WO2020105471A1 - Biaxially oriented thermoplastic resin film - Google Patents

Biaxially oriented thermoplastic resin film

Info

Publication number
WO2020105471A1
WO2020105471A1 PCT/JP2019/043829 JP2019043829W WO2020105471A1 WO 2020105471 A1 WO2020105471 A1 WO 2020105471A1 JP 2019043829 W JP2019043829 W JP 2019043829W WO 2020105471 A1 WO2020105471 A1 WO 2020105471A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially oriented
thermoplastic resin
protrusions
less
Prior art date
Application number
PCT/JP2019/043829
Other languages
French (fr)
Japanese (ja)
Inventor
千代敏弘
鈴木維允
東大路卓司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019563302A priority Critical patent/JP7375548B2/en
Priority to CN201980075895.6A priority patent/CN113056360B/en
Priority to KR1020217007929A priority patent/KR20210092192A/en
Publication of WO2020105471A1 publication Critical patent/WO2020105471A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Magnetic Record Carriers (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Provided is a biaxially oriented thermoplastic resin film, at least one surface of which satisfies the following conditions (1) and (2), and that has suitable smoothness and windability. (1) When the projection density for projections with a height of 10 nm or greater as measured by non-contact optical roughness measurement is denoted by A (projections/mm2), A is 2.0×103 to 2.5×104. (2) When the projection density for projections with a height of 1 nm or greater but less than 10 nm as measured by atomic force microscopy (AFM) is denoted by B (projections/mm2), B is 1.8×106 to 1.0×107.

Description

二軸配向熱可塑性樹脂フィルムBiaxially oriented thermoplastic resin film
 本発明は、粗大な突起を有しながらも地肌部に微細突起を有する二軸配向熱可塑性樹脂フィルムに関するものである。 The present invention relates to a biaxially oriented thermoplastic resin film having coarse protrusions but fine protrusions on the background.
 熱可塑性樹脂はその加工性の良さから、様々な工業分野に利用されている。また、これら熱可塑性樹脂をフィルム状に加工した製品は工業用途、光学製品用途、包装用途、磁気記録テープ用途など今日の生活において重要な役割を果たしている。近年、電子情報機器において、小型化、高集積化が進み、それに伴って、電子情報機器の作製に用いられるフィルムには加工性の向上が求められている。特に、電子情報機器の作製には、フィルム表面に他の素材を積層させ、フィルムごとフォトレジストなどの光学的な加工を施す手法が多く採られる。そのため、フィルムの光学的な加工性向上のためには、フィルムの透明性を保持すると共に、フィルム表面の平滑性を高めることで、加工に用いるレジスト用レーザー光がフィルム表面の凹凸形状により光散乱することを低減することが一般的な手段である。また、磁気記録テープ用途においても記録データの高密度化に伴い、フィルム表面の平滑性を高めることで読み取りヘッドとの距離を均一に保ち、エラーノイズの発生を低減させることが求められている。特に塗布型磁気記録テープ用途では支持体として用いられるフィルムの片面のみが荒れている場合、ロール巻取り時により平滑な反対面(磁気記録層面)側に形状転写欠点(以下、転写欠点と称する場合がある)を発生し、磁気記録層面の平滑性を低下させることが課題となっている。 Thermoplastic resins are used in various industrial fields due to their good workability. Products obtained by processing these thermoplastic resins into films play an important role in today's lives such as industrial applications, optical product applications, packaging applications, and magnetic recording tape applications. 2. Description of the Related Art In recent years, electronic information devices have been downsized and highly integrated, and accordingly, films used for manufacturing electronic information devices have been required to have improved processability. In particular, in the production of electronic information devices, many methods are adopted in which another material is laminated on the film surface and the film is subjected to optical processing such as photoresist. Therefore, in order to improve the optical processability of the film, by maintaining the transparency of the film and increasing the smoothness of the film surface, the resist laser light used for processing causes light scattering due to the uneven shape of the film surface. It is a common practice to reduce this. Further, in magnetic recording tape applications, along with the increase in recording data density, it is required to increase the smoothness of the film surface to keep the distance from the reading head uniform and reduce the occurrence of error noise. Particularly in the case of coating type magnetic recording tape applications, when only one side of the film used as a support is rough, a shape transfer defect (hereinafter referred to as a transfer defect when the roll is wound onto the opposite surface (magnetic recording layer surface) side is smooth. Is caused, and the smoothness of the magnetic recording layer surface is deteriorated.
 一般に、フィルムには巻取り・搬送性を担保するために粒子が含有されている。粒子の含有量を低減させたり、含有する粒子の粒径を小径化したりすることでフィルムの平滑性を高め、また上述の転写欠点を防ぐことができる。しかし、その一方でフィルム製造・加工を行う際の巻取り工程にて突起高さの高い突起部が存在しないためフィルム間に噛み混んだ空気が抜けず、浮いた部分がシワになり品位が低下することがある。 Generally, the film contains particles to ensure winding and transporting properties. By reducing the content of particles or reducing the particle size of the particles contained, the smoothness of the film can be improved and the above-mentioned transfer defects can be prevented. However, on the other hand, since there are no protrusions with high protrusions in the winding process during film manufacturing and processing, air that has become trapped between the films cannot escape and wrinkles occur in the floating portions, degrading the quality. I have something to do.
 かかる課題に対して、例えば特許文献1では、フィルムに粒子を含有させることなく、添加剤を用いることで表面を荒らす技術が開示されている。 For such a problem, for example, Patent Document 1 discloses a technique of roughening the surface by using an additive without containing particles in the film.
特開2016-221853号公報JP, 2016-221853, A
 しかしながら、添加剤を用いる場合、添加剤の含有濃度にて表面粗さを均一に制御することができるが、添加剤由来の粗大な異物が発生することにより平滑性が大幅に低下することが課題になる。 However, when an additive is used, the surface roughness can be uniformly controlled by the content concentration of the additive, but the problem is that the smoothness is significantly reduced due to the generation of coarse foreign substances derived from the additive. become.
 本発明者らが鋭意検討したところ、上記の課題を解決するためには、フィルム表面の形状を制御し、転写欠点を起こさない程度に局所的に突起高さの高い突起を有しつつ、突起高さの低い突起を共存させることで、平滑性と巻取り性(以下、空気抜け性と称することがある)を両立できることが判った。本発明は上記事情に鑑み、良好な平滑性と巻取り性を有する二軸配向熱可塑性樹脂フィルムを提供することを目的とする。 As a result of intensive studies by the present inventors, in order to solve the above-mentioned problems, the shape of the film surface is controlled, and projections are formed while locally having projections with a high projection height to the extent that transfer defects do not occur. It was found that coexistence of projections having a low height makes it possible to achieve both smoothness and windability (hereinafter sometimes referred to as air bleedability). In view of the above circumstances, it is an object of the present invention to provide a biaxially oriented thermoplastic resin film having good smoothness and windability.
上記課題を解決するために、本発明は以下の構成を取る。すなわち、
[I]少なくとも片面の表面が次の(1)、(2)を満たす二軸配向熱可塑性樹脂フィルム。
(1)非接触光学式粗さ測定によって測定される高さ10nm以上の突起の個数をA(個/mm)とした場合、Aが2.0×10以上2.5×10以下であること。
(2)原子間力顕微鏡(AFM:Atomic Force Microscope)測定によって測定される高さ1nm以上10nm未満の突起の個数をB(個/mm)とした場合、Bが1.8×10以上1.0×10以下であること。
[II]前記(1)、(2)を満たす表面を構成する層が平均粒子径10nm以上300nm以下の粒子を含有する[I]に記載の二軸配向熱可塑性樹脂フィルム。
[III]前記(1)、(2)を満たす表面が、非接触光学式粗さ測定によって測定される高さ60nm以上の突起の個数をC(個/mm)とした場合、Cが90以下である[I]または[II]に記載の二軸配向熱可塑性樹脂フィルム。
[IV]離型用フィルムとして用いられる[I]~[III]のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
[V]ドライフィルムレジスト支持体用フィルムとして用いられる[I]~[III]のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
[VI]積層セラミックコンデンサーを製造する工程においてグリーンシート成形の支持体用フィルムとして用いられる[I]~[III]のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
[VII]塗布型デジタル記録方式の磁気記録媒体用ベースフィルムに用いられる、[I]~[III]のいずれかに記載の二軸配向熱可塑性樹脂フィルム。
In order to solve the above problems, the present invention has the following configurations. That is,
[I] A biaxially oriented thermoplastic resin film in which at least one surface satisfies the following (1) and (2).
(1) When the number of protrusions having a height of 10 nm or more measured by non-contact optical roughness measurement is A (pieces / mm 2 ), A is 2.0 × 10 3 or more and 2.5 × 10 4 or less. To be.
(2) When the number of protrusions having a height of 1 nm or more and less than 10 nm measured by Atomic Force Microscope (AFM) is B (pieces / mm 2 ), B is 1.8 × 10 6 or more. It should be 1.0 × 10 7 or less.
[II] The biaxially oriented thermoplastic resin film according to [I], wherein the layer constituting the surface satisfying the above (1) and (2) contains particles having an average particle diameter of 10 nm or more and 300 nm or less.
[III] When the number of protrusions having a height of 60 nm or more measured by non-contact optical roughness measurement on the surface satisfying the above (1) and (2) is C (pieces / mm 2 ), C is 90. The biaxially oriented thermoplastic resin film described in [I] or [II] below.
[IV] The biaxially oriented thermoplastic resin film according to any one of [I] to [III], which is used as a release film.
[V] Dry film The biaxially oriented thermoplastic resin film according to any one of [I] to [III], which is used as a film for a resist support.
[VI] The biaxially oriented thermoplastic resin film according to any one of [I] to [III], which is used as a support film for green sheet molding in the step of producing a laminated ceramic capacitor.
[VII] The biaxially oriented thermoplastic resin film according to any one of [I] to [III], which is used as a base film for a magnetic recording medium of a coating type digital recording system.
 本発明の二軸配向熱可塑性樹脂フィルムは、良好な平滑性と巻取り性を有する。 The biaxially oriented thermoplastic resin film of the present invention has good smoothness and windability.
非接触光学式粗さ測定またはAFM(Atomic Force Microscope)測定で測定されるR1nm、R10nm、R60nmをあらわす概念図である。 R 1 nm as measured by a non-contact optical roughness measurement or AFM (Atomic Force Microscope) measurement, R 10 nm, is a conceptual diagram representing R 60 nm. 本発明の二軸配向熱可塑性樹脂フィルムの2層構成の一態様を表す模式図である。It is a schematic diagram showing one aspect | mode of 2 layer structure of the biaxially oriented thermoplastic resin film of this invention. 本発明の二軸配向熱可塑性樹脂フィルムの3層構成の一態様を表す模式図である。It is a schematic diagram showing one aspect | mode of 3 layer structure of the biaxially oriented thermoplastic resin film of this invention. 本発明の二軸配向熱可塑性樹脂フィルムの異種3層構成の一態様を表す模式図である。It is a schematic diagram showing one aspect | mode of a heterogeneous 3 layer structure of the biaxially oriented thermoplastic resin film of this invention.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明は二軸配向熱可塑性樹脂フィルムに関する。本発明でいう熱可塑性樹脂とは、加熱すると塑性を示す樹脂である。代表的な樹脂としてはポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンα、β-ジカルボキシレート、P-ヘキサヒドロ・キシリレンテレフタレートからのポリマー、1,4シクロヘキサンジメタノールからのポリマー、ポリ-P-エチレンオキシベンゾエート、ポリアリレート、ポリカーボネートなど及びそれらの共重合体で代表されるように主鎖にエステル結合を有するポリエステル類、更にナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン11、などで代表されるように主鎖にアドミ結合を有するポリアミド類、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、ポリメチルペンテン、ポリブテン、ポリイソブチレン、ポリスチレンなどで代表されるように主としてハイドロカーボンのみからなるポリオレフィン類、ポリエーテルサルフォン(PES)、ポリフェニレンオキサイド(PPO)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリオキシメチレンなどで代表されるポリエーテル類、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレンなどで代表されるハロゲン化ポリマー類およびポリフェニレンサルファイド(PPS)、ポリスルフオンおよびそれらの共重合体や変性体、ポリイミドなどである。 The present invention relates to a biaxially oriented thermoplastic resin film. The thermoplastic resin referred to in the present invention is a resin that exhibits plasticity when heated. Representative resins include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene α, β-dicarboxylate, polymers from P-hexahydroxylylene terephthalate, polymers from 1,4 cyclohexanedimethanol, poly-P. -Polyesters having an ester bond in the main chain, represented by ethyleneoxybenzoate, polyarylate, polycarbonate, etc. and their copolymers, and further nylon 6, nylon 66, nylon 610, nylon 12, nylon 11, etc. Polyamides having an admittance in the main chain as represented, polyethylene, polypropylene, ethylene vinyl acetate copolymers, polymethylpentene, polybutene, polyisobutylene, polyolefins mainly composed of only hydrocarbons such as polystyrene. , Polyether sulfones (PES), polyphenylene oxide (PPO), polyether ether ketone (PEEK), polyethylene oxide, polypropylene oxide, polyethers represented by polyoxymethylene, polyvinyl chloride, polyvinylidene chloride, Halogenated polymers represented by polyvinylidene fluoride, polychlorotrifluoroethylene and the like, polyphenylene sulfide (PPS), polysulfone and their copolymers and modified products, polyimides and the like.
 本発明において用いられる熱可塑性樹脂としては、透明性、製膜性の観点からポリエステル、ポリオレフィン、ポリフェニレンサルファイド(PPS)、ポリイミド(PI)を主成分とすることが好ましく、その中でも特にポリエステルが更に好ましい。ここでいう主成分とはフィルムの全成分100質量%において、50質量%を超えて100質量%以下含有している成分を示す。 The thermoplastic resin used in the present invention preferably contains polyester, polyolefin, polyphenylene sulfide (PPS), and polyimide (PI) as main components from the viewpoint of transparency and film-forming property, and among them, polyester is particularly preferable. .. The term "main component" as used herein refers to a component that is contained in an amount of more than 50% by mass and 100% by mass or less in 100% by mass of all components of the film.
 また、本発明でいうポリエステルはジカルボン酸構成成分とジオール構成成分を重縮合してなるものである。なお、本明細書内において、構成成分とはポリエステルを加水分解することで得ることが可能な最小単位のことを示す。 The polyester referred to in the present invention is obtained by polycondensing a dicarboxylic acid constituent component and a diol constituent component. In the present specification, the constituent component means the minimum unit that can be obtained by hydrolyzing polyester.
 かかるポリエステルを構成するジカルボン酸構成成分としては、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸、もしくはそのエステル誘導体が挙げられる。 Examples of the dicarboxylic acid constituent component of the polyester include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalene. Examples thereof include aromatic dicarboxylic acids such as dicarboxylic acid, 4,4′-diphenyldicarboxylic acid and 4,4′-diphenyletherdicarboxylic acid, or ester derivatives thereof.
 また、かかるポリエステルを構成するジオール構成成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコールなどの脂環式ジオール類、上述のジオールが複数個連なったものなどが挙げられる。中でも、機械特性、透明性の観点から、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン-2,6-ナフタレンジカルボキシレート(PEN)、およびPETのジカルボン酸成分の一部にイソフタル酸やナフタレンジカルボン酸を共重合したもの、PETのジオール成分の一部にシクロヘキサンジメタノール、スピログリコール、ジエチレングリコールを共重合したポリエステルが好適に用いられる。 The diol constituting the polyester is ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol. And other aliphatic diols, cyclohexanedimethanol, alicyclic diols such as spiroglycol, and a series of a plurality of the above diols. Among them, from the viewpoints of mechanical properties and transparency, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene-2,6-naphthalene dicarboxylate (PEN), and isophthalic acid as a part of the dicarboxylic acid component of PET. A polyester obtained by copolymerizing naphthalene dicarboxylic acid and a polyester obtained by copolymerizing cyclohexanedimethanol, spiroglycol, and diethyleneglycol in a part of the diol component of PET are preferably used.
 本発明の二軸配向熱可塑性樹脂フィルムは、二軸配向していることが必要である。二軸配向していることにより、フィルムの機械強度が向上することでシワが入りにくくなり、巻取り性を向上させることができる。ここでいう二軸配向とは、広角X線回折で二軸配向のパターンを示すものをいう。二軸配向熱可塑性樹脂フィルムは、一般に未延伸状態の熱可塑性樹脂シートをシート長手方向および幅方向に延伸し、その後熱処理を施し結晶配向を完了させることにより、得ることができる。詳しくは後述する。 The biaxially oriented thermoplastic resin film of the present invention needs to be biaxially oriented. Since the film is biaxially oriented, the mechanical strength of the film is improved and wrinkles are less likely to occur, and the winding property can be improved. The biaxial orientation referred to here is one that exhibits a biaxial orientation pattern by wide-angle X-ray diffraction. The biaxially oriented thermoplastic resin film can be generally obtained by stretching an unstretched thermoplastic resin sheet in the sheet longitudinal direction and width direction and then subjecting it to heat treatment to complete the crystal orientation. Details will be described later.
 本発明の二軸配向熱可塑性樹脂フィルムは、少なくとも片側の表面が、後述の方法に従って非接触光学式粗さ測定器で測定される10nm以上の突起の個数をA(個/mm)、AFM(Atomic Force Microscope)で測定される高さ1nm以上10nm未満の突起の個数をB(個/mm)とした場合に、Aが2.0×10以上2.5×10以下であり、かつB(個/mm)とした場合、Bが1.8×10以上1.0×10以下である必要がある(以降、Aが2.0×10以上2.5×10以下であり、かつB(個/mm)とした場合、Bが1.8×10以上1.0×10以下であるフィルム表面を、単に前記表面という場合がある)。 In the biaxially oriented thermoplastic resin film of the present invention, at least one surface has a number of protrusions of 10 nm or more measured by a non-contact optical roughness measuring device according to the method described later as A (pieces / mm 2 ), AFM When the number of protrusions with a height of 1 nm or more and less than 10 nm measured by (Atomic Force Microscope) is B (pieces / mm 2 ), A is 2.0 × 10 3 or more and 2.5 × 10 4 or less. , And B (pieces / mm 2 ), B must be 1.8 × 10 6 or more and 1.0 × 10 7 or less (hereinafter, A is 2.0 × 10 3 or more and 2.5 × or less). When it is 10 4 or less and B (pieces / mm 2 ), the film surface having B of 1.8 × 10 6 or more and 1.0 × 10 7 or less may be simply referred to as the surface).
 本発明における非接触光学式粗さ測定器で測定される高さ10nm以上の突起の個数A(個/mm)は、巻取り時の空気抜けを担う突起の個数を反映している。突起個数A(個/mm)が多くなることで他のフィルム面との接触する面積(以下、接触面積と称することがある)が低下し空気が逃げる空間が確保されるため、巻取り性が向上する。一方、突起個数A(個/mm)が多すぎる場合は、高い突起が多くなることにより転写欠点の発生が多くなる場合がある。また、突起個数A(個/mm)が少ない場合、フィルムが平坦になることで他の面との接触面積が増加し空気抜け性が悪化、後述する突起個数B(個/mm)がいかに多く存在する場合においても、フィルム巻取り時にフィルム内に取り残された空気に起因するシワが発生し品位が低下する場合がある。高さ10nm以上突起の個数A(個/mm)はより好ましくは3.0×10以上2.0×10以下であり、更に好ましくは4.0×10以上2.0×10以下である。 The number A (number / mm 2 ) of protrusions having a height of 10 nm or more measured by the non-contact optical roughness measuring device in the present invention reflects the number of protrusions responsible for air release during winding. As the number of projections A (pieces / mm 2 ) increases, the area of contact with other film surfaces (hereinafter sometimes referred to as the contact area) decreases, and a space for air to escape is secured, so that the winding property is improved. Is improved. On the other hand, if the number A of projections (pieces / mm 2 ) is too large, the number of high projections increases, which may increase the occurrence of transfer defects. Also, if the number of projections A (number / mm 2) is small, the film is increased contact area with the other aspects by being a flat deteriorated removability air, described later projection number B (number / mm 2) is No matter how many are present, wrinkles due to air left in the film at the time of winding the film may be generated to deteriorate the quality. The number A (number / mm 2 ) of protrusions having a height of 10 nm or more is more preferably 3.0 × 10 3 or more and 2.0 × 10 4 or less, and further preferably 4.0 × 10 3 or more and 2.0 × 10. It is 4 or less.
 本発明におけるAFM(Atomic Force Microscope)で測定される高さ1nm以上10nm未満の突起の個数B(個/mm)は、前記表面の地肌部に存在する微細な突起の個数を反映しており、地肌部と他の面との接触面積を低下させるとともに、微細な突起凹凸構造により空気の逃げ道を増加させることで、前記10nm以上の突起により得られる空気抜け性を顕著に促進する効果を有する。また、地肌部に高さ1nm以上10nm未満の突起が多く存在することで、フィルム間や工程ロールとの摩擦を低減し、フィルム表面のキズを低減する効果を有する。突起個数B(個/mm)が多すぎる場合は、フィルムの滑り性が向上し巻取り時やその後のスリッター工程において巻きズレが発生しロールの巻き姿が悪くなる場合がある。また、突起個数B(個/mm)が少ない場合、フィルムが平坦になることで他の面との接触面積が増加し空気抜け性が悪化、フィルム巻取り時にフィルム内に取り残された空気に起因するシワが発生し品位が低下する場合がある。高さ1nm以上10nm未満の突起の個数B(個/mm)は、より好ましくは3.0×10以上8.5×10以下である。 The number B (number / mm 2 ) of protrusions having a height of 1 nm or more and less than 10 nm, which is measured by AFM (Atomic Force Microscope) in the present invention, reflects the number of fine protrusions existing in the bare surface portion of the surface. By reducing the contact area between the background portion and the other surface and increasing the escape path of air by the fine projection uneven structure, it has the effect of remarkably promoting the air release property obtained by the projections of 10 nm or more. .. In addition, since many protrusions having a height of 1 nm or more and less than 10 nm are present in the background portion, it has an effect of reducing friction between films or with a process roll and reducing scratches on the film surface. If the number of protrusions B (pieces / mm 2 ) is too large, the slipperiness of the film may be improved and winding misalignment may occur during winding or during the slitter step thereafter, resulting in poor roll appearance. In addition, when the number of protrusions B (pieces / mm 2 ) is small, the film becomes flat and the contact area with other surfaces increases, deteriorating air release, and air left in the film during film winding This may cause wrinkles and deteriorate the quality. The number B (number / mm 2 ) of protrusions having a height of 1 nm or more and less than 10 nm is more preferably 3.0 × 10 6 or more and 8.5 × 10 6 or less.
 従来技術において、非接触光学式粗さ測定器で測定される高さ10nm以上の突起の個数A(個/mm)を多くする方法としては、例えば、粒子径の大きい粒子を含有させる方法が挙げられる。また、AFM(Atomic Force Microscope)で測定される高さ1nm以上10nm未満の突起の個数B(個/mm)を多くする方法としては、例えば、粒子径の小さい粒子を含有させる方法が挙げられる。しかしながら、かかる方法では、突起個数Bを増やすため含有させる粒子の粒子径を小さくしていくことで、粒子同士の凝集が無視できなくなり、結果的に突起が粗大化して突起個数Bが減少してしまうため、突起個数Bを一定以上とすることは困難であった。本発明においては後述する方法により、突起個数A、Bを上述の範囲に制御することが可能である。 In the prior art, as a method for increasing the number A (number / mm 2 ) of protrusions having a height of 10 nm or more measured by a non-contact optical roughness measuring device, for example, a method of containing particles having a large particle diameter is used. Can be mentioned. Further, as a method for increasing the number B (pieces / mm 2 ) of protrusions having a height of 1 nm or more and less than 10 nm measured by AFM (Atomic Force Microscope), for example, a method of containing particles having a small particle diameter can be mentioned. .. However, in such a method, by decreasing the particle diameter of the particles to be contained in order to increase the number of protrusions B, the aggregation of particles cannot be ignored, and as a result, the protrusions become coarse and the number of protrusions B decreases. Therefore, it is difficult to keep the number of protrusions B above a certain level. In the present invention, the number of protrusions A and B can be controlled within the above range by the method described later.
 また、本発明の二軸配向熱可塑性樹脂フィルムは、前記表面における非接触光学式粗さ測定器で測定される高さ60nm以上の突起の個数C(個/mm)が90以下であることが好ましい。高さ60nm以上の突起の個数C(個/mm)は、転写欠点を引き起こす高さの突起の個数を反映している。突起個数C(個/mm)が90を超える場合、転写欠点が多く発生することで、前記表面とは反対の面の平滑性が低下するため、かかるフィルムを磁気テープ用途に用いるとノイズが多く発生する場合がある。突起個数C(個/mm)は、80以下であることがより好ましい。突起個数C(個/mm)の下限値は特に存在せず究極的には0であることが最も好ましい。 Further, in the biaxially oriented thermoplastic resin film of the present invention, the number C (pieces / mm 2 ) of protrusions having a height of 60 nm or more measured by a non-contact optical roughness measuring instrument on the surface is 90 or less. Is preferred. The number C (number / mm 2 ) of protrusions having a height of 60 nm or more reflects the number of protrusions having a height that causes a transfer defect. When the number of protrusions C (pieces / mm 2 ) exceeds 90, many transfer defects occur and the smoothness of the surface opposite to the surface is reduced. Therefore, when such a film is used for magnetic tape, noise is generated. It often happens. The number of protrusions C (pieces / mm 2 ) is more preferably 80 or less. The lower limit value of the number of protrusions C (pieces / mm 2 ) does not particularly exist, and it is most preferable that it is ultimately 0.
 本発明の二軸配向熱可塑性樹脂フィルムにおいて、非接触光学式粗さ測定器で測定される高さ10nm以上の突起の個数Aを上記の範囲とするための方法は特に限定されないが、粒子を含有させる方法やフィルム主成分と異なる樹脂を含有させる方法などを用いることができる。製膜条件に依らず均一な突起を形成する観点からは粒子を含有させ、その含有粒子の平均粒子径や含有量により制御することが好ましい。 In the biaxially oriented thermoplastic resin film of the present invention, the method for setting the number A of the protrusions having a height of 10 nm or more measured by a non-contact optical roughness measuring device within the above range is not particularly limited, It is possible to use a method of containing a resin or a method of containing a resin different from the film main component. From the viewpoint of forming uniform protrusions irrespective of the film forming conditions, it is preferable that particles are contained and controlled by the average particle size and content of the contained particles.
 本発明の二軸配向熱可塑性樹脂フィルムに含有させる粒子に関しては特に限定されず、無機粒子、有機粒子どちらを用いても良く、2種類以上の粒子を併用してもよい。無機粒子としては例えば、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛、酸化セリウム、酸化マグネシウム、硫酸バリウム、硫化亜鉛、リン酸カルシウム、アルミナ(αアルミナ、βアルミナ、γアルミナ、δアルミナ)、マイカ、雲母、雲母チタン、ゼオライト、タルク、クレー、カオリン、フッ化リチウム、フッ化カルシウム、モンモリロナイト、ジルコニア、湿式シリカ、乾式シリカ、コロイダルシリカなどが挙げられる。アクリル系樹脂、スチレン系樹脂、シリコーン樹脂、ポリイミド樹脂などを構成成分とする有機粒子、コアシェル型有機粒子などが例示できる。 The particles contained in the biaxially oriented thermoplastic resin film of the present invention are not particularly limited, and either inorganic particles or organic particles may be used, and two or more kinds of particles may be used in combination. Examples of the inorganic particles include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, zinc sulfide, calcium phosphate, alumina (α alumina, β alumina, γ alumina, δ alumina), Examples thereof include mica, mica, titanium mica, zeolite, talc, clay, kaolin, lithium fluoride, calcium fluoride, montmorillonite, zirconia, wet silica, dry silica and colloidal silica. Examples thereof include organic particles having acrylic resin, styrene resin, silicone resin, polyimide resin as a constituent component, core-shell type organic particles, and the like.
 前記粒子の粒子径サイズとしては後述の方法にて得られる平均1次粒子径で10nm以上300nm以下であることが好ましい。平均1次粒子径が10nm未満である場合、粒子同士の凝集力が大きくなり、粗大な凝集体を形成することで前記突起個数Aの範囲を超える場合がある。前記平均1次粒子径が300nmを超える場合、形成する個々の突起サイズが大きくなり、前記突起個数Aの範囲を超える場合がある。前記粒子の平均1次粒子径の好ましい範囲としては15nm以上200nm以下である。 The particle size of the particles is preferably 10 nm or more and 300 nm or less in average primary particle size obtained by the method described below. When the average primary particle diameter is less than 10 nm, the cohesive force between particles becomes large, and a coarse aggregate may be formed to exceed the range of the number A of protrusions. When the average primary particle diameter exceeds 300 nm, the size of individual protrusions to be formed becomes large, which may exceed the range of the number A of protrusions. A preferable range of the average primary particle diameter of the particles is 15 nm or more and 200 nm or less.
 本発明の二軸配向熱可塑性樹脂フィルムに含有させる粒子の含有量は時に限定されないが透明性を損なわないためには、粒子の含有濃度をフィルム全体に対して3.0質量%以下とすることが好ましい。3.0質量%を超えると平均1次粒子径が好ましい範囲にある粒子を用いてもフィルムが部分的に白濁し、後述するヘイズが好ましい範囲から外れる場合がある。より好ましくは2.0質量%以下、更に好ましくは1.0質量%以下である。また、本発明の二軸配向熱可塑性樹脂フィルムを2層以上の積層構成とし、前記表面を有する層にのみに粒子を含有させることで、透明性を良好にしつつ、前記突起個数Aを目的の範囲とすることが容易となる。前記表面を有する層の粒子含有量は、表面を有する層全体に対して0.1~0.5質量%であることが好ましい。 The content of the particles contained in the biaxially oriented thermoplastic resin film of the present invention is not limited at times, but in order not to impair the transparency, the content concentration of the particles should be 3.0% by mass or less based on the entire film. Is preferred. If it exceeds 3.0% by mass, even if particles having an average primary particle size in the preferred range are used, the film may be partially clouded and the haze described below may deviate from the preferred range. It is more preferably 2.0% by mass or less, still more preferably 1.0% by mass or less. In addition, the biaxially oriented thermoplastic resin film of the present invention has a laminated constitution of two or more layers, and particles are contained only in the layer having the surface, thereby improving the transparency while aiming at the number A of projections. It becomes easy to set the range. The particle content of the layer having a surface is preferably 0.1 to 0.5 mass% with respect to the entire layer having a surface.
 また、本発明の二軸配向熱可塑性樹脂フィルムは、巻取り性を更に向上させることを目的とする観点から、本発明の二軸配向熱可塑性樹脂フィルムを3層以上の構成とし、前記表面を有する層を設けるのとは反対の最表層に粒子を含有させる態様とすることも好ましい。含有させる粒子の種類に関しては前記表面を有する層と同様の物を適用することができるが、フィルムの透明性を確保する観点からは、平均1次粒子径は10nm以上100nm以下とすることが好ましい。また、前記表面とは反対の最表層に含有させる粒子の含有量は最表層全体に対して1.5質量%以下であることが好ましい。より好ましい態様としては、二軸配向熱可塑性樹脂フィルム全体に対する粒子含有量は上述の通り3.0質量%以下とし、前記表面を有する層、前記表面を有する層とは反対側の最表層に粒子を含有させつつ、表層を有さない層は粒子を実質的に含有しないフィルムが挙げられ、かかるフィルムとすると透明性が良好となる。 In addition, the biaxially oriented thermoplastic resin film of the present invention has a constitution in which the biaxially oriented thermoplastic resin film of the present invention has three or more layers from the viewpoint of further improving the winding property, and the surface is It is also preferable to adopt a mode in which particles are contained in the outermost surface layer opposite to the layer provided. Regarding the kind of particles to be contained, the same thing as the layer having the surface can be applied, but from the viewpoint of ensuring the transparency of the film, the average primary particle diameter is preferably 10 nm or more and 100 nm or less. .. The content of particles contained in the outermost layer opposite to the surface is preferably 1.5% by mass or less based on the entire outermost layer. In a more preferred embodiment, the particle content with respect to the entire biaxially oriented thermoplastic resin film is 3.0% by mass or less as described above, and the particles having the surface layer and the outermost layer on the side opposite to the surface layer are particles. Examples of the layer that does not have a surface layer while containing a film include a film that does not substantially contain particles, and such a film has good transparency.
 本発明の二軸配向熱可塑性樹脂フィルムの前記表面において、前記AFMで測定される高さ1nm以上10nm未満の突起の個数Bを上記の範囲とするための方法は特に限定されないが、例えば、ナノインプリントのようにモールドを用いて表面に形状を転写させる方法、未延伸シートに大気圧グロー放電によるプラズマ表面処理をした後、後述の二軸延伸を行う方法などが挙げられる。インラインでの製膜適応性や微細な突起の形成個数の観点からは、大気圧グロー放電によるプラズマ処理を行った後に二軸延伸することがより好ましい。ここでいう大気圧とは700Torr~780Torrの範囲である。 On the surface of the biaxially oriented thermoplastic resin film of the present invention, the method for setting the number B of protrusions having a height of 1 nm or more and less than 10 nm measured by the AFM within the above range is not particularly limited, but, for example, nanoimprint As described above, there is a method of transferring the shape to the surface by using a mold, a method of subjecting an unstretched sheet to a plasma surface treatment by atmospheric pressure glow discharge, and then performing a biaxial stretching described later. From the viewpoint of in-line film forming adaptability and the number of fine projections formed, it is more preferable to perform biaxial stretching after performing plasma treatment by atmospheric pressure glow discharge. The atmospheric pressure referred to here is in the range of 700 Torr to 780 Torr.
 大気圧グロー放電処理は、相対する電極とアースロール間に処理対象のフィルムを導き、装置中にプラズマ励起性気体を導入し、電極間に高周波電圧を印加することにより、該気体をプラズマ励起させ電極間においてグロー放電を行うものである。一般的に、大気圧グロー放電処理によって熱可塑性樹脂フィルムの表面を処理する場合、グロー放電によって生じるプラズマのエネルギーによって、フィルム表面の分子鎖の切断や、生じる低分子量体が気化し、フィルム表面が削られる現象(以降、分解除去と称することがある)が起こる。これによりフィルム表面が微細に加工(分解除去)され突起が形成する。 In atmospheric pressure glow discharge treatment, a film to be treated is introduced between the opposing electrode and an earth roll, a plasma-excitable gas is introduced into the apparatus, and a high-frequency voltage is applied between the electrodes to excite the gas into plasma. Glow discharge is performed between the electrodes. In general, when treating the surface of a thermoplastic resin film by atmospheric pressure glow discharge treatment, the energy of plasma generated by glow discharge breaks the molecular chains on the film surface and vaporizes low molecular weight substances, which causes the film surface to The phenomenon of being scraped (hereinafter sometimes referred to as decomposition removal) occurs. As a result, the surface of the film is finely processed (disassembled and removed) to form protrusions.
 プラズマ励起性気体とは前記のような条件においてプラズマ励起されうる気体をいう。プラズマ励起性気体としては、例えば、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガス、窒素、二酸化炭素、酸素、またはテトラフルオロメタンのようなフロン類およびそれらの混合物などが挙げられる。また、プラズマ励起性気体は、1種類を単独で用いてもよく、2種類以上を任意の混合比で組み合わせてもよい。プラズマによって励起された場合に活性が高くなる観点から、アルゴン、酸素、二酸化炭素のうちの少なくとも1種を含むことが好ましく、酸素を含むことがより好ましい。活性の高いプラズマ励起性気体を用いることで、フィルム表面の分解除去が促進し形成する突起の高さが増大する傾向にあり、粒子添加に起因する突起の高さが増大して、非接触光学式粗さ測定器で測定される高さ10nm以上の突起の個数Aが増加する場合がある。 “Plasma-excitable gas” means a gas that can be plasma-excited under the above conditions. Examples of the plasma-excitable gas include noble gases such as argon, helium, neon, krypton, and xenon, nitrogen, carbon dioxide, oxygen, or fluorocarbons such as tetrafluoromethane, and mixtures thereof. The plasma-excitable gas may be used alone or in combination of two or more kinds at any mixing ratio. From the viewpoint of high activity when excited by plasma, it preferably contains at least one of argon, oxygen and carbon dioxide, and more preferably contains oxygen. The use of a highly active plasma-excitable gas tends to accelerate the decomposition and removal of the film surface and increase the height of the protrusions formed. In some cases, the number A of protrusions having a height of 10 nm or more, which is measured by the roughness measuring device, increases.
 プラズマ処理における高周波電圧の周波数は1kHz~100kHzの範囲が好ましい。また、以下方法で求められる放電処理強度(E値)は、10~2000W・min/mの範囲で処理することが突起形成の観点から好ましく、より好ましくは40~500W・min/mである。放電処理強度(E値)が低すぎると、突起が十分に形成されない場合があり、放電処理強度(E値)が高すぎると、熱可塑性樹脂フィルムにダメージを与えてしまう、または、分解除去が進行し、好ましい突起が形成されない場合がある。
<放電処理強度(E値)の求め方>
 E=Vp×Ip/(S×Wt)
E:E値(W・min/m
Vp:印加電圧(V)
Ip:印加電流(A)
S:処理速度(m/min)
Wt:処理幅(m)
 非接触光学式粗さ測定器およびAFMで測定されるR1nm、R10nm、60nmをあらわす概念図を図1に示す。図1中、基準面とは、測定表面における基準面からの距離が0となるように定められる高さである(基準面よりも高い場合は正の値、基準面よりも低い場合は負の値となる)。
The frequency of the high frequency voltage in the plasma treatment is preferably in the range of 1 kHz to 100 kHz. The discharge treatment strength (E value) obtained by the following method is preferably in the range of 10 to 2000 W · min / m 2 from the viewpoint of projection formation, and more preferably 40 to 500 W · min / m 2 . is there. If the discharge treatment strength (E value) is too low, the protrusions may not be formed sufficiently, and if the discharge treatment strength (E value) is too high, the thermoplastic resin film may be damaged, or decomposition and removal may occur. In some cases, it progresses and a preferable protrusion is not formed.
<How to obtain discharge treatment strength (E value)>
E = Vp × Ip / (S × Wt)
E: E value (W · min / m 2 )
Vp: Applied voltage (V)
Ip: Applied current (A)
S: Processing speed (m / min)
Wt: Processing width (m)
FIG. 1 shows a conceptual diagram showing R 1nm , R 10nm, and R 60nm measured by a non-contact optical roughness measuring device and AFM. In FIG. 1, the reference plane is the height determined so that the distance from the reference plane on the measurement surface is 0 (a positive value when the distance is higher than the reference surface, a negative value when the distance is lower than the reference surface). Value).
 一般的に、大気圧グロー放電処理によって熱可塑性樹脂フィルム、とくにPETやPENのように非晶部と結晶部を持つフィルムの表面を分解除去する場合、柔らかい非晶部から分解除去されていく。結晶部と非晶部を細分化させることで、大気圧グロー放電処理することでより微細な突起を形成することができ、また、結晶部を増やしておくことで柔らかい非晶部が深く削れることで突起高さを高くすることが可能となる。 Generally, when the surface of a thermoplastic resin film, especially a film having an amorphous part and a crystalline part such as PET or PEN, is decomposed and removed by atmospheric pressure glow discharge treatment, it is decomposed and removed from the soft amorphous part. By subdividing the crystal part and the amorphous part, it is possible to form finer projections by performing atmospheric pressure glow discharge treatment, and by increasing the crystal part, the soft amorphous part can be deeply shaved. It is possible to increase the height of the protrusion.
 このため、本発明の熱可塑性樹脂フィルムの前記表面を有する層の固有粘度(IV)は、0.50dl/g以上であることが好ましく、より好ましくは0.60dl/g以上である。IVは、分子鎖の長さを反映した数字であり、分子鎖が長い方が、同一分子鎖の中で結晶部と非晶部を明確に形成しやすいため、大気圧グロー放電処理することでより微細な突起を形成することが容易となるため好ましい。また、IVが0.50dl/g未満の場合、分子鎖が短いことで結晶化が進行しやすくなるため、延伸工程で破断が頻発し製膜が困難になる場合がある。 Therefore, the intrinsic viscosity (IV) of the layer having the surface of the thermoplastic resin film of the present invention is preferably 0.50 dl / g or more, and more preferably 0.60 dl / g or more. IV is a number that reflects the length of the molecular chain. A longer molecular chain makes it easier to clearly form a crystal part and an amorphous part in the same molecular chain. It is preferable because it becomes easier to form finer protrusions. When IV is less than 0.50 dl / g, crystallization is likely to proceed due to the short molecular chain, which may cause frequent breakage in the stretching step and make film formation difficult.
 本発明の二軸配向熱可塑性樹脂フィルムの前記表面において、突起個数A、Bを上述の範囲とする方法としては、前記表面を有する層に、前述の粒子を含有せしめつつ、プラズマ処理を行った後、二軸延伸することが挙げられる。また、フィルムを構成する熱可塑性樹脂中に他の熱可塑性樹脂成分をナノ分散させることで、前記突起個数Aは増加する傾向にある。また、前記プラズマ処理における大気圧グロー放電処理の強度や、大気圧グロー放電処理の際に用いるプラズマ励起性気体の活性を上げると、前記突起個数Bが増加する傾向にある。 On the surface of the biaxially oriented thermoplastic resin film of the present invention, as a method of setting the number of protrusions A and B within the above range, plasma treatment was performed while the layer having the surface was made to contain the above particles. After that, biaxial stretching may be mentioned. In addition, the number A of protrusions tends to increase by nano-dispersing another thermoplastic resin component in the thermoplastic resin forming the film. Further, when the intensity of the atmospheric pressure glow discharge treatment in the plasma treatment or the activity of the plasma-excitable gas used in the atmospheric pressure glow discharge treatment is increased, the number B of the protrusions tends to increase.
 本発明の二軸配向熱可塑性樹脂フィルムは、単膜構成であっても他の樹脂を積層した2層以上の構成であってもよい。2層構成とする場合、前記表面を有する層をP1層、積層する層をP2層と称する場合、P1層の突起を有する表面が最外層になるように配したP1層/P2層構成とすることが好ましい。3層構成とする場合、2種3層構成(P1層/P2層/P1層)でも、更に別の樹脂を積層した異種3層構成(P1層/P2層/P3層)であってもよい。 The biaxially oriented thermoplastic resin film of the present invention may have a single film structure or a structure of two or more layers in which other resins are laminated. In the case of the two-layer structure, when the layer having the surface is referred to as P1 layer and the layer to be laminated is referred to as the P2 layer, the P1 layer / P2 layer structure is arranged such that the surface having the protrusion of the P1 layer is the outermost layer. Preferably. In the case of a three-layer structure, a two-kind three-layer structure (P1 layer / P2 layer / P1 layer) or a different three-layer structure in which another resin is further laminated (P1 layer / P2 layer / P3 layer) may be used. ..
 P1層とP2層、P3層等の他の樹脂層を積層する方法としては特に制限されないが、後述する共押出法や、製膜途中のフィルムに他の樹脂層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、製膜後のフィルム同士を接着剤層とを介して積層する方法などを用いることができ、中でも前述処理による突起形成と積層を同時に行える共押出法が好ましく用いられる。 The method for laminating the other resin layers such as the P1 layer, the P2 layer, and the P3 layer is not particularly limited, but the coextrusion method described below or other resin layer raw materials may be added to the extruder during film formation into the extruder. A method of laminating while melt-extruding and extruding from a die (melt-laminating method), a method of laminating films after film formation via an adhesive layer, and the like can be used. A coextrusion method capable of performing is preferably used.
 本発明の二軸配向熱可塑性樹脂フィルムのP2層、P3層の構成としては特に制限されないが、粒子を実質的に含有しないことがフィルムの透明性を確保する観点からは好ましい。実質的に粒子を含有しないとは、熱可塑性樹脂に対する粒子の含有量が500ppm以下、さらに好ましくは50ppm以下、最も好ましくは10ppm以下である。また、P1層、P2層、P3層には本発明の効果が損なわれない範囲で、耐熱安定剤、耐酸化安定剤、帯電防止剤、有機系/無機系の易滑剤、核剤、染料、分散剤、カップリング剤、波長変換材料等の添加剤が配合されていてもよい。 The structure of the P2 layer and the P3 layer of the biaxially oriented thermoplastic resin film of the present invention is not particularly limited, but it is preferable that particles are not substantially contained from the viewpoint of ensuring the transparency of the film. The term "substantially free of particles" means that the content of particles in the thermoplastic resin is 500 ppm or less, more preferably 50 ppm or less, and most preferably 10 ppm or less. Further, in the P1, P2, and P3 layers, heat stabilizers, oxidation stabilizers, antistatic agents, organic / inorganic lubricants, nucleating agents, dyes, Additives such as a dispersant, a coupling agent, and a wavelength conversion material may be blended.
 本発明の熱可塑性樹脂フィルムは、ドライフィルムレジスト支持体用フィルムなどの高い光線透過性が求められる用途で用いる場合、フィルムヘイズが0.60%以下となることが好ましい。ヘイズが0.60%を超える場合、フィルムを使用するに際にして透過光が散乱されてしまい、例えばドライフィルムレジスト支持体用途では、レジスト配線に欠点が発生する。より好ましくは0.50%以下、更に好ましくは0.45%以下である。 The thermoplastic resin film of the present invention preferably has a film haze of 0.60% or less when used in applications requiring high light transmittance such as films for dry film resist supports. When the haze exceeds 0.60%, transmitted light is scattered when the film is used, and for example, in a dry film resist support application, a defect occurs in the resist wiring. It is more preferably 0.50% or less, still more preferably 0.45% or less.
 次に、本発明の熱可塑性樹脂フィルムの製造方法について、二軸配向ポリエステルフィルムを例に挙げて説明するが、本発明は、かかる例によって得られる物のみに限定して解釈されるものではない。 Next, the method for producing the thermoplastic resin film of the present invention will be described by taking a biaxially oriented polyester film as an example, but the present invention is not construed as being limited to the products obtained by such an example. ..
 本発明に用いられるポリエステルを得る方法としては、常法による重合方法が採用できる。例えば、テレフタル酸等のジカルボン酸成分またはそのエステル形成性誘導体と、エチレングリコール等のジオール成分またはそのエステル形成性誘導体とを公知の方法でエステル交換反応あるいはエステル化反応させた後、溶融重合反応を行うことによって得ることができる。また、必要に応じ、溶融重合反応で得られたポリエステルを、ポリエステルの融点温度以下にて、固相重合反応を行っても良い。 As a method for obtaining the polyester used in the present invention, a conventional polymerization method can be adopted. For example, a dicarboxylic acid component such as terephthalic acid or an ester-forming derivative thereof and a diol component such as ethylene glycol or an ester-forming derivative thereof are subjected to a transesterification reaction or an esterification reaction by a known method, followed by a melt polymerization reaction. It can be obtained by doing. Further, if necessary, the polyester obtained by the melt polymerization reaction may be subjected to a solid phase polymerization reaction at a melting point temperature of the polyester or lower.
 本発明の二軸配向熱可塑性樹脂フィルムは、従来公知の製造方法で得ることが出来る。具体的には本発明の二軸配向熱可塑性樹脂フィルムは、必要に応じて乾燥した原料を押出機内で加熱溶融し、口金から冷却したキャストドラム上に押し出してシート状に加工する方法(溶融キャスト法)を使用することができる。その他の方法として、原料を溶媒に溶解させ、その溶液を口金からキャストドラム、エンドレスベルト等の支持体上に押し出して膜状とし、次いでかかる膜層から溶媒を乾燥除去させてシート状に加工する方法(溶液キャスト法)等も使用することができる。 The biaxially oriented thermoplastic resin film of the present invention can be obtained by a conventionally known production method. Specifically, the biaxially oriented thermoplastic resin film of the present invention is a method in which a dried raw material is heated and melted in an extruder as necessary, and extruded from a die onto a cooled cast drum to be processed into a sheet (melt casting Method) can be used. As another method, the raw material is dissolved in a solvent, and the solution is extruded from a die onto a support such as a cast drum or an endless belt to form a film, and then the solvent is dried and removed from the film layer to be processed into a sheet. A method (solution casting method) or the like can also be used.
 2層以上の積層ポリエステルフィルムを溶融キャスト法により製造する場合、積層ポリエステルフィルムを構成する層毎に押出機を用い、各層の原料を溶融せしめ、これらを押出装置と口金の間に設けられた合流装置にて溶融状態で積層したのち口金に導き、口金からキャストドラム上に押し出してシート状に加工する方法(共押出法)が好適に用いられる。該積層シートは、表面温度20℃以上60℃以下に冷却されたドラム上で静電気により密着冷却固化し、未延伸シートを作製する。キャストドラムの温度は、より好ましくは25℃以上60℃以下、さらに好ましくは30℃以上55℃以下である。20℃以下ではプラズマを照射し、二軸延伸した後のフィルム表面の突起形成が十分でない場合がある。60℃を超えると、キャストドラムにフィルムが貼り付き、未延伸シートを得ることが困難になる場合がある。 When producing a laminated polyester film of two or more layers by a melt casting method, an extruder is used for each layer constituting the laminated polyester film, the raw materials of each layer are melted, and these are joined together between the extruder and the die. A method (co-extrusion method) of laminating in a molten state in an apparatus, guiding to a die, extruding from the die onto a cast drum and processing into a sheet (coextrusion method) is preferably used. The laminated sheet is contact-cooled and solidified by static electricity on a drum cooled to a surface temperature of 20 ° C. or higher and 60 ° C. or lower to prepare an unstretched sheet. The temperature of the cast drum is more preferably 25 ° C or higher and 60 ° C or lower, and further preferably 30 ° C or higher and 55 ° C or lower. If the temperature is 20 ° C. or less, projections may not be sufficiently formed on the film surface after being irradiated with plasma and biaxially stretched. If it exceeds 60 ° C, the film may stick to the cast drum, and it may be difficult to obtain an unstretched sheet.
 次いで、ここで得られた未延伸フィルムに大気圧グロー放電によるプラズマ処理などの表面処理を施す。これらの表面処理は未延伸フィルムを得た直後でも、微延伸を施した後でも、縦および/又は横方向に延伸した後でも良いが、本発明では未延伸フィルムに表面処理することが好ましい。また、表面処理を施す面はキャストドラムに接していた面(ドラム面)でもキャストドラムに接していない面(非ドラム面)のいずれでも良い。 Next, the unstretched film obtained here is subjected to surface treatment such as plasma treatment by atmospheric pressure glow discharge. These surface treatments may be performed immediately after obtaining the unstretched film, after slightly stretching, or after stretching in the longitudinal and / or transverse directions, but in the present invention, it is preferable to perform surface treatment on the unstretched film. Further, the surface to be surface-treated may be either the surface in contact with the cast drum (drum surface) or the surface not in contact with the cast drum (non-drum surface).
 その後、未延伸フィルムを二軸延伸し、二軸配向せしめる。延伸方法としては、逐次二軸延伸法又は同時二軸延伸法を用いることができる。最初に長手方向、次に幅方向の延伸を行う逐次二軸延伸法が、延伸破れなく本発明の二軸配向熱可塑性フィルムを得るのに有効である。 After that, the unstretched film is biaxially stretched and biaxially oriented. As a stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. The sequential biaxial stretching method in which the film is first stretched in the longitudinal direction and then in the width direction is effective for obtaining the biaxially oriented thermoplastic film of the present invention without stretching breakage.
 (二軸延伸)
 未延伸フィルムを二軸延伸する場合の延伸条件に関しては特に制限されるものでは無いが、本発明の二軸配向熱可塑性樹脂フィルムがポリエステルを主成分とする場合、長手方向の延伸としては、未延伸シートを70℃以上に加熱されたロール群に導き、長手方向(縦方向、すなわちシートの進行方向)に延伸し、20~50℃の温度のロール群で冷却することが好ましい。長手方向の延伸における加熱ロール温度の下限についてはシートの延伸性を損なわない限り特に制限はないが、使用するポリエステル樹脂のガラス転移温度を超えることが好ましい。また、長手方向の延伸倍率の好ましい範囲は3倍~5倍である。より好ましい範囲としては3倍~4倍である。長手方向の延伸倍率が3倍未満であると、配向結晶化が進行せずフィルム強度が著しく低下する。一方で、延伸倍率が5倍を超える場合、延伸に伴うポリエステル樹脂の配向結晶化が進行することで脆くなると共に製膜時の破れが発生する場合がある。
(Biaxial stretching)
The stretching conditions for biaxially stretching the unstretched film are not particularly limited, but when the biaxially oriented thermoplastic resin film of the present invention contains polyester as a main component, as stretching in the longitudinal direction, It is preferable that the stretched sheet is guided to a roll group heated to 70 ° C. or higher, stretched in the longitudinal direction (longitudinal direction, that is, the sheet advancing direction), and cooled by a roll group at a temperature of 20 to 50 ° C. The lower limit of the heating roll temperature in the stretching in the longitudinal direction is not particularly limited as long as the stretchability of the sheet is not impaired, but it is preferably higher than the glass transition temperature of the polyester resin used. The preferred range of the stretching ratio in the longitudinal direction is 3 to 5 times. A more preferable range is 3 to 4 times. If the stretching ratio in the longitudinal direction is less than 3 times, oriented crystallization does not proceed and the film strength is significantly reduced. On the other hand, when the stretching ratio exceeds 5 times, the oriented crystallization of the polyester resin may be accompanied by the stretching, resulting in brittleness and tearing during film formation.
 続いて、長手方向に直角な方向(幅方向)の延伸に関しては、フィルムの両端をクリップで把持しながらテンターに導き、70~160℃の温度に加熱された雰囲気中にて、長手方向に直角な方向(幅方向)への3倍~5倍の延伸、およびその後、延伸されたフィルムを熱処理し内部の配向構造の安定化を行うことが好ましい。熱処理時にフィルムの受けた熱履歴温度に関しては、後述する示差走査熱量計(DSC)にて測定される融点温度の直下に現れる微小吸熱ピーク(Tmetaと称することがある。)温度にて確認することができるが、テンター装置設定温度としてはポリエステル(融点255℃)が主成分である場合には、テンター内の最高温度が200℃以上250℃以下であるように設定することが好ましく、他の熱可塑性樹脂を主成分とする際は、樹脂融点-55℃以下樹脂融点-5℃以下に設定することが好ましい。熱処理温度が200℃を下回る場合、前記、大気圧グロー放電処理により形成された突起が十分に成長できず結果として前述の好ましい範囲の突起を形成することが困難になる。一方250℃を超えて熱処理を施す場合、フィルムが融解し破れが多発、生産性が低下する場合がある。より好ましい範囲としては220℃以上245℃以下である。 Subsequently, regarding stretching in the direction perpendicular to the longitudinal direction (width direction), the film is guided to a tenter while holding both ends of the film with clips, and is perpendicular to the longitudinal direction in an atmosphere heated to a temperature of 70 to 160 ° C. It is preferable to stretch the film in a different direction (width direction) 3 to 5 times, and then heat the stretched film to stabilize the internal orientation structure. The heat history temperature received by the film during the heat treatment should be confirmed by the temperature of a minute endothermic peak (sometimes referred to as Tmeta) that appears immediately below the melting point temperature measured by a differential scanning calorimeter (DSC) described later. However, when polyester (melting point 255 ° C.) is the main component, the temperature set in the tenter is preferably set so that the maximum temperature in the tenter is 200 ° C. or higher and 250 ° C. or lower. When the main component is a plastic resin, it is preferable to set the resin melting point to −55 ° C. or lower and the resin melting point −5 ° C. or lower. When the heat treatment temperature is lower than 200 ° C., the projections formed by the atmospheric pressure glow discharge treatment cannot be sufficiently grown, and as a result, it becomes difficult to form the projections in the preferable range described above. On the other hand, when heat treatment is performed at a temperature of higher than 250 ° C., the film may be melted and frequently broken, and productivity may be reduced. A more preferable range is 220 ° C. or higher and 245 ° C. or lower.
 熱処理時にフィルムの受けた熱履歴温度を表すTmetaの範囲としては、ポリエステル樹脂を主成分とする場合、前述の理由から190℃以上245℃以下であることが好ましい。より好ましい範囲としては210℃以上240℃以下である。
更に熱処理した後に寸法安定性を付与することを目的として、0%以上6%以下の範囲でリラックス処理を行ってもよい。
When the polyester resin is the main component, the range of Tmeta representing the heat history temperature received by the film during the heat treatment is preferably 190 ° C. or higher and 245 ° C. or lower for the reasons described above. A more preferable range is 210 ° C. or higher and 240 ° C. or lower.
Relaxation treatment may be performed in the range of 0% to 6% for the purpose of imparting dimensional stability after further heat treatment.
 延伸倍率は、長手方向と幅方向それぞれ3~5倍とするが、その面積倍率(縦延伸倍率×横延伸倍率)は9~22倍であることが好ましく、9~20倍であることがより好ましい。面積倍率が9倍未満であると、得られる二軸延伸シートの耐久性が不十分となり、面積倍率が22倍を超えると延伸時に破れを生じ易くなる傾向がある。  The stretching ratio is 3 to 5 times in each of the longitudinal direction and the width direction, and the area ratio (longitudinal stretching ratio × horizontal stretching ratio) is preferably 9 to 22 times, more preferably 9 to 20 times. preferable. When the area ratio is less than 9 times, the durability of the obtained biaxially stretched sheet becomes insufficient, and when the area ratio exceeds 22 times, tearing tends to occur during stretching. ‥
 [特性の評価方法]
 A.非接触光学式粗さ測定器による評価
 (i)高さ10nm以上の突起の個数A(個/mm
本発明の二軸配向熱可塑性樹脂フィルムより10cm×10cmのサンプリングを行い、それぞれのサンプルについて、非接触光学式粗さ測定器(装置:Zygo社製New View 7300)を用い、50倍対物レンズを使用して測定面積139μm×104μmで、場所をランダムに変えて80視野測定を行った。サンプルセットは、測定Y軸がサンプルフィルムの長手方向(長手方向とは、フィルムの製造工程においてフィルムが走行する方向)となるようにサンプルをステージにセットして測定する。得られた測定データについて、該粗さ測定器に内蔵された表面解析ソフトウェアMetroPro 8.1.3にて、カットオフ値をHigh Filter Wavelenを1.65μm、Low Filter Wavelenを50.00μmに設定する。Reference Band(帯域幅)を100nmに指定し、10nmのスライスレベルにおけるPeaksを個/mm単位に換算する。80視野すべてにおいて同様の操作を行い、それらの平均値を本発明における高さ10nm以上の突起個数A(個/mm)とした。
[Characteristic evaluation method]
A. Evaluation by non-contact optical roughness measuring instrument (i) Number A of protrusions having a height of 10 nm or more (unit / mm 2 ).
A sample of 10 cm × 10 cm was sampled from the biaxially oriented thermoplastic resin film of the present invention, and a non-contact optical roughness measuring device (apparatus: New View 7300 manufactured by Zygo) was used for each sample, and a 50 × objective lens was used. The measurement area was 139 μm × 104 μm, and 80 visual fields were measured by randomly changing the place. In the sample setting, the sample is set on the stage so that the measurement Y axis is in the longitudinal direction of the sample film (the longitudinal direction is the direction in which the film runs in the film manufacturing process). With respect to the obtained measurement data, the surface analysis software MetroPro 8.1.3 built in the roughness measuring instrument sets the cutoff values to 1.65 μm for High Filter Wavelen and 50.00 μm for Low Filter Wavelen. .. The Reference Band (bandwidth) is specified as 100 nm, and Peaks at the slice level of 10 nm is converted into units / mm 2 . The same operation was performed in all 80 fields of view, and the average value thereof was defined as the number A (number / mm 2 ) of protrusions having a height of 10 nm or more in the present invention.
 (ii)高さ60nm以上の突起の個数C(個/mm
前項(i)と同様にして、60nmのスライスレベルにおけるPeaksを個/mm単位に換算し、観察した80視野の平均値を本発明の高さ60nm以上の突起個数Cとした。
(Ii) Number C of protrusions having a height of 60 nm or more (pieces / mm 2 ).
Peaks at a slice level of 60 nm was converted into units / mm 2 in the same manner as in the above (i), and the average value of 80 observed visual fields was defined as the number C of protrusions having a height of 60 nm or more according to the present invention.
 B.AFM(Atomic Force Microscope)による評価
 (iii)高さ1nm以上10nm未満の突起の個数B(個/mm
以下の測定方法によって得られるフィルム表面の画像を、付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像を下記するFlatten処理のみを施した後、Particle Analysis解析モードを下記の通り設定することで、フィルム表面の基準面が自動的に決定される。該基準面から、突起高さの閾値(Threshold Height)が1nm(R1nm)での1μm当たりの突起密度の平均値(Density行、Mean列の値)を1mm当たりに換算した数値をN1nm(個/mm)、10nm(R10nm)での1μm当たりの突起密度の平均値(Density行、Mean列の値)を1mm当たりに換算した数値をN10nm(個/mm)とした時、次の式で求められる値をその測定画像の高さ1nm以上10nm未満の突起の個数B(個/mm)とする。
B(個/mm)=N1nm(個/mm)-N10nm(個/mm
前記解析を各サンプルにおける20か所の測定画像全てにおいて行い、その平均値をサンプルの高さ1nm以上10nm未満の突起の個数B(個/mm)とする。
B. Evaluation by AFM (Atomic Force Microscope) (iii) Number of protrusions B (height / mm 2 ) having a height of 1 nm or more and less than 10 nm
The image of the film surface obtained by the following measurement method is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). The reference plane of the film surface is automatically determined by setting the Particle Analysis analysis mode as follows after subjecting the obtained Height Sensor image of the film surface to only the Flatten process described below. From the reference plane, a numerical value obtained by converting the average value (values in Density row, Mean column) of the protrusion density per 1 μm 2 per 1 mm 2 when the threshold value of protrusion height (Threshold Height) is 1 nm (R 1nm ) per 1 mm 2 is N 1 nm (number / mm 2), 10nm 1μm 2 average protrusion density per in (R 10 nm) numerical value N 10 nm obtained by converting the (density row, the value of the mean column) per 1 mm 2 (pieces / mm 2) Then, the value obtained by the following equation is defined as the number B (pieces / mm 2 ) of the protrusions having a height of the measured image of 1 nm or more and less than 10 nm.
B (pieces / mm 2 ) = N 1 nm (pieces / mm 2 ) −N 10 nm (pieces / mm 2 ).
The analysis is performed on all 20 measurement images of each sample, and the average value is defined as the number B (pieces / mm 2 ) of protrusions having a height of 1 nm or more and less than 10 nm.
 [AFM測定方法]
・装置:Bruker社製 原子間力顕微鏡(AFM)
Dimention Icon with ScanAsyst
・カンチレバー:窒化ケイ素製プローブ ScanAsyst Air
・走査モード:ScanAsyst
・走査速度:0.977Hz
・走査方向:後述する方法にて作製した測定サンプルの幅方向に走査を行う
・測定視野:5μm四方
・サンプルライン:512
・Peak Force SetPoint:0.0195V~0.0205V
・Feedback Gain:10~20
・LP Deflection BW:40 kHz
・ScanAsyst Noise Threshold: 0.5nm
・サンプル調整:23℃、65%RH、24時間静置
・AFM測定環境:23℃、65%RH
 ・測定サンプル作成方法:AFM試料ディスク(直径15mm)の片面に両面テープを貼りつけ、AFM試料ディスクと、約15mm×13mm(長手方向×幅方向)に切り出した本発明の二軸配向熱可塑性樹脂フィルムの前記表面(測定面)とは逆側の面とを張り合わせ、測定サンプルとした。
[AFM measurement method]
・ Device: Atomic force microscope (AFM) manufactured by Bruker
DIMENSION Icon with ScanAsyst
・ Cantilever: Silicon Nitride Probe ScanAsyst Air
・ Scan mode: ScanAsyst
・ Scanning speed: 0.977Hz
-Scanning direction: Scanning is performed in the width direction of the measurement sample manufactured by the method described later.
・ Peak Force SetPoint: 0.0195V to 0.0205V
・ Feedback Gain: 10 ~ 20
・ LP Deflection BW: 40 kHz
* ScanAyst Noise Threshold: 0.5 nm
-Sample preparation: 23 ° C, 65% RH, standing still for 24 hours-AFM measurement environment: 23 ° C, 65% RH
-Measurement sample preparation method: AFM sample disk (diameter 15 mm) with a double-sided tape attached on one side, and the AFM sample disk and the biaxially oriented thermoplastic resin of the present invention cut out into about 15 mm x 13 mm (longitudinal direction x width direction) A surface opposite to the surface (measurement surface) of the film was attached to obtain a measurement sample.
 ・サンプル測定回数:各サンプル同士が少なくとも5μm以上離れるように場所を変え、20回測定を行う。 ・ Sample measurement frequency: Change the location so that each sample is at least 5 μm or more, and perform 20 measurements.
 ・測定値:測定した20か所の画像に関して前述の解析を行い、各数値を測定しその平均値をサンプルの持つ各数値として扱う。
[Flatten処理]
・Flatten Order:3rd
 ・Flatten Z Threshholding Direction:No theresholding
・Find Threshold for:the whole image
・Flatten Z Threshold %:0.00 %
・Mark Excluded Data:Yes
[Particle Analysisモード設定]
(Detectタブ)
・Threshold Height:各値に応じて入力
・Feature Direction:Above
・X Axis:Absolute
・Number Histogram Bins:512
・Histogram Filter Cutoff:0.00 nm
・Min Peak to Peak:1.00 nm
・Left Peak Cutoff:0.00000%
・Right Peak Cutoff:0.00000%
(Modifyタブ)
・Beughbirhood Size:3
・Number Pixels Off:1
・一切のDilate/Erode操作を行わない。
(Selectタブ)
・Image Cursor Mode:Particle Select
・Bound Particles:Yes
・Non-Representative Particles:No
・Height Reference:Relative To Max Peak
・Number Histogram Bins:50
・前記数値を求めるに際し、解析画像中の特定のピーク、エリアを選択しない。
・Diameter、Height、Area全てのヒストグラムで特定の場所を選択しない。
-Measured value: The above-described analysis is performed on the measured 20 images, each numerical value is measured, and the average value is treated as each numerical value that the sample has.
[Flatten processing]
・ Flatten Order: 3rd
・ Flatten Z Threshholding Direction: No theresholding
・ Find Threshold for: the whole image
・ Flatten Z Threshold%: 0.00%
・ Mark Excluded Data: Yes
[Particle Analysis mode setting]
(Detect tab)
・ Threshold Height: Input according to each value ・ Feature Direction: Above
・ X Axis: Absolute
・ Number Histogram Bins: 512
・ Histogram Filter Cutoff: 0.00 nm
・ Min Peak to Peak: 1.00 nm
・ Left Peak Cutoff: 0.00000%
・ Right Peak Cutoff: 0.00000%
(Modify tab)
・ Beighbirdsize: 3
・ Number Pixels Off: 1
-Do not perform any Dilate / Erode operations.
(Select tab)
・ Image cursor mode: Particle Select
Bound Particles: Yes
・ Non-Representative Particles: No
・ Height Reference: Relative To Max Peak
・ Number Histogram Bins: 50
-When calculating the above numerical values, do not select a specific peak or area in the analysis image.
-Do not select a specific location in all histograms of Diameter, Height, and Area.
 C.平均1次粒子径
 本発明の二軸配向熱可塑性樹脂フィルムの断面を、透過型電子顕微鏡(TEM)を用いて1万倍で観察する。この時、観察視野において200nm以下の粒子が確認された場合はTEM観察倍率を10万倍に変えて観察する。場所を変えて100視野測定し、写真に撮影された分散した粒子全てについて等価円相当径をもとめ、横軸に等価円相当径を、縦軸に粒子の個数として粒子の個数分布をプロットし、そのピーク値の等価円相当径を粒子の平均1次粒子径とした。ここで、1万倍で観察した写真上に凝集粒子が確認できた場合は上記プロットに含めない。フィルム中に粒子径の異なる2種類以上の粒子が存在する場合、上記等価円相当径の個数分布は2個以上のピークを有する分布となる。この場合は、それぞれのピーク値をそれぞれの粒子の平均1次粒子径とする。最大粒子の粒子径は、1万倍で観察した写真において、最大の粒子径を持つ粒子の粒子径である。
C. Average primary particle diameter The cross section of the biaxially oriented thermoplastic resin film of the present invention is observed at 10,000 times using a transmission electron microscope (TEM). At this time, when particles of 200 nm or less are confirmed in the observation visual field, the TEM observation magnification is changed to 100,000 times for observation. 100 fields of view were measured at different locations, and the equivalent circle equivalent diameters of all the dispersed particles taken in the photograph were obtained, and the equivalent circle equivalent diameter was plotted on the horizontal axis and the number distribution of particles was plotted on the vertical axis, The equivalent circle equivalent diameter of the peak value was defined as the average primary particle diameter of the particles. Here, if aggregated particles can be confirmed on the photograph observed at 10,000 times, they are not included in the above plot. When two or more kinds of particles having different particle diameters are present in the film, the number distribution of the equivalent circle equivalent diameter is a distribution having two or more peaks. In this case, each peak value is the average primary particle diameter of each particle. The particle size of the maximum particle is the particle size of the particle having the maximum particle size in the photograph observed at 10,000 times.
 凝集粒子の平均1次粒子径は、上記の装置を用いて20万倍で観察する。凝集粒子10
0個について、凝集粒子を構成する個々の1次粒子の等価円相当径をもとめ、上記と同様
の方法でプロットし、ピーク値の等価円相当径を凝集粒子の平均1次粒子径とする。
The average primary particle diameter of the agglomerated particles is observed at 200,000 times using the above apparatus. Agglomerated particles 10
With respect to 0 particles, the equivalent circle equivalent diameters of the individual primary particles constituting the aggregated particles are obtained and plotted by the same method as described above, and the equivalent circle equivalent diameter of the peak value is taken as the average primary particle diameter of the aggregated particles.
 D.粒子の含有量
 本発明の二軸配向熱可塑性フィルムのP1層部分1gを1N-KOHメタノール溶液200mLに投入して加熱還流し、ポリマーを溶解した。溶解が終了した該溶液に200mLの水を加え、ついで該液体を遠心分離器にかけて粒子を沈降させ、上澄み液を取り除いた。粒子にはさらに水を加えて洗浄、遠心分離を2回繰り返した。このようにして得られた粒子を乾燥させ、その質量を量ることで粒子の含有量を算出した。
D. Content of Particles 1 g of P1 layer portion of the biaxially oriented thermoplastic film of the present invention was put into 200 mL of 1N-KOH methanol solution and heated under reflux to dissolve the polymer. 200 mL of water was added to the dissolved solution, and then the liquid was subjected to a centrifugal separator to settle the particles, and the supernatant was removed. Water was further added to the particles, and washing and centrifugation were repeated twice. The particles thus obtained were dried, and the content of the particles was calculated by weighing the mass.
 E.空気抜け指標
デジベック平滑度試験機((株)東洋精機製)を用いて、25℃、65%RHにて測定した。本発明の二軸配向熱可塑性フィルムの前記表面を持つ面が試料台と接するようにセットする。このときフィルムが試料台に空いた穴を完全に覆うようにセットする。この状態で1kg/cmの荷重を加えて、初期減圧度(常圧からの減圧度)を385mmHgに設定する。常圧より385mmHg減圧した後、常圧に戻ろうとするため、フィルムと試料台間を空気が流れ込んでいくが、この時、常圧からの減圧度が382mmHgから381mmHgになる時間(空気抜け時間)を測定する。10サンプルに関して前述の空気抜け時間を測定し、その平均値をフィルムの空気抜け指標とした。
A:空気抜け時間が2400秒未満        
B:空気抜け時間が2400秒以上2700秒未満 
C:空気抜け時間が2700秒以上2900秒未満 
D:空気抜け時間が2900秒以上        
空気抜け指標としてはA~Cが良好であり、その中で最もAが優れている。
E. Air bleeding index It was measured at 25 ° C. and 65% RH using a Digibeck smoothness tester (manufactured by Toyo Seiki Co., Ltd.). The biaxially oriented thermoplastic film of the present invention is set so that the surface having the surface is in contact with the sample table. At this time, the film is set so as to completely cover the hole formed in the sample table. In this state, a load of 1 kg / cm 2 is applied to set the initial degree of reduced pressure (degree of reduced pressure from normal pressure) to 385 mmHg. After decompressing from normal pressure by 385 mmHg, air tries to return to normal pressure, so air flows in between the film and the sample stage, but at this time, the degree of pressure reduction from normal pressure to 382 mmHg to 381 mmHg (air vent time) To measure. The air bleeding time was measured for 10 samples, and the average value was used as the air bleeding index of the film.
A: Air release time is less than 2400 seconds
B: Air removal time is 2400 seconds or more and less than 2700 seconds
C: Air removal time is 2700 seconds or more and less than 2900 seconds
D: Air release time is 2900 seconds or more
A to C are good as air deficiency indexes, and A is the best.
 F.フィルムの固有粘度IV(dL/g)
 オルトクロロフェノール100mLに本発明のフィルムを溶解させ(溶液濃度C=1.2g/dL)、その溶液の25℃での粘度を、オストワルド粘度計を用いて測定する。また、同様に溶媒の粘度を測定する。得られた溶液粘度、溶媒粘度を用いて、下記(a)式により、[η](dL/g)を算出し、得られた値でもって固有粘度(IV)とする。
(a)ηsp/C=[η]+K[η]・C
(ここで、ηsp=(溶液粘度(dL/g)/溶媒粘度(dL/g))―1、Kはハギンス定数(0.343とする)である)。
F. Intrinsic viscosity of film IV (dL / g)
The film of the present invention is dissolved in 100 mL of orthochlorophenol (solution concentration C = 1.2 g / dL), and the viscosity of the solution at 25 ° C. is measured using an Ostwald viscometer. In addition, the viscosity of the solvent is similarly measured. Using the obtained solution viscosity and solvent viscosity, [η] (dL / g) is calculated by the following equation (a), and the obtained value is taken as the intrinsic viscosity (IV).
(A) ηsp / C = [η] + K [η] 2 · C
(Here, ηsp = (solution viscosity (dL / g) / solvent viscosity (dL / g)) − 1, and K is the Huggins constant (assumed to be 0.343)).
 本発明の二軸配向熱可塑性フィルムが積層構成である場合、前記表面を持つ層(P1層)のIVはP1層のみを常法により削り出し、前述の方法で測定を行う。 When the biaxially oriented thermoplastic film of the present invention has a laminated structure, the IV of the layer having the surface (P1 layer) is obtained by shaving only the P1 layer by a conventional method, and measuring by the above-mentioned method.
 G.末端カルボキシル基量(表中ではCOOH量と記載する。)
 末端カルボキシル基量については、Mauliceの方法に準じて、以下の方法にて測定した。(文献M.J. Maulice, F. Huizinga,  Anal.Chim.Acta,22  363(1960))
測定試料2gをo-クレゾール/クロロホルム(質量比7/3)50mLに温度80℃にて溶解し、0.05NのKOH/メタノール溶液によって滴定し、末端カルボキシル基濃度を測定し、当量/ポリエステル1tの値で示した。なお、滴定時の指示薬はフェノールレッドを用いて、黄緑色から淡紅色に変化したところを滴定の終点とした。なお、測定試料を溶解させた溶液に無機粒子などの不溶物がある場合は、溶液を濾過して不溶物の質量測定を行い、不溶物の質量を測定試料質量から差し引いた値を測定試料質量とする補正を実施した。
G. Amount of terminal carboxyl group (described as COOH amount in the table)
The amount of terminal carboxyl groups was measured by the following method according to the method of Maurice. (References M. J. Maurice, F. Huizinga, Anal. Chim. Acta, 22 363 (1960)).
2 g of a measurement sample was dissolved in 50 mL of o-cresol / chloroform (mass ratio 7/3) at a temperature of 80 ° C., and titrated with a 0.05 N KOH / methanol solution to measure the terminal carboxyl group concentration, and equivalent weight / polyester 1 t It was shown by the value of. In addition, phenol red was used as an indicator at the time of titration, and the end point of the titration was determined when the color changed from yellow green to pink. If there is insoluble matter such as inorganic particles in the solution in which the measurement sample is dissolved, the solution is filtered to measure the mass of the insoluble matter, and the value obtained by subtracting the mass of the insoluble matter from the measurement sample mass is the measurement sample mass. Was corrected.
 H.巻取り性
本発明の二軸配向熱可塑性樹脂フィルムを4.5m幅にて製膜し連続した5000mのロール巻取りを10回行い、得られた10本のロールの様子からフィルム巻取り性を下記の通り評価した。
H. Winding property The biaxially oriented thermoplastic resin film of the present invention is formed into a film having a width of 4.5 m, and continuous winding of 5000 m rolls is performed 10 times. It evaluated as follows.
 A:10本のロールの内、シワの発生したロールが1本以下。
B:10本のロールの内、シワの発生したロールが2本。
C:10本のロールの内、シワの発生したロールが3本以上4本以下。
D:10本のロールの内、シワの発生したロールが5本以上6本以下。
E:10本のロールの内、シワの発生したロールが7本以上。
巻取り性としてはA~Dが良好であり、その中で最もAが優れている。
A: 1 roll or less with wrinkles among 10 rolls.
B: 2 rolls with wrinkles out of 10 rolls.
C: Of 10 rolls, the number of rolls with wrinkles is 3 or more and 4 or less.
D: Out of 10 rolls, the number of rolls with wrinkles is 5 or more and 6 or less.
E: Of the 10 rolls, 7 or more rolls have wrinkles.
Regarding the winding property, A to D are good, and A is the most excellent.
 I.巻き姿
前項にて採取した、本発明の二軸配向熱可塑性樹脂フィルムロール10本について、1.5m幅毎にスリットを行い30本のスリットロールを採取する。スリットロールの様子からフィルムロールの巻き姿を下記の通り評価した。
I. About the 10 biaxially oriented thermoplastic resin film rolls of the present invention collected in the preceding paragraph, slits are performed every 1.5 m width to collect 30 slit rolls. The winding appearance of the film roll was evaluated from the state of the slit roll as follows.
 A:30本のスリットロールの内、巻きズレが発生したロールが2本以下。
B:30本のスリットロールの内、巻きズレが発生したロールが3本以上5本以下。
C:30本のスリットロールの内、巻きズレが発生したロールが6本以上8本以下。
D:30本のスリットロールの内、巻きズレが発生したロールが9本以上。
A: Of the 30 slit rolls, two or less rolls were misaligned.
B: Among the 30 slit rolls, the number of rolls in which winding deviation occurred is 3 or more and 5 or less.
C: Six or more and eight or less rolls in which the winding deviation occurred among the 30 slit rolls.
D: Out of 30 slit rolls, 9 or more rolls were misaligned.
 J.形状転写欠点評価
 本発明の二軸配向熱可塑性樹脂フィルムの形状転写欠点評価は、下記の方法にて評価を行った。1m幅にスリットした本発明の二軸配向熱可塑性樹脂フィルムを、張力200Nで搬送させ、本発明の二軸配向熱可塑性樹脂フィルムの前記表面とは反対の面側に後述する非磁性層形成用塗布液と磁性層形成用塗布液とを重層塗布、また前記表面側に後述するバックコート層形成用塗布液を塗布し、さらに12.65mm(1/2インチ)幅にスリットし、パンケーキを作成する。
J. Evaluation of Shape Transfer Defect The shape transfer defect of the biaxially oriented thermoplastic resin film of the present invention was evaluated by the following method. The biaxially oriented thermoplastic resin film of the present invention slit to a width of 1 m is conveyed under a tension of 200 N, and the biaxially oriented thermoplastic resin film of the present invention is provided on the side opposite to the surface for forming a non-magnetic layer described later. The coating solution and the coating solution for forming a magnetic layer are applied in multiple layers, and the coating solution for forming a backcoat layer, which will be described later, is applied to the surface side, and further slit to a width of 12.65 mm (1/2 inch) to form a pancake. create.
 (以下、「部」とあるのは「質量部」を意味する。)
 磁性層形成用塗布液
  バリウムフェライト磁性粉末             100部
(板径:20.5nm、板厚:7.6nm、
板状比:2.7、Hc:191kA/m(≒2400Oe)
飽和磁化:44Am/kg、BET比表面積:60m/g)
  ポリウレタン樹脂                   12部
    質量平均分子量 10,000
    スルホン酸官能基 0.5meq/g
  α-アルミナ HIT60(住友化学社製)       8部
  カーボンブラック #55(旭カーボン社製)
    粒子サイズ0.015μm            0.5部
  ステアリン酸                    0.5部
  ブチルステアレート                   2部
  メチルエチルケトン                 180部
  シクロヘキサノン                  100部
 非磁性層形成用塗布液
  非磁性粉体 α酸化鉄                100部
    平均長軸長0.09μm、BET法による比表面積 50m/g
    pH 7
    DBP吸油量 27~38ml/100g
    表面処理層Al 8質量%
  カーボンブラック                   20部
    “コンダクテックス”(登録商標)SC-U(コロンビアンカーボン社製)
  ポリウレタン樹脂 UR8200(東洋紡社製)     18部
  フェニルホスホン酸                   3部
  シクロヘキサノン                  300部
  メチルエチルケトン                 300部
  ブチルステアレート                   1部
  ステアリン酸                      2部
 上記の塗布液のそれぞれについて、各成分をニ-ダで混練した。1.0mmφのジルコニアビーズを分散部の容積に対し65%充填する量を入れた横型サンドミルに、塗布液をポンプで通液し、2,000rpmで120分間(実質的に分散部に滞留した時間)、分散させた。得られた分散液にポリイソシアネ-トを非磁性層の塗料には5.0部、磁性層の塗料には2.5部を加え、さらにメチルエチルケトン3部を加え、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
(Hereinafter, "part" means "part by mass".)
Coating liquid for forming magnetic layer Barium ferrite magnetic powder 100 parts (plate diameter: 20.5 nm, plate thickness: 7.6 nm,
Plate ratio: 2.7, Hc: 191 kA / m (≈2400 Oe)
Saturation magnetization: 44 Am 2 / kg, BET specific surface area: 60 m 2 / g)
Polyurethane resin 12 parts Weight average molecular weight 10,000
Sulfonic acid functional group 0.5 meq / g
α-alumina HIT60 (Sumitomo Chemical Co., Ltd.) 8 parts Carbon black # 55 (Asahi Carbon Co., Ltd.)
Particle size 0.015 μm 0.5 part Stearic acid 0.5 part Butyl stearate 2 parts Methyl ethyl ketone 180 parts Cyclohexanone 100 parts Non-magnetic layer forming coating liquid Non-magnetic powder α-iron oxide 100 parts Average major axis length 0.09 μm, Specific surface area by BET method 50 m 2 / g
pH 7
DBP oil absorption 27-38ml / 100g
Surface treatment layer Al 2 O 3 8% by mass
Carbon black 20 parts "Conductex" (registered trademark) SC-U (manufactured by Columbian Carbon Co.)
Polyurethane resin UR8200 (manufactured by Toyobo Co., Ltd.) 18 parts Phenylphosphonic acid 3 parts Cyclohexanone 300 parts Methyl ethyl ketone 300 parts Butyl stearate 1 part Stearic acid 2 parts Each component of each of the above coating solutions was kneaded with a kneader. The coating solution was pumped through a horizontal sand mill containing an amount of 1.0 mmφ zirconia beads filled to 65% of the volume of the dispersion section, and the coating solution was pumped at 2,000 rpm for 120 minutes (substantially staying time in the dispersion section). ), Dispersed. Polyisocyanate was added to the resulting dispersion in an amount of 5.0 parts for the non-magnetic layer paint, 2.5 parts for the magnetic layer paint, 3 parts of methyl ethyl ketone, and a filter having an average pore size of 1 μm. It filtered using and prepared the coating liquid for nonmagnetic layer formation and the coating liquid for magnetic layer formation, respectively.
 得られた非磁性層形成用塗布液を、本発明の二軸配向熱可塑性樹脂フィルムの前記表面とは反対の面上に乾燥後の厚さが0.8μmになるように塗布乾燥させた後、磁性層形成用塗布液を乾燥後の磁性層の厚さが0.07μmになるように塗布を行い、磁性層がまだ湿潤状態にあるうちに6,000G(600mT)の磁力を持つコバルト磁石と6,000G(600mT)の磁力を持つソレノイドにより配向させ乾燥させた。
その後、前記表面側にカレンダー後の厚みが0.5μmとなるようにバックコート層形成用塗布液(カーボンブラック 平均粒子サイズ:17nm 100部、炭酸カルシウム平均粒子サイズ:40nm 80部、αアルミナ 平均粒子サイズ:200nm 5部をポリウレタン樹脂、ポリイソシアネートに分散)を塗布した。次いでカレンダで温度90℃、線圧300kg/cm(294kN/m)にてカレンダ処理を行った後、65℃で、72時間キュアリングした。さらに、スリット品の送り出し、巻取り装置を持った装置に不織布とカミソリブレードが磁性面に押し当たるように取り付け、テープクリーニング装置で磁性層の表面のクリーニングを行い、磁気テープを得た。
After coating the obtained coating liquid for forming a non-magnetic layer on the surface of the biaxially oriented thermoplastic resin film of the present invention opposite to the surface so as to have a thickness after drying of 0.8 μm Cobalt magnet having a magnetic force of 6,000 G (600 mT) while the magnetic layer is still in a wet state by applying the coating liquid for forming a magnetic layer so that the thickness of the magnetic layer after drying is 0.07 μm. And was oriented and dried by a solenoid having a magnetic force of 6,000 G (600 mT).
Then, a coating solution for forming a backcoat layer (carbon black average particle size: 17 nm 100 parts, calcium carbonate average particle size: 40 nm 80 parts, α-alumina average particles) so that the thickness after calendering on the surface side is 0.5 μm. Size: 200 nm 5 parts of polyurethane resin and polyisocyanate dispersed) were applied. Then, after calendering with a calender at a temperature of 90 ° C. and a linear pressure of 300 kg / cm (294 kN / m), curing was carried out at 65 ° C. for 72 hours. Furthermore, the non-woven fabric and a razor blade were attached to a device having a slitting device and a winding device so that the non-woven fabric and the razor blade were pressed against the magnetic surface, and the surface of the magnetic layer was cleaned by a tape cleaning device to obtain a magnetic tape.
 得られたテープ原反を12.65mm(1/2インチ)幅にスリットし、それをLTO用のケースに組み込み、磁気記録テープの長さが960mのデータストレージカートリッジを作成した。このデータストレージを、IBM社製LTO7ドライブを用いて23℃50%RHの環境で記録し(記録波長0.55μm)、次に、カートリッジを50℃、80%RH環境下に7日間保存した。カートリッジを1日常温に保存した後、全長の再生を行い、再生時の信号のエラーレートを測定した。エラーレートはドライブから出力されるエラー情報(エラービット数)から次式(b)にて算出する。 The obtained tape stock was slit to a width of 12.65 mm (1/2 inch), and it was assembled in a case for LTO to create a data storage cartridge with a magnetic recording tape length of 960 m. This data storage was recorded in an environment of 23 ° C. and 50% RH using an IBM LTO7 drive (recording wavelength 0.55 μm), and then the cartridge was stored in an environment of 50 ° C. and 80% RH for 7 days. After the cartridge was stored at room temperature for one day, the full length was reproduced, and the error rate of the signal during reproduction was measured. The error rate is calculated from the error information (number of error bits) output from the drive by the following equation (b).
 (a)エラーレート=(エラービット数)/(書き込みビット数)
 A:エラーレートが1.0×10-6未満。           
(A) Error rate = (error bit number) / (write bit number)
A: The error rate is less than 1.0 × 10 −6 .
 B:エラーレートが1.0×10-6以上、1.0×10-5未満。  B: The error rate is 1.0 × 10 −6 or more and less than 1.0 × 10 −5 .
 C:エラーレートが1.0×10-5以上、1.0×10-4未満。  C: Error rate is 1.0 × 10 −5 or more and less than 1.0 × 10 −4 .
 D:エラーレートが1.0×10-4以上。           
形状転写欠点評価としてはA~Cが良好であり、その中で最もAが優れている。
D: The error rate is 1.0 × 10 −4 or more.
For the shape transfer defect evaluation, A to C are good, and A is the best.
 K.グリーンシート特性評価
 以下a.からb.の方法によりグリーンシート特性評価を行う。
a.離型層の塗布
 本発明の二軸配向熱可塑性フィルムの前記表面とは反対の面に、架橋プライマー層(東レ・ダウコーニング・シリコーン(株)製商品名BY24-846)を固形分1質量%に調整した塗布液を塗布/乾燥し、乾燥後の塗布厚みが0.1μmとなるようにグラビアコーターで塗布し、100℃で20秒乾燥硬化した。その後1時間以内に付加反応型シリコーン樹脂(東レ・ダウコーニング・シリコーン(株)製商品名LTC750A)100質量部、白金触媒(東レ・ダウコーニング・シリコーン(株)製商品名SRX212)2質量部を固形分5質量%に調整した塗布液を、乾燥後の塗布厚みが0.1μmとなるようにグラビアコートで塗布し、120℃で30秒乾燥硬化した後に巻取り、離型フィルムを得た。
b.グリーンシートの塗布状態の評価(セラミックススラリーの塗布性)
 チタン酸バリウム(富士チタン工業(株)製商品名HPBT-1)100質量部、ポリビニルブチラール(積水化学(株)製商品名BL-1)10質量部、フタル酸ジブチル5質量部とトルエン-エタノール(質量比30:30)60質量部に、数平均粒径2mmのガラスビーズを加え、ジェットミルにて20時間混合・分散させた後、濾過してペースト状のセラミックスラリーを調整した。得られたセラミックスラリーを、離型フィルムの前項aにて離型層を設けた面の上に乾燥後の厚みが2μmとなるように、ダイコーターにて塗布し乾燥させ、巻取り、グリーンシートを得た。 上記で巻き取られたグリーンシートを、繰り出し、離型フィルムから剥がさない状態にて目視で観察し、ピンホールの有無や、シート表面および端部の塗布状態を確認する。なお観察する面積は幅300mm、長さ500mmである。離型フィルムの上に成型されたグリーンシートについて、背面から1000ルクスのバックライトユニットで照らしながら、塗布抜けによるピンホールあるいは、離型フィルム背面の表面転写による凹み状態を観察する。
A:ピンホールも凹みも無い。
B:ピンホールは無く、凹みが3個以内認められる。
C:ピンホールは無く、凹みが5個以内認められる。
D:ピンホールが一部認められる、または凹みが6個以上認められる。
グリーンシート特性評価としてはA~Cが良好であり、その中で最もAが優れている。
K. Evaluation of green sheet characteristics a. To b. The green sheet characteristics are evaluated by the method.
a. Application of Release Layer On the surface opposite to the surface of the biaxially oriented thermoplastic film of the present invention, a crosslinked primer layer (trade name BY24-846 manufactured by Toray Dow Corning Silicone Co., Ltd.) is solid content 1% by mass. The coating solution prepared in (1) was applied / dried, and the coating thickness after drying was applied by a gravure coater and dried and cured at 100 ° C. for 20 seconds. Within 1 hour, 100 parts by mass of addition reaction type silicone resin (trade name LTC750A manufactured by Toray Dow Corning Silicone Co., Ltd.) and 2 parts by mass of platinum catalyst (trade name SRX212 manufactured by Toray Dow Corning Silicone Co., Ltd.) A coating solution adjusted to have a solid content of 5% by mass was applied by gravure coating so that the coating thickness after drying was 0.1 μm, dried and cured at 120 ° C. for 30 seconds, and then wound to obtain a release film.
b. Evaluation of application status of green sheet (applicability of ceramics slurry)
100 parts by mass of barium titanate (trade name HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.), 10 parts by mass of polyvinyl butyral (trade name BL-1 manufactured by Sekisui Chemical Co., Ltd.), 5 parts by mass of dibutyl phthalate and toluene-ethanol. (Mass ratio 30:30) Glass beads having a number average particle diameter of 2 mm were added to 60 parts by mass, mixed and dispersed by a jet mill for 20 hours, and then filtered to prepare a paste-like ceramic slurry. The obtained ceramic slurry is applied onto a surface of the release film, on which the release layer is provided in the preceding paragraph a, provided with a release layer, by a die coater so as to have a thickness of 2 μm, dried, wound, and rolled into a green sheet. Got The green sheet wound up above is unreeled and visually observed in a state where it is not peeled off from the release film to confirm the presence or absence of pinholes and the coating state of the sheet surface and the end portion. The observed area has a width of 300 mm and a length of 500 mm. The green sheet formed on the release film is illuminated with a backlight unit of 1000 lux from the back side, and pinholes due to coating loss or a recessed state due to surface transfer on the back side of the release film are observed.
A: There is no pinhole or dent.
B: There are no pinholes, and 3 or less dents are recognized.
C: There are no pinholes and 5 or less dents are recognized.
D: Some pinholes are recognized, or 6 or more dents are recognized.
A to C are good for the evaluation of green sheet characteristics, and A is the best.
 L.ヘイズ
本発明の二軸配向熱可塑性フィルムから一辺が5cmの正方形状のサンプルを3点(3個)採取する。次にサンプルを23℃、60%RHにおいて、40時間放置する。それぞれのサンプルを日本電色工業(株)製濁度計「NDH5000」を用いて、JIS「透明材料のヘイズの求め方」(K7136 2000年版)に準ずる方式で実施する。それぞれの3点(3個)のヘイズの値を平均して、フィルムのヘイズの値とする。
L. Haze From the biaxially oriented thermoplastic film of the present invention, 3 square samples (3 pieces) each having a side of 5 cm are collected. The sample is then left for 40 hours at 23 ° C. and 60% RH. Each sample is carried out by using a turbidimeter “NDH5000” manufactured by Nippon Denshoku Industries Co., Ltd. according to a method according to JIS “How to obtain haze of transparent material” (K7136 2000 version). The haze value of each of the three points (three) is averaged to obtain the haze value of the film.
 M.フォトレジスト評価
 以下a.からc.の方法によりフォトレジスト評価を行った。
a.片面鏡面研磨した6インチSiウエハー上に、東京応化(株)製のネガレジスト“PMERN-HC600”を塗布し、大型スピナーで回転させることによって厚み7μmのレジスト層を作製する。次いで、窒素循環の通風オーブンを用いて70℃の温度条件で約20分間の前熱処理を行う。
b.本発明の二軸配向熱可塑性樹脂フィルムの前記表面とは反対の面をレジスト層と接触するように重ね、ゴム製のローラーを用いて、レジスト層上に二軸配向熱可塑性樹脂フィルムをラミネートし、その上に、クロム金属でパターニングされたレチクルを配置し、そのレクチル上からI線(波長365nmにピークをもつ紫外線)ステッパーを用いて露光を行う。
c.レジスト層からポリエステルフィルムを剥離した後、現像液N-A5が入った容器にレジスト層を入れ約1分間の現像を行う。その後、現像液から取り出し、水で約1分間の洗浄を行う。現像後に作成されたレジストパターンのL/S(μm)(Line and Space)=10/10μmの30本の状態を走査型電子顕微鏡SEMを用いて約800~3000倍率で観察し、パターンに欠けのある本数で以下のように評価する。
A:欠けのある本数が5本以下。      
B:欠けのある本数が6本以上10本以下。 
C:欠けのある本数が11本以上15本以下。
D:欠けのある本数が16本以上。      
フォトレジスト評価としてはA~Cが良好であり、その中で最もAが優れている。
M. Photoresist Evaluation Below a. To c. The photoresist was evaluated by the method described above.
a. A negative resist “PMERN-HC600” manufactured by Tokyo Ohka Co., Ltd. is applied on a 6-inch Si wafer that has been mirror-polished on one side, and a resist layer having a thickness of 7 μm is prepared by rotating the resist with a large spinner. Then, pre-heat treatment is performed for about 20 minutes at a temperature condition of 70 ° C. using a ventilation oven with nitrogen circulation.
b. The biaxially oriented thermoplastic resin film of the present invention is laminated so that the surface opposite to the surface is in contact with the resist layer, and using a rubber roller, the biaxially oriented thermoplastic resin film is laminated on the resist layer. Then, a reticle patterned with chromium metal is arranged on the reticle, and the reticle is exposed using an I-line (ultraviolet ray having a peak wavelength of 365 nm) stepper.
c. After peeling the polyester film from the resist layer, the resist layer is placed in a container containing the developer N-A5 and development is performed for about 1 minute. Then, it is taken out from the developing solution and washed with water for about 1 minute. 30 states of L / S (μm) (Line and Space) = 10/10 μm of the resist pattern formed after development were observed with a scanning electron microscope SEM at about 800 to 3000 magnification, and the pattern was not damaged. The number is evaluated as follows.
A: The number of chips is 5 or less.
B: The number of chips is 6 or more and 10 or less.
C: The number of chips is 11 or more and 15 or less.
D: The number of chips is 16 or more.
For the photoresist evaluation, A to C are good, and A is the best.
以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited to these.
 [PET-1の製造]テレフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、常法により重合を行い、実質的に粒子を含有しない溶融重合PETを得た。得られた溶融重合PETのガラス転移温度は81℃、融点は255℃、固有粘度は0.62であった。その後、常法により固相重合を行い、固相重合PETを得た。得られた固相重合PETのガラス転移温度は81℃、融点は255℃、固有粘度は0.81であった。 [Production of PET-1] Polymerization was performed from terephthalic acid and ethylene glycol by a conventional method using antimony trioxide as a catalyst to obtain a melt-polymerized PET containing substantially no particles. The obtained melt-polymerized PET had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.62. Then, solid phase polymerization was carried out by a conventional method to obtain solid phase polymerized PET. The obtained solid-state polymerized PET had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.81.
 [MB-Aの製造]前項PET-1の重合に際し、得られるPETに対する含有量が2.0重量%となるように、エチレングリコールに分散させた平均1次粒子径が21nmのδアルミナ(アルミナ-1)を添加し、PETベースマスタ―ペレットMB-Aを得た。得られた溶融重合MB-Aのガラス転移温度は81℃、融点は255℃、固有粘度は0.70であった。 [Production of MB-A] In the polymerization of PET-1 described above, δ-alumina (alumina) having an average primary particle diameter of 21 nm dispersed in ethylene glycol so that the content in PET obtained is 2.0% by weight. -1) was added to obtain PET base master-pellet MB-A. The melt-polymerized MB-A obtained had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.70.
 [MB-Bの製造]前項PET-1の重合に際し、得られるPETに対する含有量が2.0重量%となるように、エチレングリコールに分散させた平均1次粒子径が16nmのδアルミナ(アルミナ-2)を添加し、PETベースマスタ―ペレットMB-Bを得た。得られた溶融重合MB-Bのガラス転移温度は81℃、融点は255℃、固有粘度は0.70であった。 [Production of MB-B] In the polymerization of PET-1 above, δ-alumina (alumina) having an average primary particle diameter of 16 nm dispersed in ethylene glycol so that the content of PET-1 obtained is 2.0% by weight. -2) was added to obtain PET base master-pellet MB-B. The obtained melt-polymerized MB-B had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.70.
 [MB-Cの製造]前項PET-1の重合に際し、得られるPETに対する含有量が2.0重量%となるように、エチレングリコールに分散させた平均1次粒子径が11nmのδアルミナ(アルミナ-3)を添加し、PETベースマスタ―ペレットMB-Cを得た。得られた溶融重合MB-Cのガラス転移温度は81℃、融点は255℃、固有粘度は0.70であった。 [Manufacture of MB-C] In the polymerization of PET-1 described above, δ-alumina (alumina) having an average primary particle diameter of 11 nm dispersed in ethylene glycol so that the content in PET obtained is 2.0% by weight. -3) was added to obtain PET base master pellet MB-C. The obtained melt-polymerized MB-C had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.70.
 [MB-Dの製造]前項PET-1の重合に際し、得られるPETに対する含有量が2.0重量%となるように、エチレングリコールに分散させた平均1次粒子径が210nmのシリカ(シリカ-1)を添加し、PETベースマスタ―ペレットMB-Dを得た。得られた溶融重合MB-Dのガラス転移温度は81℃、融点は255℃、固有粘度は0.70であった。 [Production of MB-D] In the polymerization of PET-1 described above, silica (silica-containing silica having an average primary particle diameter of 210 nm dispersed in ethylene glycol so that the content of PET obtained is 2.0% by weight). 1) was added to obtain PET base master-pellet MB-D. The obtained melt-polymerized MB-D had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.70.
 [MB-Eの製造]前項PET-1の重合に際し、得られるPETに対する含有量が2.0重量%となるように、エチレングリコールに分散させた平均1次粒子径が265nmのシリカ(シリカ-2)を添加し、PETベースマスタ―ペレットMB-Eを得た。得られた溶融重合MB-Eのガラス転移温度は81℃、融点は255℃、固有粘度は0.70であった。 [Production of MB-E] In the polymerization of PET-1 above, silica (silica-containing silica having an average primary particle diameter of 265 nm dispersed in ethylene glycol so that the content in PET obtained is 2.0% by weight). 2) was added to obtain PET base master-pellet MB-E. The obtained melt-polymerized MB-E had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.70.
 [MB-Fの製造]前項PET-1の重合に際し、得られるPETに対する含有量が2.0%となるように、エチレングリコールに分散させた平均1次粒子径が320nmのシリカ(シリカ-3)を添加し、PETベースマスタ―ペレットMB-Fを得た。得られた溶融重合MB-Fのガラス転移温度は81℃、融点は255℃、固有粘度は0.70であった。 [Production of MB-F] In the polymerization of PET-1 described above, silica having an average primary particle diameter of 320 nm dispersed in ethylene glycol (silica-3 so that the content in PET obtained is 2.0%). ) Was added to obtain PET base master-pellet MB-F. The obtained melt-polymerized MB-F had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.70.
 [MB-Gの製造]前項PET-1の重合に際し、得られるPETに対する含有量が2.0重量%となるように、エチレングリコールに分散させた平均1次粒子径が72nmのシリカ(シリカ-4)を添加し、PETベースマスタ―ペレットMB-Gを得た。得られた溶融重合MB-Gのガラス転移温度は81℃、融点は255℃、固有粘度は0.70であった。 [Production of MB-G] In the polymerization of PET-1 described above, silica (silica-containing silica having an average primary particle diameter of 72 nm dispersed in ethylene glycol so that the content of PET obtained is 2.0% by weight). 4) was added to obtain PET base master-pellet MB-G. The melt-polymerized MB-G obtained had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.70.
 [MB-Hの製造]前項PET-1の重合に際し、得られるPETに対する含有量が2.0重量%となるように、エチレングリコールに分散させた平均1次粒子径が370nmのシリカ(シリカ-5)を添加し、PETベースマスタ―ペレットMB-Hを得た。得られた溶融重合MB-Hのガラス転移温度は81℃、融点は255℃、固有粘度は0.70であった。 [Production of MB-H] In the polymerization of PET-1 described above, silica dispersed in ethylene glycol having an average primary particle diameter of 370 nm (silica-based so that the content in PET obtained is 2.0% by weight). 5) was added to obtain PET base master-pellet MB-H. The obtained melt-polymerized MB-H had a glass transition temperature of 81 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.70.
 [MB-Iの製造]前項PET-1とステアリン酸ナトリウム(結晶核剤-1)とを、ステアリン酸ナトリウム(結晶核剤-1)が、前項PET-1に対する含有量が5.0重量%となるように二軸混錬押出を行い、PETベースマスタ―ペレットMB-Iを得た。得られた溶融重合MB-Iのガラス転移温度は83℃、融点は255℃、固有粘度は0.65であった。 [Production of MB-I] The content of PET-1 and sodium stearate (crystal nucleating agent-1) in the content of sodium stearate (crystal nucleating agent-1) is 5.0% by weight based on PET-1. Twin-screw kneading extrusion was performed to obtain PET base master pellets MB-I. The obtained melt-polymerized MB-I had a glass transition temperature of 83 ° C., a melting point of 255 ° C. and an intrinsic viscosity of 0.65.
 (実施例1)
PET-1およびマスタ―ペレットMB-Aを180℃で2時間半減圧乾燥した後、粒子含有濃度が表1に記載のP1層およびP2層の量になるように配合し、それぞれの押出機に供給し、溶融押出してフィルターで濾過した後、フィードブロックにてP1層/P2層と積層するように合流させた後、Tダイを介し37℃に保った冷却ロール上に静電印可キャスト法を用いて巻き付け冷却固化して未延伸フィルムを得た。この未延伸フィルムを相対する電極とアースロール間に導き、装置中に窒素ガスを導入し、E値が160W・min/mとなる条件で大気圧グロー放電処理を行った。
処理後の未延伸フィルムを逐次二軸延伸機により表1、2に記載の条件にて、長手方向に3.6倍、および幅方向にそれぞれ4.0倍、トータルで14.4倍延伸しその後、定長下240℃で熱処理した。その後、幅方向に弛緩処理を施し、厚み4.5μmの二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価を表3、4に示す。巻取り性、巻き姿、転写欠点共に良好なフィルムであった。
(Example 1)
PET-1 and master pellet MB-A were dried under reduced pressure at 180 ° C. for two and a half hours, and then compounded so that the particle content concentration would be the amounts of P1 layer and P2 layer shown in Table 1, and added to each extruder. After being supplied, melt-extruded and filtered with a filter, they are joined so as to be laminated with P1 layer / P2 layer in a feed block, and then electrostatically cast method is applied on a cooling roll kept at 37 ° C through a T die. It was wound around and solidified by cooling to obtain an unstretched film. This unstretched film was introduced between the opposing electrode and an earth roll, nitrogen gas was introduced into the apparatus, and atmospheric pressure glow discharge treatment was performed under the condition that the E value was 160 W · min / m 2 .
The unstretched film after the treatment was sequentially stretched by a biaxial stretching machine under the conditions shown in Tables 1 and 2 by a stretching ratio of 3.6 times in the longitudinal direction and 4.0 times in the width direction, for a total of 14.4 times. Then, it heat-processed at 240 degreeC under fixed length. Then, relaxation treatment was applied in the width direction to obtain a biaxially oriented film having a thickness of 4.5 μm. Tables 3 and 4 show the physical properties, surface projection shape and characteristic evaluation of the obtained biaxially oriented film. The film had good winding properties, winding appearance, and transfer defects.
 (実施例2-4)
 実施例2-4では、使用するマスタ―ペレットを表1に記載の粒子含有濃度になるように変更した以外は、実施例1と同様にして厚み4.5μmの二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価を表3、4に示す。
(Example 2-4)
In Example 2-4, a biaxially oriented film having a thickness of 4.5 μm was obtained in the same manner as in Example 1 except that the master pellet used was changed to have the particle content concentration shown in Table 1. Tables 3 and 4 show the physical properties, surface projection shape and characteristic evaluation of the obtained biaxially oriented film.
 実施例2では実施例1より大径な平均1次粒子径が250nmの粒子を多量に加えたところ、非接触光学式粗さ測定にて測定される高さ10nm以上の突起個数が増加することで、転写欠点が実施例1より低下したが実用の範囲内であり、また巻取り性、巻きズレは良好なフィルムであった。 In Example 2, when a large amount of particles having an average primary particle diameter of 250 nm, which is larger than that in Example 1, was added, the number of protrusions having a height of 10 nm or more measured by non-contact optical roughness measurement increased. The transfer defect was lower than that in Example 1, but was within the practical range, and the film was good in winding property and winding deviation.
 実施例3、4では実施例1より小径な平均1次粒子径が15nmおよび10nmの粒子を用いたところ、非接触光学式粗さ測定にて測定される高さ10nm以上の突起個数が減少し、巻取り性が実施例1よりも悪化し、またAFMにて測定される高さ1nm以上10nm未満の突起個数が増加して巻きズレにより巻き姿が実施例1よりも悪化したが実用の範囲内であり、転写欠点は良好なフィルムであった。 In Examples 3 and 4, when particles having an average primary particle diameter of 15 nm and 10 nm, which are smaller than those in Example 1, were used, the number of protrusions having a height of 10 nm or more measured by non-contact optical roughness measurement decreased. The winding property was worse than that of Example 1, and the number of protrusions having a height of 1 nm or more and less than 10 nm measured by AFM was increased and the winding appearance was worse than that of Example 1 due to winding misalignment. And the transfer defect was a good film.
 (実施例5)
実施例5では、大気圧グロー放電処理を表2の通りE値が450W・min/mとなる条件で行った以外は実施例1と同様にして厚み4.5μmの二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価を表3、4に示す。
実施例5は実施例1対比で、AFMにて測定される高さ1nm以上10nm未満の突起個数が増加しており、巻きズレにより巻き姿が悪化するものの実用の範囲内であり、巻取り性、転写欠点共に良好なフィルムであった。
(Example 5)
In Example 5, a biaxially oriented film having a thickness of 4.5 μm was obtained in the same manner as in Example 1 except that the atmospheric pressure glow discharge treatment was performed under the condition that the E value was 450 W · min / m 2 as shown in Table 2. It was Tables 3 and 4 show the physical properties, surface projection shape and characteristic evaluation of the obtained biaxially oriented film.
In comparison with Example 1, Example 5 has an increase in the number of protrusions having a height of 1 nm or more and less than 10 nm measured by AFM, which is within the practical range although the winding shape deteriorates due to winding deviation, and the winding property is improved. The transfer defect was a good film.
 (実施例6、7)
実施例6、7では、使用するマスタ―ペレットを表1に記載の粒子添加濃度になるように変更、および大気圧グロー放電処理を表2の通りに変更する以外は、実施例1と同様にして厚み4.5μmの二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価を表3、4に示す。
実施例6、7では、AFMにて測定される高さ1nm以上10nm未満の突起個数が実施例1より減少する。実施例6では非接触光学式粗さ測定にて測定される高さ10nm以上の突起個数は実施例1と同等であり、巻取り性が実施例1より実用の範囲内ではあるが悪化した。その一方、実施例7では非接触光学式粗さ測定にて測定される高さ10nm以上の突起個数が実施例1より増加することで、巻取り性は実施例1と同等に良好であったが、転写欠点は実施例1より実用の範囲内ではあるが悪化した。
(Examples 6 and 7)
Examples 6 and 7 were the same as Example 1 except that the master pellets used were changed to have the particle addition concentrations shown in Table 1 and the atmospheric pressure glow discharge treatment was changed as shown in Table 2. As a result, a biaxially oriented film having a thickness of 4.5 μm was obtained. Tables 3 and 4 show the physical properties, surface projection shape and characteristic evaluation of the obtained biaxially oriented film.
In Examples 6 and 7, the number of protrusions having a height of 1 nm or more and less than 10 nm measured by AFM was smaller than that in Example 1. In Example 6, the number of protrusions having a height of 10 nm or more measured by the non-contact optical roughness measurement was the same as that in Example 1, and the winding property was worse than that of Example 1 although it was within the practical range. On the other hand, in Example 7, the number of protrusions having a height of 10 nm or more measured by the non-contact optical roughness measurement was larger than that in Example 1, and thus the winding property was as good as in Example 1. However, the transfer defect was worse than that of Example 1 within the range of practical use.
 (実施例8、9)
実施例8、9では、使用するマスタ―ペレットを表1に記載の粒子添加濃度になるように変更する以外は、実施例1と同様にして厚み4.5μmの二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価を表3、4に示す。
実施例8、9いずれも非接触光学式粗さ測定にて測定される高さ10nm以上の突起個数および、AFMにて測定される高さ1nm以上10nm未満の突起個数は好ましい範囲にあるが、粒子径の大きな200nmおよび300nmの粒子を用いることで、非接触光学式粗さ測定にて測定される高さ60nm以上の突起個数が実施例1に比べ増加した。結果、実施例8、9は転写欠点が実施例1より悪化するものの実用の範囲内であり、巻取り性は良好なフィルムであった。
(Examples 8 and 9)
In Examples 8 and 9, a biaxially oriented film having a thickness of 4.5 μm was obtained in the same manner as in Example 1, except that the master pellet used was changed to have the particle addition concentration shown in Table 1. Tables 3 and 4 show the physical properties, surface projection shape and characteristic evaluation of the obtained biaxially oriented film.
In each of Examples 8 and 9, the number of protrusions having a height of 10 nm or more measured by the non-contact optical roughness measurement and the number of protrusions having a height of 1 nm or more and less than 10 nm measured by AFM are in the preferable ranges. By using particles having large particle diameters of 200 nm and 300 nm, the number of protrusions having a height of 60 nm or more measured by non-contact optical roughness measurement increased as compared with Example 1. As a result, although the transfer defects of Examples 8 and 9 were worse than those of Example 1, they were within the practical range, and the films had good winding properties.
 (実施例10)
大気圧グロー放電処理に用いるガス種を、窒素ガスに酸素ガス0.5体積%混合した気体を使用した以外は実施例3と同様の方法にて二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価は表3、表4に示す通りである。
実施例10は活性の高いプラズマ励起性ガスを用いたため、添加粒子に由来する突起のサイズが大きくなることで突起個数Aが実施例3よりも増大し、巻取り性、転写欠点が良好なフィルムとなった。
(Example 10)
A biaxially oriented film was obtained in the same manner as in Example 3 except that the gas species used in the atmospheric pressure glow discharge treatment was a gas obtained by mixing 0.5% by volume of oxygen gas with nitrogen gas. The physical properties, surface projection shape and property evaluation of the obtained biaxially oriented film are as shown in Tables 3 and 4.
Since the plasma-excitable gas with high activity was used in Example 10, the number A of protrusions increased as compared with Example 3 due to an increase in the size of the protrusions derived from the added particles, and a film having good winding properties and transfer defects. Became.
 (実施例11)
フィルム厚みを25μmとした以外は実施例1と同様の方法にて二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価は表3、表4に示す通りである。実施例11は実施例1と同等に巻取り性、巻き姿、転写欠点共に良好なフィルムであった。
実施例11のフィルムに上述した方法にてグリーンシート評価および、フォトレジスト評価を実施したところ、フィルム厚み増加によりヘイズが実施例1より僅かに増加するものの、表5、6に示す通りどちらも良好な結果であり、ドライフィルムレジスト支持体用フィルムやグリーンシート成形の支持体用フィルムとして好適に用いることができる。
(Example 11)
A biaxially oriented film was obtained in the same manner as in Example 1 except that the film thickness was 25 μm. The physical properties, surface projection shape and property evaluation of the obtained biaxially oriented film are as shown in Tables 3 and 4. The film of Example 11 was as good as that of Example 1 in terms of winding property, winding shape, and transfer defect.
When the green sheet evaluation and the photoresist evaluation were performed on the film of Example 11 by the method described above, the haze slightly increased as compared with Example 1 due to an increase in the film thickness, but both were good as shown in Tables 5 and 6. These results can be suitably used as a film for a dry film resist support or a film for a green sheet molding support.
 (実施例12)
3種類の押出機を用いて表1に記載の配合にてそれぞれの層を押出し、P1層/P2層/P3層の異種3層構成となるように積層しフィルム厚み25μmとした以外は実施例1と同様の方法にて二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価は表3、表4に示す通りである。実施例12では実施例1と同等に巻き姿、転写欠点が共に良好なフィルムであり、さらに、粒子を含有するP3層を前記表面とは反対の最表面に設けることで巻取り性は実施例1より優れるフィルムであった。
実施例12のフィルムに上述した方法にてグリーンシート評価および、フォトレジスト評価を実施したところ、粒子を含有するP3層を設けたことでヘイズが実施例11より増加することでフォトレジスト評価が低下するものの実用の範囲内で有り、ドライフィルムレジスト支持体用フィルムやグリーンシート成形の支持体用フィルムとして好適に用いることができる。
(Example 12)
Except that each layer was extruded with the composition shown in Table 1 by using three kinds of extruders and laminated so as to have a different three-layer constitution of P1 layer / P2 layer / P3 layer, and the film thickness was 25 μm. A biaxially oriented film was obtained in the same manner as in 1. The physical properties, surface projection shape and property evaluation of the obtained biaxially oriented film are as shown in Tables 3 and 4. In Example 12, a film having good winding appearance and transfer defects as in Example 1 was obtained, and further, by providing a P3 layer containing particles on the outermost surface opposite to the surface, the winding property was improved. It was a film superior to 1.
When the green sheet evaluation and the photoresist evaluation were performed on the film of Example 12 by the method described above, the photoresist evaluation was lowered because the haze was increased as compared with Example 11 by providing the P3 layer containing particles. However, it is within the practical range, and can be suitably used as a film for a dry film resist support or a film for a green sheet support.
 (比較例1)
実施例1と同様の方法で未延伸フィルムを得た後、大気圧グロー放電処理を行わずに逐次二軸延伸機へと導入したこと以外は実施例1と同様の方法で二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価は表3、表4に示す通りである。
大気圧グロー放電処理を実施していないため、AFMにて測定される高さ1nm以上10nm未満の突起個数は大幅に減少し、結果、巻取り性が大幅に劣るフィルムとなった。
(Comparative Example 1)
After obtaining an unstretched film in the same manner as in Example 1, a biaxially oriented film was obtained in the same manner as in Example 1 except that the unstretched film was sequentially introduced into a biaxial stretching machine without performing atmospheric pressure glow discharge treatment. Obtained. The physical properties, surface projection shape and property evaluation of the obtained biaxially oriented film are as shown in Tables 3 and 4.
Since the atmospheric pressure glow discharge treatment was not carried out, the number of protrusions having a height of 1 nm or more and less than 10 nm measured by AFM was significantly reduced, and as a result, the film was significantly inferior in windability.
 (比較例2)
P1層に実質的に粒子を含有しないこと以外は、実施例1と同様の方法で二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価は表3、表4に示す通りである。
粒子を添加していないことで地肌部に効率的に突起が形成され、AFMにて測定される高さ1nm以上10nm未満の突起個数は増加する一方で、非接触光学式粗さ測定にて測定される高さ10nm以上の突起個数が大幅に減少することで巻取り性が低下し、結果、巻取り性が大幅に劣るフィルムとなった。
(Comparative example 2)
A biaxially oriented film was obtained in the same manner as in Example 1 except that the P1 layer contained substantially no particles. The physical properties, surface projection shape and property evaluation of the obtained biaxially oriented film are as shown in Tables 3 and 4.
Since particles are not added, protrusions are efficiently formed on the background, and the number of protrusions with a height of 1 nm or more and less than 10 nm measured by AFM increases, but measured by non-contact optical roughness measurement. The number of projections having a height of 10 nm or more was significantly reduced, and the winding property was lowered, and as a result, the film was significantly inferior in the winding property.
 (比較例3)
実施例1より添加する粒子の平均1次粒子径を表1に記載の通り350nmとした以外は、実施例1と同様の方法で二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価は表3、表4に示す通りである。
大径粒子を用いたことで、非接触光学式粗さ測定にて測定される高さ10nm以上の突起個数が大幅に増加し、結果、転写欠点が大幅に悪化した。
(Comparative example 3)
A biaxially oriented film was obtained in the same manner as in Example 1 except that the average primary particle diameter of the particles added from Example 1 was 350 nm as shown in Table 1. The physical properties, surface projection shape and property evaluation of the obtained biaxially oriented film are as shown in Tables 3 and 4.
By using the large-diameter particles, the number of protrusions having a height of 10 nm or more measured by the non-contact optical roughness measurement was significantly increased, and as a result, the transfer defect was significantly deteriorated.
 (比較例4)
 P1層の原料としてPET-1と、結晶核剤であるステアリン酸ナトリウム(結晶核剤-1)を表1に記載の量になるように配合し、大気圧グロー放電処理を行わずに逐次二軸延伸機へと導入したこと以外は実施例1と同様の方法にて二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価を表4、表5に示す通りである。
比較例4では結晶核剤を添加することで、AFMにて測定される高さ1nm以上10nm未満の突起個数が実施例1に比べ大幅に低減し、巻取り性が大幅に悪化した。
(Comparative example 4)
PET-1 as a raw material for the P1 layer and sodium stearate (crystal nucleating agent-1) which is a crystal nucleating agent were mixed in the amounts shown in Table 1, and the two were sequentially added without performing atmospheric pressure glow discharge treatment. A biaxially oriented film was obtained in the same manner as in Example 1 except that the biaxially oriented film was introduced into the axial stretching machine. Tables 4 and 5 show the physical properties, surface projection shape and characteristic evaluation of the obtained biaxially oriented film.
In Comparative Example 4, by adding the crystal nucleating agent, the number of protrusions having a height of 1 nm or more and less than 10 nm measured by AFM was significantly reduced as compared with Example 1, and the winding property was significantly deteriorated.
 (比較例5)
フィルム厚みを25μmとした以外は比較例1と同様の方法にて二軸配向フィルムを得た。得られた二軸配向フィルムの物性、表面突起形状、特性評価は表3、4に示す通りである。比較例5は比較例1と同等に巻取り性が大幅に劣るフィルムであった。比較例5のフィルムに上述した方法にてグリーンシート評価および、フォトレジスト評価を実施したところ、巻取り性が劣ることによってフィルム表面にシワやキズが生じると共にフィルムのヘイズも増加した。結果、表5、6に示す通りグリーンシート評価および、フォトレジスト評価が大幅に悪化した。
(Comparative example 5)
A biaxially oriented film was obtained in the same manner as in Comparative Example 1 except that the film thickness was 25 μm. The physical properties, surface projection shape, and characteristic evaluation of the obtained biaxially oriented film are as shown in Tables 3 and 4. Comparative Example 5 was a film in which the winding property was significantly inferior to that of Comparative Example 1. When the green sheet evaluation and the photoresist evaluation were performed on the film of Comparative Example 5 by the method described above, wrinkles and scratches were generated on the film surface due to poor winding property and the haze of the film was increased. As a result, as shown in Tables 5 and 6, the green sheet evaluation and the photoresist evaluation were significantly deteriorated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
本発明の熱可塑性樹脂フィルムは良好な透明性、平滑性、易滑性を有し、さらに製膜・加工工程における傷つき耐性も向上させることができるため、片面に感光樹脂組成物を体積して使用されるドライフィルムレジスト支持体用ポリエステルフィルムや光学デバイス基材用フィルム、セラミックコンデンサー用離型フィルム、磁気記録媒体用フィルムとして好適に用いることができる。 The thermoplastic resin film of the present invention has good transparency, smoothness, and slipperiness, and can further improve scratch resistance in the film forming / processing step. It can be suitably used as a dry film resist support polyester film, an optical device substrate film, a ceramic capacitor release film, or a magnetic recording medium film to be used.
1.突起形成処理を施した層(P1層)
2.非接触光学式粗さ測定およびAFM測定における基準面(高さ0nm)
3.高さ1nm線(R1nm
4.高さ10nm線(R10nm
5.高さ60nm線(R60nm
6.P2層
7.P3層
1. Layer that has been processed to form protrusions (P1 layer)
2. Reference plane (height 0 nm) for non-contact optical roughness measurement and AFM measurement
3. Height 1nm line (R 1nm )
4. Height 10nm line (R 10nm )
5. Height 60nm line (R 60nm )
6. P2 layer 7. P3 layer

Claims (7)

  1. 少なくとも片面の表面が次の(1)、(2)を満たす二軸配向熱可塑性樹脂フィルム。
    (1)非接触光学式粗さ測定によって測定される高さ10nm以上の突起の個数をA(個/mm)とした場合、Aが2.0×10以上2.5×10以下であること。
    (2)原子間力顕微鏡(AFM:Atomic Force Microscope)測定によって測定される高さ1nm以上10nm未満の突起の個数をB(個/mm)とした場合、Bが1.8×10以上1.0×10以下であること。
    A biaxially oriented thermoplastic resin film in which at least one surface satisfies the following (1) and (2).
    (1) When the number of protrusions having a height of 10 nm or more measured by non-contact optical roughness measurement is A (pieces / mm 2 ), A is 2.0 × 10 3 or more and 2.5 × 10 4 or less. To be.
    (2) When the number of protrusions having a height of 1 nm or more and less than 10 nm measured by Atomic Force Microscope (AFM) is B (pieces / mm 2 ), B is 1.8 × 10 6 or more. It should be 1.0 × 10 7 or less.
  2. 前記(1)、(2)を満たす表面を構成する層が平均粒子径10nm以上300nm以下の粒子を含有する請求項1に記載の二軸配向熱可塑性樹脂フィルム。 The biaxially oriented thermoplastic resin film according to claim 1, wherein the layer constituting the surface satisfying the above (1) and (2) contains particles having an average particle diameter of 10 nm or more and 300 nm or less.
  3. 前記(1)、(2)を満たす表面が、非接触光学式粗さ測定によって測定される高さ60nm以上の突起の個数をC(個/mm)とした場合、Cが90以下である請求項1または2に記載の二軸配向熱可塑性樹脂フィルム。 When the number of protrusions having a height of 60 nm or more measured by non-contact optical roughness measurement on the surface satisfying the above (1) and (2) is C (pieces / mm 2 ), C is 90 or less. The biaxially oriented thermoplastic resin film according to claim 1 or 2.
  4. 離型用フィルムとして用いられる請求項1~3のいずれかに記載の二軸配向熱可塑性樹脂フィルム。 The biaxially oriented thermoplastic resin film according to any one of claims 1 to 3, which is used as a release film.
  5. ドライフィルムレジスト支持体用フィルムとして用いられる請求項1~3のいずれかに記載の二軸配向熱可塑性樹脂フィルム。 The biaxially oriented thermoplastic resin film according to any one of claims 1 to 3, which is used as a film for a dry film resist support.
  6. 積層セラミックコンデンサーを製造する工程においてグリーンシート成形の支持体用フィルムとして用いられる請求項1~3のいずれかに記載の二軸配向熱可塑性樹脂フィルム。 The biaxially oriented thermoplastic resin film according to any one of claims 1 to 3, which is used as a film for a support for green sheet molding in a process for producing a monolithic ceramic capacitor.
  7. 塗布型デジタル記録方式の磁気記録媒体用ベースフィルムに用いられる、請求項1~3のいずれかに記載の二軸配向熱可塑性樹脂フィルム。 The biaxially oriented thermoplastic resin film according to any one of claims 1 to 3, which is used as a base film for a magnetic recording medium of a coating type digital recording system.
PCT/JP2019/043829 2018-11-19 2019-11-08 Biaxially oriented thermoplastic resin film WO2020105471A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019563302A JP7375548B2 (en) 2018-11-19 2019-11-08 Biaxially oriented thermoplastic resin film
CN201980075895.6A CN113056360B (en) 2018-11-19 2019-11-08 Biaxially oriented thermoplastic resin film
KR1020217007929A KR20210092192A (en) 2018-11-19 2019-11-08 Biaxially Oriented Thermoplastic Resin Film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-216314 2018-11-19
JP2018216314 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020105471A1 true WO2020105471A1 (en) 2020-05-28

Family

ID=70773309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043829 WO2020105471A1 (en) 2018-11-19 2019-11-08 Biaxially oriented thermoplastic resin film

Country Status (4)

Country Link
JP (1) JP7375548B2 (en)
KR (1) KR20210092192A (en)
CN (1) CN113056360B (en)
WO (1) WO2020105471A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000684A (en) * 2020-06-17 2022-01-04 富士フイルム株式会社 Conductive pattern forming method, method for producing metal mesh sensor, and method for producing structure
WO2023120548A1 (en) * 2021-12-22 2023-06-29 三菱ケミカル株式会社 Polyester film and laminated polyester film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013463A1 (en) * 1992-12-09 1994-06-23 Hoechst Aktiengesellschaft Improved biaxially oriented copolyester film for magnetic recording media
JPH11216824A (en) * 1998-01-30 1999-08-10 Teijin Ltd Polyester film for magnetic recording medium
JP2001114913A (en) * 1994-08-19 2001-04-24 Asahi Kasei Corp Aromatic polyamide film and its use
JP2017200761A (en) * 2016-04-28 2017-11-09 東レ株式会社 Biaxially oriented laminate polyester film and magnetic recording medium
WO2017221701A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Biaxially oriented thermoplastic resin film
WO2019123990A1 (en) * 2017-12-20 2019-06-27 東レ株式会社 Biaxially oriented thermoplastic resin film
JP2019108527A (en) * 2017-12-18 2019-07-04 東レ株式会社 Polyester film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975504B2 (en) * 2006-04-13 2012-07-11 富士フイルム株式会社 Transparent thermoplastic film and method for producing the same
KR102204965B1 (en) * 2013-09-30 2021-01-19 코오롱인더스트리 주식회사 Release film and manufacturing method thereof
JP2016221853A (en) 2015-05-30 2016-12-28 三菱樹脂株式会社 Laminate polyester film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013463A1 (en) * 1992-12-09 1994-06-23 Hoechst Aktiengesellschaft Improved biaxially oriented copolyester film for magnetic recording media
JP2001114913A (en) * 1994-08-19 2001-04-24 Asahi Kasei Corp Aromatic polyamide film and its use
JPH11216824A (en) * 1998-01-30 1999-08-10 Teijin Ltd Polyester film for magnetic recording medium
JP2017200761A (en) * 2016-04-28 2017-11-09 東レ株式会社 Biaxially oriented laminate polyester film and magnetic recording medium
WO2017221701A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Biaxially oriented thermoplastic resin film
JP2019108527A (en) * 2017-12-18 2019-07-04 東レ株式会社 Polyester film
WO2019123990A1 (en) * 2017-12-20 2019-06-27 東レ株式会社 Biaxially oriented thermoplastic resin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000684A (en) * 2020-06-17 2022-01-04 富士フイルム株式会社 Conductive pattern forming method, method for producing metal mesh sensor, and method for producing structure
JP7389071B2 (en) 2020-06-17 2023-11-29 富士フイルム株式会社 Method for forming conductive pattern, method for manufacturing metal mesh sensor, and method for manufacturing structure
WO2023120548A1 (en) * 2021-12-22 2023-06-29 三菱ケミカル株式会社 Polyester film and laminated polyester film

Also Published As

Publication number Publication date
TW202028320A (en) 2020-08-01
JP7375548B2 (en) 2023-11-08
CN113056360B (en) 2023-04-11
KR20210092192A (en) 2021-07-23
CN113056360A (en) 2021-06-29
JPWO2020105471A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7006269B2 (en) Biaxially oriented thermoplastic resin film
JP7247585B2 (en) biaxially oriented thermoplastic resin film
JP6926616B2 (en) Biaxially oriented laminated polyester film and magnetic recording medium
WO2020105471A1 (en) Biaxially oriented thermoplastic resin film
JP6926617B2 (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP2020147751A (en) Polyester film
JP7172304B2 (en) thermoplastic resin film
JP7283040B2 (en) thermoplastic resin film
TWI840441B (en) Biaxially oriented thermoplastic resin film
JP3243969B2 (en) Biaxially oriented laminated polyester film for magnetic recording media
JP2022052031A (en) Biaxially oriented polyester film
JPH02194924A (en) Thermoplastic resin film roll
JP2019116093A (en) Biaxially oriented polyester film
JPH09164641A (en) Biaxially oriented polyester film
JP2018150463A (en) Biaxially oriented polyester film and magnetic recording medium
JP2008138068A (en) Light-shading polyester film
JP2022053506A (en) Biaxially oriented polyester film
JP2021055078A (en) Polyester film
JP2023134991A (en) Biaxially oriented polyester film for support of dry film resist
JP2021109441A (en) Polyester film
JP2001253958A (en) Biaxially oriented polyester film
JP3099991B2 (en) Biaxially oriented laminated polyester film
JP2001341260A (en) Biaxially stretched polyester film
JP2020068045A (en) Biaxially oriented polyester film and coat type magnetic recording tape
JPH08333461A (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019563302

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886239

Country of ref document: EP

Kind code of ref document: A1