be used.
 本実施形態の接合用ペーストは、金属メッキ処理されていない基材をも接合できる。このようにして得られる半導体装置は、実装後の温度サイクルに対する接続信頼性が従来に比べ飛躍的に向上したものとなる。また、電気抵抗値が十分小さく経時変化が少ないため、長時間の駆動でも出力の経時的減少が少なく長寿命であるという利点がある。 The bonding paste of this embodiment can bond base materials that have not been metal-plated. The semiconductor device thus obtained has dramatically improved connection reliability with respect to the temperature cycle after mounting as compared with the conventional one. Further, since the electric resistance value is sufficiently small and the change with time is small, there is an advantage that the output does not decrease with time even for long-time driving and the life is long.
 また、本実施形態の電気・電子部品は、上述の接合用ペーストを用いて、発熱部材に放熱部材を接着してなるものである。すなわち、ここで接合用ペーストは放熱部材接着用材料として使用され、当該接合用ペーストを介して放熱部材と発熱部材とが接着し、固定される。 The electric / electronic component of the present embodiment is formed by bonding the heat dissipation member to the heat dissipation member using the above-mentioned bonding paste. That is, here, the bonding paste is used as a material for bonding the heat dissipation member, and the heat dissipation member and the heat generating member are bonded and fixed via the bonding paste.
 発熱部材としては、上記半導体素子又は当該半導体素子を有する部材でもよいし、それ以外の発熱部材でもよい。半導体素子以外の発熱部材としては、光ピックアップ、パワートランジスタ等が挙げられる。また、放熱部材としては、ヒートシンク、ヒートスプレッダー等が挙げられる。 The heat generating member may be the above semiconductor element, a member having the semiconductor element, or any other heat generating member. Examples of heat generating members other than semiconductor elements include optical pickups and power transistors. Further, examples of the heat radiation member include a heat sink and a heat spreader.
 このように、発熱部材に上述の接合用ペーストを用いて放熱部材を接着することで、発熱部材で発生した熱を放熱部材により効率良く外部へ放出することが可能となり、発熱部材の温度上昇を抑えることができる。なお、発熱部材と放熱部材とは、接合用ペーストを介して直接接着してもよいし、他の熱伝導率の高い部材を間に挟んで間接的に接着してもよい。 In this way, by bonding the heat dissipation member to the heat generation member using the above-mentioned bonding paste, it is possible to efficiently dissipate the heat generated in the heat generation member to the outside, thereby increasing the temperature of the heat generation member. Can be suppressed. The heat-generating member and the heat-dissipating member may be directly bonded to each other via a bonding paste, or may be indirectly bonded to each other with another member having high thermal conductivity interposed therebetween.
 次に実施例により、本開示の一態様を具体的に説明するが、これらの例によってなんら限定されるものではない。 Next, one embodiment of the present disclosure will be specifically described with reference to examples, but the present invention is not limited to these examples.
(銅粒子の製造)
[合成例1]
 (A)金属銅粉(福田金属箔粉工業(株)製、商品名:Cu-HWQ、平均粒子径1.5μmの球状粒子)20mmolと、(B)銅化合物(東京化成工業(株)製、商品名:酢酸銅(II)一水和物)20mmolと、(D)有機保護化合物(東京化成工業(株)製、商品名:ヘキサン酸)40mmolと、有機溶剤としてブチルセロソルブ(東京化成工業(株)製)3mLとを50mLのサンプルビンに入れ、アルミブロック式加熱撹拌機中、窒素雰囲気下、90℃で5分間混合した。得られた銅粉混合溶液を室温(25℃)まで冷却した後、1-プロパノール3mLに、(C)還元性化合物としてヒドラジン一水和物(富士フイルム和光純薬(株)製、商品名:ヒドラジン一水和物)20mmolを溶解させた溶液を、サンプルビンの金属銅粉混合溶液に加え、5分間撹拌した。再び90℃のアルミブロック式加熱撹拌機で2時間加熱撹拌した。5分後エタノール(関東化学(株)製、特級)2mLを加え、遠心分離(4000rpm(1分間))により、固体物を得た。その遠心分離した固体物を減圧乾燥し、銅光沢をもつ平均粒子径1.6μmの粉体状の銅粒子1を得た。
 なお、図1に、銅粒子1を走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製、S-3400NX)で撮影し(倍率2万倍)、得られた画像を示す。銅粒子1は、(A)金属銅粉の形状(球状粒子)とは異なり多面体形状を有しており、当該(A)金属銅粉の表面に新たに銅層が形成されていることがわかる。
(Production of copper particles)
[Synthesis example 1]
(A) 20 mmol of metal copper powder (manufactured by Fukuda Metal Foil Powder Co., Ltd., trade name: Cu-HWQ, spherical particles having an average particle diameter of 1.5 μm) and (B) copper compound (manufactured by Tokyo Kasei Kogyo Co., Ltd.) , Trade name: copper (II) acetate monohydrate) 20 mmol, (D) organic protective compound (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: hexanoic acid) 40 mmol, and butyl cellosolve as an organic solvent (Tokyo Chemical Industry ( (Manufactured by K.K. Co., Ltd.) in a 50 mL sample bottle, and mixed in an aluminum block-type heating stirrer at 90 ° C. for 5 minutes in a nitrogen atmosphere. After the obtained copper powder mixed solution was cooled to room temperature (25 ° C.), hydrazine monohydrate (C) as a reducing compound was added to 3 mL of 1-propanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name: A solution in which 20 mmol of hydrazine monohydrate) was dissolved was added to the metallic copper powder mixed solution in the sample bottle and stirred for 5 minutes. The mixture was again heated and stirred for 2 hours with an aluminum block type heating and stirring machine at 90 ° C. After 5 minutes, 2 mL of ethanol (special grade, manufactured by Kanto Chemical Co., Inc.) was added, and a solid substance was obtained by centrifugation (4000 rpm (1 minute)). The centrifuged solid matter was dried under reduced pressure to obtain powdery copper particles 1 having a copper luster and an average particle diameter of 1.6 μm.
Note that FIG. 1 shows an image obtained by photographing the copper particles 1 with a scanning electron microscope (SEM) (S-3400NX, manufactured by Hitachi High-Technologies Corporation) (magnification: 20,000 times). The copper particles 1 have a polyhedral shape unlike the shape (spherical particles) of the (A) metallic copper powder, and it can be seen that a new copper layer is formed on the surface of the (A) metallic copper powder. ..
[合成例2]
 (D)有機保護化合物として(東京化成工業(株)製、商品名:オクチルアミン)40mmolを用いた以外は、合成例1と同様にして、銅光沢をもつ平均粒子径1.7μmの粉体状の銅粒子2を得た。
[Synthesis example 2]
(D) A powder having an average particle diameter of 1.7 μm and having a copper luster in the same manner as in Synthesis Example 1 except that 40 mmol (trade name: octylamine, manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the organic protective compound. Copper particles 2 having a shape of a circle were obtained.
[合成例3]
 ノナン酸(東京化成工業(株)製、商品名)40mmol、及びヘキシルアミン(東京化成工業(株)製、商品名)40mmolを50mLのサンプルビンに入れ、70℃で30分間撹拌し、(D)有機保護化合物としてのノナン酸ヘキシルアミン塩を合成した。その後、得られた(D)有機保護化合物(ノナン酸ヘキシルアミン塩)40mmolと、(A)金属銅粉(福田金属箔粉工業(株)製、商品名:Cu-HWQ、平均粒子径1.5μmの球状粒子)20mmolと、(B)銅化合物(東京化成工業(株)製、商品名:酢酸銅(II)一水和物)20mmolと、有機溶剤としてブチルセロソルブ(東京化成工業(株)製)3mLとを50mLのサンプルビンに入れ、アルミブロック式加熱撹拌機中、窒素雰囲気下、90℃で5分間混合した。得られた銅粉混合溶液を室温(25℃)まで冷却した後、1-プロパノール3mLに、(C)還元性化合物としてヒドラジン一水和物(富士フイルム和光純薬(株)製、商品名:ヒドラジン一水和物)20mmolを溶解させた溶液を、サンプルビンの金属銅粉混合溶液に加え、5分間撹拌した。再び90℃のアルミブロック式加熱撹拌機で2時間加熱撹拌した。5分後エタノール(関東化学(株)製、特級)2mLを加え、遠心分離(4000rpm(1分間))により、固体物を得た。その遠心分離した固体物を減圧乾燥し、銅光沢をもつ平均粒子径1.6μmの粉体状の銅粒子3を得た。
[Synthesis example 3]
Nonanoic acid (manufactured by Tokyo Chemical Industry Co., Ltd., trade name) 40 mmol and hexylamine (Tokyo Chemical Industry Co., Ltd., trade name) 40 mmol were placed in a 50 mL sample bottle and stirred at 70 ° C. for 30 minutes, and (D ) Hexylamine nonanoate salt as an organic protective compound was synthesized. Thereafter, 40 mmol of the obtained (D) organic protective compound (hexylamine nonanoate salt) and (A) metallic copper powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., trade name: Cu-HWQ, average particle size 1. 20 mmol of spherical particles of 5 μm), 20 mmol of (B) copper compound (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: copper (II) acetate monohydrate), and butyl cellosolve (manufactured by Tokyo Chemical Industry Co., Ltd.) as an organic solvent. ) 3 mL and 50 mL were put into a 50 mL sample bottle, and mixed in an aluminum block-type heating stirrer at 90 ° C. for 5 minutes under a nitrogen atmosphere. After the obtained copper powder mixed solution was cooled to room temperature (25 ° C.), hydrazine monohydrate (C) as a reducing compound was added to 3 mL of 1-propanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name: A solution in which 20 mmol of hydrazine monohydrate) was dissolved was added to the metallic copper powder mixed solution in the sample bottle and stirred for 5 minutes. The mixture was again heated and stirred for 2 hours with an aluminum block type heating and stirring machine at 90 ° C. After 5 minutes, 2 mL of ethanol (special grade, manufactured by Kanto Chemical Co., Inc.) was added, and a solid substance was obtained by centrifugation (4000 rpm (1 minute)). The centrifuged solid matter was dried under reduced pressure to obtain powdery copper particles 3 having a copper luster and an average particle diameter of 1.6 μm.
[合成例4]
 (B)銅化合物として亜酸化銅(古河ケミカルズ(株)製、商品名:FRC-10A)20mmmolを用いた以外は、合成例3と同様にして、銅光沢をもつ平均粒子径1.6μmの粉体状の銅粒子4を得た。
[Synthesis example 4]
(B) In the same manner as in Synthesis Example 3 except that 20 mmol of cuprous oxide (trade name: FRC-10A, manufactured by Furukawa Chemicals Co., Ltd.) was used as the copper compound, an average particle size of 1.6 μm having a copper luster was obtained. Powdery copper particles 4 were obtained.
[合成例5]
 (A)金属銅粉を配合しないこと以外は合成例3と同様にして、銅光沢をもつ平均粒子径50nmの粉体状の銅粒子5を得た。
 なお、上記銅粒子1~5の平均粒子径は、走査電子顕微鏡((株)日立ハイテクノロジーズ製、商品名:S-3400NX)の観察画像に基づく任意に選択した10個の銅粒子(n=10)の平均値として算出した値である。
[Synthesis example 5]
(A) Powdered copper particles 5 having an average particle diameter of 50 nm and having a copper luster were obtained in the same manner as in Synthesis Example 3 except that the metallic copper powder was not added.
The average particle size of the copper particles 1 to 5 is 10 copper particles (n = n) arbitrarily selected based on an observation image of a scanning electron microscope (Hitachi High-Technologies Corporation, trade name: S-3400NX). It is a value calculated as the average value of 10).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 合成例1で得られた銅粒子1が100質量部、有機溶剤としてジエチレングリコール(東京化成工業(株)製)が15質量部となるように調製し、ロールで混練し、接合用ペーストを得た。
(Example 1)
100 parts by mass of the copper particles 1 obtained in Synthesis Example 1 and 15 parts by mass of diethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) as an organic solvent were prepared and kneaded with a roll to obtain a bonding paste. ..
(実施例2~4及び比較例1)
 表2に記載の種類及び配合量の各成分に変更した以外は、実施例1と同様にして接合用ペーストを得た。なお、表2中、空欄は配合なしを表す。
(Examples 2 to 4 and Comparative Example 1)
A bonding paste was obtained in the same manner as in Example 1 except that the types and blending amounts shown in Table 2 were changed. In addition, in Table 2, a blank column represents no compounding.
 上記各実施例及び比較例で得られた接合用ペーストについて、以下の方法で評価した。その結果を表2に示す。
<接合用ペーストの評価方法>
[ポットライフ]
 E型粘度計(東機産業(株)製、製品名:VISCOMETER-TV22、適用コーンプレート型ロータ:3°×R17.65)を用いて、25℃、5rpmでの値を測定し、初期粘度とした。次いで、25℃の恒温槽内に接合用ペーストを放置した時の粘度を測定し、当該粘度が上記初期粘度の0.7倍以上増粘するまでの日数を測定した。
The bonding pastes obtained in the above Examples and Comparative Examples were evaluated by the following methods. The results are shown in Table 2.
<Evaluation method of bonding paste>
[Pot life]
Using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., product name: VISCOMETER-TV22, applicable cone-plate type rotor: 3 ° x R17.65), the value at 25 ° C and 5 rpm was measured to obtain the initial viscosity. And Next, the viscosity when the bonding paste was allowed to stand in a constant temperature bath at 25 ° C. was measured, and the number of days until the viscosity increased 0.7 times or more the initial viscosity was measured.
[焼結性(塗膜)]
 接合用ペーストの焼結性は下記手順で評価した。
(1)接合用ペーストをガラス基板(厚み1mm)にスクリーン印刷法により厚み25μmとなるように塗布した。
(2)塗布した接合用ペーストを200℃、60分間で硬化させて焼結膜を得た。
(3)得られた焼結膜の電気抵抗はロレスタGP(商品名、(株)三菱ケミカルアナリティック製)を用い四端針法にて測定した。
(4)判定基準は、電気抵抗が1.0×10-4Ω・m以下を「A」、1.0×10-4Ω・m超えを「C」とした。
[Sinterability (coating film)]
The sinterability of the bonding paste was evaluated by the following procedure.
(1) The bonding paste was applied to a glass substrate (thickness 1 mm) by screen printing so as to have a thickness of 25 μm.
(2) The applied bonding paste was cured at 200 ° C. for 60 minutes to obtain a sintered film.
(3) The electric resistance of the obtained sintered film was measured by a four-point needle method using Loresta GP (trade name, manufactured by Mitsubishi Chemical Analytical Co., Ltd.).
(4) As a criterion, an electric resistance of 1.0 × 10 −4 Ω · m or less was “A”, and an electrical resistance of more than 1.0 × 10 −4 Ω · m was “C”.
[熱伝導率]
 接合用ペーストの熱伝導率は下記手順で評価した。
(1)接合用ペーストをガラス基板(厚み1mm)にスクリーン印刷法により厚み25μmとなるように塗布した。
(2)塗布した接合用ペーストを200℃、60分間で硬化させて焼結膜を得た。
(3)得られた焼結膜の熱伝導率はJIS R 1611-1997に従い、レーザーフラッシュ法により測定した。
[Thermal conductivity]
The thermal conductivity of the bonding paste was evaluated by the following procedure.
(1) The bonding paste was applied to a glass substrate (thickness 1 mm) by screen printing so as to have a thickness of 25 μm.
(2) The applied bonding paste was cured at 200 ° C. for 60 minutes to obtain a sintered film.
(3) The thermal conductivity of the obtained sintered film was measured by the laser flash method according to JIS R 1611-1997.
[SEM画像]
 接合用ペーストのSEM画像は下記手順で評価した。
(1)実施例1の接合用ペースト、及び比較例1の接合用ペーストを、それぞれガラス基板(厚み1mm)にスクリーン印刷法により厚み25μmとなるように塗布した。
(2)塗布した接合用ペーストを200℃、60分間で硬化させて焼結膜を得た。
(3)得られた焼結膜のSEM画像は、焼結膜を走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製、S-3400NX)を用いて倍率2万倍で撮影した。
(4)実施例1の接合用ペーストから得られた焼結膜断面の画像を図2に示す。比較例1の接合用ペーストから得られた焼結膜断面の画像を図3に示す。
[SEM image]
The SEM image of the bonding paste was evaluated by the following procedure.
(1) The bonding paste of Example 1 and the bonding paste of Comparative Example 1 were each applied to a glass substrate (thickness 1 mm) by screen printing so as to have a thickness of 25 μm.
(2) The applied bonding paste was cured at 200 ° C. for 60 minutes to obtain a sintered film.
(3) The SEM image of the obtained sintered film was photographed at a magnification of 20,000 using a scanning electron microscope (SEM) (manufactured by Hitachi High-Technologies Corporation, S-3400NX).
(4) An image of a cross section of the sintered film obtained from the bonding paste of Example 1 is shown in FIG. FIG. 3 shows an image of a cross section of a sintered film obtained from the bonding paste of Comparative Example 1.
 図2に示すように、本開示の一態様の製造方法により得られた銅粒子1は焼結性に優れることから、当該銅粒子1同士、及び当該銅粒子1とその周りに存在する小粒径銅粒子とが焼結し、緻密な焼結膜を形成していることがわかる。
 一方、図3に示すように、小粒径の銅粒子と、大粒径の金属銅粉とを混合し得られた比較例1の接合用ペーストでは、大粒径の金属銅粉の焼結性が低いため、小粒径の銅粒子と、大粒径の金属銅粉とは焼結せず、小粒径の銅粒子同士のみが焼結しており、焼結膜中に空隙が存在することがわかる。
As shown in FIG. 2, since the copper particles 1 obtained by the manufacturing method according to one embodiment of the present disclosure have excellent sinterability, the copper particles 1 themselves, and the copper particles 1 and small particles existing around them. It can be seen that the large diameter copper particles are sintered to form a dense sintered film.
On the other hand, as shown in FIG. 3, in the bonding paste of Comparative Example 1 obtained by mixing small-sized copper particles and large-sized metallic copper powder, the large-sized metallic copper powder was sintered. Because of its low property, small-sized copper particles and large-sized metal copper powder do not sinter, only small-sized copper particles sinter each other, and voids exist in the sintered film. I understand.
<半導体装置の評価方法>
[接合強度]
(1)2mm×2mmの接合面に金蒸着層を設けたシリコンチップを、接合用ペーストを用いて無垢の銅フレーム及びPPF(Ni-Pd/Auめっきした銅フレーム)にマウントした。
(2)上記接合用ペーストを窒素(3%水素)雰囲気下、200℃、60分間で硬化させた。
(3)上記接合用ペーストで接合したシリコンチップとフレームは、85℃、相対湿度85%、72時間の条件で吸湿処理した。
(4)接合用ペーストの接合強度は、硬化後及び吸湿処理後それぞれについて、DAGE 4000Plus(製品名、ノードソン(株)製)を用いて、室温(25℃)におけるダイシェア強度を測定した。
<Semiconductor device evaluation method>
[Joint strength]
(1) A silicon chip having a 2 mm × 2 mm bonding surface provided with a gold vapor deposition layer was mounted on a pure copper frame and PPF (Ni—Pd / Au plated copper frame) using a bonding paste.
(2) The above bonding paste was cured at 200 ° C. for 60 minutes in a nitrogen (3% hydrogen) atmosphere.
(3) The silicon chip and the frame joined with the above-mentioned joining paste were subjected to a moisture absorption treatment under the conditions of 85 ° C. and a relative humidity of 85% for 72 hours.
(4) Regarding the bonding strength of the bonding paste, the die shear strength at room temperature (25 ° C.) was measured using DAGE 4000Plus (product name, manufactured by Nordson Co., Ltd.) after curing and after moisture absorption treatment.
[耐冷熱衝撃性]
(1)2mm×2mmの接合面に金蒸着層を設けたシリコンチップを、接合用ペーストを用いて銅フレーム及びPPFにマウントした。
(2)上記接合用ペーストを、窒素(3%水素)雰囲気下、200℃、60分間で硬化させた。
(3)上記接合用ペーストで接合したシリコンチップとフレームは、京セラ(株)製、エポキシ封止材(商品名:KE-G3000D)を用い、下記の条件で成形して半導体装置とした。
(4)上記半導体装置は、85℃、相対湿度85%、168時間の条件で吸湿処理した。
(5)上記半導体装置は、IRリフロー処理(260℃、10秒間)及び冷熱サイクル処理(-55℃から150℃まで昇温し、また-55℃に冷却する操作を1サイクルとし、これを1000サイクル)を行った。
(6)各処理後それぞれの半導体装置の内部クラックの発生数を超音波顕微鏡((株)日立パワーソリューション製、商品名:FineSAT)で観察した。
(7)上記半導体装置の耐冷熱衝撃性は、サンプル5個中クラックの発生したサンプル数を計数して評価した。
[Cold heat shock resistance]
(1) A silicon chip having a 2 mm × 2 mm bonding surface provided with a gold vapor deposition layer was mounted on a copper frame and PPF using a bonding paste.
(2) The above bonding paste was cured at 200 ° C. for 60 minutes in a nitrogen (3% hydrogen) atmosphere.
(3) The silicon chip and the frame bonded with the above-mentioned bonding paste were molded under the following conditions using an epoxy encapsulating material (trade name: KE-G3000D) manufactured by Kyocera Corp., to obtain a semiconductor device.
(4) The semiconductor device was subjected to moisture absorption treatment under the conditions of 85 ° C. and relative humidity of 85% for 168 hours.
(5) In the semiconductor device, an IR reflow treatment (260 ° C., 10 seconds) and a thermal cycle treatment (heating from −55 ° C. to 150 ° C., and cooling to −55 ° C. are set as one cycle, and 1000 cycles of this operation) Cycle).
(6) After each treatment, the number of internal cracks in each semiconductor device was observed with an ultrasonic microscope (Hitachi Power Solution Co., Ltd., trade name: FineSAT).
(7) The thermal shock resistance of the semiconductor device was evaluated by counting the number of samples in which cracks were generated out of 5 samples.
(成形条件)
 パッケージ:80pQFP(14mm×20mm×2mm厚さ)
 チップ:裏面金メッキシリコンチップ
 リードフレーム:PPF及び銅
 封止材の成形:175℃、2分間
 ポストモールドキュアー:175℃、8時間
(Molding condition)
Package: 80pQFP (14mm x 20mm x 2mm thickness)
Chip: Gold-plated silicon chip on back side Lead frame: PPF and copper Molding of encapsulant: 175 ° C, 2 minutes Post mold cure: 175 ° C, 8 hours
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本開示の一態様の製造方法により得られた接合用銅粒子を含む接合用ペーストを用いた実施例1~4は、熱伝導率が150W/mKと高く、塗膜状態、接合状態ともに焼結性に優れることがわかる。一方、小粒径の銅粒子と、大粒径の金属銅粉とを混合し得られた接合用ペーストを用いた比較例1は、塗膜状態においては高い焼結性を示すものの、接合状態においては焼結性に乏しく、また、熱伝導率が40W/mKと低いことがわかる。 Examples 1 to 4 using the bonding paste containing the copper particles for bonding obtained by the manufacturing method according to one embodiment of the present disclosure have a high thermal conductivity of 150 W / mK, and both the coating state and the bonding state are sintered. It can be seen that it has excellent properties. On the other hand, Comparative Example 1, which uses a bonding paste obtained by mixing small-sized copper particles and large-sized metal copper powder, shows high sinterability in a coating film state, but a bonded state. It was found that in No. 1 had poor sinterability and had a low thermal conductivity of 40 W / mK.

Claims (8)

  1.  液相還元法により、(A)金属銅粉の表面にさらに銅層を形成する工程を有する接合用銅粒子の製造方法。 (A) A method for producing copper particles for bonding having a step of further forming a copper layer on the surface of the metal copper powder by the liquid phase reduction method.
  2.  前記工程において、液相中で(A)金属銅粉と、(B)銅化合物と、(C)還元性化合物とを混合する請求項1に記載の接合用銅粒子の製造方法。 The method for producing copper particles for bonding according to claim 1, wherein (A) metallic copper powder, (B) copper compound, and (C) reducing compound are mixed in the liquid phase in the step.
  3.  前記(A)金属銅粉が、アトマイズ法、電解法、又は化学還元法により調製されたものである請求項1又は2に記載の接合用銅粒子の製造方法。 The method for producing copper particles for bonding according to claim 1 or 2, wherein the (A) metallic copper powder is prepared by an atomizing method, an electrolysis method, or a chemical reduction method.
  4.  前記工程において、さらに(D)有機保護化合物を添加する請求項1~3のいずれかに記載の接合用銅粒子の製造方法。 The method for producing copper particles for bonding according to any one of claims 1 to 3, wherein (D) an organic protective compound is further added in the step.
  5.  前記(D)有機保護化合物が、カルボン酸、アルキルアミン、及びカルボン酸アミン塩から選ばれる少なくとも1種である請求項4に記載の接合用銅粒子の製造方法。 The method for producing copper particles for bonding according to claim 4, wherein the (D) organic protective compound is at least one selected from carboxylic acids, alkylamines, and amine salts of carboxylic acids.
  6.  請求項1~5のいずれかに記載の製造方法によって得られる接合用銅粒子を含む接合用ペースト。 A bonding paste containing the bonding copper particles obtained by the manufacturing method according to any one of claims 1 to 5.
  7.  請求項6に記載の接合用ペーストを用いて接合されてなる半導体装置。 A semiconductor device bonded by using the bonding paste according to claim 6.
  8.  請求項6に記載の接合用ペーストを用いて接合されてなる電気・電子部品。 An electric / electronic component that is joined using the joining paste according to claim 6.
PCT/JP2019/044166 2018-11-20 2019-11-11 Production method for copper particles used in bonding , paste used in bonding, and semiconductor device and electric and electronic component WO2020105497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-217598 2018-11-20
JP2018217598A JP2020084242A (en) 2018-11-20 2018-11-20 Manufacturing method of copper particle for conjugation, conjugation paste and semiconductor device, and electronic and electric component

Publications (1)

Publication Number Publication Date
WO2020105497A1 true WO2020105497A1 (en) 2020-05-28

Family

ID=70773423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044166 WO2020105497A1 (en) 2018-11-20 2019-11-11 Production method for copper particles used in bonding , paste used in bonding, and semiconductor device and electric and electronic component

Country Status (3)

Country Link
JP (1) JP2020084242A (en)
TW (1) TW202026074A (en)
WO (1) WO2020105497A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191028A1 (en) * 2022-03-31 2023-10-05 京セラ株式会社 Copper particle and method for producing same, paste composition, semiconductor device, electrical component, and electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174348A (en) * 2009-01-30 2010-08-12 Dowa Electronics Materials Co Ltd Copper powder and method for producing the same
JP2015124412A (en) * 2013-12-26 2015-07-06 大日本印刷株式会社 Coated copper nanoparticle, coated nanoparticle dispersion, and method for manufacturing conductive substrate
JP2015210973A (en) * 2014-04-28 2015-11-24 大日本印刷株式会社 Copper nanoparticle dispersion and production method of conductive substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174348A (en) * 2009-01-30 2010-08-12 Dowa Electronics Materials Co Ltd Copper powder and method for producing the same
JP2015124412A (en) * 2013-12-26 2015-07-06 大日本印刷株式会社 Coated copper nanoparticle, coated nanoparticle dispersion, and method for manufacturing conductive substrate
JP2015210973A (en) * 2014-04-28 2015-11-24 大日本印刷株式会社 Copper nanoparticle dispersion and production method of conductive substrate

Also Published As

Publication number Publication date
TW202026074A (en) 2020-07-16
JP2020084242A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
KR102705720B1 (en) Silver particles, method for producing silver particles, paste composition, semiconductor device and electric/electronic component
JP6254015B2 (en) Conductive paste, electrical / electronic component and manufacturing method thereof
CN111344815A (en) Paste composition, semiconductor device, and electric/electronic component
JP6857453B2 (en) Manufacturing method of copper fine particles, copper fine particles, paste composition, semiconductor devices and electrical / electronic parts
JP2016065146A (en) Thermosetting resin composition, semiconductor device and electrical and electronic component
WO2020044983A1 (en) Production method for copper particles, bonding paste, semiconductor device, and electrical and electronic components
CN111033640A (en) Paste composition, semiconductor device, and electrical/electronic component
WO2020105497A1 (en) Production method for copper particles used in bonding , paste used in bonding, and semiconductor device and electric and electronic component
WO2020137377A1 (en) Copper particle, method for producing copper particle, copper paste, semiconductor device, and electrical/electronic component
JP7129043B2 (en) Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component
JP2003138244A (en) Resin paste for semiconductor and semiconductor device
JP7410742B2 (en) Copper particle manufacturing method, copper paste and semiconductor device
TWI699412B (en) Paste composition, semiconductor device and electrical and electronic parts
JP7320068B2 (en) Method for producing silver particles, thermosetting resin composition, semiconductor device, and electric/electronic component
JP2021134362A (en) Coated copper particle, copper paste and semiconductor device
CN112430443B (en) Thermally conductive adhesive sheet, method for producing thermally conductive adhesive sheet, and semiconductor device
WO2022196620A1 (en) Paste composition, semiconductor device, electrical component and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886362

Country of ref document: EP

Kind code of ref document: A1