JP7129043B2 - Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component - Google Patents

Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component Download PDF

Info

Publication number
JP7129043B2
JP7129043B2 JP2018163616A JP2018163616A JP7129043B2 JP 7129043 B2 JP7129043 B2 JP 7129043B2 JP 2018163616 A JP2018163616 A JP 2018163616A JP 2018163616 A JP2018163616 A JP 2018163616A JP 7129043 B2 JP7129043 B2 JP 7129043B2
Authority
JP
Japan
Prior art keywords
acid
copper
bonding
carboxylic acid
copper particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018163616A
Other languages
Japanese (ja)
Other versions
JP2020035979A (en
Inventor
知直 菊池
勇哉 似内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018163616A priority Critical patent/JP7129043B2/en
Priority to PCT/JP2019/030831 priority patent/WO2020044982A1/en
Priority to TW108128561A priority patent/TW202014259A/en
Publication of JP2020035979A publication Critical patent/JP2020035979A/en
Application granted granted Critical
Publication of JP7129043B2 publication Critical patent/JP7129043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Die Bonding (AREA)

Description

本発明は、接合用銅粒子の製造方法、接合用ペーストおよび該接合用ペーストを使用して製造した半導体装置並びに電気・電子部品に関する。 TECHNICAL FIELD The present invention relates to a method for producing bonding copper particles, a bonding paste, and a semiconductor device and electric/electronic component manufactured using the bonding paste.

半導体製品の大容量、高速処理化及び微細配線化に伴い半導体製品作動中に発生する熱の問題が顕著になってきており、半導体製品から熱を逃がす、いわゆるサーマルマネージメントがますます重要な課題となってきている。このため半導体製品にヒートスプレッダー、ヒートシンクなどの放熱部材を取り付ける方法などが一般的に採用されており、放熱部材を接着する材料自体の熱伝導率はより高いものが望まれてきている。
一方、半導体製品の形態によっては、サーマルマネージメントをより効率的なものとするため、半導体素子そのもの又は半導体素子を接着したリードフレームのダイパッド部にヒートスプレッダーを接着する方法及びダイパッド部をパッケージ表面に露出させることにより放熱板としての機能を持たせる方法(例えば、特許文献1参照)などが採用されている。
With the increase in capacity, high-speed processing, and fine wiring of semiconductor products, the problem of heat generated during the operation of semiconductor products has become conspicuous. It has become to. For this reason, a method of attaching a heat dissipating member such as a heat spreader or a heat sink to a semiconductor product is generally adopted, and a material for adhering the heat dissipating member itself is desired to have a higher thermal conductivity.
On the other hand, depending on the form of the semiconductor product, in order to make the thermal management more efficient, a method of bonding a heat spreader to the semiconductor element itself or the die pad portion of the lead frame to which the semiconductor element is bonded, and exposing the die pad portion to the package surface. A method of imparting a function as a heat sink by increasing the thickness of the heat sink (see, for example, Patent Document 1) is adopted.

また、さらには半導体素子をサーマルビアなどの放熱機構を有する有機基板などに接着する場合もある。この場合も半導体素子を接着する材料に高熱伝導性が要求される。また、近年の白色発光LEDの高輝度化により、フルカラー液晶画面のバックライト照明、シーリングライト、ダウンライト等の照明装置にも広く用いられるようになっている。ところで、発光素子の高出力化による高電流投入により、発光素子と基板とを接着する接着剤が熱及び光等で変色したり、電気抵抗値の経時変化が発生したりする問題があった。とりわけ発光素子と基板との接合を接着剤の接着力に完全に頼る方法では、電子部品のはんだ実装時に接合材料がはんだ溶融温度下に接着力を失い剥離し、不灯に至る致命的問題の懸念があった。また、白色発光LEDの高性能化は、発光素子チップの発熱量の増大を招くこととなり、これに伴いLEDの構造及びそれに使用する部材にも放熱性の向上が求められている。 Furthermore, there are cases where the semiconductor element is adhered to an organic substrate or the like having a heat dissipation mechanism such as a thermal via. Also in this case, the material for bonding the semiconductor element is required to have high thermal conductivity. In addition, due to the recent increase in brightness of white light emitting LEDs, they are also widely used in illumination devices such as backlight illumination for full-color liquid crystal screens, ceiling lights, and downlights. By the way, there is a problem that the adhesive that bonds the light emitting element and the substrate is discolored by heat and light, and the electric resistance value changes with time due to the high current input due to the high output of the light emitting element. In particular, in the method of completely relying on the adhesive strength of the adhesive to bond the light-emitting element and the substrate, the bonding material loses its adhesive strength at the melting temperature of the solder and peels off when the electronic parts are mounted by soldering. I had concerns. In addition, the higher performance of the white light emitting LED leads to an increase in the amount of heat generated by the light emitting element chip, and along with this, the structure of the LED and the members used therein are required to have improved heat dissipation properties.

特に、近年、電力損失の少ない炭化ケイ素(SiC)、窒化ガリウムのようなワイドバンドギャップ半導体を使用するパワー半導体装置の開発が盛んとなり、素子自身の耐熱性が高く、大電流による250℃以上の高温動作が可能となっている。しかし、その特性を発揮するためには、動作発熱を効率的に放熱する必要があり、導電性及び伝熱性に加え、長期高温耐熱性に優れた接合材料が求められている。 In particular, in recent years, the development of power semiconductor devices using wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride, which have low power loss, has become active. High temperature operation is possible. However, in order to exhibit its properties, it is necessary to efficiently dissipate the heat generated during operation, and there is a demand for bonding materials that are excellent in long-term high-temperature heat resistance in addition to electrical conductivity and heat transfer.

このように半導体装置及び電気・電子部品の各部材の接着に用いられる材料(ダイアタッチペースト及び放熱部材接着用材料等)に高い熱伝導性が要求されている。また、これらの材料は、同時に製品の基板搭載時のリフロー処理に耐える必要もあり、さらには大面積の接着が要求される場合も多く、構成部材間の熱膨張係数の違いによる反りなどの発生を抑制するための低応力性も併せ持つ必要がある。 As described above, materials used for bonding members of semiconductor devices and electric/electronic components (die attach pastes, heat radiating member bonding materials, etc.) are required to have high thermal conductivity. In addition, these materials also need to withstand reflow processing when the product is mounted on the board, and in many cases, bonding over a large area is required. It is also necessary to have a low stress property to suppress the

ここで、通常、高熱伝導性を有する接着剤を得るには、銀粉、銅粉などの金属フィラー及び窒化アルミニウム、窒化ボロンなどのセラミック系フィラーなどを充填剤として有機系のバインダーに高い含有率で分散させる必要がある(例えば、特許文献2参照)。しかし、その結果、硬化物の弾性率が高くなってしまい、良好な熱伝導性と良好なリフロー性(上記リフロー処理後に剥離が生じにくいこと)を併せ持つことは困難であった。 Here, in order to obtain an adhesive with high thermal conductivity, metal fillers such as silver powder and copper powder and ceramic fillers such as aluminum nitride and boron nitride are usually used as fillers in an organic binder at a high content rate. It is necessary to disperse them (see Patent Document 2, for example). However, as a result, the elastic modulus of the cured product becomes high, and it has been difficult to have both good thermal conductivity and good reflowability (that is, peeling is unlikely to occur after the reflow treatment).

ところが、昨今、そうした要求に耐えうる接合方法の候補として、バルク体の銀よりも低温の条件下で接合を可能とする、銀ナノ粒子による接合方法が着目されるようになってきた(例えば、特許文献3参照)。
ところで、銀粒子は導電性が非常に良好であるが、価格が高いこと及びマイグレーションの問題から、他の金属への代替が検討されている。そこで、現在、銀粒子と比較して安価で、マイグレーション耐性のある銅粒子に注目が集まっている。
Recently, however, attention has been focused on a bonding method using silver nanoparticles, which enables bonding under conditions of lower temperatures than bulk silver, as a candidate for a bonding method that can withstand such demands (for example, See Patent Document 3).
By the way, silver particles have very good conductivity, but due to their high price and migration problems, alternatives to other metals are being investigated. Therefore, at present, copper particles, which are less expensive than silver particles and have migration resistance, are attracting attention.

特開2006-086273号公報JP 2006-086273 A 特開2005-113059号公報JP 2005-113059 A 特開2011-240406号公報JP 2011-240406 A

しかしながら、銅ナノ粒子による接合は、導電性の発現に、300℃という高温が必要なこと、さらには粒子径が小さく、酸化の抑制が困難であること、などから取扱い及び処理に手間がかかる場合がある。さらに、銅粒子の焼結には表面酸化膜の除去の観点から、還元雰囲気での焼結を必要としていた。 However, bonding with copper nanoparticles requires a high temperature of 300°C to develop conductivity, and the particle size is small, making it difficult to suppress oxidation. There is Furthermore, the sintering of copper particles requires sintering in a reducing atmosphere from the viewpoint of removing the surface oxide film.

また、特に研究開発が進んでいる配線用銅ナノ粒子は比較的低温焼結が可能であるものの、接合用に使用した場合、接合層内部とフィレット部とに焼結速度および焼結度に差が発生し、信頼性の高い接合体を得ることが難しかった。 In addition, copper nanoparticles for wiring, for which research and development is particularly advanced, can be sintered at a relatively low temperature, but when used for bonding, the sintering rate and degree of sintering differ between the inside of the bonding layer and the fillet. occurred, and it was difficult to obtain a highly reliable conjugate.

本発明は、このような実情に鑑みてなされたものであり、接合層内部とフィレット部との焼結速度および焼結度が均一であり、接合特性が良好な銅粒子を得ることが可能な接合用銅粒子の製造方法、該製造方法によって得られる接合用銅粒子を含む接合用ペースト並びに該接合用ペーストを使用することで信頼性に優れた半導体装置及び電気・電子部品を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to obtain copper particles having a uniform sintering rate and a uniform sintering degree between the inside of the joining layer and the fillet portion, and having good joining properties. To provide a method for producing bonding copper particles, a bonding paste containing the bonding copper particles obtained by the manufacturing method, and a highly reliable semiconductor device and electric/electronic component by using the bonding paste. aim.

本発明者らは、上記の課題を解決するべく鋭意検討した結果、下記の発明により該課題を解決できることを見出した。 As a result of intensive studies aimed at solving the above problems, the inventors of the present invention have found that the problems can be solved by the following inventions.

すなわち、本願開示は、以下に関する。
[1](A)銅化合物を、(B)カルボン酸アミン塩存在下、(C)還元性化合物によって還元することを特徴とする接合用銅粒子の製造方法。
[2]前記(B)カルボン酸アミン塩を構成するカルボン酸化合物の熱分解温度が200℃以下であることを特徴とする上記[1]に記載の接合用銅粒子の製造方法。
[3]さらに、(D)炭素数1~12のカルボン酸を含むことを特徴とする上記[1]または[2]に記載の接合用銅粒子の製造方法。
[4]前記(D)炭素数1~12のカルボン酸がモノカルボン酸であることを特徴とする上記[3]に記載の接合用銅粒子の製造方法。
[5]さらに、(E)炭素数1~12のアルキルアミンを含むことを特徴とする上記[1]~[4]のいずれかに記載の接合用銅粒子の製造方法。
[6]上記[1]~[5]のいずれかに記載の製造方法によって得られる接合用銅粒子を含むことを特徴とする接合用ペースト。
[7]上記[6]に記載の接合用ペーストを用いて接合されてなる半導体装置および電気・電子部品。
That is, the present disclosure relates to the following.
[1] A method for producing copper particles for bonding, which comprises reducing (A) a copper compound with (C) a reducing compound in the presence of (B) a carboxylic acid amine salt.
[2] The method for producing bonding copper particles according to [1] above, wherein the thermal decomposition temperature of the carboxylic acid compound constituting the (B) carboxylic acid amine salt is 200° C. or lower.
[3] The method for producing bonding copper particles according to [1] or [2] above, which further comprises (D) a carboxylic acid having 1 to 12 carbon atoms.
[4] The method for producing copper particles for bonding according to [3] above, wherein the (D) carboxylic acid having 1 to 12 carbon atoms is a monocarboxylic acid.
[5] The method for producing bonding copper particles according to any one of [1] to [4], further comprising (E) an alkylamine having 1 to 12 carbon atoms.
[6] A bonding paste comprising bonding copper particles obtained by the manufacturing method according to any one of [1] to [5] above.
[7] A semiconductor device and an electrical/electronic component bonded using the bonding paste according to [6] above.

本発明によれば、接合層内部とフィレット部との焼結速度および焼結度が均一であり、接合特性が良好な銅粒子を得ることが可能な接合用銅粒子の製造方法、該製造方法によって得られる接合用銅粒子を含む接合用ペースト並びに該接合用ペーストを使用することで信頼性に優れた半導体装置及び電気・電子部品を提供することができる。 According to the present invention, the sintering rate and degree of sintering are uniform between the inside of the bonding layer and the fillet portion, and a copper particle for bonding can be obtained that has good bonding characteristics, and the manufacturing method. A bonding paste containing the bonding copper particles obtained by the method and the bonding paste can be used to provide highly reliable semiconductor devices and electrical/electronic components.

<接合用銅粒子の製造方法>
本発明の接合用銅粒子の製造方法は、(A)銅化合物を、(B)カルボン酸アミン塩存在下、(C)還元性化合物によって還元することを特徴とする。
<Method for producing bonding copper particles>
The method for producing bonding copper particles of the present invention is characterized by reducing (A) a copper compound with (C) a reducing compound in the presence of (B) a carboxylic acid amine salt.

以下、本発明について、一実施形態を参照しながら詳細に説明する。 The invention will now be described in detail with reference to one embodiment.

((A)銅化合物)
本実施形態で用いられる(A)銅化合物は、銅原子を含むものであれば特に限定されるものではない。銅化合物としては、例えば、カルボン酸銅、酸化銅、水酸化銅、窒化銅等が挙げられる。中でも、反応時の均一性の観点からカルボン酸銅が好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。
((A) copper compound)
The (A) copper compound used in the present embodiment is not particularly limited as long as it contains a copper atom. Examples of copper compounds include copper carboxylate, copper oxide, copper hydroxide, and copper nitride. Among them, copper carboxylate is preferable from the viewpoint of uniformity during the reaction. These may be used alone or in combination of two or more.

カルボン酸銅としては、ギ酸銅(I)、酢酸銅(I)、プロピオン酸銅(I)、酪酸銅(I)、吉草酸銅(I)、カプロン酸銅(I)、カプリル酸銅(I)、カプリン酸銅(I)、ギ酸銅(II)、酢酸銅(II)、プロピオン酸銅(II)、酪酸銅(II)、吉草酸銅(II)、カプロン酸銅(II)、カプリル酸銅(II)、カプリン酸銅(II)、クエン酸銅(II)等のカルボン酸銅無水物または水和物が挙げられる。中でも、生産性および入手容易性の観点から酢酸銅(II)一水和物が好ましい。また、これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of copper carboxylates include copper formate (I), copper acetate (I), copper propionate (I), copper butyrate (I), copper valerate (I), copper caproate (I), copper caprylate (I ), copper (I) caprate, copper (II) formate, copper (II) acetate, copper (II) propionate, copper (II) butyrate, copper (II) valerate, copper (II) caproate, caprylic acid Carboxylic acid copper anhydrides or hydrates, such as copper (II), copper (II) caprate, and copper (II) citrate. Among them, copper (II) acetate monohydrate is preferable from the viewpoint of productivity and availability. Moreover, these may be used independently and may use 2 or more types together.

また、カルボン酸銅は、市販のものを使用してもよいし、合成によって得られたものを使用してもよい。 Moreover, a commercially available copper carboxylate may be used, or one obtained by synthesis may be used.

カルボン酸銅の合成は、公知の方法で行うことができ、例えば、水酸化銅(II)とカルボン酸化合物とを混合・加熱によって得ることができる。 Carboxylic acid copper can be synthesized by a known method, for example, by mixing and heating copper(II) hydroxide and a carboxylic acid compound.

酸化銅としては、酸化銅(II)、酸化銅(I)が挙げられ、生産性の観点から酸化銅(I)が好ましい。また、水酸化銅としては、水酸化銅(II)、水酸化銅(I)が挙げられる。
これらは単独で用いてもよく、2種以上を併用してもよい。
Copper oxide includes copper (II) oxide and copper (I) oxide, and copper (I) oxide is preferred from the viewpoint of productivity. Copper hydroxide includes copper (II) hydroxide and copper (I) hydroxide.
These may be used alone or in combination of two or more.

((B)カルボン酸アミン塩)
本実施形態で用いられる(B)カルボン酸アミン塩は、本実施形態における重要成分であり、アミン化合物、カルボン酸化合物のみで構成される銅粒子の合成方法と比較して劇的に焼結性を改善した銅粒子を得ることが可能となり、接合層内部とフィレット部との焼結速度および焼結度を均一化し、接合特性を改善することができる。この理由は正確に判明しているわけではないが、筆者らはカルボン酸アミン塩の構造が、カルボン酸-銅およびアミン化合物-銅の強力な吸着作用を相互に緩和し、銅への吸着力が低下するために、カルボン酸及びアミンの脱離性に優れるものと想定しており、結果として接合層内部のような閉鎖された空間においても良好な脱離挙動を示すためである。
((B) carboxylic acid amine salt)
The (B) carboxylic acid amine salt used in the present embodiment is an important component in the present embodiment, and is dramatically improved in sinterability compared to a method for synthesizing copper particles composed only of an amine compound and a carboxylic acid compound. can be obtained, the sintering speed and degree of sintering between the inside of the joining layer and the fillet portion can be made uniform, and the joining characteristics can be improved. Although the reason for this is not precisely known, the authors found that the structure of the carboxylic acid amine salt relieves the strong adsorption of carboxylic acid-copper and amine compound-copper mutually, and the adsorption power to copper. This is because it is assumed that the carboxylic acid and the amine are excellent in desorption properties due to the decrease in , and as a result, good desorption behavior is exhibited even in a closed space such as the inside of the bonding layer.

(B)カルボン酸アミン塩はカルボン酸化合物とアミン化合物とから得ることができ、市販のものを使用してもよいし、予め合成によって得られたものを使用してもよい。また、銅粒子の製造工程中で反応容器内にカルボン酸化合物とアミン化合物とをそれぞれ別々に投入し、in-situで生成させてもよい。 (B) Carboxylic acid amine salt can be obtained from a carboxylic acid compound and an amine compound, and a commercially available one may be used, or a previously synthesized one may be used. Alternatively, the carboxylic acid compound and the amine compound may be separately charged into the reaction vessel during the production process of the copper particles to produce them in-situ.

カルボン酸アミン塩は、有機溶媒中でカルボン酸化合物とアミン化合物とを官能基等量で配合し、室温(25℃)乃至は100℃程度の比較的温和な温度条件で混合することで生成する。生成物を含む反応液より、蒸留法や再結晶法などで取り出すことが好ましい。 A carboxylic acid amine salt is produced by blending a carboxylic acid compound and an amine compound in an equivalent amount of functional groups in an organic solvent and mixing them under relatively mild temperature conditions of room temperature (25°C) to about 100°C. . It is preferably taken out from the reaction liquid containing the product by a distillation method, a recrystallization method, or the like.

(B)カルボン酸アミン塩を構成するカルボン酸化合物としては、カルボキシ基を有する化合物であれば特に限定されず、例えば、モノカルボン酸、ジカルボン酸、芳香族カルボン酸、ヒドロキシ酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。中でも、接合層内部とフィレット部との焼結速度の差を小さくする観点から、モノカルボン酸、ジカルボン酸が好ましい。 (B) The carboxylic acid compound constituting the carboxylic acid amine salt is not particularly limited as long as it is a compound having a carboxy group, and examples thereof include monocarboxylic acids, dicarboxylic acids, aromatic carboxylic acids, and hydroxy acids. These may be used alone or in combination of two or more. Among them, monocarboxylic acids and dicarboxylic acids are preferable from the viewpoint of reducing the difference in sintering rate between the inside of the joining layer and the fillet portion.

(B)カルボン酸アミン塩を構成するカルボン酸化合物は、接合層内部とフィレット部との焼結速度の差を小さくする観点から、熱分解温度が好ましくは200℃以下であり、より好ましくは190℃以下であり、さらに好ましくは180℃以下である。 (B) The carboxylic acid compound constituting the carboxylic acid amine salt has a thermal decomposition temperature of preferably 200° C. or less, more preferably 190° C., from the viewpoint of reducing the difference in sintering rate between the inside of the bonding layer and the fillet portion. °C or less, and more preferably 180°C or less.

また、(B)カルボン酸アミン塩を構成するカルボン酸化合物のうち、熱分解温度より低温領域に沸点を有する化合物に関しては、接合層内部とフィレット部との焼結速度の差を小さくする観点から、沸点が好ましくは280℃以下であり、より好ましくは260℃以下であり、さらに好ましくは240℃以下である。 Further, among the carboxylic acid compounds constituting the carboxylic acid amine salt (B), the compound having a boiling point in a region lower than the thermal decomposition temperature is used from the viewpoint of reducing the difference in sintering rate between the inside of the bonding layer and the fillet portion. , the boiling point is preferably 280° C. or lower, more preferably 260° C. or lower, and still more preferably 240° C. or lower.

(B)カルボン酸アミン塩を構成するカルボン酸化合物のうち、モノカルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、オレイン酸、ステアリン酸、イソステアリン酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。接合層内部とフィレット部との焼結速度の差を小さくする観点から、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸が好ましく、吉草酸、カプロン酸、カプリル酸、ノナン酸、オクチル酸がより好ましい。 Among the carboxylic acid compounds constituting the carboxylic acid amine salt (B), monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, and olein. acid, stearic acid, isostearic acid and the like. These may be used alone or in combination of two or more. From the viewpoint of reducing the difference in sintering rate between the inside of the joining layer and the fillet portion, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, and capric acid are preferred, and valeric acid. , caproic acid, caprylic acid, nonanoic acid, and octylic acid are more preferred.

(B)カルボン酸アミン塩を構成するカルボン酸化合物のうち、ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ジグリコール酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。接合層内部とフィレット部との焼結速度の差を小さくする観点から、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ジグリコール酸が好ましく、シュウ酸、マロン酸、コハク酸、ジグリコール酸がより好ましい。 (B) Among the carboxylic acid compounds constituting the carboxylic acid amine salt, dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and diglycol. acid and the like. These may be used alone or in combination of two or more. From the viewpoint of reducing the difference in sintering rate between the inside of the joining layer and the fillet portion, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and diglycolic acid are preferred, and oxalic acid, malonic acid, succinic acid, and diglycolic acid are preferred. Glycolic acid is more preferred.

(B)カルボン酸アミン塩を構成するカルボン酸化合物のうち、芳香族カルボン酸としては、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。接合層内部とフィレット部との焼結速度の差を小さくする観点から、安息香酸が好ましい。 Among the carboxylic acid compounds constituting the carboxylic acid amine salt (B), aromatic carboxylic acids include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, and gallic acid. These may be used alone or in combination of two or more. Benzoic acid is preferable from the viewpoint of reducing the difference in sintering speed between the inside of the joining layer and the fillet portion.

(B)カルボン酸アミン塩を構成するカルボン酸化合物のうち、ヒドロキシ酸としては、グリコール酸、乳酸、タルトロン酸、リンゴ酸、グリセリン酸、ヒドロキシ酪酸、酒石酸、クエン酸、イソクエン酸などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。接合層内部とフィレット部との焼結速度の差を小さくする観点から、グリコール酸、乳酸、リンゴ酸が好ましい。 (B) Among the carboxylic acid compounds constituting the carboxylic acid amine salt, hydroxy acids include glycolic acid, lactic acid, tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric acid, citric acid, and isocitric acid. These may be used alone or in combination of two or more. Glycolic acid, lactic acid, and malic acid are preferable from the viewpoint of reducing the difference in sintering speed between the inside of the joining layer and the fillet portion.

(B)カルボン酸アミン塩を構成するアミン化合物としては、カルボキシ基を有する化合物であれば特に限定されず、例えば、アルキルモノアミン、アルキルジアミン、アルカノールアミンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。焼結性の観点から、アルキルモノアミン、アルカノールアミンが好ましい。 (B) The amine compound constituting the carboxylic acid amine salt is not particularly limited as long as it is a compound having a carboxy group, and examples thereof include alkylmonoamines, alkyldiamines and alkanolamines. These may be used alone or in combination of two or more. From the viewpoint of sinterability, alkyl monoamines and alkanolamines are preferred.

(B)カルボン酸アミン塩を構成するアミン化合物のうち、アルキルモノアミンとしては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。焼結性の観点から、ヘキシルアミン、オクチルアミン、デシルアミンが好ましい。 Among the amine compounds constituting the (B) carboxylic acid amine salt, alkyl monoamines include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine and the like. These may be used alone or in combination of two or more. From the viewpoint of sinterability, hexylamine, octylamine, and decylamine are preferred.

(B)カルボン酸アミン塩を構成するアミン化合物のうち、アルキルジアミンとしては、1,1-メタンジアミン、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミンなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。焼結性の観点から、1,4-ブタンジアミン、1,6-ヘキサンジアミンが好ましい。 Among the amine compounds constituting the (B) carboxylic acid amine salt, alkyldiamines include 1,1-methanediamine, 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, 1, 6-hexanediamine, 1,8-octanediamine and the like. These may be used alone or in combination of two or more. From the viewpoint of sinterability, 1,4-butanediamine and 1,6-hexanediamine are preferred.

(B)カルボン酸アミン塩を構成するアミン化合物のうち、アルカノールアミンとしては、モノエタノールアミン、モノプロパノールアミン、モノブタノールアミン、2-(2-アミノエチルアミノ)エタノール、2-(2-アミノエトキシ)エタノール、1-アミノ-2-プロパノール、2-アミノ-1-プロパノール、3-アミノ-1,2-プロパンジオールなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。焼結性の観点から、モノエタノールアミン、モノプロパノールアミン、モノブタノールアミン、1-アミノ-2-プロパノール、2-アミノ-1-プロパノールが好ましい。 Among the amine compounds constituting the (B) carboxylic acid amine salt, alkanolamines include monoethanolamine, monopropanolamine, monobutanolamine, 2-(2-aminoethylamino)ethanol, 2-(2-aminoethoxy ) ethanol, 1-amino-2-propanol, 2-amino-1-propanol, 3-amino-1,2-propanediol and the like. These may be used alone or in combination of two or more. From the viewpoint of sinterability, monoethanolamine, monopropanolamine, monobutanolamine, 1-amino-2-propanol, and 2-amino-1-propanol are preferred.

(B)カルボン酸アミン塩の沸点は、好ましくは70℃以上280℃以下であり、より好ましくは100℃以上260℃以下であり、さらに好ましくは120℃以上240℃以下である。(B)カルボン酸アミン塩の沸点が上記範囲にあれば得られた銅粒子は良好な焼結性を示す。また、(B)カルボン酸アミン塩の沸点が70℃未満では加熱工程でアミンが揮発するおそれがあり、280℃超では銅粒子の焼結時に除去されにくく、低温焼結性が発現しにくくなるおそれがあるため好ましくない。より好ましい(B)カルボン酸アミン塩の沸点は、加熱工程における加熱温度以上であり、使用時における焼結温度以下である。 (B) The boiling point of the carboxylic acid amine salt is preferably 70° C. or higher and 280° C. or lower, more preferably 100° C. or higher and 260° C. or lower, and still more preferably 120° C. or higher and 240° C. or lower. (B) If the boiling point of the carboxylic acid amine salt is within the above range, the resulting copper particles exhibit good sinterability. If the boiling point of the carboxylic acid amine salt (B) is less than 70°C, the amine may volatilize during the heating process. It is not preferable because there is a risk of The boiling point of the carboxylic acid amine salt (B) is more preferably at least the heating temperature in the heating step and at most the sintering temperature during use.

((C)還元性化合物)
本実施形態で用いられる(C)還元性化合物は、(A)銅化合物を還元し、金属銅を遊離させる還元力を有するものであれば、特に限定されない。さらに、(C)還元性化合物は、その沸点が70℃以上であることが好ましく、加熱工程における加熱温度以上であることがより好ましい。さらに、(C)還元性化合物は、炭素、水素及び酸素から構成される後述する有機溶剤に溶解する化合物であることが好ましい。
((C) reducing compound)
The (C) reducing compound used in the present embodiment is not particularly limited as long as it has a reducing power to reduce the (A) copper compound and liberate metallic copper. Furthermore, (C) the reducing compound preferably has a boiling point of 70° C. or higher, more preferably the heating temperature in the heating step or higher. Furthermore, (C) the reducing compound is preferably a compound composed of carbon, hydrogen and oxygen and soluble in an organic solvent described later.

このような(C)還元性化合物としては、典型的には、ヒドラジン誘導体が挙げられる。ヒドラジン誘導体としては、例えば、ヒドラジン一水和物、メチルヒドラジン、エチルヒドラジン、n-プロピルヒドラジン、i-プロピルヒドラジン、n-ブチルヒドラジン、i-ブチルヒドラジン、sec-ブチルヒドラジン、t-ブチルヒドラジン、n-ペンチルヒドラジン、i-ペンチルヒドラジン、neo-ペンチルヒドラジン、t-ペンチルヒドラジン、n-ヘキシルヒドラジン、i-ヘキシルヒドラジン、n-ヘプチルヒドラジン、n-オクチルヒドラジン、n-ノニルヒドラジン、n-デシルヒドラジン、n-ウンデシルヒドラジン、n-ドデシルヒドラジン、シクロヘキシルヒドラジン、フェニルヒドラジン、4-メチルフェニルヒドラジン、ベンジルヒドラジン、2-フェニルエチルヒドラジン、2-ヒドラジノエタノール、アセトヒドラジン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Such (C) reducing compounds typically include hydrazine derivatives. Examples of hydrazine derivatives include hydrazine monohydrate, methylhydrazine, ethylhydrazine, n-propylhydrazine, i-propylhydrazine, n-butylhydrazine, i-butylhydrazine, sec-butylhydrazine, t-butylhydrazine, n -pentylhydrazine, i-pentylhydrazine, neo-pentylhydrazine, t-pentylhydrazine, n-hexylhydrazine, i-hexylhydrazine, n-heptylhydrazine, n-octylhydrazine, n-nonylhydrazine, n-decylhydrazine, n -undecylhydrazine, n-dodecylhydrazine, cyclohexylhydrazine, phenylhydrazine, 4-methylphenylhydrazine, benzylhydrazine, 2-phenylethylhydrazine, 2-hydrazinoethanol, acetohydrazine and the like. These may be used alone or in combination of two or more.

((D)炭素数1~12のカルボン酸)
本実施形態の接合用銅粒子の製造方法において、さらに(D)炭素数1~12のカルボン酸を含むことが好ましい。(D)炭素数1~12のカルボン酸は、得られる銅粒子の粒子径を制御する目的で使用される。カルボン酸はカルボキシル基を有するものであれば特に限定されない。例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、オレイン酸、ステアリン酸、イソステアリン酸等のモノカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ジグリコール酸等のジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸等の芳香族カルボン酸;グリコール酸、乳酸、タルトロン酸、リンゴ酸、グリセリン酸、ヒドロキシ酪酸、酒石酸、クエン酸、イソクエン酸等のヒドロキシ酸などが挙げられる。中でも接合層内部とフィレット部との焼結速度の差を小さくする観点から、炭素数1~12のモノカルボン酸が好ましい。また、粒径制御の容易性の観点から、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、オレイン酸、ステアリン酸、イソステアリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ジグリコール酸が好ましく、焼結性の観点から、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、シュウ酸、マロン酸、コハク酸がより好ましく、カプロン酸、カプリル酸、オクチル酸、シュウ酸、マロン酸がさらに好ましい。
((D) carboxylic acid having 1 to 12 carbon atoms)
It is preferable that (D) a carboxylic acid having 1 to 12 carbon atoms is further included in the method for producing bonding copper particles of the present embodiment. (D) A carboxylic acid having 1 to 12 carbon atoms is used for the purpose of controlling the particle size of the resulting copper particles. Carboxylic acid is not particularly limited as long as it has a carboxyl group. For example, monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, oleic acid, stearic acid, isostearic acid; oxalic acid, malonic acid, succinic acid acids, dicarboxylic acids such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and diglycolic acid; aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, and gallic acid hydroxy acids such as glycolic acid, lactic acid, tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric acid, citric acid and isocitric acid; Among them, a monocarboxylic acid having 1 to 12 carbon atoms is preferable from the viewpoint of reducing the difference in sintering rate between the inside of the joining layer and the fillet portion. From the viewpoint of ease of particle size control, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, oleic acid, stearic acid, isostearic acid, oxalic acid , malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and diglycolic acid are preferable, and from the viewpoint of sinterability, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, Caproic acid, caprylic acid, octylic acid, oxalic acid, malonic acid and succinic acid are more preferred, and caproic acid, caprylic acid, octylic acid, oxalic acid and malonic acid are more preferred.

((E)炭素数1~12のアルキルアミン)
本実施形態の接合用銅粒子の製造方法において、さらに(E)炭素数1~12のアルキルアミンを含むことが好ましい。
(E)炭素数1~12のアルキルアミンは、得られる銅粒子の粒子径を制御する目的で使用される。アルキルアミンはアミノ基を有するものであれば特に限定されない。例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、1,1-メタンジアミン、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、モノエタノールアミン、モノプロパノールアミン、モノブタノールアミン、2-(2-アミノエチルアミノ)エタノール、2-(2-アミノエトキシ)エタノール、1-アミノ-2-プロパノール、2-アミノ-1-プロパノール、3-アミノ-1,2-プロパンジオール等が挙げられる。粒径制御の容易性の観点から、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、モノエタノールアミン、モノプロパノールアミン、モノブタノールアミン、2-(2-アミノエチルアミノ)エタノール、2-(2-アミノエトキシ)エタノール、1-アミノ-2-プロパノール、2-アミノ-1-プロパノール、3-アミノ-1,2-プロパンジオールが好ましく、焼結性の観点から、ヘキシルアミン、オクチルアミン、モノエタノールアミン、モノプロパノールアミン、モノブタノールアミン、1-アミノ-2-プロパノール、2-アミノ-1-プロパノールが好ましい。
((E) alkylamine having 1 to 12 carbon atoms)
It is preferable that (E) an alkylamine having 1 to 12 carbon atoms is further included in the method for producing bonding copper particles of the present embodiment.
(E) Alkylamine having 1 to 12 carbon atoms is used for the purpose of controlling the particle size of the resulting copper particles. The alkylamine is not particularly limited as long as it has an amino group. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine, 1,1-methanediamine, 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine , 1,6-hexanediamine, 1,8-octanediamine, monoethanolamine, monopropanolamine, monobutanolamine, 2-(2-aminoethylamino)ethanol, 2-(2-aminoethoxy)ethanol, 1- Amino-2-propanol, 2-amino-1-propanol, 3-amino-1,2-propanediol and the like can be mentioned. From the viewpoint of ease of particle size control, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine, monoethanolamine, monopropanolamine, monobutanolamine, 2-(2-aminoethyl Amino)ethanol, 2-(2-aminoethoxy)ethanol, 1-amino-2-propanol, 2-amino-1-propanol, and 3-amino-1,2-propanediol are preferred, and from the viewpoint of sinterability, Hexylamine, octylamine, monoethanolamine, monopropanolamine, monobutanolamine, 1-amino-2-propanol, 2-amino-1-propanol are preferred.

(有機溶剤)
上記(A)銅化合物と、(B)カルボン酸アミン塩と、(C)還元性化合物と、を有機溶剤中で混合してもよい。
有機溶剤は、上述の各原料を混合して得られる混合物から生成する錯体等の性質を阻害しない反応溶媒として用いることができるものであれば、特に限定されずに使用できる。中でも、上記(C)還元性化合物に対して相溶性を示すアルコールが好ましく用いられる。
(Organic solvent)
The (A) copper compound, (B) the carboxylic acid amine salt, and (C) the reducing compound may be mixed in an organic solvent.
The organic solvent is not particularly limited as long as it can be used as a reaction solvent that does not impair the properties of the complex or the like produced from the mixture obtained by mixing the raw materials described above. Among them, alcohols exhibiting compatibility with the reducing compound (C) are preferably used.

また、(C)還元性化合物による銅イオンの還元反応は発熱反応であるため、還元反応中に揮発しない有機溶剤であることがより好ましい。有機溶剤が揮発してしまうと、銅化合物-カルボン酸アミン塩錯体の分解による銅イオンの生成及び生成した銅イオンの還元による金属銅の析出を制御しにくくなり、粒度の安定性が劣るおそれがあり好ましくない。したがって、有機溶剤はその沸点が70℃以上であり、炭素、水素及び酸素から構成されることが好ましい。 Further, since the reduction reaction of copper ions by (C) the reducing compound is an exothermic reaction, it is more preferable to use an organic solvent that does not volatilize during the reduction reaction. If the organic solvent evaporates, it becomes difficult to control the formation of copper ions due to the decomposition of the copper compound-carboxylic acid amine salt complex and the precipitation of metallic copper due to the reduction of the formed copper ions, and the stability of the particle size may deteriorate. I don't like it. Therefore, the organic solvent preferably has a boiling point of 70° C. or higher and is composed of carbon, hydrogen and oxygen.

有機溶剤として用いられる上記アルコールとしては、1-プロパノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、ブチルカルビトール、ブチルカルビトールアセテート、エチルカルビトール、エチルカルビトールアセテート、ジエチレングリコールジエチルエーテル、ブチルセロソルブなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the alcohols used as organic solvents include 1-propanol, 2-propanol, butanol, pentanol, hexanol, heptanol, octanol, ethylene glycol, 1,3-propanediol, 1,2-propanediol, butyl carbitol, Butyl carbitol acetate, ethyl carbitol, ethyl carbitol acetate, diethylene glycol diethyl ether, butyl cellosolve and the like. These may be used alone or in combination of two or more.

上記説明した(A)銅化合物、(B)カルボン酸アミン塩、(C)還元性化合物、さらに必要に応じて添加される(D)炭素数1~12のカルボン酸、(E)炭素数1~12のアルキルアミン、及び有機溶剤を用いて、以下のように銅粒子を製造することができる。 (A) the copper compound described above, (B) the amine salt of carboxylic acid, (C) the reducing compound, (D) a carboxylic acid having 1 to 12 carbon atoms, which is added as necessary, and (E) 1 carbon atom. Using an alkylamine of ∼12 and an organic solvent, copper particles can be produced as follows.

(混合物の形成)
まず、反応容器中に有機溶剤を収容し、該有機溶剤中において、(A)銅化合物、(B)カルボン酸アミン塩、(C)還元性化合物、さらに必要に応じて添加される(D)炭素数1~12のカルボン酸、(E)炭素数1~12のアルキルアミンを混合する。これらの化合物の混合の順番は特に限定されず、上記化合物をどのような順番で混合しても構わない。
(formation of mixture)
First, an organic solvent is placed in a reaction vessel, and (A) a copper compound, (B) a carboxylic acid amine salt, (C) a reducing compound, and, if necessary, (D) are added in the organic solvent. A carboxylic acid having 1 to 12 carbon atoms and (E) an alkylamine having 1 to 12 carbon atoms are mixed. The order of mixing these compounds is not particularly limited, and the above compounds may be mixed in any order.

なお、(A)銅化合物と(B)カルボン酸アミン塩との錯体を効率的に形成させる場合は、先に(A)銅化合物と(B)カルボン酸アミン塩とを混合して、0~110℃で5~30分程度混合しておき、さらに、(C)還元性化合物、(D)炭素数1~12のカルボン酸、(E)炭素数1~12のアルキルアミンを添加、混合することが好ましい。 In order to efficiently form a complex of (A) a copper compound and (B) a carboxylic acid amine salt, the (A) copper compound and (B) a carboxylic acid amine salt are mixed first, and the Mix for about 5 to 30 minutes at 110° C., then add (C) reducing compound, (D) carboxylic acid having 1 to 12 carbon atoms, and (E) alkylamine having 1 to 12 carbon atoms and mix. is preferred.

上記混合にあたって、(A)銅化合物、(B)カルボン酸アミン塩、(C)還元性化合物の使用量は、(A)銅化合物1molに対し、(B)カルボン酸アミン塩0.1~10mol、(C)還元性化合物0.5~5molが好ましく、(B)カルボン酸アミン塩1~5mol、(C)還元性化合物0.5~3molがより好ましい。
また、(D)炭素数1~12のカルボン酸の使用量は、(A)銅化合物1molに対し、好ましくは0.5~5mol、より好ましくは0.5~3molである。(E)炭素数1~12のアルキルアミンの使用量は、(A)銅化合物1molに対し、好ましくは0.5~5mol、より好ましくは0.5~3molである。
有機溶剤は上記各成分が十分に反応を行うことができる量であればよく、例えば、50~2000mL程度用いるようにすればよい。
In the above mixing, the amount of (A) copper compound, (B) carboxylic acid amine salt, and (C) reducing compound used is 0.1 to 10 mol of (B) carboxylic acid amine salt per 1 mol of (A) copper compound. , (C) 0.5 to 5 mol of the reducing compound is preferable, (B) 1 to 5 mol of the carboxylic acid amine salt, and (C) 0.5 to 3 mol of the reducing compound are more preferable.
The amount of the (D) carboxylic acid having 1 to 12 carbon atoms to be used is preferably 0.5 to 5 mol, more preferably 0.5 to 3 mol, per 1 mol of the copper compound (A). The amount of (E) alkylamine having 1 to 12 carbon atoms to be used is preferably 0.5 to 5 mol, more preferably 0.5 to 3 mol, per 1 mol of (A) copper compound.
The organic solvent may be used in an amount that allows the above components to sufficiently react, and for example, about 50 to 2000 mL may be used.

(混合物の加熱)
次に、上記で混合して得られた混合物を十分に加熱して(A)銅化合物の還元反応を進行させる。この加熱により、未反応の(A)銅化合物をなくすことができ、良好に金属銅を析出、成長させ、銅粒子を形成することができる。
(heating of the mixture)
Next, the mixture obtained by the above mixing is sufficiently heated to advance the reduction reaction of (A) the copper compound. By this heating, unreacted (A) copper compound can be eliminated, and metallic copper can be favorably deposited and grown to form copper particles.

このとき、(B)カルボン酸アミン塩は、銅粒子の表面に付着し、成長を抑制することで粒子が粗大化するのを防ぐ作用を有している。 At this time, (B) the amine salt of carboxylic acid adheres to the surface of the copper particles and suppresses the growth of the particles, thereby preventing the particles from becoming coarse.

上記混合物の加熱における加熱温度は、(A)銅化合物が熱分解及び還元され、銅粒子が生成できる温度であり、例えば、70~150℃であることが好ましく、80~120℃であることがより好ましい。さらに、加熱温度は上記(A)~(E)成分及び有機溶剤の沸点よりも低いことが好ましい。加熱温度が上記範囲にあると、銅粒子を効率的に生成できるとともに、(B)カルボン酸アミン塩の他にカルボン酸および/またはアルキルアミンを併用する場合にはこれらの揮発が抑制されるため好ましい。 The heating temperature in the heating of the mixture is a temperature at which the (A) copper compound is thermally decomposed and reduced to generate copper particles, for example, it is preferably 70 to 150 ° C., and may be 80 to 120 ° C. more preferred. Furthermore, the heating temperature is preferably lower than the boiling points of the components (A) to (E) and the organic solvent. When the heating temperature is within the above range, the copper particles can be efficiently generated, and when a carboxylic acid and/or an alkylamine are used in combination with (B) the carboxylic acid amine salt, volatilization of these is suppressed. preferable.

また、加熱温度が70℃未満では、(A)銅化合物の定量的な熱分解が生じにくく、未分解の銅化合物が残存してしまうおそれがある。また、加熱温度が150℃超では(B)カルボン酸アミン塩の揮発量が多くなりすぎ、系中が不均一となるため好ましくない。 On the other hand, if the heating temperature is less than 70° C., quantitative thermal decomposition of the copper compound (A) is difficult to occur, and undecomposed copper compounds may remain. On the other hand, if the heating temperature exceeds 150° C., the volatilization amount of (B) the amine salt of carboxylic acid becomes too large, and the system becomes non-uniform, which is not preferable.

ここで析出した固形物は、遠心分離等により過剰な(B)カルボン酸アミン塩と分離した後、有機溶剤で洗浄し、減圧乾燥すればよい。このような操作によって、銅粒子を得ることができる。 The precipitated solid matter may be separated from excess (B) carboxylic acid amine salt by centrifugation or the like, washed with an organic solvent, and dried under reduced pressure. Copper particles can be obtained by such an operation.

(銅粒子の形状、サイズ)
本実施形態の接合用銅粒子の製造方法により得られる銅粒子は、(A)銅化合物が(B)カルボン酸アミン塩中で(C)還元性化合物により還元され、溶出した銅原子が凝集し、核形成、核成長し、(B)カルボン酸アミン塩で被覆された銅粒子が形成されると推察される。したがって、使用する(A)銅化合物、(B)カルボン酸アミン塩、(C)還元性化合物の種類、反応温度を適宜選択することによって、銅原子の供給速度、あるいは(B)カルボン酸アミン塩による吸着能を変化させ、任意の形状及びサイズの銅粒子を得ることができる。
(shape and size of copper particles)
In the copper particles obtained by the method for producing copper particles for bonding of the present embodiment, (A) the copper compound is reduced by (C) the reducing compound in the (B) carboxylic acid amine salt, and the eluted copper atoms are aggregated. , nucleation, nucleus growth, and (B) copper particles coated with carboxylic acid amine salt are assumed to be formed. Therefore, by appropriately selecting the type of (A) copper compound, (B) carboxylic acid amine salt, and (C) reducing compound to be used, and the reaction temperature, the supply rate of copper atoms, or (B) carboxylic acid amine salt can be changed to obtain copper particles of any shape and size.

本実施形態の接合用銅粒子の製造方法により得られる銅粒子は、300℃未満の低温焼成が可能であり、これを用いた接合用ペーストは、接合層内部とフィレット部との焼結速度および焼結度に差がなく、接合信頼性の高い接合層を得ることができる。 The copper particles obtained by the method for producing bonding copper particles of the present embodiment can be fired at a low temperature of less than 300 ° C., and the bonding paste using this can achieve a sintering rate between the inside of the bonding layer and the fillet portion and It is possible to obtain a bonding layer with high bonding reliability with no difference in the degree of sintering.

上記銅粒子の平均粒子径は、接合層の緻密性の観点から、好ましくは1~1000nm、より好ましくは20~800nm、さらに好ましくは30~500nmである。
なお、上記銅粒子の平均粒子径は、走査電子顕微鏡(例えば、日本電子(株)製、商品名:JSM-7600F;SEM)の観察画像に基づく任意に選択した10個の銅粒子(n=10)の平均値として算出する。なお、平均値は算術平均値であり、その算出にあたっては10個以上の銅粒子を用いてもよい。
The average particle size of the copper particles is preferably 1 to 1000 nm, more preferably 20 to 800 nm, and still more preferably 30 to 500 nm, from the viewpoint of denseness of the bonding layer.
Incidentally, the average particle size of the copper particles, 10 copper particles (n = Calculated as the average value of 10). The average value is an arithmetic average value, and 10 or more copper particles may be used for the calculation.

<接合用ペースト>
本実施形態の接合用ペーストは、上述の接合用銅粒子の製造方法によって得られる接合用銅粒子を含む。したがって、本実施形態の接合用ペーストは、無加圧での接合が可能であり接着性に優れ、また、接合層内部とフィレット部との焼結速度および焼結度が均一であり、接合特性が良好な硬化物を得ることができることから、素子接着用ダイアタッチペースト又は放熱部材接着用材料として好適である。
<Joining paste>
The bonding paste of the present embodiment contains bonding copper particles obtained by the method for manufacturing bonding copper particles described above. Therefore, the bonding paste of the present embodiment can be bonded without pressure and has excellent adhesiveness. It is suitable as a die attach paste for element bonding or a material for bonding heat dissipating members, since a cured product with good sufficiency can be obtained.

本実施形態の接合用ペーストは、2つ以上の異なる平均粒子径の銅粒子を併用することが好ましい。例えば、第一の銅粒子の平均粒子径に対して、該第一の銅粒子よりも大きい平均粒子径を有する第二の銅粒子の平均粒子径は2~10倍程度であることが好ましい。また、第一の銅粒子の配合量に対して、第二の銅粒子の配合量は1.5~10倍程度であることが好ましい。 The bonding paste of the present embodiment preferably uses two or more copper particles having different average particle sizes together. For example, the average particle size of the second copper particles having a larger average particle size than the first copper particles is preferably about 2 to 10 times the average particle size of the first copper particles. Also, the amount of the second copper particles is preferably about 1.5 to 10 times the amount of the first copper particles.

本実施形態の接合用ペーストは上述の銅粒子以外に、上述の銅粒子よりも粒径の大きい大粒径銅粒子、熱硬化性樹脂、有機溶剤、その他添加剤を含むことが好ましい。これにより、銅粒子の焼結収縮の影響を緩和し、さらに信頼性の高い接合層を形成することが可能となる。 The bonding paste of the present embodiment preferably contains, in addition to the above-described copper particles, large-particle-size copper particles having a particle size larger than that of the above-described copper particles, a thermosetting resin, an organic solvent, and other additives. This makes it possible to reduce the influence of sintering shrinkage of the copper particles and form a bonding layer with higher reliability.

(大粒径銅粒子)
大粒径銅粒子は、平均粒子径が1μmよりも大きく30μm以下であることが好ましく、2~20μmであることがより好ましい。また、形状は特に限定されず、球状、プレート型、フレーク状、鱗片状、樹枝状、ロッド状、ワイヤー状等が使用できる。
なお、上記大粒径銅粒子の平均粒子径は、レーザー回折散乱式粒度分布測定装置等を用いて測定することができる。
(Large particle size copper particles)
The large-diameter copper particles preferably have an average particle size of more than 1 μm and 30 μm or less, more preferably 2 to 20 μm. The shape is not particularly limited, and spherical, plate-like, flake-like, scale-like, dendritic, rod-like, wire-like and the like can be used.
The average particle size of the large-diameter copper particles can be measured using a laser diffraction/scattering particle size distribution analyzer or the like.

上記大粒径銅粒子は、滑材、防錆剤で処理されているものを使用してもよい。このような処理として典型的なものは、カルボン酸化合物による処理である。カルボン酸化合物としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、パルミチン酸、オレイン酸、ステアリン酸、イソステアリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ジグリコール酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸、グリコール酸、乳酸、タルトロン酸、リンゴ酸、グリセリン酸、ヒドロキシ酪酸、酒石酸、クエン酸、イソクエン酸などが挙げられる。銅粒子との焼結性の観点から、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、パルミチン酸、オレイン酸、ステアリン酸、イソステアリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸が好ましく、銅粒子の分散性および耐酸化性の観点から、カプロン酸、カプリル酸、オクチル酸、ノナン酸、カプリン酸、マロン酸、コハク酸、グルタル酸がより好ましい。 The large-diameter copper particles may be treated with lubricants and antirust agents. A typical such treatment is treatment with a carboxylic acid compound. Examples of carboxylic acid compounds include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, palmitic acid, oleic acid, stearic acid, isostearic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, diglycolic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid, glycolic acid, lactic acid, tartronic acid, malic acid, glyceric acid, hydroxybutyric acid, tartaric acid, citric acid, isocitric acid and the like. From the viewpoint of sinterability with copper particles, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, palmitic acid, oleic acid, stearic acid, isostearic acid, Oxalic acid, malonic acid, succinic acid and glutaric acid are preferred, and caproic acid, caprylic acid, octylic acid, nonanoic acid, capric acid, malonic acid, succinic acid and glutaric acid are preferred from the viewpoint of dispersibility and oxidation resistance of copper particles. is more preferred.

(熱硬化性樹脂)
熱硬化性樹脂は、一般に接着剤用途として使用される熱硬化性樹脂であれば特に限定されずに使用できる。中でも、液状樹脂であることが好ましく、室温(25℃)で液状である樹脂がより好ましい。上記熱硬化性樹脂としては、例えば、シアネート樹脂、エポキシ樹脂、ラジカル重合性のアクリル樹脂、マレイミド樹脂などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
本実施形態の接合用ペーストが熱硬化性樹脂を含むことで、適度な粘度を有する接着材料(ペースト)とすることができる。また、本実施形態の接合用ペーストが熱硬化性樹脂を含むと、その硬化時の反応熱によって接合用ペーストの温度が上昇し、銅粒子の焼結性を促進させる効果もあるため好ましい。
(Thermosetting resin)
The thermosetting resin is not particularly limited as long as it is a thermosetting resin that is generally used as an adhesive. Among them, liquid resins are preferable, and resins that are liquid at room temperature (25° C.) are more preferable. Examples of the thermosetting resin include cyanate resin, epoxy resin, radically polymerizable acrylic resin, and maleimide resin. These may be used alone or in combination of two or more.
By including a thermosetting resin in the bonding paste of the present embodiment, an adhesive material (paste) having an appropriate viscosity can be obtained. Moreover, when the bonding paste of the present embodiment contains a thermosetting resin, the temperature of the bonding paste rises due to the heat of reaction during curing, which is also preferable because it has the effect of promoting the sinterability of the copper particles.

シアネート樹脂は、分子内に-NCO基を有する化合物であり、加熱により-NCO基が反応することで3次元的網目構造を形成し、硬化する樹脂である。具体的に例示すると、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)メタン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、及びノボラック樹脂とハロゲン化シアンとの反応により得られるシアネート類などが挙げられる。また、これらの多官能シアネート樹脂のシアネート基を三量化することによって形成されるトリアジン環を有するプレポリマーも使用できる。該プレポリマーは、上記の多官能シアネート樹脂モノマーを、例えば、鉱酸、ルイス酸などの酸、ナトリウムアルコラート、第三級アミン類などの塩基、炭酸ナトリウムなどの塩類、を触媒として重合させることにより得られる。 A cyanate resin is a compound having an —NCO group in the molecule, and is a resin that forms a three-dimensional network structure and cures when the —NCO group reacts with heating. Specific examples include 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1, 6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis (4-cyanatophenyl)methane, bis(3,5-dimethyl-4-cyanatophenyl)methane, 2,2-bis(4-cyanatophenyl)propane, 2,2-bis(3,5-dibromo -4-cyanatophenyl)propane, bis(4-cyanatophenyl)ether, bis(4-cyanatophenyl)thioether, bis(4-cyanatophenyl)sulfone, tris(4-cyanatophenyl)phosphite, Tris(4-cyanatophenyl) phosphate, and cyanates obtained by reacting a novolac resin with cyanogen halide, and the like. Prepolymers having triazine rings formed by trimerizing the cyanate groups of these polyfunctional cyanate resins can also be used. The prepolymer is obtained by polymerizing the above-described polyfunctional cyanate resin monomer using, for example, an acid such as mineral acid or Lewis acid, a base such as sodium alcoholate or tertiary amines, or a salt such as sodium carbonate as a catalyst. can get.

シアネート樹脂の硬化促進剤としては、一般に公知のものが使用できる。例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸コバルト、ナフテン酸亜鉛、アセチルアセトン鉄などの有機金属錯体、塩化アルミニウム、塩化錫、塩化亜鉛などの金属塩、トリエチルアミン、ジメチルベンジルアミンなどのアミン類が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は1種又は2種以上混合して用いることができる。 As the curing accelerator for the cyanate resin, generally known ones can be used. Examples include organometallic complexes such as zinc octoate, tin octylate, cobalt naphthenate, zinc naphthenate and iron acetylacetonate; metal salts such as aluminum chloride, tin chloride and zinc chloride; and amines such as triethylamine and dimethylbenzylamine. but not limited to these. These curing accelerators can be used singly or in combination of two or more.

エポキシ樹脂は、グリシジル基を分子内に1つ以上有する化合物であり、加熱によりグリシジル基が反応することで3次元的網目構造を形成し、硬化する樹脂である。グリシジル基は1分子に2つ以上含まれていることが好ましいが、これはグリシジル基が1つの化合物のみでは反応させても十分な硬化物特性を示すことができないからである。グリシジル基を1分子に2つ以上含む化合物は、2つ以上の水酸基を有する化合物をエポキシ化して得ることができる。このような化合物としては、ビスフェノールA、ビスフェノールF、ビフェノールなどのビスフェノール化合物又はこれらの誘導体、水素添加ビスフェノールA、水素添加ビスフェノールF、水素添加ビフェノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シクロヘキサンジエタノールなどの脂環構造を有するジオール又はこれらの誘導体、ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオールなどの脂肪族ジオール又はこれらの誘導体などをエポキシ化した2官能のもの、トリヒドロキシフェニルメタン骨格、アミノフェノール骨格を有する化合物などをエポキシ化した3官能のもの、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂などをエポキシ化した多官能のものなどが挙げられるが、これらに限定されるわけではない。また、上記エポキシ樹脂は、接合用ペーストとして室温(25℃)でペースト状とするため、単独で又は混合物として室温(25℃)で液状のものが好ましい。通常行われるように反応性希釈剤を使用することも可能である。反応性希釈剤としては、フェニルグリシジルエーテル、クレジルグリシジルエーテルなどの1官能の芳香族グリシジルエーテル類、脂肪族グリシジルエーテル類などが挙げられる。 An epoxy resin is a compound having one or more glycidyl groups in the molecule, and is a resin that forms a three-dimensional network structure and cures by reacting the glycidyl groups with heating. It is preferable that two or more glycidyl groups are contained in one molecule. This is because a compound containing only one glycidyl group cannot exhibit sufficient cured product properties even if reacted. A compound containing two or more glycidyl groups in one molecule can be obtained by epoxidizing a compound having two or more hydroxyl groups. Examples of such compounds include bisphenol compounds such as bisphenol A, bisphenol F and biphenol, derivatives thereof, hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, cyclohexanediol, cyclohexanedimethanol, and cyclohexanediethanol. bifunctional epoxidized diols having a structure or derivatives thereof, aliphatic diols such as butanediol, hexanediol, octanediol, nonanediol, decanediol, or derivatives thereof, trihydroxyphenylmethane skeleton, aminophenol Examples include trifunctional ones obtained by epoxidizing compounds having a skeleton, and polyfunctional ones obtained by epoxidizing phenol novolac resins, cresol novolak resins, phenol aralkyl resins, biphenyl aralkyl resins, naphthol aralkyl resins, etc. These include It is not limited. In addition, since the above-mentioned epoxy resin is paste-like as a bonding paste at room temperature (25° C.), it is preferable that it is liquid at room temperature (25° C.) alone or as a mixture. It is also possible to use reactive diluents as is customary. Examples of reactive diluents include monofunctional aromatic glycidyl ethers such as phenyl glycidyl ether and cresyl glycidyl ether, and aliphatic glycidyl ethers.

このとき、エポキシ樹脂を硬化させる目的で硬化剤を使用するが、エポキシ樹脂の硬化剤としては、例えば、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジヒドラジド化合物、酸無水物、フェノール樹脂などが挙げられる。ジヒドラジド化合物としては、アジピン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、p-オキシ安息香酸ジヒドラジドなどのカルボン酸ジヒドラジドなどが挙げられ、酸無水物としては、フタル酸無水物、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロフタル酸無水物、ドデセニルコハク酸無水物、無水マレイン酸とポリブタジエンの反応物、無水マレイン酸とスチレンの共重合体などが挙げられる。 At this time, a curing agent is used for the purpose of curing the epoxy resin. Examples of curing agents for epoxy resins include aliphatic amines, aromatic amines, dicyandiamides, dihydrazide compounds, acid anhydrides, and phenolic resins. . Dihydrazide compounds include carboxylic acid dihydrazide such as adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, and p-oxybenzoic acid dihydrazide. Examples include phthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenylsuccinic anhydride, a reaction product of maleic anhydride and polybutadiene, and a copolymer of maleic anhydride and styrene.

さらに、硬化を促進するために硬化促進剤を配合でき、エポキシ樹脂の硬化促進剤としては、イミダゾール類、トリフェニルホスフィン又はテトラフェニルホスフィン及びそれらの塩類、ジアザビシクロウンデセンなどのアミン系化合物及びその塩類などが挙げられる。例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-C1123-イミダゾール、2-メチルイミダゾールと2,4-ジアミノ-6-ビニルトリアジンとの付加物などのイミダゾール化合物が好適に用いられる。なかでも特に好ましいのは融点が180℃以上のイミダゾール化合物である。 Furthermore, a curing accelerator can be blended to accelerate curing, and curing accelerators for epoxy resins include imidazoles, triphenylphosphine or tetraphenylphosphine and salts thereof, amine compounds such as diazabicycloundecene, and Its salts and the like can be mentioned. For example, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethyl Imidazole compounds such as imidazole, 2-C 11 H 23 -imidazole, adducts of 2-methylimidazole and 2,4-diamino-6-vinyltriazine are preferably used. Of these, imidazole compounds having a melting point of 180° C. or higher are particularly preferred.

ラジカル重合性のアクリル樹脂とは、分子内に(メタ)アクリロイル基を有する化合物であり、(メタ)アクリロイル基が反応することで3次元的網目構造を形成し、硬化する樹脂である。(メタ)アクリロイル基は分子内に1つ以上含まれていることが好ましい。 A radically polymerizable acrylic resin is a compound having a (meth)acryloyl group in the molecule, and is a resin that forms a three-dimensional network structure and cures by reacting the (meth)acryloyl group. It is preferable that one or more (meth)acryloyl groups are contained in the molecule.

ここで、アクリル樹脂としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,2-シクロヘキサンジオールモノ(メタ)アクリレート、1,3-シクロヘキサンジオールモノ(メタ)アクリレート、1,4-シクロヘキサンジオールモノ(メタ)アクリレート、1,2-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,2-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジエタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレートなどの水酸基を有する(メタ)アクリレート及びこれら水酸基を有する(メタ)アクリレートとジカルボン酸又はその誘導体とを反応させて得られるカルボキシル基を有する(メタ)アクリレートなどが挙げられる。ここで使用可能なジカルボン酸としては、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸及びこれらの誘導体等が挙げられる。 Here, examples of acrylic resins include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 1,2-cyclohexanediol mono(meth)acrylate, 1,3-cyclohexanediol mono(meth)acrylate, 1,4-cyclohexanediol mono(meth)acrylate, 1,2-cyclohexanedimethanol mono(meth)acrylate, 1,3-cyclohexanedimethanol mono(meth)acrylate, 1,4-cyclohexanedimethanol mono(meth)acrylate, 1,2-cyclohexanediethanol mono(meth)acrylate , 1,3-cyclohexanediethanol mono(meth)acrylate, 1,4-cyclohexanediethanol mono(meth)acrylate, glycerin mono(meth)acrylate, glycerin di(meth)acrylate, trimethylolpropane mono(meth)acrylate, trimethylol (Meth)acrylates having a hydroxyl group such as propanedi(meth)acrylate, pentaerythritol mono(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, neopentyl glycol mono(meth)acrylate, and these) A (meth)acrylate having a carboxyl group obtained by reacting a (meth)acrylate having a hydroxyl group with a dicarboxylic acid or a derivative thereof may be used. Dicarboxylic acids which can be used here include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid. , hexahydrophthalic acid and derivatives thereof.

また、特に好ましいアクリル樹脂としては、分子量が100~10000のポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレートで(メタ)アクリル基を有する化合物、ヒドロキシル基を有する(メタ)アクリレート、ヒドロキシル基を有する(メタ)アクリルアミド、等が挙げられる。 Further, particularly preferred acrylic resins include polyethers, polyesters, polycarbonates, poly(meth)acrylates having a molecular weight of 100 to 10000 and having (meth)acrylic groups, hydroxyl group-containing (meth)acrylates, and hydroxyl group-containing compounds. (meth)acrylamide, and the like.

マレイミド樹脂は、1分子内にマレイミド基を1つ以上含む化合物であり、加熱によりマレイミド基が反応することで3次元的網目構造を形成し、硬化する樹脂である。例えば、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンなどのビスマレイミド樹脂が挙げられる。より好ましいマレイミド樹脂は、ダイマー酸ジアミンと無水マレイン酸の反応により得られる化合物、マレイミド酢酸、マレイミドカプロン酸といったマレイミド化アミノ酸とポリオールの反応により得られる化合物である。マレイミド化アミノ酸は、無水マレイン酸とアミノ酢酸又はアミノカプロン酸とを反応することで得られ、ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリ(メタ)アクリレートポリオールが好ましく、芳香族環を含まないものが特に好ましい。 A maleimide resin is a compound containing one or more maleimide groups in one molecule, and is a resin that forms a three-dimensional network structure and cures by reacting the maleimide groups with heating. For example, N,N'-(4,4'-diphenylmethane)bismaleimide, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, 2,2-bis[4-(4-maleimidophenoxy)phenyl ] and bismaleimide resins such as propane. More preferred maleimide resins are compounds obtained by reaction of diamine dimer acid and maleic anhydride, and compounds obtained by reaction of maleimidated amino acids such as maleimidoacetic acid and maleimidocaproic acid with polyols. The maleimidated amino acid is obtained by reacting maleic anhydride with aminoacetic acid or aminocaproic acid, and the polyol is preferably polyether polyol, polyester polyol, polycarbonate polyol, or poly(meth)acrylate polyol. Those not containing are particularly preferred.

ここで、熱硬化性樹脂を配合する場合は、上記銅粒子および大粒径銅粒子の総量を100質量部としたとき、1~20質量部となるように配合される。熱硬化性樹脂が1質量部以上であると熱硬化性樹脂による接着効果を十分に得ることができ、熱硬化性樹脂が20質量部以下であると銅成分の割合が低下するのを抑制し、高熱伝導性を十分に確保することができ、熱放散性を向上させることができる。また、有機成分が多くなる過ぎず、光及び熱による劣化を抑え、その結果、発光装置の寿命を高めることができる。このような配合範囲とすることで、熱硬化性樹脂の接着性能を利用して、銅粒子及び/又は大粒径銅粒子相互の接触を防止し、かつ、接着層全体の機械的強度を保持することが、容易にできる。 Here, when the thermosetting resin is blended, it is blended in an amount of 1 to 20 parts by mass when the total amount of the copper particles and large-diameter copper particles is 100 parts by mass. When the thermosetting resin is 1 part by mass or more, a sufficient adhesive effect can be obtained by the thermosetting resin. , high thermal conductivity can be sufficiently ensured, and heat dissipation can be improved. Also, the organic component is not excessively increased, and deterioration due to light and heat can be suppressed. As a result, the life of the light-emitting device can be extended. By using such a blending range, the adhesion performance of the thermosetting resin is used to prevent contact between the copper particles and/or the large-sized copper particles, and the mechanical strength of the entire adhesive layer is maintained. can be easily done.

(有機溶剤)
有機溶剤は、還元剤として機能する溶剤であれば公知の溶剤を用いることができる。
上記有機溶剤としては、アルコールが好ましく、例えば、脂肪族多価アルコールを挙げることができる。脂肪族多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロビレングリコール、1,4-ブタンジオール、グリセリン、ポリエチレングリコールなどのグリコール類などを挙げることができる。これらの有機溶剤は、単独で用いてもよく、2種以上を併用してもよい。
(Organic solvent)
A known solvent can be used as the organic solvent as long as it functions as a reducing agent.
Alcohol is preferable as the organic solvent, and examples thereof include aliphatic polyhydric alcohols. Examples of aliphatic polyhydric alcohols include glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, glycerin and polyethylene glycol. These organic solvents may be used alone or in combination of two or more.

有機溶剤として、アルコールを用いることにより、ペースト硬化(焼結)時の熱処理により高温となることでアルコールの還元力を増大させ、銅粒子中に一部存在している酸化銅及び金属基板上の酸化金属(例えば、酸化銅)がアルコールによって還元され、純粋な金属となり、結果としてより緻密で導電性が高く、基板との密着性の高い硬化膜の形成ができると考えられる。また、半導体素子と金属基板に挟まれていることでペースト硬化時の熱処理中にアルコールが一部還流状態となり、溶剤であるアルコールが揮発により系中から直ちに失われることがなく、沸点以上のペースト硬化温度で酸化金属がより効率的に還元されるようになる。 By using alcohol as an organic solvent, the heat treatment at the time of paste curing (sintering) increases the reducing power of the alcohol by increasing the temperature, and the copper oxide partially present in the copper particles and on the metal substrate It is believed that the metal oxide (for example, copper oxide) is reduced by the alcohol to become a pure metal, and as a result, a cured film that is denser, has higher conductivity, and has higher adhesion to the substrate can be formed. In addition, since the alcohol is sandwiched between the semiconductor element and the metal substrate, part of the alcohol is in a reflux state during the heat treatment for curing the paste, and the alcohol, which is a solvent, does not immediately disappear from the system due to volatilization. At curing temperatures, the metal oxides become more efficiently reduced.

有機溶剤の沸点は、具体的には、100~300℃、好ましくは150~290℃である。沸点が100℃以上であると、常温であっても揮発性が高くなり過ぎず、分散媒の揮発による還元能力の低下を抑制することができ、安定した接着強度を得ることができる。また、沸点が300℃以下であると、硬化膜(導電膜)の焼結が生じやすく、緻密性に優れた膜を形成することができる。また、有機溶剤が揮発せず膜中に残存するのを抑制することができる。 Specifically, the boiling point of the organic solvent is 100 to 300°C, preferably 150 to 290°C. When the boiling point is 100° C. or higher, the volatility does not become too high even at room temperature, and a reduction in reducing ability due to volatilization of the dispersion medium can be suppressed, and stable adhesive strength can be obtained. Moreover, when the boiling point is 300° C. or lower, the cured film (conductive film) is likely to be sintered, and a highly dense film can be formed. In addition, it is possible to prevent the organic solvent from volatilizing and remaining in the film.

有機溶剤を配合する場合、その配合量は、銅粒子を100質量部としたとき、7~20質量部であることが好ましい。7質量部以上であると粘度が高くなり過ぎず、作業性を向上させることができ、20質量部以下であると粘度低下が抑制され、ペースト中の銅の沈下を抑制し、信頼性を高めることができる。 When an organic solvent is blended, the blending amount is preferably 7 to 20 parts by mass based on 100 parts by mass of copper particles. When it is 7 parts by mass or more, the viscosity does not become too high and workability can be improved, and when it is 20 parts by mass or less, viscosity reduction is suppressed, copper sinking in the paste is suppressed, and reliability is improved. be able to.

本実施形態の接合用ペーストには、以上の各成分の他、本発明の効果を阻害しない範囲で、この種の組成物に一般に配合される、硬化促進剤、ゴム、シリコーン等の低応力化剤、カップリング剤、消泡剤、界面活性剤、着色剤(顔料、染料)、各種重合禁止剤、酸化防止剤、溶剤、その他の各種添加剤を、必要に応じて配合することができる。これらの各添加剤はいずれも1種を使用してもよく、2種以上を混合して使用してもよい。 In the bonding paste of the present embodiment, in addition to the above components, a curing accelerator, rubber, silicone, etc., which are generally blended in this type of composition, to the extent that the effects of the present invention are not impaired. Agents, coupling agents, antifoaming agents, surfactants, colorants (pigments, dyes), various polymerization inhibitors, antioxidants, solvents, and other various additives can be blended as necessary. Each of these additives may be used alone or in combination of two or more.

本実施形態の接合用ペーストは、上述した銅粒子、及び必要に応じて配合される大粒径銅粒子、熱硬化性樹脂、有機溶剤、カップリング剤等の添加剤等を十分に混合した後、さらにディスパース、ニーダー、3本ロールミル等により混練処理を行い、次いで、脱泡することにより、調製することができる。 The bonding paste of the present embodiment is prepared by sufficiently mixing the above-described copper particles, large-diameter copper particles that are blended as necessary, thermosetting resins, organic solvents, additives such as coupling agents, etc. , Further kneading treatment using a disperse, a kneader, a three-roll mill, etc., followed by defoaming.

本実施形態の接合用ペーストの粘度は、例えば、20~300Pa・sが好ましく、40~200Pa・sがより好ましい。
また、本実施形態の接合用ペーストの接合強度は、好ましくは25MPa以上、より好ましくは30MPa以上である。
なお、上記粘度及び接合強度は、実施例に記載の方法により測定することができる。
The viscosity of the bonding paste of the present embodiment is, for example, preferably 20 to 300 Pa·s, more preferably 40 to 200 Pa·s.
The bonding strength of the bonding paste of the present embodiment is preferably 25 MPa or more, more preferably 30 MPa or more.
The above viscosity and bonding strength can be measured by the methods described in Examples.

このようにして得られる本実施形態の接合用ペーストは、高熱伝導性、熱放散性に優れる。そのため、素子や放熱部材の基板等への接合材料として使用すると、装置内部の熱の外部への放散性が改善され、製品特性を安定させることができる。 The bonding paste of the present embodiment thus obtained is excellent in high thermal conductivity and heat dissipation. Therefore, when it is used as a bonding material for elements or heat-dissipating members to substrates or the like, it improves the dissipation of heat from the inside of the device to the outside, making it possible to stabilize product characteristics.

<半導体装置および電気・電子部品>
本実施形態の半導体装置および電気・電子部品は、上述の接合用ペーストを用いて接合されてなることから、信頼性に優れる。
<Semiconductor devices and electrical/electronic components>
The semiconductor device and electric/electronic component of the present embodiment are excellent in reliability because they are bonded using the bonding paste described above.

本実施形態の半導体装置は、上述の接合用ペーストを用いて、半導体素子を素子支持部材となる基板上に接着してなるものである。すなわち、ここで接合用ペーストはダイアタッチペーストとして使用され、このペーストを介して半導体素子と基板とが接着し、固定される。 The semiconductor device of this embodiment uses the bonding paste described above to bond a semiconductor element onto a substrate that serves as an element supporting member. That is, here, the bonding paste is used as a die attach paste, and the semiconductor element and the substrate are bonded and fixed via this paste.

ここで、半導体素子は、公知の半導体素子であればよく、例えば、トランジスタ、ダイオード等が挙げられる。さらに、この半導体素子としては、LED等の発光素子が挙げられる。また、発光素子の種類は特に制限されるものではなく、例えば、MOBVC法等によって基板上にInN、AlN、GaN、InGaN、AlGaN、InGaAlN等の窒化物半導体を発光層として形成させたものも挙げられる。
また、素子支持部材としては、銅、銅メッキ銅、PPF(プリプレーティングリードフレーム)、ガラスエポキシ、セラミックス等の材料で形成された支持部材が挙げられる。
Here, the semiconductor element may be any known semiconductor element, such as a transistor and a diode. Further, the semiconductor element includes a light emitting element such as an LED. In addition, the type of the light-emitting device is not particularly limited, and examples include those in which a nitride semiconductor such as InN, AlN, GaN, InGaN, AlGaN, InGaAlN, etc. is formed as a light-emitting layer on a substrate by the MOBVC method or the like. be done.
Further, the element support member includes a support member made of a material such as copper, copper-plated copper, PPF (pre-plating lead frame), glass epoxy, ceramics, or the like.

本実施形態の接合用ペーストを用いることで、金属メッキ処理されていない基材をも接合できる。このようにして得られた半導体装置は、実装後の温度サイクルに対する接続信頼性が従来に比べ飛躍的に向上したものとなる。また、電気抵抗値が十分小さく経時変化が少ないため、長時間の駆動でも出力の経時的減少が少なく長寿命であるという利点がある。 By using the bonding paste of the present embodiment, it is possible to bond even base materials that have not been metal-plated. The semiconductor device obtained in this way has dramatically improved connection reliability against temperature cycles after mounting compared with the conventional one. In addition, since the electric resistance value is sufficiently small and changes little over time, there is an advantage that even when driven for a long time, the decrease in output over time is small and the life is long.

また、本実施形態の電気・電子部品は、上記接合用ペーストを用いて、発熱部材に放熱部材を接着してなるものである。すなわち、ここで接合用ペーストは放熱部材接着用材料として使用され、該接合用ペーストを介して放熱部材と発熱部材とが接着し、固定される。 Further, the electric/electronic component of the present embodiment is formed by bonding a heat radiating member to a heat generating member using the bonding paste. That is, the bonding paste is used here as a material for bonding the heat radiating member, and the heat radiating member and the heat generating member are bonded and fixed via the bonding paste.

発熱部材としては、上記半導体素子又は該半導体素子を有する部材でもよいし、それ以外の発熱部材でもよい。半導体素子以外の発熱部材としては、光ピックアップ、パワートランジスタ等が挙げられる。また、放熱部材としては、ヒートシンク、ヒートスプレッダー等が挙げられる。 The heat-generating member may be the above-described semiconductor element or a member having the semiconductor element, or may be another heat-generating member. Examples of heat-generating members other than semiconductor elements include optical pickups and power transistors. Moreover, a heat sink, a heat spreader, etc. are mentioned as a thermal radiation member.

このように、発熱部材に上記接合用ペーストを用いて放熱部材を接着することで、発熱部材で発生した熱を放熱部材により効率良く外部へ放出することが可能となり、発熱部材の温度上昇を抑えることができる。なお、発熱部材と放熱部材とは、接合用ペーストを介して直接接着してもよいし、他の熱伝導率の高い部材を間に挟んで間接的に接着してもよい。 In this way, by bonding the heat-generating member to the heat-generating member using the bonding paste, the heat generated by the heat-generating member can be efficiently released to the outside by the heat-generating member, and the temperature rise of the heat-generating member can be suppressed. be able to. The heat-generating member and the heat-dissipating member may be directly adhered via a bonding paste, or may be indirectly adhered with another member having high thermal conductivity interposed therebetween.

次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。 EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(カルボン酸アミン塩の調製)
[調製例1]
ノナン酸(東京化成工業(株)製、商品名:ノナン酸)40mmolと、ヘキシルアミン(東京化成工業(株)製、商品名:ヘキシルアミン)40mmolを、50mLのサンプルビンに入れ、アルミブロック式加熱撹拌機中、撹拌・混合すると、60℃まで発熱した。続けて60℃で15分間撹拌・混合し、室温(25℃)まで冷却することで、ノナン酸ヘキシルアミン(収量10.3g、収率99.2%)を得た。
(Preparation of carboxylic acid amine salt)
[Preparation Example 1]
40 mmol of nonanoic acid (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: nonanoic acid) and 40 mmol of hexylamine (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: hexylamine) were placed in a 50 mL sample bottle, and an aluminum block type Heat was generated up to 60°C when the mixture was stirred and mixed in a heating stirrer. Subsequently, the mixture was stirred and mixed at 60°C for 15 minutes and cooled to room temperature (25°C) to obtain hexylamine nonanoate (yield: 10.3 g, yield: 99.2%).

[調製例2]
コハク酸(東京化成工業(株)製、商品名:コハク酸)20mmolと、DL-1-アミノ-2-プロパノール(東京化成工業(株)製、商品名:DL-1-アミノ-2-プロパノール)40mmolを、50mLのサンプルビンに入れ、アルミブロック式加熱撹拌機中、撹拌・混合すると、70℃まで発熱した。続けて70℃で15分間撹拌・混合し、室温(25℃)まで冷却することで、コハク酸アミノプロパノール塩(収量5.0g、収率99.9%)を得た。
[Preparation Example 2]
Succinic acid (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: succinic acid) 20 mmol and DL-1-amino-2-propanol (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: DL-1-amino-2-propanol) ) was placed in a 50 mL sample bottle and stirred and mixed in an aluminum block heating stirrer, generating heat up to 70°C. The mixture was continuously stirred and mixed at 70° C. for 15 minutes and cooled to room temperature (25° C.) to obtain succinic acid aminopropanol salt (yield 5.0 g, yield 99.9%).

(銅粒子の製造)
[合成例1]
(A)銅化合物として酢酸銅(II)一水和物(東京化成工業(株)製、商品名:酢酸銅(II)一水和物)20mmolと、(B)カルボン酸アミン塩として調製例1で得たノナン酸ヘキシルアミン塩40mmolと、有機溶剤としてブチルセロソルブ(東京化成工業(株)製)3mLとを50mLのサンプルビンに入れ、アルミブロック式加熱撹拌機中、90℃で5分間混合し、銅前駆体溶液とした。該銅前駆体溶液を室温(25℃)まで冷却した後、1-プロパノール3mLに、(C)還元性化合物としてヒドラジン一水和物(富士フイルム和光純薬(株)製、商品名:ヒドラジン一水和物)20mmolを溶解させた溶液を、サンプルビンの銅前駆体溶液に加え、5分間撹拌した。
(Production of copper particles)
[Synthesis Example 1]
(A) 20 mmol of copper (II) acetate monohydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd., trade name: copper (II) acetate monohydrate) as a copper compound, and (B) a preparation example of a carboxylic acid amine salt 40 mmol of the nonanoic acid hexylamine salt obtained in 1 and 3 mL of butyl cellosolve (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as an organic solvent were placed in a 50 mL sample bottle and mixed at 90° C. for 5 minutes in an aluminum block heating stirrer. , as a copper precursor solution. After cooling the copper precursor solution to room temperature (25° C.), 3 mL of 1-propanol was added to (C) hydrazine monohydrate as a reducing compound (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name: hydrazine monohydrate). hydrate) was added to the copper precursor solution in the sample bottle and stirred for 5 minutes.

再び90℃のアルミブロック式加熱撹拌機で2時間加熱撹拌した。5分後エタノール(関東化学(株)製、特級)2mLを加え、遠心分離(4000rpm(1分間))により、固体物を得た。その遠心分離した固体物を減圧乾燥し、銅光沢をもつ粉体状の銅粒子1(平均粒子径50nm、収量0.31g、収率97.8%)を得た。 The mixture was again heated and stirred at 90° C. with an aluminum block type heating stirrer for 2 hours. After 5 minutes, 2 mL of ethanol (manufactured by Kanto Kagaku Co., Ltd., special grade) was added, and a solid was obtained by centrifugation (4000 rpm (1 minute)). The centrifugally separated solid was dried under reduced pressure to obtain powdery copper particles 1 (average particle size: 50 nm, yield: 0.31 g, yield: 97.8%) with copper luster.

[合成例2]
酢酸銅(II)一水和物を亜酸化銅(古河ケミカルズ(株)製、商品名:FRC-10A)に、ノナン酸ヘキシルアミン塩を調製例2で得たコハク酸アミノプロパノール塩に代えた以外は合成例1と同様に合成を行い、銅光沢をもつ粉体状の銅粒子2(平均粒子径300nm、収量0.2g、収率97.6%)を得た。
[Synthesis Example 2]
Copper (II) acetate monohydrate was replaced with cuprous oxide (manufactured by Furukawa Chemicals Co., Ltd., trade name: FRC-10A), and nonanoic acid hexylamine salt was replaced with succinic acid aminopropanol salt obtained in Preparation Example 2. Except for this, synthesis was carried out in the same manner as in Synthesis Example 1 to obtain powdery copper particles 2 having a copper luster (average particle diameter: 300 nm, yield: 0.2 g, yield: 97.6%).

[合成例3]
(A)銅化合物として酢酸銅(II)一水和物(東京化成工業(株)製、商品名:酢酸銅(II)一水和物)20mmolと、(B)カルボン酸アミン塩として調製例1で得たノナン酸ヘキシルアミン塩40mmolと、有機溶剤としてブチルセロソルブ(東京化成工業(株)製)3mLとを50mLのサンプルビンに入れ、アルミブロック式加熱撹拌機中、90℃で5分混合し、その後、(D)炭素数1~12のカルボン酸としてカプロン酸(東京化成工業(株)製、商品名:ヘキサン酸)20mmolを加え、さらに90℃で5分混合し、銅前駆体溶液とした。該銅前駆体溶液を室温(25℃)まで冷却した後、1-プロパノール3mLに、(C)還元性化合物としてヒドラジン一水和物(富士フイルム和光純薬(株)製、商品名:ヒドラジン一水和物)20mmolを溶解させた溶液を、サンプルビンの銅前駆体溶液に加え、5分撹拌した。
[Synthesis Example 3]
(A) 20 mmol of copper (II) acetate monohydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd., trade name: copper (II) acetate monohydrate) as a copper compound, and (B) a preparation example of a carboxylic acid amine salt 40 mmol of the nonanoic acid hexylamine salt obtained in 1 and 3 mL of butyl cellosolve (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as an organic solvent were placed in a 50 mL sample bottle and mixed at 90° C. for 5 minutes in an aluminum block heating stirrer. After that, (D) 20 mmol of caproic acid (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: hexanoic acid) as a carboxylic acid having 1 to 12 carbon atoms was added, and further mixed at 90 ° C. for 5 minutes to obtain a copper precursor solution. did. After cooling the copper precursor solution to room temperature (25° C.), 3 mL of 1-propanol was added to (C) hydrazine monohydrate as a reducing compound (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name: hydrazine monohydrate). hydrate) was added to the copper precursor solution in the sample bottle and stirred for 5 minutes.

再び90℃のアルミブロック式加熱撹拌機で2時間加熱撹拌した。5分後エタノール(関東化学(株)製、特級)2mLを加え、遠心分離(4000rpm(1分間))により、固体物を得た。その遠心分離した固体物を減圧乾燥し、銅光沢をもつ粉体状の銅粒子3(平均粒子径40nm、収量0.30g、収率94.3%)を得た。 The mixture was again heated and stirred at 90° C. with an aluminum block type heating stirrer for 2 hours. After 5 minutes, 2 mL of ethanol (manufactured by Kanto Kagaku Co., Ltd., special grade) was added, and a solid was obtained by centrifugation (4000 rpm (1 minute)). The centrifugally separated solid was dried under reduced pressure to obtain powdery copper particles 3 having copper luster (average particle diameter: 40 nm, yield: 0.30 g, yield: 94.3%).

[合成例4]
カプロン酸の代わりに(E)炭素数1~12のアルキルアミンとしてオクチルアミン(東京化成工業(株)製、商品名:n-オクチルアミン)20mmolを用いた以外は合成例3と同様に合成を行い、銅光沢をもつ粉体状の銅粒子4(平均粒子径100nm、収量0.29g、収率91.2%)を得た。
[Synthesis Example 4]
Synthesis was carried out in the same manner as in Synthesis Example 3, except that 20 mmol of octylamine (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: n-octylamine) was used as (E) an alkylamine having 1 to 12 carbon atoms in place of caproic acid. Thus, powdery copper particles 4 (average particle size: 100 nm, yield: 0.29 g, yield: 91.2%) with copper luster were obtained.

[合成例5]
ノナン酸ヘキシルアミン塩を使用しない以外は合成例3と同様に合成を行い、銅光沢をもつ粉体状の銅粒子5(平均粒子径150nm、収量0.30g、収率94.3%)を得た。
[Synthesis Example 5]
Synthesis was carried out in the same manner as in Synthesis Example 3 except that no hexylamine nonanoic acid salt was used, and powdery copper particles 5 with copper luster (average particle diameter 150 nm, yield 0.30 g, yield 94.3%) were obtained. Obtained.

[合成例6]
ノナン酸ヘキシルアミン塩を使用しない以外は合成例4と同様に合成を行い、銅光沢をもつ粉体状の銅粒子6(平均粒子径180nm、収量0.29g、収率91.2%)を得た。
[Synthesis Example 6]
Synthesis was carried out in the same manner as in Synthesis Example 4 except that no hexylamine nonanoic acid salt was used, and powdery copper particles 6 with copper luster (average particle diameter 180 nm, yield 0.29 g, yield 91.2%) were obtained. Obtained.

なお、各合成例で得られた銅粒子の平均粒子径は、走査電子顕微鏡(日本電子(株)製、商品名:JSM-7600F;SEM)の観察画像に基づく任意に選択した10個の銅粒子(n=10)の平均値として算出した。 The average particle size of the copper particles obtained in each synthesis example is based on the observation image of a scanning electron microscope (manufactured by JEOL Ltd., trade name: JSM-7600F; SEM). It was calculated as the average value of particles (n=10).

前記合成例1~6で用いた各成分について表1に示す。なお、表1中、空欄は配合なしを表す。 Table 1 shows the components used in Synthesis Examples 1-6. In addition, in Table 1, a blank represents no compounding.

Figure 0007129043000001
Figure 0007129043000001

(実施例1~4及び比較例1、2)
表2に記載の種類及び配合量の各成分を混合し、ロールで混練し、接合用ペーストを得た。なお、表2中、空欄は配合なしを表す。
(Examples 1 to 4 and Comparative Examples 1 and 2)
Each component of the type and compounding amount shown in Table 2 was mixed and kneaded with a roll to obtain a bonding paste. In addition, in Table 2, a blank represents no compounding.

接合用ペーストの調製に使用した表2に記載の各成分の詳細は以下のとおりである。
(銅粒子)
・銅粒子1:合成例1で得られた銅粒子
・銅粒子2:合成例2で得られた銅粒子
・銅粒子3:合成例3で得られた銅粒子
・銅粒子4:合成例4で得られた銅粒子
・銅粒子5:合成例5で得られた銅粒子
・銅粒子6:合成例6で得られた銅粒子
(有機溶剤)
・ジエチレングリコール:東京化成工業(株)製
The details of each component listed in Table 2 used in the preparation of the bonding paste are as follows.
(copper particles)
Copper particles 1: Copper particles obtained in Synthesis example 1 Copper particles 2: Copper particles obtained in Synthesis example 2 Copper particles 3: Copper particles obtained in Synthesis example 3 Copper particles 4: Synthesis example 4 Copper particles/copper particles 5 obtained in Synthesis Example 5: Copper particles/copper particles 6: Copper particles obtained in Synthesis Example 6 (organic solvent)
・Diethylene glycol: manufactured by Tokyo Chemical Industry Co., Ltd.

各実施例及び比較例で得られた接合用ペーストを用いて以下の方法で評価した。その結果を表2に示す。
<接合用ペーストの評価方法>
[粘度]
E型粘度計(3°コーン)を用いて、25℃、5rpmでの値を測定した。
Using the bonding paste obtained in each example and comparative example, evaluation was performed by the following methods. Table 2 shows the results.
<Method for evaluating bonding paste>
[viscosity]
The value at 25°C and 5 rpm was measured using an E-type viscometer (3° cone).

[ポットライフ]
25℃の恒温槽内に接合用ペーストを放置した時の粘度が初期粘度の0.7倍以上増粘するまでの日数を測定した。
[Pot life]
The number of days until the viscosity increased by 0.7 times or more the initial viscosity when the bonding paste was left in a constant temperature bath at 25° C. was measured.

[焼結性(塗膜)]
接合用ペーストを、ガラス基板(厚み1mm)にスクリーン印刷法により厚み25μmとなるように塗布し、200℃、60分で硬化した。得られた焼結膜をロレスタGP(商品名、(株)三菱ケミカルアナリティック製)を用い四端針法にて電気抵抗を測定した。
1.0×10-4Ω・m以下を○、1.0×10-4Ω・mを超えるものを×とした。
[Sinterability (coating film)]
The bonding paste was applied to a glass substrate (thickness 1 mm) by a screen printing method so as to have a thickness of 25 μm, and was cured at 200° C. for 60 minutes. The electric resistance of the obtained sintered film was measured by the four-probe method using Loresta GP (trade name, manufactured by Mitsubishi Chemical Analytic Co., Ltd.).
A value of 1.0×10 −4 Ω·m or less was rated as ◯, and a value of more than 1.0×10 −4 Ω·m was rated as ×.

<半導体装置の評価方法>
[接合強度]
2mm×2mmの接合面に金蒸着層を設けたシリコンチップを、接合用ペーストを用いて無垢の銅フレーム及びPPF(Ni-Pd/Auめっきした銅フレーム)にマウントし、窒素(3%水素)雰囲気下、200℃、60分で硬化した。硬化後及び吸湿処理(85℃、相対湿度85%、72時間)後、それぞれについてDAGE 4000Plus(製品名、ノードソン(株)製)を用い、室温(25℃)におけるダイシェア強度を測定した。
<Evaluation Method of Semiconductor Device>
[Joint strength]
A silicon chip with a gold vapor deposition layer on the bonding surface of 2 mm × 2 mm was mounted on a solid copper frame and PPF (Ni-Pd/Au-plated copper frame) using bonding paste, and nitrogen (3% hydrogen). It was cured at 200° C. for 60 minutes in an atmosphere. After curing and after moisture absorption treatment (85°C, 85% relative humidity, 72 hours), the die shear strength at room temperature (25°C) was measured using DAGE 4000Plus (product name, manufactured by Nordson KK).

[耐冷熱衝撃性]
2mm×2mmの接合面に金蒸着層を設けたシリコンチップを、接合用ペーストを用いて銅フレーム及びPPFにマウントし、窒素(3%水素)雰囲気下、200℃、60分で硬化した。これを京セラ(株)製、エポキシ封止材(商品名:KE-G3000D)を用い、下記の条件で成形したパッケージを85℃、相対湿度85%、168時間吸湿処理した後、IRリフロー処理(260℃、10秒)及び冷熱サイクル処理(-55℃から150℃まで昇温し、また-55℃に冷却する操作を1サイクルとし、これを1000サイクル)を行い、各処理後それぞれのパッケージの内部クラックの発生数を超音波顕微鏡で観察した。
なお、表2に5個のサンプルについてクラックの発生したサンプル数を示す。
[Cold and heat shock resistance]
A silicon chip having a 2 mm×2 mm bonding surface provided with a deposited gold layer was mounted on a copper frame and PPF using a bonding paste, and cured at 200° C. for 60 minutes in a nitrogen (3% hydrogen) atmosphere. Using an epoxy sealing material (trade name: KE-G3000D) manufactured by Kyocera Corporation, a package molded under the following conditions was subjected to moisture absorption treatment at 85° C. and relative humidity of 85% for 168 hours, followed by IR reflow treatment ( 260 ° C., 10 seconds) and thermal cycle treatment (one cycle is an operation of increasing the temperature from -55 ° C. to 150 ° C. and cooling to -55 ° C., and this is 1000 cycles). The number of internal cracks generated was observed with an ultrasonic microscope.
Note that Table 2 shows the number of samples in which cracks occurred for five samples.

(成形条件)
パッケージ:80pQFP(14mm×20mm×2mm厚さ)
チップ:裏面金メッキシリコンチップ
リードフレーム:PPF及び銅
封止材の成形:175℃、2分間
ポストモールドキュアー:175℃、8時間
(Molding condition)
Package: 80pQFP (14mm x 20mm x 2mm thickness)
Chip: backside gold-plated silicon chip Lead frame: PPF and copper Molding of encapsulant: 175°C, 2 minutes Post-mold cure: 175°C, 8 hours

Figure 0007129043000002
Figure 0007129043000002

以上の結果より、本発明の接合用銅粒子の製造方法は、カルボン酸アミン塩を必須成分として含むことにより、得られる銅粒子を含む接合用ペーストは、塗膜状態、接合状態ともに高い焼結性が得られている。一方、比較例で示すように、カルボン酸アミン塩を含まない場合、塗膜状態においては高い焼結性を示すものの、接合状態においては焼結性に乏しいことがわかった。
また、本発明の接合用銅粒子の製造方法によって得られる銅粒子を含む接合用ペーストは、高い接合信頼性が得られることがわかった。したがって、該接合用ペーストを用いることにより信頼性に優れた半導体装置及び電気電子機器を得ることができる。
From the above results, the method for producing bonding copper particles of the present invention contains a carboxylic acid amine salt as an essential component, so that the obtained bonding paste containing copper particles has a high degree of sintering in both the coating state and the bonding state. sex is obtained. On the other hand, as shown in the comparative examples, when the carboxylic acid amine salt was not contained, although high sinterability was exhibited in the coating state, sinterability was poor in the bonded state.
Moreover, it was found that the bonding paste containing the copper particles obtained by the method for producing the bonding copper particles of the present invention can obtain high bonding reliability. Therefore, by using the bonding paste, a highly reliable semiconductor device and electrical/electronic equipment can be obtained.

Claims (8)

(A)銅化合物と、(B)予め合成されたカルボン酸アミン塩と、(C)還元性化合物とを混合し、
前記(A)銅化合物を、前記(B)予め合成されたカルボン酸アミン塩存在下、前記(C)還元性化合物によって還元することを特徴とする接合用銅粒子の製造方法。
(A) a copper compound, (B) a pre-synthesized carboxylic acid amine salt, and (C) a reducing compound are mixed,
A method for producing copper particles for bonding, wherein the (A) copper compound is reduced with the (C) reducing compound in the presence of the (B) previously synthesized carboxylic acid amine salt.
前記(B)予め合成されたカルボン酸アミン塩を構成するカルボン酸化合物の熱分解温度が200℃以下であることを特徴とする請求項1に記載の接合用銅粒子の製造方法。 2. The method for producing bonding copper particles according to claim 1, wherein the thermal decomposition temperature of the carboxylic acid compound constituting the (B) previously synthesized carboxylic acid amine salt is 200[deg.] C. or lower. さらに、(D)炭素数1~12のカルボン酸を含むことを特徴とする請求項1または2に記載の接合用銅粒子の製造方法。 3. The method for producing bonding copper particles according to claim 1, further comprising (D) a carboxylic acid having 1 to 12 carbon atoms. 前記(D)炭素数1~12のカルボン酸がモノカルボン酸であることを特徴とする請求項3に記載の接合用銅粒子の製造方法。 4. The method for producing copper particles for bonding according to claim 3, wherein the (D) carboxylic acid having 1 to 12 carbon atoms is a monocarboxylic acid. さらに、(E)炭素数1~12のアルキルアミンを含むことを特徴とする請求項1~4のいずれかに記載の接合用銅粒子の製造方法。 5. The method for producing bonding copper particles according to any one of claims 1 to 4, further comprising (E) an alkylamine having 1 to 12 carbon atoms. (A)銅化合物と、(B)予め合成されたカルボン酸アミン塩と、(C)還元性化合物とを混合し、
前記(A)銅化合物を、前記(B)予め合成されたカルボン酸アミン塩の存在下、前記(C)還元性化合物によって還元してなる接合用銅粒子を含むことを特徴とする接合用ペースト。
(A) a copper compound, (B) a pre-synthesized carboxylic acid amine salt, and (C) a reducing compound are mixed,
A bonding paste comprising bonding copper particles obtained by reducing the (A) copper compound with the (C) reducing compound in the presence of the (B) previously synthesized carboxylic acid amine salt. .
半導体素子と、基板とが、請求項6に記載の接合用ペーストの硬化物で接合されてなる半導体装置A semiconductor device in which a semiconductor element and a substrate are bonded with a cured product of the bonding paste according to claim 6 . 放熱部材と、発熱部材とが、請求項6に記載の接合用ペーストの硬化物で接合されてなる電気・電子部品。 An electric/electronic component comprising a heat-radiating member and a heat-generating member bonded together with the cured bonding paste according to claim 6 .
JP2018163616A 2018-08-31 2018-08-31 Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component Active JP7129043B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018163616A JP7129043B2 (en) 2018-08-31 2018-08-31 Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component
PCT/JP2019/030831 WO2020044982A1 (en) 2018-08-31 2019-08-06 Production method for copper particles, bonding paste, semiconductor device, and electrical and electronic components
TW108128561A TW202014259A (en) 2018-08-31 2019-08-12 Production method for copper particles, bonding paste, semiconductor device, and electrical and electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018163616A JP7129043B2 (en) 2018-08-31 2018-08-31 Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component

Publications (2)

Publication Number Publication Date
JP2020035979A JP2020035979A (en) 2020-03-05
JP7129043B2 true JP7129043B2 (en) 2022-09-01

Family

ID=69644876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163616A Active JP7129043B2 (en) 2018-08-31 2018-08-31 Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component

Country Status (3)

Country Link
JP (1) JP7129043B2 (en)
TW (1) TW202014259A (en)
WO (1) WO2020044982A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191028A1 (en) * 2022-03-31 2023-10-05 京セラ株式会社 Copper particle and method for producing same, paste composition, semiconductor device, electrical component, and electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033260A (en) 2015-09-18 2016-03-10 国立大学法人山形大学 Composite compound, and suspension

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287611B2 (en) * 2014-06-13 2018-03-07 Jsr株式会社 Silver film forming composition, silver film, wiring board, electronic device, and method for producing silver particles
JP2017022125A (en) * 2016-08-23 2017-01-26 大日本印刷株式会社 Copper nanoparticle dispersion and method of manufacturing conductive substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033260A (en) 2015-09-18 2016-03-10 国立大学法人山形大学 Composite compound, and suspension

Also Published As

Publication number Publication date
TW202014259A (en) 2020-04-16
JP2020035979A (en) 2020-03-05
WO2020044982A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP7222904B2 (en) Paste composition, semiconductor device and electric/electronic parts
JP6310799B2 (en) Thermosetting resin composition, semiconductor device, electric / electronic component and method for producing plate-type silver fine particles
JP7518839B2 (en) Silver particles, method for producing silver particles, paste composition, semiconductor device, and electric/electronic component
WO2020044983A1 (en) Production method for copper particles, bonding paste, semiconductor device, and electrical and electronic components
TWI686450B (en) Paste composition, semiconductor device and electrical and electronic parts
JP2020035721A (en) Paste composition, semiconductor device, and electric/electronic component
JP7129043B2 (en) Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component
CN113165069B (en) Copper particle, method for producing copper particle, copper paste, semiconductor device, and electric/electronic component
WO2020105497A1 (en) Production method for copper particles used in bonding , paste used in bonding, and semiconductor device and electric and electronic component
TWI699412B (en) Paste composition, semiconductor device and electrical and electronic parts
JP7410742B2 (en) Copper particle manufacturing method, copper paste and semiconductor device
JP7320068B2 (en) Method for producing silver particles, thermosetting resin composition, semiconductor device, and electric/electronic component
JP2021134362A (en) Coated copper particle, copper paste and semiconductor device
WO2022196620A1 (en) Paste composition, semiconductor device, electrical component and electronic component

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220809

R150 Certificate of patent or registration of utility model

Ref document number: 7129043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150